Service d'Aéronomie du CNRS

[Mars Express]-[SPICAM]

To Planetary Science Archive Interface Control Document

SA_MEX_ARCH_002

Issue 002

04 August 2010

Prepared by: Aurélie REBERAC

Approved by: Franck MONTMESSIN

: SA_MEX_ARCH_002 : 002 : 21 July 2009 : 2 Document No. Issue

Date

Page

Change Log

Date	Sections Changed	Reasons for Change
26/09/2004	3.1.1.3 to 3.1.1.7	Need updating and rewording after the new release concept document received on 15 th September
26/09/2004	3.1.4.1 Geometry filenaming convention	remove one letter to the geometry filename
26/09/2004	3.1.4.2 deleted	According to the new release concept document received on 15 th September
27/09/2004	3.2.2	Updated – include description of the spacecraft clock format
28/09/2004	3.4.3.6	This section was empty
15/10/04	2.3.2	Section reworded, separate paragraphs for UV and IR
15/10/04	2.4	Sections 2.4.1, 2.4.2, 2.4.3 and 2.4.5 were empty
15/10/04	3.1.3	Data directory naming change
15/10/04	3.4.3.7 to 3.4.3.10	Reworded
27/10/04	2.4.1 to 2.4.3	Completed
27/10/04	3.4.3.10	Reworded
27/10/04	Section 5 deleted	No software
05/01/05	1.7	Remove Npev and pev abbreviations (no more used)
	2.1	Add sentence to specify that the IR channel has 2 detectors.
	2.3.2.3	Add more details about processing of level 0B IR data
	4.1 and sub-sections	Delete sections 4.1.2 to 4.1.5 which were empty
		Update new section 4.1.2 which is now data product design of 0BIR data product
	2.4.1,3.1.1.2, 3.4.3.8	Update this section concerning IR calibration.

: SA_MEX_ARCH_002 : 002 : 21 July 2009 : 3 Document No. Issue

Date

Page

21/01/05	2.3.2.2.a, 2.3.2.3b, 2.4.4, 3.4.3.10	Sections updated according to modifications made on the MEXSPI 0AUV and MEXSPI 0BIR
	2.4.1, 3.1.1.2, 3.4.3.8	archive volumes (documentation filename modified, and a CALIB directory added in the MEXSPI_0AUV archive volume)
17/02/05	2.4.3	Remove reference to SBN software as a solution to read the data
24/02/05	4.1.1	Update section according to updated data label file
12/04/05	4.1	Modification of the data representation in the UV and IR label files
	2.1 3.1.1.2, 3.4.3.9	Add more information about the UV and IR operating modes
		Update sections according to the new directory LABEL in the UV data set.
	3.1.1.4	Update release concept examples
	2.4.6	Corrections and update of the web links
	2.4.3	Restore reference to SBN software as a solution to read the data – add examples
18/11/05	1.5	Add reference to the geometry and position information technical note
	3.4.4.3	Add information about the GEO_MARS.TAB geometry index file
	Appendix 5	Update the directory listing
27/07/07	3.1	Update VOLUME_ID and VOLUME_SET_ID of the data level 0 UV and IR SPICAM archive volume
		Use 2 digits for sequence number in the file name
		Use 2 digits in the MTP name directory
		Add "_QL" extension in the browse and label file
	3.4.3.6	
	4.1.2	Update of the UV/IR geometry product content
		Update of the IR data product desing and content
	4.1.3	Add TARGET_TYPE keyword
		Add DATA_QUALITY_ID keyword
		Add DATA_QUALITY_DESC keyword
27/07/2009	3.4.3.7	Software Directory section developed

: SA_MEX_ARCH_002 : 002 : 21 July 2009 : 4 Document No. Issue

Date

Page

04/08/10	1.7	Add LATMOS acronyms
	1.8	Update contact Names and Addresses
	2.4.3	Update UV data software

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page: 1

Table Of Contents

1	Intro	oduction	3
	1.1	Purpose and Scope	3
	1.2	Archiving Authorities	3
	1.3	Contents	
	1.4	Intended Readership	
	1.5		
		Applicable Documents	
	1.6	Relationships to Other Interfaces	
	1.7	Acronyms and Abbreviations	4
	1.8	Contact Names and Addresses	5
2	Ove	rview of Instrument Design, Data Handling Process and Data Product	6
	2.1	Instrument Design	6
	2.2	Scientific Objectives	
	2.3	Data Handling Process : SPICAM data processing, retrieval algorithms, and definitions of data leve	
	2.3.1		
	2.3.2		
	2.4	Overview of Data Products	12
	2.4.1		
	2.4.2		
	2.4.3		
	2.4.4	4 Documentation	_ 15
	2.4.5	5 Derived and other Data Products	_ 15
	2.4.6	6 Ancillary Data Usage	_ 15
3	Arcl	hive Format and Content	_ 17
	3.1	Format and Conventions	_ 17
	3.1.1	1 Deliveries and Archive Volume Format	
	3.1.2		
	3.1.3		_ 25
	3.1.4		_ 26
	3.2	Standards Used in Data Product Generation	_ 27
	3.2.1		_ 27
	3.2.2		_ 28
	3.2.3	Reference Systems	_ 29
	3.3	Data Validation	_ 30
	3.4	Content	30
	3.4.1		
	3.4.2		
	3.4.3	3 Directories	_ 30
4	Deta	ailed Interface Specifications	51
	4.1	Data Product Design	
	4.1.1	Data product design and example label of a 0AUV data product	51
	4.1.2		
	4.1.3		
5	Ann	endix: Example of Directory Listing of MEXSPI_0AUV archive volume	
_	PP		

Document No. : SA_MEX_ARCH_002 Issue : 002 Date : 21 July 2009 Page : 2

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page: 3

1 Introduction

1.1 Purpose and Scope

The purpose of this EAICD (Experimenter to (Science) Archive Interface Control Document) is two fold. First it provides users of the SPICAM instrument with detailed description of the product and a description of how it was generated, including data sources and destinations. Secondly, it is the official interface between the SPICAM instrument team and the archiving authority.

1.2 Archiving Authorities

The Planetary Data System Standard is used as archiving standard by

- NASA for U.S. planetary missions, implemented by PDS
- ESA for European planetary missions, implemented by the Research and Scientific Support Department (RSSD) of ESA

ESA implements an online science archive, the ESA's Planetary Science Archive (PSA),

- to support and ease data ingestion
- to offer additional services to the scientific user community and science operations teams as e.g.
 - search queries that allow searches across instruments, missions and scientific disciplines
 - several data delivery options as
 - direct download of data products, linked files and data sets
 - ftp download of data products, linked files and data sets

The PSA aims for online ingestion of logical archive volumes and will offer the creation of physical archive volumes on request.

1.3 Contents

This document describes the data flow of the SPICAM instrument on MARS EXPRESS from the s/c until the insertion into the PSA for ESA. It includes information on how data were processed, formatted, labeled and uniquely identified. The document discusses general naming schemes for data volumes, data sets, data and label files. Standards used to generate the product are explained. Software that may be used to access the product is explained further on.

The design of the data set structure and the data product is given. Examples of these are given in the appendix.

1.4 Intended Readership

Any potential user of the SPICAM data, and the staff of the archiving authority (Planetary Science Archive, ESA, RSSD, design team).

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page: 4

1.5 Applicable Documents

[1] Planetary Data System Preparation Workbook, February 17, 1995, Version 3.1, JPL, D-7669,Part1

- [2] Planetary Data System Standards Reference, August 1, 2003, Version 3.6, JPL, D-7669, Part 2
- [3] MARS EXPRESS Archive Generation, Validation and Transfer Plan, [ESA-MEX-TN-4009, Issue 1.0, June 2001]
- [4] Planetary Science Archive. Experiment Data Release Concept. Technical proposal SOP-RSSD-TN-015
- [5] Instruments to Planetary Science Archive End-to-End Test. ME-EST-PL-13128, Issue 2.1, 27 April 2004.
- [6] Planetary Science Data Archive Technical Note. Geometry and Position Information. SOP-RSSD-TN-010

1.6 Relationships to Other Interfaces

Changes in the standard SPICAM data products would require changes to this document.

1.7 Acronyms and Abbreviations

DC Dark Current

DDS Data Disposition System
DPU Dedicated Processor Unit

EAICD Experimenter to (Science) Archive Interface Control Document

IASB Institut d'Aéronomie Spatiale de Belgique

IKI Institute Kosmitcheski Isledovanie

IR Infra Red

LATMOS Laboratoire Atmosphères, Milieux, Observations Spaciales

MPS Mission Planning System

N/A Not Applicable

PDS Planetary Data System
PSA Planetary Science Archive
SA Service d'Aéronomie, CNRS

SPICAM Spectroscopy for the Investigation of Characteristics of the Atmosphere of Mars

SIR Spicam Sensor IR

SU Sensor Unit

SUV Spicam Sensor UV
TC Telecommand
TM Telemetry
UV Ultra Violet

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page : 5

1.8 Contact Names and Addresses

Data preparation and final products delivery into the PSA are provided by the SPICAM staff at Service d'Aéronomie (SA), France (now LATMOS, GUYANCOURT, France).

MONTMESSIN Franck

SPICAM Principal Investigator	33 (0) 1 80 28 52 85	franck.montmessin@latmos	LATMOS,
,	33 (0) 1 60 26 52 65	.ipsl.fr	CNRS

REBERAC Aurélie

Mission Planning & Operations			
Data Validation & Archiving	33 (0) 1 80 28 50 43	Aurelie.reberac@latmos.ips l.fr	LATMOS CNRS

Software Engineer

LACOMBE Gaetan

Mission Planning & Operations	33 (0) 1 80 28 51 52	gaetan.lacombe@latmos.ip	LATMOS,
Data Validation & Archiving		sl.fr	CNRS

Software Engineer

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page : 6

2 Overview of Instrument Design, Data Handling Process and Data Product

2.1 Instrument Design

SPICAM Light is collaboration between Service d'Aéronomie, Verrières le Buisson, France, IASB, Brussels, Belgium, and IKI, Moscow, Russia.

The SPICAM Light instrument is made of 2 boxes as depicted below. The first box called DPU (Data processing Unit) acts as the main electronic interface with the Spacecraft. The other is the sensor box or unit. This sensor unit (SU) has one channel in the ultraviolet wavelength range 118-320 nm (named SUV), and another one (named SIR) in the near infrared wavelength range 1.1-1.7 μ m.

See the INST.CAT catalog file in the CATALOG directory of each dataset for more details about all the technical details concerning the Spicam instrument. The mechanical and electrical characteristics are listed. The optical interfaces with spacecraft and the fields of view are explicited. The following table gives a summary of the main characteristics of the instrument.

Summary of SPICAM Light main characteristics

Spectral bands	118 - 320 nm (UV)		
	1.1 - 1.7 μm (IR)		
Spectral sampling	UV: 0.55 nm/pix		
	IR: 0.8 nm/pix at 1.5 μm		
Mass	DPU 0.71 kg		
	SU 4.14 kg Total 4.85 kg		
Power	DPU+SU 17 W to 26 W		
Volume	DPU: $1.65 \times 1.14 \times 0.65 \text{ dm}^3$		
	SU: $4 \times 2.4 \times 1.15 \text{ dm}^3$		
Data rate	9 and 34 kbit/s (averaged over several seconds)		
Data Volume	100 - 300 Mbits / day		
Observations	One Board Time TC, One Spicam TC		
	Duration: 5 to 40 mn		
Pointing (orientation)	Inertial Star, Sun, Limb		
	Nadir		

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page: 7

2.1.1 UV detector unit

The UV detector is made of 3 parts: a CCD (Thomson 7863) camera, an intensifier (Hamamatsu) coupled to the CCD by fiber optics, and a programmable high voltage for the intensifier. The CCD is made of 288 photon sensitive rows and each row is made of 408 pixels. The rows direction is the spectral dimension.

When observing an extended source (dayside nadir viewing, or limb measurements, dayside star occultation), a slit is mechanically put into place at the focus of the parabolic mirror, which isolates a corresponding field of view. The shape of the slit, perpendicular to the dispersion plane, is composed of two parts: a wide slit (about 500 μ m wide) and a narrow slit (50 μ m wide). The image of the narrow slit covers CCD lines from 0 to 200, and is used for maximum spectral resolution (1 pixel covers 0.54 nm), while the wide slit is achieving a higher photometric sensitivity, at the expense of a reduced spectral resolution (factor of 10).

For each measurement, the UV detector records a window of 5 bands of the CCD (telemetry rate constraint). The bands can be elementary pixels (each band is made of one physical CCD row) or binned pixels (each band is made of binned rows (2,4,8,16 or 32 rows)). Moreover the binning can be different for each band (progressive binning). The position of the first row read is programmable.

Considering this, various operating modes can be used (Figure 1). A first mode, named alignment mode, allows a complete image of the CCD. At each measurement the position of the 5 bands read is changed.

Two other modes consist in reading the same five bands of the CCD during an observation. In the binning mode, each band is a sum of an identical number of rows, while in the third mode the binning is progressive.

For each of these three modes, the slit can be ON (modes named ALIGN_S, BINNING_S and BINNINGP_S) or OFF (modes named ALIGN, BINNING and BINNINGP).

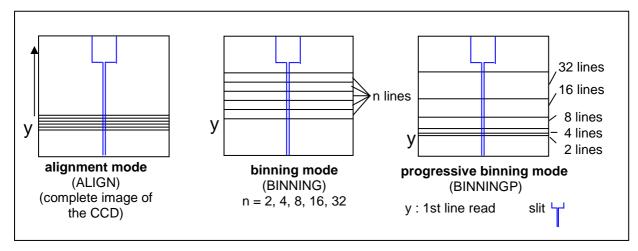


Figure 1. UV detector operating modes

2.1.2 IR channel unit

The SPICAM infrared channel is based around a scanning acousto-optical tuneable filter (AOTF), which is able to scan frequencies from 84 to 148 MHz.

Spectra acquisition can be done on one, two or three frequency windows defined via the telecommand by a start frequency, a number of points and a frequency step. Along with spectrum measurement in three frequency windows a set of spectrum dots can be obtained during measurement cycle. Each dot represents a few adjacent spectrum points and can be viewed as a small window with predefined starting frequency, points number and frequency step.

The infrared channel has two detectors with different polarization, which can be activated at the same time and for the same wavelength range.

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page: 8

2.2 Scientific Objectives

The suite of measurements of SPICAM Light in the various available observation modes is addressing key questions of the atmosphere of Mars, including its present state, the global climate today, and the atmospheric climatic evolution of the planet.

Chemistry: Simultaneous measurements of O₃ and H₂O will allow validating and/or modifying chemistry models, from which will be derived an assessment of the oxidation environment (effect of solar UV, O₃, H₂O₂, O, on minerals and oxidation molecules).

Structure/Dynamics/Meteorology: Vertical profiles of density / temperature (20-160 km) will provide unique information about the global structure and dynamics of the atmosphere, in particular in the altitude region crucial for aerocapture and aerobraking, and a better understanding of meteorological systems.

Clouds/dust/aerosols: Occultation measurements will allow the detection, measurement and characterization of the physical nature of aerosols, dust particles, and their vertical distribution.

lonosphere/escape rate: Vertical profiling of daylight aeronomic emissions (H, C, O, CO, CO₂⁺) will allow to adjust a comprehensive model of the ionosphere, from which an estimate of escape processes may be derived (evolution of the atmosphere), and to study the interaction with the solar wind.

In order to fulfill the previous scientific objectives, there are four configurations summarized below:

Sensor	Mode	Expected results
UV+IR	Stellar occultation	Temperature, density vertical profiles
UV+IR	Solar occultation	Temperature, density vertical profiles
UV+IR	Nadir	Total column abundances
UV+IR	Limb emissions	Vertical profiling of aeronomic emissions

The following table summarizes for the key atmospheric constituents measurable by SPICAM, the observation mode (occultation, nadir, and limb) according to the scientific objective, and the accuracy achieved after processing, in the altitude range given.

Species	Measurements			Accuracy	Altitude range
	Scientific objective	Mode (occultation, nadir, limb)	Spectral range		
О3	Concentration vertical profile	Stellar / Solar occultation	220 –300 nm	2 – 10 %	10 – 50 km
03	Total abundance	Nadir	220 –300 nm	5 % (>0.15 μ–atm)	N.A.
CO ₂	Atmospheric density and temperature vertical profile	Solar / Stellar occultation	180 nm	2 – 10 % 5 K	20 – 160 km
Aerosols	Vertical profile of characteristics	Solar / stellar	UV	metric)	5 – 60 km

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page: 9

O ₂	Concentration	Stellar occultation	200 nm	20 %	35 – 90 km
	vertical profile				(never done before)
Н, С, О,	Vertical profiling of	Limb emission	118– 320 nm	20 %	80 – 400 km
CO ₂ +,CO	aeronomic emissions				
H ₂ O ₂	Total abundance	Nadir	210 nm	20 %	Never done before
SO ₂	Total abundance	Nadir	220 nm		Tentative
CO_2	Surface pressure	Nadir	200 nm	0.2 mbar	N.A.
			1.43 µm	0.05 mbar	
Н2О	Total abundance	Nadir	1.38 µm	0.2. pr. μm	5 x 5 km ground
				(detectable)	
Aerosols	Mapping of	Spectro polarimetry	1.2 to 1.7 μm	10-3	Exploratory
	properties	in nadir		(=photometric)	
Soil	surface studies	Spectro polarimetry	1.2 to 1.7 μm	10-3	5 x 5 km ground
		in nadir	·	(=photometric)	C

Table 1.Derived science data products

2.3 Data Handling Process : SPICAM data processing, retrieval algorithms, and definitions of data levels

2.3.1 SPICAM data processing, retrieval algorithms.

The SPICAM data collected between each switch ON and switch OFF of SPICAM will be transferred to ESOC and stored at ESOC on the Data Dissemination System (DDS) in Darmstadt (Germany). It will be then transferred via ftp from the DDS to Service d'Aéronomie.

All new data files and the processed data up to level 2 will be collected at Service d'Aéronomie.

Retrieval algorithms and softwares which will be used throughout the processing steps from level to level are under development and should be written in IDL.

2.3.2 Definitions of data levels

2.3.2.1 <u>Level 0 data</u>

This is the SPICAM data collected by ESOC and stored on the DDS. One ESOC file contains both UV and IR data. One observation, containing all the data collected between Switch ON and switch OFF of SPICAM, which is operated in a single mode during this time, may be spread over several ESOC generated files. SA does NOT intend to archive this Level 0 data, since it is the role of ESOC to do it.

Starting from level 0 data, ESA packets are disassembled and reformatted to build level 0A data files. Level 0A assembles one single file per SPICAM observation and per sensor (UV or IR). In the following, the different SPICAM data levels will be described by sensor, the data processing being different for UV and IR data, and also different for the mode of observation (star, sun, nadir, limb).

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page: 10

2.3.2.2 UV data

The following table summarizes the different UV data products which should be available in the SPICAM archive in the present time.

Level	0A*	1A	1B	2
Star	Χ	NULL	NULL	NULL
Sun	Х	NULL	NULL	NULL
Nadir	Х	NULL	NULL	NULL
Limb	Χ	NULL	NULL	NULL

* : data files + associated browse and geometry files

X : available

NULL: under processing. Product not yet available.

The different SPICAM UV data products available are described in the following sections. The other data products will be described as soon as they will be available.

2.3.2.2.a Level 0A UV data

The processing from level 0 to level 0A includes the following features:

- the data are not modified : starting from level 0 data, ESA packets are disassembled and reformatted to build level 0A data files.
- a header is added to each record to comply to our requirement. A description of the header is given in the SPICAM_UVDATAFILE_DESC.TXT file in the DOCUMENT directory.
- a UTC time (DDS time) is added in the header. The time of observation is defined in the SPICAM_UVCALIB_DESC.TXT file in the DOCUMENT directory.

A level 0A UV data file contains then all records of a UV SPICAM observation, each record consisting of the SPICAM header followed by the data table, in binary format. Data are in ADU units (Analog to Digital Units). A description of the UV data files is given in the SPICAM_UVDATAFILE_DESC.TXT file in the DOCUMENT directory or in section 4.1.1 of this document. In summary, each UV data table consists of 5 bands selected on the CCD. Each band can be one physical row of the CCD or several physical rows by on chip binning processing (selectable by telecommand). Several operating mode were used for the observations on the Mars Express spacecraft. The different SPICAM UV operating modes are described in the SPICAM_UVMODE_DESC.TXT file in the DOCUMENT directory.

The SPICAM level 0A corresponds with the PDS CODMAC level 2 (edited data or Experimental Data Record (EDR)).

Associated to the level 0A UV data files, the SPICAM team will provide quicklook images (browse files) and geometry files. A description of the geometry files is given in the SPICAM_GEOMETRY_DESC.TXT file in the DOCUMENT directory, as well as in section 3.4.3.6.b of this document.

2.3.2.2.b Level 1A UV data

The SPICAM level 1A should correspond with the PDS CODMAC level 2. Under processing.

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page : 11

2.3.2.2.c Level 1B UV data

The SPICAM level 1B should correspond with the PDS CODMAC level 3 (calibrated data). Under processing.

2.3.2.2.d Level 2 UV data

Level 2 data will consist in derived science data products (see Table 1). The SPICAM level 2 will correspond with the PDS CODMAC level 5 (derived data).

Under processing.

2.3.2.3 IR data

The following table summarizes the different IR data products which should be available in the SPICAM archive in the present time.

Level Mode	0A	0B*	1A	1B	2
Star	-	Х	NULL	NULL	NULL
Sun	-	Х	NULL	NULL	NULL
Nadir	-	Х	NULL	NULL	NULL
Limb	-	Х	NULL	NULL	NULL

: not archivedX : available

NULL : under processing. Product not yet available.* : data files + associated browse and geometry files

The different SPICAM IR data products available are described in the following sections. The other data products will be described as soon as they will be available.

2.3.2.3.a Level 0A IR data

The processing of IR data from level 0 to level 0A is similar to the processing of UV data:

- the data are not modified : starting from level 0 data, ESA packets are disassembled and reformatted to build level 0A data files.
- a header is added to each record.
- a UTC time (DDS time) is added in the header.

An infrared measurement requires several communication sessions to collect and transmit measurement data (a spectrum) from the two IR detectors. Therefore, in level 0A IR data file, a record corresponds to one communication session (one part of a spectrum) from the two detectors. Moreover, spectrum measurement can be done on three frequency windows, characterized by 3 parameters: FREQUENCY, POINTS and STEP. Along with spectrum measurement in three frequency windows a set of spectrum dots can be obtained during measurement cycle. Each dot represents a few adjacent spectrum points and can be viewed as a small window with predefined starting frequency, points number and frequency step. Height various sets of spectrum dots are predefined, with the possibility of 'no dots' measurement configuration.

To facilitate the use of infrared raw data, the SPICAM team will provide level 0B IR data files in which spectra will be reconstructed for each detector. Level 0A IR data files will not be archived with the PSA, but only at Service d'Aéronomie.

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page: 12

2.3.2.3.b Level 0B IR data

A level 0B IR data file will contain all reconstructed spectra of an IR SPICAM observation collected by the two detectors of the infrared channel. All other relevant information (parameters of the command, frequency array, system monitor's values...) will be also included in the file.

A description of the IR data files will be given in the SPICAM_IRDATAFILE_DESC.TXT file in the DOCUMENT directory or in section 4.1.2 of this document.

The SPICAM IR level 0B corresponds with the PDS CODMAC level 2 (edited data or Experimental Data Record (EDR)).

Associated to the level 0B IR data files, the SPICAM team will provide quicklook images (browse files) and geometry files. A description of the geometry files is given in the SPICAM_GEOMETRY_DESC.TXT file in the DOCUMENT directory, as well as in section 3.4.3.6.b of this document.

2.3.2.3.c Level 1A IR data

The SPICAM level 1A should correspond with the PDS CODMAC level 2. Under processing.

2.3.2.3.d Level 1B UV data

The SPICAM level 1B should correspond with the PDS CODMAC level 3 (calibrated data). Under processing.

2.3.2.3.e Level 2 UV data

Level 2 data will consist in derived science data products (see Table 1). The SPICAM level 2 will correspond with the PDS CODMAC level 5 (derived data).

Under processing.

2.4 Overview of Data Products

2.4.1 Instrument Calibrations

All information about calibration is related to flight model. Information needed to calibrate the UV and IR data are given in the SPICAM_UVCALIB_DESC.TXT and SPICAM_IRCALIB_DESC.TXT files respectively, in the DOCUMENT directory. These documents explain how the in-flight calibration is done for the various mode of observation for the UV and IR sensor.

For example, for UV data it gives information on :

- the exact timing of the data,
- temperatures,
- how to evaluate the dark current for the various mode,
- the wavelength assignment for the various mode,
- photometry.

Calibration files mentioned in SPICAM_UVCALIB_DESC.TXT or SPICAM_IRCALIB_DESC.TXT files are available in the CALIB directory of the corresponding MEXSPI_0AUV, MEXSPI_0BIR archive volume.

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page: 13

2.4.2 In-Flight Data Products

During the active mission UV and IR data from the CRUISE and MARS NOMINAL phases will be collected. A data set will be defined for each sensor (UV or IR) and for each data product level (level 0A, 1A, 1B and 2). Therefore, the SPICAM volume set will consist of 8 data volumes containing a single data set.

At the moment, the UV 0A dataset contains the accumulation of data products, associated browse and geometry files, and documentation, needed to understand and use the observations.

2.4.3 Software

The ESA packets (level 0) are processed at Service d'Aéronomie by the SPICAM team for technological verification and SPICAM level 0A data files and associated geometry files are produced:

- ESA packets are disassembled by sensor (UV, IR) and by observations (ON/OFF)
- Geometric parameters are generated with a SPICAM software using SPICE routines and SPICE kernels.

At the present time, we do not intend to archive software. All information needed to read the data file will be given in the SPICAM_UVDATAFILE_DESC.TXT or SPICAM_IRDATAFILE_DESC.TXT file in the DOCUMENT directory.

The SPICAM UV Level 0A and SPICAM IR Level 0B data can be read using the new version SBN (Small Bodies Node) software written in IDL as available for download in April 2005 from http://pdssbn.astro.umd.edu/nodehtml/software.shtml. These packages are intended primarily for end-users of PDS data. An examples directory is included with the distribution. It can be downloaded separately or as part of the complete package.

Below are examples on how to use and plot the UV and IR data with IDL after being read by the SBN software.

UV data

PRO readPDS_SPICAM_UV

```
;select a data label file *.LBL
  fn = dialog_pickfile(PATH=datapath)
  data = readpds(fn)
   ;The header_array contains detector parameters values and time of observation
   ; example to access the header_array of the first and the last record
  first_header_array = data.record_array[0].one_spicam_uv_record.header_array
  nb records = N_ELEMENTS(data.record_array)
  last_header_array = data.record_array[nb_records-1].one_spicam_uv_record.header_array
      code_op = first_header_array[40] ;operating code (100:full CCD - 101/102:5 bands)
      binning = first_header_array[46] ;binning (number of ccd lines analogically
summed, 0 = progressive binning)
      nlig = first_header_array[45]
      ncol = first_header_array[44]
  print, 'TIME_EXPOSURE', first_header_array[41] ; exposure time
  print,'CODE_OP',code_op
  print, 'YO', first_header_array[43] ; first line of CCD read
  print, 'BIN', binning
  print,'FIRST TIME',first_header_array[60:66] ; UTC time of first measurement
  print, 'LAST TIME', last_header_array[60:66]
                                                ; UTC time of last measurement
   ; The data_array contains 5 CCD "bands" of 408 pixels
```


Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page: 14

```
; example to access the data_array of the first record
   first_data_array = data.record_array[0].one_spicam_uv_record.data_array
   ; In the BINNING or PROGRESSIVE BINNING mode, a temporal image can be obtained
   ; for each of the five bands.
   tempoimage_band1 = data.record_array.one_spicam_uv_record.data_array[*,0]
   tempoimage_band2 = data.record_array.one_spicam_uv_record.data_array[*,1]
   tempoimage_band3 = data.record_array.one_spicam_uv_record.data_array[*,2]
   tempoimage_band4 = data.record_array.one_spicam_uv_record.data_array[*,3]
   tempoimage_band5 = data.record_array.one_spicam_uv_record.data_array[*,4]
window,1
!p.multi = [0, 5, 1]
contour,tempoimage_band1,/fill,nlevels=30,xrange=[0,407],xstyle=1,title='band1',color=0,x
title='pixel'
contour,tempoimage_band2,/fill,nlevels=30,xrange=[0,407],xstyle=1,title='band2',color=0,x
title='pixel'
contour, tempoimage_band3, /fill, nlevels=30, xrange=[0,407], xstyle=1, title='band3', color=0, x
title='pixel'
contour,tempoimage_band4,/fill,nlevels=30,xrange=[0,407],xstyle=1,title='band4',color=0,x
title='pixel'
contour,tempoimage_band5,/fill,nlevels=30,xrange=[0,407],xstyle=1,title='band5',color=0,x
title='pixel'
END
IR data
PRO readSBN IR
 ;select a data label file *.LBL
 fn = dialog_pickfile()
 ; the SBN routines create a structure x containing all the data objects
 x = readpds(fn)
 ;first record (contains first spectrum recorded by the 2 detectors)
 record0 = x.record array[0].one spicam ir record
  print, "TIME", record0.year, record0.month, record0.day
 ;plot the first spectrum recorded by the 2 detectors as a function of frequency
  window,0
  plot, x.frequency_array,record0.data_array[*,0]
  oplot, x.frequency_array,record0.data_array[*,1]
  ;temporal image: a temporal image is obtained for each detector
  window,1
  image0 = x.record_array.one_spicam_ir_record.data_array[*,0]
  tvscale,image0; www.dfanning.com/programs/tvscale.pro
  window.2
```

tvscale,image1

image1 = x.record_array.one_spicam_ir_record.data_array[*,1]

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page: 15

2.4.4 Documentation

This document (EAICD) will be provided in the DOCUMENT directory in PDF format. An ASCII version of the EAICD with PNG files for drawings or tables referenced in it will be also available.

The SPICAM Flight User Manual (FUM) and other technical document which could be helpful to use data will be provided in the DOCUMENT directory in PDF or ASCII format only.

The following SPICAM documents will be present in the DOCUMENT directory of the MEXSPI_0AUV archive volume :

- SPICAM_UVDATAFILE_DESC.TXT:This document describes the contents of the UV data files which are delivered in the MEXSPI_0AUV archive volume.
- SPICAM_GEOMETRY_DESC.TXT: This document describes the contents of the geometry files which are delivered in the the MEXSPI_0AUV archive volume.
- SPICAM_UVCALIB_DESC.TXT: This document describes the calibration of the SPICAM UV data

which are delivered in the MEXSPI_0AUV archive volume.

- SPICAM_UVMODE_DESC.TXT: This document describes the different operating mode of the SPICAM

UV spectrometer.

- SPICAM_UVT31DOC.PDF: This document describes the calibration factors of the SPICAM UV

spectrometer channel.

The following SPICAM documents will be present in the DOCUMENT directory of the MEXSPI_0BIR archive volume :

- SPICAM_IRDATAFILE_DESC.TXT:This document describes the contents of the IR data files which are delivered in the MEXSPI_0BIR archive volume.
- SPICAM_IRCALIB_DESC.TXT: This document describes the calibration of the SPICAM IR data which

are delivered in the MEXSPI OBIR archive volume.

2.4.5 Derived and other Data Products

We do not intend to provide any other derived data or data products that result from co-operation with other instrument teams.

2.4.6 Ancillary Data Usage

SPICE files produced by PST/ESTEC in collaboration with NAIF/JPL from the Mars Express orbit files generated by ESOC will be used in our data processing chain, in particular to generate geometry files. SPICE files are available from the following file servers:

At ESTEC FTP Server: ftp://solarsystem.estec.esa.nl/pub/projects/mex/data/spice/

At NAIF FTP Server: ftp://naif.jpl.nasa.gov/pub/naif/MEX

Available SPICE files are:

SPK spacecraft/planet/satellites/asteroids ephemeris data kernel files

2. EK event kernel – no EK available for MARS EXPRESS

3. CK C-matrix instrument attitude kernel files

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page: 16

4. LSK leap second kernel files
5. FK frame kernel files
6. IK instrument kernel files
7. PCK planetary constant kernel files

7. PCK planetary constant kernel files 8. SCLK spacecraft clock kernel files

Orbit numbering files, which are derived data product from the MEX kernel data set, are also available at ESTEC or NAIF FTP Servers (in the ORBNUM directory).

SPICE subroutines are also available at ftp://naif.jpl.nasa.gov/pub/naif/toolkit/ to help the use of these kernels and tutorials and documentation can be retrieved from http://naif.jpl.nasa.gov/naif/tutorials.html and http://naif.jpl.nasa.gov/naif/documentation.html.

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page: 17

3 Archive Format and Content

This section describes the format of SPICAM Archive Volumes. Data that comprise the archive will be formatted in accordance with Planetary Data System specifications [2].

3.1 Format and Conventions

3.1.1 Deliveries and Archive Volume Format

3.1.1.1 SPICAM Delivery Schedule

After a final check, the processed data will be delivered to the co-Is and after the priority phase to PSA at ESTEC. The Service d'Aéronomie is the single point of contact for the PSA archive team and for data distribution (during priority phase).

Deliveries to the PSA will be made by the SPICAM archive team lead by the PI F Montmessin. Data should be delivered in the long term by mission phases scheduled by MPS. Target date for delivery of SPICAM raw data (level 0A) to PSA is 9 months after the last data of a specific Mars mission phase. Level 1A and 1B data will be delivered at the same time or as soon as the data products are ready and validated by the SPICAM team. The level 2 scientific data set will be available to the public after the first major publication of this data set.

An approximate SPICAM archive volume delivery schedule, based on the nominal science mission timeline, is shown below.

Mission phase	date	Delivery date	Data type
Cruise Commissioning			
Near-Earth Commissioning	June/July 2003	January 2005	Level 0A,1A
Cruise Commissioning	July/October 2003	January 2005	Level 0A,1A
Mars Commissioning Mars Orbit Commissioning Phase	January-May 2004	Jan-Feb 2005	Level 0A,1A,1B
(MOCP, orbits 0001-0482)			
Mission Term Planning			
MTP1 (orbits 0483-0582)	June 2004	9 months after last observation	Level 0A,1A,1B
MTP2 (orbits 0583-0683)	July 2004	9 months after last observation	Level 0A,1A,1B
Following phases	Scheduled by MSP	9 months after last observation	Level 0A,1A,1B

3.1.1.2 Archive Volume Format and Concept of Deliveries

The SPICAM archive volume is organized according to the PDS standard for "one data set, one volume", each archive volume corresponding to a specific SPICAM data level as defined in section 2.3.2 (level 0A, level 1A, level 1B, ...) and to a specific type of data (UV or IR) (). Each SPICAM archive volume has the name of the VOLUME_ID (section 3.1.1.3).

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page: 18

In each archive volume, the following standard directories may be included:

CATALOG PDS catalog files

INDEX Indices to assist in locating data of interest

GEOMETRY Files describing the observational geometry

BROWSE Reduced resolution versions of data products

DATA Contains one or more subdirectories of data products. The DATA subdirectory is used to

unclutter the root directory of a volume by providing a single entry point to multiple data subdirectories. This directory will contains data and detached label files, and also include

files (*.FMT).

DOCUMENT Documentation, supplementary and ancillary information to assist in understanding and

using the data products.

CALIB Calibration files to process the data

Currently, there is SOFTWARE directory only in the UV dataset. This may be updated and completed in the future.

In the ROOT directory of each archive volume, 2 files give an overview of the archive volume in ASCII format (AAREADME.TXT file) and a description of the volume in PDS format (VOLDESC.CAT file).

SPICAM ARCHIVE volume set: SPICAM_ARCHIVE SPICAM archive volumes: MEXSPI 1001 MEXSPI_1002 (UV,0A) (IR,0B) VOLDESC.CAT, VOLDESC.CAT. AAREADME.TXT AAREADME.TXT **DATA DATA CATALOG CATALOG INDEX INDEX**

Figure 2 SPICAM volume set organization

Within the Planetary Science Archive (PSA) the archive volume represents an online delivery. **Deliveries are based on the concept of a release and a revision of a well-defined period of time**. This concept [4] allows the delivery of experiment data without the delivery of all supplementary information, that has already been delivered at the first initial delivery of a fully PDS compatible archive volume, containing the VOLDESC.CAT file and all necessary CATALOG, DOCUMENT, INDEX, DATA, etc directories and their

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page : 19

content. The usage of the release object is not fully compliant with the PDS standard 3.6, however the full data set itself is PDS compatible. This concept should be transparent to the end user.

3.1.1.3 VOLDESC.CAT file

The VOLDESC.CAT file gives a description of the archive volume in a PDS format. Figure 2 gives an example of an initial VOLDESC.CAT file of the MEXSPI_0AUV archive volume.

```
PDS_VERSION_ID
                              = PDS3
LABEL_REVISION_NOTE
                              = "2007-07-25"
RECORD_TYPE
                              = FIXED_LENGTH
RECORD_BYTES
                              = 70
RELEASE_ID
                              = 0001
                               = 0000
REVISION ID
OBJECT
                              = VOLUME
                           = "MISSION TO MARS"
= "MARS EXPRESS SPICAM DATA I
= FR_IPSLCNRS_SA_MEXSPI_1000
  VOLUME_SERIES_NAME
  VOLUME_SET_NAME
                              = "MARS EXPRESS SPICAM DATA PRODUCTS"
  VOLUME SET ID
  VOLUME_NAME
                             = "VOLUME 1: SPICAM UV MARS EXPRESS
                                 DATA"
  VOLUME_ID
                             = MEXSPI_1001
 VOLUME_VERSION_ID
                           = 2
= 2007-07-25
  PUBLICATION_DATE
  VOLUMES
                             = 1
                             = "ONLINE"
= "ISO-9660"
  MEDIUM_TYPE
  VOLUME_FORMAT
  DATA_SET_ID
                       = "MEX-Y/M-SPI-2-UVEDR-RAWXCRU/MARS-V1.1"
  DESCRIPTION
                               = "This volume release contains Mars
                                  Express SPICAM UV Raw Data Products
                                  (level 0A), in ADU units, along
                                  with documentation and other
                                  ancillary information about the
                                  data products."
  OBJECT
                               = DATA_PRODUCER
                              = "SERVICE D'AERONOMIE, IPSL/CNRS,
    INSTITUTION_NAME
                                  FRANCE"
    FACILITY_NAME
                              = "N/A"
                              = "JEAN-LOUP BERTAUX"
    FULL NAME
                              = "N/A"
    DISCIPLINE_NAME
                               = "BP3
   ADDRESS TEXT
                                  91371 Verrieres le Buisson Cedex
                                  France"
  END_OBJECT
                              = DATA_PRODUCER
  OBJECT
                             = CATALOG
    ^MISSION CATALOG
                              = "MISSION.CAT"
    ^INSTRUMENT_HOST_CATALOG = "INSTHOST.CAT"
    ^INSTRUMENT_CATALOG = "INST.CAT"
                             = "DATASET.CAT"
= "PERS.CAT"
    ^DATA_SET_CATALOG
    ^PERSONNEL_CATALOG
    ^DATA_SET_RELEASE_CATALOG = "RELEASE.CAT"
    ^REFERENCE_CATALOG
                              = "REFS.CAT"
    ^TARGET_CATALOG
                              = "TARGET.CAT"
    ^SOFTWARE_CATALOG
                              = "SWINV.CAT"
  END_OBJECT
                               = CATALOG
END_OBJECT
                               = VOLUME
END
```

Figure 2 VOLDESC.CAT example for the initial release (RELEASE_ID=0001, REVISION_ID=0000)

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page : 20

3.1.1.3.a VOLUME_ID

The **VOLUME_ID** of a SPICAM archive volume is composed by combining the following fields, using abbrevations, and separated by underscores:

• The mission identifier (MEX), followed by the instrument identifier (SPI),

• A 4-digit sequence identifier for the volumes corresponding to different data level and sensor :

 $1001 \Rightarrow 0AUV$, $1002 \Rightarrow 0BIR$

For example, the VOLUME_ID of the data level 0A UV SPICAM archive volume is: MEXSPI_1001.

If a volume is redone because of errors in the initial production the volume ID should remain the same and the VOLUME_VERSION_ID incremented. This parameter is contained in the VOLDESC.CAT file on the volume.

3.1.1.3.b VOLUME SET ID

Each SPICAM archive volume is also identified by a **VOLUME_SET_ID** composed by combining the following fields, using abbrevations, and separated by indents:

• The country of origin, FR (FRANCE)

• The government branch,

IPSL-CNRS

 The discipline within the branch that is producing the archive, d'Aéronomie) SA (Service

 The VOLUME_ID MEXSPI_1001

For example, the VOLUME SET ID of the data level 0 UV and IR SPICAM archive volume is:

FR_IPSLCNRS_SA_MEXSPI_1000

3.1.1.3.c RELEASE_ID and REVISION_ID

A data set release (or volume release) contains data from a well-defined period of time and is identified by first a RELEASE_ID keyword. The first release (RELEASE_ID = 0001) is a fully validated, complete PSA dataset. A volume release is made of at least one revision : the initial revision. The initial revision contains the initial data of a data set release and is identified by a REVISION_ID equal to 0000. All labels within the first release will also contain the two keywords

RELEASE_ID = 0001 REVISION_ID = 0000

A following revision of the data set release (updated files, supplementary files, deleted files) would need the value of the REVISION_ID incremented by one (eg. RELEASE_ID = 0001, REVISION_ID = 0001). Labels of the updated files will have the two keywords

RELEASE_ID = 0001 REVISION ID = 0001

Any further release covering a following period of time would need the value of the RELEASE_ID incremented by one, with an initial revision (eg. RELEASE_ID = 0002, REVISION_ID = 0000). The new data labels will contain the keywords

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page : 21

RELEASE_ID = 0002 REVISION_ID = 0000

The VOLDESC.CAT file shall contain the keywords RELEASE_ID and REVISION_ID set to the lastest RELEASE ID and within this release to the latest REVISION ID.

3.1.1.3.d CATALOG object

The VOLDESC.CAT file contains a CATALOG object with pointers to catalog files stored in the CATALOG directory. Files in the CATALOG directory provide a top-level understanding of the mission, spacecraft, instruments, and data sets.

One of these files, the RELEASE.CAT catalog file, contains a release object, which fully define the releases and revisions of deliveries.

3.1.1.4 The release object

A release object needs to be included in each archive volume to fully describe each release and revision within this release. This object is not PDS-compliant.

Figure 3 gives an example of the RELEASE.CAT catalog file in the SPICAM UV level 0A (MEXSPI_0AUV) Archive Volume.

```
PDS_VERSION_ID
                          = PDS3
LABEL_REVISION_NOTE
                          = "A. REBERAC, 2005-01-21 (original)"
RECORD TYPE
                          = STREAM
RELEASE_ID
                           = 0001
REVISION ID
                           = 0000
                          = DATA_SET_RELEASE
DATA_SET_ID
                           = "MEX-Y/M-SPI-2-UVEDR-RAWXCRUISE/MARS-V1.0"
RELEASE_ID
                           = 0001
   This release contains the digital numbers (DN) contained in the telemetry
    (TM) packages of the UV SPICAM instrument on board of spacecraft Mars
   Express. Data not been further converted or calibrated. This release
    contains data from the cruise phase of the s/c including all data from the
   Near Earth Verification (EV) and Interplanetary Cruise (IC) phase from
   July 2003 until December 2003. It also contains data collected during the
   Mars Orbit Commissioning Phase, covering orbits 0001 to 0482.
   Revision 0000 contains the original delivery. "
OBJECT
                           = REVISION
                               = 0000
   REVISION ID
                               = 2005-01-21
   REVISION DATE
   REVISION_MEDIA
                              = "ONLINE"
   DESCRIPTION
                               = "FIRST DELIVERY: RELEASE 0001, REVISION: 0000"
END_OBJECT
                           = REVISION
END_OBJECT
                           = DATA_SET_RELEASE
```

Figure 3 RELEASE.CAT example for the initial release (RELEASE_ID=0001, REVISION_ID=0000)

A release will concern a well-defined period of time, based on the nominal science mission timeline, as shown in the SPICAM archive volume delivery schedule (section 3.1.1.1). Each release will be described in this file by a DATA_SET_RELEASE object, containing all keyword-value pairs that are necessary to identify the release (DATA_SET_ID, RELEASE_ID, DESCRIPTION, ...). The DESCRIPTION part of the DATA_SET_RELEASE object will contain the full history of the release including all previous revisions. Each

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page : 22

revision of a release is added in the release catalog object and all necessary information about this revision is given by a REVISION object.

A revision of this release might be added after improvement of the data. Figure 4 gives an example of a revision of an initial release.

```
PDS VERSION ID
                           = PDS3
                          = "A. REBERAC, 2004-12-01 (original)"
LABEL_REVISION_NOTE
RECORD_TYPE
                          = STREAM
RELEASE ID
                          = 0001
REVISION_ID
                          = 0000
                          = DATA_SET_RELEASE
OBJECT
 DATA_SET_ID
                          = "MEX-Y/M-SPI-2-UVEDR-RAWXCRUISE/MARS-V1.0"
RELEASE_ID
                           = 0001
DESCRIPTION
    This release contains the digital numbers (DN) contained in the telemetry
    (TM) packages of the UV SPICAM instrument on board of spacecraft Mars
    Express. Data not been further converted or calibrated. This release
   contains data from the cruise phase of the s/c including all data from the
   Near Earth Verification (EV) and Interplanetary Cruise (IC) phase from
    July 2003 until December 2003. It also contains data collected during the
   Mars Orbit Commissioning Phase, covering orbits 0001 to 0482.
   Revision 0000 contains the original delivery. "
OBJECT
                  = REVISION
   REVISION_ID
                            = 0000
   REVISION_DATE
                            = 2004-12-01
   REVISION_MEDIA
                           = "ONLINE"
   DESCRIPTION
                            = "FIRST DELIVERY: RELEASE 0001, REVISION: 0000"
 END_OBJECT
                           = REVISION
 OBJECT
                           = REVISION
   REVISION_ID
                            = 0001
    REVISION_DATE
                            = 2005-04-13
   REVISION MEDIA
                           = "ONLINE"
   DESCRIPTION
                            = "FIRST DELIVERY: RELEASE 0001, REVISION: 0001
                               \ensuremath{\mathsf{modification}} of the data representation in the
                               label data files"
END OBJECT
                           = REVISION
END_OBJECT
                           = DATA_SET_RELEASE
END
```

Figure 4 RELEASE.CAT example for RELEASE_ID=0001, REVISION_ID=0001

A following release of a new well defined period of time in the archive volume will be described by a new DATA_SET_RELEASE object in the same RELEASE.CAT file as shown in Figure 5.

3.1.1.5 Index files

The PDS standard defines index files (see section 3.4.3.3 for more details) as information that allows a user to locate data of interest. All index table files below the INDEX directory cover all data set releases and revisions. Therefore the index table files will contain at least two columns named RELEASE_ID and REVISION ID.

The index label files describing the index table files shall contain the keywords RELEASE_ID and REVISION_ID, set to the latest RELEASE_ID and within this release to the latest REVISION_ID (same as the VOLDESC.CAT file).

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page : 23

```
= PDS3
PDS_VERSION_ID
LABEL_REVISION_NOTE
                          = "A. REBERAC, 2004-12-01 (original)"
RECORD_TYPE
                         = STREAM
RELEASE_ID
                         = 0002
REVISION_ID
                          = 0000
OBJECT
                         = DATA SET RELEASE
DATA SET ID
                          = "MEX-Y/M-SPI-2-UVEDR-RAWXCRUISE/MARS-V1.0"
RELEASE_ID
                          = 0002
DESCRIPTION
   This new release contains similar data as release 1 but collected during the
   Medium Term Planning Phase 1 (MTP1), covering orbits 0483 to 0582.
   Data have been stored in the DATA/MARS/MTP1_0483_0582 subdirectory.
   Revision 0000 contains the original delivery. "
OBJECT
                           = REVISION
   REVISION_ID
                           = 0000
   REVISION_DATE
                            = 2005-06-01
   REVISION_MEDIA
                           = "ONLINE"
   DESCRIPTION
                           = "SECOND DELIVERY: RELEASE 0002, REVISION: 0000"
 END_OBJECT
                           = REVISION
END_OBJECT
                          = DATA_SET_RELEASE
OBJECT
                          = DATA SET RELEASE
                          = "MEX-Y/M-SPI-2-UVEDR-RAWXCRUISE/MARS-V1.0"
DATA SET ID
RELEASE_ID
                          = 0001
DESCRIPTION
   This release contains the digital numbers (DN) contained in the telemetry
    (TM) packages of the UV SPICAM instrument on board of spacecraft Mars
    Express. Data not been further converted or calibrated. This release
   contains data from the cruise phase of the s/c including all data from the
   Near Earth Verification (EV) and Interplanetary Cruise (IC) phase from
   July 2003 until December 2003. It also contains data collected during the
   Mars Orbit Commissioning Phase, covering orbits 0001 to 0482 .
   Revision 0000 contains the original delivery. "
 OBJECT
                          = REVISION
   REVISION_ID
                             = 0000
   REVISION_DATE
                              = 2005-01-21
                             = "ONLINE"
   REVISION_MEDIA
                             = "FIRST DELIVERY: RELEASE 0001, REVISION: 0000"
   DESCRIPTION
 END_OBJECT
                         = REVISION
                           = REVISION
 OBJECT
   REVISION_ID
                            = 0001
   REVISION_DATE
                            = 2005-04-13
   REVISION_MEDIA
                           = "ONLINE"
   DESCRIPTION
                           = "FIRST DELIVERY: RELEASE 0001, REVISION: 0001
                               modification of the data representation in the
                               label data files"
END_OBJECT
                           = REVISION
END OBJECT
                          = DATA_SET_RELEASE
END
```

Figure 5 RELEASE.CAT example for RELEASE ID=0002, REVISION ID=0000

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page : 24

3.1.2 Data Set Name and Data Set ID Formation

Each PDS data set must have a unique name (DATA_SET_NAME) and a unique identifier (DATA_SET_ID), both formed from up to seven components. The components are listed here:

Instrument host MEX (Mars Express)

Target M (Mars) or Y (Sky/CRUISE)

Instrument SPI (SPICAM)

Data processing level number see below
Data set type (optional) see below
Description (optional) see below
Version number Vn.m

Within the DATA_SET_ID, acronyms are separated by hyphens. Multiple instrument hosts, instruments, or targets are referenced in a DATA_SET_NAME or DATA_SET_ID by concatenation of the values with a forward slash, "/", which is interpreted as "and."

Data processing level number

Data processing level number is the National Research Council (NRC) Committee on Data Management and Computation (CODMAC) data processing level number :

Level	Туре	Data Processing Level Description
1	Raw Data	Telemetry data with data embedded.
2	Edited Data	Corrected for telemetry errors and split or decommutated into a data set for a given instrument. Sometimes called Experimental Data Record (EDR).
3	Calibrated Data	Edited data that are still in units produced by instrument, but that have been corrected so that values are expressed in or are proportional to some physical unit such as radiance. No resampling, so edited data can be reconstructed.
4	Resampled Data	Data that have been resampled in the time or space domains in such a way that the original edited data cannot be reconstructed. Could be calibrated in addition to being resampled.
5	Derived Data	Derived results, as maps, reports, graphics, etc.
6	Ancillary Data	Nonscience data needed to generate calibrated or resampled data sets. Consists of instrument gains, offsets, pointing information for scan platforms, etc.
7	Correlative Data	Other science data needed to interpret space-based data sets.
8	User Description	Description of why the data were required, any peculiarities associated with the data sets, and enough documentation to allow secondary user to extract information from the data.
N	N	Not Applicable

SPICAM data set	Data processing level number
0A**	2
1A**	2

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page: 25

1B**	3
2X**	5

^{** :} UV or IR.

Data set type

Data set type is the concatenation of the data type (UV or IR) and of the PRODUCT_TYPE keyword provided in each PDS data product labels.

SPICAM data set	PRODUCT_TYPE value	Data set type
0A**	EDR	**EDR
1A**	EDR	**EDR
1B**	EDR	**EDR
2X**	RDR	**RDR

^{** :} UV or IR.

Description

The CODMAC level for some of the datasets is the same, and this means the end user has no way of knowing which dataset he is looking at from the data processing level number alone. Therefore, in order to help the end user, the STANDARD_DATA_PRODUCT_ID keyword has been added to all of SPICAM data product labels and the value of this keyword is given in the Description component of the DATA_SET_ID. The value must be no more that 4 characters long.

Description should be always as follows: XXXXCRUISE/MARS, where XXXX is the value of the STANDARD_DATA_PRODUCT_ID keyword.

SPICAM data level	STANDARD_DATA_PRODUCT_ID value
0A	RAWX
1A	CORX
1B	SPEC
2	RDRX

For a data set containing the first version of UV experimental data records collected from the SPICAM instrument on Mars Express during the cruise and Mars nominal phases, the data set name and identifier would be:

DATA_SET_NAME = "MEX SPICAM CRUISE/MARS UV EDR-RAW V1.0"

DATA SET ID = "MEX-Y/M-SPI-2-UVEDR-RAWXCRUISE/MARS-V1.0"

For the new version of UV experimental data records generated in July 2007, the data set name and identifier are:

DATA_SET_NAME = "MEX SPICAM CRUISE/MARS UV EDR-RAW V1.1"

DATA_SET_ID = "MEX-Y/M-SPI-2-UVEDR-RAWXCRU/MARS-V1.1"

3.1.3 Data Directory Naming Convention

In the DATA directory, data are stored by mission phase (Figure 6). The CRUISE phase corresponds to data collected before the MOI (Mars Orbit Injection), including the Near Earth Verification (NEV) and

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page : 26

Interplanetary Cruise (IC) phases. After the MOI, the nominal mission, the different Mars mission phases in the MARS subdirectory are the one defined by the MARS EXPRESS mission planning.

In the MARS directory, the following directory naming conventions is used:

XXXX_nnnn_pppp

data collected during a Mars mission phase from orbit nnnn to pppp, with XXXX the abbreviated name of the Mars mission phase

XXXX can have the following values:

MOCP: Mars Orbit Commissioning Phase

MTPnn: Medium Term Planning n (nn=01,02,03,...)

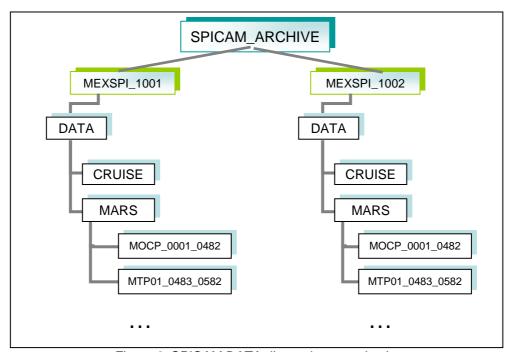


Figure 6. SPICAM DATA directories organization

3.1.4 Filenaming Convention

Data and browse files

Data products provided by the SPICAM team will have the following name:

SPIM_YYT_nnnnApp_M_vv.DAT

where

YY 2 letters describing the SPICAM data level (eg. 0A, 0B, 1A, 1B, ...) T 1 letter describing the type of data collected (U for UV and R for IR)

nnnn 4 digits for the orbit number

App sequence number indicating the order that data were collected for the nnnn orbit (A01, A02,...).

M 1 letter describing the observation mode (eg. E:STAR, S:SUN, L:LIMB, N:NADIR,

P:PHOBOS, Y:SKY, C:COMET, T:CALIBRATION)

vv version number of the file

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page : 27

note: For the CRUISE phase, which include the NEV and IC phases, the orbit number is not applicable. The 4 digits will contain the day of the year (2003) of the observation, preceded by the letter N (for the NEV phase) or the letter C (for the IC phase).

Examples:

SPIM_0AU_C195A01_Y_04.DAT Sky UV observation on the 13th of July 2003 during the CRUISE phase. SPIM_0AU_0017A01_E_04.DAT Star UV observation on orbit 17 during the MARS nominal phase. Associated detached label files and browse files follow the same filenaming convention with the _QL.LBL and _QL.PNG extension respectively.

Geometry files

Geometry files provided by the SPICAM team will have the following name:

SPIM_YYT_nnnnApp_M_vv_GOXww.DAT

where

VV

YY 2 letters describing the SPICAM data level (eg. 0A, 0B, 1A, 1B, ...) T 1 letter describing the type of data collected (U for UV and R for IR)

nnnn 4 digits for the orbit number

App sequence number indicating the order that data were collected for the nnnn orbit (A01, A02,...).

M 1 letter describing the observation mode (eg. E:STAR, S:SUN, L:LIMB, N:NADIR,

P:PHOBOS, Y:SKY) version number of the file

X 1 letter describing the content of the file. The value of this letter can be L for a light version

of the geometry file (only some main parameters) and F for a full version (see section

3.4.3.6 for more details).

ww version number of the software generating the geometry file

3.2 Standards Used in Data Product Generation

3.2.1 PDS Standards

The PDS standards used to describe data products in the SPICAM archive is that of PDS version 3.6 [2]. Each PDS archived product is described using label objects that provide information about the data types of stored values.

In order to identify and describe the organization, content, and format of each data product, PDS requires a distinct data product label for each individual data product file. This data product label can be attached or detached from the data. The SPICAM PDS data product label is detached from the data and resides in a separate file which contains a pointer to the data product file. There is one detached label file for every data product file. The label file should have the same base name as its associated data file, but the extension .LBL.

Each PDS label must begin with the PDS_VERSION_ID data element. This element identifies the published version of the Standards to which the label adheres, for purposes of both validation as well as software development and support. For labels adhering to the standards version 3.6 the appropriate value is "PDS3":

PDS_VERSION_ID = PDS3

PDS data product labels contain data element information that describes important attributes of the physical structure of a data product file. The PDS file characteristic data elements are:

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page : 28

RECORD_TYPE RECORD_BYTES FILE_RECORDS

The RECORD_TYPE data element identifies the record characteristics of the data product file. The RECORD_BYTES data element identifies the number of bytes in each physical record in the data product file. The FILE RECORDS data element identifies the number of physical records in the file.

The following data identification elements must be included in product labels for all spacecraft science data products:

DATA_SET_ID
PRODUCT_ID
INSTRUMENT_HOST_NAME
INSTRUMENT_NAME
TARGET_NAME
START_TIME
STOP_TIME
SPACECRAFT_CLOCK_START_COUNT
SPACECRAFT_CLOCK_STOP_COUNT
PRODUCT_CREATION_TIME

The PDS requires a separate data object definition within the product label for each object in the product, to describe the structure and associated attributes of each constituent object.

Object definitions are of the form:

OBJECT = aaa where aaa is the name of the data object

...

END_OBJECT = aaa

Definitions of all objects and elements used to describe SPICAM data products are in section 4.1.3.

The PDS uses a pointer within the product labels to identify the file location for all objects which are described in the label file. For example,

^SPICAM_FILE_ARRAY = "SPIM_0AU_0017A01_E_04.DAT"

Examples of data product labels can be found in the Data Product Design section 4.1.

3.2.2 Time Standards

3.2.2.1 <u>START_TIME and STOP_TIME Formation</u>

The PDS formation rule for dates and time in UTC is:

YYYY-MM-DDThh:mm:ss.fff or YYYY-DDDThh:mm:ss.fff

With

YYYY year (0000-9999) MM month (01-12) DD day of month (01-31) DDD day of year (001-366)

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page : 29

T date/time separator
hh hour (00-23)
mm minute (00-59)
ss second (00-59)
fff fractions of second (000-999) (restricted to 3 digits)

The START_TIME and STOP_TIME data elements required in data product labels and catalog templates use the UTC format.

Times in any format other than the ISO/DIS 8601 format described above are considered to be in a format native to the data set, and thus "native times".

3.2.2.2 SC_CLOCK_START_COUNT and SC_CLOCK_STOP_COUNT

The spacecraft clock reading often provides the essential timing information for a space-based observation. Therefore, the elements SPACECRAFT_CLOCK_START_COUNT and SPACECRAFT_CLOCK_STOP_COUNT are required in labels describing space-based data. This value is formatted as a string to preserve precision. Spacecraft clock counts shall be represented as a right-justified character string field with a maximum length of thirty characters.

The $SC_CLOCK^*COUNTS$ represent the on-board time counters (OBT) of the spacecraft and instrument computers. This OBT counter is given in the headers of the experiment telemetry source packets. It contains the data acquisition start time as 32 bit of unit seconds followed by 16 bit of fractional seconds. The time resolution of the fractional part is $2^-16 = 1.52 \times 10^-5$ seconds. Thus the OBT is represented as a decimal real number in floating-point notation with 5 digits after the decimal point.

A reset of the spacecraft clock is represented by an integer number followed by a slash, e.g. "1/" or "2/".

Example 1:

SPACECRAFT_CLOCK_START_COUNT = "1/21983325.39258"

Example 2:

SPACECRAFT_CLOCK_START_COUNT = "21983325.39258"

Example 3:

SPACECRAFT CLOCK START COUNT = "2/0000325.39008"

Example 1 and Example 2 represents the same time instance.

3.2.2.3 OBT to UTC time conversion

UTC time is a function of the time correlation packages and the on-board time. The time correlation packages are archived and distributed in the SPICE auxiliary data set and contain linear segments that map the on-board time to UTC time. The linear segment is represented by a time offset and a time gradient. The conversion function is:

Time in utc = offset + (obt(seconds) + (obt(fractional part)*2^-16)) *gradient

3.2.3 Reference Systems

The SPICAM data products are not projected into any coordinate system, however some basic geometric parameters are provided in a associated geometry file (see 3.4.3.6.b).

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page: 30

3.3 Data Validation

To ensure that contents and format are free of errors, data validation will be first done via the Instrument to PSA end-to-end test [5] completed in three phases:

- 1. Individual label, data set structure validation and communication test (May 2004)
- 2. Full data set ingestion test, containing data from the Near Earth Verification and Interplanetary Cruise phases (May 2004)
- 3. Complete validation, ingestion and retrieval test (January 2005)

These tests will use the PSA Volume Verifier (PVV) tool [SOP-RSSD-UM-004] that will be used in the long-term to automate the label and dataset validation and the subsequent ingestion to the PSA.

3.4 Content

3.4.1 Volume Set

The SPICAM volume set contains all raw data products collected by the UV and IR SPICAM sensors during the CRUISE and Mars mission phases, and all derived products provided by the SPICAM team.

The Volume Set Name provides the full, formal name of a group of data volumes containing a data set or a collection of related data sets. Volume set names shall be at most 60 characters in length and must be in upper case.

The SPICAM VOLUME_SET_NAME keyword contained in the VOLDESC.CAT file on each volume has the following value :

VOLUME_SET_NAME = "MARS EXPRESS SPICAM DATA PRODUCTS"

A data set is defined for each sensor (UV or IR) and for each data product level (level 0A, 1A, 1B and 2). Therefore, the SPICAM volume set will consist of 8 data volumes containing a single data set.

3.4.2 Data Set

Each data set will contain the accumulation of data products of one sensor (UV or IR) and of one data level (0A, 1A, 1B or 2), ancilliary data, software, and documentation, needed to understand and use the observations.

Files in a data set share a unique data set name, a unique data set identifier, and are described by a single DATASET.CAT catalog object.

3.4.3 Directories

Each SPICAM archive volume (MEXSPI_1001, MEXSPI_1002, ...) is a PDS compatible archive volume, containing the VOLDESC.CAT and AAREADME.TXT files and all necessary CATALOG, DOCUMENT, INDEX, DATA, etc directories and their content. The MEXSPI_1001, MEXSPI_1002, ...directories are root directories.

3.4.3.1 Root Directory

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page: 31

Files in each ROOT directory include an overview of the archive, a description of the volume for the PDS Catalog, and a list of errata or comments about the archive.

The following files, provided by the SPICAM team, are contained in the ROOT Directory:

3.4.3.2 Catalog Directory

The files in each CATALOG Directory provide a top-level understanding of the mission, spacecraft, instruments, and data sets.

For example, The CATALOG directory of the MEXSPI_1001 (0AUV) volume archive follows the structure outlined below:

- [CA	TALOG] A directory con	taining information about the data set
	- CATINFO.TXT	Description of files in this directory
	 - DATASET.CAT 	Description of the MEXSPI_1001 data set during the cruise phase
	- RELEASE.CAT	Release object of the MEXSPI_1001 data set
	- MISSION.CAT	Description of the Mars Express mission
	- INSTHOST.CAT	Description of the Mars Express spacecraft
	- INST.CAT	Description of the MEX SPICAM instrument
	 - PERS.CAT	Listing of the people involved in the production of this archive volume
	- REFS.CAT	List of pertinent references.
	- SWINV.CAT	Description of the software included on the volume.

3.4.3.3 <u>Index Directory</u>

Files in the INDEX directory are provided by the SPICAM team to help the user to locate products on the archive volume.

As the typical index file requires to contain only information of the /DATA directory, PSA proposes to create an index file for the BROWSE and GEOMETRY directories.

3.4.3.3.a Structure of the INDEX directory

The INDEX directory of an archive volume follows the structure outlined below:

|- [INDEX] A directory containing an index of data files.

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page : 32

INDXINFO.TXT Description of files in this directory.

Index of data files in the DATA directory INDEX.TAB

PDS detached label describing corresponding - INDEX.LBL

*.TAB file

- BROWSE_INDEX.TAB Index of browse files in the BROWSE directory

- BROWSE_INDEX.LBL PDS detached label describing corresponding *.TAB file

- GEOMETRY_INDEX.TAB Index of geometry files in the GEOMETRY directory

GEOMETRY_INDEX.LBL PDS detached label describing the corresponding

*.TAB file

GEO_MARS.TAB Geometry index file providing geometry and position

information to locate the data within the data set

PDS detached label describing corresponding

*.TAB file

3.4.3.3.b Content of Dataset Index Files

GEO MARS.LBL

Each index table contains a number of columns describing a data product on a volume release. The table is formatted so that it can be read directly into many data management systems. All fields are separated by commas and character fields are enclosed in double quotation marks ("). Character fields are left justified and numeric fields are right justified. Each record (row) ends with ASCII carriage return <CR> (ASCII 13). All fields in the tables are fixed width. This allows the table to be treated as a fixed length record file.

In the data index table (INDEX.TAB) the fields are as follows:

File Specification Name - Pathname to the detached label which identifies this data file

Product ID - The name of the data file, which is unique within this data set

Product Creation Time - Time at which the data file was created

Data Set ID - An identifier unique for the dataset

Release id

Revision id

Start date and time of product observation or event

Stop date and time of product observation or event

Number of records in the data file

In the browse index table (BROWSE_INDEX.TAB) the fields are as follows:

File Specification Name - Pathname to the detached label which identifies this data file

Product ID - The name of the data file, which is unique within this data set

Source Product ID - The name of the source data file, which is unique within this data set

Product Creation Time - Time at which the data file was created

Data Set ID - An identifier unique for the dataset

Release id

Revision id

In the geometry index table (GEOMETRY_INDEX.TAB) the fields are as follows:

File Specification Name - Pathname to the detached label which identifies this data file

Product ID - The name of the data file, which is unique within this data set

Source Product ID - The name of the source data file, which is unique within this data set

Product Creation Time - Time at which the data file was created

Data Set ID - An identifier unique for the dataset

Release id

Revision id

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page: 33

A description of the corresponding PDS label file which describes the content and structure of the fields (name, format, brief definition) is given in section 4.1.3.5.

The geometry index file (GEO_MARS.TAB) provides geometry and position information to locate the data within the data set. This file is required by the PSA. Within the PSA, the geometry index files are read by the database software and allow the ingestion of additional searching parameters into the database. For a detailed description of this file and of its associated label file, please refer to [6].

3.4.3.4 Data Directory

The DATA directory contains data subdirectories in which the Mars Express SPICAM standard data products are stored by mission phases (CRUISE, MARS). The MARS directory is divided in several directories, containing data from the Mars Orbit Commissioning Phase (MOCP) and from the different Medium Term Planning (MTP) phases.

The data subdirectories contain the table data products and corresponding PDS detached label describing the table data.

For example, The DATA directory of the MEXSPI_1001 (0AUV) volume archive follows the structure outlined below:

```
- [DATA] A directory containing the data + associated label files

- DATAINFO.TXT Description of files in this directory

-[CRUISE] A directory containing MEX SPICAM level OA UV data collected during the cruise phase

-- {file(s) *DAT, *.LBL}

-[MARS] A directory containing MEX SPICAM level OA UV data collected during the Mars nominal phase

-[MOCP_0001_0482]

-- {file(s) *DAT, *.LBL}

-- {file(s) *DAT, *.LBL}
```

3.4.3.5 <u>Browse Directory and Browse Files</u>

The BROWSE directory will contain reduced-size, easily viewed versions of data products to be used to help identify products of interest available on the archive volume. The BROWSE directory follows the same naming convention as the DATA directory. The format of the browse files is Portable Network Graphic (PNG). Browse images, provided by the SPICAM team, have the same name of the data product with a _QL.PNG extension. The browse subdirectories contain the browse image products and corresponding PDS detached label describing the browse image.

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page: 34

3.4.3.6 Geometry Directory

3.4.3.6.a Content of the geometry directory

The GEOMETRY directory will contain geometry files associated with data files. Therefore the GEOMETRY subdirectories will follow the same naming convention as the DATA subdirectories. Currently no plans exist for providing geometry files associated to observations obtained during the cruise phase.

For example, The GEOMETRY directory of the MEXSPI_1001 (0AUV) volume archive follows the structure outlined below:

```
- [GEOMETRY] A directory containing the geometry + associated label files

- GEOMINFO.TXT Description of files in this directory

- [MARS] A directory containing MEX SPICAM level 0A UV geometry

files associated to data collected during the Mars nominal phase

- [MOCP_0001_0482]

-- {file(s) *TXT, *.LBL}

-- {file(s) *TXT, *.LBL}
```

3.4.3.6.b Content of the geometry files

Geometric parameters are generated with a SPICAM software using SPICE routines and SPICE kernels. Each geometry file contains two blocks: an header (comments) and a data table.

The header (see example in Figure 7), which ends with the "-- End Comments" line, gives information like:

- The name and the version of the software used to generate the geometry file, and the date of the file generation.
- The list of SPICE kernels required to perform the computations
- Solar related parameters (longitude, latitude, distance from the spacecraft...) at the first time of observation.
- The kind of target [NAD/LIMB, SUN, Oxx (name of the star)]: the processing of the geometry file is different for star and nadir.limb.sun observations.
- Parameters definition. The SPICAM team can generate a light (only some main parameters) or a full version of the geometry file. The list and a brief definition of parameters computed is given in the header. The number just before the parameter definition is an internal use (do not care).

The data table, which follows the header, is fully described in the associated detached PDS label file. The data table is in ASCII format and is based on fixed length rows. The number of rows is related with the sampling frequency of the observation. The geometry file has the same sampling resolution as the data file.

3.4.3.6.c Content of the geometry label files

The geometry PDS label files describe the content and structure of the fields (name, format, brief definition) in the geometry file.

The header in each geometry file is described by an HEADER object.

Each field of the geometry data table is then described in a data TABLE by a COLUMN object. gives an example of geometry PDS label file.

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

```
UV Geocalc, version= 16 Wed Jun 10 21:59:30 2009
Geo File = SPIM_0AU_0485A02_N_04_GOL16.TXT
Contents of metakernel file
KPL/MK
This is the meta-kernel for Mars 2004 e100, from 2003-12-22
MEXFULL2 = uppercase name
\begindata
PATH_VALUES
                 = ( '/net/nfs/spicamdt/orbito/spice/kernels' )
  PATH_SYMBOLS
                  = ( 'KER_PATH' )
KERNELS_TO_LOAD = ( '$KER_PATH/lsk/NAIF0009.TLS.PC'
                      '$KER_PATH/sclk/MEX_090603_STEP.TSC',
                      '$KER_PATH/spk/DE405S.BSP',
                      '$KER_PATH/fk/MEX_V10.TF'
                      '$KER_PATH/spk/ORMM__031222180906_00052.BSP',
                      '$KER_PATH/spk/ORMM__040201000000_00060.BSP',
                      '$KER_PATH/spk/ORMM_040301000000_00068.BSP'
'$KER_PATH/spk/ORMM_040401000000_00072.BSP'
                      '$KER_PATH/spk/ORMM__040501000000_00076.BSP'
                      '$KER_PATH/spk/ORMM__040601000000_00080.BSP'
                      '$KER_PATH/spk/ORMM__040701000000_00086.BSP'
                      '$KER_PATH/spk/ORMM_040801000000_00088.BSP'
'$KER_PATH/spk/ORMM_040901000000_00091.BSP'
                      '$KER_PATH/spk/ORMM__041001000000_00096.BSP'
                      '$KER_PATH/spk/ORMM__041101000000_00100.BSP'
                      '$KER_PATH/spk/ORMM__041201000000_00105.BSP'
                      '$KER_PATH/spk/ORMM__050101000000_00109.BSP'
'$KER_PATH/spk/ORMM__050201000000_00113.BSP'
                      '$KER_PATH/spk/ORMM__050301000000_00117.BSP'
                      '$KER_PATH/spk/ORMM_
                                             _050401000000_00122.BSP'
                      '$KER_PATH/spk/ORMM__050501000000_00129.BSP'
                      '$KER_PATH/spk/ORMM__050601000000_00136.BSP'
'$KER_PATH/spk/ORMM__050701000000_00140.BSP'
                      '$KER_PATH/spk/ORMM__050801000000_00153.BSP'
                      '$KER_PATH/spk/ORMM_
                                             _050901000000_00165.BSP'
                      '$KER_PATH/spk/ORMM__051001000000_00181.BSP'
                                             _051101000000_00194.BSP'
_051201000000_00203.BSP'
                      '$KER_PATH/spk/ORMM_
                      '$KER_PATH/spk/ORMM_
                      '$KER_PATH/spk/ORMM__060101000000_00217.BSP'
                      '$KER_PATH/spk/ORMM_
                                             _060201000000_00229.BSP'
                      '$KER_PATH/spk/ORMM_
                                             _060301000000_00241.BSP'
                      '$KER_PATH/spk/ORMM_
                                             _060401000000_00253.BSP'
                      '$KER_PATH/spk/ORMM_
                                             _060501000000_00263.BSP'
                      '$KER_PATH/spk/ORMM_
                                             _060601000000_00274.BSP'
                                             ____060701000000_00290.BSP'
                      '$KER_PATH/spk/ORMM_
                      '$KER PATH/spk/ORMM
                                             060801000000 00294.BSP'
                      '$KER_PATH/spk/ORMM_
                                             ____060901000000_00307.BSP'
                      '$KER_PATH/spk/ORMM_
                                             _061001000000_00310.BSP'
                      '$KER_PATH/spk/ORMM_
                                             _061101000000_00324.BSP'
                      '$KER_PATH/spk/ORMM_
                                             _061201000000_00336.BSP'
                      '$KER_PATH/spk/ORMM_
                                             070101000000 00349.BSP'
                      '$KER_PATH/spk/ORMM_
                                             _070201000000_00361.BSP'
                      '$KER_PATH/spk/ORMM_
                                             _070301000000_00371.BSP'
                      '$KER_PATH/spk/ORMM__070401000000_00387.BSP'
                                             _070501000000_00395.BSP'
                      '$KER_PATH/spk/ORMM_
                                             070601000000 00403.BSP'
                      '$KER_PATH/spk/ORMM_
                      '$KER_PATH/spk/ORMM_
                                             _070701000000_00414.BSP'
                      '$KER_PATH/spk/ORMM_
                                             _070801000000_00423.BSP'
                      '$KER_PATH/spk/ORMM__070901000000_00431.BSP'
                                             _071001000000_00441.BSP'
                      '$KER_PATH/spk/ORMM_
                                             '$KER_PATH/spk/ORMM_
                                             _071201000000_00457.BSP'
                      '$KER_PATH/spk/ORMM_
                      '$KER_PATH/spk/ORMM_
                                             _080101000000_00465.BSP'
                      '$KER_PATH/spk/ORMM__080201000000_00474.BSP'
                      '$KER_PATH/spk/ORMM_
                                             _080301000000_00484.BSP'
                      '$KER_PATH/spk/ORMM_
                                             080401000000 00490.BSP'
                      '$KER_PATH/spk/ORMM_
                                             _080501000000_00498.BSP'
                      '$KER_PATH/spk/ORMM_
                                             _080601000000_00508.BSP'
```


Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

```
'$KER_PATH/spk/ORMM__080701000000_00516.BSP',
$KER_PATH/spk/ORMM__080801000000_00525.BSP',
$KER_PATH/spk/ORMM_080901000000_00536.BSP',
                           '$KER_PATH/spk/ORMM_081001000000_00544.BSP'
'$KER_PATH/spk/ORMM_081101000000_00549.BSP'
                           '$KER_PATH/spk/ORMM__081201000000_00553.BSP'
                           '$KER_PATH/spk/ORMM__090101000000_00562.BSP'
'$KER_PATH/spk/ORMM__090201000000_00570.BSP'
                           '$KER_PATH/spk/ORMM_090301000000_00580.BSP'
'$KER_PATH/spk/ORMM_090401000000_00586.BSP'
                           '$KER_PATH/spk/ORMM__090501000000_00590.BSP'
                           '$KER_PATH/spk/ORMM__090601000000_00590.BSP'
                           '$KER_PATH/ck/ATNM_P030602191822_00135.BC',
                           '$KER_PATH/ck/ATNM_P050401000000_00260.BC',
                           '$KER_PATH/ck/ATNM_P060401000000_00590.BC',
                           '$KER_PATH/pck/PCK00008.TPC'
                           '$KER_PATH/pck/MARS_IAU2000_V0.TPC')
\begintext
1 AU (from Near Earth Objects Program) = 149 597 870.691 km
SUN Long, Lat, Dist, Ls, at first Time, 2004-06-07T13:27:44.277 52.025 17.20 SUN ra, dec, at 1st Time 264.410 17.204
TARGET... NAD/LIMB
In J2000, and in SC axes, CENTER of slit -1.000 -1.000 90.000 89.830
UV, y0 (first CCD line), binning values...
 135 4 4 4 4
Parameters definition...
LOS is Line of VIEW
If Star it is Star direction, If Nadir it is center of slit (== center of CCD)
1stB, 2ndB, 3rdB, 4thB, and 5thB are center of UV Bands (binning included), Be
Planproj is the projection plane (u,v,w frame) defined as the plane
at the nearest point on Mars and perpendicular to vdir (view direction from MEX
with w = -vdir, v = North pole, u = right handed
Time UTC (A23) + (I5, F9.1, 2F7.2, F6.1, 2F7.2, F6.1, 2F10.1, F8.2, 5F7.2, F6.
Number of parameters (without Time): 68
Reference number, Order number, Label
 0 1 Record number
19 2 SC altitude, (km), above Mars ellipsoid
 17 3 SC longitude, (deg) , 0 360
18 4 SC latitude, (deg)
 20 5 Sza,
                             (deg), Solar zenith angle at sub-SC point
     6 3rdB longitude (deg) at Mars Nearest Point 7 3rdB latitude (deg) at Mars Nearest Point
141
142
145 8 3rdB sza, (deg) Solar zenith angle at MNP point
144 9 3rdB Distance (km) between Mex and MNP, < 0 IF behind SC
143 10 3rdB altitude (km) above ellipsoid, < 0 IF intersection
146 11 3rdB Pixel (0.01 deg) size (km) at MNP point 147 12 3rdB ra, (deg) right ascension of LOS (EMEC
                       (deg) right ascension of LOS (EMEJ2000)
148 13 3rdB dec, (deg) declination of LOS (EMI
149 14 3rdB Angl (deg) between LOS and SUN
150 15 3rdB Phase (deg) between LOS at MNP and SUN
                                                    of LOS (EMEJ2000)
151 16 3rdB Solar incidence (deg) between normal at MNP and SUN 152 17 3rdB Solar local time at MNP
153 18 3rdB Emiss (deg) angle between Normal and Observer
                            (km) between LOS and Center of Mars (km) between MEX and Center of Mars
155 19 3rdB Distance
154 20 3rdB Distance
156 21 3rdB Alfa (deg) azimut of SUN in MEX axes (relative to X)
101 22 1stB longitude (deg) at Mars Nearest Point
102 23 1stB latitude (deg) at Mars Nearest Point 103 24 1stB altitude (km) above ellipsoid,
103 24 1stB altitude
                                                                  < 0 IF intersection
107 25 1stB ra,
                       (deg) right ascension of LOS (EMEJ2000)
108 26 1stB dec, (deg) declination of LOS (Ed) 121 27 2ndB longitude (deg) at Mars Nearest Point
                                                 of LOS (EMEJ2000)
122 28 2ndB latitude (deg) at Mars Nearest Point 123 29 2ndB altitude (km) above ellipsoid,
                                                                  < 0 IF intersection
127 30 2ndB ra,
                       (deg) right ascension of LOS (EMEJ2000)
128 31 2ndB dec,
                       (deg) declination of LOS (EMEJ2000)
     32 4thB longitude (deg) at Mars Nearest Point
```


Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

```
162 33 4thB latitude (deg) at Mars Nearest Point 163 34 4thB altitude (km) above ellipsoid,
                                                                   < 0 IF intersection
167 35 4thB ra, (deg) right ascension of LOS (EMEJ2000)
168 36 4thB dec, (deg) declination of LOS (El
181 37 5thB longitude (deg) at Mars Nearest Point
                                                  of LOS (EMEJ2000)
182 38 5thB latitude (deg) at Mars Nearest Point
183 39 5thB altitude (km) above ellipsoid,
                                                                  < 0 IF intersection
187 40 5thB ra, (deg) right ascension of LOS (EMEJ2000)
188 41 5thB dec, (deg) declination of LOS (EMEJ2000)
188 41 5thB dec, (deg) decl
87 42 Xsc X in MarsJ2000
88 43 Xsc Y in MarsJ2000
 89 44 Xsc Z in MarsJ2000
90 45 Ysc X in MarsJ2000
 91 46 Ysc Y in MarsJ2000
92 47 Ysc Z in MarsJ2000
 93 48 Zsc X in MarsJ2000
94 49 Zsc Y in MarsJ2000
95 50 Zsc Z in MarsJ2000
312 51 Angle (deg) between Xsc and the local verticale at MNP 301 52 Angle (deg) between Xsc and the projplan u axis
302 53 P1 u horizon point component in projplan
303 54 Pl v horizon point component in projplan
304 55 P2 u horizon point component in projplan
305 56 P2 v horizon point component in projplan
306 57 P3 u horizon point component in projplan
307 58 P3 v horizon point component in projplan
308 59 P4 u horizon point component in projplan
309 60 P4 v horizon point component in projplan
310 61 P5 u horizon point component in projplan
311 62 P5 v horizon point component in projplan
320 63 X ra, Transformation matrix from IAU_MARS to EMEJ2000 321 64 X dec, Transformation matrix from IAU_MARS to EMEJ2000 322 65 Y ra, Transformation matrix from IAU_MARS to EMEJ2000
323 66 Y dec, Transformation matrix from IAU_MARS to EMEJ2000 324 67 Z ra, Transformation matrix from IAU_MARS to EMEJ2000 325 68 Z dec, Transformation matrix from IAU_MARS to EMEJ2000
                                                                                                    8
         Time (UTC)
-- End Comments
2004-06-07T13:27:44.277
                                                       0.11 -61.73 88.9
                                     1
                                            354.3
                                                                                 0.10 -61.72 89.1
2004-06-07T13:27:45.277
                                            354.9
                                                       0.12 -61.66
                                                                                0.11 -61.66
                                                                        88.9
2004-06-07T13:27:46.277
                                     3
                                            355.4
                                                       0.13 -61.60
                                                                        88.8
                                                                                 0.12 -61.60
                                                                                                   89.0
                                                                                 0.13 -61.53
2004-06-07T13:27:47.277
                                            356.0
                                                       0.14 - 61.53
                                                                                                   89.0
                                                                        88.8
2004-06-07T13:27:48.277
                                            356.5
                                                       0.16 -61.47
0.17 -61.41
                                     5
                                                                        88.7
                                                                                 0.15 - 61.47
                                                                                                   88.9
2004-06-07T13:27:49.277
                                     6
                                            357.1
                                                                        88.7
                                                                                 0.16 -61.41
                                                                                                   88.9
                                                                                 0.17 -61.34
                                                                                                   88.8
2004-06-07T13:27:50.277
                                            357.7
                                                       0.18 -61.34
                                                                        88.6
2004-06-07T13:27:51.277
                                            358.2
                                                       0.20 -61.28
                                                                                 0.19 -61.28
                                     8
                                                                        88.6
                                                                                                   88.8
2004-06-07T13:27:52.277
                                                       0.21 -61.22
                                                                                 0.20 -61.21
                                     9
                                            358.8
                                                                        88.5
                                                                                                   88.7
2004-06-07T13:27:53.277
                                    10
                                            359.4
                                                       0.22 -61.15
                                                                        88.5
                                                                                 0.21 -61.15
```

Figure 7. Geometry file header example.

```
PDS_VERSION_ID = PDS3
RECORD_TYPE
               = FIXED_LENGTH
RECORD BYTES = 583
                              = ("SPIM_0AU_0485A02_N_04_GOL16.TXT",1<BYTES>)
= ("SPIM_0AU_0485A02_N_04_GOL16.TXT",10648<BYTES>)
^HEADER
^TABLE
FILE_NAME
                                 = "SPIM_0AU_0485A02_N_04_GOL16.TXT"
DATA_SET_ID
                                 = "MEX-Y/M-SPI-2-UVEDR-RAWXCRU/MARS-V1.1"
                                 = "MEX SPICAM CRUISE/MARS UV EDR-RAW V1.1"
DATA SET NAME
                                 = 0001
RELEASE_ID
REVISION_ID
                                  = 0000
PRODUCT_ID
                                  = "SPIM_0AU_0485A02_N_04_GOL16.TXT"
PRODUCT_CREATION_TIME
                                 = 2009-06-10T21:59:31.000
MISSION_NAME
                                  = "MARS EXPRESS"
```


Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

```
INSTRUMENT_HOST_NAME
                               = "MARS EXPRESS"
INSTRUMENT_HOST_ID
                               = MEX
                               = "MR Phase 1"
MISSION_PHASE_NAME
INSTRUMENT NAME
                               = "SPICAM"
DISTRIBUTION TYPE
                               = GEOMETRY
DESCRIPTION = "This file contains geometry and position information of a
                UV SPICAM observation. The geometry file has the same sampling
                resolution as the data file.'
OBJECT
           = HEADER
 BYTES
                     = 10648
  RECORDS
                     = 185
 HEADER_TYPE
                     = TEXT
  INTERCHANGE_FORMAT = ASCII
  DESCRIPTION
                     = "The header, which ends with the -- End Comments line,
                        gives information like: the name and the version of
                        the software used to generate the geometry file, and
                        the date of the file generation; the list of SPICE
                        kernels required to perform the computations, solar
                        related parameters (longitude, latitude, distance from
                        the spacecraft) at the first time of observation; the
                        kind of target [NAD/LIMB, SUN, Oxx(name of the star)]: the processing of the geometry file is different for
                         star and sun observations; parameters definition : the
                         list and a brief definition of parameters computed is
                        given. The number just before the parameter definition
                        is an internal use (do not care).'
END_OBJECT = HEADER
OBJECT
          = TABLE
 NAME
                     = GEOMETRY
  INTERCHANGE_FORMAT = ASCII
                     = 44
  COLUMNS
                     = 69
 ROW_BYTES
                     = 583
  OBJECT
           = COLUMN
                  = GEOMETRY_EPOCH
    COLUMN_NUMBER = 1
    DATA_TYPE = TIME
    START_BYTE
                  = 1
    RYTES
                 = 23
    FORMAT
                  = "A23"
    DESCRIPTION = "UTC time when the geometrical and position parameters are
                     computed"
  END_OBJECT = COLUMN
  OBJECT
            = COLUMN
                 = RECORD NUMBER
    COLUMN NUMBER = 2
    DATA_TYPE = INTEGER
    START_BYTE
                  = 25
    BYTES
                  = 6
    FORMAT
                  = "16"
                  = "record number"
    DESCRIPTION
  END_OBJECT = COLUMN
           = COLUMN
  OBJECT
                  = SPACECRAFT_ALTITUDE
    COLUMN_NUMBER = 3
    DATA_TYPE
                 = ASCII_REAL
    START_BYTE
                  = 31
    BYTES
                  = 9
    FORMAT
                  = "F9.1"
                  = "Altitude of the spacecraft above Mars ellipsoid
    DESCRIPTION
                     (in kilometers, IAU_MARS frame)."
  END_OBJECT = COLUMN
  OBJECT
             = COLUMN
                  = SUB_SPACECRAFT_LONGITUDE
    NAME
    COLUMN_NUMBER = 4
```


Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

```
DATA_TYPE
                = ASCII_REAL
  START_BYTE
                = 40
                = 7
  BYTES
                = "F7.2"
  FORMAT
                = 0
  MINIMIM
  MAXIMUM
                = 359.999
  DESCRIPTION
                = "Longitude of the sub-spacecraft point.
                   Longitude increases toward the East.
                    (in degrees, IAU_MARS frame)"
END_OBJECT = COLUMN
OBJECT
           = COLUMN
  NAME
               = SUB_SPACECRAFT_LATITUDE
  COLUMN NUMBER = 5
              = ASCII_REAL
  DATA_TYPE
  START_BYTE
                = 47
  BYTES
                = 7
                = "F7.2"
  FORMAT
                = -90.000
  MINIMIM
  MUMIXAM
                = 90.000
  DESCRIPTION = "Latitude of the sub-spacecraft point.
                   (in degrees, IAU_MARS frame)
END_OBJECT = COLUMN
OBJECT
          = COLUMN
  NAME
                = SOLAR_ZENITH_ANGLE
  COLUMN_NUMBER = 6
  DATA_TYPE = ASCII_REAL
  {\tt START\_BYTE}
                = 54
  BYTES
                = 6
  FORMAT
                = "F6.1"
  DESCRIPTION
                = "Solar Zenith Angle at sub-spacecraft point (in degrees)"
END_OBJECT = COLUMN
        = COLUMN
OBJECT
                = B3_MNP_LONGITUDE
  COLUMN_NUMBER = 7
              = ASCII_REAL
  DATA_TYPE
  START_BYTE
                = 60
  BYTES
                = 7
  FORMAT
                = "F7.2"
  DESCRIPTION
                = "SPICAM Line of Sight longitude at Mars Nearest Point
                   computed from the center of CCD third band
                    (binning included) "
END_OBJECT = COLUMN
OBJECT
           = COLUMN
  NAME
                = B3_MNP_LATITUDE
   COLUMN_NUMBER = 8
              = ASCII_REAL
  DATA_TYPE
  START BYTE
                = 67
                = 7
= "F7.2"
  BYTES
  FORMAT
  DESCRIPTION
                = "SPICAM Line of Sight latitude at Mars Nearest Point
                   computed from the center of CCD third band
                    (binning included) "
END_OBJECT = COLUMN
 OBJECT
          = COLUMN
  NAME
                = B3_MNP_SZA
  COLUMN NUMBER = 9
  DATA_TYPE
               = ASCII_REAL
  START_BYTE
                = 74
  BYTES
                = 6
                = "F6.1"
  FORMAT
  DESCRIPTION = "Solar zenith angle at Mars Nearest Point computed from
                   the center of CCD third band (binning included) "
END_OBJECT = COLUMN
OBJECT
          = COLUMN
              = B3_SC_MNP_DISTANCE
   COLUMN_NUMBER = 10
  DATA_TYPE
             = ASCII_REAL
```


Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

```
START_BYTE = 80
            = 10
  BYTES
  FORMAT
              = "F10.1"
  DESCRIPTION = "Distance from the spacecraft to the SPICAM Line of Sight
                 Mars nearest point (in kilometers).
                 Negative value means the MNP is behind the spacecraft"
END_OBJECT = COLUMN
OBJECT
          = COLUMN
              = B3_MNP_ALTITUDE
  NAME
   COLUMN NUMBER = \overline{11}
  DATA_TYPE = ASCII_REAL
  START_BYTE
              = 90
  BYTES
              = 10
              = "F10.1"
  FORMAT
  DESCRIPTION = "SPICAM Line of Sight altitude at Mars Nearest Point
                  above ellipsoid (in kilometers), computed from the center
                  of CCD third band (binning included). Negative value means
                  intersection"
END_OBJECT = COLUMN
OBJECT
           = COLUMN
                = B3_PIXEL_SIZE
  NAME
  COLUMN_NUMBER = 12
               = ASCII_REAL
  DATA_TYPE
   START_BYTE
                = 100
  BYTES
                = 8
  FORMAT
                = "F8.2"
  DESCRIPTION
                = "Pixel (0.01 deg) size at SPICAM Line of Sight Mars
                   Nearest Point (in kilometers), computed from the center
                   of CCD third band (binning included) "
END_OBJECT = COLUMN
OBJECT
          = COLUMN
  NAME
                = B3_LOS_RA
  COLUMN_NUMBER = 13
  DATA_TYPE
               = ASCII_REAL
  START_BYTE
                = 108
  BYTES
                = 7
                = "F7.2"
  FORMAT
  DESCRIPTION
               = "right ascension of SPICAM line of sight (in degrees, and
                   expressed in EMEJ2000 reference frame), computed from the
                    center of CCD third band (binning included)
END_OBJECT = COLUMN
          = COLUMN
  NAME
                = B3_LOS_DEC
   COLUMN_NUMBER = 14
              = ASCII_REAL
  DATA_TYPE
  START_BYTE
                 = 115
  BYTES
                 = "F7.2"
  FORMAT
                 = "declination of SPICAM line of sight (in degrees, and
  DESCRIPTION
                    expressed in EMEJ2000 reference frame), computed from the
                    center of CCD third band (binning included)
END OBJECT = COLUMN
OBJECT
           = COLUMN
                = B3_MNP_SUN_ANGLE
   COLUMN_NUMBER = 15
               = ASCII_REAL
  DATA TYPE
                = 122
  START_BYTE
                = 7
  BYTES
  FORMAT
                 = "F7.2"
  DESCRIPTION
                = "Angle between SPICAM Line of Sight at MNP and the SUN
                   (in degrees)"
END OBJECT = COLUMN
 OBJECT
           = COLUMN
  NAME
                = B3_MNP_PHASE_ANGLE
  COLUMN NUMBER = 16
                = ASCII_REAL
  DATA_TYPE
   START_BYTE
                 = 129
```


Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

```
BYTES
               = 7
               = "F7.2"
 FORMAT
 DESCRIPTION = "Phase angle at MNP (computed from the center of CCD third
                  Band), as seen from MEX at time (TIME). This is the angle
                  between the MNP-MEX vector and the MNP-SUN vector.
                   (in degrees)"
END_OBJECT = COLUMN
OBJECT
          = COLUMN
               = B3_MNP_INCIDENCE_ANGLE
 NAME
  COLUMN_NUMBER = 17
 DATA_TYPE = ASCII_REAL
 START_BYTE
               = 136
 BYTES
               = 7
               = "F7.2"
 FORMAT
              = "Solar incidence angle at MNP (computed from the center
 DESCRIPTION
                  of CCD third band), as seen from MEX at time (TIME). This
                  is the angle between the normal vector at MNP and the
                  MNP-SUN vector (in degrees)"
END_OBJECT = COLUMN
OBJECT
          = COLUMN
              = B3_MNP_SOLAR_LOCAL_TIME
 NAME
 COLUMN_NUMBER = 18
              = ASCII_REAL
 DATA_TYPE
 START_BYTE
               = 143
 BYTES
               = 6
 FORMAT
               = "F6.2"
              = "Solar Local Time at Mars nearest point computed from
 DESCRIPTION
                the center of CCD third band (in degrees)"
END_OBJECT = COLUMN
         = COLUMN
OBJECT
               = B3_MNP_EMISSION_ANGLE
  COLUMN_NUMBER = 19
 DATA_TYPE = ASCII_REAL
 START_BYTE
               = 149
               = 7
 BYTES
               = "F7.2"
 FORMAT
 DESCRIPTION = "Emission angle at MNP (computed from the center of CCD
                  third band), as seen from MEX at time (TIME). This is
                  the angle between the surface normal vector at MNP and
                  the MNP-MEX vector. (in degrees)"
END_OBJECT = COLUMN
          = COLUMN
 NAME
               = B3_MNP_MARS_DISTANCE
  COLUMN_NUMBER = 20
             = ASCII_REAL
 DATA_TYPE
 START_BYTE
               = 156
               = 10
 BYTES
               = "F10.1"
 FORMAT
               = "Distance between SPICAM Line of Sight at MNP and the \,
 DESCRIPTION
                  center of Mars (in kilometers), computed from the center
                  of CCD third band (binning included)."
END OBJECT = COLUMN
OBJECT
          = COLUMN
               = MEX_MARS_DISTANCE
  COLUMN_NUMBER = 21
 DATA TYPE
              = ASCII_REAL
               = 166
 START_BYTE
 BYTES
               = 10
 FORMAT
               = "F10.1"
 DESCRIPTION
               = "Distance between MEX and the center of Mars
                  (in kilometers) '
END OBJECT = COLUMN
OBJECT
          = COLUMN
 NAME
               = AZIMUT_SUN
 COLUMN NUMBER = 22
 DATA_TYPE
             = ASCII_REAL
 START_BYTE
               = 176
```


Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

```
BYTES
               = 7
               = "F7.2"
 FORMAT
               = "Azimut of SUN in MEX axes (relative to X) (in degrees)"
 DESCRIPTION
END_OBJECT = COLUMN
OBJECT
         = COLUMN
 NAME
               = B1_MNP_LONGITUDE
 COLUMN_NUMBER = 23
             = ASCII_REAL
 DATA_TYPE
 START_BYTE
               = 183
 BYTES
               = 7
 FORMAT
               = "F7.2"
 DESCRIPTION = "SPICAM Line of Sight longitude at Mars Nearest Point
                  computed from the center of CCD first band
                  (binning included) "
END_OBJECT = COLUMN
OBJECT
         = COLUMN
 NAME
               = B1_MNP_LATITUDE
 COLUMN_NUMBER = 24
 DATA_TYPE = ASCII_REAL
 START_BYTE
               = 190
               = 7
 BYTES
               = "F7.2"
 FORMAT
               = "SPICAM Line of Sight latitude at Mars Nearest Point
 DESCRIPTION
                  computed from the center of CCD first band
                  (binning included) "
END OBJECT = COLUMN
OBJECT
          = COLUMN
               = B1_MNP_ALTITUDE
 COLUMN_NUMBER = 25
             = ASCII_REAL
 DATA TYPE
 START_BYTE
               = 197
 BYTES
               = 10
 FORMAT
               = "F10.1"
 DESCRIPTION
               = "SPICAM Line of Sight altitude at Mars Nearest Point
                  above ellipsoid (in kilometers), computed from the center
                  of CCD first band (binning included). Negative value
                  means intersection"
END_OBJECT = COLUMN
OBJECT
         = COLUMN
 NAME
               = B1_LOS_RA
  COLUMN_NUMBER = 26
 DATA_TYPE = ASCII_REAL
 START_BYTE
               = 207
               = 7
 BYTES
 FORMAT
               = "F7.2"
 DESCRIPTION
               = "right ascension of SPICAM line of sight (in degrees, and
                  expressed in EMEJ2000 reference frame), computed from the
                  center of CCD first band (binning included)
END_OBJECT = COLUMN
OBJECT
         = COLUMN
               = B1_LOS_DEC
 COLUMN_NUMBER = 27
             = ASCII_REAL
 DATA_TYPE
 START_BYTE
               = 214
               = 7
 BYTES
 FORMAT
               = "F7.2"
 DESCRIPTION
               = "declination of SPICAM line of sight (in degrees, and
                  expressed in EMEJ2000 reference frame), computed from the
                  center of CCD first band (binning included)
END_OBJECT = COLUMN
OBJECT
          = COLUMN
 NAME
               = B2_MNP_LONGITUDE
  COLUMN_NUMBER = 28
 DATA_TYPE
              = ASCII_REAL
 START_BYTE
               = 221
               = 7
 BYTES
               = "F7.2"
 FORMAT
```


Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

```
DESCRIPTION = "SPICAM Line of Sight longitude at Mars Nearest Point
                   computed from the center of CCD second band
                    (binning included) "
END OBJECT = COLUMN
OBJECT
          = COLUMN
  NAME
                = B2_MNP_LATITUDE
  COLUMN_NUMBER = 29
              = ASCII_REAL
  DATA_TYPE
  START_BYTE
                = 228
  BYTES
                = 7
  FORMAT
                = "F7.2"
               = "SPICAM Line of Sight latitude at Mars Nearest Point
  DESCRIPTION
                   computed from the center of CCD second band
                   (binning included) "
END_OBJECT = COLUMN
OBJECT
          = COLUMN
                = B2_MNP_ALTITUDE
  NAME
  COLUMN_NUMBER = 30
  DATA_TYPE
              = ASCII_REAL
  START_BYTE
                = 235
                = 10
  BYTES
  FORMAT
                = "F10.1"
  DESCRIPTION = "SPICAM Line of Sight altitude at Mars Nearest Point
                   above ellipsoid (in kilometers), computed from the center
                   of CCD second band (binning included). Negative value
                   means intersection"
END_OBJECT = COLUMN
OBJECT
          = COLUMN
  NAME
                = B2_LOS_RA
  COLUMN NUMBER = 31
  DATA_TYPE = ASCII_REAL
  START_BYTE
                = 245
                = 7
  BYTES
  FORMAT
                = "F7.2"
               = "right ascension of SPICAM line of sight (in degrees, and
  DESCRIPTION
                   expressed in EMEJ2000 reference frame), computed from the
                   center of CCD second band (binning included) "
END_OBJECT = COLUMN
OBJECT
          = COLUMN
  NAME
                = B2_LOS_DEC
   COLUMN_NUMBER = 32
  DATA_TYPE = ASCII_REAL
  START_BYTE
                = 252
                = 7
  BYTES
  FORMAT
                = "F7.2"
  DESCRIPTION
                = "declination of SPICAM line of sight (in degrees, and
                   expressed in EMEJ2000 reference frame), computed from the
                   center of CCD second band (binning included)
END_OBJECT = COLUMN
OBJECT
           = COLUMN
                = B4_MNP_LONGITUDE
  COLUMN_NUMBER = 33
               = ASCII_REAL
  DATA_TYPE
  START_BYTE
                = 259
  BYTES
  FORMAT
                = "F7.2"
  DESCRIPTION
                = "SPICAM Line of Sight longitude at Mars Nearest Point
                   computed from the center of CCD fourth band
                   (binning included) "
END_OBJECT = COLUMN
OBJECT
           = COLUMN
  NAME
                = B4_MNP_LATITUDE
   COLUMN_NUMBER = 34
  DATA_TYPE
               = ASCII_REAL
  START_BYTE
                = 266
  BYTES
                = 7
                = "F7.2"
  FORMAT
```


Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

```
DESCRIPTION = "SPICAM Line of Sight latitude at Mars Nearest Point
                   computed from the center of CCD fourth band
                    (binning included) "
END OBJECT = COLUMN
OBJECT
         = COLUMN
  NAME
                = B4_MNP_ALTITUDE
  COLUMN_NUMBER = 35
  DATA_TYPE
               = ASCII_REAL
  START_BYTE
                = 273
  BYTES
                = 10
  FORMAT
                = "F10.1"
  DESCRIPTION = "SPICAM Line of Sight altitude at Mars Nearest Point
                   above ellipsoid (in kilometers), computed from the center
                   of CCD fourth band (binning included). Negative value
                   means intersection"
END_OBJECT = COLUMN
OBJECT
          = COLUMN
                = B4_LOS_RA
  NAME
   COLUMN_NUMBER = 36
  DATA_TYPE
             = ASCII_REAL
  START_BYTE
                = 283
  BYTES
                = 7
                = "F7.2"
  FORMAT
  DESCRIPTION = "right ascension of SPICAM line of sight (in degrees, and
                   expressed in EMEJ2000 reference frame), computed from the
                   center of CCD fourth band (binning included) "
END_OBJECT = COLUMN
OBJECT
          = COLUMN
  NAME
                = B4_LOS_DEC
  COLUMN NUMBER = 37
  DATA_TYPE = ASCII_REAL
  START_BYTE
                = 290
                = 7
  BYTES
  FORMAT
                = "F7.2"
               = "declination of SPICAM line of sight (in degrees, and
  DESCRIPTION
                   expressed in EMEJ2000 reference frame), computed from the
                   center of CCD fourth band (binning included) "
END_OBJECT = COLUMN
OBJECT
          = COLUMN
  NAME
                = B5_MNP_LONGITUDE
   COLUMN_NUMBER = 38
  DATA_TYPE = ASCII_REAL
  START_BYTE
                = 297
                = 7
  BYTES
  FORMAT
                = "F7.2"
  DESCRIPTION
                = "SPICAM Line of Sight longitude at Mars Nearest Point
                   computed from the center of CCD fifth band
                   (binning included) "
END_OBJECT = COLUMN
OBJECT
          = COLUMN
                = B5_MNP_LATITUDE
  COLUMN NUMBER = 39
                = ASCII_REAL
  DATA_TYPE
  START_BYTE
                = 304
                = 7
  BYTES
  FORMAT
                = "F7.2"
  DESCRIPTION
                = "SPICAM Line of Sight latitude at Mars Nearest Point
                   computed from the center of CCD fifth band
                   (binning included) "
END_OBJECT = COLUMN
OBJECT
          = COLUMN
                = B5_MNP_ALTITUDE
  NAME
   COLUMN_NUMBER = 40
  DATA_TYPE
               = ASCII_REAL
  START_BYTE
                = 311
  BYTES
                = 10
                = "F10.1"
  FORMAT
```


Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

```
DESCRIPTION
              = "SPICAM Line of Sight altitude at Mars Nearest Point
                   above ellipsoid (in kilometers), computed from the center
                   of CCD fifth band (binning included). Negative value
                   means intersection"
END_OBJECT = COLUMN
OBJECT
          = COLUMN
 NAME
               = B5_LOS_RA
  COLUMN NUMBER = 41
              = ASCII_REAL
  DATA_TYPE
  START_BYTE
               = 321
  BYTES
               = 7
               = "F7.2"
  FORMAT
               = "right ascension of SPICAM line of sight (in degrees, and
  DESCRIPTION
                   expressed in EMEJ2000 reference frame), computed from the
                   center of CCD fifth band (binning included) "
END_OBJECT = COLUMN
OBJECT
          = COLUMN
 NAME
                = B5_LOS_DEC
  COLUMN_NUMBER = 42
  DATA_TYPE
              = ASCII_REAL
  START_BYTE
               = 328
  BYTES
               = 7
                = "F7.2"
  FORMAT
              = "declination of SPICAM line of sight (in degrees, and
  DESCRIPTION
                  expressed in EMEJ2000 reference frame), computed from the
                   center of CCD fifth band (binning included)
END_OBJECT = COLUMN
OBJECT
         = COLUMN
 NAME
               = XSC_X
  COLUMN NUMBER = 43
  DATA_TYPE
              = ASCII_REAL
  START_BYTE
                = 335
  BYTES
                = 10
  FORMAT
                = "F10.6"
               = "X component of the unit inertial pointing vector (1,0,0)
  DESCRIPTION
                  in MEX coordinates relative to MARSIAU frame."
END_OBJECT = COLUMN
OBJECT
          = COLUMN
 NAME
               = XSC_Y
  COLUMN NUMBER = 44
  DATA_TYPE
              = ASCII_REAL
  START_BYTE
               = 345
               = 10
= "F10.6"
  BYTES
  FORMAT
  DESCRIPTION
                = "Y component of the unit inertial pointing vector (1,0,0)
                  in MEX coordinates relative to MARSIAU frame.'
END OBJECT = COLUMN
OBJECT
          = COLUMN
                = XSC_Z
  COLUMN_NUMBER = 45
  DATA TYPE
              = ASCII REAL
               = 355
  START_BYTE
  BYTES
                = 10
  FORMAT
                = "F10.6"
  DESCRIPTION
                = "Z component of the unit inertial pointing vector (1,0,0)
                   in MEX coordinates relative to MARSIAU frame.'
END OBJECT = COLUMN
OBJECT
          = COLUMN
 NAME
                = YSC_X
  COLUMN NUMBER = 46
  DATA_TYPE
                = ASCII_REAL
  START_BYTE
                = 365
  BYTES
                = 10
  FORMAT
                = "F10.6"
                = "X component of the unit inertial pointing vector (0,1,0)
  DESCRIPTION
                   in MEX coordinates relative to MARSIAU frame.'
END_OBJECT = COLUMN
```


Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

```
OBJECT
          = COLUMN
 NAME
               = YSC_Y
  COLUMN NUMBER = 47
              = ASCII_REAL
  DATA_TYPE
  START_BYTE
                = 375
  BYTES
                = 10
  FORMAT
                = "F10.6"
 DESCRIPTION = "Y component of the unit inertial pointing vector (0,1,0)
                   in MEX coordinates relative to MARSIAU frame."
END_OBJECT = COLUMN
OBJECT
          = COLUMN
 NAME
                = YSC_Z
  COLUMN_NUMBER = 48
  DATA_TYPE = ASCII_REAL
  START_BYTE
                = 385
 BYTES
                = 10
                = "F10.6"
  FORMAT
               = "Z component of the unit inertial pointing vector (0,1,0) in MEX coordinates relative to MARSIAU frame."
 DESCRIPTION
END_OBJECT = COLUMN
OBJECT
          = COLUMN
 NAME
                = ZSC_X
  COLUMN_NUMBER = 49
  DATA_TYPE = ASCII_REAL
  START_BYTE
                = 395
  BYTES
                = 10
 FORMAT
                = "F10.6"
 DESCRIPTION = "X component of the unit inertial pointing vector (0,0,1)
                   in MEX coordinates relative to MARSIAU frame.'
END OBJECT = COLUMN
OBJECT
          = COLUMN
                = ZSC_Y
  COLUMN_NUMBER = 50
  DATA_TYPE = ASCII_REAL
  START_BYTE
                = 405
 BYTES
                = 10
  FORMAT
                = "F10.6"
 DESCRIPTION = "Y component of the unit inertial pointing vector (0,0,1) in MEX coordinates relative to MARSIAU frame."
END_OBJECT = COLUMN
          = COLUMN
 NAME
                = ZSC_Z
  COLUMN_NUMBER = 51
  DATA_TYPE = ASCII_REAL
  START_BYTE
                = 415
                = 10
  BYTES
                 = "F10.6"
  FORMAT
 DESCRIPTION = "Z component of the unit inertial pointing vector (0,0,1) in MEX coordinates relative to MARSIAU frame."
END_OBJECT = COLUMN
OBJECT
           = COLUMN
                = XSC_LV_MNP_ANGLE
 NAME
  COLUMN_NUMBER = 52
              = ASCII_REAL
  DATA_TYPE
  START_BYTE
                = 425
                = 8
  BYTES
                = "F8.2"
  FORMAT
  DESCRIPTION = "This is the angle between XSC (in degrees) and the
                    Vertical at Mars Nearest Point"
END_OBJECT = COLUMN
OBJECT
          = COLUMN
                = UPLAN_XSC_ANGLE
  COLUMN_NUMBER = 53
                = ASCII_REAL
  DATA TYPE
  START_BYTE
                 = 433
  BYTES
                 = 8
```


Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

```
FORMAT
                = "F8.2"
  DESCRIPTION
                = "Angle between XSC and the projection plane U axis
                  (in degrees). The projection plane (u,v,w frame) is
                   defined as the plane at the nearest point on MARS and
                   perpendicular to vdir (view direction from MEX), with
                   w = -vdir,v = north pole , u = right handed
END_OBJECT = COLUMN
OBJECT
          = COLUMN
 NAME
               = P1_U
  COLUMN_NUMBER = 54
 DATA_TYPE
              = ASCII_REAL
 START_BYTE
               = 441
 BYTES
               = 10
               = "F10.2"
 FORMAT
              = "The horizon is described by 5 points in the projection
 DESCRIPTION
                  plane. Pl_U is the u component of Point1 in the
                  projection plane (see definition above)"
END_OBJECT = COLUMN
OBJECT
         = COLUMN
 NAME
               = P1_V
 COLUMN_NUMBER = 55
              = ASCII_REAL
 DATA_TYPE
 START_BYTE
               = 451
 BYTES
               = 10
 FORMAT
                = "F10.2"
              = "The horizon is described by 5 points in the projection
 DESCRIPTION
                  plane. P1_V is the v component of Point1 in the
                  projection plane (see definition above)"
END_OBJECT = COLUMN
OBJECT
         = COLUMN
 NAME
               = P2_U
 COLUMN_NUMBER = 56
 DATA_TYPE
             = ASCII_REAL
 START_BYTE
               = 461
               = 10
 BYTES
 FORMAT
               = "F10.2"
               = "The horizon is described by 5 points in the projection \,
 DESCRIPTION
                  plane. P2_U is the u component of Point2 in the
                  projection plane (see definition above) "
END_OBJECT = COLUMN
OBJECT
          = COLUMN
 NAME
               = P2_V
 COLUMN NUMBER = 57
               = ASCII_REAL
 DATA_TYPE
  START_BYTE
                = 471
 BYTES
                = 10
 FORMAT
                = "F10.2"
 DESCRIPTION
                = "The horizon is described by 5 points in the projection
                  plane. P2_V is the v component of Point2 in the
                  projection plane (see definition above)"
END_OBJECT = COLUMN
OBJECT
          = COLUMN
 NAME
               = P3_U
  COLUMN_NUMBER = 58
 DATA_TYPE
              = ASCII_REAL
 START_BYTE
               = 481
               = 10
 BYTES
               = "F10.2"
 FORMAT
 DESCRIPTION
                = "The horizon is described by 5 points in the projection
                  plane. P3_U is the u component of Point3 in the
                  projection plane (see definition above)"
END OBJECT = COLUMN
OBJECT
          = COLUMN
 NAME
               = P3_V
 COLUMN NUMBER = 59
                = ASCII_REAL
 DATA_TYPE
  START_BYTE
                = 491
```


Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

```
BYTES
                                                         = 10
                                                          = "F10.2"
       FORMAT
                                                         = "The horizon is described by 5 points in the projection
       DESCRIPTION
                                                                   plane. P3_V is the v component of Point3 in the
                                                                    projection plane (see definition above)'
END_OBJECT = COLUMN
OBJECT
                                   = COLUMN
                                                         = P4_U
      NAME
       COLUMN_NUMBER = 60
       DATA_TYPE
                                                    = ASCII_REAL
       START_BYTE
                                                         = 501
       BYTES
                                                        = 10
       FORMAT
                                                         = "F10.2"
                                                         = "The horizon is described by 5 points in the projection % \left( 1\right) =\left( 1\right) \left( 1\right) \left(
       DESCRIPTION
                                                                   plane. P4_U is the u component of Point4 in the
                                                                    projection plane (see definition above) '
END_OBJECT = COLUMN
OBJECT
                                     = COLUMN
      NAME
                                                        = P4_V
       COLUMN_NUMBER = 61
                                                    = ASCII_REAL
       DATA_TYPE
       START_BYTE
                                                         = 511
       BYTES
                                                         = 10
       FORMAT
                                                          = "F10.2"
       DESCRIPTION
                                                         = "The horizon is described by 5 points in the projection
                                                                   plane. P4_V is the v component of Point4 in the
                                                                    projection plane (see definition above)"
END_OBJECT = COLUMN
OBJECT
                                    = COLUMN
                                                       = P5_U
      NAME
       COLUMN_NUMBER = 62
       DATA_TYPE
                                                   = ASCII_REAL
       START_BYTE
                                                         = 521
       BYTES
                                                        = 10
                                                        = "F10.2"
       FORMAT
      DESCRIPTION
                                                      = "The horizon is described by 5 points in the projection
                                                                    plane. P5_U is the u component of Point5 in the
                                                                   projection plane (see definition above) "
END_OBJECT = COLUMN
OBJECT
                                   = COLUMN
      NAME
                                                        = P5_V
       COLUMN_NUMBER = 63
       DATA_TYPE
                                                        = ASCII REAL
       START_BYTE
                                                         = 531
       BYTES
                                                        = 10
                                                         = "F10.2"
       FORMAT
                                                       = "The horizon is described by 5 points in the projection
       DESCRIPTION
                                                                   plane. P5_V is the v component of Point5 in the
                                                                    projection plane (see definition above)'
END_OBJECT = COLUMN
OBJECT
                                     = COLUMN
      NAME
                                                        = X_RA_TR
       COLUMN_NUMBER = 64
       DATA_TYPE
                                                  = ASCII_REAL
       START_BYTE
                                                         = 541
       BYTES
                                                         = "F7.2"
       FORMAT
                                                         = " The transformation matrix from IAU_MARS to EMEJ2000 is
       DESCRIPTION
                                                                   defined as | Xra Xdec
                                                                                                                    Yra
                                                                                                                                      Ydec
                                                                                                                 Zra Zdec
                                                                    X_RA_TR, is the Xra component of the transformation
                                                                    matrix '
END_OBJECT = COLUMN
OBJECT
                                        = COLUMN
                                                         = X_DEC_TR
      NAME
       COLUMN_NUMBER = 65
```


Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page : 49

```
DATA_TYPE
                  = ASCII_REAL
    START_BYTE
                  = 548
                  = 7
    BYTES
                  = "F7.2"
    FORMAT
                  = "X_DEC_TR ,is the Xdec component of the transformation
   DESCRIPTION
                    matrix (see above) "
  END_OBJECT = COLUMN
  OBJECT
            = COLUMN
   NAME
                  = Y_RA_TR
    COLUMN_NUMBER = 66
    DATA_TYPE
                = ASCII_REAL
    START_BYTE
                  = 555
    BYTES
                  = 7
                  = "F7.2"
    FORMAT
                 = "Y_RA_TR , is the Yra component of the transformation
    DESCRIPTION
                     matrix (see above) "
  END_OBJECT = COLUMN
  OBJECT
            = COLUMN
                  = Y_DEC_TR
   NAME
    COLUMN NUMBER = 67
                = ASCII_REAL
    DATA TYPE
    {\tt START\_BYTE}
                  = 562
    BYTES
                  = 7
    FORMAT
                  = "F7.2"
                 = "Y_DEC_TR ,is the Ydec component of the transformation matrix (see above) "
    DESCRIPTION
  END_OBJECT = COLUMN
  OBJECT
            = COLUMN
   NAME
                  = Z_RA_TR
    COLUMN NUMBER = 68
    DATA_TYPE
                = ASCII_REAL
    START_BYTE
                  = 569
    BYTES
    FORMAT
                  = "F7.2"
                 = "Z_RA_TR ,is the Zra component of the transformation
    DESCRIPTION
                     matrix (see above)"
  END_OBJECT = COLUMN
  OBJECT
            = COLUMN
   NAME
                 = Z_DEC_TR
    COLUMN_NUMBER = 69
    DATA_TYPE
                 = ASCII_REAL
    START_BYTE
                  = 576
                  = 7
    BYTES
                  = "F7.2"
    FORMAT
    DESCRIPTION
                  = "Z_DEC_TR ,is the Zdec component of the transformation
                     matrix (see above)
  END OBJECT = COLUMN
END_OBJECT = TABLE
END
```

Figure 8. Geometry PDS label file example.

3.4.3.7 <u>Software Directory</u>

The SOFTWARE directory contains IDL routines to read the SPICAM UV data files, as a ZIP file SPICAM_READPDSZIP and its corresponding label file, SPICAM_READPDS.LBL.This zip file contains IDL software routines able to read the Mars Express SPICAM-UV PDS data and label files under Windows (not tested under other OS). The software requires RSI/IDL version 6.x. When unzipped, the software is located in the ROOT/SOFTWARE/SPICAM_READPDS directory. Instructions for running the routines are located in the file SPICAM_READPDS_README.TXT, located in the same directory. The main routine

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page : 50

readPDS_SPICAM_UV.pro has been developed by the SPICAM team and calls the set of IDL procedures developed at the SBN (http://pdssbn.astro.umd.edu/nodehtml/software.shtml) and stored in the readpdsx_4.3 directory.

The DATA directory contains 2 examples of SPICAM data files and associated label filed. The LABEL directory contains the FMT included file describing the structure of the HEADER_ARRAY object in the SPICAM level 0AUV data products.

Version 01 of readPDS_SPICAM_UV works with readPDS version 4.3 Package. Nevertheless note that a small modification has been performed in the pointpds.pro routine on lines 150 and 175. (bug with call to the stregex routine under windows). That's the reason why the readPDS 4.3 Package is archived in the SPICAM UV dataset while it has not been updated by the SBN team. Please not that we do not guarantee that the readPDS_SPICAM_UV SPICAM routine version 01 works with previous or future versions of the readPDS package.

3.4.3.8 Calibration Directory

All calibration documentation needed to use the data will be stored in the DOCUMENT directory of each archive volume. Calibration data files mentioned in the documentation are contained in the CALIB directory of the archive volume.

3.4.3.9 Label Directory

N/A. All PDS detached label files describing data or document files in a volume are in the corresponding directory.

Include files (*.FMT (FORMAT)), containing additional description of data object and referenced by a pointer in a PDS label will be also stored in the corresponding directory of the label file.

3.4.3.10 Document Directory

The DOCUMENT directory contains at least:

- documentation to help the user to understand and use the archive data (this document).
- An ASCII SPICAM UV or IR data files description (eg. SPICAM UVDATAFILE DESC.TXT)
- An ASCII SPICAM geometry documentation (eg. SPICAM_GEOMETRY_DESC.TXT)
- An ASCII SPICAM UV or IR calibration documentation (eg. SPICAM_UVCALIB_DESC.TXT)
- An ASCII SPICAM UV operating mode description (SPICAM UVMODE DESC.TXT)
- An ASCII Flight User Manual (SPFUM408.PDF)
- An ASCII file informing on the usage of the spacecraft orientation on Mars Express (MEX_ORIENTATION_DESC.TXT)

The SPICAM EAICD document will be provided in both PDF (Adobe Portable Document Format) and ASCII formats, the ASCII version being strongly required by the PSA. PNG files for drawings or tables referenced in it will be also available.

Data file, geometry and calibration documentation will be provided in ASCII format, and the SPICAM flight user manual (FUM) in PDF format only.

Other helpful technical SPICAM documentation provided by the SPICAM team will be provided in the DOCUMENT directory.

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page : 51

4 Detailed Interface Specifications

4.1 Data Product Design

Following sections contain example labels for each of our different data product (for each sensor, and for each data product level). Definitions of individual items contained in the label are given in section 4.1.3. Valid values for each item are shown in brackets [], as appropriate.

4.1.1 Data product design and example label of a 0AUV data product

Data product design

A SPICAM 0AUV data product file contains one or several records of an observation. One SPICAM 0AUV record contains all the header and data information from one spicam UV integration result of one sequence of measurement. The header length is 256 bytes and the data length is 4096 bytes. More exactly, the valid data table consists in a array of 5 rows and 408 columns(2040*2 bytes) representing 5 bands of the CCD, each band containing 408 pixels. The last 16 bytes are ignored. The header has 128 elements which contain operation mode, date of observation informations, time exposure, etc ().

The internal representation of each value is integer with LOW byte first (LSB_INTEGER).

For more detailed information, see document SPICAM UVDATAFILE DESC.TXT

In the label, a SPICAM 0AUV data product is considered as an ARRAY object of one dimension, containing n records (Figure 9). Each record is then described by a COLLECTION object containing 3 ARRAY objects: HEADER_ARRAY, DATA_ARRAY, and SPARE_ARRAY. In the HEADER_ARRAY a statement pointer points to a file named "HEADER_ARRAY.FMT" that contains a description of the structure of the header array and information on how to access the time and date or peltier and CCD temperatures values. The other more relevant parameters of the header are described in the label as keywords:

MEX:SPICAM_UV_EXPOSURE_TIME = HEADER_ARRAY[42] MEX:SPICAM_UV_FIRST_BAND = HEADER_ARRAY[44] MEX:SPICAM_UV_CCD_ROWS_BINNED = HEADER_ARRAY[47]

(Number of physical CCD row binned and contained in one band. = 0 in the case of BINNINGP mode)

 $MEX:SPICAM_UV_HT = HEADER_ARRAY[55]$

The DATA_ARRAY is an ARRAY object of two dimensions, containing the 408*5 data values. The SPARE_ARRAY contains the 16 bytes not used.

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page: 52

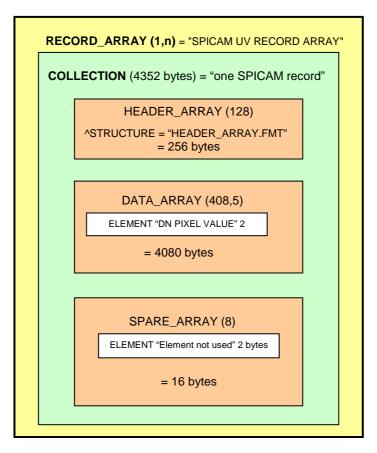


Figure 9. SPICAM 0AUV data representation in the label file.

Example label of level 0A UV data product

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

```
DATA_ARRAY
                           =4080 bytes
                           SPARE_ARRAY
                           =16 bytes
     FILE CHARACTERISTICS DATA ELEMENTS
RECORD_TYPE
                                = FIXED_LENGTH
RECORD_BYTES
                                = 4352
FILE_RECORDS
                                = 520
/* DATA OBJECT POINTERS IDENTIFICATION DATA ELEMENTS
^RECORD ARRAY
                                = "SPIM_0AU_2385A01_N_04.DAT"
FILE_NAME
                                = "SPIM_0AU_2385A01_N_04.DAT"
                               = "MEX-Y/M-SPI-2-UVEDR-RAWXCRU/MARS-V1.1"
DATA SET ID
                               = "MEX SPICAM CRUISE/MARS UV EDR-RAW V1.1"
DATA_SET_NAME
RELEASE_ID
                               = 0001
REVISION_ID
                               = 0000
DISTRIBUTION_TYPE
                                = DATA
                               = "SPIM_0AU_2385A01_N_04.DAT"
PRODUCT_ID
PRODUCT_CREATION_TIME
                                = 2007-07-24T18:10:08.000
                               = "MARS EXPRESS"
MISSION_NAME
INSTRUMENT_HOST_NAME
                               = "MARS EXPRESS"
                               = MEX
INSTRUMENT HOST ID
                               = "MR Phase 8"
MISSION_PHASE_NAME
TARGET NAME
                               = "MARS"
                               = PLANET
TARGET TYPE
^MEX_ORIENTATION_DESC
                               = "MEX_ORIENTATION_DESC.TXT"
^MEX_ORIENTATION_DESC = "MEX_OR
SPACECRAFT_POINTING_MODE = "NADIR"
SPACECRAFT_POINTING_MODE_DESC = "This pointing mode is used for science
                                   observations nominally around the
                                   pericentre. In this pointing mode the Z-axis
                                   of the spacecraft points towards the centre
                                   of Mars and the X-axis perpendicular to the
                                   ground track."
                                = "N/A"
RIGHT_ASCENSION
                                = "N/A"
DECLINATION
PRODUCT_TYPE
                                = EDR
STANDARD_DATA_PRODUCT_ID
                               = RAWX
START_TIME
                               = 2005-11-21T13:05:08.000
                               = 2005-11-21T13:13:47.000
STOP TIME
SPACECRAFT_CLOCK_START_COUNT = 1/0080658303.06897

SPACECRAFT_CLOCK_STOP_COUNT = 1/0080658822.06898

ORBIT_NUMBER = 2385
PRODUCER_ID
                               = MEX_SPI_TEAM
PRODUCER_FULL_NAME
                              = "FRANCK MONTMESSIN"
                               = "LATMOS, IPSL/CNRS,FRANCE"
= SPICAM
PRODUCER_INSTITUTION_NAME
INSTRUMENT ID
INSTRUMENT_NAME
                               = "SPICAM"
INSTRUMENT_TYPE
                                = "SPECTROMETER"
DESCRIPTION
                                = "This file contains all records of a UV
                                   SPICAM observation; for completness, each
                                   record consists of a SPICAM header array,
                                   followed by the SPICAM spectra."
                                = 11000000
DATA OUALITY ID
DATA_QUALITY_DESC
                                = "See definitions in DATA_QUALITY_ID_DESC.TXT"
/* INSTRUMENT AND DETECTOR DESCRIPTIVE DATA ELEMENTS
CHANNEL ID
                               = "UV"
INSTRUMENT_MODE ID
                                = BINNING S
^SPICAM_MODE_DESC
                                = "SPICAM_UVMODE_DESC.TXT"
```


Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

```
= 45 /* (*10 msec)
MEX:SPICAM_UV_EXPOSURE_TIME
                            = 45 /* ("10 mbcc,
= 135 /*First band position
MEX:SPICAM_UV_FIRST_BAND
                                                                           */
MEX:SPICAM_UV_CCD_ROWS_BINNED = 4 /*Number of physical CCD row binned
          /* and contained in one band. (=0 in the case of BINNINGP mode)
MEX:SPICAM_UV_HT
                               = 20 /*High Voltage put on the intensifier */
                                     /*of the CCD
/* DATA OBJECT DEFINITION */
                          = RECORD_ARRAY
OBJECT
                          = "SPICAM UV RECORD ARRAY"
 NAME
  INTERCHANGE_FORMAT
                         = BINARY
                          = 1
  AXIS_ITEMS
                          = 520
  DESCRIPTION
                          = "This file contains all records of a UV SPICAM
                           observation. A record is described by a COLLECTION
                            object."
  OBJECT
                         = COLLECTION
                          = "ONE SPICAM UV RECORD"
   NAME
    BYTES
                          = 4352
    DESCRIPTION
                          = "One spicam UV record contains all the header and
                           data information from one spicam UV integration
                            result of one sequence of measurement. The header
                            length is 256 (HEADER_ARRAY) and the data length
                            is 4080 (DATA_ARRAY). The last 16 bytes are
                            ignored (SPARE_ARRAY)."
   OBJECT
                         = HEADER_ARRAY
     ^STRUCTURE
                         = "HEADER_ARRAY.FMT"
    END_OBJECT
                          = HEADER_ARRAY
    OBJECT
                         = DATA_ARRAY
                         = "DATA ARRAY"
      AXES
                         = 2
                         = (408,5)
     AXIS ITEMS
     AXIS_NAME
                         = (SAMPLE, BAND)
      START_BYTE
                          = 257
     DESCRIPTION
                         = " A data table is contained in the last 4096
                               bytes of each EDR SPICAM record. More exactly,
                               the valid data table consists in a array of 5
                               rows and 408 columns(2040*2 bytes) representing
                               a band of 5 rows of the CCD, each row containing
                               408 pixels."
      OBJECT
                          = ELEMENT
        NAME
                          = "DN PIXEL VALUE"
        DESCRIPTION
                          = "Pixel of a line of the CCD - the DN pixel value
                            describes the value of analog to digital
                             conversion of the charged collected by one pixel
                             of a CCD during the integration time as a
                             digital number"
                         = LSB_INTEGER
        DATA TYPE
        BYTES
                          = 2
        END_OBJECT
                         = ELEMENT
    END_OBJECT
                          = DATA ARRAY
    OBJECT
                         = SPARE_ARRAY
                          = "SPARE ARRAY"
      NAME
      AXES
                          = 1
      AXIS ITEMS
                         = 8
      START_BYTE
                          = 4337
      DESCRIPTION
                          = "This array contains the 16 bytes not used or
                             ignored"
      OBJECT
                          = ELEMENT
        NAME
                          = "SPARE ELEMENT"
        DESCRIPTION
                          = "Element not used"
```


Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page: 55

DATA_TYPE = LSB_INTEGER
BYTES = 2
END_OBJECT = ELEMENT

END_OBJECT = SPARE_ARRAY

END_OBJECT = COLLECTION

END_OBJECT = RECORD_ARRAY

SPIM_0AU_2385A01_N_04.LBL file (nadir observation in orbit 2385)

NAME "HEADER ARRAY" AXES = 1 AXIS ITEMS = 128 START_BYTE = 1 DESCRIPTION = "The header has 128 elements giving operation mode, date of observation, time exposure, peltier and CCD temperatures, etc. informations. All relevant parameters are in the label as keyword. Time of each record (year, month, day, hour, minute, second, centisecond) is given by the elements HEADER_ARRAY[61:67*]. Peltier and CCD temperatures are given by the elements HEADER_ARRAY[50:51*] (*count from 1). See SPICAM EAICD document in the /DOCUMENT directory for more informations." OBJECT = ELEMENT NAME = "HEADER ELEMENT" DESCRIPTION = "Element of the header" DATA TYPE = LSB INTEGER BYTES = 2 END_OBJECT = ELEMENT

HEADER_ARRAY.FMT file

4.1.2 Data product design and example label of a 0BIR data product

Data product design

A SPICAM 0BIR data product file contains a general information header followed by a general frequency array and by one or several records of an observation from the two detectors of the infrared channel.

The spicam IR general header contains all the general information from one SPICAM IR sequence of measurement. The general header length is 50×2 bytes. They are command parameters and informations about the number of channels used, the expected points per spectrum, the number of spectra and the number of sessions per spectrum. The frequency array length is 4*expected_points bytes.

Each record contains: a header table (58 bytes), giving time and system monitor's values information and some satellite's parameters (temerature, current, ...), information at the beginning of each communication cycle. The header is followed by one or two data arrays, depending on the number of detector activated. Spectrum measurement can be done on three frequency windows, characterized by 3 parameters: FREQUENCY, POINTS and STEP. Along with spectrum measurement in three frequency windows a set of spectrum dots can be obtained during measurement cycle. Each dot represents a few adjacent spectrum points and can be viewed as a small window with predefined starting frequency, points number and

Document No. : SA MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page : 56

frequency step. Height various sets of spectrum dots are predefined, with the possibility of 'no dots' measurement configuration.

Spectrum points recorded by a detector for one measurement cycle are stored in the following order: spectrum points of window 0, spectrum points of window 1, spectrum points of window 2 and spectrum points of dots set defined by the command.

The frequency array contains frequencies in the following order: frequencies of window 0, frequencies of window 2 and frequencies of dots set defined by the command

A label associated to a SPICAM 0B IR data product contains 2 ARRAY objects: FREQUENCY_ARRAY and RECORD_ARRAY. The FREQUENCY_ARRAY contains all the frequency values, and the RECORD_ARRAY contains all the records. A SPICAM 0BIR record is then described by a COLLECTION object, containing 13 ELEMENTS objects, providing time and system monitor's values information at the beginning of each communication cycle, and one DATA_ARRAY containing the spectrum points recorded by the detectors.

The internal representation of each value is integer or float with LOW byte first (LSB_INTEGER or PC_REAL).

HEADER_ARRAY

(50 *2 bytes)

FREQUENCY_ARRAY

(EXPECTED_POINTS *4 bytes)

RECORD ARRAY (1,n)

(7*2 bytes + 11*4 bytes + 2* EXPECTED_POINTS *4 bytes) * n records

TIME and TEMPERATURE, CURRENT information

Time (year,month,day,hour,minute,second,millisecond) + 11 spacecraft & monitor's values

DATA_ARRAY_DETECTOR_0

(EXPECTED_POINTS *4 bytes)

DATA_ARRAY_ DETECTOR_1

(EXPECTED_POINTS *4 bytes)

TIME and TEMPERATURE, CURRENT information

Time (year,month,day,hour,minute,second,millisecond) + 11 spacecraft & monitor's values

DATA ARRAY DETECTOR 0

(EXPECTED_POINTS *4 bytes)

DATA_ARRAY_ DETECTOR_1

(EXPECTED_POINTS *4 bytes)

Record 1

Record n

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page: 57

Figure 11. SPICAM OBIR data representation in the label file.

Example label of level 0B IR data product

```
PDS_VERSION_ID
                               = PDS3
/* FILE_RECORDS = n (1 record = 1 header + 1 or 2 data arrays)
/* RECORD_BYTES = 58+(2*Expected_points*4 bytes)*number of records
                        HEADER ARRAY
                        (50 *2 bytes)
                        FREQUENCY ARRAY
                =(4*expected_points/spectrum) bytes
                           RECORD ARRAY (1,n)
             (7*2bytes+11*4+2*EXPECTED_POINTS*4bytes)
                      * n records
                                                        record 1
                       TIME and TEMPERATURE,
                       CURRENT information
                 Time and system monitor's values
                 information
                       DATA ARRAY_DETECTOR0
                   (Expected_points *4 bytes)
                       DATA ARRAY_DETECTOR1
                     (Expected_points *4 bytes)
                        TIME and TEMPERATURE,
                                                        record n
                        CURRENT information
                  Time and system monitor's values
                  information
                      DATA ARRAY_DETECTOR0
                     (Expected_points *4 bytes)
                       DATA ARRAY_DETECTOR1
                     (Expected_points *4 bytes)
    FILE CHARACTERISTICS DATA ELEMENTS
RECORD_TYPE
                               = FIXED_LENGTH
RECORD_BYTES
```


Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

```
FILE_RECORDS
                               = 87
FILE_NAME
                               = "SPIM_0BR_2385A01_N_04.DAT"
                               = "MEX-Y/M-SPI-2-UVEDR-RAWXCRU/MARS-V1.1"
DATA_SET_ID
DATA_SET_NAME
                               = "MEX SPICAM CRUISE/MARS UV EDR-RAW V1.1"
RELEASE_ID
                               = 0001
REVISION ID
                               = 0000
DISTRIBUTION_TYPE
                               = DATA
PRODUCT_ID
                               = "SPIM_0BR_2385A01_N_04.DAT"
PRODUCT_CREATION_TIME
                               = 2007-07-24T18:10:26.000
                               = "MARS EXPRESS"
MISSION NAME
INSTRUMENT_HOST_NAME
                               = "MARS EXPRESS"
INSTRUMENT_HOST_ID
                               = MEX
                               = "MR Phase 8"
MISSION_PHASE_NAME
                               = "MARS"
TARGET NAME
TARGET_TYPE
                               = PLANET
^MEX ORIENTATION DESC
                               = "MEX_ORIENTATION_DESC.TXT"
SPACECRAFT_POINTING_MODE
                               = "NADIR"
SPACECRAFT_POINTING_MODE_DESC = "This pointing mode is used for science
                                  observations nominally around the
                                  pericentre. In this pointing mode the Z-axis
                                  of the spacecraft points towards the centre
                                  of Mars and the X-axis perpendicular to the
                                  ground track."
RIGHT_ASCENSION
                               = "N/A"
DECLINATION
                               = "N/A"
PRODUCT_TYPE
                               = EDR
STANDARD_DATA_PRODUCT_ID
                               = RAWX
START TIME
                               = 2005-11-21T13:05:07.300
                               = 2005-11-21T13:13:43.300
STOP TIME
SPACECRAFT_CLOCK_START_COUNT = 1/0080658302.26558
SPACECRAFT_CLOCK_STOP_COUNT = 1/0080658818.26559
ORBIT_NUMBER
                              = 2385
                               = MEX SPT TEAM
PRODUCER ID
PRODUCER_FULL_NAME
                              = "FRANCK MONTMESSIN"
PRODUCER_INSTITUTION_NAME
                              = "LATMOS, IPSL/CNRS, FRANCE"
INSTRUMENT_ID
                               = SPICAM
INSTRUMENT_NAME
                               = "SPICAM"
                               = "SPECTROMETER"
INSTRUMENT_TYPE
DESCRIPTION
                               = "This file contains a general header and a
                                  frequency array followed by all records of a
                                  IR SPICAM observation. A measurement
                                  requires several communication sessions to
                                  collect and transmit measurement data
                                  (a spectrum).
                                  Sessions of one spectrum are collected and
                                  transmitted in one measurement cycle.
                                  Each record consists of first a header
                                  providing the time of the beginning of the
                                  measurement cycle and six system monitor's
                                  values measured one time at the beginning of
                                  each measurement cycle. This header is then
                                  followed by detector 0 and/or 1 spectra."
DATA_QUALITY_ID
                               = 00000000
DATA_QUALITY_DESC
                               = "See definitions in DATA_QUALITY_ID_DESC.TXT"
/* INSTRUMENT AND DETECTOR DESCRIPTIVE DATA ELEMENTS
CHANNEL ID
                               = "IR"
/* SPICAM IR COMMAND PARAMETERS - DEFINITIONS AND VALUES */
/* COMMAND_MODE = (EXIT, SOURCE, DETS, TIME)
      EXIT - A bit specifying a lab mode (bit set to 0) or a flight mode
/*
            (bit set to 1)
      SOURCE - A bit specifying a host command (bit set to 0)or a ROM
```


Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

```
command (bit set to 1). A host command is received from the
               memory of host computer, a ROM command is a command stored in*/
               program controller and invoked by host command.
      {\tt DETS} - {\tt Detectors} used for spectrum measurement : 0- detector 0 only,
             1- detector 1 only, 2- both detector 0 and detector 1,
             3- detector 0 and AOTF RF power.
      TIME - AOTF chopping period : 0- 1.4 ms, 1- 2.8 ms, 2- 5.6 ms,
             3- 11.2 ms
/*
      GAIN - Amplifiers gain factor : 0- 1, 1- 3, 2- 8.25, 3- 26
  COMMAND_DAC - AOTF power control : 0...255.
                 DAC value = 16*RF power control
/* COMMAND_WINDOW0 = (FREQUENCY, POINTS, STEP)
/* Three windows are specified in a command and are characterized by 3
/* values FREQUENCY, POINTS and STEP.
      {\tt FREQUENCY} \ - \ {\tt determines} \ {\tt starting} \ {\tt frequency} \ {\tt point} \ {\tt of} \ {\tt measured} \ {\tt spectral}
/*
               interval in the first window: 0...255. The real frequency
/*
               value in AOTF operating range from 80 MHz to 140 MHz is
               specified by 83.2 MHz + FREQUENCY*256*1.0e-3 in MHz.
     POINTS - Number of measured spectrum points in the window: 0..4095
/*
           Zero points number means that the window has not been processed */
      STEP - Determines frequency step between points. Frequency increment
/*
         is STEP*1.0e-3 in MHz, with STEP:0..15. Zero step means that all
/*
          the spectrum points have been measured at the same frequency
          (time evolution of the spectrum)
  COMMAND_CONFIG = (COMMAND_DESCRIPTOR, DOTS_DESCRIPTOR)
     COMMAND_DESCRIPTOR - A set of 32 predefined commands is stored in
/*
      program memory (ROM commands). COMMAND_DESCRIPTOR field is a number
/*
      (adress) of the command in this set. The adressed command can be
/*
      activated by setting COMMAND_MODE_SOURCE bit of host command.
                                                                              * /
      DOTS_DESCRIPTOR -Along with spectrum measurement in three frequency
      frequency windows a set of specturm dots can be obtained during
/*
      measurement cycle. Each dot represents a few adjacent spectrum points
      and can be viewed as a small window with predefined starting
      frequency, points number and frequency step. Height various sets of
/*
      spectrum dots are predefined and each set has a unique number :
      DOTS_DESCRIPTOR. A zero value is reserved for 'no dots' measurement
      configuration.
MEX:SPICAM_IR_COMMAND_MODE = (1,0,2,0,2)
MEX:SPICAM_IR_COMMAND_DAC
                              = (1744,0,2)
MEX:SPICAM_IR_COMMAND_WINDOW0 = (0.000,1.000,277,3.000)
MEX:SPICAM_IR_COMMAND_WINDOW1 = (0.000,1.000,500,1.000)
MEX:SPICAM_IR_COMMAND_WINDOW2 = (0.000,1.000,164,1.000)
MEX:SPICAM_IR\_COMMAND\_CONFIG = (0,3)
/* ACTIVE_CHANNELS - Number of channels activated
/* EXPECTED_POINTS - Number of expected points by spectrum
/* NUMBER_SPECTRA - Number of spectra in the sequence of measurement
/* NUMBER_SESSIONS - Number of sessions by spectrum
MEX:SPICAM_IR_ACTIVE_CHANNELS = 2
MEX:SPICAM_IR_EXPECTED_POINTS = 996
MEX:SPICAM IR NUMBER SPECTRA = 87
MEX:SPICAM IR NUMBER SESSIONS = 3
 * DATA OBJECT POINTERS IDENTIFICATION DATA ELEMENTS
FREOUENCY ARRAY
                          = ("SPIM_OBR_2385A01_N_04.DAT",101<BYTES>)
^RECORD_ARRAY
                          = ("SPIM_OBR_2385A01_N_04.DAT",4085<BYTES>)
/* DATA OBJECTS DEFINITION */
                    = FREQUENCY_ARRAY
OBJECT
                        = "FREQUENCY ARRAY"
   INTERCHANGE FORMAT
                        = BINARY
                        = "Frequency array associated to each spectrum."
  DESCRIPTION
   AXES
                        = 1
   AXIS_ITEMS
                        = 996
```


Document No. : SA_MEX_ARCH_002

Issue : 002

: 21 July 2009 Date

Page : 60

= ELEMENT OBJECT = 4 BYTES DATA_TYPE = PC_REAL

= "frequency value" NAME

END_OBJECT = ELEMENT

END OBJECT = FREQUENCY_ARRAY

OBJECT = RECORD_ARRAY

= "SPICAM IR RECORD ARRAY" NAME

INTERCHANGE_FORMAT = BINARY AXES = 1 AXIS_ITEMS

DESCRIPTION = "This array contains all records of a IR SPICAM

observation."

OBJECT = COLLECTION

= "ONE_SPICAM_IR_RECORD" NAME

BYTES = 8026

DESCRIPTION = "A record is described by a COLLECTION object

containing 18 elements, providing time and system monitor's values information at the beginning of each communication cycle, and one data array containing the spectrum points recorded by the

detectors."

= ELEMENT OBJECT NAME = YEAR

DATA_TYPE = LSB_INTEGER = 1

START_BYTE BYTES = 2.

DESCRIPTION = "year of time at the beginning of each measurement

cycle"

END_OBJECT = ELEMENT = FIJEMENT OBJECT

NAME = MONTH DATA_TYPE = LSB_INTEGER

= 3 START_BYTE BYTES = 2.

= "month of time at the beginning of each measurement cycle" DESCRIPTION

END_OBJECT = ELEMENT

OBJECT = ELEMENT NAME = DAY

DATA_TYPE = LSB_INTEGER

START_BYTE = 5 BYTES = 2

DESCRIPTION = "day of time at the beginning of each measurement

cycle"

END_OBJECT = ELEMENT

OBJECT = ELEMENT NAME = HOUR DATA_TYPE = LSB_INTEGER

START_BYTE = 7 BYTES = 2

DESCRIPTION = "hour of time at the beginning of each measurement

cycle"

= ELEMENT END_OBJECT

OBJECT = ELEMENT = MINUTE DATA_TYPE = LSB_INTEGER

START_BYTE = 9 = 2 BYTES

DESCRIPTION = "minute of time at the beginning of each measurement

cycle"

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page: 61

END_OBJECT = ELEMENT OBJECT = ELEMENT = SECOND NAME DATA_TYPE = LSB_INTEGER START_BYTE = 11 BYTES = 2 = "second of time at the beginning of each measurement DESCRIPTION cycle" END_OBJECT = ELEMENT OBJECT = ELEMENT = CENTISECOND NAME = PC_REAL DATA_TYPE = 13 START_BYTE BYTES DESCRIPTION = "centisecond of time at the beginning of each measurement cycle" END_OBJECT = ELEMENT OBJECT = ELEMENT = SUTRP1_TEMP NAME DATA_TYPE = LSB_INTEGER START_BYTE = 17 BYTES = 4 DESCRIPTION = "Temperature (ADU) of SU TRP1. Temperature of Reference Point number 1 (near SPICAM foot on corner +Z; -Y)" END_OBJECT = ELEMENT OBJECT = ELEMENT NAME = SUTRP2_TEMP DATA_TYPE = LSB_INTEGER START_BYTE = 21 BYTES = 4 DESCRIPTION = "Temperature (ADU) of SU TRP2 . Temperature of Reference Point number 2 (on SOIR strap)" END_OBJECT = ELEMENT OBJECT = ELEMENT NAME = SOLARSHUTTER_TEMP DATA_TYPE = LSB_INTEGER START_BYTE = 25 BYTES = 4 DESCRIPTION = "Temperature (ADU) of SOLAR SHUTTER . Temperature on Baseplate near solar shutter" END_OBJECT = ELEMENT OBJECT = ELEMENT = STRUCTURE_TEMP DATA_TYPE = LSB_INTEGER = 29 START_BYTE BYTES = 4 DESCRIPTION = "Temperature (ADU) of STRUCTURE . Temperature of Baseplate (near HVPS, in corner -Z; +Y)" END_OBJECT = ELEMENT OBJECT = ELEMENT = DETO_TEMP NAME DATA_TYPE = PC_REAL START_BYTE = 33 BYTES = 4 UNIT = "Volt" DESCRIPTION = "Detector 0 temperature measured at the beginning of each measurement cycle" END_OBJECT = ELEMENT = ELEMENT OBJECT NAME = DET1 TEMP = PC_REAL DATA TYPE START_BYTE = 37 BYTES = 4

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page: 62

UNIT = "Volt" = "Detector 1 temperature measured at the beginning of DESCRIPTION each measurement cycle" END OBJECT = FLEMENT OBJECT = ELEMENT NAME = AOTF_TEMP DATA TYPE = PC_REAL START_BYTE = 41 BYTES = 4 = "Kelvin" = "AOTF temperature measured at the beginning of DESCRIPTION each measurement cycle" END_OBJECT = ELEMENT = ELEMENT OBJECT NAME = BASE_TEMP DATA_TYPE = PC_REAL START_BYTE = 45 = 4 BYTES = "Kelvin" TINIT DESCRIPTION = "Base plate temperature measured at the beginning of each measurement cycle" END_OBJECT = ELEMENT OBJECT = ELEMENT NAME = RF_POWER = PC_REAL DATA_TYPE = 49 START_BYTE BYTES = 4 = "Volt" DESCRIPTION = "RF power array at 110 MHz (the middle of AOTF frequency range measured at the beginning of each measurement cycle" END_OBJECT = ELEMENT OBJECT = ELEMENT = SUPP VOLT NAME DATA_TYPE = PC_REAL START_BYTE = 53 BYTES = 4 = "Volt" UNIT DESCRIPTION = "Supply voltage control measured at the beginning of each measurement cycle" END_OBJECT = ELEMENT OBJECT = ARRAY NAME = "DATA_ARRAY" = 2 AXIS_ITEMS = (996, 2)AXIS NAME = (SAMPLE, DETECTOR) START_BYTE = 57 DESCRIPTION = "Spectrum points recorded by the 2 detectors for one measurement cycle, in the following order : spectrum points of window $\ensuremath{\text{0}}$, spectrum points of window 1, spectrum points of window 2 and spectrum points of dots set defined by the command. OBJECT = ELEMENT NAME = "intensity value" UNIT = "Analog Digital Unit" DATA_TYPE = PC_REAL BYTES = 4 END_OBJECT = ELEMENT END_OBJECT = ARRAY END_OBJECT = COLLECTION

Document No. : SA_MEX_ARCH_002

Issue : 002

: 21 July 2009 Date

Page : 63

END_OBJECT = RECORD_ARRAY END

SPIM OBR 2385A01 N 04.LBL file (nadir observation in orbit 2385)

4.1.3 Label keywords descriptions

4.1.3.1 File and Data Characteristics Data Elements

PDS_VERSION_ID Version number of the PDS standards document that is valid when

a data product label is created. For labels adhering to the PDS Standards

Reference, Version 3.6, the appropriate value is [PDS3].

RECORD TYPE Record format of a file. For binary data the RECORD TYPE is

[FIXED_LENGTH].

RECORD BYTES Number of bytes in a record.

For example, a SPICAM UV record consists in a header table (256 bytes)

followed by a data table (4096 bytes). The RECORD_BYTES value is then

4352 bytes ([4352] for 0AUV, 1AUV...tbc).

FILE RECORDS Number of records in a file.

FILE_NAME Name of the data file.

DATA_SET_ID Unique alphanumeric identifier of this dataset.

> ["MEX-Y/M-SPI-2-UVEDR-RAWXCRU/MARS-V1.0", "MEX-Y/M-SPI-2-IREDR-RAWXCRU/MARS-V1.0"]

> The data_set_id is an abbreviation of the data_set_name.

DATA SET NAME Full name given to a data set or a data product. The

data_set_name typically identifies the instrument that acquired the data, the

target of that instrument, and the processing level of the data.

["MEX SPICAM CRUISE/MARS UV EDR-RAW

V1.0",

"MEX SPICAM CRUISE/MARS IR EDR-RAW V1.0"]

PRODUCT ID Unique identifier assigned to a data product. Data file name is used.

PRODUCT_CREATION_TIME Time of creation of this data file on the ground (in UTC).

MISSION_NAME Name of the mission including the SPICAM instrument. ["MARS EXPRESS"]

INSTRUMENT_HOST_NAME Name of the host spacecraft for the SPICAM instrument. ["MARS EXPRESS"]

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page : 64

INSTRUMENT_HOST_ID Abbreviated name of the host spacecraft. ["MEX"]

MISSION_PHASE_NAME

Mission subphases during which the data were collected. ["EV","IC,...]

following the table below:

'2003-06-09" " "EV" "2003-07-01" " "IC' "2003-12-30" " 0" "MC Phase 0" "2004-01-13" " 17" "MC Phase 1" "2004-01-28" " 59" "MC Phase 2" "2004-02-12" " 106" "MC Phase 3" "2004-03-16" " 209" "MC Phase 4" "2004-04-07" " 279" "MC Phase 5" "2004-04-20" " 321" "MC Phase 6" "2004-06-05" " 476" "MR Phase 1" "2004-08-16" " 734" "MR Phase 2" "2004-10-16" " 952" "MR Phase 3" "2005-01-08" " 1251" "MR Phase 4" "2005-03-05" " 1455" "MR Phase 5" "2005-03-25" " 1523" "MR Phase 6" "2005-07-13" " 1916" "MR Phase 7" "2005-10-04" " 2216" "MR Phase 8" "2005-12-01" " 2419" "ME Phase 1"

Full definition of this table can be found in the Mars Express Master Science Plan (MSP). The data used to fill in this table are from the MSP MEX-EST-PL-11912 from 10 June 2004."

TARGET_NAME The name of the target observed in the data.

["SKY","STAR","MARS","PHOBOS","DEIMOS","COMET","CALIBRATION"]

TARGET_TYPE The target-type element identifies the type of a named target.

PRODUCT_TYPE Type or category of a data product within a data set.[EDR, RDR]

STANDARD_DATA_PRODUCT_ID Used to link a data product (file) to a standard data product (collection

of similar files). [RAWX, CORX, SPEC, RDRX].

START_TIME The time of data acquisition of the first record (in UTC)

STOP TIME The time of data acquisition of the last record (in UTC)

SPACECRAFT_CLOCK_START_COUNT The value of the spacecraft clock at the beginning of data

acquisition of the first record

SPACECRAFT_CLOCK_STOP_COUNT The time on the spacecraft clock at the end of data acquisition of

the last record

ORBIT_NUMBER Spacecraft orbit during which this data was collected. Valid values

are ["N/A"] during the CRUISE phase or the value of the orbit on 4 digits

(e.g "0103") during the MARS phase.

PRODUCER ID Identity of the producer of this dataset. [MEX SPI TEAM]

PRODUCER_FULL_NAME Full_name of the individual mainly responsible for the production of a data.

["FRANCK MONTMESSIN"].

PRODUCER_INSTITUTION_NAME Institution associated with the production of a data set ["LATMOS, IPSL/CNRS,FRANCE"]

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page : 65

DATA_QUALITY_ID This keyword provides a numerickey which identifies the quality

of data available.

DATA_QUALITY_DESC This describes the data quality which is associated with a particular

data_quality_id value.

4.1.3.2 <u>Data Object Pointers Identification Data Elements</u>

^RECORD_ARRAY Pointer to the file containing the SPICAM data and described in the label file.

4.1.3.3 Instrument and Detector Descriptive Data Elements

INSTRUMENT ID Acronym which identifies the instrument. ["SPICAM"]

INSTRUMENT_NAME name of the instrument. ["SPICAM"]

INSTRUMENT_TYPE Type of the instrument. ["SPECTROMETER"]

INSTRUMENT_MODE_ID Instrument-dependent designation of operating mode. The standard values

for SPICAM are ["ALIGN", "BINNING", "BINNINGP" without the slit and "ALIGN_S", "BINNING_S", "BINNINGP_S" with the slit]. For more details, see the

SPICAM_UVMODE_DESC.TXT file in the DOCUMENT directory.

CHANNEL_ID Instrument channel through which data were obtained ["UV" or "IR"]

4.1.3.4 <u>Data Object and Data Element Definition</u>

TABLE The TABLE object is a uniform collection of rows

containing ASCII and/or binary values stored in columns. Required elements are COLUMNS, ROW_BYTES, INTERCHANGE_FORMAT, and

ROWS.

COLUMN The COLUMN object identifies a single column in a data

object. Required elements are BYTES, DATA TYPE, START BYTE and

NAME.

ARRAY The ARRAY object is provided to describe

dimensioned arrays of homogeneous objects. Note that an ARRAY can contain only a single object, which can itself be another ARRAY or

COLLECTION if required.

Elements required in a ARRAY are the AXES, AXIS_ITEMS and NAME

elements. Other elements are optional.

COLLECTION The COLLECTION object allows the ordered grouping of

heterogeneous objects into a named collection. The COLLECTION object may contain a mixture of different object types including other COLLECTIONS. The optional START_BYTE data element provides the starting location relative to an enclosing object. If a START_BYTE is not specified, a value of 1 is assumed. Elements required in a COLLECTION

are the NAME and BYTES elements.

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page: 66

ELEMENT The ELEMENT object provides a means of defining a

lowest level component of a data object that is stored in an integral multiple of 8-bit bytes. The optional START_BYTE element identifies a location relative to the enclosing object. If not explicitly included, a START BYTE

= 1 is assumed for the ELEMENT.

NAME Literal value representing the common term used to

identify an element or object

INTERCHANGE_FORMAT

AXES

Represents the manner in which data items are stored. [BINARY,ASCII].

Number of axes or dimensions of an array data object.

AXIS_ITEMS Dimension(s) of the axes of an array data object. For arrays

with more than 1 dimension, this element provides a sequence of values

corresponding to the number of axes specified.

AXIS_NAME Sequence of axis names of a array data object, and

identifies the order in which the axes are stored in the object.

BYTES Number of bytes allocated for a particular data

representation.

DATA_TYPE Internal representation of a value.

START_BYTE Location of the first byte of the object, counting from 1. For

nested objects, the start_byte value is relative to the start of the enclosing

object.

ROW_BYTES Maximum number of bytes in each data object row.

ROWS Number of rows in a data object.

COLUMNS Number of columns in each row of a data object.

COLUMN_NUMBER Location of a specific column within a larger data object, such as a table

FORMAT A specified arrangement of data within a file or on a storage

medium. It is equivalent to the FORTRAN language format specification

4.1.3.5 Parameters Index File Definition

The index PDS label files describe the content and structure of the fields (name, format, brief definition) in the index table.

Each field in the INDEX.TAB file is described in the index label file by a COLUMN object, containing the following keywords:

NAME Name of the field

COLUMN_NUMBER Column number of the field in the index table

DATA TYPE Internal representation of a value.

START_BYTE Location of the first byte of the object, counting from 1. The

values for START_BYTE include commas between fields or quotation

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page : 67

marks surrounding character fields (All fields are separated by commas and character fields are enclosed in double quotation marks ("), therefore the start_byte of the first field is equal to 2).

BYTES Number of bytes allocated for the particular data

representation.

FORMAT Format of the value

DESCRIPTION brief definition of the field

Figure 11 gives an example of PDS label file describing the content of the data index table within an archive volume.

```
PDS_VERSION_ID = PDS3
RECORD_TYPE
              = FIXED_LENGTH
RECORD BYTES = 227
FILE_RECORDS = 2335
^INDEX_TABLE = "INDEX.TAB"
DATA SET ID
              = MEX-Y/M-SPI-2-UVEDR-RAWXCRU/MARS-V1.1
PRODUCT_NAME = "SPICAM DATA INDEX TABLE"
PRODUCT_ID = INDEX
RELEASE_ID
              = 0001
REVISION_ID = 0000
INSTRUMENT_HOST_NAME = "MARS EXPRESS"
INSTRUMENT_...
TARGET_NAME
TIME
INSTRUMENT_NAME = "SPICAM"
                       = "MARS"
                      = 2003-07-03T19:36:09.000
STOP TIME
                      = 2005-12-19T06:58:25.000
PRODUCT_CREATION_TIME = 2007-07-26T19:01:29.000
\label{eq:mission_phase_name} \texttt{MISSION\_PHASE\_NAME} \quad = \; \big\{ \texttt{"EV","IC","MC Phase 0","MC Phase 1",} \;
                           "MC Phase 2","MC Phase 3","MC Phase 4","MC Phase 5",
"MC Phase 6","MR Phase 1","MR Phase 2","MR Phase 3",
                           "MR Phase 4", "MR Phase 5", "MR Phase 6", "MR Phase 7",
                           "MR Phase 8", "ME Phase 1"}
DESCRIPTION = "This table contains the PDS-required index for all data files
                 in the /MEXSPI_OAUV/DATA directory on the SPICAM level OA UV
                 Archive Volume. It includes file location, and PDS
                 identification information.
OBJECT
           = INDEX_TABLE
                      = "MEX SPICAM level OA UV main Index"
  NAME
  INTERCHANGE_FORMAT = ASCII
  ROWS
            = 2335
  COLUMNS
                     = 9
  ROW_BYTES = 227
INDEX_TYPE = SINGLE
  INDEXED_FILE_NAME = {"DATA/*.LBL"}
                  = "INDEX.TAB lists all label files in this volume."
  DESCRIPTION
             = COLUMN
    NAME
                  = FILE_SPECIFICATION_NAME
    COLUMN NUMBER = 1
    DATA_TYPE = CHARACTER
    START_BYTE
    BYTES
    DESCRIPTION = "Pathname to the detached label which identifies this data
```


Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

```
file. Or path name to text file"
  END_OBJECT = COLUMN
            = COLUMN
  OBJECT
   NAME
                 = PRODUCT_ID
    COLUMN_NUMBER = 2
   DATA_TYPE = CHARACTER
START_BYTE = 57
   START_BYTE
    BYTES
                  = 25
    DESCRIPTION = "The name of the data file, which is unique within this
                   data set."
  END_OBJECT = COLUMN
            = COLUMN
  OBJECT
                  = PRODUCT_CREATION_TIME
    COLUMN_NUMBER = 3
   DATA_TYPE = CHARACTER
START BYTE = 85
   START_BYTE
                  = 85
   BYTES = 24
DESCRIPTION = "Time at which the data file was created."
  END_OBJECT = COLUMN
  OBJECT = COLUMN
             = DATA_SET_ID
   NAME
    COLUMN NUMBER = 4
   DATA_TYPE = CHARACTER
    START_BYTE
                  = 112
   BYTES = 37
DESCRIPTION = "An identifier unique for this dataset"
  {\tt END\_OBJECT} = {\tt COLUMN}
            = COLUMN
  OBJECT
                 = RELEASE ID
   NAME
    COLUMN_NUMBER = 5
   DATA_TYPE = CHARACTER
START_BYTE = 152
    BYTES
                  = 4
   DESCRIPTION = "Release id"
  END_OBJECT = COLUMN
  OBJECT = COLUMN
   NAME
                  = REVISION ID
    COLUMN_NUMBER = 6
   DATA_TYPE = CHARACTER
START_BYTE = 159
BYTES = 4
DESCRIPTION = "Revision id"
  END_OBJECT = COLUMN
   ECT = COLUMN
NAME = START_TIME
OBJECT
    COLUMN_NUMBER = 7
    DATA_TYPE = TIME
    START_BYTE = 166
   BYTES = 24
DESCRIPTION = "Start date and time of product observation or event"
  END_OBJECT = COLUMN
           = COLUMN
OBJECT
   NAME
               = STOP_TIME
    COLUMN_NUMBER = 8
    DATA_TYPE = TIME
   START_BYTE = 193
BYTES = 24
   DESCRIPTION = "Stop date and time of product observation or event"
  END_OBJECT = COLUMN
           = COLUMN
  OBJECT
   NAME
                 = NB_RECORDS
    COLUMN_NUMBER = 9
    DATA_TYPE = INTEGER
```


Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page: 69

```
START_BYTE = 220
BYTES = 4
DESCRIPTION = "Number of records in the data file"
END_OBJECT = COLUMN

END_OBJECT = INDEX_TABLE

END
```

Figure 11. Data index label file example

4.1.3.6 Mission Specific Keywords

SPACECRAFT_POINTING_MODE Pointing mode of the spacecraft. The definition of the modes and the standard values are given via the spacecraft_pointing_mode_desc element ["NADIR", "INERT"]

SPACECRAFT_POINTING_MODE_DESC Definition of the different pointing modes of the spacecraft . **^MEX_ORIENTATION_DESC** Pointer to a file containing Information about the spacecraft orientation.

5 Appendix: Example of Directory Listing of MEXSPI_1001 (0AUV) archive volume

```
ROOT
  - AAREADME.TXT
                     The file you are reading
  - ERRATA.TXT
                     Description of known anomalies and errors present
                     on the volume.
                     PDS detached label describing AAREADME.TXT
  - AAREADME.LBL
  - VOLDESC.CAT
                     Description of the contents of the volume in a PDS
                     format for the PDS Catalog
  - [DATA]
                 A directory containing the data + associated label files
        - DATAINFO.TXT
                           Description of files in this directory
        -[CRUISE] A directory containing MEX SPI level OA UV data
                   collected during the cruise phase
             -- {file(s) *DAT, *.LBL}
            |-- HEADER_ARRAY.FMT Include file containing a description of the header
                           of a UV record.
                   A directory containing MEX SPI level OA UV data
        -[MARS]
                   collected during the MARS nominal phase
             -[MOCP_0001_0482]
                  -- {file(s) *DAT, *.LBL}
```


Document No. : SA_MEX_ARCH_002

Issue : 002

: 21 July 2009 Date

Page : 70

|-- HEADER_ARRAY.FMT Include file containing a description of the header of a UV record.

-[MTP01_0483_0583]

-- {file(s) *DAT, *.LBL}

-- HEADER_ARRAY.FMT Include file containing a description of the

header of a UV record.

- [CATALOG] A directory containing information about the data set

- CATINFO.TXT Description of files in this directory

- DATASET.CAT Description of the MEXSPI_1001 data set

during the cruise phase

- RELEASE.CAT Release object of the MEXSPI_1001 data set

- MISSION.CAT Description of the Mars Express mission

- INSTHOST.CAT Description of the Mars Express spacecraft

- INST.CAT Description of the MEX SPICAM instrument

- PERS.CAT Listing of the people involved in the

production of this archive volume - REFS.CAT

List of pertinent references.

- SWINV.CAT Description of the software included on the

volume.

-[CALIB] A directory containing UV calibration files

- SPICAM_UVSEFF.DAT SPICAM UV Efficient Surface

- SPICAM_UVSEFF.LBL PDS detached label file describing SPICAM_UVSEFF.DAT

- [INDEX] A directory containing an index of data files.

- INDXINFO.TXT Description of files in this directory.

Index of level OA UV data files in - INDEX.TAB

the DATA directory

- INDEX.LBL PDS detached label describing the the corresponding *.TAB file

- BROWSE_INDEX.TAB Index of level OA UV browse files in

the BROWSE directory

- BROWSE_INDEX.LBL PDS detached label describing the the corresponding *.TAB file

Index of geometry files in the - GEOMETRY_INDEX.TAB

GEOMETRY directory

- GEOMETRY_INDEX.LBL PDS detached label describing the corresponding *.TAB file

Geometry index file providing geometry and position - GEO_MARS.TAB

information to locate the data within the data set

- GEO_MARS.LBL PDS detached label describing corresponding

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page : 71

*.TAB file

-[CRUISE] A directory containing browse images of MEX SPI level

OA UV data collected during the cruise phase

-[MARS] A directory containing browse images of MEX SPI level 0A UV data collected during the MARS Mars nominal phase

- [GEOMETRY] A directory containing geometry files associated to the data products.
 - |- GEOMINFO.TXT Description of files in this directory.

-[MARS] A directory containing geometry of MEX SPI level
0A UV data collected during the MARS Mars nominal phase

- [DOCUMENT] A directory containing information documents.
 - DOCINFO.TXT Description of files in this directory.
 - SA_MEX_ARCH_001_xx.PDF The SPICAM EAICD in PDF format
 - SA_MEX_ARCH_001_xx.ASC The SPICAM EAICD in ASCII format
 - SA_MEX_ARCH_001_xx.LBL PDS detached label that describes SA_MEX_ARCH_001_xx.PDF and SA_MEX_ARCH_001_xx.ASC
 - SPICAM_UVDATAFILE_DESC.TXT ASCII file describing the contents of the data files which are delivered in the Spicam data product.
 - SPICAM_UVDATAFILE_DESC.LBL PDS detached label that describes SPICAM_UVDATAFILE_DESC.TXT
 - SPICAM_UVCALIB_DESC.TXT ASCII file describing the calibration of the

Document No. : SA_MEX_ARCH_002

Issue : 002

Date : 21 July 2009

Page : 72

 $\mbox{\sc Spicam}$ UV data which are delivered in the $\mbox{\sc Spicam}$ UV dataset.

- SPICAM_UVCALIB_DESC.LBL PDS detached label that describes SPICAM_UVCALIB_DESC.TXT

- SPICAM_GEOMETRY_DESC.TXT ASCII file describing the contents of the geometry files which are delivered in the Spicam data set.

- SPICAM_GEOMETRY_DESC.LBL PDS detached label that describes SPICAM_GEOMETRY_DESC.TXT.

|-SPICAM_UVMODE_DESC.TXT- ASCII file describing the different operating modes of the UV SPICAM spectrometer.

-MEX_ORIENTATION_DESC.TXT - ASCII file informing on the usage of the spacecraft orientation on Mars Express.

-MEX_ORIENTATION_DESC.LBL - PDS detached label that describes ${\tt MEX_ORIENTATION_DESC.TXT.}$

-[LABEL] A directory containing include (*.FMT) files for data products

-HEADER_ARRAY.FMT - Include file containing a description of the header of a UV record.

|-[SOFTWARE] A directory containing IDL routines to read UV data

-SOFTINFO.TXT - Description of files in this directory.

-SPICAM_READPDS.ZIP - A ZIP file containing the IDL routines needed to read the SPICAM UV data files

-SPICAM_READPDS.LBL - PDS detached label that describes

SPICAM_READPDS.ZIP