

	NAME	FUNCTION	SIGNATURE	DATE
Prepared by:	C.Pasqui	El.Eng. (G.A.)	the St.	8/1/04
Approved by:	M. Giustini	PAPM (G.A.)	per. Sintin	9/01/04
	M. Cosi	Sys. Eng.(G.A.)	Jun	9/1/04
Authorized by:	K E. Suetta	PM (G.A)	Juli	9/1/04
			7	
Approved by:	G. Piccioni	PI		
	P. Drossart	PI		
	A. Semery	LESIA		
	G. Peter	DLR		

DOCUMENT CHANGE RECORD

Issue	Date	Total Pages	Pages Affected	Description of Modification
1	16/12/03	47	ALL	Creation of the document for Venus Express. Starting from the document: VIRTIS SW int ICD, Ref: VIR-GAL-IC-0028, issue 8, dated 27/08/03, and adjusting it to Venus Express. The change bars of this issue shows the changes implemented for Venus Express. (the document was issued as disposition of NCR VVX-GAF-NC-007)

Table of Contents

1.	INTE	RODUCTION	5
1	.1.	purpose of the document	5
1	.2. 1.2.1. 1.2.2.	Definitions, acronyms and abbreviations list of definitions list of acronyms and abbreviations	5 5 5
1	.3.	References	6
1	.4.	Overview of the document	6
2.	тімі	NG AND SYNCHRONISATION	7
3.	VIR	TIS-M AND VIRTIS-H COMMANDS	9
3	.1.	Command concept	9
3	.2.	Command management	9
3	.3.	Error management	10
3	.4.	VIRTIS -M commands and parameters	10
3	.5.	VIRTIS -M power-on mode	11
3	.6.	PIXEL MAP LOADING	12
4.	CON	IMAND DESCRIPTION	13
4	.1.	VIRTIS -M ID CODEs and DATA format	13
4	.2.	VIRTIS-H ID CODEs and DATA format	18
5.	VIR	IS-M AND VIRTIS-H OUTPUTS	20
5	.1.	Output concept	20
5	.2.	VIRTIS-M output data	22
5	.3.	VIRTIS-H output data	24
6.	Ουτ	PUT DESCRIPTION	25
6	.1.	VIRTIS -M HK DATA format	25

G	Galileo Avionica	VIRTIS for	doc : VVX-GAF-IC-002 issue: 1 date: 20/12/2003 page: 4 of 47
6.2.	VIRTIS-M SCIENCE VISIBILE CHANNEL	DATA format	32 33
6.3.	VIRTIS-H HK DATA	format	34
6.4. 6.4	VIRTIS -H SCIENCE 4.1. TOTAL OUTPUT	DATA format DATA	39 40

1. INTRODUCTION

1.1. PURPOSE OF THE DOCUMENT

This SW Internal Interface Control Document (SW HCD) specifies the protocol and data format that the -M and -H PEMs inside the VIRTIS instrument shall follow to communicate with the DHSU through the Command Links and the Data Links as defined in RD.1. (see Fig.1)

The VIRTIS instrument is a 3 data channel imaging spectrometer included as payload in the VENUS EXPRESS mission.

This SW-I-ICD is prepared by GA together with the other teams involved in the project, i.e. Science team, LESIA, DLR. The document is checked by representatives of all the involved teams. It is responsibility of every team representative to propagate relevant information in order to keep this document consistent and up to date .

1.2. DEFINITIONS, ACRONYMS AND ABBREVIATIONS

1.2.1. LIST OF DEFINITIONS

<u>Internal acquisition cycle</u> : for each detector, the reception of the START command starts the basic acquisition cycle i.e. the sequence of the following phases :

- * delay (only for -M channels)
- * exposure (called also integration)
- * readout (i.e. sending science data)
- * sending of H/K data
- * idle

Internal repetition time : the time between two consecutive START command i.e. the duration of the internal acquisition cycle

1.2.2. LIST OF ACRONYMS AND ABBREVIATIONS

- CCD Charged Coupled Device
- DHSU Data Handling and Support Unit
- DPU Data Processing Unit
- FIFO First In First Out
- H/C HealthCheck
- H/K HouseKeepings
- ICD Interface Control Document
- I-ICD Internal Interface Control Document
- I/F InterFace
- IR InfraRed
- ME Main Electronics
- MS Most Significant
- N.A. Not Applicable
- OBDH On Board Data Handling
- par. paragraph
- PDU Power Distribution Unit
- PEM Proximity Electronic Module
- RAM Random Access Memory

IS express

RD **Reference Document** SpaceCraft S/C SEU Single Event Upset SW SoftWare TC TeleCommand TeleMetry ΤM VIRTIS-H V-H V-M VIRTIS-M V-X V-H or V-M VIRTIS Visible and InfraRed Thermal Imaging Spectrometer VIS VISible VVX VIRTIS for VENUS EXPRESS

1.3. REFERENCES

RD.1.VIRTIS Internal Electrical ICD, VIR-GAL-IC-025, Issue 4 RD.2.VIRTIS REQUIREMENTS DOCUMENT, VIR-GAL-RS-001, Issue 1 RD.3.VIRTIS-M SCAN UNIT, VIR-GAL-TN-018 RD.4.VIRTIS-VEX SW USER REQUIREMENTS, VVX-GAF-UR-001, Issue 1 RD.5.VIRTIS-VEX OBDH SW ICD , VVX-GAF-IC-003, Issue 2 RD.6.VIRTIS-H SW ICD Contribution, VIR-DES-IC-1159 Issue 6 RD.7.PID-A MEX-MMT-SP-0007 Issue : 02 Rev. : 0001 Payload Interface Document RD.8.VEX.T.ASTR.CR.0008 Issue 04 rev 1 Updated list of VIRTIS applicable documents

1.4. OVERVIEW OF THE DOCUMENT

The SW I-ICD is organised as follows. After this introduction and a chapter devoted to the timing and synchronisation aspects, the general concepts for the -M and -H sub/systems commanding are given, while the following chapter is dedicated to a more detailed description of each command format. The same two levels presentation applies to the output protocol, first defined in the general concept, then described more in detail. Figures are inserted in Appendix A.

2. TIMING AND SYNCHRONISATION

Fig.2 and Fig.3-6 show the timeline of the 2 sub/systems. The basic points are:

- VIRTIS-H and VIRTIS-M are independently operated; only when the internal repetition time is the same, the two START commands shall be given with a delay ≤ 1 ms.
- detectors work according to the commanded parameters that determine the duration of delay (where applicable), exposure, readout and idle phases of each channel
- for -M:
 - 1. When VIRTIS-M is powered on or reset the Default mode is reached within 800 ms,: IR detector is OFF, CCD is idle, scan mirror is OFF and all PEM parameters are set to safe default values;
 - 2. when the IR detector is switched ON, the mode becomes Idle; this status is changed only when a command starts a different phase;
 - 3. VIRTIS-M is in Idle when both its channels are in Idle
 - 4. the delay values of the VIRTIS-M channels are used to obtain simultaneous exposures (i.e. with contemporary "middle points")
 - 5. DHSU shall issue any other command than STOP READOUT to VIRTIS-M only when this is in Idle otherwise the command will be rejected
 - 6. DHSU shall issue the M-START command after all the commands necessary to set VIRTIS-M
 - 7. the V-M mirror requires about 300 ms (worst case) for a full motion (i.e. from -33° to +33° of electrical angle or vice-versa); a positioning time of 10 ms/deg can be considered.
 - 8. the cover executes one step in about 250 ms

NOTE: there is only one difference, from a functional point of view, between Default and Idle modes: upon a M_START_EXPO command VIRTIS-M sends the real IR detector image only if status is Idle, while in Default it sends a digital reference IR image.

- for -H:
 - 1. As long as PEM-H does not receive any request, the detector is in "free run" (See Fig. 3)
 - 2. The free run mode consists in repeating the following sequence:
 - integration time readout time
 - idle time
 - 3. The aim of the idle time is to permit to close the shutter when required. This idle time is present even if there is no shutter closing requirement in order to let the detector run in a steady rhythm.
 - 4. The duration of the idle time will be fixed at **80 msec** (exact value: 156 * 512 = 79872 mec
 - 5. A synchronisation request (HResync) (See Fig. 4) permits to start an integration time at a well known instant (just at the end of a "Detector_Clocks_Cycle_Reset" "the duration of which ∈ [0.5 , 1.5 mec].). After that, all periods can be localised by the DHSU.
 - 6. A HResync can be sent at any time (either during integration, readout, or idle time).
 - 7. A HSTART_S causes the following complete available data + HK to be sent to the DHSU (See Fig. 5)
 - 8. For the dark measure the HSET_Shutter must be sent during idle time in order to not loose a frame (See Fig. 6)

- 9. If a request (except HSTOP_Readout) is sent while data or HK are sent to the DHSU, the request is not taken into account and the flag HKRq_Req_during_Acq is set to 1.
- 10. If the request HSTOP_Readout is sent while the data or the HK are sent, the sending is stopped and the flag HKDH_Stop_Readout_Flag is set to 1 by the DHSU.
- 11. If the request HSTOP_Readout is sent in an other moment, it is not taken into account.

3. VIRTIS-M AND VIRTIS-H COMMANDS

3.1. COMMAND CONCEPT

Commands are 16 bit words serially transmitted on the Command Links (1 for -M and 1 for -H) following the electrical definition reported in RD1. Each COMMAND WORD has the following format:

ID CODE	DATA			

The ID CODE field (6 bits) is the identifier for the DATA field in the same word.

The DATA field (10 bits) contains the parameter value (or part of it) as indicated by the ID CODE. For parameters that can not be accommodated in one DATA field, two COMMAND WORDs shall be used, each with its ID CODE to determine unequivocally its DATA content.

In these cases, for VIRTIS-M, the Most Significant part of the parameter shall be set first, as on the reception of the Less Significant part, the PEM-M updates the parameter value. The setting of the sine/cosine values of the M mirror angle is then a special case : in fact the PEM-M updates the mirror commanding values when the Less Significant part of the COSINE is issued ; therefore the correct sequence is : M_MIRROR_SIN_M, M_MIRROR_SIN_L, M_MIRROR_COS_M, M_MIRROR_COS_L.

3.2. COMMAND MANAGEMENT

VIRTIS-H and VIRTIS-M shall be able to receive commands issued by the DHSU at any time with the timing reported in RD.1. Anyway, commands received outside the Idle phase shall be signalled to DHSU by setting a flag in the H/K block and (except for the STOP READOUT command, see below) ignored.

The readout (science + H/K or only H/K, if the $H/K_REQUEST$ command has been issued) phase shall be considered complete (and therefore the Idle state active) by the DHSU when at least one of the following occurs:

- the expected number of words has been received by the DHSU
- a predefined time-out has expired on the DHSU.

After power on or after any reset, each PEM shall enter a "power-on" mode later described (chapter .3.5) that is a special case of the Idle state and during which no acquisition is performed.

Timing aspects of the command management are described in chapter 2.

3.3. ERROR MANAGEMENT

No systematic echo of the parameters/commands issued by DHSU is performed by the PEMs. The checking of the transmitted parameters shall be performed by DHSU using the status information contained in the H/K block. The relationship between the commanded words, transmitted by DHSU and the H/K words, transmitted by PEM, shall allow an easy and consistent verification.

Verification of the pixel map uploading is described in chapter 3.6.

In the H/K block a flag shall signal if a command has been received by the PEM outside the Idle phase.

If more words than expected are received from PEM-M by the DHSU,

- a STOP READOUT command shall be issued forcing the PEM_M in the Idle status;
- the PEM-M shall be reset.

3.4. VIRTIS-M COMMANDS AND PARAMETERS

VIRTIS-M IR commands:

 \Diamond

 \Diamond

- ♦ IR detector
 - M_IR_DETECTOR (On/Off)
 - IR detector window
 - M_IR_WIN_MODE (full/reduced window)
- \diamond IR detector bias
 - M_IR_VDETCOM_L
 - M_IR_ VDETCOM_M
 - M_IR_VDETADJ_L
 - M_IR_ VDETADJ_M
- ♦ IR delay time
 - M_IR_DELAY
 - IR integration time
 - M_IR_EXPO

VIRTIS-M CCD commands:

- ♦ CCD detector window
 - M_PEM_CCD_WIN_X1
 - M_PEM_CCD_WIN_Y1
 - M_PEM_CCD_WIN_X2
 - M_PEM_CCD_WIN_Y2
- ♦ CCD delay time
 - M_CCD_DELAY
- ♦ CCD integration time
 - M_CCD_EXPO

VIRTIS-M acquisition commands:

- IRFPA and CCD science data request
 M_START_EXPO
- $hin_{\rm D}$ H/K data request
 - M_H/K_REQUEST
- ♦ Current readout stop
 - M_STOP_READOUT
- ♦ Nop
 - M_NOP_1

VIRTIS-M Calibration lamp commands:

- CCD Calibration lamp on/off + current value
 M_CCD_LAMP
- ♦ IR Calibration lamp on/off+ current value
 - M_IR_LAMP

VIRTIS-M Shutter command:

- \diamond Shutter on/off + current
 - M_SHUTTER

VIRTIS -M-IR Annealing command:

- ♦ Annealing on/off + temp. limit
 - M_IR_ANNEALING

VIRTIS-M Mechanism commands:

- ♦ Mirror position
 - M_MIRROR_SIN_L
 - M_MIRROR_SIN_M
 - M_MIRROR_COS_L
 - M_MIRROR_COS_M
 - M_MIRROR_SWITCH
- ♦ M_COVER(Number of steps, direction, wave drive, Hall sensors enabling)

3.5. VIRTIS-M POWER-ON MODE

After power on or after any reset, V-M shall autonomously enter (within 800 ms) the Default mode, during which no acquisition is performed.. This mode could be maintained for ever, without problems for the electrical and optical characteristic of the detectors, as the PEM autonomously sets default "safe" values (see table in chapter 4.1). In this mode the IR detector and the Scan Mirror motor are Off.

🔼 Galileo Avionica	VIRTIS for	doc : VVX-GAF-IC-002 issue: 1
U	Venus express	date: 20/12/2003 page: 12 of 47

3.6. PIXEL MAP LOADING

It is the "binary image" of every pixel of the VIRTIS-H detector where each pixel is represented by a bit of the map. If the bit is "0", it is a dark pixel (not to be acquired). If the bit is "1", it is a lighted pixel, which will be read and converted to digital. The map size is :

MAP-BYTE-NUM = $\frac{\text{H-DET-ROWS * H-DET-COLUMNS}}{8} = \frac{270 * 438}{8} = 14783 \text{ bytes}$

1

Filename:VVX-GAF-IC-002_iss1

4. COMMAND DESCRIPTION

4.1. VIRTIS-M ID CODES AND DATA FORMAT

			ON Value	value	16 bit binary coding			
			(6)	(6)				
	VIRTIS	S-M IR D	etector					
M_IR_DETECTOR	IR detector power on/off: code 0: detector off code 1: detector on	1	0	1 for real acquisition 0 for simulated data (7)	1101	10 00	0000	000B
M_IR_WIN_MODE	IR window mode: code 0: full window (438x270; Y1=0; Y2=269) code 1: reduced window (438x90; Y1=90; Y2=179)	1	0		1001	00 00	0000	000B
M_IR_ VDETCOM_M M_IR_ VDETCOM_L	VDETCOM bias voltage Range: 2.012 ÷ 4.008 V (4) resolution: 0.487 mV (4) Most significant word VDETCOM bias voltage less significant word	12 (4+8)	Msb= D009 Hex Lsb= 307E Hex	3.2000 V (7) Msb= D009 Hex Lsb= 3088 Hex	1101 0011	00 00 00 00	0000 VVV V	VVVV
M_IR_ VDETADJ_M	VDETADJ bias voltage Range: 0 ÷ 4.996 V (4) resolution: 1.22 mV (4) Most significant word	12 (4+8)	Msb= B008 Hex	2.700 V (7) Msb= B008 Hex	1011	00 00	0000	VVVV
M_IR_ VDETADJ_L	VDETADJ bias voltage less significant word		Lsb= 70A5 Hex	Lsb= 70A5 Hex	0111	00 00	VVV V	VVVV
M_IR_DELAY	IR integration delay from the cycle beginning range: $0 \div 20.46$ s resolution: 0.02 s	10	0.1 s	(7)	1111	00 VV	VVV V	VVVV
M_IR_ EXPO	IR integration (exposure) time range: 0 +20.46 s resolution: 0.02 s	10	0.02s	(7)	0000	10 VV	VVV V	VVVV
	VIF	RTIS-M C	CD					
M_PEM_CCD_WIN_ X1	x co-ordinate of the first element of the CCD window (5) range: 0 ÷ 1023	10	0	72 (8)	0010	10 VV	VVV V	VVVV
M_PEM_CCD_WIN_ Y1	y co-ordinate of the first element of the CCD	9	0	0 (8)	1010	10 0V	VVV V	VVVV
	M_IR_WIN_MODE M_IR_WIN_MODE M_IR_VDETCOM_M M_IR_VDETCOM_L M_IR_VDETADJ_M M_IR_VDETADJ_L M_IR_DELAY M_IR_EXPO M_IR_EXPO	VIRTIS M_IR_DETECTOR IR detector power on/off: code 0: detector off code 1: detector on M_IR_WIN_MODE IR window mode: code 0: full window (438x270; Y1=0; Y2=269) code 1: reduced window (438x90; Y1=90; Y2=179) M_IR_ VDETCOM bias voltage VDETCOM_M Range: 2.012 + 4.008 V (4) resolution: 0.487 mV (4) M_IR_ VDETCOM_L VDETCOM bias voltage less significant word M_IR_ VDETCOM_L VDETCOM bias voltage less significant word M_IR_ VDETADJ_M VDETADJ bias voltage Range: 0 ÷ 4.996 V (4) M_IR_ VDETADJ_L VDETADJ bias voltage less significant word M_IR_ EXPO IR integration delay from the cycle beginning range: 0 +20.46 s resolution: 0.02 s M_IR_ EXPO IR integration (exposure) time range: 0 +20.46 s resolution: 0.02 s M_PEM_CCD_WIN_ X1 x co-ordinate of the first element of the CCD M_PEM_CCD_WIN_ Y1 y co-ordinate of the first element of the CCD	VIRTIS-M IR DO M_IR_DETECTOR IR detector power on/off: code 0: detector off code 1: detector on 1 M_IR_WIN_MODE IR window mode: code 0: full window (438x270; Y1=0; Y2=269) code 1: reduced window (438x290; Y1=90; Y2=179) 1 M_IR_ VDETCOM_M VDETCOM bias voltage Range: 2.012 ÷ 4.008 V (4) resolution: 0.487 mV (4) most significant word 12 M_IR_VDETCOM_L VDETCOM bias voltage less significant word 12 M_IR_VDETCOM_L VDETCOM bias voltage less significant word 12 M_IR_VDETADJ_M VDETADJ bias voltage less significant word 12 M_IR_VDETADJ_L VDETADJ bias voltage less significant word 12 M_IR_VDETADJ_L VDETADJ bias voltage less significant word 12 M_IR_VDETADJ_L VDETADJ bias voltage less significant word 10 M_IR_DELAY IR integration delay from the cycle beginning range: 0 +20.46 s resolution: 0.02 s 10 M_IR_EXPO IR integration (exposure) ime range: 0 +20.46 s resolution: 0.02 s 10 M_PEM_CCD_WIN_ X1 x co-ordinate of the first element of the CCD window (5) range: 0 + 1023 10 M_PEM_CCD_WIN_ Y1 y co-ordinate of the first element of the CCD 9	VIRTIS-M IR Detector M_IR_DETECTOR IR detector power on/off: code 0: detector off code 1: detector on 1 0 M_IR_WIN_MODE IR window mode: code 1: detector on 1 0 M_IR_WIN_MODE IR window mode: code 0: full window (438x270; Y1=0; Y2=269) code 1: reduced window (438x90; Y1=90; Y2=179) 12 Msb= M_IR_ VDETCOM_M VDETCOM bias voltage less significant word 12 Msb= M_IRVDETCOM_L VDETCOM bias voltage less significant word 12 Msb= M_IRVDETADJ_M VDETCOM bias voltage less significant word 12 Msb= M_IRVDETADJ_M VDETADJ bias voltage less significant word 12 Msb= M_IRVDETADJ_M VDETADJ bias voltage less significant word 12 Msb= M_IRVDETADJ_L VDETADJ bias voltage less significant word 12 Msb= M_IRVDETADJ_L VDETADJ bias voltage less significant word 10 0.1 s M_IRDELAY IR integration delay from the cycle beginning range: 0 + 20.46 s resolution: 0.02 s 10 0.02s M_IR_EXPO IR integration (exposure) time range: 0 + 20.46 s resolution: 0.02 s 10 0.02s M_IR_EXPO IR integration (exposure) time <t< td=""><td>Image: Control of the sector of the code 0: detector off code 1: detector off code 1: detector on 1 0 1 for real acquisition 0 for simulated data (7) M_IR_DETECTOR IR window mode: code 0: full window (438x270; Y1=0; Y2=269) code 1: reduced window (438x270; Y1=0; Y2=779) 1 0 3.2000 V M_IR_WIN_MODE IR window mode: code 1: reduced window (438x270; Y1=0; Y2=779) 12 Msb= 3.2000 V M_IR_VDETCOM_IM VDETCOM bias voltage resolution: 0.487 mV (4) 1 0 77 M_IR_VDETCOM_L VDETCOM bias voltage less significant word 12 Msb= 3.2000 V M_IR_VDETCOM_L VDETCOM bias voltage less significant word 12 Msb= 3.2000 V M_IR_VDETCOM_L VDETCOM bias voltage less significant word 12 Msb= 3.2000 V M_IR_VDETADJ_M VDETADJ bias voltage less significant word 12 Msb= 2.700 V M_IR_VDETADJ_L VDETADJ bias voltage less significant word 12 Msb= 2.700 V M_IR_VDETADJ_L VDETADJ bias voltage less significant word 10 0.1 s (7) M_IR_DELAY IR integration delay from the cycle beginning range: 0 +20.46 s resolution: 0.02</td><td>Image: Control of the sector (b) (c) WIRE_DETECTOR IR detector power on/off: code 0: detector off code 1: detector on 1 0 1 for real acquisition of for simulated data 1101 M_IR_WIN_MODE IR window mode: code 0: full window (438x270; Y1=0; Y2=269) code 1: reduced window (438x270; Y1=0; Y2=179) 1 0 1001 M_IR_ VDETCOM_M VDETCOM bias voltage Range: 2.012 + 4.008 V (4) 12 Msb= D009 3.2000 V 1101 M_IR_ VDETCOM_M VDETCOM bias voltage less significant word 12 Msb= D009 Hex 3.2000 V 1101 M_IR_ VDETCOM_L VDETCOM bias voltage less significant word 12 Msb= 307E Hex 3.2000 V 1011 M_IR_ VDETADJ_M VDETADJ bias voltage less significant word 12 Msb= 307E Hex 2.700 V 1011 M_IR_VDETADJ_M VDETADJ bias voltage less significant word 12 Msb= 70A5 2.700 V 1011 M_IR_DELAY IR integration delay from the cycle beginning range: 0 +20.46 s resolution: 0.02 s 10 0.1 s (7) 1111 M_IR_EXPO IR integration (exposure) time range: 0 +20.46 s resolution: 0.02 s 10 0.2 s</td><td>Image: Note of the sector VIRTIS-M IR Detector MUR_DETECTOR IR detector power on/of code 1: detector on code 0: detector on code 1: detector on code 1: detector on code 0: full window (438x20; Y1=0; Y2=269) code 1: reduced window (438x20; Y1=0; Y2=269) code 1: reduced window (438x90; Y1=90; Y2=179) 1 0 1001 0000 MUR_WIM_MODE IR window mode: code 0: full window (438x90; Y1=90; Y2=179) 12 Msb= 3.2000 V 1101 0000 MUR_WOTE VDETCOM bias voltage (4) 12 Msb= 3.2000 V 1101 0000 MUR_WOTE VDETCOM bias voltage less significant word 12 Msb= 2.700 V (7) MUR_VDETCOM_L VDETCOM bias voltage less significant word 12 Msb= 2.700 V 0011 0000 M_IR_VDETADJ_M VDETADJ bias voltage less significant word 12 Msb= 2.700 V 0111 0000 M_IR_VDETADJ_L VDETADJ bias voltage less significant word 12 Msb= 0.011 0000 M_IR_VDETADJ_L VDETADJ bias voltage less significant word 10 0.15 (7) 0111 0000 M_IR_DELAY IR integration del</td><td>Image: Control of the contro</td></t<>	Image: Control of the sector of the code 0: detector off code 1: detector off code 1: detector on 1 0 1 for real acquisition 0 for simulated data (7) M_IR_DETECTOR IR window mode: code 0: full window (438x270; Y1=0; Y2=269) code 1: reduced window (438x270; Y1=0; Y2=779) 1 0 3.2000 V M_IR_WIN_MODE IR window mode: code 1: reduced window (438x270; Y1=0; Y2=779) 12 Msb= 3.2000 V M_IR_VDETCOM_IM VDETCOM bias voltage resolution: 0.487 mV (4) 1 0 77 M_IR_VDETCOM_L VDETCOM bias voltage less significant word 12 Msb= 3.2000 V M_IR_VDETCOM_L VDETCOM bias voltage less significant word 12 Msb= 3.2000 V M_IR_VDETCOM_L VDETCOM bias voltage less significant word 12 Msb= 3.2000 V M_IR_VDETADJ_M VDETADJ bias voltage less significant word 12 Msb= 2.700 V M_IR_VDETADJ_L VDETADJ bias voltage less significant word 12 Msb= 2.700 V M_IR_VDETADJ_L VDETADJ bias voltage less significant word 10 0.1 s (7) M_IR_DELAY IR integration delay from the cycle beginning range: 0 +20.46 s resolution: 0.02	Image: Control of the sector (b) (c) WIRE_DETECTOR IR detector power on/off: code 0: detector off code 1: detector on 1 0 1 for real acquisition of for simulated data 1101 M_IR_WIN_MODE IR window mode: code 0: full window (438x270; Y1=0; Y2=269) code 1: reduced window (438x270; Y1=0; Y2=179) 1 0 1001 M_IR_ VDETCOM_M VDETCOM bias voltage Range: 2.012 + 4.008 V (4) 12 Msb= D009 3.2000 V 1101 M_IR_ VDETCOM_M VDETCOM bias voltage less significant word 12 Msb= D009 Hex 3.2000 V 1101 M_IR_ VDETCOM_L VDETCOM bias voltage less significant word 12 Msb= 307E Hex 3.2000 V 1011 M_IR_ VDETADJ_M VDETADJ bias voltage less significant word 12 Msb= 307E Hex 2.700 V 1011 M_IR_VDETADJ_M VDETADJ bias voltage less significant word 12 Msb= 70A5 2.700 V 1011 M_IR_DELAY IR integration delay from the cycle beginning range: 0 +20.46 s resolution: 0.02 s 10 0.1 s (7) 1111 M_IR_EXPO IR integration (exposure) time range: 0 +20.46 s resolution: 0.02 s 10 0.2 s	Image: Note of the sector VIRTIS-M IR Detector MUR_DETECTOR IR detector power on/of code 1: detector on code 0: detector on code 1: detector on code 1: detector on code 0: full window (438x20; Y1=0; Y2=269) code 1: reduced window (438x20; Y1=0; Y2=269) code 1: reduced window (438x90; Y1=90; Y2=179) 1 0 1001 0000 MUR_WIM_MODE IR window mode: code 0: full window (438x90; Y1=90; Y2=179) 12 Msb= 3.2000 V 1101 0000 MUR_WOTE VDETCOM bias voltage (4) 12 Msb= 3.2000 V 1101 0000 MUR_WOTE VDETCOM bias voltage less significant word 12 Msb= 2.700 V (7) MUR_VDETCOM_L VDETCOM bias voltage less significant word 12 Msb= 2.700 V 0011 0000 M_IR_VDETADJ_M VDETADJ bias voltage less significant word 12 Msb= 2.700 V 0111 0000 M_IR_VDETADJ_L VDETADJ bias voltage less significant word 12 Msb= 0.011 0000 M_IR_VDETADJ_L VDETADJ bias voltage less significant word 10 0.15 (7) 0111 0000 M_IR_DELAY IR integration del	Image: Control of the contro

VIRTIS for

enus express

doc : VVX-GAF-IC-002 issue: 1 date: 20/12/2003 page: 14 of 47

1

FUNCTI ON	NAME	DESCRIPTION	# BITS	Power ON Value	Working value	16 bit binary coding		ling	
on				(6)	(6)				
		window (5) range: 0 ÷ 511							
	M_PEM_CCD_WIN_ X2	x co-ordinate of the last element of the CCD window (5) range: 0 ÷ 1023	10	875	947 (8)	0110	10 VV	VVV V	VVVV
	M_PEM_CCD_WIN_ Y2	y co-ordinate of the last element of the CCD window (5) range: 0 ÷ 511	9	511	511 (8)	1110	10 0V	VVV V	VVVV
CCD delay time	M_CCD_DELAY	CCD integration delay from the cycle beginning range: 0+20.46s (min 0.1s) resolution: 0.02 s	10	0.1 s	(7)	0001	10 VV	VVV V	VVVV
CCD integrati on time	M_CCD_ EXPO	CCD integration (exposure) time range: 0 ÷20.46 s resolution: 0.02 s	10	0.02s	(7)	1001	10 VV	VVV V	VVVV
		VIRTIS	S-M Acqu	uisition					
Acquisiti on start	M_START_EXPO	Start integration (exposure) time and science data acquisition	0			1000	00 00	0000	0000
Houseke eping request	M_H/K_REQUEST	Housekeeping data acquisition and transmission	0			0100	00 00	0000	0000
Current readout stop	M_STOP_READOU T	Stop sending current data block	0			1100	00 00	0000	0000
Nop	M_NOP_1	Do nothing command (spare)	0			0000	00 00	0000	0000
		VIRTIS-M	1 Calibrat	ion lamps					
Calibrati on lamps	M_CCD_LAMP	CCD calibration lamp (bit 0 = ON/OFF; bit 1- 2=current) code: xx0 value: lamp OFF code: 001 value: lamp ON/240 mA code: 011 value: lamp ON/244 mA code: 101 value: lamp ON/250 mA code: 111 value: lamp ON/254 mA	1+2	OFF / 254 mA	(9)	0101	10 00	0000	OVVB
	M_IR_LAMP	IR calibration lamp bit 0= ON/OFF; (1 = ON; 0 = OFF); bit 1-4: current current value ((xxxx)+94)mA	1+4	OFF / 100 mA	(9)	1000	10 00	000V	VVVB

This Document contains proprietary information of Galileo Avionica, a Finmeccanica Company.All Rights reserved. Filename:VVX-GAF-IC-002_iss1.doc

VIRTIS for

enus express

doc : VVX-GAF-IC-002 issue: 1 date: 20/12/2003 page: 15 of 47

FUNCTI ON	NAME	DESCRIPTION	# BITS	Power ON Value (6)	Working value (6)	1	6 bit biı	nary cod	ling
		range : 94÷109 mA (4) resolution : 1 mA (4) Example: code 00001 value: lamp ON/94mA code 11111 value: lamp ON/109mA							
		VIR	TIS-M Sh	utter					
Shutter	M_SHUTTER	shutter open/close (bit 0 =Open/Close; bit 1- 4=current) code xxxx0 = shutter open code xxxx1= shutter closed current range : 45 ÷ 60 mA (4) current resolution : 1 mA (4)	1+4	open / Current value 51 mA	(7)	1100	10 00	000V	VVVB
		VIRT	IS-M Anno	ealing					
Annealin g	M_IR_ANNEALING	IR annealing temperature limit (HHHHHH =High limit) range : +38° ÷ -13 °C resolution: 0.809 °C bit 0 = IR annealing heater on/off (on = 1 / off=0) Example: HHHHHH =00000 = +38 HHHHHH =11111 = -13	1+6	OFF / -13°C (code 1111110)	(7)	0100	10 00	ОННН	НННВ

VIRTIS for

s express

doc : VVX-GAF-IC-002 issue: 1 date: 20/12/2003 page: 16 of 47

FUNCTI ON	NAME	DESCRIPTION	# BITS	Power ON Value	Working value	1	6 bit bin	ary cod	ing
				(6)	(6)				
		VIRTIS-M Scan	unit and C	Cover mecha	anism				
Mirror position	M_MIRROR_SIN_M	sin of mirror electrical angle (1) most significant word bit 4 (B) =is the sign (0=+) range: 0 ÷ 1; resolution: 1/4096	1+12 (4+8)	0 (code: 0 0000)	(7)	0010	00 00	000B	VVVV
	M_MIRROR_SIN_L	sin of mirror electrical angle (2) least significant word		(code: 0000 0000)		1010	00 00	VVV V	VVVV
	M_MIRROR_COS_M	cos of mirror electrical angle(1) most significant word range: 0 ÷ 1; resolution: 1/4096	12 (4+8)	1 (code: 1111)	(7)	0110	00 00	0000	VVVV
	M_MIRROR_COS_L	cos of mirror electrical angle(2) least significant word		(code: 1111 1111)		1110	00 00	VVV V	VVVV
	M_MIRROR_SWITC H	Switch on/off scan mirror motor B=0 means ON B=1 means OFF	1	1 (off)	(7)	0101	00 00	0000	0000
Cover position	M_COVER	Drive by (NNN NNNN) steps the cover motor, with direction D (1=open direction, 0=close direction) and a wave drive W (1= one wave drive, i.e. twophases; 0= half wave drive, i.e. one phase); Hall effect sensors enabling commanded by S (S=1 enabled; S=0 disabled) (3)	1+1+ 1+8		(7)	0001	00 DW	SNNN	NNNN

(1) Electrical angle range is about (-33°, + 33°) where electrical angle=36 * mechanical angle=18*optical angle.

(2) Two words commands shall be sent with the Most Significant Word first and the Least Significant Word second. Command execution starts when the second word has been received.

(3) Full cover range is 81 steps.

(4) Range, Resolution and Default Values are model depending (EQM, FM, FS). The reported values are relevant to VIRTIS-VEX FM01.

(5) CCD windows is commanded referring to CCD elements, not to pixels. The PEM performs a 2x2 binning of CCD elements, generating as output pixels. If the typical values M_PEM_CCD_WIN_X1=0, M_PEM_CCD_WIN_X2=875, M_PEM_CCD_WIN_Y1=0, M_PEM_CCD_WIN_Y2=512 are commanded, the acquired frame is 876x512 and the frame sent to ME by the PEM, after 2x2 binning, is 438x256.

(6) The power ON values indicate the values settled by PEM-M after POWER ON or RESET while the working values indicate the value that have to be commanded by M.E. in order to work whit the right calibrated values.

This Document contains proprietary information of Galileo Avionica, a Finmeccanica Company.All Rights reserved. Filename:VVX-GAF-IC-002_iss1.doc

(7) These working values are defined by the FUNCTIONAL parameter set (see RD5).

(8) These working values are fixed values (defined after the VIRTIS-M channel FM model calibration) and have to be commanded by the M.E. after each every PEM power ON or PEM Reset and before to perform any kind of science acquisition (Science, Calibration or Test).

(9) These working values are defined by the CALIBRATION parameter set (see RD5).

🚱 Galileo Avionica	VIRTIS for	doc : VVX-GAF-IC-002 issue: 1 date: 20/12/2003
	Venus express	page: 18 of 47

4.2. VIRTIS-H ID CODES AND DATA FORMAT

In VIRTIS-H the commands are called **REQUESTS**. 16 bits words sent to **PEM-H** constitute them. If exists, the parameter of the request is sent in the same word.

Request Name	Resulting state	Transmitted parameter	16 bits	binary coding
Configuration Requests			Req. code	Parameter
HSET_Bias	Program detector Bias	H_V_Bias	001000	00 VVVV VVVV
HSET_I_Lamp_Spect_T	Program I cal lamp 1	H_I_Lamp_Spect_T	001001	00 VVVV VVVV
HSET_I_Lamp_Spect_S	Program I cal lamp 2	H_I_Lamp_Spect_S	001001	00 VVVV VVVV
HSET_I_Lamp_Radio	Program I cal lamp 3	H_I_Lamp_Radio	001001	00 VVVV VVVV
HSET_I_Shutter	Program I shutter	H_I_Shutter	001010	00 VVVV VVVV
HSET_Int_Num1	Store Integration param1	H_Int_Num1	010100	<i>vv vvvv vvvv</i>
HSET_Int_Num2	Store Integration param2	H_Int_Num2	010101	00 VVVV VVVV
Pixel Map Requests				
HINIT _Pix_Map_Upld	Pixel Map Address Reset	Pixel Map Upload Request (reset Pixel Map address)	001110	00 0000 0000
HINIT_Pix_Map_Dnld	Pixel Map Address Reset	Pixel Map Dnload Request (reset Pixel Map address)	001110	00 0000 0000
HSET_Pix_Map_Data	Pixel Map byte write	H_Pixel_Map	001100	00 VVVV VVVV
HDNLD_Pix_Map_Data	Pixel Map byte read		001101	00 0000 0000
PEM Mode Requests				
HSET_PEM_Mode	Set the PEM mode:	BB =00: Observation/ 8 orders BB =01: Observation/ all	011010	00 0000 00 BB
		matrix		
		BB =10: Simulation/ 8 orders BB =11 : simulation/ all		
		matrix		
Acquisition Requests				

This Document contains proprietary information of Galileo Avionica, a Finmeccanica Company. All Rights reserved.

Request Name	Resulting state	Trans	smitted parameter	16 bit	s binary coding
HNOP	No Operation			000000	00 0000 0000
HSTART_S	Acquire a science block			000001	00 0000 0000
HSTART_HK	Acquire a HK block			000010	00 0000 0000
HSTOP_Readout	Stop current block			000011	00 0000 0000
HRESYNC	Synchronize detector			00100	00 0000 0000
Peripherals Control Requests					
HSET_Det/On	Switch on detector			010001	00 0000 000 1
HSET_Det/Off	Switch off detector			010001	00 0000 000 0
HSET_Shutter/On	Shutter On (closed)			011011	00 0000 000 1
HSET_Shutter/Off	Shutter Off (open)			011011	00 0000 000 0
HSET_Shutter_Status	Shutter status On/Off	Switch on or off both s	hutter status leds;	011111	00 0000 000 b
		$\mathbf{B} = 1 \Rightarrow \mathrm{On}, \mathbf{B} = 0 \Rightarrow \mathrm{Off}$			
HSET_FPA_Htr/On	Annealing Heater On			011100	00 0000 0001
HSET_FPA_Htr/Off	Annealing Heater Off			011100	00 0000 000 0
HSET_Lamp_Spect_T/On	Cal lamp 1 On			011101	00 0000 0 001
HSET_Lamp_Spect_S/On	Cal lamp 2 On			011101	00 0000 0 010
HSET_Lamp_Radio/On	Cal lamp 3 On			011101	00 0000 0 100
HSET_Cal/Off	Cal lamps Off	Switch off the 3 cal lam	ps	011101	00 0000 0 000
HSET_Det_Temp/On	Temperature detector On			011110	00 0000 000 1
HSET_Det_Temp/Off	Temperature detector Off			011110	00 0000 000 0
Cover Mechanism Requests					
HSET_Cover	Cover drive	Direction Wave Number of steps Hall sensor disabled	D=1:Open; =0 Close T=1: one wave T=0: half wave VV VVVV V S=1 enabled; S=0	010010	<i>vv vvvv vs</i> td
DHSU/PEM-H Testing Requests					
HSET_Test_Init	Initialize test pattern	1 st value of the test patte	ern (default = 0); 1024 values	010011	vv vvvv vvvv

This Document contains proprietary information of Galileo Avionica, a Finmeccanica Company. All Rights reserved.

Filename:VVX-GAF-IC-002_iss1.doc

5. VIRTIS-M AND VIRTIS-H OUTPUTS

5.1. OUTPUT CONCEPT

Output data blocks are groups of 16 bit words serially transmitted on the Data Links (1 for -M-VIS, 1 for -M-IR and 1 for -H) following the electrical definition reported in RD.1. The protocol is based on the following format:

The SCIENCE DATA block is transmitted during the readout phase, i.e. if a START command has been issued by DHSU. Its length and format depend on the channel operational mode.

Maximum SCIENCE DATA block size and transfer time for VIRTIS M are :

	max number of SCIENCE words	max acquisition and transfer time for SCIENCE
-M-VIS channel	438x256 = 112128	1400 ms (1)
-M-IR channel	438 * 270 = 118260	1210 ms (M_IR_WIN_MODE: full window)
	438*90 = 39420	482 ms (M_IR_WIN_MODE: reduced window)

(1) The transfer time is evaluated for the following physical CCD window:

M_PEM_CCD_WIN_X1 = 72; M_PEM_CCD_WIN_Y1 = 0; M_PEM_CCD_WIN_X2= 947; M_PEM_CCD_WIN_Y2 = 511

This Document contains proprietary information of Galileo Avionica, a Finmeccanica Company.All Rights reserved. Filename:VVX-GAF-IC-002_iss1.doc

For VIRTIS-H, to calculate the Science data transfer times:

1 read pixel : 10 µsec

1 non-read pixel: 1 µsec

A fixed time of 40 μ sec is added at the beginning of each line.

So, IF:

nreadpx = number of read pixels

Tread = time to read the data

THEN:

Tread = $(438 \times 270 - \text{nreadpx}) \times 1 \mu \text{sec} + \text{nreadpx} \times 10 \mu \text{sec} + 270 \times 40 \mu \text{sec}$

H_PEM_MODE	Number of SCIENCE words (16 b) in a frame	Transfer time for SCIENCE
0: Observation/ 8 orders 2: Simulation/ 8 orders	432 x 8 x 5 = 17280	284.580 ms
1: Observation/ all matrix 3 : Simulation/ all matrix	438 x 270 = 118260	1.193400 s

After a SCIENCE DATA block, the PEM always transmits a H/K DATA block. This block shall be transmitted also after a H/K REQUEST command.

The HK DATA block shall have fixed length (typical of each channel) and shall include information such as:

- sub-system status (e.g. shutter and scan unit status)
- internal parameter status
- temperature values
- voltage and current values

Data shall be transmitted in a fixed order (typical of each channel).

HK DATA sub-block size and transfer time are :

	number of HK words	total transfer time for HK DATA
-M-VIS channel	25	25 ms
-M-IR channel	20	23 ms
-H channel	7 + (12 + 1) + (6 + 2) + 8 words = 36 words 16 b	$36 \text{ x } 64 \mu \text{s} = 2.304 \text{ ms}$

With reference to figure 2, it is possible to define for VIRTIS-M a read-out time T_{RO} (science data acquisition and transfer, H/K acquisition and transfer) as per the following table:

	M_IR_WIN_MODE	T _{RO}	Rationale
-M-VIS channel	-	1450 ms	1400 + 25 + margin
-M-IR channel	Full window	1400 ms	1210 + 23 + margin
-M-IR channel	Reduced window	600 ms	482 +23 + margin

Therefore, the time between two M_START_EXPO (internal repetition time, M_IRT) is constrained by:

$$\label{eq:m_irr} \begin{split} M_IRT > M_CCD_DELAY + M_CCD_EXPO + T_{RO-VIS} \\ M_IRT > M_IR_DELAY + M_IR_EXPO + T_{RO-IR} \end{split}$$

5.2. VIRTIS-M OUTPUT DATA

Outputs for both M channels are the SCIENCE DATA block and the H/K DATA block. The first is composed of the science data from the detectors while the second includes status and analogue H/K from the PEM.

The allocation and the order of H/K data on the two -M channels are shown in the following tables while the format of each datum is described in Sect.6.

	IR CHANNEL H/K DATA BLOCK
#	NAME
1	M_IR_VDETCOM_HK
2	M_IR_VDETADJ_HK
3	M_IR_VPOS
4	M_IR_VPD
5	M_IR_TEMP_OFFSET
6	M_IR_TEMP
7	M_IR_TEMP_RES
8	M_SHUTTER_TEMP
9	M_GRATING_TEMP
10	M_SPECT_TEMP
11	M_TELE_TEMP
12	M_SU_MOTOR_TEMP
13	M_IR_LAMP_VOLT
14	M_SU_MOTOR_CURR
15	M_IR_WIN_Y1_OUT
16	M_IR_WIN_Y2_OUT
17	M_IR_DELAY_OUT
18	M_IR_EXPO_OUT
19	M_IR_LAMP_SHUTTER
20	M_IR_FLAG_ST

VIRTIS for

	CCD CHANNEL H/K DATA BLOCK
#	NAME
1	M_CCD_VDR_HK
2	M_CCD_VDD_HK
3	M_+5V_VOLT
4	M_+12V_VOLT
5	M12V_VOLT
6	M_+20V_VOLT
7	M_+21V_VOLT
8	M_CCD_LAMP_VOLT
9	M_CCD_TEMP_OFFSET
10	M_CCD_TEMP
11	M_CCD_TEMP_RES
12	RADIATOR_TEMP
13	LEDGE_TEMP
14	OM_BASE_TEMP
15	H_COOLER_ TEMP
16	M_COOLER_ TEMP
17	M_CCD_WIN_X1_OUT
18	M_CCD_WIN_Y1_OUT
19	M_CCD_WIN_X2_OUT
20	M_CCD_WIN_Y2_OUT
21	M_CCD_DELAY_OUT
22	M_CCD_EXPO_OUT
23	M_MIRROR_SIN_HK
24	M_MIRROR_COS_HK
25	M_VIS_FLAG_ST

5.3. VIRTIS-H OUTPUT DATA

The following diagram shows the Digital HK words arrangement. Other information on H/K Data format can be found in sect. 6.3 while Science Data format is described in sect. 6.4

6. OUTPUT DESCRIPTION

6.1. VIRTIS-M HK DATA FORMAT

The format of the HK data for the VIRTIS-M channels is shown in the following tables. All data are provided as 16 bit words.

For each H/K, the following table reports:

- transfer function from the 16-bit code (indicated as N) to the physical value, which units is indicated between square brackets
- minimum and maximum value.

Example: M_+5V_VOLT is a 16 bit data in the range (32768, 49970); applying the transfer function, one obtain the voltage in Volt; the min. value corresponds to $(32768-32768)^* 20/2^{16} = 0 \text{ V}$, the max. value corresponds to $(49970-32768)^* 20/2^{16} = 5,25 \text{ V}$.

Analogue House-Keeping list

In the following the list of analogue HK is provided.

The transfer function from the digital data N and the value in engineering units (Volt, Ampere, Ohm) is the following:

$$FdT = \frac{(N - 32768) \times \frac{20}{65535}}{G} + Offset$$

where the gain G, the offset and the engineering unit definition are provided in the following table. Note that temperatures need a further processing, as specified below.

FUNCTION	NAME	DESCRIPTION	Transfer function	N Min value	N Max value
Supply voltages	M_+5V_VOLT	+5V power supply voltage (Volt)	G=0.997 Offset=0	32440	50250
	M_+12V_VOLT	+12V power supply voltage (Volt)	G=0.496 Offset=0	32610	53410
	M12V_VOLT	-12V power supply voltage (Volt)	G=0.497 Offset=0	12090	33610
	M_+20V_VOLT	+20V power supply voltage (Volt)	G=0.25 Offset=0	32690	50050
	M_+21V_VOLT	+21V power supply voltage (Volt)	G=0.25 Offset=0	32690	52510
Detectors voltages	M_IR_VDETCOM_H K	IR VDETCOM bias voltage (Volt)	G=0.998 Offset=0	32440	46180
	M_IR_VDETADJ_VO LT	IR VDETADJ bias voltage (Volt)	G=0.997 Offset=0	32440	49430
	M_IR_VPOS	IR VPOS supply voltage (Volt)	G=0.997 Offset=0	32440	49920
	M_IR_VPD	IR VDP supply voltage (Volt)	G=0.997 Offset=0	32440	49920
	M_CCD_VDR_HK	CCD Vdr bias voltage (Volt)	G=0.25 Offset=0	43170	43500
	M_CCD_VDD_HK	CCD Vdd bias voltage (Volt)	G=0.404 Offset=0	54610	55010
Calibration lamps	M_IR_LAMP_VOLT	IR calibration lamp voltage (Volt)	G=0.398 Offset=0	32640	54940
	M_CCD_LAMP_VOL T	CCD calibration lamp voltage (Volt)	G=0.399 Offset=0	32640	54990

VIRTIS for enus express

doc : VVX-GAF-IC-002 issue: 1 date: 20/12/2003 page: 27 of 47

FUNCTION	NAME	DESCRIPTION	Transfer function	N Min value	N Max value
Temperatures	M_IR_TEMP	IRFPA temperature (DT407) (Kelvin)	G=4.970 Offset=0 (1)	39000	50100
	M_IR_TEMP_RES	measurement of the current flowing on the IRFPA temperature sensor (Ampere)	G=398.8 Offset=0	38650	39950
	M_IR_TEMP_OFFSE T	Voltage offset in the IR temperature measurement chain (Volt)	G=1.994 Offset=0	32100	33500
	M_CCD_TEMP	CCD temperature (Kelvin)	G=9.99*10 ⁻³ Offset=0	35780	55460
	M_CCD_TEMP_RES	measurement of the current flowing on the CCD temperature sensor (Ampere)	G=199.3 Offset=0	35710	36360
	M_CCD_TEMP_OFFS ET	Voltage offset in the CCD temperature measurement chain (Volt)	G=1.998 Offset=0	32100	33500
	M_SHUTTER_TEMP	shutter temperature (Kelvin)	$G=9.98*10^{-3}$ Offset=0 (2)	35780	55460
	M_GRATING_TEMP	grating temperature (Kelvin)	$G=9.98*10^{-3}$ Offset=0 (2)	35780	55460
	M_SPECT_TEMP	spectrometer temperature (Kelvin)	G=9.98*10 ⁻³ Offset=0 (2)	35780	55460
	M_TELE_TEMP	telescope temperature (Kelvin)	$G=9.98*10^{-3}$ Offset=0 (2)	35780	55460
	RADIATOR_TEMP	OM radiator temperature (Kelvin)	$G=9.99*10^{-3}$ Offset=0 (2)	35780	55460
	LEDGE_TEMP	OM ledge temperature (Kelvin)	$ G=9.99*10^{-3} Offset=0 (2) (2) $	35780	55460
	OM_BASE_TEMP	OM baseplate temperature (Kelvin)	G=9.99*10 ⁻³ Offset=0 (2)	35780	55460

FUNCTION	NAME	DESCRIPTION	Transfer function	N Min value	N Max value
	M_COOLER_ TEMP	M-cooler temperature (Kelvin)	$G=9.99*10^{-3}$ Offset=0 (2)	35780	55460
	H_COOLER_ TEMP	H-cooler temperature (Kelvin)	$G=9.99*10^{-3}$ Offset=0 (2)	35780	55460
	M_SU_MOTOR_TEM P	scan unit motor temperature (Kelvin)	$G=9.98*10^{-3}$ Offset=0 (2)	35780	55460
Mirror	M_SU_MOTOR_CUR R	scan unit current (Ampere)	G=50 Offset=0	28000	38000

NOTE (1): Transfer function of M_IR_TEMP

First the sensor voltage V_s has to be obtained from the 16-bit code N, using the values specified in the table:

$$Vs = \frac{(N - 32768) \times \frac{20}{65535}}{G} + Offset$$

Then, the normalised sensor voltage has to be computed as:

 $V_n = ((V_s - V_L) - (V_U - V_S)) / (V_U - V_L)$

where the parameters V_L and V_U are provided in table 6.1-1.

Then, the temperature [K] is obtained by applying the following formula:

$$T = \Sigma_{i=0, 11} A(i) P_i(V_n)$$

where A(i) are provided in table 6.1-1 and the functions $P_i(x)$ are the Chebychev polynomials, defined by the following recursive relations:

$$P_0(x) = 1$$

 $P_1(x) = x$
 $P_{i+1}(x) = 2x * P_i(x) - P_{i-1}(x)$

The parameters $V_L V_U$ and A(i) have different values when V_s is less than or greater than 0.97550V, corresponding to a temperature of 100 K.

Parameter	$V_{s} > 0.97550$	$V_{s} \le 0.97550$
VL	0.923174	0.079767
Vu	1.13935	0.999614
A(0)	71.818025	287.756797
A(1)	-53.799888	-194.144823
A(2)	1.669931	-3.837903
A(3)	2.314228	-1.318325
A(4)	1.566635	-0.10912
A(5)	0.723026	-0.393265
A(6)	-0.149503	0.146911
A(7)	0.046876	-0.111192
A(8)	-0.388555	0.028877
A(9)	0.056889	-0.029286
A(10)	-0.116823	0.015619
A(11)	0.05858	0

Table 6.1.1: M_IR_TEMP transfer function coefficients

NOTE (2): Transfer function of M_CCD_TEMP, M_SHUTTER_TEMP, M_GRATING_TEMP, M_SPECT_TEMP, M_TELE_TEMP, RADIATOR_TEMP, LEDGE_ TEMP, OM_BASE_TEMP, M_COOLER_ TEMP, H_COOLER_ TEMP, M_SU_MOTOR_TEMP

First the sensor resistance R $[\Omega]_s$ has to be obtained from the 16-bit code N, using the values specified in the table:

$$R = \frac{(N - 32768) \times \frac{20}{65535}}{G} + Offset$$

Then, the temperature [°C] is obtained by solving the following equation:

$$R = R_0 (1 + A^*T + B^*T^2 + C^*(T-100)^*T^3)$$

where the coefficients are:

$A = 3.90802 \ 10^{-3}$	
$B = -5.80195 \ 10^{-7}$	
C = 0	if R \geq 500 Ω (T \geq 0)
$C = -4.2735 \ 10^{-12}$	if R<500 Ω (T<0)

Status parameter list

FUNCTIO N	NAME	DESCRIPTION	# BITS		CO	DE	
IR detector	M_IR_WIN_Y1_OUT	y coord. of the first pixel of the IR selected window	9	0000	000V	VVVV	VVV V
	M_IR_WIN_Y2_OUT	y coord. of the last pixel of the IR selected window	9	0000	000V	VVVV	VVV V
	M_IR_DELAY_OUT	IR integration delay from the cycle beginning $(1 \text{ ADU}= 0.02 \text{ s})$	10	0000	00VV	VVVV	VVV V
	M_IR_EXPO_OUT	IR integration time (1 ADU= 0.02 s)	10	0000	00VV	VVVV	VVV V
CCD detector	M_PEM_CCD_WIN_X1_ OUT	x coord. of the first pixel of the CCD selected window	10	0000	00VV	VVVV	VVV V
	M_PEM_CCD_WIN_Y1_ OUT	y coord. of the first pixel of the CCD selected window	9	0000	000V	VVVV	VVV V
	M_PEM_CCD_WIN_X2_ OUT	x coord. of the last pixel of the CCD selected window	10	0000	00VV	VVVV	VVV V
	M_PEM_CCD_WIN_Y2_ OUT	y coord. of the last pixel of the CCD selected window	9	0000	000V	VVVV	VVV V
	M_CCD_DELAY_OUT	CCD integration delay from the cycle beginning $(1 \text{ ADU}= 0.02 \text{ s})$	10	0000	00VV	VVVV	VVV V
	M_CCD_EXPO_OUT	CCD integration time (1 ADU= 0.02 s)	10	0000	00VV	VVVV	VVV V
Scan Unit	M_MIRROR_SIN_HK	Echo of commanded sin of electrical angle bit 12 (S) = sign ($0=+$; 1=-)	12+1	000S	VVVV	VVVV	VVV V
	M_MIRROR_COS_HK	Echo of commanded cos of electrical angle	12+1	0000	VVVV	VVVV	VVV V
M_IR_LAMP _SHUTTER	M_IR_LAMP_CURR	Bit 0-3 (VVVV): last current value of IR calibration lamp; current = (VVVV+ 94) mA (*)	12	000-		000-	VVV V
	M_IR_LAMP_ST	Bit 4 (B): last actuated command of IR calibration lamp (on=1)	12	000-		000B	
	M_SHUTTER_CURR	Bit 8-11 (VVVV): last current value of shutter; current = (VVVV + 45) mA (*)	12	000-	VVVV	000-	
	M_SHUTTE_ST	Bit 12 (B): last actuated command of shutter (close=1)	12	000B		000-	
M_IR_FLAG _ST	M_IR_SCAN_FLAG	IRFPA scan flag; bit 0 (correct =1)	1	0	00	0	B
	M_IR_H/K_FLAG	H/K acquisition flag of the IR channel bit 1 (complete =1)	1	0	00	0	B-
	M_IR_CMD_TIME_ ERROR	Error flag: a command has been received out of the idle time : bit 2 (error=1)	1	0	0'-0	0	-B
	M_IR_CMD_WORD_ ERROR	Error flag: bad command identifier or command value out of range: bit 3 (error=1)	1	0	00-0	0	В
	M_SCAN_CMD_ WORD_ERROR	Error flag: bad command identifier or command wrong command sequence; bit 4 (error=1)	1	0	00-0	0B	
	M_IR_DETECT_ST	IR detector status flag bit 5 (on = 1, off=0)	1	0	00-0	00B-	
	M_IR_ADC_LTC	IR channel AD converter latch-up status bit 6 (latch-up = 1, no latch-up=0)	1	0	00-0	0B	
	M_IR_ANN_ST	IRPA annealing heater: last received command bit 9 (on = 1, off=0)	1	0	00B0	0	
	M_COVER_ST	cover status	3	0BBB	00-0	0	

This Document contains proprietary information of Galileo Avionica, a Finmeccanica Company.All Rights reserved. Filename:VVX-GAF-IC-002_iss1.doc

🚱 Galileo Avionica	VIRTIS for	doc : VVX-GAF-IC-002 issue: 1 date: 20/12/2003 page: <i>31</i> of 47
	bit 12 - direction of last applied cmd - Close =0 Open = 1 bit 13 - Close position HES1 - Closed=0 not Closed = 1 bit 14 - Open position HES2 - Open=0 not Open = 1 Note: Close/Open information in telemetry are always valid; but HES2 data is updated only during a cover motion.	

M_VIS_FLA G_ST	M_CCD_SCAN_FLAG	CCD scan flag ; bit 0 (correct =1)	1	0000	000-	000-	B
	M_VIS_H/K_FLAG	H/K acquisition flag of the visible channel bit 1 (complete =1)	1	0000	000-	000-	B-
	M_VIS_CMD_TIME_ ERROR	Error flag: a command has been received out of the idle time: bit 2 (error=1)	1	0000	000-	000-	-B
	M_VIS_CMD_WORD_ ERROR	Error flag: bad command identifier or command value out of range: bit 3 (error=1)	1	0000	000-	000-	В
	M_VIS_ADC_LTC	VIS channel AD converter latch-up status bit 4 (latch-up = 1, no latch-up=0)	1	0000	000-	000B	-B
	M_CCD_LAMP_ST	last command applied to the CCD calibrat. lamp: bit 8 (on = 1)	1	0000	000B	000-	

NOTE : after power-on or reset , last cmd = 0, i.e. close

(*) The provided offset values in transfer functions are valid for FM

6.2. VIRTIS-M SCIENCE DATA FORMAT

SCIENCE data generated by the VIRTIS-M-VIS and for the VIRTIS-M-IR channels are streams of 16 bit words, each corresponding to 1 pixel . For M-VIS, one pixel (i.e. one word) is relevant to a binning (performed by the PEM) of 2x2 CCD elements. If the co-ordinates of the first pixel in the stream (pixel#1) are (X1,Y1) while (X2,Y2) are the co-ordinates of the last pixel, data are acquired from wavelength X1 to wavelength X2 and (from the spatial i.e. slit direction) from Y1 to Y2.

Detector data are acquired on a spectral basis i.e. spectrum by spectrum. The first spectrum spatial co-ordinate Y1 is relative to the greatest (positive) angular co-ordinate of the acquired portion of the slit and the last to the most negative angular position. In each spectrum data are read according to increasing wavelength. Therefore pixel#1 has the shortest $\lambda(X1)$ while pixel#2 has the same Y and a longer wavelength.

For the VIS detector, we always have X1, X2, Y1 and Y2 settled in order to have a data output window size of 438 x 256 pixels (note that the PEM is commanded in CCD elements, not pixels).

Typical values (default after power On) X1=0, X2=875, Y1=0 and Y2=511 -> VIS window of 438x256 sent by PEM Calibrated values (working values for FM) X1=72, X2=947, Y1=0 and Y2=511 -> VIS window of 438x256 sent by PEM The first pixel acquired by the M.E have to be considered always as the pixel 0,0 Of the 438 columns, only 432 are valid: they are discarded by the ME.

For the IR detector, we always have X1=0, X2=437, Y1=0 and Y2=269 -> IR window of 438x270 sent by PEM, but the first and the last pixels in each IR spectrum are not active pixels, therefore even if 438 pixels are received by the ME, only 436 holds meaningful values (from X1=1 to X2=436).

Anyway, of the 438 columns, only 432 are used and of the 270 row only 256 are used: they are discarded by the ME.

This Document contains proprietary information of Galileo Avionica, a Finmeccanica Company.All Rights reserved. Filename:VVX-GAF-IC-002_iss1.doc

The characteristics of the science data from the PEM-M are the following

VISIBILE CHANNEL		
Data type	16 bit unsigned	Min: 0 ADU
	Increasing scale	Max: 65535 ADU
Theoretic dynamic	16384÷65535 ADU	Zero point: 16384 ADU
Offset value	16372 ADU	Measured with a breadboard and the FM CCD
Saturation value	63500 ADU	Without any margin
Dark	0.1966 ADU/s	Note: 6.7945 e-/s
read -out noise (detector + electronics)	≈2 ADU	
Background noise	N/A	

IR CHANNEL		
Data type	16 bit unsigned	Min: 65535 ADU
	Decreasing scale	Max: 0 ADU
Theoretic dynamic	65535 ÷ 0 ADU	Zero point: 65535 ADU
Actual dynamic	61000÷7500 ADU	Without any margin
		Zero point: 61000 ADU variable with polarisation
Offset value Typical	51000 ADU	Note: 3.2V±0.2V
	(that means 10000 ADU	Without any margin
	offset from the zero	
	point)	
Min	61000 ADU	Note: 4V±0.2V
		Without any margin
Saturation value	7500ADU	Without any margin
Dark		Note:
70K	75 ADU/s	0.8 fA
90K	169 ADU/s	1.8 fA
100K	1032 ADU/s	11 fA
Fixed pattern noise (detector +	1.5÷2 ADU	
electronics)		
Background noise	λ and $\sqrt{T_{expo}}$ depending	

NOTE: These values are taken from the data acquired and processed during the FM detector calibration sessions performed using PEM-M B/B electronics (FM rapresentative)

6.3. VIRTIS-H HK DATA FORMAT

Digital housekeeping (7 words of 16 bits)

Housekeeping Name	Meaning	# bits	Source	Remarks; corresponding req.
HKRq_Int_Num2	FPGA divider ratio for detector speed control	8	PEM Ctrler	HSET_Int_Num2
HKRq_Int_Num1	Integration time constant (8 LSB's/10)	10	PEM Ctrler	HSET_Int_Num1
HKRq_Bias	Detector Bias	8	PEM Ctrler	HSET_Bias
HKRq_I_Lamp	Calibration Lamp required current	8	PEM Ctrler	HSET_I_Lamp_XX
HKRq_I_Shutter	Shutter required current	8	PEM Ctrler	HSET_I_Shutter
HKRq_PEM_Mode	PEM-H Mode	2	PEM Ctrler	HSET_PEM_Mode
HKRq_Test_Init	Requested initial data in Test Mode (4 LSB's/10)	10	PEM Ctrler	HSET_Test_Init
HKRq_Det/On	Detector Power On/Off request	1	PEM Ctrler	HSET_Det/On or HSET_Det/Off
HKRq_Shutter/On	Shutter On or Off	1	PEM Ctrler	HSET_Shutter/On or /Off
HKRq_FPAHtr/On	Annealing On or Off	1	PEM Ctrler	HSET_FPA_Htr/On or /Off
HKRq_Lamp_Spect_T/On	Spectral Calibration Lamp Telescope On/Off	1	PEM Ctrler	HSET_Lamp_Spect_T/On or HSET_Cal/Off
HKRq_Lamp_Spect_S/On	Spectral Calibration Lamp Slit On/Off	1	PEM Ctrler	HSET_Lamp_Spect_S/On or HSET_Cal/Off
HKRq_Lamp_Radio/On	Radiometric Calibration Lamp On/Off	1	PEM Ctrler	HSET_Lamp_Radio/On or HSET_Cal/Off
HKRq_Temp_Det/On	Temp meas. by detector temp sensor On/Off req.	1	PEM Ctrler	HSET_Det_Temp/On or Off
HKRq_Status_Shutter/On	Shutter Status device ON or OFF	1	PEM Ctrler	HSET_Shutter_Status/On or Off
HKMs_Req_during_Acq	Request(s) have arrived during data acquisition	1	PEM Ctrler	Reply to any req rcvd during block gen.
HKRq_Cover_Dir	V-H cover has been commanded open/ closed	1	PEM Ctrler	HSET_Cover
HKRq_Cover_Wave	V-H cover motor wave one/half	1	PEM Ctrler	HSET_Cover
HKRq_Cover_Status	=1: cover status enabled; =0: disabled	1	PEM Ctrler	HSET_Cover

This Document contains proprietary information of Galileo Avionica, a Finmeccanica Company. All Rights reserved.

Housekeeping Name	Meaning	# bite	Source	Remarks; corresponding req.
		DILS		
HKRq_Cover_Step	V-H cover motor number of steps	1	PEM Ctrler	HSET_Cover
Available		7		
HKMs_ADC_Latchup	ADC Latch-up has occurred (1)	1	PEM	Caused by LPSTATUS ADC
HKMs_Shutter/Open	Shutter Status: Open = 0, not open = 1	1	Opt. Head	Reply to HSET_Shutter/On
HKMs_Shutter/Closed	Shutter Status: Closed = 0, not closed =1	1	Opt. Head	Reply to HSET_Shutter/Off
FPGA_HES_1-H	Cover Status: closed (FPGA_HES_1-H=0) not closed (FPGA_HES_1- H=1)	1	СМЕ	Reply to HSET_Cover (H_Cover_Dir = 1)
FPGA_HES_2-H	Cover Status: open (<i>FPGA_HES_2-H=0</i>) not open (<i>FPGA_HES_2-H=1</i>)	1	СМЕ	Reply to HSET_Cover (H_Cover_Dir =0)
HKMs_Annealining_Limit_Flag	The annealing security is active (the FPA temp is above the safe annealing temperature) 1 = Annealing authorised 0 = Annealing NOT authorised	1	PEM	Possible only with HSET_FPA_Htr/On
Available		10		
Available		16		

This Document contains proprietary information of Galileo Avionica, a Finmeccanica Company. All Rights reserved.

Galileo Avionica	doc : VVX-GAF-IC-002 issue: 1 date: 20/12/2003 page: 36 of 47
------------------	---

Analog Voltage Housekeeping (12 + 1 TBD)

Name	Function	Format	Info
HKMs_V_Line_Ref	V at beginning of last detector line	Signed 16 bits word	Voltage
HKMs_Vdet_Dig	V supply detector (digital)	Signed 16 bits word	Voltage
HKMs_Vdet_Ana	V supply detector (Analog)	Signed 16 bits word	Voltage
HKMs_V_Detcom	V Bias Detector (fixed)	Signed 16 bits word	Voltage
HKMs_V_Detadj	V Bias Detector (HSET_Bias)	Signed 16 bits word	Voltage
HKMs_V+5	V Pwr +5v (Logic)	Signed 16 bits word	Voltage
HKMs_V+12	V Pwr +12v (Analogic)	Signed 16 bits word	Voltage
HKMs_V+21	V Pwr +21v (Shutter, Heater)	Signed 16 bits word	Voltage
HKMs_V-12	V Pwr -12v (Analogic)	Signed 16 bits word	Voltage
HKMs_Temp_Vref	Vref Temp measurements	Signed 16 bits word	Voltage
HKMs_Det_Temp	FPA Temp by internal sensor	Signed 16 bits word	Temp→V
HKMs_Gnd	Ground reference	Signed 16 bits word	Voltage
TBD			

🚱 Galileo Avionica	VIRTIS for	doc : VVX-GAF-IC-002 issue: 1 date: 20/12/2003
		page: 57 of 47

Analog Current Housekeeping (6 + 2 TBDs)

Name	Function	Format	Info
HKMs_I_VDet_Ana	I Detector (analog)	Signed 16 bits word	Current
HKMs_I_Vdet_Dig	I Detector (digital)	Signed 16 bits word	Current
HKMs_I_+5	I Pwr +5v (Logic)	Signed 16 bits word	Current
HKMs_I_+12	I Pwr +12v (Analog)	Signed 16 bits word	Current
HKMs_I_Lamp	I Calibration Lamp	Signed 16 bits word	Current
HKMs_I_Shutter/Heater	I Shutter/Heater	Signed 16 bits word	Current
TBD			
TBD			

Analog Temperature Housekeeping (8)

Name	Function	Format	Info
HKMs_Temp_Prism	Prism temp	Signed 16 bits word	PT100/3 w
HKMs_Temp_Cal_S	Slit (Spectral) Lamp temp	Signed 16 bits word	PT100/3 w
HKMs_Temp_Cal_T	Tel. Spectral & Radio Lamps temp	Signed 16 bits word	PT100/3 w
HKMs_Temp_Shut	Shutter temp	Signed 16 bits word	PT100/3 w
HKMs_Temp_Grating	Grating temp	Signed 16 bits word	PT100/3 w
HKMs_Temp_Objective	Objective temp	Signed 16 bits word	PT100/3 w
HKMs_Temp_FPA	FPA temp	Signed 16 bits word	PT100/3 w
HKMs_Temp_PEM	PEM temperature	Signed 16 bits word	PT100/3 w

DHSU Digital Housekeeping to add in the VIRTIS-H blocks (2 words)

This Document contains proprietary information of Galileo Avionica, a Finmeccanica Company. All Rights reserved.

🚱 Galileo Avionica	VIRTIS for	doc : VVX-GAF-IC-002 issue: 1 date: 20/12/2003
	Venus express	page: 38 of 47

Housekeeping Name	Meaning	bits	Source	Res./Type	Remarks; corresponding req
HKDH_Last_Sent_Request	Last request sent to PEM -H	16	DHSU		Sent only once. If no new request, send 0.
					Never send HSTART_S nor
					HSTART_HK!
HKDH_Stop_Readout_Flag	Stop Readout request flag (during last block)	1	DHSU	flag	1= a HSTOP_Readout request has been
					sent

The full HK bloc that the DHSU must send to the OBDH is constituted of :

7 digital HKs :	7 words of 16 b
29 analog HKs:	29 words of 16 b
1 digital DHSU HK:	1 word of 16 b
1 digital DHSU HK:	1b.

6.4. VIRTIS-H SCIENCE DATA FORMAT

The dynamic range of the ADC is (+32767, -32768), 16 bits signed integer.

The level of dark/background is about 1000 ADU.

The dynamic range of the signal is about (1000, 30000) ADU.

6.4.1. TOTAL OUTPUT DATA

In H_PEM_Mode:	0: Observation/ 8 orders 2: Simulation/ 8 orders
SCIENCE: 432 * then	8 * 5 = 17280 Words 16 b
Logical HK: then	7 Words 16 b
Analog HK:	29 Words 16 b

in H_PEM_Mode:	1: Observation/ all matrix 3 : Simulation/ all matrix
SCIENCE: 438 * 2 then	270 = 118260 Words 16 b
Logical HK: then	7 Words 16 b
Analog HK:	29 Words 16 b

APPENDIX A : Figures

VIRTIS for	doc : VVX-GAF-IC-002 issue: 1
Venus express	date: 20/12/2003 page: 43 of 47

NOTE1: timing proportions are not significant and are given only as an example NOTE2 : VIRTIS M is Idle when both channels are Idle

Fig.2 -M acquisition cycle timeline

1

Venus express date: 20/12/2005 page: 44 of 47	🚱 Galileo Avionica	VIRTIS for	doc : VVX-GAF-IC-002 issue: 1 date: 20/12/2003 page: 44 of 47
--	--------------------	------------	--

Fig.3 -H Free Run

Fig.4 -H Resynchronization

🚱 Galileo Avionica	VIRTIS for	doc : VVX-GAF-IC-002 issue: 1 date: 20/12/2003
	Venus express	page: 47 of 47

Fig.6 -H Dark measurement

1