1

# **VENUS EXPRESS**

## **SPICAV**

# Flight User / Operations MANUAL

## A-1. Approval Page:

Written by: J.P. Dubois, Service d'Aéronomie du CNRS

Approved by :

..... ESA

Authorised for Venus Express Project:

.....

Authorised for the Principal Investigator:

..... J.L. Bertaux, Principal Investigator

2

## A-2. List of contents:

| Flight User / Operations MANUAL           | 1    |
|-------------------------------------------|------|
| A-1. Approval Page:                       | 1    |
| A-2. List of contents:                    | 2    |
| A-3. Documentation change record:         | 5    |
| A-4. Distribution list:                   |      |
| A-5. List of Acronyms:                    |      |
|                                           |      |
| PURPOSE                                   | 0    |
| CONTENT                                   | 6    |
| 1. General Description:                   | 6    |
| 1.1. Overview:                            |      |
| 1.1.1. Documentation                      | 6    |
| 1.1.2. Content                            | 6    |
| 1.2. Instrument summary:                  |      |
| 1.3. Scientific objectives:               |      |
| 1.4. Design Description:                  |      |
| 1.5. Operating principles                 |      |
| 1.6. Operational profile                  |      |
| 1.7. Performance                          |      |
| Spectral resolution and SNR performances: |      |
|                                           |      |
| 2. Instrument configuration:              | . 14 |
| 2.1 Hierarchical configuration:           | . 14 |
| 2.2 Physical configuration:               | . 14 |
| 2.3 Electrical configuration:             | . 16 |
| 2.4. Software:                            | . 18 |
| 2.4.1. Software operations overview       | . 18 |
| 2.4.2. Autonomy concept                   | . 19 |
| 2.4.3. Software maintenance:              |      |
| 2.4.4. Data delivery concept              | . 20 |
| 2.4.5. Timing requirements                |      |
| 2.5 Budgets:                              | .21  |
| Mass budget                               | .22  |
| Power budget:                             |      |
| Energy budget:                            |      |
| Spicav TM/TC budget:                      |      |
| Software budget:                          |      |
| Synchronization and datation budget       |      |
| Alignment budget                          |      |
| Pointing budget:                          |      |
| 3. Detailed description:                  | .26  |
| 3.1 Sensor Unit:                          |      |
| 3.2 DPU and flight software:              |      |
| 3.3 Command and Data Handling:            |      |
| 3.4 Summary of bitrates:                  |      |
|                                           | 1    |

| Service d'Aéro | onomie         | Venus Express                            | Ref:   | SPV-DES-032  |
|----------------|----------------|------------------------------------------|--------|--------------|
|                |                | Spicav                                   | Issue: | 003 Rev 1    |
|                |                | Flight User / Operations Manual          | Date:  | Aug 08, 2005 |
| Spvfum24       |                |                                          | Page:  | 3            |
| 1 Instru       | ment Operatio  | ons:                                     |        | 36           |
|                | -              |                                          |        |              |
|                |                | of Operating principles                  |        |              |
| 4              |                | Operations Plan                          |        |              |
|                |                | Bround operations plan:                  |        |              |
|                |                | lear Earth Verification phase (NEV)      |        |              |
|                |                | nterplanetary Cruise phase (IC):         |        |              |
|                |                | Venus Commissioning phase (MC)           |        |              |
|                |                | ight operations plan by mission phase    |        |              |
| 4              | .3. Failure De | tection and Recovery Strategy:           |        | 44           |
| 4              | .4. Routine op | perations:                               |        | 44           |
| 5 Mode         | description.   |                                          |        | 15           |
| 5. 101000      | 1 Summary      | of nominal modes:                        | •••••• |              |
| 5              |                | lefinitions:                             |        |              |
| F              |                |                                          |        |              |
|                |                | sition diagram:                          |        |              |
| 5              |                | nodes description:                       |        |              |
|                |                | est mode:                                |        |              |
|                |                | tar occultation mode                     |        |              |
|                |                | un occultation mode:                     |        |              |
|                |                | imb mode:                                |        |              |
|                | 5.3.5. N       | Vadir mode:                              |        |              |
| 6. Interfa     | aces:          |                                          |        | 48           |
| 7 Nomi         | al and Contin  | aganay Operations presedures.            |        | 40           |
|                |                | ngency Operations procedures:            |        |              |
|                |                | control procedures:                      |        |              |
|                | 0              | trol procedures:                         |        |              |
|                | 1              | al constraints:                          |        |              |
|                |                | cy recovery pocedures:                   |        |              |
| 7              | .5. Safe Mode  | e Procedure                              |        | 53           |
| 8. Summ        | arv of Teleme  | etry and Telecommand data:               |        |              |
|                |                | gerous commands:                         |        |              |
|                |                | of Telemetry and Telecommand packets:    |        |              |
| 0              |                | service compliance:                      |        |              |
|                |                | nmand, general Description:              |        |              |
|                | Telecol        | nmand function definition:               | •••••  |              |
|                |                |                                          |        |              |
|                |                | try, general Description                 |        |              |
|                |                | ry of TM packet structure:               |        |              |
|                |                | try packet definition:                   |        |              |
|                |                | of Telemetry and Telecommand parameters: |        |              |
| 8              | .4. Summary    | of Software parameters:                  |        | 58           |
| 9. Data (      | Operations Ha  | ndbook:                                  |        | 59           |
| Annex          |                |                                          |        |              |
|                |                | v Contact point:                         |        |              |
|                |                | C description:                           |        |              |
| Γ              |                | Conventions and Definitions:             |        |              |
|                |                | M/TC Packet structure:                   |        |              |
| Å              |                |                                          |        |              |
|                |                | DI Database:                             |        |              |
| A              | Annex4: Spica  | v Diagrams:                              |        |              |

| Spvfum24 |
|----------|
|----------|

| Shutter                                           |    |
|---------------------------------------------------|----|
| Functional Block Diagram DPU:                     |    |
| DPU synoptic                                      |    |
| Functional Block Diagram SUV + SIR (sensor unit): |    |
| Functional Block Diagram SOIR:                    |    |
| Power Demand:                                     |    |
| Power Profile Star Mode:                          |    |
| Power Profile Nadir or Limb Mode:                 | 90 |
| Power Profile Sun Occultation Mode:               | 90 |
| DPU Power Distribution and Interfaces circuits:   | 91 |
| Annex5: Auxilliary data:                          | 92 |
| Annex6: Star Catalog:                             |    |
| Annex7: Polling mechanism                         |    |
| Annex8: Ground test sequence:                     |    |
| Annex9: Detailed Ground operations plan:          | 96 |
| Annex10: User manual for the shutter              |    |
| Annex11: Shutter in Safe Mode                     |    |

Spvfum24

## A-3. Documentation change record:

| Issue | Rev. | Sec. | Page | Date     | Changes           |
|-------|------|------|------|----------|-------------------|
|       |      |      |      |          |                   |
| 1     |      | All  | All  | 02 10 07 | Baseline          |
| 2     | 2    | All  |      | 04 02 04 | updates           |
| 3     | 1    | All  | All  | 05 08 01 | Update after IQAR |
|       |      |      |      |          |                   |

## A-4. Distribution list:

| Recipient | Institute | No. of Copies |
|-----------|-----------|---------------|
|           |           |               |

## A-5. List of Acronyms:

| A/D    | Analog to Digital                                                                |
|--------|----------------------------------------------------------------------------------|
| AOTF   | Acousto-optic tunable filter                                                     |
| BE     | Bloc electronique                                                                |
| BIRA   | Belgisch Instituut voor Ruimte-Aëronomie                                         |
| CCD    | Charge Coupled Device                                                            |
| DPU    | Dedicated Processor Unit                                                         |
| EGSE   | Electrical Ground support Equipment                                              |
| FM     | Flight Model                                                                     |
| GSE    | Ground support Equipment                                                         |
| IASB   | Institut d'Aeronomie Spatiale de Belgique                                        |
| I/O    | Input/Output                                                                     |
| IR     | Infrared                                                                         |
| MOC    | Mission Operation Center                                                         |
| NA     | Not Applicable                                                                   |
| NIR    | Near Infrared                                                                    |
| PI     | Principal Investigator                                                           |
| PM     | Project Manager                                                                  |
| SA     | Service d'Aeronomie du CNRS                                                      |
| S/C    | Spacecraft                                                                       |
| SPICAV | SPectroscopy for the Investigation of Characteristics of the Atmosphere of Venus |
| SIR    | Spicav Sensor IR                                                                 |
| SOIR   | Solar Occultation IR sensor                                                      |
| SUV    | Spicav Sensor UV                                                                 |
| SU     | Spicav Sensor Unit                                                               |
| TBC    | To Be Confirmed                                                                  |
| TBD    | To Be Defined                                                                    |
| TC     | Telecommand                                                                      |
| TM     | Telemetry                                                                        |
| UV     | Ultra Violet                                                                     |
|        |                                                                                  |

6

Spvfum24

#### **PURPOSE**

This document contains all the information needed to correctly operate in-flight Spicav in both nominal and emergency conditions.

### **CONTENT**

This document describes the specific operational rules (and constraints) to operate the instrument during the spacecraft non-ground lifetime.

### **1. General Description:**

#### 1.1. Overview:

This document presents the Flight User Manual (FUM) for the Venus Express payload instrument SPICAV . It defines the mission objectives, physical and functional configuration and operations modes of the instrument and also describes how the instrument can be controlled, operated and monitored by ground operations.

#### 1.1.1. Documentation

The following documents are referenced in this Flight User Manual, and may be referred to if more information is required.

#### **Applicable documents**

| DA0 | MEX PID A Issue 2<br>+ VEX Change Request   | MEX.MMT.SP.007 Iss2<br>VEX.T.ASTR.CR.00009 Iss4 |
|-----|---------------------------------------------|-------------------------------------------------|
| DA1 | VEX Pid-A                                   | VEX.T.ASTR.SP.0992 Iss1                         |
| DA2 | Spicav Electical Interface Document         | SPV-DES-012 Iss4.1 (04.04.15)                   |
|     | + Update of EICD                            | VEX.SPV.CP.004 (04.07.07)                       |
| DA3 | Spicav Payload Database Definition Document | VEX.T.ASTR.DDD.01213, Iss1                      |
| DA4 | Mission Guideline                           | VEX.T.ASTR.TCN.00174, Iss2.1                    |
|     | Reference documents                         |                                                 |
| RD1 | Spicav Document List                        | SPV-SA-999, Iss3, 05.06.06                      |
| RD2 | MEX SGICD                                   | ME-ESC-IF-501, Iss2, 20/12/99                   |
| RD3 | SOIR Internal heaters                       | SPV-SOIR-HT-01, 25/11/04                        |

### 1.1.2. Content

This FUM consists of 9 major Sections and the contents of these are summarised here and details are presented in the different individual sections.

Section 1 'General Description'

presents the scope of this document and a summary of scientific objectives Section 2 'Instrument Configuration'

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spvfum24            |                                 | Page:  | 7            |

presents electrical and software configuration and gives all budgets Section 3 'Detailed Description' presents instrument description

Section 5 Detailed Description presents instrument description

Section 4 'Instrument Operations' presents the nominal operations plan

Section 5 'Modes Description' describes the various modes of operations of the instrument

Section 6 'Interfaces' describes the interfaces with S/C

Section 7 'Nominal and Contingency Operations Procedures' describes all procedures

Section 8 'Summary of Telemetry and Telecommand Data' describes all telemetry packets

Section 9 'Data Operations Handbook'

### **<u>1.2. Instrument summary:</u>**

SPICAV is a collaboration of Service d'Aéronomie, Verrieres le Buisson, France; IASB, Bruxelles, Belgique and IKI, Moscou, Russia.

The Spicav instrument is made of 2 boxes. The first box called DPU acts as the main electronic interface with the Spacecraft. The other is the sensor box or unit. This sensor unit has one channel (named SUV) in the ultraviolet wavelength range- 118-320 nm - ,one (named SIR) in the near infrared wavelength range - 0.7-1.7  $\mu$ m, and a third one (SOIR) in the Infrared wavelength range 2.2 -4.4  $\mu$ m.



SPICAV:

DPU electronic block, Data processing Unit (same as MEX)SU Sensor Unit composed of

- lower part: Mars Express Spicam experiment adapted
- upper part: SOIR channel (not on MEX)

Description of the DPU equipment:

Surface properties is Black anodized (no MLI, Inox screws)

Description of the SU equipment:

Internal surface properties is Black anodized

External surface properties is black anodized with MLI ( except the bottom and +Z lower part without MLI and treated with Alodine 1200 ).

Titanium screws and shrims, 8 feet instead of 6 on MEX.

Interface on SOIR for a spacecraft thermal strap (180x40 mm2 on +Y side) see annex 1

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spvfum24            |                                 | Page:  | - 8          |

A shutter (mechanism and interface board) is integrated on +Z side (lower part) of the Sensor Unit. It is electrically independent of the DPU and SU and is interfacing directly with the spacecraft. There was no shutter on MEX.

External Sunshields are integrated on the Spacecraft +Z wall.

 Table 1.1. SPICAV
 Main characteristics summary Table

|                        | an characteristics summary rable                   |
|------------------------|----------------------------------------------------|
| Spectral bands         | 118 - 320 nm (UV)                                  |
|                        | 0.7 - 1.7 μm (IR)                                  |
|                        | 2.2 - 4.4 μm (SOIR)                                |
| Spectral sampling      | UV: 0.55 nm/pix                                    |
|                        | IR: $0.8 \text{ nm/pix}$ at 1.5 $\mu \text{m}$     |
|                        | SOIR: $0.32 \text{ cm}^{-1}$ at 2.4 $\mu \text{m}$ |
|                        | $0.15 \text{ cm}^{-1}$ at 4.0 $\mu \text{m}$       |
| Mass                   | DPU+harness 0.865 kg                               |
|                        | SU 13.05 kg                                        |
|                        | Total 13.915 kg                                    |
|                        | Sunshields 0.47 kg                                 |
| Power                  | DPU+SU 17.6 W, 26.4 W, 51.4 W                      |
| Volume                 | DPU: $161 \times 142 \times 70 \text{ mm}^3$       |
|                        | SU: $504 \times 400 \times 350 \text{ mm}^3$       |
| Data rate              | 9, 34, 66 kbit/s (*)                               |
| Data Volume            | Typ. 100 Mbits / day TBC                           |
| Observations           | One Board Time TC, One Spicav TC                   |
|                        | Duration: 5 to 30 mn typ.                          |
| Pointing (orientation) | Inertial Star                                      |
|                        | Inertial Sun                                       |
|                        | Nadir                                              |

(\*) averaged over several seconds

#### **<u>1.3. Scientific objectives:</u>**

The experiment is looking through the atmosphere of Venus either at :

| a star :   | vertical profiles by stellar occultation technique (CO <sub>2</sub> , Temperature, ) |
|------------|--------------------------------------------------------------------------------------|
| the Nadir: | integrated profiles (O <sub>3</sub> ,)                                               |
| the Limb : | vertical profiles of high atmosphere emissions                                       |
| the Sun :  | vertical profiles by solar occultation technique                                     |

The Sensor SOIR is only used in the Sun looking mode.

The suite of measurements of SPICAV in the various operation modes are addressing key questions of the atmosphere of Venus, present state, climate and evolution.

**Chemistry:** Simultaneous measurements of O<sub>3</sub> and H<sub>2</sub>O will allow to validate and/or modify chemistry models, from which will be derived an assessment of the oxidation environment (effect of solar UV, O<sub>3</sub>, H<sub>2</sub>O<sub>2</sub>, O, on minerals and oxidation molecules).

**Structure/Dynamics/Meteorology**: Vertical profiles of density / temperature (20-160 km) will provide unique information about the global structure and dynamics of the atmosphere, in particular in

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spyfum24            |                                 | Page:  | 9            |

the altitude region crucial for aerocapture and aerobraking, and a better understanding of meteorological systems.

**Clouds/dust/ aerosols:** Occultation measurements will allow to detect, measure and characterise the physical nature of aerosols, and dust particles, and their vertical distribution.

**Ionosphere/escape rate:** Vertical profiling of daylight aeronomic emissions (H, C, O, CO, CO<sub>2</sub><sup>+</sup>) will allow to adjust a comprehensive model of the ionosphere, from which an estimate of escape processes may be derived (evolution of the atmosphere), and to study the interaction with the solar wind.

In order to fulfill the previous scientific objectives, there are four configurations summarized below:

|            | Mode                | Expected results                          |
|------------|---------------------|-------------------------------------------|
| UV         | Stellar occultation | Concentration vertical profile            |
| UV+IR+SOIR | Solar occultation   | Concentration vertical profile            |
| UV+IR      | Nadir               | Total column abondance                    |
| UV+IR      | Limb emissions      | Vertical profiling of aeronomic emissions |

### SUMMARY OF SPICAV SCIENTIFIC OBJECTIVES

SOIR targets :

| Species                  | Spectral range (µm) | Altitude, precision/threshold |
|--------------------------|---------------------|-------------------------------|
| CO <sub>2</sub>          | 2.7 , 4.3           | 60-200 km                     |
| CO <sub>2 isotopes</sub> |                     |                               |
| H <sub>2</sub> O         | 2.56                | 60-105 km                     |
| HDO                      | 2.56, 3.7           | 60-90 km                      |
| H2 <sup>18</sup> O       | 2.56                | Similar to HDO                |
| СО                       | 2.35                | 60-150 km, 600 ppb            |
| OCS                      | 3.44                | 130                           |
| H <sub>2</sub> S         | 2.63, 3.7           | 150                           |
| HCl                      | 3.6                 | 30                            |
| HF                       | 2                   | 1                             |
| SO <sub>2</sub>          | 4.0                 | 60-70 km, 1.7 ppb ?           |
| С2Н6                     | 3.4                 | 50 ppb                        |

All minor at ~ 60-100 km

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spvfum24            |                                 | Page:  | 10           |

### Spvfum24

## UV, IR targets :

| Species                          |                                                            | Measurements                          |                   | Accuracy                         | Altitude range                       |
|----------------------------------|------------------------------------------------------------|---------------------------------------|-------------------|----------------------------------|--------------------------------------|
|                                  | Scientific objective                                       | Mode<br>(occultation, nadir,<br>limb) | Spectral<br>range |                                  |                                      |
| O3                               | Concentration vertical profile                             | Stellar / Solar<br>occultation        | 220 –300 nm       | 2 – 10 %                         | 10 – 50 km                           |
| 03                               | Total abundance                                            | Nadir                                 | 220 –300 nm       | 5 % (>0.15 µ-atm)                | N.A.                                 |
| CO <sub>2</sub>                  | Atmospheric density<br>and temperature<br>vertical profile | Solar / Stellar<br>occultation        | 180 nm            | 2 – 10 %<br>5 K                  | 20 – 160 km                          |
| Aerosols                         | Vertical profile of characteristics                        | Solar / stellar<br>occultation        | UV                | 10 <sup>-3</sup> (=photo-metric) | 5 – 60 km                            |
| 02                               | Concentration<br>vertical profile                          | Stellar occultation                   | 200 nm            | 20 %                             | 35 – 90 km<br>(never done<br>before) |
| Н, С, О,<br>CO <sub>2</sub> +,CO | Vertical profiling of aeronomic emissions                  | Limb emission                         | 118– 320 nm       | 20 %                             | 80 – 400 km                          |
| H <sub>2</sub> O <sub>2</sub>    | Total abundance                                            | Nadir                                 | 210 nm            | 20 %                             | Never done before                    |
| SO <sub>2</sub>                  | Total abundance                                            | Nadir                                 | 220 nm            |                                  | Tentative                            |

| CO <sub>2</sub>  | Surface pressure | Nadir               | 200 nm        | 0.2 mbar                        | N.A.            |
|------------------|------------------|---------------------|---------------|---------------------------------|-----------------|
|                  |                  |                     | 1.43 µm       | 0.05 mbar                       |                 |
| H <sub>2</sub> O | Total abundance  | Nadir               | 1.38 µm       |                                 | 5 x 5 km ground |
|                  |                  |                     |               | (detectable)                    |                 |
| Aerosols         | Mapping of       | Spectro polarimetry | 1.2 to 1.7 μm | 10 <sup>-3</sup> (=photometric) | Exploratory     |
|                  | properties       | in nadir            |               |                                 |                 |
| Soil             | surface studies  | Spectro polarimetry | 1.2 to 1.7 μm | 10 <sup>-3</sup> (=photometric) | 5 x 5 km ground |
|                  |                  | in nadir            |               |                                 |                 |

11

### **1.4. Design Description:**

The DPU main functions are: electrical interfaces with S/C send commands and get data from the subunits formatting data before transmission to S/C In this document, flight software means software of the DPU.

The Sensor Unit is made of: the UV channel ( as on MEX ) the IR channel (same concept as on MEX) the SOIR channel the Servitudes unit, managing UV and IR channels (as on MEX).

As on MEX/Spicam, the Sensor Unit has two openings for Nadir viewing, one for UV channel, the other for IR channel located on the Nadir face of S/C. In addition, there are two openings for Solar viewing in spacecraft wall (not on the S/C Nadir face).

A shutter has been mounted on the +Z side of the experiment to avoid Sun light inside UV and IR spectrometers. This shutter was not on MEX/Spicam. It is activated by S/C commands, and has no electrical interfaces with DPU or SU. It is mechanically mounted on +Z side of the lower part of the sensor Unit.

The Spicam part has two mechanisms, one which moves On and Off a slit in the UV channel, the other which moves a internal shutter on the Solar aperture. Spicav mechanisms are fully autonomous and no separate commands are needed for mechanism operations. Each mechanism has two statuses, ON and OFF for slit, OPEN and CLOSED for shutter. They are returned in Science data.

The UV channel is a spectrometer with an optical baffle, an off axis parabolic mirror, a slit with two positions, a grating and a detector which an intensified CCD. On the CCD, the rows which are parallel to the unit baseplate, are the spectral dimension.

The IR channel is made of an entrance lens, an AOTF and two double pixels detectors : 2 detectors for each polarisation; 2 pixels for two ranges. As the AOTF acts as a filter, the IR spectrum is obtained by electrically scanning the AOTF frequency.

The SOIR channel is made of an entrance folding mirror ( 'periscope' ), an AOTF acting as a bandwith selector, an off axis parabolic mirror, a high resolution spectrometer with echelle grating, and a multi pixel detector with cooler.

All the channels have their own digital electronics which performs all operations at detector level and digitalizes the data, then waiting for transmission to the DPU through a RS422 link at 937 kbits/s.

#### There is no redundancy in the instrument, unless the Data and power connectors.

For thermal aspects related to Venus mission, a MLI covers the Sensor Unit except the +Z lower part (where is mounted the shutter) and the bottom (treated with Alodine 1200).

The Sensor Unit is 'isolated' from the shearwall by titanium screws and shrims.

The Sensor Unit is linked to a radiator via a spacecraft thermal strap mounted at SOIR level (180x40 mm2 on + Y side). The aim of the strap is to cold SOIR baseplate.

The temperature of the SOIR baseplate is controlled by the spacecraft via internal thermistances and heaters to avoid low temperatures during solar observations ( for optical reasons ).

On DPU, there is no MLI, nor titanium screws, but inox screws as on MEX.

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spvfum24            |                                 | Page:  | 12           |

2 external Sunshields are mounted on S/C + Z wall to avoid Sun Straylight in the experiment. One is dedicated to UV channel and the other one is dedicated to IR channel. There was no Sunshields on MEX.

## **<u>1.5. Operating principles.</u>**

There are four kinds of observations for SPICAV :

- Nadir observations, for Sensor Unit (UV and IR detectors):
- Star Occultation mode (UV channel):
- SUN Occultation mode (UV, IR, and SOIR channels):
- Bright limb observations (UV and IR channels):

For Star, Sun, Limb modes, a dedicated attitude from Spacecraft is needed.

The observation is executed totally automatically, under S/C control, in a schedule defined on ground, loaded well before execution.

The operating principle for one observation is:

- Put Spacecraft in good attitude for one kind of observation
- Switch On by S/C
- Send Spicav observation TC by S/C
- Record TM by S/C
- Switch Off by S/C at the end of observation.
- Put Spacecraft in nominal attitude

## **<u>1.6. Operational profile</u>**

The operation modes are derived from the scientific objectives and correlated Spacecraft attitudes. For more details see section 5.

## **1.7. Performance**

### Spectral resolution and SNR performances:

The following table shows for each observation mode, data product and estimated performances of UV Channel (resolution and SNR). SNR is calculated with summation of pixels along the slit.

| Observation | product          | Resolution          | estimated SNR | Comments                |
|-------------|------------------|---------------------|---------------|-------------------------|
| Mode        |                  | ( nm ) <sup>1</sup> | ( at 250 nm ) |                         |
| Star        | density, T       | 1                   | 50            | 1 sec integration       |
|             | vertical profile |                     |               | visual magnitude = 0.04 |
| SUN         | density, T       | 2                   | > SNR star    |                         |
|             | vertical profile |                     |               |                         |
| Nadir       | Integrated       | 2                   | 280/600       | 1 sec integration       |
|             | density          |                     |               | 100 pixels summ narrow/ |
|             | $(O_3, H_2O, )$  |                     |               | 40 pixels summ large    |
| Limb        | Emission         | 2                   | 45            | 4 sec integration       |
|             | vertical profile |                     |               | 50 pixels summ narrow   |

(1): along the narrow slit for extended sources.

with large slit, resolution is 11 nm, SNR is increased accordingly.

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spyfum24            | •                               | Page   | 13           |

The following table shows data product and estimated performances of IR Channel in Nadir mode for two wavelengths.

| wavelength | Signal at        | Resolution | estimated SNR | Comments |
|------------|------------------|------------|---------------|----------|
| (micron)   | The detector, nW | ( nm )     |               |          |
| 1.3        | 1.4              | ~ 0.7      | 100           |          |
| 1.7        | 1.41             | 1.12       | 150           |          |

SOIR S/N in solar occultation at 3.7  $\mu$ m = 1000

The end-to end performances are summarized in the Scientific objectives paragraph (section 1.3).

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spvfum24            |                                 | Page:  | 14           |

### 2. Instrument configuration:

### 2.1 Hierarchical configuration:

The relationship between the subsystems are shown in the the synoptic below.



SPICAV synoptique 03 04 04

The DPU has the general control of the Sensor Unit. It sends commands to the sub units and retrieves data. Then it formats and produces telemetry packets.

Servitudes refers to non-detector elements of Sensor Unit ( Spicam part ).

The polling of the sub units is done by the DPU, at a rate defined in the SPICAV Telecommand.

Depending on the operationg mode, the IR channel is switched On or not.

The Shutter has no electrical interfaces with DPU or SU. It is mechanically mounted on +Z side of the lower part of the sensor Unit. It is powered and activated by S/C.

### **2.2 Physical configuration:**

The Sensor Unit has two main directions of sight, one is Nadir (s/c + Z), the other is Solar direction defined on S/C + Y side (with dedicated attitude):

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spyfum24            |                                 | Page:  | 15           |

The Sensor Unit has two openings for Nadir viewing, one for UV channel, the other for IR channel located on the Nadir face of S/C. The instrument's optical axis is parallel to the baseplate and perpendicular to the Nadir face of the spacecraft.

These two openings can be obtured by a shutter on the Nadir side of the sensor unit to avoid solar light ( but not dust ).

In addition, there are openings for Solar viewing. Two openings are built in the base plate of the Sensor Unit for UV and IR channels. They can be closed by a mechanical solar shutter activated by Sensor Unit ( parameter in Spicav TC ). One hole on spacecraft wall is dedicated to these two openings.

SOIR entrance is a 'periscope' with specific aperture. A second hole on spacecraft wall is needed for SOIR.

All these openings will have to be oriented towards the Sun prior to each solar occultation observation. Spacecraft holes are on +Y wall.

Below is the Spicam accomodation on Mars Express to show the different light of sight of the instrument ( similar for Venus Express with another hole for SOIR ).



#### Spvfum24

### **2.3 Electrical configuration:**

The interconnections between S/C, DPU and Sensor Unit are depicted below:



| Spacecraft interfaces: |                                                |                                                                                    |  |  |
|------------------------|------------------------------------------------|------------------------------------------------------------------------------------|--|--|
| to DPU                 | Four connectors                                | two for TM/TC ( nominal and redundant )<br>two for Power ( nominal and redundant ) |  |  |
|                        | Latch current limiter power:                   | LCL class E                                                                        |  |  |
| to shutter             | Two connectors<br>Latch current limiter power: | for Power+ statuses ( nominal and redundant )<br>LCL class B                       |  |  |
| to SOIR                | Four connectors                                | two for HPC+statuses ( nominal and redundant )<br>two for heaters/thermistances    |  |  |

### Shutter interfaces :

Shutter Electrical Interfaces are only with Spacecraft. 28V is directly provided by spacecraft and the shutter is powered via relays and HPC.

Statuses are returned to spacecraft. They are not relays statuses but shutter position.

#### Power interfaces:

Spacecraft provides 28 V to DPU. There is no internal relays in the DPU. The power lines will feed DC/DC Interpoint modules in the two boxes ( DPU and SU ) of SPICAV through power lines filters. All the channels (UV, IR and SOIR) are powered via DPU.

As soon as the instrument is switched On, DPU, Servitudes and UV channels are powered. IR channel is switched on with a parameter included in the Spicav TC.

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spyfum24            |                                 | Page:  | 17           |

SOIR channel is powered via relays telecommanded by S/C ( HPC ). Relays statuses are returned to S/C.

The sensor unit has two mechanisms in Spicam part, one for slit motion and one for SUN aperture shutter. They are activated by two motors connected to 28V.

### Heater Lines:

There are 2 heater lines dedicated to SOIR (direct interfaces, Nominal and Redundant). The aim of these lines is to maintain SOIR baseplate in a defined temperature range (baseline is  $-5^\circ$ ;  $0^\circ$ C) during Solar occulations with SOIR.

Values of Thermistances ("SPICAV ANC Temp1", "SPICAV ANC Temp2", "SPICAV ANC Temp3") included in SOIR are returned to Spacecraft and heaters (included in SOIR) are controlled by S/C software according to SOIR baseplate temperature.

\*\* Extracted from DR3 - SOIR Internal heaters

Assumption (during Progress Meeting n°10) is :

- ANC1 and ANC3 are connected to RTU A
- ANC2 is connected to RTUB
- ANC1 and ANC2 are detected via Nominal SOIR Heater connector J08
- ANC3 is detected via Redundant SOIR Heater connector J09

The control will be performed using so-called "Median Selection Strategy" ie that the value of the thermistor between the 2 others is used.

In case of failure of RTU A, the control will be done via RTU B (only one thermistor).

In case of failure of RTU B, the control will be done via RTU A ( with two thermistor connected ). Strategy :

Median selection strategy is used due to Rosetta heritage (PM10).

- In case of « Median strategy », ANC1 will be used for thermal control.

\*\*

The control temperature can be activated or not at spacecraft level. It is not needed to have a permanent control temperature during all the phases.

### TM lines:

All other TM lines (data and clock) are directed to DPU only.

There are 3 main interfaces lines identified:

- Clock line (on board time) is needed inside the instrument in order to time tag the science data. Time is needed on a basis of one information per second (external clock). It is supposed that the on board time reference can be correlated to Earth time with 0.1 s accuracy (or better 0.01 s TBC).
- TC lines: On the DPU side, the TC buffer will be a FIFO.
- TM lines: On the DPU side, the TM buffer will be a FIFO.

Spvfum24

#### Conclusion : List of required signals

|     |                                    | Nominal | Redundant | Remarks                    |
|-----|------------------------------------|---------|-----------|----------------------------|
| HPC | High Power Command                 | 4       | 4         | For SOIR and Shutter       |
| MLC | Memory Load                        | 1       | 1         | 131 Kbps (TC)              |
| TSY | Time Synchro                       | 1       | 1         |                            |
| ANC | Thermistor Acquisitions            | 2       | 1         |                            |
| ANS | Analog Acquisitions                | 0       | 0         |                            |
| ANP | Platinum Sensors                   | 0       | 0         |                            |
| SDT | Serial Digital (16 bits) telemetry | 1       | 1         | 131 Kps, same clock as MLC |
| RSS | Relay Switch Status                | 6       | 6         | Only (4, 4) are useful     |
| BLD | Bi-level Digital                   | 0       | 0         |                            |
| HFC | High Frequency Clock               | 1       | 1         |                            |
| СК  | Clock Signals                      | 1       | 1         | for TM and TC              |

Names of signals used in TM/TC:

| MLC | Memory Load Command       |                              |
|-----|---------------------------|------------------------------|
|     | MLS                       | Sampling Line                |
|     | MLD                       | Data Line                    |
|     | SDT or SDC                | Clock Line                   |
| SDT | Serial Digital Telemetry  |                              |
|     | SDS                       | Data Sampling                |
|     | SDD                       | Data line                    |
|     | SDT or SDC                | clock line (same as for MLC) |
| HFC | High Frequency Clock      |                              |
| TSY | Timer Synchronization Pul | se                           |

### TM/TC redundancy selection:

then

TC selection ( nominal or redundant ) is done by:

detection of rising edge of SDS ( nom or red )

latch of corresponding SDS, MLS, MLD, SDC

This selection is done after interface circuits ( in DPU/Interface board) by a FPGA Actel.

## 2.4. Software:

## 2.4.1. Software operations overview

The Spicav DPU flight software has in charge all TM/TC interfaces with the S/C ( HPC and Statuses not included ).

The software general concept is the following:

| Service d'Aéronomie     | Venus Express<br>Spicav                                                             | Ref:<br>Issue:   | SPV-DES-032<br>003 Rev 1 |
|-------------------------|-------------------------------------------------------------------------------------|------------------|--------------------------|
| Spvfum24                | Flight User / Operations Manual                                                     | Date:<br>Page:   | Aug 08, 2005<br>19       |
| switch on experime      | nt (by S/C) induces start of flight software                                        |                  |                          |
|                         | and start time synchronization (before, dat                                         | a are not time-t | agged)                   |
| wait for stop time sy   |                                                                                     |                  |                          |
| wait for 1 TC defini    |                                                                                     |                  |                          |
|                         | t following TC parameters<br>R detector cooling ( in Sun mode with SOIR             |                  |                          |
| loop                    | Calcelor cooling ( in Sun mode with SON                                             | .)               |                          |
| 1                       | g of Spicav subsystems                                                              |                  |                          |
| format TM               |                                                                                     |                  |                          |
| end loop                |                                                                                     |                  |                          |
| switch off (b           | y $S/C$ ) is needed to terminate the loop                                           |                  |                          |
| The current Spicav impl |                                                                                     |                  |                          |
|                         | ry buffer (contains telemetry blocks),<br>netry blocks generation. (FIFO is able to | store TBC se     | c of Spicay TN           |
| blocks)                 | nerry blocks generation. (1110 is able to                                           |                  | e of opicav Th           |
| ,                       | duration is typically between 5 mn to 30 m                                          | n.               |                          |
| Components are late     |                                                                                     |                  |                          |
| -                       | ON and OFF for each observation. This a                                             | llows hard rese  | t at each switc          |
| ON.                     | stored in PROM                                                                      |                  |                          |
|                         | N, software is transferred in RAM                                                   |                  |                          |
|                         | parameters are set either :                                                         |                  |                          |
|                         | lection of predefined values stored in tables                                       | (in PROM and     | so in RAM)               |
| -                       | TC which allows to update all instrument p                                          | arameters in RA  | AM                       |
| TC are only used to     | select or update instrument parameters                                              |                  |                          |
| 2.4.2. Autonomy         | concept                                                                             |                  |                          |
| 0                       | istics are used in Spicav:                                                          |                  |                          |
|                         | iate observation and to get sensors data.                                           |                  |                          |
| Software (and hence     | e observation) is terminated by switch off.                                         |                  |                          |
| Preliminary telecomman  | nd description:                                                                     |                  |                          |
|                         | elecommand structure                                                                |                  |                          |
|                         | ider only one type of TC.                                                           |                  |                          |
| Main assumptions:       | picav (nominal mode) only one TC packet i                                           | s needed         |                          |
| -                       | C packet is sent, it is ignored.                                                    | s needed.        |                          |
|                         | plication data of TC packet is variable                                             |                  |                          |
| e 1                     | s planned to use TC for                                                             |                  |                          |
| -                       | ational mode selection (nadir,)                                                     |                  |                          |
| -                       | v DPU parameters (repetition rate of TM)                                            |                  |                          |
| Senso                   | or Unit parameters (Star mode, exposure tim                                         | ie, gain)        |                          |
| For another observation | ( other TC, others parameters ), it is need                                         | ed to switch of  | f the instrumen          |

For another observation ( other TC, others parameters ), it is needed to switch off the instrument, switch on again ans sent the other TC.

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spvfum24            |                                 | Page:  | 20           |

All telemetry data are Science data. TM data are formatted in packets. At the beginning of observation, two (2) housekeeping packets are generated and sent to TM. We do not use event packets.

When SOIR is activated, supplementary housekeeping packets are generated every 20s during SOIR detector cooling.

Power switch off is the nominal way to terminate an observation. So, an observation is totally defined by Time start and Time end defined on ground. (The duration of observation is also defined in telecommand allowing to stop sending of science packets from detectors and to send only Servitudes (BE) packets in order to save telemetry allocation).

For any reason, switch off can occur at any time, without need of instrument reconfiguration (done automatically at next switch on). There is no TC for what we call reconfiguration. In fact, at switch On, there is a reset of everything; solar shutter and slit are put in default position ( internal shutter closed and slit On ).

#### 2.4.3. Software maintenance:

There is no in flight maintenance. The whole instrument configuration is defined by TC. The software is totally frozen.

There is no capability to patch flight software.

With this approach,

software rely on PROM only

any event occurring during an observation has no impact on next switch ON (next observation).

#### 2.4.4. Data delivery concept

| 1 10 1 10 00 110 | yo ana yi are asea oy | opican      |                              |
|------------------|-----------------------|-------------|------------------------------|
| Process ID       | Packet Category       | Packet Type | Usage                        |
| 96               | 12                    | TC          | For ALL Telecommands packets |
|                  | 12                    | time        | Time update                  |
|                  | 12                    | ТМ          | Science data                 |
|                  | 4                     | ТМ          | SPICAV Housekeeping          |
| 97               | 4                     | ТМ          | SOIR housekeeping            |
|                  |                       |             |                              |

Two Process ID = 96 and 97 are used by Spicav.

For each observation, there are only two SPICAV HK packets: one after the Board Time is received the other at the beginning of Sensor Unit sampling data

In Sun mode, when SOIR is activated, and during cooling, SOIR HK packets are sent every 20 s.

Spicav packets:Depending on Spicav observation phase we may have:DPU144 octetsDPU+UV3248 octets

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spvfum24            |                                 | Page:  | 21           |
| DPU + UV + IR       | 4298 octets                     |        |              |

| DPU + UV + IR        | 4298 octets |
|----------------------|-------------|
| DPU + UV + IR + SOIR | 8256 octets |

Two or more packets are assembled to form a TM block and then put in the the telemetry buffer, ready for transmission to S/C.

see Section 2.5 and Section 3 for details on Command and Data handling.

The telemetry flow is the following: at switch on, DPU packets are sent when Board Time is received, first HK packet is sent when Spicav TC is received : in Sun mode with SOIR, SOIR HK packets are sent during cooling period before detector sampling, second HK packet is sent either DPU+UV or DPU+UV+IR, or DPU+UV+IR+SOIR packets are sent until the end of observation,

### 2.4.5. Timing requirements

Spicav DPU uses the High frequency clock, Time Update and Pulse synchronization to maintain time accuracy.

High frequency clock is used to fill a counter. The ticks of this counter gives an internal reference. The Time Update and the Time Synchronization Pulse gives an absolute time reference which is then put in TM data.

The following concept is used: when DPU gets data from sensor, these data are time tagged and then packetized. So the time associated to each data is the time of the end of exposure duration.

(Note that before Time Synchronization, DPU/Servitudes data are not time-tagged).

## 2.5 Budgets:

Spicav configurations of operations:

For all budgets the following definitions are used:

duration is typical for all computations.

Exact duration has to be computed on ground before observations a same hardware configuration is used in several scientific objectives resources are the same only target is different

| Configuration | Scientific objective | Duration | Subsystem      | Comment        |
|---------------|----------------------|----------|----------------|----------------|
| OFF           | 5                    |          |                | Instrument OFF |
| STAR          | Star occultation     | 5 mn     | DPU+UV         | from 2 to 8 mn |
|               | Limb observation     |          | (+ IR)         |                |
| NADIR         | Nadir observation    | 30 mn    | DPU+SUV+SIR    |                |
| SUN           | Sun occultation      | 16 mn    | DPU+UV+IR+SOIR |                |
|               |                      |          |                |                |

#### Mass budget

Copy of document SPV.NT.ME.710 Iss2

SU Spicav13 048 grDPU Spicav770 grDPU-SU harness95 gr

Total Mass FM2 Spicav 13 913 gr

External baffles not included (UV baffle + IR baffle + spacers): 470 gr

#### **Power budget:**

For more details, see section Annex 4

| DPU  | 2.2 W  |
|------|--------|
| UV   | 15.4 W |
| IR   | 8.8 W  |
| SOIR | 25 W   |

#### Spicav Power ( all channels in Sun mode ) : 51.4 W

| SOIR Heaters | 32 W |
|--------------|------|
| Shutter      | 6 W  |

#### **Energy budget:**

| Configuration | Power (W) | Duration (h) | Energy (Wh) | Remarks       |
|---------------|-----------|--------------|-------------|---------------|
|               |           | Typ.         |             |               |
| STAR          | 17.6      | 0.1          | 1.8         | 1 observation |
| NADIR         | 26.4      | 0.5          | 13.2        | 1 observation |
| SUN           | 51.4      | 0.3          | 15.4        | 1 observation |

This energy budget is for Spicav only, without Spacecraft effects due to dedicated attitude.

### Spicav TM/TC budget:

See Section 3.3, 3.4.

Spicav has several bitrates selectable by TC. So, a same mode can be used with several bitrates. The following table gives the various science packet lengthes ( for a typical observation ) and the identification between the Spicav TC and the corresponding bitrate.

| Service d'Aéronomie Venus Expr<br>Spicav<br>Flight User / Operation<br>Spvfum24 |        | picav        |               | Ref:<br>Issue:<br>Date:<br>Page: | SPV-DES-032<br>003 Rev 1<br>Aug 08, 2005<br>23 |
|---------------------------------------------------------------------------------|--------|--------------|---------------|----------------------------------|------------------------------------------------|
| Rappel taille packet ESA                                                        |        | ( source = I | Pk-26, source | max = 40                         | 96 )                                           |
|                                                                                 | Source | Spi head     | Pk head       |                                  | Pk                                             |
| BE                                                                              | 128    | 0            | 16            |                                  | 144                                            |
| UV                                                                              | 3078   | 10           | 16            |                                  | 3104                                           |
| IR                                                                              | 1024   | 10           | 16            |                                  | 1050                                           |
| SOIR1                                                                           | 1250   | 10           | 16            |                                  | 1276                                           |
| SOIR2                                                                           | 2250   | 10           | 16            |                                  | 2276                                           |
| SOIR3                                                                           | 3932   | 10           | 16            |                                  | 3958                                           |
|                                                                                 |        |              |               |                                  |                                                |

## Identification Bitrates / Modes

TMbitrate00.x4

See also TMstat20

Impurateo

02 04 17 BE modes identification and bitrates

Spicam modes Identification and Bitrates:

Labels

| TC Spicam<br>Database name | Hex configuration of TC case sensitive, see Database in annex |
|----------------------------|---------------------------------------------------------------|
| pIR<br>pUV                 | sampling period of UV channel sampling period of IR channel   |

|    | TC Spicav           | Database Name | Spicav name | pUV   | pIR   | pSoir | Power           | Bitrate        |
|----|---------------------|---------------|-------------|-------|-------|-------|-----------------|----------------|
|    | (First Hex)         |               |             | (sec) | (sec) | (sec) | (W)             | (kbps)         |
|    |                     |               |             |       |       |       |                 |                |
| 0  | <del>0xxxxxxx</del> | Dummy TC      | mini        | 0     | 0     | θ     | <del>16.2</del> | <del>1.1</del> |
| 1  | 1xxxxxxx            | TestN         | NadirMini   | 4     | 4     | 0     | 16.2            | 8.6            |
| 2  | 2xxxxxxx            | TestS         | StarMedi    | 1     | 1     | 1     | 16.2            | 66.1           |
| 3  | <del>3xxxxxxx</del> | Cmde directe  | mini        | 0     | 0     | θ     | <del>16.2</del> | <del>1.1</del> |
| 4  | 4xxxxxxx            | Limb          | LimbMini    | 2     | 2     | 0     | 26.4            | 17.2           |
| 5  | 5xxxxxxx            | StarLimb1     | StarLowi    | 1     | 0     | 0     | 17.6            | 26.0           |
| 6  | 6xxxxxx             | StarLimb2     | StarMaxi    | 1     | 1     | 0     | 26.4            | 34.4           |
| 7  | 7xxxxxxx            | StarLimb3     | StarMedi    | 1     | 2     | 0     | 26.4            | 30.2           |
| 8  | 8xxxxxxx            | Nadir1        | NadirMaxi   | 1     | 1     | 0     | 26.4            | 34.4           |
| 9  | 9xxxxxxx            | Nadir2        | NadirMedi   | 2     | 2     | 0     | 26.4            | 17.2           |
| 10 | Axxxxxx             | Nadir3        | NadirLow    | 4     | 4     | 0     | 26.4            | 8.6            |
| 11 | Bxxxxxx             | Align         | FullFrame   | 1     | 1     | 0     | 26.4            | 34.4           |
| 12 | Cxxxxxx             | TIprog        | StarLowi    | 1     | 0     | 0     | 17.6            | 26.0           |
| 13 | Dxxxxxx             | Sun1          | SunMaxi     | 1     | 1     | 1     | 51.4            | 66.1           |
| 14 | Exxxxxx             | Sun2          | SunMedi     | 1     | 1     | 0     | 26.4            | 34.4           |
| 15 | Fxxxxxx             | Sun3          | SunLow      | 1     | 0     | 0     | 17.6            | 26.0           |

| Service d'Aéronomie<br>Spvfum24                            | Venus Express<br>Spicav<br>Flight User / Operations | Ref:<br>Issue:<br>Manual Date:<br>Page: | SPV-DES-032<br>003 Rev 1<br>Aug 08, 2005<br>24 |
|------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------|------------------------------------------------|
| 2 modes defined for MEX are n<br>Expected size of TC for e |                                                     |                                         |                                                |
| Modes                                                      | Length (16 bits word)                               | Remarks                                 |                                                |
| Board Time                                                 | 9                                                   |                                         |                                                |
| Nominal operations<br>Star, Sun, Nadir, Limb               | 8 to 72                                             | instrument parameters : 2 to 64 (       | (*)                                            |

(\*) for ground use, TC is fixed length, hence maximum length is kept with 0 padding

## Software budget:

| Item           |          | Remark                                                    |
|----------------|----------|-----------------------------------------------------------|
| Software       | 25 Ko    | no patch capability                                       |
| Data           | 35 Ko    |                                                           |
| TC             | 2        | One Board Time TC                                         |
|                |          | One SPICAV TC                                             |
| ТМ             | 2 types  | Science packets (variable length)                         |
|                |          | 2 HK packets                                              |
|                |          | if SOIR, 1 HK pk every 20s during cooling ( typ. 10 min ) |
|                |          | TM starts at Switch ON (without TC)                       |
| TM bitrate     | variable | Can be selected by TC                                     |
|                |          | (between 8596 to 66000 bits/sec) (1)                      |
| Initialisation |          | At Switch ON only                                         |
| Test Mode      | Yes (2)  | NO external constraints                                   |
|                |          |                                                           |

(1) see section 3.3 and 5.1 for details

(2)Test mode is a mode which can be run without any attitude constraints.

## Synchronization and datation budget

| Datation objective | Computation of geometrical parameters with orbit elements (ground post processing)                     |
|--------------------|--------------------------------------------------------------------------------------------------------|
| Datation reference | High Frequency clock<br>Time Update and<br>Pulse synchronization, at the beginning of each observation |
| Datation elements  | individual spectra are dated<br>(telemetry)                                                            |
| Datation tolerance | 10 ms for each spectra                                                                                 |

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spvfum24            |                                 | Page:  | 25           |

## Alignment budget

| Subsystem | Type of alignment     | Measurement tolerance | Reference system   |
|-----------|-----------------------|-----------------------|--------------------|
| SU        | CAT 5                 | better than 5 arcmin  | Spacecraft axis    |
|           | measured (3 axes TBC) |                       | and/or Star sensor |
|           |                       |                       |                    |
| DPU       | NA                    |                       |                    |
|           |                       |                       | МХср               |

**Pointing budget:** 

The following table gives the summary about "pointing".

The columns 1 and 2 are copy of PID-A section 2.7.

The summary of Spicav Req are the maximum requirements of Spicav including Star and Sun occultations.

| AOCS performances                            | PID-A speci-<br>fication | Summary of<br>Spicav Req. | Spicav<br>compliance |
|----------------------------------------------|--------------------------|---------------------------|----------------------|
| Attitude knowledge w.r.t.a stellar direction | 0.05°                    | 0.05°                     | Full                 |
| Pointing accuracy w.r.t.a stellar direction  | 0.06°                    | max 0.1°                  | Full                 |
| Attitude knowledge w.r.t.the Nadir direction | 0.12°                    | 0.5°                      | Full                 |
| Pointing accuracy w.r.t.the Nadir direction  | 0.15°                    | 1°                        | Full                 |
| Rate stability                               | 0.003°/s                 | 0.04°                     | Full                 |
| Rate stability over 10 s                     | 0.005°                   | 0.1°                      | Full                 |
| Pointing stability over 60 s                 | 0.009°                   | 0.1°                      | Full                 |
| On board orbit knowledge                     | 6 km                     | not used                  | N/A                  |
| On ground orbit knowledge                    | < 6 km                   | 6 km                      | N/A                  |
|                                              |                          |                           | МХср                 |

The Spicav requirements are totally fullfilled with the AOCS performances.

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spvfum24            |                                 | Page:  | 26           |

# 3. Detailed description:

### 3.1 Sensor Unit:

The following drawing gives the optical layout of the Spicam part ( lower stage ) of the Sensor Unit.



The Spicam part has two openings for Nadir viewing, one for UV channel, the other for IR channel. In addition, the UV and IR channels have an opening for Solar viewing (2).

| Service d'Aéronomie | Venus Express                                                 | Ref:                                  | SPV-DES-032  |
|---------------------|---------------------------------------------------------------|---------------------------------------|--------------|
|                     | Spicav                                                        | Issue:                                | 003 Rev 1    |
|                     | Flight User / Operations Manual                               | Date:                                 | Aug 08, 2005 |
| Spvfum24            |                                                               | Page:                                 | 27           |
|                     | ertures definition:<br>ures Nadir face ( perpendicular to Zb) | 42 x 45 mm <sup>2</sup>               |              |
| apert               | ure in (Yb,Xb) at 60 deg from Yb                              | diameter 32 mm<br>diameter 5 mm (TBC) |              |

The following drawing gives the optical layout of SOIR ( upper stage of the Sensor Unit ).

(UV and IR Sun occultation)



SOIR aperture on ' periscope'.in (Yb,Xb) at 60 deg from Yb. Periscope includes 2 flat mirrors which are leading the light to the AOTF entrance optics.

### **Optical apertures summary**

The Sensor Unit has 4 apertures:

- UV aperture on Nadir face.
- IR aperture on Nadir face.
- Secondary UV and IR aperture for Sun viewing

internal mirrors and fiber bent the Solar light in the instrument main optical axis - SOIR aperture

| n° | Operational Mode | Target | Subsystem Aperture            |
|----|------------------|--------|-------------------------------|
| 1  | Test Mode        | NA     | NA                            |
| 2  | Sun Mode         | Sun    | Sun Secondary UV+IR aperture  |
|    |                  |        | and SOIR aperture             |
| 3  | Star Mode        | Star   | UV aperture on Nadir face     |
| 4  | Nadir Mode       | Nadir  | UV+IR apertures on Nadir face |
| 5  | Limb Mode        | Limb   | UV+IR apertures on Nadir face |

Pointing, general assumptions:

Assume pointing is done by Spacecraft

Assume rotation of 90°, duration is around 11 mn (0.14 deg/s TBC, from MEX).

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spyfum24            |                                 | Page:  | 28           |

It seems that Spicav is quite demanding concerning S/C manoeuvers and resources availability. We examine resources needed by Spicav:

- manoeuver duration: is dependant on orbit parameters, actual Spacecraft attitude and desired inertial direction (selected objective) and will be computed.

- Other resources as wheel usage and power: Wheel usage is a resource to be shared between instruments. Nadir pointing is more wheel consuming than fixed inertial attitude. Power is not a concern for Sun occultation (it drops to 0 anyway). For Star occultation, the angle around +Z axis is a free parameter and therefore can be adjusted for maximum power collection if necessary.

In the Inertial mode, pointing direction is any inertial (relative to stars) direction. This direction must be kept fixed during observation duration of 2 to 8 mn. It is defined as any star direction which may be occulted by Venus in dark side of Planet. (see operational modes for details)

In nadir mode, nominal nadir pointing (as other instruments) in bright side of Planet.

The following table gives the Experiment viewing requirements for each objective.

| Objective FOV (*) |         | Pointing Direction | Duration            |
|-------------------|---------|--------------------|---------------------|
|                   | (UV)    |                    | (typical)           |
| Star (UV)         | 1° x 3° | Inertial STAR      | 2 to 8 mn           |
| Sun (UV+IR)       | slit    | Inertial SUN       | Cooling + 2 to 8 mn |
| Nadir (UV+IR)     | slit    | Venus (Nadir)      | 30 mn               |
| Limb (UV)         | slit    | Inertial           | 2 to 8 mn           |

(\*) Spicav fields of view:

| UV channel         |         |                                  |
|--------------------|---------|----------------------------------|
| Full field of view |         | 4 deg x 3 deg (detector)         |
| STAR mode          | no slit | 1 deg x 3 deg without vignetting |
| Nadir, Limb        | slit    | 1.3 arc min x 3 deg              |
| Sun                | pinhole | 2 arc min (tbc)                  |
| IR channel         |         |                                  |
| Nadir              |         | 2 deg circular                   |
| Sun                | pinhole | 2 arc min (tbc)                  |
| SOIR channel       |         |                                  |
| Sun                | slit    | 0.06  x  3  mm2,  f = 375  mm    |
|                    |         | 15' x 40''                       |

<u>Illumination constraints</u>: FOV avoidance 34° x 34° on Nadir side. See Section 7.3

#### Subsystems:

List of elements of Sensor Unit: UV channel parabolic off axis mirror, focal length = 120 mm slit with two positions grating intensified CCD with electronics box IR AOTF channel SOIR channel Service d'Aéronomie

entrance mirror ( 'periscope' ) AOTF for bandwith selection slit Parabolic mirror echelle grating optics+ cooled IR detector

--->Servitudes Unit: ( see Annex4 for detailed diagrams )

This block is made of two boards:

power board, which provides individual power for UV and IR

UV needs +5, +15, -15 V IR needs +5, +12, +/-15V Peltier cooler (UV and IR) 3.3 V The input 28V is coming from DPU where it is filtered. microprocessor board, this board controls: the two mechanisms, the IR switch on, the high voltage level (for UV channel) and retrieves 8 temperatures.

--->UV detector Unit:

The UV detector is made of 3 parts:

a CCD camera with the head and two electronic boards (follow on of Mars96) an intensifier (Hamamatsu) with a 12 mm window which is coupled to the CCD by fiber optics a programmable high voltage (Hamamatsu) for the intensifier

In the head, the CCD (TH 7863) is mounted on a one stage Peltier cooler for a delta T around 15 °C.

The two electronic boards of the CCD camera are mechanically mounted on the servitudes boards.

The CCD detector head is mounted in such a way that the columns are perpendicular to the baseplate of the Sensor Unit. The rows direction is the spectral dimension.

The UV detector records a window of 5 rows allowing to have at the same time, in Star mode, the Star spectrum surrounded by the background spectra. The rows can be elementary pixels or binned pixels (binned columns) The nominal binning is between 4 and 8. The position of the rows is programmable.

--->IR Channel Unit:

The IR channel is made of an entrance lens, an AOTF crystal which acts as a negative filter, two (Hamamatsu) double pixels detectors (two polarisations, two wavelenght ranges ) with their own Peltier cooler, and an electronic board. When the AOTF is powered (at a certain frequency), it selects a wavelength which goes up to the detectors. A full spectrum is then obtained by scanning the frequencies. The measurement is obtained by the difference between the AOTF on and off.

### --->SOIR Channel Unit:

The SOIR Channel is made of an entrance optics ('periscope') which leads the Sunlight to the AOTF entrance optic ( in plane Y,Z ). When the AOTF is powered (at a certain frequency), it selects a bandwidth to be analysed by the spectrometer including a parabolic mirror and an echelle grating ( selection of right order ). Associating AOTF and echelle grating ( 4 grooves/mm ) permits to have a

| Service d'Aéronomie | e d'Aéronomie Venus Express     |        | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spyfum24            |                                 | Page   | - 30         |

Spvrum24

high reolution spectrometer. Spectra is collected, via optic lenses, by an IR detector. It is a Sofradir detector coupled with a cooler.

--->SOIR Channel Unit: see Annex 10

### **<u>3.2 DPU and flight software:</u>**

The DPU is made of 3 boards:

the power board which has 28V Interpoint filter modules for the whole instrument and provides 5V for the DPU itself (Interpoint module)

the microprocessor board, based on a 80C32 chip, with Ram, Prom, Fifos as buffer for telemetry, and counters for time maintenance.

the interface board which has an Actel FPGA RH1020 for telecommand/telemetry logic and interfaces circuits to S/C lignes.

The DPU has two connectors for data lines (one nominal and one redundant), two connectors for power lines, and one connector towards the Sensor Unit.

#### Hardware characteristics:

| microprocessor | 80C32 30 MHz       |                                              |
|----------------|--------------------|----------------------------------------------|
| Eprom          | 32 Ko              |                                              |
| Ram            | 128 Ko for 2 pages |                                              |
| Fifo TC        | 32 x 8 Kbits       |                                              |
| Fifo TM        | 3 x 32 x 8 Kbits   | (able to store 16 sec TBC of telemetry data) |

### **Software characteristics:**

| Software code | 26 Ko  |
|---------------|--------|
| External data | 43 Ko  |
| CPU load      | < 50 % |
|               |        |

At Switch on, software code is transferred from Prom to Ram, then it is started.

Sequencing is done at a 1 second basis (minimal period). In each second, detectors are polled at fixed times. There are 256 interrupts coming from internal timer (see further) with the following steps: TBC

| tic | 1   | UV data reading              |
|-----|-----|------------------------------|
| tic | 75  | IR data reading              |
| tic | 110 | SOIR data reading            |
| tic | 145 | Servitudes and TC processing |
| tic | 185 | TM processing                |

Date and Time logic software:

wait for receipt of Board Time TC set interrupt TSY (TSY = pulse every 8 sec) wait for TSY If interrupt save Board time start internal timer disable TSY (will never be used again) Interrupt from timer gives 1/256 sec sequencing tic Date and time values are built from timer+ Board Time

| Service d'Aéronomie | Venus Express<br>Spicav         | Ref:<br>Issue: | SPV-DES-032<br>003 Rev 1 |  |  |
|---------------------|---------------------------------|----------------|--------------------------|--|--|
|                     | Flight User / Operations Manual | Date:          | Aug 08, 2005             |  |  |
| Spvfum24            | 6 I                             | Page:          | 31                       |  |  |
|                     |                                 |                |                          |  |  |
| Telecommand log     | gic software:                   |                |                          |  |  |
| If TC fifo not em   |                                 |                |                          |  |  |
| wait 3 sec          |                                 |                |                          |  |  |
| If TC Spicav        | already received                |                |                          |  |  |
| clear               | fifo                            |                |                          |  |  |
| Otherwise           |                                 |                |                          |  |  |
| read f              | ïfo                             |                |                          |  |  |
| verify              | length and copy in TM buffer    |                |                          |  |  |
| read A              | APID                            |                |                          |  |  |
| If Spicav           |                                 |                |                          |  |  |

read Type and Subtype

If 9, 1 (OK for Spicav Board Time) Board Time processing Board Time received

Otherwise

set error flag in TM

If 226, 1 (OK for Spicav TC)

If Board Time Received

TC Spicav processing

Otherwise

Do nothing

Otherwise

set error flag in TM

Otherwise

clear Fifo ignore TC received set error flag in TM

Otherwise

Do nothing

## **Global Software limitations:**

All packets services NOT implemented. The first TC MUST be Board Time. Only one Board Time TC is expected.

After TC Time correctly received, the TC Spicav is expected (others ignored) Due to TC analysis duration, Time update has to stopped before sending of TC Spicav. After TC Spicav received, all others TC ignored

Accordingly:

If no TC Board Time ---> no sampling of detectors If no TC Spicav ---> no sampling of detectors Each TC is related to one observation To start another observation, Switch Off is needed for reinitialisation

## **3.3 Command and Data Handling:**

| Service d'Aéronomie        | Venus Express                   | Ref:   | SPV-DES-032  |
|----------------------------|---------------------------------|--------|--------------|
|                            | Spicav                          | Issue: | 003 Rev 1    |
|                            | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spvfum24                   |                                 | Page:  | 32           |
| <u>Telemetry sampling:</u> |                                 |        |              |

Preliminary comment: It is stated (page E-IDS-71) that: each Packet Terminal shall not be polled more than once per sec each PT shall be able to buffer its TM for a period of 16 sec

### Summary of TM requirements and Packet description:

Spicav has several bitrates selectable by TC. So, a same mode can be used with several bitrates. The following table gives the various science packet lengthes ( for a typical observation ) and the identification between the Spicav TC and the corresponding bitrate.

| Rappel taille packet ESA |        | ( source $=$ I | Pk-26, source max | = 4096 ) |
|--------------------------|--------|----------------|-------------------|----------|
|                          | Source | Spi head       | Pk head           | Pk       |
| BE                       | 128    | 0              | 16                | 144      |
| UV                       | 3078   | 10             | 16                | 3104     |
| IR                       | 1024   | 10             | 16                | 1050     |
| SOIR1                    | 1250   | 10             | 16                | 1276     |
| SOIR2                    | 2250   | 10             | 16                | 2276     |
| SOIR3                    | 3932   | 10             | 16                | 3958     |
|                          |        |                |                   |          |

TM packet header is 16 octets

Spicav has four types of Science packet. The packet length is (Packet data + header)

Depending on Spicav observation phase we may have the combinations:

| DPU                 | 144 octets  |
|---------------------|-------------|
| DPU + UV or         | 3248 octets |
| DPU + UV+ IR        | 4298 octets |
| DPU + UV+ IR + SOIR | 8256 octets |

## Spicav data production rate:

Spicav data are made of successive spectra. The rate of spectra recording is 1 sec .Assuming the worst case, data production rate is

(144+3104+1050+3958) = 8256 octets per second

----> Spicav maximum AVERAGE bit rate is 66048 bps

Spicav has three nominal modes which are NADIR ,STAR or SUN mode:

NADIR mode: DPU+SU+IR. In this mode, the average bit rate is 34384 bps. We are in case where there are constraints on the actual active instruments.

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spyfum24            |                                 | Page:  | 33           |

STAR mode: DPU+SU. In this mode, the typical data sampling frequency is one per 1 sec. The average bit rate is (144+3104)\*8 = 25984 bps. We are in case where there are constraints on the actual active instruments.

SUN mode: DPU+SU. In this mode, the typical data sampling frequency is one per 1 sec. The average bit rate is (144+3104+1050+3958)\*8 = 66048 bps. We are in case where there are constraints on the actual active instruments.

---> All instruments cannot work together with Spicav at their maximum data rate without data loss. The good point is that in the STAR or SUN mode, there is a dedicated attitude (which is not Nadir) and so it is not foreseen that there are many other instruments active at this time.

To avoid problems observed during tests, a DMS software modification has been implemented. It consists in polling Spicav twice consicutively in order to increase the average polling frequency. There is no problem to do it without waiting any delay ( in particular, there is no wait for the currently nominal 125 ms delay between tow polling tasks. The loading of the data block in the FIFO is done such as the delay between the writing of 2 consecutive words of a same data block is always significantly lower than 122  $\mu$ s ( the current Spicav writing delay is 57  $\mu$ s ).

### **Buffer size:**

The Spicav TM buffer size depends only on the data production. The TM buffer is made of FIFO whose size will be 768 kbits .

#### Spicav TM block:

In all operating modes, Spicav will provide a TM block corresponding to data produced every second..

Maximum TM block length (words of 16 bits)

| StarLim | 2149 |
|---------|------|
| Nadir   | 2149 |
| Limb    | 2149 |
| Sun     | 4128 |

To avoid data loss, Spicav experiment needs to be polled every second

#### TM block building:

Sortie des packets:

Conformément à la spécification ESA, la sortie des packets se fait par l'intermédiaire d'un bloc TM précédé du nombre(16 bits) de mots du bloc qui peut comporter plusieurs packets.

On choisit:

de demander un prélèvement toutes les secondes

de grouper les packets et les sortir toutes les secondes (à cause du débit TM)

Toutes les 1 sec, les packets (s'il y en a) sont regroupés afin de faire un block TM (dans la fifo) qui est lu par le S/C. Vu de l'extérieur (simulateur sol), on voit la TM arriver toutes les 1 sec.

Le nombre de packets par block TM peut varier de:

- 1 pk BE seul, toutes les secondes
- 4 pk BE+UV+IR+SOIR toutes les sec

```
get, compress, generate and store UV packet (PUV1 or PUV2)
get, compress, generate and store IR packet (PIR1 or PIR2)
get, generate and store servitudes and DPU packet (PPU1 or PPU2)
If count = 1 Then
count = 0
If FIFO TM full then
(very abnormal situation)
(try to recover even with loss of data)
empty FIFO TM
generate TM block = PUV1+PIR1+PPU1 + PUV2+PIR2+PPU2
put length + TM block in FIFO TM
endif
```

end loop

### **Conclusion:**

Our TM system delivers TM blocks of one measurement. Therefore, our FIFO can be emptied by polling sequence (if combination of experiment data rates allows it) faster than it is fed by the instrument.

### **3.4 Summary of bitrates:**

For each operating mode, we have the capability to change the averaged bitrate by adjustment of the sampling period of the sub units, for example from 1 to 4 seconds (at the cost of reduced spatial resolution). This capability can be defined as sub mode or "mode BE". It is useful for Nadir observations, but it can be used in other modes.

The sampling period is defined in the Spicav TC, the first 4 bits of the Spicav TC, between 0 and 15 and named as "mode BE", with corresponding labels

The following table gives the bitrates according to the sampling period of the Spicav sub units:

35

#### **Identification Bitrates / Modes** See also TMstat20

TMbitrate00.x4

02 04 17 BE modes identification and bitrates

Spicam modes Identification and Bitrates:

Labels

TC Spicam Hex configuration of TC case sensitive, see Database in annex Database name sampling period of UV channel pIR pUV sampling period of IR channel

|    | TC Spicav           | Database Name | Spicav name | pUV   | pIR   | pSoir | Power           | Bitrate        |
|----|---------------------|---------------|-------------|-------|-------|-------|-----------------|----------------|
|    | (First Hex)         |               |             | (sec) | (sec) | (sec) | (W)             | (kbps)         |
|    |                     |               |             |       |       |       |                 |                |
| 0  | <del>0xxxxxxx</del> | Dummy TC      | mini        | θ     | θ     | 0     | <del>16.2</del> | <del>1.1</del> |
| 1  | 1xxxxxxx            | TestN         | NadirMini   | 4     | 4     | 0     | 16.2            | 8.6            |
| 2  | 2xxxxxxx            | TestS         | StarMedi    | 1     | 1     | 1     | 16.2            | 66.1           |
| 3  | <del>3xxxxxxx</del> | Cmde directe  | mini        | 0     | 0     | 0     | <del>16.2</del> | <del>1.1</del> |
| 4  | 4xxxxxxx            | Limb          | LimbMini    | 2     | 2     | 0     | 26.4            | 17.2           |
| 5  | 5xxxxxx             | StarLimb1     | StarLowi    | 1     | 0     | 0     | 17.6            | 26.0           |
| 6  | 6xxxxxx             | StarLimb2     | StarMaxi    | 1     | 1     | 0     | 26.4            | 34.4           |
| 7  | 7xxxxxxx            | StarLimb3     | StarMedi    | 1     | 2     | 0     | 26.4            | 30.2           |
| 8  | 8xxxxxx             | Nadir1        | NadirMaxi   | 1     | 1     | 0     | 26.4            | 34.4           |
| 9  | 9xxxxxxx            | Nadir2        | NadirMedi   | 2     | 2     | 0     | 26.4            | 17.2           |
| 10 | Axxxxxx             | Nadir3        | NadirLow    | 4     | 4     | 0     | 26.4            | 8.6            |
| 11 | Bxxxxxx             | Align         | FullFrame   | 1     | 1     | 0     | 26.4            | 34.4           |
| 12 | Cxxxxxx             | TIprog        | StarLowi    | 1     | 0     | 0     | 17.6            | 26.0           |
| 13 | Dxxxxxx             | Sun1          | SunMaxi     | 1     | 1     | 1     | 51.4            | 66.1           |
| 14 | Exxxxxx             | Sun2          | SunMedi     | 1     | 1     | 0     | 26.4            | 34.4           |
| 15 | Fxxxxxx             | Sun3          | SunLow      | 1     | 0     | 0     | 17.6            | 26.0           |

2 modes defined for MEX are not used on VEX (  $n^\circ 1, n^\circ 3$  )

see paragraph 5.1 for details bitrates

#### **<u>4. Instrument Operations:</u>**

### 4.1. Overview of Operating principles

The following paragraph describes the operating principle for SPICAV observation:

- Put Spacecraft in good attitude for one kind of observation
- Switch On by S/C
- Send observation TC by S/C
- Record TM by S/C
- Switch Off by S/C at the end of observation.
- Put Spacecraft in nominal attitude

Summary of operational constraints: see Section 7.3

There is no default observation scenario for SPICAV (TC Spicav is always needed).

|   |                        | Duration<br>(typical) | Number<br>/orbit | Conditions                                                                           | Comments       |
|---|------------------------|-----------------------|------------------|--------------------------------------------------------------------------------------|----------------|
| 1 | Stellar<br>occultation | 5 mn                  | <=4              | Star set<br>Dark side of Venus<br>Spacecraft ( Nadir side ) oriented towards<br>star | 11<br>12<br>13 |
| 2 | Solar<br>occultation   | 5 mn                  | 1                | Sunset and/or Sunrise<br>Spacecraft ( solar entrance ) oriented<br>towards Sun       | 21<br>22       |
| 3 | Nadir                  | 30 mn                 | 1                | Bright side of Venus<br>Spacecraft ( Nadir side ) oriented towards<br>Nadir          | 31             |
| 4 | Limb<br>emissions      | 5 mn                  | <=1              | Venus bright Limb<br>Spacecraft ( Nadir side ) oriented towards<br>Limb              | 41             |

Comments:

11. Occultation time must be computed prior to observation

Duration of occultation is computed prior to observation

(depending on the geometry of occultation versus local horizon, vertical or not)

Observation ( sampling ) starts 60 sec min before the occultation (target at 200 km tbc of altitude)

Observation ( sampling ) stops 30 sec min after the end of occultation (disparition of target behind Venus).

Service d'Aéronomie will provide Star catalog (about 40 stars)

see Annex6

Star catalog is fixed and defined well in advance.

No update is foreseen, at the present time, during the mission.

Targets are defined by  $\alpha$ ,  $\beta$ , (J2000), format to be agreed.
| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spvfum24            |                                 | Page:  | 37           |

Latitude and longitude coverage is provided by selection of star

- 12. A few occultations on bright side of Venus are possible
- 13. Only Spacecraft attitude is required
  - Spacecraft position along the orbit is indifferent

Line of sight is defined by Spacecraft position (NOT attitude) and star direction

Vertical resolution depends only on sampling of detectors

Measurements (spectra) are done every second. During one second, the effective exposure

# time depends on the brightness of the star occulted and can be adjusted by TC.

- 21. We suppose that Sun occultation exists
  - (occultation through a special aperture, not on Nadir face) <u>Sun occultations are described in the Orbit Analysis document (M. Hechler)</u>) All occultations are potentially good for science investigation (latitude coverage) Sunset and sunrise are independent riment is off during colinge (TRC according of colinge duration)

Experiment is off during eclipse (TBC according of eclipse duration) Observation (sampling) starts 60 sec min before the occultation/de-occultation Latitude and longitude depends on geometry of Sun occultation

- 22. Vertical resolution of concentration profile depends on the altitude of the Spacecraft Lower altitude gives better vertical resolution
- Same attitude as all others Nadir experiments Latitude and longitude coverage is done by satellite track
- 41. Lower altitude of the Spacecraft gives better vertical resolution

# 4.2. Nominal Operations Plan

The following diagram shows a possible orbit with SPICAV operational capability. The only purpose of this diagram (from MEX, available for VEX) is explanation.

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spvfum24            |                                 | Page:  | 38           |





Spicam Light: operations modes (not a true orbit, for explanation only)

Squares are Venus Express positions.

Timing and commands for all SPICAV modes are described in the following table :

| Time         | Commande         | TM                                      |
|--------------|------------------|-----------------------------------------|
| Т0- уу       | HPC SOIR Off     | Reset, $yy = 5s$ (if SOIR, $yy = 10s$ ) |
| T0-xx        | HPC Soir ON      | IF SOIR, xx= 5s                         |
| Т0           | LCL SPICAV ON    |                                         |
|              |                  | TM BE not synchronised                  |
| T0 + 25      | Time Update      | Copy TC (TB)                            |
|              | ľ                | HK1                                     |
|              |                  | TM BE synchronized                      |
|              |                  |                                         |
| T0+45        | Stop Time Update |                                         |
| T0 + 60      | TC Spicav        | Copy TC Spicav                          |
|              |                  | HKSOIR every 20s if SOIR                |
|              |                  | TM BE                                   |
|              |                  | HK2                                     |
| T1 = T0 + 60 |                  | TM BE                                   |
| + cooling    |                  | TM UV                                   |
| duration     |                  | TM IR                                   |
|              |                  | TM SO si SOIR                           |

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spvfum24            |                                 | Page:  | 39           |
|                     |                                 |        |              |
|                     |                                 |        |              |

|             |                | (if no SOIR, cooling duration $= 0$ ) |
|-------------|----------------|---------------------------------------|
| T1 +        | LCL SPICAV OFF |                                       |
| observation | HPC SOIR OFF   | If SOIR                               |
| duration    |                |                                       |

T1 is the duration before science data are produced by sub units. Between T0 and T1, Only data from DPU are produced. The data rate is 1.1 kbps. This is useful for "precise" TM volume computation.

The number of observations during one orbit depends only on the resources available at the time of observation. Most of time, during occultations, no other instrument (TBC) is working (except Aspera which would benefit of this type of observation). Recommendation is to have one Nadir and one inertial attitude for each orbit.

For one observation, the following table shows the distribution of functions for nominal flight operations:

| Source      | Action                        | Destination |
|-------------|-------------------------------|-------------|
|             |                               |             |
| On Ground   | Operations preparation        |             |
| spacecraft  | Send HPC SOIR On (if SOIR)    | SOIR        |
| spacecraft  | Switch On                     | DPU         |
| spacecraft  | Send Time, Stop Time          | DPU         |
| spacecraft  | Send TC                       | DPU         |
| Sensor Unit | Science data                  | DPU         |
| DPU         | Send TM                       | spacecraft  |
| spacecraft  | Switch Off                    | DPU         |
| spacecraft  | Send HPC SOIR Off ( if SOIR ) | SOIR        |
| On Ground   | TM processing                 |             |

# **Shutter Operations**

Due to geometry and specific attitudes during the mission, it is possible than the SUN is directed to the UV and IR apertures (SC +Z axis). It mainly happens during Earth communication phase at specific time during the mission (see DA4, Mission Guideline, Iss2.1 dated 12/12/03).

Other occurrences : TBD.

Then, the UV and IR apertures have been equipped with a shutter defined according DA4 (no shutter on MEX). This one is operated directly by the S/C, and has no electical interfaces with Spicav DPU or Spicav Sensor Unit. It is totally independent.

The nominal position of the shutter is always OPEN.

The shutter has to be closed ONLY when the +Z side is illuminated (closed before illumination and opened after illumination). According to Illumination constraints (see Section 7.3), check has to be done by Flight Dynamics team.

# 4.2.1. Ground operations plan:

The following paragraphs describe all the actions which are needed for operations of Spicav :

(see annex9 for Spicav activities)

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spvfum24            |                                 | Page:  | 40           |

We propose the following phases:

| Data Needed                 | Actions                  | Actioner | Remarks            |
|-----------------------------|--------------------------|----------|--------------------|
| Pre-mission                 |                          |          |                    |
| Targets                     | Star catalog             | SA       |                    |
|                             |                          |          |                    |
| Communication Phase / other |                          |          |                    |
| Sun Illumination            | Check Illumination       | ESOC     |                    |
|                             | Shutter action if needed | ESOC     |                    |
| Mission, every month        |                          |          |                    |
| Orbit data                  | Compute predicts         | ESOC     |                    |
| Occulted targets            | Compute attitude         | ESOC     | In parallel at SA  |
| Selected Stars              | Choice by Science team   | SA       | -                  |
| Attitude parameters         | Elaboration              | ESOC     | verification by SA |
| TC Spicav                   | Elaboration              | SA       |                    |
|                             |                          |          |                    |

SA = Service d'Aéronomie

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spvfum24            |                                 | Page:  | 41           |

Spicav Observations: Operations functional diagram



This diagram reflects the Spicav operations (from MEX, available for VEX). Interfaces during commissioning and routine phases will be described later.

Our minimal requirements in different phases are described in the following paragraphs.

**4.2.2. Near Earth Verification phase ( NEV )** Reference Document = VEX-ESC-PL-5000, Iss1, dated 06/12/2004

2 Phases : SPICAV Commissioning and Pointing Scenario/Multiple Instruments.

SPICAV Commissioning.Objectives:SPICAV Switch ON and health checkConstraints:

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spvfum24            |                                 | Page:  | 42           |

SPICAV First Switch ON in EV phase has to be in the later part of EV phase activities to allow instrument degassing.

No required attitude

For more details, see SPICAV NECP1 plan ref SPV-NT-NECP-FS-01 (timing to be updated). Spicav activities are :

- 1 SPICAV TestS Mode
- 2 Wait xx min at least
- 3 SPICAV Sun Mode test (SOIR baseplate thermal control activation : TBC)
- 4 Wait xx min at least
- 5 Activity Spicav Shutter **TBC**
- 6 Wait xx min at least
- 7 SPICAV Short Performance Test. TBC
- 8 Wait xx min at least
- 7 Activity Spicav Shutter ( to come back to the initial position ) **TBC**

During the Launch, the shutter is closed because Sun is illuminated the +Z face a few days after launch (see DA4). According to illumination constraints, the shutter will be open or not.

#### **Pointing Scenario/Multiple Instruments.**

SPICAV Switch ON with pointing (alignment check) Objectives: Constraints: required attitude

For more details, see document ref SPV-OPS-100 Three slots are required.

Slot1:

1 star observation with star in FOV (shutter open) 1 star observation without star in FOV (shutter open) Solar observation : 3 X 3 different inertial pointings.

Slot 2 : same as slot1

Slot 3 : 1 Solar observation (could be postponed during the cruise)

Participation to the straylight operations required by VIRTIS (TBC)

For Solar observations, SOIR baseplate thermal control has to be activated xx hours before.

#### 4.2.3. Interplanetary Cruise phase (IC):

In order to avoid any possible failure due to no motion of mechanisms during the long cruise phase of the mission, SPICAV team requested activation of SPICAV and execution of Test Mode once every month. In this mode, the two internal mechanisms are activated three times each.

In the same time, we require to run StarAlign, Nadir and Sun mode.

General conditions: no attitude required duration is 5 mn each, Sun 16min Total 30 mn

support by PI if required by ESOC

Pointing phase (January 2006 TBC)

Complementary slots to Pointing Scenario/Multiple Instruments during NECP. Star observation with Star in FOV (shutter open)

During IC phase, the SOIR baseplate thermal control is not activated, except during the Solar observations ( to be activated xx hours before ).

End of IC phase: (pre-Venus Orbit Insertion)

The payload instrument checks at the end of Interplanetary Cruise (IC) phase is limited to instrument Switch ON and minimal health checks only. Test Mode will be used.

## 4.2.4. Venus Commissioning phase (MC)

initial proposal, dated Feb 2004 : to be reviewed.

## **Objectives:**

In flight, there is no specific mode for calibration and the baseline operational modes are used. Observation can be done even if there is no occultation of star or Sun. The main purpose of observation during commissioning is to verify and adjust a few instrument parameters as exposure time, gain...

The following actions will be done in flight:

verification of main performances characteristics adjustment of parameters as exposure time verification of alignment

Constraints:

Dedicated Spacecraft attitude is needed.

Total time: around 1 hour (TBC) (with maneuvers) for each observation

All sequences are purely repetitive, off-line and remotely executed (as nominal ops).

The SPICAV requirements for the Venus Commissioning phase are as under:

Nadir Observation: 2 orbits of observation.

Limb Observation: Bright and Dark limb with 2 orbits of observation for each. Star Observation:

a. Optics Alignment check: 1 orbit of observation

b. Star Occultation: 2 orbits of observation

Sun Occultation: 2 orbits of observation

In all the cases requiring two orbits of observation there should be enough spacing between the two orbits to enable performance evaluation and consequent fine adjustment of instrument parameters (if any).

**Note:** It is envisaged that from the spacecraft operations point of view the minimum gap will be 1 to 2 days between such commissioning phase test observations. The actual gap will depend upon the time required by the SPICAV team to analyze the data and to plan next step in SPICAV commissioning activity.

# 4.2.5. Flight operations plan by mission phase

TBD

Will be completed when Mission Planning will be issued.

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spvfum24            |                                 | Page:  | 44           |

For Spicav, the following strategy rules are applied in order to maximize the Sicence return: use of Instrument bitrate flexibility

for Nadir mode with low bitrate (8.6 kb/s), Spicav can always be operated. use of target opportunity

for Star mode, selection of target out of Pericenter/Nadir phase

## **4.3. Failure Detection and Recovery Strategy:**

Instrument is switched On and Off (and so totally resetted) for each observation. Failure detection is done through telemetry.

As observation time for occultation is short (a few minutes), there is no in flight recovery procedure and in case of SW or HW problem, ground analysis of problem is required.

In case of failure, the following rules will be applied (following TM analysis):

--> TM present but degraded performances PI analysis of problem --> No TM use Spicav TC "TestN" NO constraints If OK continue nominal operations plan If No TM Switch to Power redundant lines use Spicav TC If OK continue nominal operations plan If No TM Switch to Data redundant lines use Spicav TC If OK continue nominal operations plan If No TM main failure

Mechanisms Failure Scenario:

The two possible failure scenarios of the mechanisms are the openings either permanently closed or open.

(a) If the openings are permanently closed no observation is possible in that particular viewing mode.

(b) If openings are permanently in Open state observation is feasible. The Sun occultation experiment can be switched on at any time and there is no constraint in activating the Sun occultation observation mode.

## 4.4. Routine operations:

As Spicav bitrates are mode dependant (see paragraph 3.4), the POR (payload operations request) will include data rate and data profile requirements, in addition to other informations as TC Spicav...

## 5. Modes description:

# 5.1. Summary of nominal modes:

## Mode definitions:

Definitions of mode:

a mode is defined if one of the following conditions occurs: change in demand on S/C resources (power...) specific S/C operational status (pointing) functionnaly distinct operating mode of instrument

| Experiment Mode | Power Usage (W) | Data rate (Kbits/s) max | Functional use       |
|-----------------|-----------------|-------------------------|----------------------|
| Test            | 17.6            | 26.0                    | ground use           |
| Sun             | 51.4            | 66.1                    | Science, occultation |
| Star            | 17.6            | 26.0                    | Science, occultation |
| Limb            | 26.4            | 34.4                    | Science, Bright limb |
| Nadir           | 26.4            | 34.4                    | Science, Nadir       |

(\*) Data rate is not constant, this value is averaged see section 3.4

For Spicav, observations modes are a combination of Experiment mode (which subsystem) Spacecraft attitude (which target) Spacecraft position (Venus viewing)

There are 5 operational modes defined for Spicav (all modes use DPU).

| n° | Operational Mode | Target | Subsystem     | Spacecraft attitude | Duration     |
|----|------------------|--------|---------------|---------------------|--------------|
| 1  | Test Mode        | NA     | -             | NA                  | 2 to 8 mn    |
| 2  | Sun Mode         | Sun    | UV (+IR+SOIR) | Inertial Sun        | 2 to 8 mn(*) |
| 3  | Star Mode        | Star   | UV            | Inertial Star       | 2 to 8 mn    |
| 4  | Nadir Mode       | Nadir  | UV (+IR)      | Nadir attitude      | 30 mn typ.   |
| 5  | Limb Mode        | Limb   | UV (+IR)      | Inertial            | 2 to 8 mn    |

(\*) Spicav needs to be switched on 11 mn before for SOIR detector cooling. The time indicated in the table is the time of high rate scinece

The sequencing of all modes are identical see section 2.4.1

In addition of the mode previously defined, Spicav has several bitrates selectable by TC. So, a same mode can be used with several bitrates.

See TM/TC budgets in section 2.5

Exemples of Spicav operations modes:

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spvfum24            |                                 | Page:  | 46           |
|                     |                                 |        |              |



Spicam Light: operation modes (not a true orbit, for explanation purpose only)

For star occultation, the distance to the Venus surface is not a relevant parameter. The star is a ponctual source, and the line of sight is only defined by Star and S/C positions.

For Limb observation (secondary objective), attitude is inertial, and the distance to Venus is a relevant parameter. Strategy is flexible and may accomodate other S/C constraints.

The distance to Venus impact is also valid for Sun mode.

The following table gives preliminary values concerning preferred distances in order to get maximum spatial resolution.

| Star | NA  | NA   |    |
|------|-----|------|----|
| Limb | 200 | 3000 | km |
| Sun  | 200 | *    | km |

To be updated for venus mission

(\*) Distance is defined by geometry, no choice possible

During flight, and for occultations, there is no specific calibration mode.

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spvfum24            |                                 | Page:  | 47           |

1. Experiment does not need any specific calibration because measurement is "absolute", i.e. comparison between spectra inside and outside atmosphere is instrument independent.

2. To verify experiment performances, the previous nominal operational modes will be used. The only difference is that during these specific observations, there is no occultation foreseen.

# **5.2. Mode transition diagram:**



## 5.3. Detailed modes description:

## **5.3.1.** Test mode:

In this mode, there is no sampling of detectors, and Science data are simulated. TM/TC functional performance is totally nominal.

There is no attitude constraints to run this mode.

# 5.3.2. Star occultation mode

Star Occultation mode (UV channel): StarLimb1 mode
In order to operate Spicav with sensor UV in occultation mode, the following assumptions hold:
no on board ephemeris, i.e. operations are planned on Earth ground
several potential targets (about 50 to 70 stars) see paragraphe 4.1
star occultation computation (ESOC, SA)
dedicated spacecraft attitude for Star occultation

# 5.3.3. Sun occultation mode:

```
<u>SUN</u> (UV, IR, and SOIR channels): <u>SOIR is only working in mode SUN1</u>
Three things are needed:
```

Solar occultation time, computed from orbit characteristics (ESOC, SA)

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spvfum24            |                                 | Page:  | 48           |

Spacecraft dedicated attitude

Internal configuration of the instrument (exposure time...)

## 5.3.4. Limb mode:

Bright limb observations : Limb, StarLimb2, StarLimb3

Computation of direction and S/C attitude is done on ground (as for STAR mode). The spacecraft Nadir face is oriented (inertial) towards bright limb of Venus ( as a virtual star). Scan altitude is provided by orbital motion.

## 5.3.5. Nadir mode:

<u>Nadir observations</u> Sensor Unit (UV and IR detectors):

There are no special constraints.

The instrument is operated (ON, OFF) during Spacecraft Nadir Mode (day side). Bitrate can be selected (low, medium or high).

# 6. Interfaces:

Summary of Spicav interfaces:

Power demand is mode dependant (from 16 to 52 W).

Alignment can be verified in flight.

There is no on board control or monitoring of instrument parameters.

But ANC signals are used to control temperature of baseplate SOIR by powering or not heater lines.

Baseplate of SOIR is connected to external radiator by a thermal strap. The Sensor Unit is covered by MLI and is thermally individually controlled.

# TM/TC:

TM and TC interface with the spacecraft only concern the DPU of Spicav .

One TM channel and one TC channel are required.

All telemetry informations (science and associated housekeeping) are sent through the TM channel. Telemetry data will be time tagged and formatted by the DPU into packets according to standards defined for the mission. Inside packets, data can be sorted by means of identification (, Servitudes, sensor UV, sensor IR or sensor SOIR ).

Once the DPU is switched on, while waiting for a TC it will send back a few telemetry packets. After TC reception, the DPU will select the mode of operations and hence sensor UV or IR or SOIR, and will return telemetry to the spacecraft. This process continues until the DPU is switched off.

| The TC received by DPU has | s two fields: |
|----------------------------|---------------|
| mode selection             | mandatory     |
| instrument parameters      | optional      |

## Science Data:

As already explained all telemetry information is considered as science data.

In the DPU, upon TC selection, several parameters can be used in order to adjust the total volume of telemetry (mainly for Nadir observations). As an example the following features are be implemented:

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spyfum24            |                                 | Page.  | 49           |

Spv1um24

-change of the rate of science data sampling from sensor: minimum time between science measurements is 1 sec, it can be increased until 15 sec.

the DPU has the capability to just add successive spectra before sending them to telemetry.

## **<u>7. Nominal and Contingency Operations procedures:</u>**

## 7.1. On-board control procedures:

None (TBC)

## **7.2. Flight control procedures:**

# Status on 01 Aug 2005 after SVT1c.

## List of Nominal Procedure/TC Sequence List Applicable to SPICAV

Italis : to be checked

| Dubois     |          |           |         |              | EsocProclist02V                          |         |       |      |      |      |                                      |
|------------|----------|-----------|---------|--------------|------------------------------------------|---------|-------|------|------|------|--------------------------------------|
|            |          |           |         | T1, T2       | ON OFF times                             |         |       |      |      |      |                                      |
| File       | Label    | Mira mode | Prefixe | Duration     | FCP Title                                | LCL A   | LCL B | data | Pwr  | Kbps | Spicav Comments                      |
| SI-FCP-001 | ASIF001A | PREO      |         | 50 s (*)     | Nominal Switch ON                        | 16-N/R  |       |      | 16.2 | 1.2  | 1 st proc ( other than FCP-061 )     |
| SI-FCP-002 | ASIF002A | PREO      |         | 55 s (*)     | Nominal Switch-On with SOIR              | 16-N/R  |       |      | 16.2 | 1.2  | 1 st proc (other than rer oor)       |
| SI-FCP-002 | ASIF003A | PREO      |         | 15 s         | Nominal Shutter On                       | 26 -N/R |       |      | 16.2 | 1.2  |                                      |
| SI-FCP-006 |          | N/A       |         | 10 s         | Nominal Switch OFF                       | 16-N/R  |       |      | 10.2 | 1.2  | Must follow Obs procedure            |
| SI-FCP-007 | ASIF007A | PREO      |         | 15 s         | Nominal Switch-Off with SOIR             | 16-N/R  |       |      | 16.2 | 1.2  | Must follow SOIR Obs procedure       |
| SI-FCP-008 | ASIF008A | PREO      |         | 10 s         | Nominal Shutter Off                      | 26 -N/R |       |      | 16.2 | 1.2  | Must follow Shutter On (deltat:125s) |
| SI-FCP-050 | ASIF050A | TESTN     | 1       | T1. T2       | Spicav Test Nadir Mini Mode              |         |       |      | 16.2 | 8.6  |                                      |
| SI-FCP-051 |          | TESTS     | 2       | T1, T2       | Spicav Test Star Medi Mode               |         |       |      | 16.2 | 66.1 |                                      |
| SI-FCP-052 |          | LIMB      | 4       | T1. T2       | Spicav Limb Mini Observation             |         |       |      | 26.4 | 17.2 |                                      |
| SI-FCP-053 | ASIF053A | STARLIMB1 | 5       | T1, T2       | Spicav StarLimb1 low Observation         |         |       |      | 17.6 | 26.0 |                                      |
| SI-FCP-054 | ASIF054A | STARLIMB2 | 6       | T1, T2       | Spicav StarLimb2 maxi Observation        |         |       |      | 26.4 | 34.4 |                                      |
| SI-FCP-055 | ASIF055A | STARLIMB3 | 7       | T1, T2       | Spicav StarLimb3 medi Observation        |         |       |      | 26.4 | 30.2 |                                      |
| SI-FCP-056 | ASIF056A | NADIR1    | 8       | T1, T2       | Spicav Nadir 1 maxi Observation          |         |       |      | 26.4 | 34.4 |                                      |
| SI-FCP-057 | ASIF057A | NADIR2    | 9       | T1, T2       | Spicav Nadir 2 medi Observation          |         |       |      | 26.4 | 17.2 |                                      |
| SI-FCP-058 | ASIF058A | NADIR3    | Α       | T1, T2       | Spicav Nadir 3 mini Observation          |         |       |      | 26.4 | 8.6  |                                      |
| SI-FCP-059 | ASIF059A | ALIGN     | В       | T1, T2       | Spicav Full frame of CCD                 |         |       |      | 26.4 | 34.4 |                                      |
| SI-FCP-060 | ASIF060A | TIPROG    | С       | T1, T2       | Spicav program star low mode             |         |       |      | 17.6 | 26.0 |                                      |
| SI-FCP-061 | ASIF061A | SUN1      | D       | T1, T2       | Spicav Sun 1 maxi Observation            |         |       |      | 51.4 | 66.1 | to be used with FCP-002 and FCP-007  |
| SI-FCP-062 | ASIF062A | SUN2      | E       | T1, T2       | Spicav Sun 2 medi Observation            |         |       |      | 26.4 | 34.4 |                                      |
| SI-FCP-063 | ASIF063A | SUN3      | F       | T1, T2       | Spicav Sun 3 low Observation             |         |       |      | 17.6 | 26.0 |                                      |
|            |          |           |         | * Duration O | n: 60s ( including 15s at end ) + Obs+5s |         |       |      |      |      |                                      |

# Additional Procedures

#### Extracted from ESOCProclist02V.xls

| File       | Label    | FCP Title                                 | data | Spicav Comments                            |
|------------|----------|-------------------------------------------|------|--------------------------------------------|
|            |          |                                           |      |                                            |
| SI-FCP-064 | ASIF064A | Spicav Switch ON and Run in Test Mode     |      | to be deleted TBC (mailJPD 16.06.05:17.44) |
| SI-FCP-065 | ASIF065A | Spicav Switch ON and Run Test Observation |      | to be deleted TBC (mailJPD 16.06.05:17.44) |
| SI-FCP-075 | ASIF075A | Spicav selection of Nominal TM/TC branch  | Ν    |                                            |
| SI-FCP-076 | ASIF076A | Spicav Time Update                        |      | to be deleted TBC (mailJPD 16.06.05:17.44) |
| SI-FCP-095 | ASIF095A | SSMM/DMS config for Spicav                |      | ??                                         |

Sequence of FCP for an operationg mode One observation includes, at least, 3 FCP : FCP Switch On FCP Observation mode

SI-CRP-526

Spvfum24

## FCP Switch Off

In Sun mode with SOIR, the sequence is :

| overall delta time | block delta time | duration proc | procedure  | Description                        | procedure  |
|--------------------|------------------|---------------|------------|------------------------------------|------------|
|                    | -                |               | -          | -                                  |            |
| 00.00.00           | 00.00.00         | 00.00.55      | SI-FCP-002 | SPICAV Nominal Switch ON with SOIR | SI-CRP-507 |
| 00.01.10           | 00.01.10         | 00.15.00 typ. | SI-FCP-061 | SPICAV Sun1 Observation            | SI-FCP-061 |

SI-FCP-007

SPICAV Nominal Switch OFF with SOIR

00.16.10 00.15.00 Extracted from ESOCProclist02V.xls

For all other observation modes ( xx = 50 to 60, + 62,63 ), the sequence will be :

00.00.15

Extracted from ESOCProclist02V.xls

| overall delta time | block delta time | duration proc | procedure  | Description               | Red proc.  |
|--------------------|------------------|---------------|------------|---------------------------|------------|
|                    | -                |               |            |                           |            |
| 00.00.00           | 00.00.00         | 00.00.50      | SI-FCP-001 | SPICAV Nominal Switch ON  | SI-CRP-506 |
| 00.01.05           | 00.01.05         | 00.05.00 typ. | SI-FCP-xxx | SPICAV Observation        | SI-FCP-xxx |
| 00.06.05           | 00.05.00         | 00.00.10      | SI-FCP-006 | SPICAV Nominal Switch OFF | SI-CRP-525 |

The procedures must be run sequentially and never in parallel. It is required to have no overlap between two procedures.

<u>Sequence of TC, valide for all operating modes :</u> (Nominal or Redundant TM/TC branch)

> Send HPC SOIR off If SUN1 Send HPC Soir On

| Switch ON experiment   | through S/C LCL (no relay in Spicav) via RTU N+R<br>hard reset, expected duration = 1 to 2 sec |
|------------------------|------------------------------------------------------------------------------------------------|
| TC Enable              | defined at 5 sec after switch on                                                               |
| TM polling (from S/C)  | defined at 3 sec after TC Enable, every one second                                             |
| Send TM                | after TM polling, then every second                                                            |
| Time update (from S/C) | about 20 sec after Switch ON (absolute time reference)                                         |
| Time sync pulse        | (within 8 sec)                                                                                 |
| Stop Time Update       | about 20 sec after Start Time Update.                                                          |
|                        |                                                                                                |
| Spicav TC              | defined at 15 sec after Stop Time update                                                       |

Start of science observation following Spicav TC received

End of observation is done by switch OFF experiment (by S/C) Disable TM Polling Disable TC link Switch off experiment through S/C LCL via RTU N+R If SUN1 switch OFF HPC Soir

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spvfum24            |                                 | Page:  | 51           |

#### Spv

# Sequence for Shutter activities.

Extracted from ESOCProclist02V.xls

| overall delta time | block delta time | duration proc | procedure  | Description        | procedure  |
|--------------------|------------------|---------------|------------|--------------------|------------|
|                    |                  |               | •          |                    | •          |
| 00.00.00           | 00.00.00         | 00.00.15      | SI-FCP-003 | SPICAV Shutter ON  | SI-CRP-508 |
| 00.00.15           | 00.00.15         | 00.01.50      |            | Activation         |            |
| 00.02.05           | 00.02.05         | 00.00.10      | SI-FCP-008 | SPICAV Shutter Off | SI-CRP-527 |
| 00.02.50           | 00.00.45 (*)     | 00.00.15      | SI-FCP-003 | SPICAV Shutter ON  | SI-CRP-508 |
| 00.03.05           | 00.00.15         | 00.01.50      |            | Activation         |            |
| 00.04.55           | 00.02.05         | 00.00.10      | SI-FCP-008 | SPICAV Shutter Off | SI-CRP-527 |

(\*) delta time at SVT1c

One motion (**opening or closing**) is done by the following sequence:

FCP-003 : switch on (means 'beginning of motion')

FCP-008 : switch off ( means 'final position is assumed reached, off power' ) To open and close the shutter, two motions are needed as shown in the table above.

# **7.3.** Operational constraints:

# Summary of operational constraints: (see section 4.1).

--SPICAV has no constraint on altitude for Nadir observation.

--There is no default observation scenario for SPICAV (TC Spicav is always needed).

-- SOIR Cryo cooler operations: Quantity of On/Off and operating duration will be not monitored at Flight operation levels, but at spicav team level.

# Illumination constraints :

When Spicav is ON, the detectors should not be exposed to the Sun directly within the instrument FOV (34 x 34 deg (\*)) on the nadir face since the detectors could get damaged.

When Spicav is Off: the optics should not be exposed to the Sun directly within the instrument FOV (34 x 34 deg (\*)) on the nadir face since the optics could get damaged.

The Nadir boresight of the instrument is aligned with the S/C + Z axis.

It is assumed that the nominal shutter position is OPEN

If SZA (the angle between the Sun direction and the instrument boresight ) is smaller than 17° (\*) then close the shutter.

If SZA becomes again bigger than 17 deg (\*) then open the shutter (**TBC**).

(\*) 34° FOV is a baseline value and we understand that this value could be changed in the Flight Operations constraints after observations in flight.

# Thermal constraints :

--Spicav DPU is collectively controlled with S/C.

--Spicav Sensor Unit is individually controlled with S/C.

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spvfum24            |                                 | Page:  | 52           |

Preferred Thermal Range for Spicav operations: -20°, +40°C.

--Observations constraints :

Spicam/Spicav design is not foreseen for long duration observations.

Max duration is 30 min as baseline.

According to thermal environment, PI will decide to increase max duration.

For successive observations

- switch off the instrument after 30 minutes max
- wait xx minutes, accordind to the duration of last observation and themal environment.

- switch on again for a 30 minutes period.

Successive SOIR observations :

Typical observation duration with SOIR is 16 minutes including 1 min before TC reception, 10 min for cooling and 5 min for observation.

Baseline for 2 succesive operations is :

- either the second observation is just after the last one (in case of TC parameters modification).

- either it is required to wait **45 min** before next observation. this is due to the SOIR detector temperature which increases at switch off and managing of the cooling which could damage the detector for intermediate temperatures.

```
-- Off mode limits: 80°, +100°C.
```

-- SOIR baseplate templerature :

Inside SOIR, on baseplate, there are heaters (nominal and redundant) and 3 thermistors, power controlled by S/C via 3 thermistors included in SOIR. The baseline temperature range is  $(-5; 0 \circ C)$ .

Heaters lines are activated during all eclipse season ( in routine phase ).

Others phases : Heaters lines activated xx hours before Solars observations with SOIR.

# **7.4. Contingency recovery pocedures:**

Status on 01 Aug 2005 after SVT1c.

Extracted from ESOCProclist02V.xls

| File       | Label    | Mira mode | Prefixe | Duration     | FCP Title                                     | LCL A | LCL B  | data | Spicav Comments  |
|------------|----------|-----------|---------|--------------|-----------------------------------------------|-------|--------|------|------------------|
|            |          |           |         |              |                                               |       |        |      |                  |
| SI-CRP-500 |          |           |         |              | Spicav Anomalies Recovery-Top level guideline |       |        |      |                  |
| SI-CRP-501 | ASIC501A |           |         |              | Recovery from 'No telemetry' failure          |       |        |      |                  |
| SI-CRP-502 |          |           |         | 0            | Spicav Redundant TM/TC                        |       |        | R    | Vex-050623       |
| SI-CRP-505 | ASIC505A |           |         | 40 s         | Switch ON via red LCL                         |       | 16-N   |      | No update done   |
| SI-CRP-506 | ASIC506A |           |         | 50 s (*)     | Redundant Switch On                           |       | 16-N/R |      | update 050623    |
| SI-CRP-507 | ASIC507A |           |         | 55 s (*)     | Redundant Switch On with SOIR                 |       | 16-N/R |      | update 050623    |
| SI-CRP-508 |          |           |         | 15 s         | Shutter redundant On                          |       | 26-N/R |      | Vex-050623       |
| SI-CRP-515 | ASIC515A |           |         | 40 s         | Switch ON using Redundant data branch         |       | 16-N   | R    | No update done   |
| SI-CRP-525 | ASIC525A |           |         | 10 s         | Redundant Switch OFF                          |       | 16-N/R |      | update 050623    |
| SI-CRP-526 | ASIC526A |           |         | 15 s         | Redundant Switch OFF with SOIR                |       | 16-N/R |      | update 050623    |
| SI-CRP-527 | ASIC527A |           |         | 10 s         | Redundant shutter Off                         |       | 26-N/R |      | update 050623    |
| SI-CRP-540 |          |           |         |              | Emergency Switch OFF                          |       |        |      | update 050623 ?? |
| SI-CRP-550 | ASIC550A |           |         |              | Mecanism Failure Recovery                     |       |        |      |                  |
|            |          |           |         | * Duration O | n: 60s ( including 15s at end ) + Obs+5s      |       |        |      |                  |

List of new CRP to be defined for SVT2 : **TBD – in progress** 

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spvfum24            |                                 | Page:  | 53           |

# 7.5. Safe Mode Procedure

In case of a detected anomaly, the mission operations are stopped and the S/C enters the Safe Mode: payloads are switched OFF and the S/C goes to a safe attitude (sun pointing first and then, Earth pointing). When the S/C enters the Safe Mode, a P/L Safing procedure is executed by the OBSW to put the payloads in a safe configuration, e.g. close the covers if open when the anomaly occurs.

At Spicav level :

- switch Off the experiment
- Close the shutter (see procedure in annex 11).

# **<u>8. Summary of Telemetry and Telecommand data:</u>**

# 8.1. List of dangerous commands:

None.

# **8.2. Summary of Telemetry and Telecommand packets:**

In this paragraph we describe the general rules of telemetry / telecommand utilisation. The detailed description on TM/TC packets is done in Annex 2.

# Packet service compliance:

| Sub- | Service Requests (TC)             | Sub- | Service Reports (TM)       | C*  |
|------|-----------------------------------|------|----------------------------|-----|
| type |                                   | type |                            |     |
|      | Service 1: TC Acknowledge         |      |                            |     |
|      | 6                                 | 1    | Acceptance success         |     |
|      |                                   | 2    | Acceptance failure         |     |
|      |                                   |      |                            |     |
|      | Service 3: Housekeeping Reporting |      |                            |     |
| 5    | Enable HK                         |      |                            |     |
| 6    | Disable HK                        |      |                            |     |
|      |                                   | 25   | Housekeeping packets       | Х   |
|      | Service 5: Event Reporting        |      |                            |     |
|      | Service 5. Event Reporting        | 1    | Normal progress report     |     |
|      |                                   | 2    | Anomaly report - no action |     |
|      |                                   |      | 5 1                        |     |
|      | Service 9: Time Synchronization   |      |                            |     |
| 1    | Accept Time Update                |      |                            | Х   |
| 2    | Send time to User                 |      |                            | (1) |
| 3    | Stop Time update to User          |      |                            | (1) |
|      | Service 17: Connection Test       |      |                            |     |
| 1    | Service 17: Connection Test       |      |                            |     |
| 1    | Request connection test response  | 2    | Connection test report     |     |
|      |                                   | 2    | Connection test report     |     |

| Service<br>Spvfum | S<br>Flight User / C                                                                 | s Express<br>picav<br>Operations N | Ianual         | Ref:<br>Issue:<br>Date:<br>Page: | SPV-DES-032<br>003 Rev 1<br>Aug 08, 2005<br>54 |
|-------------------|--------------------------------------------------------------------------------------|------------------------------------|----------------|----------------------------------|------------------------------------------------|
| 1<br>2            | Service 20: Science Data Transfer<br>Enable Science Packet<br>Disable Science Packet | 3                                  | Science report |                                  | X                                              |
| 1                 | Service 226: Private services payload<br>Telecommand for Spicav                      |                                    |                |                                  | Х                                              |

(\*) Services used by Spicav experiment, the others services are NOT useful (Service 12 TBC), for software simplification reasons (waiver issued for MEX, available for VEX). (1) useful but not managed at instrument level

# Rationale for Implementation of separate HK packets:

Heritage from Mars Express, rational available for VEX

Spicav has two main modes of observations which are STAR and NADIR.

Spicav is switched on and off for each observation.

The STAR duration is typically 5 mn and The NADIR one is about 30 mn.

Concerning the flight software, the STAR mode is the most stringent mode. NADIR mode will follow the STAR mode constraints, the only parameter change is duration. (the duration is fixed by the switch OFF experiment). The constraints on STAR mode are the following:

Data are recorded every second and no loss of data is allowed. The time of observation is very well defined (by computation on ground) and no shift can occur otherwise, occultation is missed.

So from Spicav point of view, we do not need to generate any HK packets because:

-there is no in flight action

-we do not need any parameter monitoring,

-we want to design a simple and sequential (fully testable) flight software.

Current Spicav implementation of HK packet:

There is a strong requirement from ESOC/MMS to produce HK packets. To our understanding, the reason for that is not linked to Science requirements. The implementation of HK packets introduces some complication in software, because we have to take care of HK services coming at any time (?) from DMS.

The present flight software requirements are fulfilled:

The flight software is separated in two main phases:

-init phase: in this phase, which duration is about 1 mn, the following actions are taken:

hardware and software resets

start of detector cooling

waiting for Time Update

waiting for Spicav TC mode

waiting elapsed 1 mn

At the end of this phase, it is not foreseen to receive anything else from DMS.

-observation phase: in this phase, spectra are recorded:

data are compressed, formatted and timetagged

this phase is not interruptible (unless by OFF experiment)

The only thing we can do is that during the "init phase" we produce 2 HK packets at the beginning (after Time update received by Spicav) and after Spicav TC received.

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spvfum24            |                                 | Page:  | 55           |

# For VEX :

SOIR: HK packets (APID 97) are implemented during cooling phase. SOIR HK packets are generated every 20 sec.

## **Telecommand, general Description:**

<u>Spicav Telecommand:</u> Preliminary telecommand description: Spicav uses packet telecommand structure For Spicav we consider only one type of Spicav TC. Main assumptions: To operate Spicav (nominal mode) only one TC packet is needed. Length of application data of TC packet is variable In Spicav it is expected to use TC for Operational mode selection (nadir,...) Spicav DPU parameters (repetition rate of TM...) Sensor Unit parameters (Star mode, exposure time, gain...)

# **Telecommand function definition:**

| Telecommand Packet     | Information        |                                              |                                    |
|------------------------|--------------------|----------------------------------------------|------------------------------------|
| Packet Name            | SPITC              | Instrument                                   | SPICAV                             |
| Packet Function        | Instrument         |                                              |                                    |
|                        | configuration      |                                              |                                    |
| Verification rules     | copy in Science TM |                                              |                                    |
| Header Information     |                    |                                              |                                    |
| Process ID             | 96                 | Packet category                              | 12 'PRIVATE'                       |
| Service Type           | 226                | Service subtype                              | 1                                  |
| Structure ID           | N/A                | Packet length (octets)<br>(application data) | variable, max = 232<br>Spicav :128 |
| Data Field Information |                    |                                              |                                    |
| Data Field             | Field structure    | Remarks                                      |                                    |
|                        |                    | Science instrument                           |                                    |
|                        |                    | configuration                                |                                    |
|                        |                    |                                              |                                    |
| Notes:                 |                    |                                              |                                    |

# **Telemetry, general Description**

General assumptions: (from PID/URD ANNEX p 68)

Spicav uses "Packet Telemetry", Spicav is seen as a Packet Terminal.

at least once per 8 sec not more than once per 1 sec --->Spicav requires polling at once per 1 sec Acquisition rate is 131 KHz

# Summary of TM packet structure:

(P. is for packet)

| <br>P.id | P. seq. control | P. length | P. field header | Source Data |
|----------|-----------------|-----------|-----------------|-------------|
|          |                 |           |                 |             |
| 16 bits  | 16              | 16        | 80              | variable    |

Spicav scientific data (without Packet headers) is called "Source Data".

Spicav Source data:

Source data as defined in Packet Telemetry is Spicav Science Data. All telemetry of Spicav is considered as Science Data:

Source data type contents:

| spectra                     |                                            |
|-----------------------------|--------------------------------------------|
| repetition rate             | from 1sec to 15 sec                        |
| pixel number is             | variable                                   |
| source data length          | between 1 and 4096 octets                  |
| associated parameters (dark | current, temp, status mode, exposure time) |
| repetition rate             | from 1sec to 8 sec                         |
| source data length is       | fixed = 128 octets                         |

# **Telemetry packet definition:**

## Science:

| Telemetry Packet       | Information     |                 |                      |
|------------------------|-----------------|-----------------|----------------------|
| Packet Name            | SPINSCI         | Instrument      | SPICAV               |
| Packet Function        | Science         |                 |                      |
| Generation rules       | every 1 sec     |                 |                      |
| Header Information     |                 |                 |                      |
| Process ID             | 96              | Packet category | 12 'PRIVATE'         |
| Service Type           | 20              | Service subtype | 3                    |
| Structure ID           |                 | Packet length   | variable, max = 8596 |
| Data Field Information | on              |                 |                      |
| Data Field             | Field structure | Remarks         |                      |
|                        |                 | Science data    |                      |
|                        |                 |                 |                      |
| Notes:                 |                 |                 |                      |

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spvfum24            |                                 | Page:  | 57           |

| Housekeeping:         |                       |                                    |        |
|-----------------------|-----------------------|------------------------------------|--------|
| Telemetry Packet      | Information           |                                    |        |
| Packet Name           | SPINHK                | Instrument                         | SPICAV |
| Packet Function       | Housekeepig           |                                    |        |
| Generation rules      | after Time board rece | eived                              |        |
|                       | after Spicav TC recei | ived                               |        |
| Header Information    |                       |                                    |        |
| Process ID            | 96                    | Packet category                    | 4      |
| Service Type          | 3                     | Service subtype                    | 25     |
| Structure ID          |                       | Packet length (octets) source data | 4      |
| Data Field Informatio | n                     |                                    |        |
| Data Field            | Field structure       | Remarks                            |        |
|                       |                       | HK data, 2 temperature             | S      |
| Notes:                | <u> </u>              |                                    |        |

# **SOIR Housekeeping:**

| Telemetry Packet       | Information           |                                    |        |
|------------------------|-----------------------|------------------------------------|--------|
| Packet Name            | SOIRHK                | Instrument                         | SPICAV |
| Packet Function        | Housekeepig           |                                    |        |
| Generation rules       | after Time board rece | eived                              |        |
|                        | after Spicav TC recei | ived                               |        |
| Header Information     |                       |                                    |        |
| Process ID             | 97                    | Packet category                    | 4      |
| Service Type           | 3                     | Service subtype                    | 25     |
| Structure ID           |                       | Packet length (octets) source data | 4      |
| Data Field Information | n                     |                                    |        |
| Data Field             | Field structure       | Remarks                            |        |
|                        |                       | HK data, 2 temperatures            | 5      |
| Notes:                 |                       |                                    |        |

see Annex 2 for packets structure details 'TM/TC description'

## **8.3. Summary of Telemetry and Telecommand parameters:**

## Housekeeping Telemetry data:

Two temperatures (8 bits ), allowable values 0-255. Temperature of Servitudes board Temperature of base plate near High Voltage power supply No operational constraints on these values. No on board monitoring

During SOIR Cooling: SOIR HK Two temperatures (8 bits ), allowable values 0-255. Temperature of *Cooler board TBC* Temperature of *SOIR base plate TBC* 

# **8.4. Summary of Software parameters:**

In the telecommand, there are 2 sets of parameters:

| Field2                          | ZSI01001                                                                                                                                                        |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| arguments                       | SCOE:="TMTCSC",ACKBITS:="NONE",                                                                                                                                 |
| -                               | FSID0022:="TestN",FSID0023:0BV:=0xE,                                                                                                                            |
|                                 | FSID0024:0BV:=0x000000,FSIG0011:0BV:=0xABCD                                                                                                                     |
| The fisrt set<br>The second set | FSID0022, FSID0023 and FSID0024, defines experiment modes (and bitrates)<br>FSIG0010 to FSIG0073 defines instrumental parameters<br>default values are 00 (Hex) |

As TC is fixed length, all default parameters are filled with 00 (hex) and sent to the instrument.

# 9. Data Operations Handbook:

# Following data are extracted from

Spicav Payload Database Definition Document, ref VEX.T.ASTR.DDD.01213, Iss1, dated 09-Mar-04 VEX system database V12.1

Telecommand Function definitions:

| Item                                  | Meaning              | Verdi Name   |
|---------------------------------------|----------------------|--------------|
| Command Description                   | Accept Time update   |              |
| TC Identification Number (TC ID)      |                      | ZSI02001     |
| Instrument Name                       | Spicav               |              |
| Instrument subsystem (affected by TC) | DPU                  |              |
| Instrument Assembly (affected by TC)  | none                 |              |
| Type of TC                            | 9                    |              |
| TC Address Parameters                 |                      |              |
| TC Function                           | Board Time to Spicav |              |
| Constraints                           | 1 st TC to Spicav    |              |
| Verification                          | Time in HK packet    |              |
| (TM parameter to be monitored for     |                      |              |
| confirmation of TC execution)         |                      |              |
| Corrective Action                     | none                 |              |
| Alternative TC (if any)               | redundant lines      | ZSI02011 TBC |
| Complementary TC (If any)             | none                 |              |
| Remarks                               |                      |              |

| Item                                  | Meaning                  | Verdi Name           |
|---------------------------------------|--------------------------|----------------------|
| Command Description                   | Spicav TC                |                      |
| TC Identification Number (TC ID)      |                          | ZSI01001             |
| Instrument Name                       | Spicav                   |                      |
| Instrument subsystem (affected by TC) | DPU                      |                      |
| Instrument Assembly (affected by TC)  | none                     |                      |
| Type of TC                            | 226                      |                      |
| TC Address Parameters                 |                          | FSID0022, FSID0023,  |
|                                       |                          | FSID0024             |
|                                       |                          | FSIG0010 to FSIG0040 |
| TC Function                           | Instrument configuration |                      |
| Constraints                           | After TC Board Time      |                      |
| Verification                          | Science TM Packets       |                      |
| (TM parameter to be monitored for     |                          |                      |
| confirmation of TC execution)         |                          |                      |
| Corrective Action                     | none                     |                      |
| Alternative TC (if any)               | redundant lines          | ZSI01011 TBC         |
| Complementary TC (If any)             | none                     |                      |
| Remarks                               |                          |                      |

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spvfum24            |                                 | Page:  | 60           |

Telemetry Packet Definitions (minimum details to be required):

| Item                              | Meaning          | Verdi Name          |
|-----------------------------------|------------------|---------------------|
| Description                       | Spicav Science   |                     |
| TM Identification Number (TM      |                  | YSI01001            |
| ID)                               |                  |                     |
| Instrument Name                   | Spicav           |                     |
| Instrument subsystem              | DPU              |                     |
| Instrument Assembly               | none             |                     |
| TM Address Parameters (if         |                  | NSIA0101, NSIA0102, |
| possible and firm address)        |                  | NSIA0103, NSIA0104, |
|                                   |                  | NSIA0105, NSIA0106, |
|                                   |                  | NSIA0107,           |
| Calibration Data (if possible and |                  |                     |
| final data) (e.g. 0 = Enabled, 1= |                  |                     |
| Inhibited)                        |                  |                     |
| Function                          | Science data DPU |                     |
| Validity                          |                  |                     |
| Surveillance (i.e. TC which has   | None             |                     |
| impact on this TM)                |                  |                     |
| Corrective Action                 | None             |                     |
| Alternative TM                    | Redundant lines  | YSI01011 TBC        |
| Remarks                           |                  |                     |

| Item                              | Meaning         | Verdi Name          |
|-----------------------------------|-----------------|---------------------|
| Description                       | Spicav HK       |                     |
| TM Identification Number (TM      |                 | YSI02001            |
| ID)                               |                 |                     |
| Instrument Name                   | Spicav          |                     |
| Instrument subsystem              | DPU             |                     |
| Instrument Assembly               | none            |                     |
| TM Address Parameters (if         |                 | NSIA0001, NSIA0002, |
| possible and firm address)        |                 | (NSID0001)          |
| Calibration Data (if possible and |                 |                     |
| final data) (e.g. 0 = Enabled, 1= |                 |                     |
| Inhibited)                        |                 |                     |
| Function                          | HK Spicam       |                     |
| Validity                          |                 |                     |
| Surveillance (i.e. TC which has   | None            |                     |
| impact on this TM)                |                 |                     |
| Corrective Action                 | None            |                     |
| Alternative TM                    | Redundant lines |                     |
| Remarks                           |                 |                     |

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spvfum24            |                                 | Page:  | 61           |
|                     |                                 |        |              |

| Item                              | Meaning         | Verdi Name          |
|-----------------------------------|-----------------|---------------------|
| Description                       | Spicav HK SOIR  |                     |
| TM Identification Number (TM      |                 | YSI02001            |
| ID)                               |                 |                     |
| Instrument Name                   | Spicav          |                     |
| Instrument subsystem              | DPU             |                     |
| Instrument Assembly               | none            |                     |
| TM Address Parameters (if         |                 | NSIA0003, NSIA0004, |
| possible and firm address)        |                 | (NSID0003)          |
| Calibration Data (if possible and |                 |                     |
| final data) (e.g. 0 = Enabled, 1= |                 |                     |
| Inhibited)                        |                 |                     |
| Function                          | HK SOIR         |                     |
| Validity                          |                 |                     |
| Surveillance (i.e. TC which has   | None            |                     |
| impact on this TM)                |                 |                     |
| Corrective Action                 | None            |                     |
| Alternative TM                    | Redundant lines |                     |
| Remarks                           |                 |                     |

| Event Packet Definitions       | None |
|--------------------------------|------|
| Anomaly Report Definitions     | None |
| Context File Definition        | None |
| Data and Dump File Definitions | None |

# Annex:

# Annex1: Spicav Contact point:

| Name                | Telephone            | Fax | Email                        | Address |
|---------------------|----------------------|-----|------------------------------|---------|
| BERTAUX Jean Loup   | 33 (0) 1 64 47 42 51 | (2) | bertaux@aerov.jussieu.fr     | (1)     |
| DUBOIS Jean Pierre  | 33 (0) 1 64 47 43 31 | (2) | dubois@aerov.jussieu.fr      | (1)     |
| DIMARELLIS Emmanuel | 33 (0) 1 64 47 42 87 | (2) | dimarellis@aerov.jussieu.fr  | (1)     |
| VILLARD Eric        | 33 (0) 1 64 47 42 87 | (2) | villard@aerov.jussieu.fr     | (1)     |
|                     |                      |     |                              |         |
| NEEFS Eddy          | 32 23 73 03 62       | (4) | Eddy.Neefs@bira-iasb.be      | (3)     |
| NEVEJANS Dennis     | 32 23 73 04 82       | (4) | Dennis.Nevejans@bira-iasb.be | (3)     |
|                     |                      |     |                              |         |

## (1) Address

| Service d'Aeronomie du CNRS |
|-----------------------------|
| BP 3                        |
| 91371 Verrieres le Buisson  |
| France                      |

- (2) Fax number is 33 (0) 1 69 20 29 99
- (3) Address
- BIRA IASB 3, Avenue Circulaire B-1180 BRUXELLES Belgique
- (4) Fax 32 23 74 84 23

# **Annex2: TM/TC description:**

## **A2.1.** Conventions and Definitions:

Bit numbering (from PSS-04-107)

| Bit 0                | Bit N-1        |
|----------------------|----------------|
| Bit0 = first bit tra | nsmitted = MSB |

<u>Functions of the DPU concerning Telemetry:</u> receives data from Sensor Unit (detectors) timetag detector data formats all scientific and technology data in packets and update headers put packets in Fifo (TM ready)

Format of data ready for acquisition: TM blocks: (from PID/URD ANNEX p 68)

elementary unit is 16 bits word first word is the length of following TM words

|   | 16 bits word | Name            | Contents                             |
|---|--------------|-----------------|--------------------------------------|
|   |              | TM Block Length | number of following 16 bits TM words |
| 1 |              | TM Block Data   | Spicav Packets                       |
|   |              | =               |                                      |
| n |              | ] =             |                                      |

TM Block Data may contain: at least one Spicav packet --->several Spicav packets MXcp

## A2.2. TM/TC Packet structure:

## Note on PUS value :

The TM(3,25) YSI02001 is emitted with PUS=0 in the packet data field header (meaning that this TM packet is to be processed only by Ground).

It could be generated with PUS=2 (meaning TM packet to be processed both by the Ground and the DMS software), in accordance with Vex Generic TM/TC ICD VEX-T.ASTR-ICD-00326 section 5.1.2.1 Data Field Header :

"For Payloads, the code to be used is "0" (TM destination = Ground only for category = Private science, and "2" (TM destination = Ground and DMS software) for all other packet categories."

In all TM packets emitted by Spicav ( Science and HK ), PUS=0 . We had already this rule on Mars Express ( see ME-ESC-IF-5001, Iss2 )

Then for TM( 3,25 ) , we have PUS=0 ( YSI02001 = TM KH Spicam and YSI02002 = TM HK SOIR ).

The currently implemented PUS=0 restricts the action of DMS S/W to route this packet to SSMM or TFG (*TFG to clarify*), and prevents DMS S/W from performing any data extraction in its datapool. This therefore forbids the definition and subsequent implementation of automatic on board monitorings for the TM parameters of this packets.

Conclusion :

There is no on-board monitoring of TM packets (3,25) by DMS S/W. The packets are only routed to SSMM and will be analysed on ground.

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spvfum24            |                                 | Page:  | 65           |

# TM Packet structure:

|      |         | Packe |        | Packet Data Field |          |         |         |        |          |         |
|------|---------|-------|--------|-------------------|----------|---------|---------|--------|----------|---------|
|      |         | Pack  | tet ID |                   | Packet s | equence | Packet  | Packet | Source   | Packet  |
|      |         |       |        |                   | con      | trol    | length  | Field  | Data     | error   |
|      |         |       |        |                   |          |         |         | header | -        | control |
| bits | 16 bits |       |        |                   | 16 bits  |         | 16 bits | 80     | variable | 0       |
|      | Version | Туре  | Data   | APID              | Segmen-  | Source  |         |        |          | NOT     |
|      | number  |       | field  | =                 | tation   | Seq     |         |        |          | USED    |
|      |         |       | Header | pid+pcat          | Flag     | Count   |         |        |          |         |
|      |         |       | Flag   |                   |          |         |         |        |          |         |
| bits | 3       | 1     | 1      | 7+4=11            | 2        | 14      |         |        |          |         |

| BIN | 000 | 0 | 1 | xxx(a) | 11 | n (b) | (c) | (d) | (e) |
|-----|-----|---|---|--------|----|-------|-----|-----|-----|
| Hex |     |   |   | 0E0C   |    | Cxxx  |     |     |     |

- (a) APID is concatenation de pid+pcat pid is 96 (decimal) or 60 (Hex) pcat is 12 (for science telemetry = 1100 bin APID is 110 0000 1100 bin = 60C Hex = 1548 dec Packet ID is 0000 1110 0000 1100 Bin = 0E0C Hex = 3596 dec
  (b) much as a science to the formula of the formula
- (b) number associated with APID, start at 0 at power on
- (c) number of octets -1 of Packet Data Field
  - min 9 (10 + no source data)

max 4106 (10 + 4096 source data)

(e) experiment data variable min 0 octets max 4096 octets

(d) Packet Field Header Structure

|      | Time | PUS     | Check- | Spare | Packet   | Packet   | Pad |
|------|------|---------|--------|-------|----------|----------|-----|
|      |      | version | sum    |       | Туре     | Subtype  |     |
|      |      |         | Flag   |       |          |          |     |
| bits | 48   | 3       | 1      | 4     | 8        | 8        | 8   |
|      |      |         |        |       |          |          |     |
| BIN  | TBD  | 000     | 0      | 0000  | 00010100 | 00000011 | 0   |
|      |      |         |        |       | (a)      | (b)      |     |
| Hex  | ХХ   |         | 0      | 0     | 14       | 03       | 00  |

- (a) packet type is 20 (packet category is 12)
- (b) subtype is 3

# Spicam HK Packet structure: 2 packets only

c'est en fait un packet TM avec des parametres particuliers

|      |         | Packe | t Header ( | (48 bits) |                 |        |         | Pacl   | Packet Data Field |         |  |  |
|------|---------|-------|------------|-----------|-----------------|--------|---------|--------|-------------------|---------|--|--|
|      |         | Pack  | tet ID     |           | Packet sequence |        | Packet  | Packet | Source            | Packet  |  |  |
|      |         |       |            |           |                 | trol   | length  | Field  | Data              | error   |  |  |
|      |         |       |            |           |                 |        |         | header |                   | control |  |  |
| bits | 16 bits |       |            |           | 16 bits         |        | 16 bits | 80     | variable          | 0       |  |  |
|      | Version | Туре  | Data       | APID      | Segmen-         | Source |         |        | 4                 | NOT     |  |  |
|      | number  |       | field      | =         | tation          | Seq    |         |        | octets            | USED    |  |  |
|      |         |       | Header     | pid+pcat  | Flag            | Count  |         |        |                   |         |  |  |
|      |         |       | Flag       |           |                 |        |         |        |                   |         |  |  |
| bits | 3       | 1     | 1          | 11        | 2               | 14     |         |        |                   |         |  |  |

| BIN | 000 | 0 | 1 | xxx(a) | 11 | n (b) | (c)  | (d) | (e) |
|-----|-----|---|---|--------|----|-------|------|-----|-----|
| Hex |     |   |   | 0E04   |    | Cxxx  | 000D |     |     |

- (a) APID is concatenation de pid+pcat pid is 96 (decimal) or 60 (Hex) pcat is 4 (for housekeeping = 0100 bin APID is 110 0000 0100 bin = 1540 dec Packet ID is 0000 1110 0000 0100 Bin = 0E04 Hex = 3588 dec
- (b) number associated with APID, start at 0 at power on
- (c) number of octets -1 of Packet Data Field
  - min 9 (10 + no source data)

max  $4106 \quad (10 + 4096 \text{ source data})$ 

(e) experiment data for HK = 4 octets = 00 01 xx yy Hex so (c) = 13 octets *xx* = *recopie* octet 6 du message servitude *yy* = *recopie octet 10 du message servitude* 

# (d) Packet Field Header Structure

|      | Time | PUS     | Check- | Spare | Packet   | Packet   | Pad |
|------|------|---------|--------|-------|----------|----------|-----|
|      |      | version | sum    |       | Туре     | Subtype  |     |
|      |      |         | Flag   |       |          |          |     |
| bits | 48   | 3       | 1      | 4     | 8        | 8        | 8   |
|      |      |         |        |       | -        |          |     |
| BIN  | TBD  | 000     | 0      | 0000  | 00000011 | 00011001 | 0   |
|      |      |         |        |       | (a)      | (b)      |     |
| Hex  | XX   |         | 0      | 0     | 03       | 19       | 00  |

(a) packet type is 3, packet category is 4 (for housekeeping)

(b) subtype is 25

## VEX SOIR HK Packet structure: during cooling, every 20 s

c'est en fait un packet TM avec des parametres particuliers

|      |         | Packe | Packet Data Field |          |                 |             |         |        |          |         |
|------|---------|-------|-------------------|----------|-----------------|-------------|---------|--------|----------|---------|
|      |         | Pack  | tet ID            |          | Packet sequence |             | Packet  | Packet | Source   | Packet  |
|      |         |       |                   |          | con             | control ler |         | Field  | Data     | error   |
|      |         |       |                   |          |                 |             | _       | header |          | control |
| bits | 16 bits |       |                   |          | 16 bits         |             | 16 bits | 80     | variable | 0       |
|      | Version | Type  | Data              | APID     | Segmen-         | Source      |         |        | 4        | NOT     |
|      | number  |       | field             | =        | tation          | Seq         |         |        | octets   | USED    |
|      |         |       | Header            | pid+pcat | Flag            | Count       |         |        |          |         |
|      |         |       | Flag              |          |                 |             |         |        |          |         |
| bits | 3       | 1     | 1                 | 11       | 2               | 14          |         |        |          |         |

| BIN | 000 | 0 | 1 | xxx(a) | 11 | n (b) | (c)  | (d) | (e) |
|-----|-----|---|---|--------|----|-------|------|-----|-----|
| Hex |     |   |   | 0E14   |    | Cxxx  | 000D |     |     |

- (a) APID is concatenation de pid+pcat pid is 97 (decimal) or 61 (Hex) HK SOIR pcat is 4 (for housekeeping = 0100 bin APID is 110 0001 0100 bin = 1556 dec Packet ID is 0000 1110 0001 0100 Bin = 0E14 Hex = 3604 dec(b) number associated with APID, start at 0 at power on
- (c) number of octets -1 of Packet Data Field
  - min 9 (10 + no source data)max  $4106 \quad (10 + 4096 \text{ source data})$
- (e) experiment data for HK = 4 octets = 00 01 xx yy Hex so (c) = 13 octets  $xx = recopie \ octe \ t$ ?? du message SOIR type 0 ?? du message SOIR type 0 *yy* = *recopie octet*

(d) Packet Field Header Structure

|      | Time | PUS     | Check- | Spare | Packet   | Packet   | Pad |
|------|------|---------|--------|-------|----------|----------|-----|
|      |      | version | sum    |       | Туре     | Subtype  |     |
|      |      |         | Flag   |       |          |          |     |
| bits | 48   | 3       | 1      | 4     | 8        | 8        | 8   |
|      |      |         |        |       |          |          |     |
| BIN  | TBD  | 000     | 0      | 0000  | 00000011 | 00011001 | 0   |
|      |      |         |        |       | (a)      | (b)      |     |
| Hex  | XX   |         | 0      | 0     | 03       | 19       | 00  |

(a) packet type is 3, packet category is 4 (for housekeeping)

(b) subtype is 25

# VEX TC Packet structure:

|                          |                                                                                                                                                                                                                                                                                                                                         | Packet       | t Header (4 | 48 bits) |                 |         |        | Pacl   | ket Data F | ield    |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|----------|-----------------|---------|--------|--------|------------|---------|--|
|                          |                                                                                                                                                                                                                                                                                                                                         | Pack         | et ID       |          | Packet se       | equence | Packet | Data   | Applica    | Packet  |  |
|                          |                                                                                                                                                                                                                                                                                                                                         |              |             |          | cont            | trol    | length | Field  | tion       | error   |  |
|                          |                                                                                                                                                                                                                                                                                                                                         |              |             |          | I               |         |        | header | Data       | control |  |
| bits                     |                                                                                                                                                                                                                                                                                                                                         | 16 bits      |             |          | 16 bits 16 bits |         |        | 32     | variable   | 16      |  |
|                          | Version                                                                                                                                                                                                                                                                                                                                 | Туре         | Data        | APID     | Sequen          | Source  |        |        |            |         |  |
|                          | number                                                                                                                                                                                                                                                                                                                                  |              | field       | (pid     | ce              | Seq     | 137    |        | 132        |         |  |
|                          |                                                                                                                                                                                                                                                                                                                                         |              | Header      | +        | Flag            | Count   |        |        | (4+128)    |         |  |
|                          |                                                                                                                                                                                                                                                                                                                                         |              | Flag        | pcat)    |                 |         |        |        |            |         |  |
| bits                     | 3                                                                                                                                                                                                                                                                                                                                       | 1 1 7+4 2 14 |             |          |                 |         |        |        |            |         |  |
| i                        |                                                                                                                                                                                                                                                                                                                                         |              | 1           |          |                 |         |        |        | T          | 1       |  |
| BIN                      | 000                                                                                                                                                                                                                                                                                                                                     | 1            | 1           | (a)      | 11              | (b)     | (c)    | (d)    | (e)        | (f)     |  |
| Hex                      |                                                                                                                                                                                                                                                                                                                                         |              |             | 1E0C     |                 | 0089    |        |        |            |         |  |
| Dec                      |                                                                                                                                                                                                                                                                                                                                         | 137          |             |          |                 |         |        |        |            |         |  |
| (a)<br>(b)<br>(c)<br>(e) | <ul> <li>(a) APID is concatenation de pid+pcat<br/>pid is 96 (decimal) or 60 (Hex), = 110 0000 bin<br/>pcat is 12 (decimal) 1100 bin<br/>APID is 110 0000 1100 Bin = 60C Hex = 1548 dec,<br/>Packet ID is 0001 1110 0000 1100 bin = 1E0C Hex = 7592 dec</li> <li>(b) number associated with APID, start at 0 at power on Mex</li> </ul> |              |             |          |                 |         |        |        |            |         |  |

(d) Packet Field Header Structure

|      | PUS<br>version | Check-<br>sum Flag | Ack  | Packet<br>Type | Packet<br>Subtype | Pad |
|------|----------------|--------------------|------|----------------|-------------------|-----|
| bits | 3              | 1                  | 4    | 8              | 8                 | 8   |
| BIN  | 000            | 1                  | 0000 | 11100010       | 00000001          | 00  |
|      | (a)            |                    | (b)  | (c)            | (d)               |     |
| Hex  |                | 1                  | 0    | E2             | 01                | 00  |

(a) direct TM responses to this TC processed by Ground

(b) no acknowledge report required

(c) packet type is 226, (packet category is 12)

(d) packet subtype is 1

total packet length is 18 octets

#### Spvfum24

## Board Time Packet structure: (en reception), SGICD p 44

C'est un packet TC avec des paramètres particuliers:

|      |            | Packe   | t Header ( | 48 bits) |              |          |         | Pacl   | ket Data F | ield    |
|------|------------|---------|------------|----------|--------------|----------|---------|--------|------------|---------|
|      |            | Pack    | tet ID     |          | Packet s     | sequence | Packet  | Data   | Applica    | Packet  |
|      |            |         |            |          | control leng |          |         | Field  | tion       | error   |
|      |            |         |            |          |              |          |         | header | Data       | control |
| bits |            | 16 bits |            |          | 16 bits      |          | 16 bits | 32     | variable   | 16      |
|      | Version    | Туре    | Data       | APID     | Sequen       | Source   |         |        |            |         |
|      | number     |         | field      | (pid     | ce           | Seq      |         |        | 6          |         |
|      |            |         | Header     | +        | Flag         | Count    |         |        | octets     |         |
|      | Flag pcat) |         |            |          |              |          |         |        |            |         |
| bits | 3          | 1       | 1          | 7+4      | 2            | 14       |         |        |            |         |

| BIN | 000 | 1 | 1 | (a)  | 11 | (b)  | (c)  | (d) | (e) | (f) |
|-----|-----|---|---|------|----|------|------|-----|-----|-----|
| Hex |     |   |   | 1E0C |    | Dxxx | 000B |     |     |     |

- (a) APID is concatenation de pid+pcat pid is 96 (decimal) or 60 (Hex), = 110 0000 bin pcat is 12 (decimal) 1100 bin APID is 110 0000 1100 Bin , Packet ID is 0001 1110 0000 1100 bin = 1E0C Hex
- (b) number associated with APID, start at 0 at power on
- (c) number of octets -1 of Packet Data Field
  - min 5 (6 + no source data)
  - max 241 (6 + 236 source data)
- (e) for board Time = 6 octets so (c) = 11 octets = B hex
- (f) CRC checksum
- (d) Packet Field Header Structure

|      | PUS     | Check-   | Ack  | Packet   | Packet   | Pad |
|------|---------|----------|------|----------|----------|-----|
|      | version | sum Flag |      | Туре     | Subtype  |     |
| bits | 3       | 1        | 4    | 8        | 8        | 8   |
|      |         |          |      | -        |          |     |
| BIN  | 010     | 1        | 0000 | 00001001 | 00000001 | 00  |
|      | (a)     |          | (b)  | (c)      | (d)      |     |
| Hex  |         | 5        | 0    | 09       | 01       | 00  |

(a) direct TM responses to this TC processed by Ground

(b) no acknowledge report required

(c) packet type is 9, (packet category is 12)

(d) packet subtype is 1

70

Spvfum24

# Annex3: VERDI Database:

Reference document is : Spicav Payload Database Definition Document, ref VEX.T.ASTR.DDD.01213, Iss1, dated 09-Mar-04 VEX system database V12.1

It includes :

GENPACK\_SI.HTM CALIB SI.HTM CALIB\_VAR\_ELT\_SI.HTM CALIB\_VAR\_SI.HTM PCKBLK\_ELT\_SI\_PKBC.HTM PCKBLK\_ELT\_SI\_PKBM.HTM PCKBLK\_SI\_PKBC.HTM PCKBLK SI PKBM.HTM TC\_PARAM\_SI\_OCMD.html TC\_PARAM\_SI\_TCGP.HTM TCPCK\_SI\_NULL\_NULL.html TMPCK\_SI\_NULL\_NULL.HTM TCPCK\_ELT\_SI\_NULL\_NULL.html TM\_PARAM\_SI\_TMGA.HTM TM\_PARAM\_SI\_TMGS.HTM TMPCK ELT SI NULL NULL.html

Action in progress :

AI AST-1 from IQAR (20 june 2005):

Following correction on temperature values for ANC2, Astrium will check to implement either database change ( add calibration curves ) or the thermal control SW modification ( in case DB approach is not sufficient ).

DB Change request issued : see VEX-MMT-DCR-2190

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spvfum24            |                                 | Page:  | 71           |
|                     |                                 |        |              |

# GENPACK\_SI.HTM

| NAME         | SE  | ns | LNAME                          | TM | DA | OB L | DE | CH | NI | HE | SD | SD | SD |
|--------------|-----|----|--------------------------------|----|----|------|----|----|----|----|----|----|----|
| ETC00201D0OO | 2   | 1  | Distribute On/Off<br>Commands  | TC | Y  | VAR  | Y  | Y  | N  | 12 | N  |    |    |
| ETM00325HKPK | 3   | 25 | Housekeeping Packet            | TM | Y  | VAR  | Ν  | Ν  | Ν  |    | Y  | 17 | 1  |
| ETC00901TSAC | 9   | 1  | Accept Time Update             | TC | Y  | FIX  | Y  | Y  | Ν  | 12 | Ν  |    |    |
| ETM02003SDRP | 20  | 3  | Science Report via RTU<br>Link | ТМ | Y  | VAR  | N  | N  | N  |    | N  |    |    |
| ETC22601     | 226 | 1  | SPICAM TC                      | TC | Y  | FIX  | Y  | Y  | Ν  | 12 | Ν  |    |    |

# CALIB\_SI.HTM

| NAME     | GC | LNAME                        | CALC | RE | PTIT NA  | AD |
|----------|----|------------------------------|------|----|----------|----|
| CSIV0001 | Ν  | SPICAM- BE Modes naming      | SVAL | Y  | ISISPICA |    |
| CSIY0001 | Ν  | SPICAM- TC parameters string | CPOL | Y  | ISISPICA |    |

# CALIB\_VAR\_ELT\_SI.HTM

| CALC NA  | MOD  | CALTYPE | XV | XV | YV | YDIGTEXT |
|----------|------|---------|----|----|----|----------|
| CSIV0001 | SVAL | DEFAULT | 0  | 15 |    | Dummy    |
|          |      |         | 1  | 15 |    | TestN    |
|          |      |         | 2  | 15 |    | TestS    |

| Service d'Aéronomie<br>Spvfum24 | Flig |    | nus Express<br>Spicav<br>/ Operations Manual | l | Ref:<br>Issue:<br>Date:<br>Page: | SPV-DES-032<br>003 Rev 1<br>Aug 08, 2005<br>72 |
|---------------------------------|------|----|----------------------------------------------|---|----------------------------------|------------------------------------------------|
|                                 |      |    | Cmde                                         |   |                                  |                                                |
|                                 | 3    | 15 | directe                                      |   |                                  |                                                |
|                                 | 4    | 15 | Limb                                         |   |                                  |                                                |
|                                 | 5    | 15 | StarLimb1                                    |   |                                  |                                                |
|                                 | 6    | 15 | StarLimb2                                    |   |                                  |                                                |
|                                 | 7    | 15 | StarLimb3                                    |   |                                  |                                                |
|                                 | 8    | 15 | Nadir1                                       |   |                                  |                                                |
|                                 | 9    | 15 | Nadir2                                       |   |                                  |                                                |
|                                 | 10   | 15 | Nadir3                                       |   |                                  |                                                |
|                                 | 11   | 15 | Align                                        |   |                                  |                                                |
|                                 | 12   | 15 | Tiprog                                       |   |                                  |                                                |
|                                 | 13   | 15 | Sun1                                         |   |                                  |                                                |
|                                 | 14   | 15 | Sun2                                         |   |                                  |                                                |
|                                 | 15   | 15 | Sun3                                         |   |                                  |                                                |
|                                 |      |    |                                              |   |                                  |                                                |

# CALIB\_VAR\_SI.HTM

|   | CALC_N   | CALC | MODL M  | GC | LNAME                | со | со | DEFAU |
|---|----------|------|---------|----|----------------------|----|----|-------|
| ( | CSIV0001 | SVAL | DEFAULT | Ν  | BE modes naming      |    |    | ERROR |
| ( | CSIY0001 | CPOL | DEFAULT | Ν  | TC parameters string | 0  | 1  |       |

# PCKBLK\_ELT\_SI\_PKBC.HTM



PCKBLK\_ELT\_SI\_PKBM.HTM
| NAME     | C<br>A<br>T<br>E<br>G | LNAM                   | G<br>CP<br>A<br>SS | U<br>S<br>A<br>G<br>E | SG<br>RP<br>NA<br>ME | P<br>TC | PF<br>C | T<br>CP<br>A<br>SIZ<br>E | C<br>AL<br>IB<br>TY<br>PE | C<br>AL<br>C<br>NA<br>ME<br>1 | Т                | E<br>N<br>G<br>LA<br>BE<br>L | D<br>E<br>F<br>V<br>A<br>L<br>U<br>E | I<br>S<br>M<br>O<br>D<br>IF | L<br>I<br>M<br>S<br>N<br>A<br>M<br>E | T<br>C<br>D<br>P<br>T<br>C<br>G<br>P<br>N<br>A<br>M<br>E | BI | S           | C<br>MD<br>TY<br>PE | BC<br>PLE<br>R       | A<br>DR<br>1N | ADR<br>1R | 2 | A<br>D<br>R<br>2<br>R | PR<br>OT  | BC<br>PLE<br>R<br>Red | A<br>D<br>R<br>1N<br>Re<br>d | A<br>D<br>R<br>1R<br>Re<br>d | R<br>2<br>N<br>R | D<br>R<br>2<br>R<br>R | P<br>R<br>O<br>T<br>R<br>e<br>d |
|----------|-----------------------|------------------------|--------------------|-----------------------|----------------------|---------|---------|--------------------------|---------------------------|-------------------------------|------------------|------------------------------|--------------------------------------|-----------------------------|--------------------------------------|----------------------------------------------------------|----|-------------|---------------------|----------------------|---------------|-----------|---|-----------------------|-----------|-----------------------|------------------------------|------------------------------|------------------|-----------------------|---------------------------------|
| PSIG8610 | O<br>C<br>M<br>D      | SPICA<br>V SOIR<br>OFF | N                  | 7                     | SS<br>ISFI<br>CA     | 2       | 16      | 16                       | N<br>ON<br>E              |                               | USI<br>SPIC<br>A |                              |                                      | Y                           |                                      |                                                          |    | D<br>M<br>S | HI<br>GH<br>P       | RB<br>DR<br>TU<br>SS | 10            | 138       |   |                       |           |                       |                              |                              |                  |                       |                                 |
| PSIG8611 | O<br>C<br>M<br>D      | SPICA<br>V SOIR<br>ON  | N                  | 7                     | SS<br>ISFI<br>CA     | 2       | 16      | 16                       | N<br>ON<br>E              |                               | USI<br>SPIC<br>A |                              |                                      | Y                           |                                      |                                                          |    | D<br>M<br>S | HI<br>GH<br>P       | RB<br>DR<br>TU<br>SS | 11            | 139       |   |                       |           |                       |                              |                              |                  |                       |                                 |
| PSIG8600 | O<br>C<br>M<br>D      | SPICA<br>V SHUT<br>OFF | N                  | -<br>  7              | SS<br>ISFI<br>CA     | 2       | 16      | 16                       | N<br>ON<br>E              |                               | USI<br>SPIC<br>A |                              |                                      | Y                           |                                      |                                                          |    | D<br>M<br>S | HI<br>GH<br>P       | RB<br>DR<br>TU<br>SS | 8             | 136       |   |                       |           |                       |                              |                              |                  |                       |                                 |
| PSIG8601 | O<br>C<br>M<br>D      | SPICA<br>V SHUT<br>ON  | N                  | 7                     | SS<br>ISFI<br>CA     | 2       | 16      | 16                       | N<br>ON<br>E              |                               | USI<br>SPIC<br>A |                              |                                      | Y                           |                                      |                                                          |    | D<br>M<br>S | HI<br>GH<br>P       | RB<br>DR<br>TU<br>SS | S             | 137       | ĺ |                       |           |                       |                              |                              |                  |                       |                                 |
| PSIG9901 | O<br>C                | Switch<br>MLC for      | N                  | 7                     | SS<br>ISPI           | 2       | 16      | 16                       | N<br>ON                   |                               | USI<br>SPIC      |                              |                                      | Y                           |                                      |                                                          |    | Ď<br>M      | M<br>EM             | RB<br>DR             | 1             |           | ĺ |                       | 0A<br>;1A |                       |                              |                              |                  |                       |                                 |



# PCKBLK\_SI\_PKBM.HTM





SPV-DES-032 Venus Express Ref: Spicav 003 Rev 1 Issue: Flight User / Operations Manual Aug 08, 2005 Date: Page: 73

Service d'Aéronomie

Spvfum24

| Servie   | ce d'Aéroi                      | nomi | e   |                  |   |    |    | Flig         |  | S                | us Ex<br>Spica<br>Oper | iv |   | Man | ual |     |                    |                      |   | Ref<br>Issu<br>Dat | ue:     |          |                  | /-DF<br>003<br>1g 08 | Re | v 1 |                  |
|----------|---------------------------------|------|-----|------------------|---|----|----|--------------|--|------------------|------------------------|----|---|-----|-----|-----|--------------------|----------------------|---|--------------------|---------|----------|------------------|----------------------|----|-----|------------------|
| Spvfu    |                                 |      |     |                  |   |    |    |              |  |                  |                        |    |   |     |     | Pag |                    |                      |   | 0                  | <u></u> | 74       |                  |                      |    |     |                  |
|          | M Spicav<br>D                   |      |     | CA               |   |    |    | E            |  | A                |                        |    |   |     | s   |     | OR<br>Y            | TU<br>SS             | [ | ľ                  |         |          |                  |                      |    |     |                  |
| PSIG9991 | O<br>C MLC<br>M for<br>D Spicar |      | N 7 | SS<br>ISPI<br>CA | 2 | 16 | 16 | N<br>ON<br>E |  | USI<br>SPIC<br>A |                        |    | Y |     | NS  | 1   | M<br>EM<br>OR<br>Y | RB<br>DR<br>TU<br>SS | 2 |                    |         | FF<br>FF | RB<br>DRT<br>USS | 2                    |    |     | F<br>F<br>F<br>F |

Dernière mise à jour le 28/07/03 Par DUBOIS JP

# TC\_PARAM\_SI\_TCGP.HTM

|          | CATE<br>G | LNAME                                 | G<br>C | US | NAM    | P<br>T |    | TC  | CALIB | C<br>A<br>L<br>C<br>N<br>A | UNIT<br>CAL1 | EN<br>G | D<br>E<br>F | IS         | L | TC<br>DP<br>TC          | T<br>C | OBSV |
|----------|-----------|---------------------------------------|--------|----|--------|--------|----|-----|-------|----------------------------|--------------|---------|-------------|------------|---|-------------------------|--------|------|
| ESICODO  | тсср      | DE Configuration Clobal Deram         | NT     | 7  | SSISPI | 0      | 22 | 22  | NONE  |                            | USIS         |         | 0           | v          |   |                         |        | NONT |
|          |           | BE Configuration Global Param         | N      | 7  | CA     |        |    |     | NONE  | CS<br>IV<br>00             | PICA         | NA      | 0           | Y          |   | FSI<br>G00              |        | NONE |
| FSID0022 | TCDP      | BE Modes                              | N      | 7  |        | 3      | 0  | 4   | DIG   | 01                         |              | NA      | $\vdash$    | Y          | _ | 02<br>FSI               | U      | NONE |
| FSID0023 | TCDP      | BE Configuration Bit Field            | N      | 7  |        | 3      | 0  | 4   | NONE  |                            |              |         |             | Y          |   | G00<br>02<br>FSI        | 4      | NONE |
| EGIDAAAA | TODD      |                                       | хт     | 7  |        | 2      | 10 | ~ 4 |       |                            |              |         |             | <b>X</b> 7 |   | G00                     | 0      |      |
|          |           | BE Configuration Bit Field            | N      | 7  |        |        |    |     | NONE  |                            |              |         |             | Y          |   | 02                      | 8      | NONE |
| FSIG0004 | TCGP      | On-Board Time at Next TBP             | N      | 7  |        | 0      | 48 | 48  | NONE  |                            |              |         |             | Y          |   | FSI                     |        | NONE |
| FSID0041 | TCDP      | On-Board Time at Next TBP<br>(Coarse) | N      | 7  |        | 3      | 14 | 32  | NONE  |                            |              |         |             | Y          |   | FSI<br>G00<br>04<br>FSI | 0      | NONE |
|          |           | On-Board Time at Next TBP (Fine)      | N      | 7  |        |        |    |     | NONE  |                            |              |         |             | Y          |   | G00<br>04               |        | NONE |
|          |           | SPICAM Command Parameter #1           | Ν      | 7  |        |        |    |     | NONE  |                            |              | NA      | -           | Y          |   |                         |        | NONE |
|          |           | SPICAM Command Parameter #2           | N      | 7  |        |        |    |     | NONE  |                            |              | NA      |             | Y          |   |                         | -      | NONE |
|          |           | SPICAM Command Parameter #3           | N      | 7  |        | -      | 12 |     | NONE  |                            |              | NA      | 0           | -          |   |                         |        | NONE |
|          |           | SPICAM Command Parameter #4           | Ν      | 7  |        |        | 12 |     | NONE  |                            |              | NA      |             | Y          |   |                         |        | NONE |
|          |           | SPICAM Command Parameter #5           | N      | 7  |        |        |    |     | NONE  |                            |              | NA      |             | Y          |   |                         |        | NONE |
|          |           | SPICAM Command Parameter #6           | N      | 7  |        |        | 12 |     | NONE  |                            |              | NA      | 0           | Y          |   |                         |        | NONE |
|          |           | SPICAM Command Parameter #7           | N      | 7  |        | -      | 12 |     | NONE  |                            |              | NA      | 0           |            |   |                         |        | NONE |
|          |           | SPICAM Command Parameter #8           | N      | 7  |        |        |    |     | NONE  |                            |              | NA      | 0           |            |   |                         |        | NONE |
|          |           | SPICAM Command Parameter #9           | N      | 7  |        |        |    |     | NONE  |                            |              | NA      | 0           | 1          |   |                         |        | NONE |
|          |           | SPICAM Command Parameter #10          | Ν      | 7  |        |        |    |     | NONE  |                            |              | NA      | -           | Y          |   |                         |        | NONE |
|          |           | SPICAM Command Parameter #11          | Ν      | 7  |        |        |    |     | NONE  |                            |              | NA      |             | Y          |   |                         |        | NONE |
| -        |           | SPICAM Command Parameter #12          | Ν      | 7  |        |        |    |     | NONE  |                            |              | NA      | 0           |            |   |                         |        | NONE |
|          |           | SPICAM Command Parameter #13          | Ν      | 7  |        |        | 12 |     | NONE  |                            |              | NA      | -           | Y          |   |                         |        | NONE |
| -        | TCGP      | SPICAM Command Parameter #14          | Ν      | 7  |        | 3      | 12 |     | NONE  |                            |              | NA      | 0           |            |   |                         |        | NONE |
| -        | TCGP      | SPICAM Command Parameter #15          | Ν      | 7  |        | -      | 12 |     | NONE  |                            |              | NA      | 0           |            |   |                         |        | NONE |
| FSIG0025 | TCGP      | SPICAM Command Parameter #16          | Ν      | 7  |        | 3      | 12 | 16  | NONE  |                            |              | NA      | 0           | Y          |   |                         |        | NONE |

| Service d'A | éronom |                                                              | pica   | V      |              |      |                  | Ref:<br>Issue:<br>Date: | S | 0        | DES-032<br>03 Rev 1<br>08, 2005 |              |
|-------------|--------|--------------------------------------------------------------|--------|--------|--------------|------|------------------|-------------------------|---|----------|---------------------------------|--------------|
| Spvfum24    |        |                                                              |        |        |              |      |                  | Page:                   |   |          | 75                              | -            |
| FSIG0026    | TCGP   | SPICAM Command Parameter #17                                 | Ν      | 7      | 3 12         | 2 16 | 5 NONE           | NA                      | 0 | Y        |                                 | NONE         |
| FSIG0027    | TCGP   | SPICAM Command Parameter #18                                 | Ν      | 7      | 3 12         | 2 16 | 5 NONE           | NA                      | 0 | Y        |                                 | NONE         |
| FSIG0028    | TCGP   | SPICAM Command Parameter #19                                 | Ν      | 7      | 3 12         | 2 16 | 5 NONE           | NA                      | 0 | Y        |                                 | NONE         |
| FSIG0029    | TCGP   | SPICAM Command Parameter #20                                 | Ν      | 7      | 3 12         | 2 16 | 5 NONE           | NA                      | 0 | Y        |                                 | NONE         |
| FSIG0030    | TCGP   | SPICAM Command Parameter #21                                 | Ν      | 7      | 3 12         | -    | 5 NONE           | NA                      | 0 | Y        |                                 | NONE         |
| FSIG0031    | TCGP   | SPICAM Command Parameter #22                                 | Ν      | 7      | 3 12         | 2 16 | 5 NONE           | NA                      | _ | Y        |                                 | NONE         |
| FSIG0032    | TCGP   | SPICAM Command Parameter #23                                 | Ν      | 7      | 3 12         | 2 16 | 5 NONE           | NA                      | 0 |          |                                 | NONE         |
|             |        | SPICAM Command Parameter #24                                 | Ν      | 7      | 3 12         | -    | 5 NONE           | NA                      | 0 |          |                                 | NONE         |
|             |        | SPICAM Command Parameter #25                                 | Ν      | 7      | 3 12         |      | 5 NONE           | NA                      | 0 | <u> </u> |                                 | NONE         |
|             | -      | SPICAM Command Parameter #26                                 | Ν      | 7      | 3 12         |      | 5 NONE           | NA                      | 0 |          |                                 | NONE         |
|             |        | SPICAM Command Parameter #27                                 | Ν      | 7      | 3 12         | -    | 5 NONE           | NA                      | 0 |          |                                 | NONE         |
|             |        | SPICAM Command Parameter #28                                 | Ν      | 7      | 3 12         |      | 5 NONE           | NA                      | _ | Y        |                                 | NONE         |
|             |        | SPICAM Command Parameter #29                                 | Ν      | 7      | 3 12         |      | 5 NONE           | NA                      | 0 |          |                                 | NONE         |
|             |        | SPICAM Command Parameter #30                                 | N      | 7      | 3 12         |      | 5 NONE           | NA                      | 0 |          |                                 | NONE         |
|             |        | SPICAM Command Parameter #31                                 | N      | 7      | 3 12         |      | 5 NONE           | NA                      | 0 | <u> </u> |                                 | NONE         |
|             |        | SPICAM Command Parameter #32                                 | N      | 7      | 3 12         | -    | 5 NONE           | NA                      | 0 |          |                                 | NONE         |
|             |        | SPICAM Command Parameter #33                                 | N      | 7      | 3 12         |      | 5 NONE           | NA                      | - | Y        |                                 | NONE         |
|             |        | SPICAM Command Parameter #34                                 | N      | 7      | 3 12         |      | 5 NONE           | NA                      | 0 |          |                                 | NONE         |
|             |        | SPICAM Command Parameter #35<br>SPICAM Command Parameter #36 | N<br>N | 7<br>7 | 3 12<br>3 12 | -    | 5 NONE           | NA<br>NA                | 0 |          |                                 | NONE         |
|             |        | SPICAM Command Parameter #30<br>SPICAM Command Parameter #37 | N      | 7      | 3 12         |      | 5 NONE<br>5 NONE | NA                      | 0 |          |                                 | NONE         |
|             |        | SPICAM Command Parameter #37                                 | N      | 7      | 3 12         |      | 5 NONE<br>5 NONE | NA                      | 0 | <u> </u> |                                 | NONE         |
|             | -      | SPICAM Command Parameter #38                                 | N      | 7      | 3 12         | -    | 5 NONE<br>5 NONE | NA                      | 0 |          |                                 | NONE         |
|             |        | SPICAM Command Parameter #40                                 | N      | 7      | 3 12         |      | 5 NONE<br>5 NONE | NA                      | 0 |          |                                 | NONE<br>NONE |
|             |        | SPICAM Command Parameter #41                                 | N      | 7      | 3 12         |      | 5 NONE           | NA                      | 0 | <u> </u> |                                 | NONE         |
|             | -      | SPICAM Command Parameter #42                                 | N      | 7      | 3 12         | -    | 5 NONE           | NA                      | 0 |          |                                 | NONE         |
|             | 1      | SPICAM Command Parameter #43                                 | N      | 7      | 3 12         |      | 5 NONE           | NA                      | 0 |          | _                               | NONE         |
|             |        | SPICAM Command Parameter #44                                 | N      | 7      |              |      | 5 NONE           |                         | 0 |          |                                 | NONE         |
|             |        | SPICAM Command Parameter #45                                 | N      | 7      |              |      | 5 NONE           | NA                      | 0 | 1 1      |                                 | NONE         |
|             |        | SPICAM Command Parameter #46                                 | N      | 7      |              |      | 5 NONE           | NA                      | - | Y        |                                 | NONE         |
|             |        | SPICAM Command Parameter #47                                 | Ν      | 7      |              |      | 5 NONE           | NA                      | - | Y        |                                 | NONE         |
| FSIG0057    | TCGP   | SPICAM Command Parameter #48                                 | Ν      | 7      |              |      | 5 NONE           | NA                      | 0 | Y        |                                 | NONE         |
| FSIG0058    | TCGP   | SPICAM Command Parameter #49                                 | Ν      | 7      | 3 12         | 2 16 | 5 NONE           | NA                      | 0 | Y        |                                 | NONE         |
| FSIG0059    | TCGP   | SPICAM Command Parameter #50                                 | Ν      | 7      | 3 12         | 2 16 | 5 NONE           | NA                      | 0 | Y        |                                 | NONE         |
| FSIG0060    | TCGP   | SPICAM Command Parameter #51                                 | Ν      | 7      | 3 12         | 2 16 | 5 NONE           | NA                      | 0 | Y        |                                 | NONE         |
| FSIG0061    | TCGP   | SPICAM Command Parameter #52                                 | Ν      | 7      | 3 12         | 2 16 | 5 NONE           | NA                      | 0 | Y        |                                 | NONE         |
| FSIG0062    | TCGP   | SPICAM Command Parameter #53                                 | Ν      | 7      | 3 12         | 2 16 | 5 NONE           | NA                      | 0 | Y        |                                 | NONE         |
| FSIG0063    | TCGP   | SPICAM Command Parameter #54                                 | Ν      | 7      | 3 12         | 2 16 | 5 NONE           | NA                      | 0 | Y        |                                 | NONE         |
| FSIG0064    | TCGP   | SPICAM Command Parameter #55                                 | Ν      | 7      |              |      | 5 NONE           | NA                      | - | Y        |                                 | NONE         |
|             |        | SPICAM Command Parameter #56                                 | Ν      | 7      |              |      | 5 NONE           | NA                      | 0 |          |                                 | NONE         |
|             |        | SPICAM Command Parameter #57                                 | Ν      | 7      |              |      | 5 NONE           | NA                      | 0 |          |                                 | NONE         |
|             |        | SPICAM Command Parameter #58                                 | Ν      | 7      |              |      | 5 NONE           | NA                      | - | Y        | +                               | NONE         |
|             | 1      | SPICAM Command Parameter #59                                 | Ν      | 7      |              |      | 5 NONE           | NA                      |   | Y        | +                               | NONE         |
|             | 1      | SPICAM Command Parameter #60                                 | Ν      | 7      |              |      | 5 NONE           | NA                      | - | Y        | +                               | NONE         |
|             |        | SPICAM Command Parameter #61                                 | N      | 7      |              |      | 5 NONE           | NA                      | - | Y        | +                               | NONE         |
|             |        | SPICAM Command Parameter #62                                 | N      | 7      |              | -    | 5 NONE           | NA                      | - | Y        | +                               | NONE         |
|             | -      | SPICAM Command Parameter #63                                 | N      | 7      |              | -    | 5 NONE           | NA                      | - | Y        | + $+$                           | NONE         |
| FSIG0073    | TCGP   | SPICAM Command Parameter #64                                 | Ν      | 7      | 3 12         | 2 16 | 5 NONE           | NA                      | 0 | Y        |                                 | NONE         |

## Venus Express Spicav Flight User / Operations Manual

76

Spvfum24

# TCPCK\_SI\_NULL\_NULL.html

| NAME:        | LNAME                        | PKGE NAME     | PID | PCK<br>CA GC<br>TE A<br>G S | s | SCOPE | AU<br>T<br>H | PRE<br>CO<br>ND | ACK<br>TYFE | COMP<br>RES | MIN<br>LEN<br>GTH | MAX<br>LEN<br>GTH | CALC | SU<br>B<br>S<br>C<br>H<br>E<br>D<br>I<br>D | C<br>M<br>D<br>C<br>L<br>A<br>S<br>S | TCP<br>K<br>CO<br>NS<br>TR | TI<br>M<br>E<br>X<br>P | A<br>C<br>TI<br>O<br>N | C<br>O<br>M<br>P<br>L<br>P<br>C<br>K | RE<br>D<br>P<br>C<br>K | N<br>O<br>T<br>E | Т<br>1<br>1<br>1 |
|--------------|------------------------------|---------------|-----|-----------------------------|---|-------|--------------|-----------------|-------------|-------------|-------------------|-------------------|------|--------------------------------------------|--------------------------------------|----------------------------|------------------------|------------------------|--------------------------------------|------------------------|------------------|------------------|
| ZSI01001     | SPICAM Private<br>TC Packet  | ETC22601      | 96  | 12 N                        | s | SPACE | N            | TRU<br>E        | NONE        |             | 144               | 144               | 1152 |                                            |                                      |                            |                        |                        |                                      |                        |                  | N                |
| ZSI02001     | SPICAM-Accept<br>Time Update | ETC00901TSAC  | 96  | 12 N                        | s | SPACE | N            | TRU<br>E        | NONE        | NONE        | 18                | 18                | 144  | ľ                                          | ľ                                    |                            |                        |                        |                                      | ľ                      |                  | N                |
| ZSI08600SHOF | SPICAV SHUT<br>OFF           | ETC002011D0OO | 1   | 12 N                        | s | SPACE | Ý            | İ               | RECP        | NONE        | 18                | 18                | 144  | ľ                                          | Ì                                    |                            | .<br>                  | İ                      | ĺ                                    | ĺ                      |                  | Ņ                |
| ZSI08601SHON | SPICAV SHUT<br>ON            | ETC0020110000 | 1   | 12 N                        | s | SPACE | N            | İ               | RECP        | NONE        | 18                | 18                | 144  | ľ                                          | Ì                                    |                            | .<br>                  | İ                      | ĺ                                    | ľ                      |                  | Ņ                |
| ZSI08610SROF | SPICAV SOIR<br>OFF           | ETC002011D0OO | 1   | 12 N                        | s | SPACE | N            | Ì               | RECP        | NONE        | 18                | 18                | 144  | ľ                                          | İ                                    |                            | .                      | İ                      | ĺ                                    | ľ                      |                  | Ņ                |
| ZSI08611SRON | SPICAV SOIR ON               | ETC0020110000 | 1   | 12 N                        | S | SPACE | N            |                 | RECP        | NONE        | 18                | 18                | 144  | İ.                                         | ľ                                    |                            | .<br>                  | ľ                      |                                      | ľ                      |                  | ķ                |
| ZSIR8600SHOF | SPICAV SHUT<br>OFF (Red)     | ETC00201D000  | 1   | 12 N                        | s | SPACE | Y            |                 | RECP        | NONE        | 18                | 18                | 144  | ľ                                          |                                      |                            |                        |                        |                                      | ľ                      |                  | N                |
| ZSIR8501SHON | SPICAV SHUT<br>ON (Red)      | ETC002011D0OO | 1   | 12 N                        | s | SPACE | N            | ·               | RECP        | NONE        | 18                | 18                | 144  | ľ                                          | ľ                                    |                            |                        |                        |                                      | ĺ                      |                  | N                |
| ZSIR8610SROF | SPICAV SOIR<br>OFF (Red)     | ETC0020110000 | 1   | 12 N                        | s | SPACE | N            |                 | RECP        | NONE        | 18                | 18                | 144  | Ï                                          | ĺ.                                   |                            |                        | İ                      |                                      | ľ                      |                  | Ņ                |
| ZSIR8511SRON | SPICAV SOIR ON<br>(Red)      | ETC0020110000 | 1   | 12 N                        | s | SPACE | N            |                 | RECP        | NONE        | 18                | 18                | 144  | İ                                          | ĺ                                    |                            | .<br>                  |                        |                                      |                        |                  | Ņ                |

Dernière mise à jour le 28/07/03 Par DUBOIS JP

# TMPCK\_SI\_NULL\_NULL.HTM

|          |                         |           |     |    |    | SC      |    |    |    |      |    |      | F      |   |     |      | ОВ  |   |    |
|----------|-------------------------|-----------|-----|----|----|---------|----|----|----|------|----|------|--------|---|-----|------|-----|---|----|
|          |                         | PKGE      |     |    |    | D<br>OP |    | CO |    |      |    | INIT | г<br>R | Р | STA | OBS  | S S | N |    |
| NAME     | LNAME                   | NAME      | PID | PC | GC | Е       | SD | MP | MI | MAX  | CA | ST   | Е      | H | RT  | W    | W   | 0 | то |
|          | SPICAM-                 |           |     |    |    |         |    |    |    |      |    |      |        |   |     |      |     |   |    |
|          | Science Report          | ETM02003S |     |    |    | SPA     |    | NO |    |      |    | AUT  |        |   | DAT | OTHE | NO  |   |    |
| YSI01001 | via RTU Link            | DRP       | 96  | 12 | Ν  | CE      |    | NE | 2  | 4096 | 16 | Н    | 1      | 0 | Α   | R    | NE  |   | Ν  |
|          | SPICAM:<br>Housekeeping | ETM00325H |     |    |    | SPA     |    | NO |    |      |    | AUT  |        |   | DAT | OTHE | NO  |   |    |
| YSI02001 | Packet                  | KPK       | 96  | 4  | Ν  | CE      | 1  | NE | 4  | 4    | 32 | Н    | 1      | 0 | Α   | R    | NE  |   | Ν  |
|          | SPICAM:<br>Housekeeping | ЕТМ00325Н |     |    |    | SPA     |    | NO |    |      |    | AUT  |        |   | DAT | DTHE | NO  |   |    |
| YSI02002 | Packet                  | КРК       | 97  | 4  | Ν  | CE      | 1  | NE | 4  | 4    | 32 | Н    | 1      | 0 | Α   | R    | NE  |   | Ν  |

# TCPCK\_ELT\_SI\_NULL\_NULL.html

|           | TCPE  | ELT  | ITEM | TCPE | FIXED |        | CALC | PKBL | PKBL | TCPA | TCPK | EXCP |             | NGRP |  |
|-----------|-------|------|------|------|-------|--------|------|------|------|------|------|------|-------------|------|--|
| TCPK NAME | ORDER | TYPE |      | SIZE | VALUE | REPEAT | SIZE |      |      | NAME | NAME | CODE | DESCRIPTION | SIZE |  |

| Service d'Aér | onomie |       |     | Fligh | Venus Exp<br>Spicav<br>at User / Operat |    |          | Ref:<br>Issue:<br>Date: | SPV-DES-032<br>003 Rev 1<br>Aug 08, 2005 |
|---------------|--------|-------|-----|-------|-----------------------------------------|----|----------|-------------------------|------------------------------------------|
| Spvfum24      |        |       |     | 0     | L                                       |    |          | Page:                   | 77                                       |
|               |        |       |     |       |                                         |    |          | INNER                   |                                          |
| ZSI01001      | 0      | PARAM | 0   | 32    | 1                                       | 32 | FSIG0002 |                         |                                          |
| ZSI01001      | 1      | PARAM | 32  | 16    | 1                                       | 16 | FSIG0010 |                         |                                          |
| ZSI01001      | 2      | PARAM | 48  | 16    | 1                                       | 16 | FSIG0011 |                         |                                          |
| ZSI01001      | 3      | PARAM | 64  | 16    | 1                                       | 16 | FSIG0012 |                         |                                          |
| ZSI01001      | 4      | PARAM | 80  | 16    | 1                                       | 16 | FSIG0013 |                         |                                          |
| ZSI01001      | 5      | PARAM | 96  | 16    | 1                                       | 16 | FSIG0014 |                         |                                          |
| ZSI01001      | 6      | PARAM | 112 | 16    | 1                                       | 16 | FSIG0015 |                         |                                          |
| ZSI01001      | 7      | PARAM | 128 | 16    | 1                                       | 16 | FSIG0016 |                         |                                          |
| ZSI01001      | 8      | PARAM | 144 | 16    | 1                                       | 16 | FSIG0017 |                         |                                          |
| ZSI01001      | 9      | PARAM | 160 | 16    | 1                                       | 16 | FSIG0018 |                         |                                          |
| ZSI01001      | 10     | PARAM | 176 | 16    | 1                                       | 16 | FSIG0019 |                         |                                          |
| ZSI01001      | 11     | PARAM | 192 | 16    | 1                                       | 16 | FSIG0020 |                         |                                          |
| ZSI01001      | 12     | PARAM | 208 | 16    | 1                                       | 16 | FSIG0021 |                         |                                          |
| ZSI01001      | 13     | PARAM | 224 | 16    | 1                                       | 16 | FSIG0022 |                         |                                          |
| ZSI01001      | 14     | PARAM | 240 | 16    | 1                                       | 16 | FSIG0023 |                         |                                          |
| ZSI01001      | 15     | PARAM | 256 | 16    | 1                                       | 16 | FSIG0024 |                         |                                          |
| ZSI01001      | 16     | PARAM | 272 | 16    | 1                                       | 16 | FSIG0025 |                         |                                          |
| ZSI01001      | 17     | PARAM | 288 | 16    | 1                                       | 16 | FSIG0026 |                         |                                          |
| ZSI01001      | 18     | PARAM | 304 | 16    | 1                                       | 16 | FSIG0027 |                         |                                          |
| ZSI01001      | 19     | PARAM | 320 | 16    | 1                                       | 16 | FSIG0028 |                         |                                          |
| ZSI01001      | 20     | PARAM | 336 | 16    | 1                                       | 16 | FSIG0029 |                         |                                          |
| ZSI01001      | 21     | PARAM | 352 | 16    | 1                                       | 16 | FSIG0030 |                         |                                          |
| ZSI01001      | 22     | PARAM | 368 | 16    | 1                                       | 16 | FSIG0031 |                         |                                          |
| ZSI01001      | 23     | PARAM | 384 | 16    | 1                                       | 16 | FSIG0032 |                         |                                          |
| ZSI01001      | 24     | PARAM | 400 | 16    | 1                                       | 16 | FSIG0033 |                         |                                          |
| ZSI01001      | 25     | PARAM | 416 | 16    | 1                                       | 16 | FSIG0034 |                         |                                          |
| ZSI01001      | 26     | PARAM | 432 | 16    | 1                                       | 16 | FSIG0035 |                         |                                          |
| ZSI01001      | 27     | PARAM | 448 | 16    | 1                                       | 16 | FSIG0036 |                         |                                          |
| ZSI01001      | 28     | PARAM | 464 | 16    | 1                                       | 16 | FSIG0037 |                         |                                          |
| ZSI01001      | 29     | PARAM | 480 | 16    | 1                                       | 16 | FSIG0038 |                         |                                          |
| ZSI01001      | 30     | PARAM | 496 | 16    | 1                                       | 16 | FSIG0039 |                         |                                          |
| ZSI01001      | 31     | PARAM | 512 | 16    | 1                                       | 16 | FSIG0040 |                         |                                          |
| ZSI01001      | 32     | PARAM | 528 | 16    | 1                                       | 16 | FSIG0041 |                         |                                          |
| ZSI01001      | 33     | PARAM | 544 | 16    | 1                                       | 16 | FSIG0042 |                         |                                          |
| ZSI01001      | 34     | PARAM | 560 | 16    | 1                                       | 16 | FSIG0043 |                         |                                          |
| ZSI01001      | 35     | PARAM | 576 | 16    | 1                                       | 16 | FSIG0044 |                         |                                          |

| ervice d'Aéro                | nomie  | ;              |          |        |          | enus Ex<br>Spica | V             |          | Ref:<br>Issue: | SPV-DES-032<br>003 Rev 1 |
|------------------------------|--------|----------------|----------|--------|----------|------------------|---------------|----------|----------------|--------------------------|
| pvfum24                      |        |                |          | Flig   | ght User | / Oper           | ations Manual |          | Date:<br>Page: | Aug 08, 2005<br>78       |
| ZSI01001                     | 36     | PARAM          | 592      | 16     |          | 1                | 16            | FSIG0045 |                |                          |
| ZSI01001                     | 37     | PARAM          | 608      | 16     |          | 1                | 16            | FSIG0046 |                |                          |
| ZSI01001                     | 38     | PARAM          | 624      | 16     |          | 1                | 16            | FSIG0047 |                |                          |
| ZSI01001                     | 39     | PARAM          | 640      | 16     |          | 1                | 16            | FSIG0048 |                |                          |
| ZSI01001                     | 40     | PARAM          | 656      | 16     |          | 1                | 16            | FSIG0049 |                |                          |
| ZSI01001                     | 41     | PARAM          | 672      | 16     |          | 1                | 16            | FSIG0050 |                |                          |
| ZSI01001                     | 42     | PARAM          | 688      | 16     |          | 1                | 16            | FSIG0051 |                |                          |
| ZSI01001                     | 43     | PARAM          | 704      | 16     |          | 1                | 16            | FSIG0052 |                |                          |
| ZSI01001                     | 44     | PARAM          | 720      | 16     |          | 1                | 16            | FSIG0053 |                |                          |
| ZSI01001                     | 45     | PARAM          | 736      | 16     |          | 1                | 16            | FSIG0054 |                |                          |
| ZSI01001                     | 46     | PARAM          | 752      | 16     |          | 1                | 16            | FSIG0055 |                |                          |
| ZSI01001                     | 47     | PARAM          | 768      | 16     |          | 1                | 16            | FSIG0056 |                |                          |
| ZSI01001                     | 48     | PARAM          | 784      | 16     |          | 1                | 16            | FSIG0057 |                |                          |
| ZSI01001                     | 49     | PARAM          | 800      | 16     |          | 1                | 16            | FSIG0058 |                |                          |
| ZSI01001                     | 50     | PARAM          | 816      | 16     |          | 1                | 16            | FSIG0059 |                |                          |
| ZSI01001                     | 51     | PARAM          | 832      | 16     |          | 1                | 16            | FSIG0060 |                |                          |
| ZSI01001                     | 52     | PARAM          | 848      | 16     |          | 1                | 16            | FSIG0061 |                |                          |
| ZSI01001                     | 53     | PARAM          | 864      | 16     |          | 1                | 16            | FSIG0062 |                |                          |
| ZSI01001                     | 54     | PARAM          | 880      | 16     |          | 1                | 16            | FSIG0063 |                |                          |
| ZSI01001                     | 55     | PARAM          | 896      | 16     |          | 1                | 16            | FSIG0064 |                |                          |
| ZSI01001                     | 56     | PARAM          | 912      | 16     |          | 1                | 16            | FSIG0065 |                |                          |
| ZSI01001                     | 57     | PARAM          | 928      | 16     |          | 1                | 16            | FSIG0066 |                |                          |
| ZSI01001                     | 58     | PARAM          | 944      | 16     |          | 1                | 16            | FSIG0067 |                |                          |
| ZSI01001                     | 59     | PARAM          | 960      | 16     |          | 1                | 16            | FSIG0068 |                |                          |
| ZSI01001                     | 60     | PARAM          | 976      | 16     |          | 1                | 16            | FSIG0069 |                |                          |
| ZSI01001                     | 61     | PARAM          | 992      | 16     |          | 1                | 16            | FSIG0070 |                |                          |
| ZSI01001                     | 62     | PARAM          | 1008     | 16     |          | 1                | 16            | FSIG0071 |                |                          |
| ZSI01001                     | 63     | PARAM          | 1024     | 16     |          | 1                | 16            | FSIG0072 |                |                          |
| ZSI01001                     | 64     | PARAM          | 1024     | 16     |          | 1                | 16            | FSIG0072 |                |                          |
| ZSI02001                     | 0      | PARAM          | 0        | 48     |          | 1                | 48            | FSIG0004 |                |                          |
| ZSI08600SHOF                 | 0      | FIXED          | 0        | 8      | 0        | 1                | 8             | 15100004 |                | Pad                      |
| 231086003110F                | 1      | FIXED          | 8        | 8      | 1        | 1                | 8             |          |                | N (1 Byte)               |
| ZSI08600SHOF                 | 2      | FIXED          | 8<br>16  | о<br>1 | 0        | 1                | 8             |          |                | Route                    |
|                              |        |                |          | 1<br>7 | 0        | 1                | 7             |          |                | Pad                      |
| ZSI08600SHOF                 | 3      | FIXED          | 17       |        |          |                  |               |          |                | Pad<br>RTU S/S address   |
| ZSI08600SHOF                 | 4      | FIXED          | 24       | 5      | 21       | 1                | 5             |          |                |                          |
| ZSI08600SHOF<br>ZSI08600SHOF | 5<br>6 | FIXED<br>FIXED | 29<br>32 | 3<br>4 | 0<br>0   | 1<br>1           | 3             |          |                | Pad<br>Pad               |

| Service d'Aéron | nomie | :     |    | Fli |    | enus Ex<br>Spica<br>r / Opera |   | Ref:<br>Issue:<br>Date: | SPV-DES-03<br>003 Rev<br>Aug 08, 200 |
|-----------------|-------|-------|----|-----|----|-------------------------------|---|-------------------------|--------------------------------------|
| Spvfum24        |       |       |    |     | 0  | I                             |   | Page:                   | 7                                    |
| ZSI08600SHOF    | 7     | FIXED | 36 | 4   | 2  | 1                             | 4 |                         | HPC                                  |
| ZSI08600SHOF    | 8     | FIXED | 40 | 8   | 8  | 1                             | 8 |                         | Channel selection address            |
| ZSI08601SHON    | 0     | FIXED | 0  | 8   | 0  | 1                             | 8 |                         | Pad                                  |
| ZSI08601SHON    | 1     | FIXED | 8  | 8   | 1  | 1                             | 8 |                         | N (1 Byte)                           |
| ZSI08601SHON    | 2     | FIXED | 16 | 1   | 0  | 1                             | 1 |                         | Route                                |
| ZSI08601SHON    | 3     | FIXED | 17 | 7   | 0  | 1                             | 7 |                         | Pad                                  |
| ZSI08601SHON    | 4     | FIXED | 24 | 5   | 21 | 1                             | 5 |                         | RTU S/S address                      |
| ZSI08601SHON    | 5     | FIXED | 29 | 3   | 0  | 1                             | 3 |                         | Pad                                  |
| ZSI08601SHON    | 6     | FIXED | 32 | 4   | 0  | 1                             | 4 |                         | Pad                                  |
| ZSI08601SHON    | 7     | FIXED | 36 | 4   | 2  | 1                             | 4 |                         | HPC                                  |
| ZSI08601SHON    | 8     | FIXED | 40 | 8   | 9  | 1                             | 8 |                         | Channel selection address            |
| ZSI08610SROF    | 0     | FIXED | 0  | 8   | 0  | 1                             | 8 |                         | Pad                                  |
| ZSI08610SROF    | 1     | FIXED | 8  | 8   | 1  | 1                             | 8 |                         | N (1 Byte)                           |
| ZSI08610SROF    | 2     | FIXED | 16 | 1   | 0  | 1                             | 1 |                         | Route                                |
| ZSI08610SROF    | 3     | FIXED | 17 | 7   | 0  | 1                             | 7 |                         | Pad                                  |
| ZSI08610SROF    | 4     | FIXED | 24 | 5   | 21 | 1                             | 5 |                         | RTU S/S address                      |
| ZSI08610SROF    | 5     | FIXED | 29 | 3   | 0  | 1                             | 3 |                         | Pad                                  |
| ZSI08610SROF    | 6     | FIXED | 32 | 4   | 0  | 1                             | 4 |                         | Pad                                  |
| ZSI08610SROF    | 7     | FIXED | 36 | 4   | 2  | 1                             | 4 |                         | HPC                                  |
| ZSI08610SROF    | 8     | FIXED | 40 | 8   | 10 | 1                             | 8 |                         | Channel selection address            |
| ZSI08611SRON    | 0     | FIXED | 0  | 8   | 0  | 1                             | 8 |                         | Pad                                  |
| ZSI08611SRON    | 1     | FIXED | 8  | 8   | 1  | 1                             | 8 |                         | N (1 Byte)                           |
| ZSI08611SRON    | 2     | FIXED | 16 | 1   | 0  | 1                             | 1 |                         | Route                                |
| ZSI08611SRON    | 3     | FIXED | 17 | 7   | 0  | 1                             | 7 |                         | Pad                                  |
| ZSI08611SRON    | 4     | FIXED | 24 | 5   | 21 | 1                             | 5 |                         | RTU S/S address                      |
| ZSI08611SRON    | 5     | FIXED | 29 | 3   | 0  | 1                             | 3 |                         | Pad                                  |
| ZSI08611SRON    | 6     | FIXED | 32 | 4   | 0  | 1                             | 4 |                         | Pad                                  |
| ZSI08611SRON    | 7     | FIXED | 36 | 4   | 2  | 1                             | 4 |                         | HPC                                  |
| ZSI08611SRON    | 8     | FIXED | 40 | 8   | 11 | 1                             | 8 |                         | Channel selection address            |
| ZSIR8600SHOF    | 0     | FIXED | 0  | 8   | 0  | 1                             | 8 |                         | Pad                                  |
| ZSIR8600SHOF    | 1     | FIXED | 8  | 8   | 1  | 1                             | 8 |                         | N (1 Byte)                           |
| ZSIR8600SHOF    | 2     | FIXED | 16 | 1   | 0  | 1                             | 1 |                         | Route                                |
| ZSIR8600SHOF    | 3     | FIXED | 17 | 7   | 0  | 1                             | 7 |                         | Pad                                  |
| ZSIR8600SHOF    | 4     | FIXED | 24 | 5   | 21 | 1                             | 5 |                         | RTU S/S address                      |
| ZSIR8600SHOF    | 5     | FIXED | 29 | 3   | 0  | 1                             | 3 |                         | Pad                                  |
| ZSIR8600SHOF    | 6     | FIXED | 32 | 4   | 0  | 1                             | 4 |                         | Pad                                  |

| Service d'Aéron | nomie | ;     |    |     | Ve        | enus Ex<br>Spica |               | Ref:<br>Issue: | SPV-DES-032<br>003 Rev 1  |
|-----------------|-------|-------|----|-----|-----------|------------------|---------------|----------------|---------------------------|
| Spvfum24        |       |       |    | Fli | ight User |                  | ations Manual | Date:<br>Page: | Aug 08, 2005<br>80        |
|                 |       |       |    |     |           |                  |               |                |                           |
| ZSIR8600SHOF    | 7     | FIXED | 36 | 4   | 2         | 1                | 4             |                | HPC                       |
| ZSIR8600SHOF    | 8     | FIXED | 40 | 8   | 136       | 1                | 8             |                | Channel selection address |
| ZSIR8601SHON    | 0     | FIXED | 0  | 8   | 0         | 1                | 8             |                | Pad                       |
| ZSIR8601SHON    | 1     | FIXED | 8  | 8   | 1         | 1                | 8             |                | N (1 Byte)                |
| ZSIR8601SHON    | 2     | FIXED | 16 | 1   | 0         | 1                | 1             |                | Route                     |
| ZSIR8601SHON    | 3     | FIXED | 17 | 7   | 0         | 1                | 7             |                | Pad                       |
| ZSIR8601SHON    | 4     | FIXED | 24 | 5   | 21        | 1                | 5             |                | RTU S/S address           |
| ZSIR8601SHON    | 5     | FIXED | 29 | 3   | 0         | 1                | 3             |                | Pad                       |
| ZSIR8601SHON    | 6     | FIXED | 32 | 4   | 0         | 1                | 4             |                | Pad                       |
| ZSIR8601SHON    | 7     | FIXED | 36 | 4   | 2         | 1                | 4             |                | HPC                       |
| ZSIR8601SHON    | 8     | FIXED | 40 | 8   | 137       | 1                | 8             |                | Channel selection address |
| ZSIR8610SROF    | 0     | FIXED | 0  | 8   | 0         | 1                | 8             |                | Pad                       |
| ZSIR8610SROF    | 1     | FIXED | 8  | 8   | 1         | 1                | 8             |                | N (1 Byte)                |
| ZSIR8610SROF    | 2     | FIXED | 16 | 1   | 0         | 1                | 1             |                | Route                     |
| ZSIR8610SROF    | 3     | FIXED | 17 | 7   | 0         | 1                | 7             |                | Pad                       |
| ZSIR8610SROF    | 4     | FIXED | 24 | 5   | 21        | 1                | 5             |                | RTU S/S address           |
| ZSIR8610SROF    | 5     | FIXED | 29 | 3   | 0         | 1                | 3             |                | Pad                       |
| ZSIR8610SROF    | 6     | FIXED | 32 | 4   | 0         | 1                | 4             |                | Pad                       |
| ZSIR8610SROF    | 7     | FIXED | 36 | 4   | 2         | 1                | 4             |                | HPC                       |
| ZSIR8610SROF    | 8     | FIXED | 40 | 8   | 138       | 1                | 8             |                | Channel selection address |
| ZSIR8611SRON    | 0     | FIXED | 0  | 8   | 0         | 1                | 8             |                | Pad                       |
| ZSIR8611SRON    | 1     | FIXED | 8  | 8   | 1         | 1                | 8             |                | N (1 Byte)                |
| ZSIR8611SRON    | 2     | FIXED | 16 | 1   | 0         | 1                | 1             |                | Route                     |
| ZSIR8611SRON    | 3     | FIXED | 17 | 7   | 0         | 1                | 7             |                | Pad                       |
| ZSIR8611SRON    | 4     | FIXED | 24 | 5   | 21        | 1                | 5             |                | RTU S/S address           |
| ZSIR8611SRON    | 5     | FIXED | 29 | 3   | 0         | 1                | 3             |                | Pad                       |
| ZSIR8611SRON    | 6     | FIXED | 32 | 4   | 0         | 1                | 4             |                | Pad                       |
| ZSIR8611SRON    | 7     | FIXED | 36 | 4   | 2         | 1                | 4             |                | HPC                       |
| ZSIR8611SRON    | 8     | FIXED | 40 | 8   | 139       | 1                | 8             |                | Channel selection address |

Dernière mise à jour le 28/07/03 Par DUBOIS JP

TM\_PARAM\_SI\_TMGA.HTM

| Service d'Aéro | nom         | nie      |    | LNAME       GC       US       NA       PT         Spicam       I       SSISPI       I         nom/red       N       7       CA       3         SPICAV       I       SSISPI       I       3         SPICAV       I       SSISPI       I       3         SPICAV       I       SSISPI       I       3         SPICAV       N       7       CA       3         SPICAV       N       7       CA       3         SPICAV       N       SSISPI       I       3         SPICAV       N       SSISPI       I       3         SPICAV       N       SSISPI       I       3         SPICAV       N       SSISPI       I       3         V       I       I       C C       B       A         A       S       S       N       N       S       P       T         V       I       I       C C       B       Y       A       ME         ST       A       S       S       N       N       N       N       N         V       I       I       C C <t< th=""><th></th><th>Manı</th><th>ıal</th><th></th><th></th><th></th><th></th><th>Re<br/>Iss<br/>Da</th><th>ue:<br/>te:</th><th></th><th></th><th></th><th>0</th><th>03 1</th><th>S-0.<br/>Rev<br/>200</th><th>71<br/>05</th><th></th></t<> |           |           |    |      |        |         |     |         | Manı       | ıal           |     |       |   |          | Re<br>Iss<br>Da | ue:<br>te: |     |   |    | 0         | 03 1 | S-0.<br>Rev<br>200 | 71<br>05 |    |   |
|----------------|-------------|----------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|----|------|--------|---------|-----|---------|------------|---------------|-----|-------|---|----------|-----------------|------------|-----|---|----|-----------|------|--------------------|----------|----|---|
| Spvfum24       |             |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |           |    |      |        |         |     |         |            |               |     |       |   |          |                 | Pa         | ge: |   |    |           |      |                    |          | 81 | _ |
|                |             | СА       | Т  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |           |    |      | S      | PC      | ĽD  |         |            |               |     |       |   |          | LC              | C          | АТ  | C | TT | NT.       | Т    | INT                | ГТ       |    |   |
| NAME           |             | E        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |           | GC | US   |        |         | ,,, | РТ      | PF         | Т             | C   | ALI   |   | NA       |                 | N/         |     |   |    |           |      |                    | L2       |    |   |
| NSIA9999       |             | TM<br>GA |    | SDT<br>nom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | da<br>/re | ata<br>:d |    | 7    | C      | A       |     | 3       | 12         | 1             | 6N  | ONE   |   |          |                 |            |     |   | PI | SIS<br>CA | 1    |                    |          |    |   |
| NSIA1001       |             | TM<br>GA |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | V         | N  | 7    |        |         | SPI |         | 12         | 1             | 6 N | ONE   |   | CS<br>DE | BYI<br>EN       |            |     |   |    |           |      |                    | MF<br>MO |    |   |
| NSIA1002       |             | TM<br>GA |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |           | N  | 7    |        |         | SPI |         | 12         | 1             | 6 N | ONE   |   | CS<br>DE | BYI<br>EN       |            |     |   |    |           |      |                    | MF<br>M0 |    |   |
| NSIA1003       |             | TM<br>GA |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |           | N  | 7    |        |         | SPI |         | 12         | 1             | 6 N | ONE   |   | CS<br>DE | BYI<br>EN       |            |     |   |    |           |      |                    | MF<br>M0 |    |   |
| suite          |             |          | I  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |           | 1  | ļ    | 1      |         |     |         |            |               |     |       | I |          |                 |            |     |   |    |           | I    |                    |          |    |   |
|                |             |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |           |    |      |        |         |     |         |            |               |     |       |   |          |                 |            |     |   |    |           |      |                    |          |    |   |
|                |             |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |           |    |      |        |         |     |         |            | В             |     |       |   |          |                 |            |     |   |    |           |      | A                  |          |    |   |
|                | E<br>N      |          |    | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Т         | Т         | C  | 7    |        | T       |     | м       | EAS        | CP<br>L<br>E  |     |       | Δ | Α        | PR              | в          | Δ   | Δ | Δ  | A         | Р    | C<br>Q             | Δ        | т  | г |
| NAME           |             | Т        | S1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S         | S         | NI | N CN | I S    | P       | D   | Т       | YP         | <b>R</b>      | AD  | AD    | D | D        | OT              | C          | D   | D | D  | D         | R    | F                  | C        | i  | i |
|                |             |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |           |    |      | D      | W       |     |         |            | B<br>D        |     |       |   |          | Gen             |            |     |   |    |           |      | A                  |          |    |   |
| NSIA9999       |             |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N         | N         |    |      | Ν      | 1R      |     |         | RIA<br>L   | RT<br>US<br>S |     | 2 234 |   |          | eric<br>SD<br>T |            |     |   |    |           |      | S<br>Y<br>N        | 0        | 0  | ( |
|                |             |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |           |    |      |        |         | 7   |         |            | R<br>B<br>D   |     |       |   |          |                 |            |     |   |    |           |      |                    |          |    |   |
|                | T<br>B      |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |           |    |      | Ν      | O<br>1R |     |         |            | RT<br>US      |     |       |   |          |                 |            |     |   |    |           |      | 1                  | 0        | 0  |   |
| NSIA1001       | D           |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N         | N         |    |      |        | -       |     | M       | <u>15T</u> | S<br>R        | 56  |       |   |          |                 |            |     |   |    |           |      | 1                  | 0        | 0  | ╞ |
|                | Т           |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |           |    |      | D      |         |     |         |            | B<br>D<br>RT  |     |       |   |          |                 |            |     |   |    |           |      |                    |          |    |   |
| NSIA1002       | B<br>D      |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N         | N         |    |      | M<br>S | 1R<br>D | )   | TH<br>M | ER<br>IST  | US<br>S       |     |       |   |          |                 |            |     |   |    |           |      | 1                  | 0        | 0  |   |
| NSIA1003       | T<br>B<br>D |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | [ N       |    |      | D<br>N | T       |     | TH      | ER<br>IST  | R<br>B<br>D   | 184 | 1     |   |          |                 |            |     |   |    |           |      | 1                  | 0        | 0  |   |

| Service d'Aéı   | onom                | ie                          |    | Venus Express<br>Spicav         |              |   |     |    |       | Re<br>Iss    | ue: |              |                |         | C | 003 | Re                 | 032<br>v 1 |    |   |   |   |          |                        |   |
|-----------------|---------------------|-----------------------------|----|---------------------------------|--------------|---|-----|----|-------|--------------|-----|--------------|----------------|---------|---|-----|--------------------|------------|----|---|---|---|----------|------------------------|---|
| Spvfum24        |                     |                             |    | Flight User / Operations Manual |              |   |     |    |       |              |     |              | Date:<br>Page: |         |   |     | Aug 08, 2005<br>82 |            |    |   |   |   |          |                        |   |
| TM_PA           | I_PARAM_SI_TMGS.HTM |                             |    |                                 |              |   |     |    |       |              |     |              |                |         |   |     |                    |            |    |   |   |   |          |                        |   |
|                 | CA<br>TE            |                             | G  |                                 | SRG<br>P     | Р |     |    |       |              | С   | UNIT<br>CAL  | Ν              | EN      |   |     | V                  |            |    | С |   | С |          | AA                     |   |
| NAME            | G<br>TM             | LNAME                       | С  | US                              | NAM<br>SSISP | T | PF  | Μ  | B     | C NA<br>CSIY | A   | 1<br>USIS    | Ι              | G       | M | Т   | A                  | S          | S  | Ν | Ν | N | W<br>NO  | D D                    | ) |
| NSIA0001        | GS                  | Temp BT2                    | N  | 7                               | ICA          | 3 | 4   | 8  | ANA   | 0001         |     | PICA         |                | NA      |   |     |                    | Ν          | N  |   |   |   | NE       |                        |   |
|                 | TM                  | Temp_Stru                   | 1, | ,                               | SSISP        | 5 |     | Ŭ  | 11111 | CSIY         |     | USIS         |                | 1 11 1  |   |     |                    | 1,         | 11 |   |   |   | NO       |                        |   |
| NSIA0002        | GS                  | ct                          | Ν  | 7                               | ICA          | 3 | 4   | 8  | ANA   | 0001         |     | PICA         |                | NA      |   |     |                    | Ν          | Ν  |   |   |   | NE       |                        |   |
|                 | ΤM                  | Temp_Soir                   |    |                                 | SSISP        |   |     |    |       | CSIY         |     | USIS         |                |         |   |     |                    |            |    |   |   |   | NO       |                        |   |
| NSIA0003        | GS                  | Baseplate                   | N  | 7                               | ICA          | 3 | 4   | 8  | ANA   | 0001         |     | PICA         |                | NA      |   |     |                    | Ν          | Ν  |   |   |   | NE       |                        |   |
| NSIA0004        | TM<br>GS            | Temp_Soir<br>ColdFinger     | N  | 7                               | SSISP<br>ICA | 3 | 4   | 8  | ANA   | CSIY<br>0001 |     | USIS<br>PICA |                | NA      |   |     |                    | N          | N  |   |   |   | NO<br>NE |                        |   |
| NSIA0101        | TM<br>GS            | Raw<br>Science<br>Data Word | N  | 7                               | SSISP<br>ICA | 3 | 12  | 16 | NONE  |              |     | USIS<br>PICA |                | NA      |   |     |                    | N          | N  |   |   |   | NO<br>NE |                        |   |
| 10110101        | TM                  | Science                     | 11 | /                               | SSISP        | 5 | 14  | 10 | TIONE |              |     | USIS         |                | 1 1 1 1 |   |     |                    | 11         | 11 |   |   |   | NO       |                        | _ |
| NSIA0102        | GS                  |                             | N  | 7                               | ICA          | 3 | 12  | 16 | NONE  |              |     | PICA         |                | NA      |   |     |                    | Ν          | Ν  |   |   |   | NE       |                        |   |
|                 | ΤM                  | Science                     |    |                                 | SSISP        |   |     |    |       |              |     | USIS         |                |         |   |     |                    |            |    |   |   |   | NO       |                        |   |
| NSIA0103        | GS                  | Data UV-2                   | N  | 7                               | ICA          |   | 12  | 16 | NONE  |              |     | PICA         |                | NA      |   |     |                    | Ν          | Ν  |   |   |   | NE       |                        |   |
|                 | ΤМ                  | Science                     |    |                                 | SSISP        |   |     |    |       |              |     | USIS         |                |         |   |     |                    |            |    |   |   |   | NO       |                        |   |
| NSIA0104        | GS                  | Data IR                     | Ν  | 7                               | ICA          | 3 | 12  | 16 | NONE  |              |     | PICA         |                | NA      |   |     |                    | Ν          | Ν  |   |   |   | NE       |                        |   |
|                 | ΤМ                  | Science                     |    |                                 | SSISP        |   |     |    |       |              |     | USIS         |                |         |   |     |                    |            |    |   |   |   | NO       |                        | - |
| NSIA0105        | GS                  | Data Soir1                  | N  | 7                               |              | 3 | 12  | 16 | NONE  |              |     | PICA         |                | NA      |   |     |                    | Ν          | Ν  |   |   |   | NE       | $\parallel \downarrow$ |   |
|                 | ΤM                  | Science                     |    |                                 | SSISP        |   |     |    |       |              |     | USIS         |                |         |   |     |                    |            |    |   |   |   | NO       |                        |   |
| NSIA0106        | GS                  | Data Soir2                  | N  | 7                               |              | 3 | 12  | 16 | NONE  |              |     | PICA         |                | NA      |   |     |                    | N          | Ν  |   |   |   | NE       | $\parallel \parallel$  |   |
|                 | TM                  | Science                     |    | _                               | SSISP        |   | 1.0 | 1. | NONE  |              |     | USIS         |                |         |   |     |                    |            |    |   |   |   | NO       |                        |   |
| <b>NSIA0107</b> | GS                  | Data Soir3                  | N  | 7                               | ICA          | 3 | 12  | 16 | NONE  |              |     | PICA         |                | NA      |   |     |                    | Ν          | Ν  |   |   |   | NE       | L                      |   |

# TMPCK\_ELT\_SI\_NULL\_NULL.html

| TMPK<br>NAME    | TMPE<br>ORDER | ELT<br>TYPE | ITEM<br>OFFSET | TMPE<br>SIZE | FIXED<br>VALUE | REPEAT | CALC<br>SIZE | PKBL<br>NAME | PKBL<br>CATEG | TMPA<br>NAME | EXCP<br>CODE | NGRP<br>SIZE |
|-----------------|---------------|-------------|----------------|--------------|----------------|--------|--------------|--------------|---------------|--------------|--------------|--------------|
| SI01001         | 0             | PARAM       | 0              | 16           |                | 1      | 16           |              |               | NSIA0101     | VR_NOC       |              |
| YSI02001        | 0             | FIXED       | 0              | 8            | 0              | 1      | 8            |              |               |              |              |              |
| VSI02001        | 1             | FIXED       | 8              | 8            | 1              | 1      | 8            |              |               |              |              |              |
| <b>YSI02001</b> | 2             | PARAM       | 16             | 8            |                | 1      | 8            |              |               | NSIA0001     |              |              |
| <b>YSI02001</b> | 3             | PARAM       | 24             | 8            |                | 1      | 8            |              |               | NSIA0002     |              |              |
| <b>YSI02002</b> | 0             | FIXED       | 0              | 8            | 0              | 1      | 8            |              |               |              |              |              |
| <b>YSI02002</b> | 1             | FIXED       | 8              | 8            | 1              | 1      | 8            |              |               |              |              |              |

| Service d'Aéronomie |     |       |    |   | Venus Express<br>Spicav<br>ser / Operations Manual | Ref:<br>Issue:<br>Date: | SPV-DES-032<br>003 Rev 1<br>Aug 08, 2005 |
|---------------------|-----|-------|----|---|----------------------------------------------------|-------------------------|------------------------------------------|
| Spvfum24            | e i |       |    |   |                                                    |                         | 83                                       |
| YSI02002            | 2   | PARAM | 16 | 8 |                                                    | NSIA0003                |                                          |
| YSI02002            | 3   | PARAM | 24 | 8 |                                                    | NSIA0004                |                                          |

Dernière mise à jour le 28/07/03 Par DUBOIS JP

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spvfum24            |                                 | Page:  | 84           |

# Annex4: Spicav Diagrams:

*Extracted from Spicav EICD, ref SPV-DES-012, Iss 4.2, dated June 02, 2005 Timings are typical and are not in agreement with FCP.* 

Shutter



Note: 4 RSS initially foreseen, 2 of them are not used.

**Functional Block Diagram DPU:** 



**DPU synoptic** 



Power Connector



28 V

SPICAM Light 00 08 23

DC/DC board

DP Usynopt 10

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spvfum24            |                                 | Page:  | 87           |

# Functional Block Diagram SUV + SIR (sensor unit):



| Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------------------|--------|--------------|
| Spicav                          | Issue: | 003 Rev 1    |
| Flight User / Operations Manual | Date:  | Aug 08, 2005 |
|                                 | Page:  | 88           |



**Functional Block Diagram SOIR:** 

Now, no thermoswitch. (drawing to be updated )

Heater are controlled by spacecraft by monitoring thermistances.

| ie: 003 Rev 1      |
|--------------------|
| te: Aug 08, 2005   |
| ge: 89             |
| Issi<br>Dat<br>Pag |

#### **Power Demand:**

| D L'        | Average Power BOL<br>[W] |      |       |      | Average Power EOL<br>[W] |      |       |      |        | Peak<br>wer | Short Peak<br>Power |        |
|-------------|--------------------------|------|-------|------|--------------------------|------|-------|------|--------|-------------|---------------------|--------|
| Power Lines |                          | Mo   |       |      |                          |      | odes  |      |        | Duratio     |                     | Durati |
|             | Sdby                     | Star | Nadir | Sun  | Sdby                     | Star | Nadir | Sun  | (1)[W] | n[s]        | [W]                 | on[s]  |
|             |                          |      |       |      |                          |      |       |      |        |             |                     |        |
| 28 V nom    | 0                        | 17.6 | 26.4  | 51.4 | 0                        | 17.6 | 26.4  | 51.4 | + 5    | 0,15        | 0                   |        |
| 28 V red    | 0                        | 17.6 | 26.4  | 51.4 | 0                        | 17.6 | 26.4  | 51.4 | +5     | 0,15        | 0                   |        |
|             |                          |      |       |      |                          |      |       |      |        |             |                     |        |

(1) Long peak power: slit and sun shutter actuation for SUV and SIR channels (SFMI actuator, 28 V, 140 ohms, 5W), 150 ms each

Nota:

1 – Nadir Shutter Opening/Closing: 6 W, 28 V, (98 s typ., 110s max)

2-SOIR heaters: 32 W on Nominal and redundant channel for FM2 (SOIR op)

## **Power Profile Star Mode:**



Actuators default position: Nadir configuration ( solar shutter closed, slit on )

Timings are typical and are not in agreement with FCP.





Actuators default position: Nadir configuration ( solar shutter closed, slit on )

Timings are typical and are not in agreement with FCP.



## **Power Profile Sun Occultation Mode:**

Actuators default position: Nadir configuration ( solar shutter closed, slit on )

Timings are typical and are not in agreement with FCP.

## **DPU Power Distribution and Interfaces circuits:**



# Annex5: Auxilliary data:

# MEX auxilliary data:

Accuracy will be determined by Flight Dynamics, following numbers are given for information.

# ORBIT AND ATTITUDE DATA CONSOLIDATED REQUIREMENTS

| Data required                                          | Timing                      | Data<br>source          | Resp. | Delivery<br>Method   | Freq.              | Sam-<br>pling | Accuracy<br>(Required) |
|--------------------------------------------------------|-----------------------------|-------------------------|-------|----------------------|--------------------|---------------|------------------------|
| Major S/C events<br>(Orbit Manoeuvres,<br>Eclipse etc) | Planned<br>and<br>Predicted | Ground                  | ESOC  | DDS<br>(Aux<br>Data) | Monthly            | TBD           | TBD                    |
| Long range Orbit<br>Prediction                         | Predict                     | Ground                  | ESOC  | DDS<br>(Aux<br>Data) | Monthly            | 1 / min       | < 25 km                |
| Near Term Orbit<br>Prediction                          | Prediction                  | Ground                  | ESOC  | DDS<br>(Aux<br>Data) | Weekly             | 1 / min       | 5 km                   |
| Quick look Orbit<br>Estimation                         | Post-obs                    | Tracking<br>Data        | ESOC  | DDS<br>(Aux<br>Data) | Once in 2<br>days  | 1 / sec       | 2 km                   |
| Precision Orbit<br>Estimation                          | Post-obs                    | Tracking<br>Data        | ESOC  | DDS<br>(Aux<br>Data) | Once in 2<br>weeks | 1 / sec       | 0.5 km                 |
| Predicted Attitude                                     | Prediction                  | Ground                  | ESOC  | DDS<br>(Aux<br>Data) | Weekly             | 1 / min       | 0.1 deg                |
| Reconstituted<br>Attitude<br>(Attitude and Rates)      | Post-obs.                   | S/C<br>Data +<br>Ground | ESOC  | DDS<br>(Aux<br>Data) | Weekly             | 1 / sec       | 0.05 deg               |

#### Venus Express Spicav Flight User / Operations Manual

93

Spvfum24

| Data required                                                                    | Timing                        | Data<br>source | Resp. | Delivery<br>Method | Freq.            | Sam-<br>pling             | Accuracy<br>(Required) |
|----------------------------------------------------------------------------------|-------------------------------|----------------|-------|--------------------|------------------|---------------------------|------------------------|
| Rotation Angle of SA<br>(with respect to S/C<br>frame of reference)              | Post–obs.                     | S/C<br>Data    | ESOC  | DDS<br>(Aux Data)  | Week             |                           |                        |
| Pericentre 'TICK'                                                                | Prediction                    | Ground         | ESOC  | DDS<br>(Aux Data)  | Week             | Every<br>Orbit            | 1 sec                  |
| Orbit Time Period                                                                | Prediction                    | Ground         | ESOC  | DDS<br>(Aux Data)  | Week             | Every<br>Orbit            | 1 sec                  |
| Thruster Firing Times<br>(Start Time & Duration)                                 | Prediction<br>& Post-<br>obs. | Ground         | ESOC  | DDS<br>(Aux Data)  | Event<br>related | Every<br>Manoe<br>uvre    | 1 sec                  |
| Sun Zenith Angle<br>(Over Pericentre)                                            | Prediction                    | Ground         | ESOC  | DDS<br>(Aux Data)  | Week             | one<br>sample<br>/ 10 sec | 0.5 deg                |
| <b>Times of Occultation</b><br>(Star/Sun) (Refer to<br>SPICAV Star<br>Catalogue) | Prediction                    | Ground         | ESOC  | DDS<br>(Aux Data)  | Week             | NA                        | < 5 sec                |
| <b>Spacecraft Position</b><br>(PSO)                                              | Post Ops<br>(2)               | Ground         | ESOC  | DDS<br>(Aux Data)  | Week             | 1 sec                     | 0.5 km                 |
| Longitude & Latitude<br>of occulted Venus point                                  | Post Ops<br>(2)               | Ground         | ESOC  | DDS<br>(Aux Data)  | Week             | NA                        | 0.1 deg                |
| Solar Zenith Angle<br>(of occulted Venus<br>Point)                               | Post Ops<br>(2)               | Ground         | ESOC  | DDS<br>(Aux Data)  | Week             | NA                        | 0.1 deg                |
| Duration of Occultation<br>(between 200 Km and 0<br>Km)                          | Prediction                    | Ground         | ESOC  | DDS<br>(Aux Data)  | Week             | NA                        | < 5 sec                |

Comments:

(2) these data are for Post processing, our requirements for Prediction are defined in the associated table

"Instrument Data Requirements (4)", see next sheet

For these data, sampling and accuracy are not the same if they are 'Prediction ' or 'Post Obs.'

# SPICAV auxilliary data:

Instruments Data Requirements (4)

| SPICAV                                                             |            |                  |                    |                    |                      |          |
|--------------------------------------------------------------------|------------|------------------|--------------------|--------------------|----------------------|----------|
| Data required                                                      | Timing     | Data             | Responsibi<br>lity | Delivery<br>Method | Frequen              | Accuracy |
| Star/Sun Occultation<br>Observations:<br>- Star occulted by Venus. | Prediction | source<br>Ground | ESOC               | DDS<br>(ESOC)      | cy<br>Once/<br>month |          |
| - Time of occultation.                                             | Prediction | Ground           | ESOC               | DDS<br>(ESOC)      | Once/<br>month       | < 5 sec  |
| - Spacecraft Position (PSO).                                       | Prediction | Ground           | ESOC               | DDS<br>(ESOC)      | Once/<br>month       | 6 km ?   |
| - Duration of occultation (between 200 and 0 Km).                  | Prediction | Ground           | ESOC               | DDS<br>(ESOC)      | Once/<br>month       | < 5 sec  |
| - S/C attitude (for Sun Occultation).                              | Prediction | Ground           | ESOC               | DDS<br>(ESOC)      | Once/<br>month       | 0.1 deg  |
| - Latitude and Longitude of occulted Venus point.                  | Prediction | Ground           | ESOC               | DDS<br>(ESOC)      | Once/<br>month       | 0.5 deg  |
| - Solar Zenith Angle of occulted Venus point.                      | Prediction | Ground           | ESOC               | DDS<br>(ESOC)      | Once/<br>month       | 0.5 deg  |

95

Spvfum24

#### **Annex6: Star Catalog:**

```
25 03 2002 Etoiles Spicav (flux > 800 at 164 nm), 39 stars, Dimarellis
 1 Spicav number
 2 BSC number
 3 Name
 4 Spectral Type
```

- 5 Visual magnitude
- 6 Right ascension (deg) J2000
- 7 Declinaison (deg) J2000

| 2         | 264  | Gam  | Cas  | B0IVe | 2.47  | 14.18  | 60.72  |
|-----------|------|------|------|-------|-------|--------|--------|
| 5         | 472  | Alp  |      | B3Vpe | 0.46  | 24.43  | -57.24 |
| 8         | 1203 | Zet  | Per  | Blib  | 2.85  | 58.53  | 31.88  |
| 9         | 1220 | Eps  | Per  | B0.5V | 2.89  | 59.46  | 40.01  |
| 12        | 1713 | Bet  | Ori  | B8Ia: | 0.12  | 78.63  | -8.20  |
| $14^{-1}$ | 1790 | Gam  |      | B2III | 1.64  | 81.28  | 6.35   |
| 16        | 1852 | Del  | Ori  | 09.51 | 2.23  | 83.00  | -0.30  |
| 17        | 1879 | Lam  |      | 08111 | 3.54  | 83.78  | 9.93   |
| 18        | 1899 | Iot  | Ori  | 09111 | 2.77  | 83.86  | -5.91  |
| 19        | 1903 | Eps  |      | B0Ia  | 1.70  | 84.05  | -1.20  |
| 20        | 1948 | Zet  | Ori  | 09.71 | 2.05  | 85.19  | -1.94  |
| 21        | 2004 | Кар  | Ori  | B0.5I | 2.06  | 86.94  | -9.67  |
| 25        | 2294 | Bet  | СМа  | B1II- | 1.98  | 95.68  | -17.96 |
| 28        | 2491 | Alp  | СМа  | AlVm  | -1.46 | 101.29 | -16.72 |
| 29        | 2618 | Eps  | СМа  | B2II  | 1.50  | 104.66 | -28.97 |
| 36        | 3165 | Zet  | Pup  | 05f   | 2.25  | 120.90 | -40.00 |
| 41        | 3734 | Кар  | Vel  | B2IV- | 2.50  | 140.53 | -55.01 |
| 44        | 4199 | The  | Car  | B0Vp  | 2.76  | 160.74 | -64.39 |
| 46        | 4621 | Del  | Cen  | B2IVn | 2.60  | 182.09 | -50.72 |
| 48        | 4730 | Alp1 |      | B0.5I | 1.33  | 186.65 | -63.10 |
| 49        | 4731 | Alp2 | 2Cru | B1V   | 1.73  | 186.65 | -63.10 |
| 53        | 4853 | Bet  | Cru  | B0.5I | 1.25  | 191.93 | -59.69 |
| 55        | 5056 | Alp  | Vir  | B1III | 0.98  | 201.30 | -11.16 |
| 56        | 5132 | Eps  | Cen  | B1III | 2.30  | 204.97 | -53.47 |
| 57        | 5191 | Eta  | UMa  | B3V   | 1.86  | 206.88 | 49.31  |
| 59        | 5231 | Zet  | Cen  | B2.5I | 2.55  | 208.88 | -47.29 |
| 60        | 5267 | Bet  | Cen  | BIIII | 0.61  | 210.96 | -60.37 |
| 62        | 5440 | Eta  | Cen  | B1.5V | 2.31  | 218.88 | -42.16 |
| 65        | 5469 | Alp  | Lup  | B1.5I | 2.30  | 220.48 | -47.39 |
| 70        | 5944 | Pi   | Sco  | B1V+B | 2.89  | 239.71 | -26.11 |
| 71        | 5953 | Del  | Sco  | B0.3I | 2.32  | 240.08 | -22.62 |
| 73        | 5984 | Bet1 |      | B1V   | 2.62  | 241.36 | -19.81 |
| 74        | 6084 | Sig  |      | B1III | 2.89  | 245.30 | -25.59 |
| 76        | 6165 | Tau  | Sco  | BOV   | 2.82  | 248.97 | -28.22 |
| 77        | 6175 | Zet  | Oph  | 09.5V | 2.56  | 249.29 | -10.57 |
| 84        | 6527 | Lam  | Sco  | B2IV+ | 1.63  | 263.40 | -37.10 |
| 86        | 6580 | Кар  | Sco  | B1.5I | 2.41  | 265.62 | -39.03 |
| 89        | 7121 | Sig  | Sgr  | B2.5V | 2.02  | 283.82 | -26.30 |
| 91        | 7790 | Alp  | Pav  | B2IV  | 1.94  | 306.41 | -56.74 |

Baseline is MEX catalogue. Update is TBC

# **Annex7: Polling mechanism**

To be completed

Spvfum24

# **Annex8: Ground test sequence:**

To be completed

# **Annex9: Detailed Ground operations plan:**

The following paragraphs describe all the actions which are needed for operations of Spicav : SA = Service d'Aéronomie

We propose the following phases:

| Data Needed                         | Actions           | Actioner | Remarks            |
|-------------------------------------|-------------------|----------|--------------------|
| Pre-mission                         |                   |          |                    |
| Targets                             | Star catalog      | SA       |                    |
| Communication Phase / other         |                   |          |                    |
| Sun Illumination                    | Check             | ESOC     |                    |
|                                     | Illumination      |          |                    |
|                                     | Shutter action if | ESOC     |                    |
|                                     | needed            |          |                    |
| Mission, every month                |                   |          |                    |
| Orbit data                          | Compute           | ESOC     |                    |
|                                     | predicts          |          |                    |
| Occulted targets                    | Compute attitude  | ESOC     | In parallel at SA  |
|                                     | (1)(2)            |          |                    |
| Selected Stars                      | Choice by         | SA       |                    |
|                                     | Science team      |          |                    |
| Attitude parameters                 | Elaboration       | ESOC     | verification by SA |
| TC Spicav                           | Elaboration       | SA       |                    |
| Mission, every week                 |                   |          |                    |
| Spicav master schedule uplink       |                   | ESOC     |                    |
| Spicav health and status monitoring |                   | ESOC     |                    |
| TM                                  | Retrieval         | SA       | SA Ground Segment  |
|                                     | Verification      | SA       |                    |
|                                     | Processing        | SA       |                    |

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spyfum24            |                                 | Page:  | 97           |

(1) For STAR mode, the following is a preliminary list of what has to be computed: with predicted orbit and star catalog compute: stars possible to be occulted by Venus time and S/C position on the orbit duration of occultation between 200 and 0 km S/C attitude of the +Z axis (other axis are free) coordinates of occulted point on Venus and SZA (Solar Zenith Angle) angle Then resources availability reduces the possibilities if several targets are possible, selection by PI Then calculations of orientation timeline by ESOC to put S/C in good attitude at proper time Preparation of TC for Spicav (by experiment team) Uplink to S/C (2) For LIMB mode, the direction of observation is defined by alpha, delta, as a "virtual" star. The S/C attitude is defined by the orientation of the slit of the spectrometer. Computation to be done by Experiment team (TBC). Computation is TBD. Calibration and error budget:

On ground, calibration tests will be done at equipment level and instrument level ( under ambient conditions and in thermal vacuum ).

Main performances tests are following: detection chain measurements: DC maps Dark Noise Detection chain gain ( elctrons per DN, and electrons per photoevent ) Readout Noise opto mechanical verification straylight specific tests spectral bands, wavelength assignment spectro radiometric sensitivity spectro Signal to Noise ratio Linearity Uniformity

#### **Annex10: User manual for the shutter**

Copy of SPV-NT-SH-03, Iss 1.0, dated 29.04.05

Timings have been updated in procedures validated during SVT.

E. Villard (29/04/05)

The purpose of the shutter (UV and IR palettes) is to protect the entrance optics of both channels when the Sun is along or close to the +Z axis of the S/C (same axis for SPICAV).

This situation can happen at any time during the mission, but mostly it will happen during certain communication phases with the Earth.

This shutter was not present on Mars Express and therefore, represents a new addition to the original instrument. Thus, to limit the modifications on SPICAM, it was decided that the shutter would be an independent subsystem (except mechanically) with its own electronics and its own LCL (class B).

The first "motor" that was chosen to drive the palettes was a paraffin actuator (Starsys). The main reason was its simplicity of operation (and therefore, its little amount of electronics needed). As we understood it initially, it only needed power to heat the paraffin, which would expand and translate the actuator, rotating the axis in one direction. Then, after switching off the power, the paraffin would cool down, the actuator would retract and the axis would rotate in the opposite direction.

But, for various reasons, we decided to give up this solution and continue with a "classical" electrical motor. However, since the electrical interfaces had already been defined, we had to keep the same philosophy of operation.

Therefore, now, when the shutter electronics are powered up, the actual position of the palettes is automatically detected (via microswitches whose status is not relayed back to the S/C) and the motor is powered such that the palettes rotate in the good direction. When the final position is detected (still via microswitches), the electronics automatically power down the motor, which stops the rotation.

Incidentally, one can notice that, after the rotation, the shutter still consumes a small amount of power: this is due to the electronic circuits, which are still powered up. This is one reason why the HPC off must be sent after the rotation. The other reason is that the process of detecting the actual position of the palettes and deciding in which direction to rotate them is only performed when the electronics are powered up (from off to on).

Therefore, the procedures "SI\_Shutter\_Switch\_ON" and "SI\_Shutter\_Switch\_OFF" do not relate to the opening and closing of the shutter but to the beginning and the end of ONE motion of the shutter, either opening or closing. The following table summarizes the principle of operation:

| Service d'Aéronomie           | Venus Express                             | Ref: SPV-DES-032                                                                                     |
|-------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------|
|                               | Spicav<br>Flight User / Operations Manual | Issue: 003 Rev 1<br>Date: Aug 08, 2005                                                               |
| Spvfum24                      | Fight User / Operations Manual            | Page: 99                                                                                             |
| Initial status of the shutter | Objective                                 | Actions                                                                                              |
| Closed                        | Open the shutter                          | <ol> <li>SI_Shutter_Switch_ON</li> <li>Wait (typ. 110secs)</li> <li>SI_Shutter_Switch_OFF</li> </ol> |
|                               | Close the shutter                         | None                                                                                                 |
|                               | Open the shutter                          | None                                                                                                 |
| Open                          | Close the shutter                         | <ol> <li>SI_Shutter_Switch_ON</li> <li>Wait (typ. 110secs)</li> <li>SI_Shutter_Switch_OFF</li> </ol> |

Now, there is also the possibility that the LCL is unexpectedly cut while the palettes are rotating (e.g. after a S/C safe mode). Then, when the shutter is powered up again, the electronics cannot detect either an open or closed position. In this specific situation (no microswitch is detecting a final position), it was decided that the shutter would open by default.

Evidently, this principle of operation requires that the initial status of the shutter be known in order to decide whether it needs to be powered up (to reach the desired position). The microswitches cannot be used as their status is not relayed back to the S/C. For this specific purpose, there are two proximity detectors (ILS based) that are directly relayed back to the S/C, one for the open position and one for the closed position. These contacts are triggered by a magnet attached to the rotating axis. When the palettes are closed (resp. open), the magnet is short-circuiting the ILS "closed" (resp. "open") and not the ILS "open" (resp. "closed"). This is summarized by the following table:

| Status of the shutter     | Status of the ILS "open" | Status of the ILS "closed" |
|---------------------------|--------------------------|----------------------------|
| Open                      | 0                        | 1                          |
| Intermediate              | 1                        | 1                          |
| (neither closed nor open) | -                        | -                          |
| Closed                    | 1                        | 0                          |

It was then decided to have the following calibration in the database:

|              | Measured value | Calibrated value |
|--------------|----------------|------------------|
| ILS "open"   | 1              | Closed           |
| iLS open     | 0              | Open             |
| ILS "closed" | 1              | Open             |
| ILS closed   | 0              | Closed           |

Therefore, we obtain the following table:

| Status of the shutter                     | Status of the ILS "open" | Status of the ILS "closed" |
|-------------------------------------------|--------------------------|----------------------------|
| Open                                      | Open                     | Open                       |
| Intermediate<br>(neither closed nor open) | Closed                   | Open                       |
| Closed                                    | Closed                   | Closed                     |

The status of the ILS "Open" (on the nominal channel) is parameter NDAD0526. The status of the ILS "Closed" (on the nominal channel) is parameter NDAD0527. The status of the ILS "Open" (on the redundant channel) is parameter NDAD0626.

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spvfum24            |                                 | Page:  | 100          |

The status of the ILS "Closed" (on the redundant channel) is parameter NDAD0627. Theses statuses give the position of the shutter, not the state of the ILS itself.

One should also know that the proximity detectors (ILS) are not switching status instantaneously once the palettes have left their initial position. This is due to the proximity of the magnet which still activates the detector a couple of tens of seconds after the beginning of the rotation. Similarly, the proximity detector of the final position is activated a couple of tens of seconds before the palettes reach their final position.

end of copy

#### **Annex11: Shutter in Safe Mode**

Copy of document SPV-NT-SF-01, Issue 2, provided by Spicav team to Astrium to define the Shutter procedure in case of spacecraft safe mode.

Action is to close the shutter.

Note that, since issue 2, waiting duration between HPC On and HPC Off (initially at 60 seconds) has been increased to 110 seconds (consistent with timing including in FCP/CRP).

In case of a detected anomaly, the mission operations are stopped and the S/C enters the Safe Mode : payloads are switched OFF and the S/C goes to a safe attitude (sun pointing first and then, Earth pointing). When the S/C enters the Safe Mode, a P/L Safing procedure is executed by the OBSW to put the payloads in a safe configuration, e.g. close the covers if open when the anomaly occurs.

## **SPICAV Shutter commands**

HPC\_ON enables the 28V to power the shutter engine, in order to:

- Close the shutter if the shutter was open
- Open the shutter if the shutter was closed

HPC\_OFF disables the 28V to the shutter engine. This 28V\_cut\_OFF is detected by the shutter electronics and is used as a prerequisite to enable the next HPC\_ON, such as 2 consecutive HPC\_ON will not open and then close the shutter (or close and then open).

There is a specific LCL to provide the 28V to the shutter engine. After the command HPC\_ON, this LCL must stay ON during 60 sec, to leave time to the shutter to complete the motion (open or close). The actual value for a complete motion is 30 sec, and SPICAV experts recommend a margin of 30 sec.

## **SPICAV Shutter statuses**

A number of 4 RTU statuses are available to determine if the shutter is closed or open: 2 are provided via RTU i/o A and 2 via RTU i/o B.

They all change their value once the shutter is completely closed or completely open. Example: if HPC\_ON is sent to close the shutter and HPC\_OFF is sent only 15 sec after, the motion will not be completed. The open status will indicate 'closed' and the closed status will indicate 'open'. The next HPC\_ON will automatically open the shutter.

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spvfum24            |                                 | Page:  | 102          |

Note on the status :

On the shutter, there are two kinds of position detection which are totally separated.

The first one based on microswitches controls internally the motor and the motion. No interface, no status with the spacecraft .

The second one based on ILS (magnetic system: magnet on the rotating axis) provides only the status of the position and is returned to the spacecraft. These statuses are used for this procedure.

As the two position detection ( for motion and interface status ) are totally separate and due to the hysteresis of the ILS system, interface status for one position can be detected before the stop motion or just after the beginning of motion.

Small mechanical adjustments are possible to reduce the delays between the two detection systems.

| SRD Command Logical Name<br>(VERDI NAME) | VERDI<br>NAME<br>(*) | Data<br>Acquisition<br>Type | Engineer<br>ing Value | Raw<br>Value<br>Hex |
|------------------------------------------|----------------------|-----------------------------|-----------------------|---------------------|
| SPICAV_shutter_open_ST_N                 | NDAD<br>0526         | bit                         | "O_NO<br>K"<br>"O_OK" | 1<br>0              |
| SPICAV_shutter_open_ST_R                 | NDAD<br>0626         | bit                         | "O_NO<br>K"<br>"O_OK" | 1<br>0              |
| SPICAV_shutter_closed_ST_N               | NDAD<br>0527         | bit                         | "C_OK"<br>"C_NOK<br>" | 0<br>1              |
| SPICAV_shutter_closed_ST_R               | NDAD<br>0627         | bit                         | "С_ОК"<br>"С_NOK<br>" | 0<br>1              |

(\*) Name provided in RID, not checked by Spicav

#### **Procedure to be implemented in the CDMU software:**

If RTU A = safe then all statuses and LCLs shall be via RTU A

Else all statuses and LCLs shall be via RTU B

and

Note: in the following, X represents A or B to indicate "RTU A" or "RTU B".

Note : when this procedure starts, DMSOT has already performed:

- switch OFF LCL A -> SPICAV shutter A
- switch OFF LCL B -> SPICAV shutter B

If  $SPICAV_shutter_closed_ST_X = C_NOK$ 

 $SPICAV_shutter_open_ST_X = O_OK$ 

Then perform the following steps:

(this is the case when shutter is open)

- Switch off SPICAV shutter A (HPC\_OFF) ٠
- Switch off SPICAV shutter B (HPC\_OFF)

(the above commands are in case previous HPC\_ON was not followed by a HPC\_OFF)

- Switch on LCL A -> SPICAV shutter A, via RTU X (DML\_ON) •
- Switch on LCL B -> SPICAV shutter B, via RTU X (DML\_ON) •
- Wait 5 sec •
- Switch on SPICAV shutter A (HPC\_ON to close the shutter) •
- Switch on SPICAV shutter B (HPC\_ON to close the shutter)
- Wait 60 sec •
- Switch off SPICAV shutter A (HPC\_OFF) .
- Switch off SPICAV shutter B (HPC\_OFF) •
- If SPICAV\_shutter\_closed\_ST\_X = C\_NOK and •  $SPICAV_shutter_open_ST_X = O_OK$ 
  - Then perform the following steps

( this case is applied when, previoulsy, the shutter status was detected open while the shutter was not totally open. Due to separate detection system for motion, opening has been previously finished. Another motion is needed to close the shutter)

- Switch on SPICAV shutter A (HPC\_ON to close the shutter)
- Switch on SPICAV shutter B (HPC\_ON to close the shutter)
- Wait 60 sec
- Switch off SPICAV shutter A (HPC\_OFF)
- Switch off SPICAV shutter B (HPC\_OFF)
- Else do nothing ٠
- Switch off LCL A -> SPICAV shutter A, via RTU X (DML\_OFF)
- Switch off LCL B -> SPICAV shutter B, via RTU X (DML\_OFF)

| Else if | SPICAV_shutter_closed_ST_X = C_NOK | and | SPICAV_shutter_open_ST_X = O_NOK |
|---------|------------------------------------|-----|----------------------------------|
| Then    | perform the following steps:       |     |                                  |

(this is the case when shutter is not open and not closed, i.e. closure or opening have been aborted before end. For the next HPC ON, priority has been given to opening)

Switch off SPICAV shutter A (HPC\_OFF)

| Service d'Aéronomie | Venus Express                   | Ref:   | SPV-DES-032  |
|---------------------|---------------------------------|--------|--------------|
|                     | Spicav                          | Issue: | 003 Rev 1    |
|                     | Flight User / Operations Manual | Date:  | Aug 08, 2005 |
| Spvfum24            |                                 | Page:  | 104          |
| Switch off SPICAV   | / shutter B (HPC_OFF)           |        |              |

(this is in case previous HPC\_ON was not followed by a HPC\_OFF)

- Switch on LCL A -> SPICAV shutter A, via RTU X (DML\_ON)
- Switch on LCL B -> SPICAV shutter B, via RTU X (DML\_ON)
- Wait 5 sec
- Switch on SPICAV shutter A (HPC\_ON to open the shutter)
- Switch on SPICAV shutter B (HPC\_ON to open the shutter)
- Wait 60 sec
- Switch off SPICAV shutter A (HPC\_OFF)
- Switch off SPICAV shutter B (HPC\_OFF)
- if SPICAV\_shutter\_closed\_ST\_X = C\_NOK and SPICAV\_shutter\_open\_ST\_X = O\_OK
  - Then perform the following steps

(this case is applied when the shutter is open after the previous operation. Second motion would not be applied if, for an unknown reason, the shutter has not been totally opened)

- Switch on SPICAV shutter A (HPC\_ON to close the shutter)
- Switch on SPICAV shutter B (HPC\_ON to close the shutter)
- Wait 60 sec
- Switch off SPICAV shutter A (HPC\_OFF)
- Switch off SPICAV shutter B (HPC\_OFF)
- Else do nothing
- Switch off LCL A -> SPICAV shutter A, via RTU X (DML\_OFF)
- Switch off LCL B -> SPICAV shutter B, via RTU X (DML\_OFF)

Else if  $SPICAV_shutter_closed_ST_X = C_OK$  and  $SPICAV_shutter_open_ST_X = O_OK$ Then perform the following steps:

(this is the case when shutter is closed and open, i.e. anomaly in the position detection; the position is unknown)

- Switch off SPICAV shutter A (HPC\_OFF)
- Switch off SPICAV shutter B (HPC\_OFF)
   (this is in case previous HPC\_ON was not followed by a HPC\_OFF)
- Switch on LCL A -> SPICAV shutter A, via RTU X (DML\_ON)
- Switch on LCL B -> SPICAV shutter B, via RTU X (DML\_ON)

| Service d'Aéronomie    | Venus Express<br>Spicav<br>Flight User / Operations Manual | Ref:<br>Issue:<br>Date: | SPV-DES-032<br>003 Rev 1<br>Aug 08, 2005 |
|------------------------|------------------------------------------------------------|-------------------------|------------------------------------------|
| Spvfum24               |                                                            | Page:                   | 105                                      |
| • Wait 5 sec           |                                                            |                         |                                          |
| • Switch on SPICAV s   | hutter A (HPC_ON to open the shutter)                      |                         |                                          |
| • Switch on SPICAV s   | hutter B (HPC_ON to open the shutter)                      |                         |                                          |
| • Wait 60 sec          |                                                            |                         |                                          |
| • Switch off SPICAV s  | hutter A (HPC_OFF)                                         |                         |                                          |
| • Switch off SPICAV s  | hutter B (HPC_OFF)                                         |                         |                                          |
| • if SPICAV_shutter_c  | $closed_ST_X = C_NOK$ and $SPICAV_shutter$                 | $_{open_ST_X = O_0}$    | ЭK                                       |
| • Then perform the     | e following steps                                          |                         |                                          |
| ( this is the case whe | re the shutter is open after the first operation           | on, shutter to be       | closed)                                  |
| • Switch on SPICA      | AV shutter A (HPC_ON to close the shutter                  | r)                      |                                          |
| • Switch on SPICA      | AV shutter B (HPC_ON to close the shutter                  | <i>:</i> )              |                                          |
| • Wait 60 sec          |                                                            |                         |                                          |
| • Switch off SPICA     | AV shutter A (HPC_OFF)                                     |                         |                                          |
| • Switch off SPICA     | AV shutter B (HPC_OFF)                                     |                         |                                          |
| • Else do nothing      |                                                            |                         |                                          |

- Switch off LCL A -> SPICAV shutter A, via RTU X (DML\_OFF)
- Switch off LCL B -> SPICAV shutter B, via RTU X (DML\_OFF)

Otherwise do nothing.

Notes : There is nothing to do when Shutter is already closed

The case when both statuses show OK (i.e. closed and open) is not considered.

## **Recall of Used SPICAV Commands**

|                             |                                |                 | Command |         |
|-----------------------------|--------------------------------|-----------------|---------|---------|
| Command                     | VERDI LNAME                    | Name (*)        | Туре    | RTU I/O |
| switch off LCL A ->         | SPICAV_shutter_A (LCL_26A OFF) | PPWM2291        | DML     | A/B     |
| SPICAV_shutter_A            |                                |                 |         |         |
| switch off LCL B ->         | SPICAV_shutter_B (LCL_26B OFF) | PPWM2239        | DML     | A/B     |
| SPICAV_shutter_B            |                                |                 |         |         |
| switch on LCL A ->          | SPICAV_shutter_A (LCL_26A ON)  | PPWM2213        | DML     | A/B     |
| SPICAV_shutter_A            |                                |                 |         |         |
| switch on LCL B ->          | SPICAV_shutter_B (LCL_26B ON)  | PPWM2161        | DML     | A/B     |
| SPICAV_shutter_B            |                                |                 |         |         |
| switch off SPICAV shutter   |                                |                 |         | А       |
| А                           | SPICAV SHUT OFF                | <b>PSIG8600</b> | HPC8    |         |
| switch off SPICAV shutter B | SPICAV SHUT OFF                | <b>PSIG8600</b> | HPC136  | В       |
| switch on SPICAV shutter A  | SPICAV SHUT ON                 | PSIG8601        | HPC9    | А       |
| switch on SPICAV shutter B  | SPICAV SHUT ON                 | PSIG8601        | HPC137  | В       |
|                             |                                |                 |         |         |

(\*) Name provided in RID, not checked by Spicav

\*\*\*\*\*\*