LATMOS / IPSL / CNRS

[Mars Express]-[SPICAM]

To Planetary Science Archive Interface Control Document

SA_MEX_ARCH_003

Issue 001

15 January 2012

Prepared by: Aurélie REBERAC

Approved by: Franck MONTMESSIN

Mars Express SPICAM Light EAICD

Change Log

Date	Sections Changed	Reasons for Change
26/09/2004	3.1.1.3 to 3.1.1.7	Need updating and rewording after the new release concept document received on 15 th September
26/09/2004	3.1.4.1 Geometry filenaming convention	remove one letter to the geometry filename
26/09/2004	3.1.4.2 deleted	According to the new release concept document received on 15 th September
27/09/2004	3.2.2	Updated – include description of the spacecraft clock format
28/09/2004	3.4.3.6	This section was empty
15/10/04	2.3.2	Section reworded, separate paragraphs for UV and IR
15/10/04	2.4	Sections 2.4.1, 2.4.2, 2.4.3 and 2.4.5 were empty
15/10/04	3.1.3	Data directory naming change
15/10/04	3.4.3.7 to 3.4.3.10	Reworded
27/10/04	2.4.1 to 2.4.3	Completed
27/10/04	3.4.3.10	Reworded
27/10/04	Section 5 deleted	No software
05/01/05	1.7	Remove Npev and pev abbreviations (no more used)
	2.1	Add sentence to specify that the IR channel has 2 detectors.
	2.3.2.3	Add more details about processing of level 0B IR data
	4.1 and sub-sections	Delete sections 4.1.2 to 4.1.5 which were empty
		Update new section 4.1.2 which is now data product design of 0BIR data product
	2.4.1,3.1.1.2, 3.4.3.8	Update this section concerning IR calibration.

21/01/05	2.3.2.2.a, 2.3.2.3b, 2.4.4, 3.4.3.10	Sections updated according to modifications made on the MEXSPI_0AUV and MEXSPI_0BIR archive volumes (documentation filename
	2.4.1, 3.1.1.2, 3.4.3.8	modified, and a CALIB directory added in the MEXSPI_0AUV archive volume)
17/02/05	2.4.3	Remove reference to SBN software as a solution to read the data
24/02/05	4.1.1	Update section according to updated data label file
12/04/05	4.1	Modification of the data representation in the UV and IR label files
	2.1	Add more information about the UV and IR operating modes
	3.1.1.2, 3.4.3.9	Update sections according to the new directory LABEL in the UV data set.
	3.1.1.4	Update release concept examples
	2.4.6	Corrections and update of the web links
	2.4.3	Restore reference to SBN software as a solution to read the data – add examples
18/11/05	1.5	Add reference to the geometry and position information technical note
	3.4.4.3	Add information about the GEO_MARS.TAB geometry index file
	Appendix 5	Update the directory listing
27/07/07	3.1	Update VOLUME_ID and VOLUME_SET_ID of the data level 0 UV and IR SPICAM archive volume
		Use 2 digits for sequence number in the file name
		Use 2 digits in the MTP name directory
		Add "_QL" extension in the browse and label file
	3.4.3.6	
	412	Update of the UV/IR geometry product content
		Update of the IR data product desing and content
	4.1.3	Add TARGET_TYPE keyword
		Add DATA_QUALITY_ID keyword
		Add DATA_QUALITY_DESC keyword
27/07/2009	3.4.3.7	Software Directory section developed

	Mars Express SPICAM Light EAICD	Document No. Issue Date Page	: SA_MEX_ARCH_003 : 001 : 15 January 2012 : 4
04/08/10	17	Add LATMOS acronyms	
	1.8	Update contact Names and	d Addresses
	2.4.3	Update UV data software	
		•	
15/01/12	2.3.1, 2.3.2.1, 2.4.3	Add LATMOS acronyms	
	3.1.1.1, 3.1.1.3.a		
	3.1.1	Change data directory nam	ning
		convention	
	3.1.4	Change Data, Geometry a	nd Browse
		filenames convention	
	3.4.3.6.c figure7	change geometry file head	er example

3.4.3.6.c figure8

change geometry label file example

Table Of Contents

1	Intr	roduction	3
	1.1	Purpose and Scope	3
	1.2	Archiving Authorities	3
	1.3	Contents	3
	1.4	Intended Readership	3
	15	Annlicable Documents	0
	1.5	Palationshing to Other Interfaces	T
	1.0	Relationships to Other Interfaces	4
	1.7	Acronyms and Abbreviations	4
	1.8	Contact Names and Addresses	5
2	Ove	erview of Instrument Design, Data Handling Process and Data Product	6
	2.1	Instrument Design	6
	2.2	Scientific Objectives	8
	2.3	Data Handling Process : SPICAM data processing, retrieval algorithms, and definitions of	data levels 9
	2.3.	.1 SPICAM data processing, retrieval algorithms.	9
	2.3.	.2 Definitions of data levels	9
	2.4	Overview of Data Products	12
	2.4.	.1 Instrument Calibrations	12
	2.4.	.2 In-Flight Data Products	13
	2.4.	.3 Software	13
	2.4.	.4 Documentation	15
	2.4.	.5 Derived and other Data Products	15
	2.4.	.6 Ancillary Data Usage	15
3	Arc	chive Format and Content	17
	3.1	Format and Conventions	17
	3.1.	.1 Deliveries and Archive Volume Format	17
	3.1.	.2 Data Set Name and Data Set ID Formation	24
	3.1.	.3 Data Directory Naming Convention	25
	3.1.	.4 Filenaming Convention	26
	3.2	Standards Used in Data Product Generation	27
	3.2.	.1 PDS Standards	27
	3.2.	.2 Time Standards	28
	3.2.	.3 Reference Systems	29
	3.3	Data Validation	29
	3.4	Content	30
	3.4.	.1 Volume Set	30
	3.4.	.2 Data Set	30
	3.4.	.3 Directories	30
4	Det	tailed Interface Specifications	55
	4.1	Data Product Design	55
	4.1.	.1 Data product design and example label of a 0AUV data product	55
	4.1.	.2 Data product design and example label of a 0BIR data product	59
	4.1.	.3 Label keywords descriptions	67
5	App	pendix: Example of Directory Listing of MEXSPI 0AUV archive volume	73

Document No.	: SA_MEX_ARCH_003
Issue	: 001
Date	: 15 January 2012
Page	: 2

1 Introduction

1.1 Purpose and Scope

The purpose of this EAICD (Experimenter to (Science) Archive Interface Control Document) is two fold. First it provides users of the SPICAM instrument with detailed description of the product and a description of how it was generated, including data sources and destinations. Secondly, it is the official interface between the SPICAM instrument team and the archiving authority.

1.2 Archiving Authorities

The Planetary Data System Standard is used as archiving standard by

- NASA for U.S. planetary missions, implemented by PDS
- ESA for European planetary missions, implemented by the Research and Scientific Support Department (RSSD) of ESA

ESA implements an online science archive, the ESA's Planetary Science Archive (PSA),

- to support and ease data ingestion
- to offer additional services to the scientific user community and science operations teams as e.g.
 - search queries that allow searches across instruments, missions and scientific disciplines
 - o several data delivery options as
 - direct download of data products, linked files and data sets
 - ftp download of data products, linked files and data sets

The PSA aims for online ingestion of logical archive volumes and will offer the creation of physical archive volumes on request.

1.3 Contents

This document describes the data flow of the SPICAM instrument on MARS EXPRESS from the s/c until the insertion into the PSA for ESA. It includes information on how data were processed, formatted, labeled and uniquely identified. The document discusses general naming schemes for data volumes, data sets, data and label files. Standards used to generate the product are explained. Software that may be used to access the product is explained further on.

The design of the data set structure and the data product is given. Examples of these are given in the appendix.

1.4 Intended Readership

Any potential user of the SPICAM data, and the staff of the archiving authority (Planetary Science Archive, ESA, RSSD, design team).

1.5 Applicable Documents

- [1] Planetary Data System Preparation Workbook, February 17, 1995, Version 3.1, JPL, D-7669,Part1
- [2] Planetary Data System Standards Reference, August 1, 2003, Version 3.6, JPL, D-7669, Part 2
- [3] MARS EXPRESS Archive Generation, Validation and Transfer Plan, [ESA-MEX-TN-4009, Issue 1.0, June 2001]
- [4] Planetary Science Archive. Experiment Data Release Concept. Technical proposal SOP-RSSD-TN-015
- [5] Instruments to Planetary Science Archive End-to-End Test. ME-EST-PL-13128, Issue 2.1, 27 April 2004.
- [6] Planetary Science Data Archive Technical Note. Geometry and Position Information. SOP-RSSD-TN-010

1.6 Relationships to Other Interfaces

Changes in the standard SPICAM data products would require changes to this document.

1.7 Acronyms and Abbreviations

DC	Dark Current
DDS	Data Disposition System
DPU	Dedicated Processor Unit
EAICD	Experimenter to (Science) Archive Interface Control Document
IASB	Institut d'Aéronomie Spatiale de Belgique
IKI	Institute Kosmitcheski Isledovanie
IR	Infra Red
LATMOS	Laboratoire Atmosphères, Milieux, Observations Spaciales
MPS	Mission Planning System
N/A	Not Applicable
PDS	Planetary Data System
PSA	Planetary Science Archive
SA	Service d'Aéronomie, CNRS
SPICAM	Spectroscopy for the Investigation of Characteristics of the Atmosphere of Mars
SIR	Spicam Sensor IR
SU	Sensor Unit
SUV	Spicam Sensor UV
тс	Telecommand
ТМ	Telemetry
UV	Ultra Violet

1.8 Contact Names and Addresses

Data preparation and final products delivery into the PSA are provided by the SPICAM staff at Service d'Aéronomie (SA), France (now LATMOS, GUYANCOURT, France).

MONTMESSIN Franck

SPICAM Principal Investigator	33 (0) 1 80 28 52 85	franck.montmessin@latmos .ipsl.fr	LATMOS, CNRS
REBERAC Aurélie			
Mission Planning & Operations			
Data Validation & Archiving	33 (0) 1 80 28 50 43	Aurelie.reberac@latmos.ips	LATMOS, CNRS
Software Engineer			
LACOMBE Gaetan			
Mission Planning & Operations	33 (0) 1 80 28 51 52	gaetan.lacombe@latmos.ip	LATMOS,
Data Validation & Archiving		sl.fr	CNRS
Software Engineer			

2 Overview of Instrument Design, Data Handling Process and Data Product

2.1 Instrument Design

SPICAM Light is collaboration between Service d'Aéronomie, Verrières le Buisson, France, IASB, Brussels, Belgium, and IKI, Moscow, Russia.

The SPICAM Light instrument is made of 2 boxes as depicted below. The first box called DPU (Data processing Unit) acts as the main electronic interface with the Spacecraft. The other is the sensor box or unit. This sensor unit (SU) has one channel in the ultraviolet wavelength range 118-320 nm (named SUV), and another one (named SIR) in the near infrared wavelength range 1.1-1.7 μ m.

See the INST.CAT catalog file in the CATALOG directory of each dataset for more details about all the technical details concerning the Spicam instrument. The mechanical and electrical characteristics are listed. The optical interfaces with spacecraft and the fields of view are explicited. The following table gives a summary of the main characteristics of the instrument.

·	5		
Spectral bands	118 - 320 nm (UV)		
	1.1 - 1.7 μm (IR)		
Spectral sampling	UV: 0.55 nm/pix		
	IR: 0.8 nm/pix at 1.5 μm		
Mass	DPU 0.71 kg		
	SU 4.14 kg Total 4.85 kg		
Power	DPU+SU 17 W to 26 W		
Volume	DPU: $1.65 \times 1.14 \times 0.65 \text{ dm}^3$		
	SU: $4 \times 2.4 \times 1.15 \text{ dm}^3$		
Data rate	9 and 34 kbit/s (averaged over several seconds)		
Data Volume	100 - 300 Mbits / day		
Observations	One Board Time TC, One Spicam TC		
	Duration: 5 to 40 mn		
Pointing (orientation)	Inertial Star, Sun, Limb		
	Nadir		

Summary of SPICAM Light main characteristics

2.1.1 UV detector unit

The UV detector is made of 3 parts: a CCD (Thomson 7863) camera, an intensifier (Hamamatsu) coupled to the CCD by fiber optics, and a programmable high voltage for the intensifier. The CCD is made of 288 photon sensitive rows and each row is made of 408 pixels. The rows direction is the spectral dimension.

When observing an extended source (dayside nadir viewing, or limb measurements, dayside star occultation), a slit is mechanically put into place at the focus of the parabolic mirror, which isolates a corresponding field of view. The shape of the slit, perpendicular to the dispersion plane, is composed of two parts: a wide slit (about 500 μ m wide) and a narrow slit (50 μ m wide). The image of the narrow slit covers CCD lines from 0 to 200, and is used for maximum spectral resolution (1 pixel covers 0.54 nm), while the wide slit is achieving a higher photometric sensitivity, at the expense of a reduced spectral resolution (factor of 10).

For each measurement, the UV detector records a window of 5 bands of the CCD (telemetry rate constraint). The bands can be elementary pixels (each band is made of one physical CCD row) or binned pixels (each band is made of binned rows (2,4,8,16 or 32 rows)). Moreover the binning can be different for each band (progressive binning). The position of the first row read is programmable.

Considering this, various operating modes can be used (Figure 1). A first mode, named alignment mode, allows a complete image of the CCD. At each measurement the position of the 5 bands read is changed.

Two other modes consist in reading the same five bands of the CCD during an observation. In the binning mode, each band is a sum of an identical number of rows, while in the third mode the binning is progressive.

For each of these three modes, the slit can be ON (modes named ALIGN_S, BINNING_S and BINNINGP_S) or OFF (modes named ALIGN, BINNING and BINNINGP).

Figure 1. UV detector operating modes

2.1.2 IR channel unit

The SPICAM infrared channel is based around a scanning acousto-optical tuneable filter (AOTF), which is able to scan frequencies from 84 to 148 MHz.

Spectra acquisition can be done on one, two or three frequency windows defined via the telecommand by a start frequency, a number of points and a frequency step. Along with spectrum measurement in three frequency windows a set of spectrum dots can be obtained during measurement cycle. Each dot represents a few adjacent spectrum points and can be viewed as a small window with predefined starting frequency, points number and frequency step.

The infrared channel has two detectors with different polarization, which can be activated at the same time and for the same wavelength range.

2.2 Scientific Objectives

The suite of measurements of SPICAM Light in the various available observation modes is addressing key questions of the atmosphere of Mars, including its present state, the global climate today, and the atmospheric climatic evolution of the planet.

Chemistry: Simultaneous measurements of O_3 and H_2O will allow validating and/or modifying chemistry models, from which will be derived an assessment of the oxidation environment (effect of solar UV, O_3 , H_2O_2 , O, on minerals and oxidation molecules).

Structure/Dynamics/Meteorology: Vertical profiles of density / temperature (20-160 km) will provide unique information about the global structure and dynamics of the atmosphere, in particular in the altitude region crucial for aerocapture and aerobraking, and a better understanding of meteorological systems.

Clouds/dust/aerosols: Occultation measurements will allow the detection, measurement and characterization of the physical nature of aerosols, dust particles, and their vertical distribution.

lonosphere/escape rate: Vertical profiling of daylight aeronomic emissions (H, C, O, CO, CO_2^+) will allow to adjust a comprehensive model of the ionosphere, from which an estimate of escape processes may be derived (evolution of the atmosphere), and to study the interaction with the solar wind.

In order to fulfill the previous scientific objectives, there are four configurations summarized below:

Sensor	Mode	Expected results
UV+IR	Stellar occultation	Temperature, density vertical profiles
UV+IR	Solar occultation	Temperature, density vertical profiles
UV+IR	Nadir	Total column abundances
UV+IR	Limb emissions	Vertical profiling of aeronomic emissions

The following table summarizes for the key atmospheric constituents measurable by SPICAM, the observation mode (occultation, nadir, and limb) according to the scientific objective, and the accuracy achieved after processing, in the altitude range given.

Species	Measurements			Accuracy	Altitude range
	Scientific objective	Mode (occultation, nadir, limb)	Spectral range		
O ₃	Concentration vertical profile	Stellar / Solar occultation	220 –300 nm	2 – 10 %	10 – 50 km
03	Total abundance	Nadir	220 –300 nm	5 % (>0.15 μ–atm)	N.A.
CO ₂	Atmospheric density and temperature vertical profile	Solar / Stellar occultation	180 nm	2 – 10 % 5 K	20 – 160 km
Aerosols	Vertical profile of characteristics	Solar / stellar occultation	UV	10 ⁻³ (=photo- metric)	5 – 60 km

•••••••••••••••••••••••••••••••••••••••					
O ₂	Concentration	Stellar occultation	200 nm	20 %	35 – 90 km
	vertical profile				(never done before)
Н, С, О,	Vertical profiling of	Limb emission	118–320 nm	20 %	80 – 400 km
CO ₂ +,CO	aeronomic emissions				
H ₂ O ₂	Total abundance	Nadir	210 nm	20 %	Never done before
SO ₂	Total abundance	Nadir	220 nm		Tentative
CO ₂	Surface pressure	Nadir	200 nm	0.2 mbar	N.A.
			1.43 μm	0.05 mbar	
H ₂ O	Total abundance	Nadir	1.38 μm	0.2. pr. μm	5 x 5 km ground
				(detectable)	-
Aerosols	Mapping of	Spectro polarimetry	1.2 to 1.7 μm	10-3	Exploratory
	properties	in nadir		(=photometric)	- •
Soil	surface studies	Spectro polarimetry	1.2 to 1.7 μm	10 ⁻³	5 x 5 km ground
		in nadir		(=photometric)	

Table 1.Derived science data products

2.3 Data Handling Process : SPICAM data processing, retrieval algorithms, and definitions of data levels

2.3.1 SPICAM data processing, retrieval algorithms.

The SPICAM data collected between each switch ON and switch OFF of SPICAM will be transferred to ESOC and stored at ESOC on the Data Dissemination System (DDS) in Darmstadt (Germany). It will be then transferred via ftp from the DDS to LATMOS.

All new data files and the processed data up to level 2 will be collected at LATMOS.

Retrieval algorithms and softwares which will be used throughout the processing steps from level to level are under development and should be written in IDL.

2.3.2 Definitions of data levels

2.3.2.1 Level 0 data

This is the SPICAM data collected by ESOC and stored on the DDS. One ESOC file contains both UV and IR data. One observation, containing all the data collected between Switch ON and switch OFF of SPICAM, which is operated in a single mode during this time, may be spread over several ESOC generated files. LATMOS does NOT intend to archive this Level 0 data, since it is the role of ESOC to do it.

Starting from level 0 data, ESA packets are disassembled and reformatted to build level 0A data files. Level 0A assembles one single file per SPICAM observation and per sensor (UV or IR). In the following, the different SPICAM data levels will be described by sensor, the data processing being different for UV and IR data, and also different for the mode of observation (star, sun, nadir, limb).

2.3.2.2 <u>UV data</u>

The following table summarizes the different UV data products which should be available in the SPICAM archive in the present time.

Level	0A*	1A	1B	2
Star	Х	NULL	NULL	NULL
Sun	Х	NULL	NULL	NULL
Nadir	Х	NULL	NULL	NULL
Limb	Х	NULL	NULL	NULL

* : data files + associated browse and geometry files

X : available

NULL : under processing. Product not yet available.

The different SPICAM UV data products available are described in the following sections. The other data products will be described as soon as they will be available.

2.3.2.2.a Level 0A UV data

The processing from level 0 to level 0A includes the following features:

- the data are not modified : starting from level 0 data, ESA packets are disassembled and reformatted to build level 0A data files.
- a header is added to each record to comply to our requirement. A description of the header is given in the SPICAM_UVDATAFILE_DESC.TXT file in the DOCUMENT directory.
- a UTC time (DDS time) is added in the header. The time of observation is defined in the SPICAM_UVCALIB_DESC.TXT file in the DOCUMENT directory.

A level 0A UV data file contains then all records of a UV SPICAM observation, each record consisting of the SPICAM header followed by the data table, in binary format. Data are in ADU units (Analog to Digital Units). A description of the UV data files is given in the SPICAM_UVDATAFILE_DESC.TXT file in the DOCUMENT directory or in section 4.1.1 of this document. In summary, each UV data table consists of 5 bands selected on the CCD. Each band can be one physical row of the CCD or several physical rows by on chip binning processing (selectable by telecommand). Several operating mode were used for the observations on the Mars Express spacecraft. The different SPICAM_UV operating modes are described in the SPICAM_UVMODE_DESC.TXT file in the DOCUMENT directory.

The SPICAM level 0A corresponds with the PDS CODMAC level 2 (edited data or Experimental Data Record (EDR)).

Associated to the level 0A UV data files, the SPICAM team will provide quicklook images (browse files) and geometry files. A description of the geometry files is given in the SPICAM_GEOMETRY_DESC.TXT file in the DOCUMENT directory, as well as in section 3.4.3.6.b of this document.

2.3.2.2.b Level 1A UV data

The SPICAM level 1A should correspond with the PDS CODMAC level 2. Under processing.

2.3.2.2.c Level 1B UV data

The SPICAM level 1B should correspond with the PDS CODMAC level 3 (calibrated data). Under processing.

2.3.2.2.d Level 2 UV data

Level 2 data will consist in derived science data products (see Table 1). The SPICAM level 2 will correspond with the PDS CODMAC level 5 (derived data).

Under processing.

2.3.2.3 IR data

The following table summarizes the different IR data products which should be available in the SPICAM archive in the present time.

Level Mode	0A	0B*	1A	1B	2
Star	-	Х	NULL	NULL	NULL
Sun	-	Х	NULL	NULL	NULL
Nadir	-	Х	NULL	NULL	NULL
Limb	-	X	NULL	NULL	NULL

- : not archived

X : available

NULL : under processing. Product not yet available.

: data files + associated browse and geometry files

The different SPICAM IR data products available are described in the following sections. The other data products will be described as soon as they will be available.

2.3.2.3.a Level 0A IR data

The processing of IR data from level 0 to level 0A is similar to the processing of UV data:

- the data are not modified : starting from level 0 data, ESA packets are disassembled and reformatted to build level 0A data files.
- a header is added to each record.
- a UTC time (DDS time) is added in the header.

An infrared measurement requires several communication sessions to collect and transmit measurement data (a spectrum) from the two IR detectors. Therefore, in level 0A IR data file, a record corresponds to one communication session (one part of a spectrum) from the two detectors. Moreover, spectrum measurement can be done on three frequency windows, characterized by 3 parameters: FREQUENCY, POINTS and STEP. Along with spectrum measurement in three frequency windows a set of spectrum dots can be obtained during measurement cycle. Each dot represents a few adjacent spectrum points and can be viewed as a small window with predefined starting frequency, points number and frequency step. Height various sets of spectrum dots are predefined, with the possibility of 'no dots' measurement configuration.

To facilitate the use of infrared raw data, the SPICAM team will provide level 0B IR data files in which spectra will be reconstructed for each detector. Level 0A IR data files will not be archived with the PSA, but only at Service d'Aéronomie.

lssue	: 001
Date	: 15 January 2012
Page	: 12
F	ssue Date Page

2.3.2.3.b Level 0B IR data

A level 0B IR data file will contain all reconstructed spectra of an IR SPICAM observation collected by the two detectors of the infrared channel. All other relevant information (parameters of the command, frequency array, system monitor's values...) will be also included in the file.

A description of the IR data files will be given in the the SPICAM_IRDATAFILE_DESC.TXT file in the DOCUMENT directory or in section 4.1.2 of this document.

The SPICAM IR level 0B corresponds with the PDS CODMAC level 2 (edited data or Experimental Data Record (EDR)).

Associated to the level 0B IR data files, the SPICAM team will provide quicklook images (browse files) and geometry files. A description of the geometry files is given in the SPICAM_GEOMETRY_DESC.TXT file in the DOCUMENT directory, as well as in section 3.4.3.6.b of this document.

2.3.2.3.c Level 1A IR data

The SPICAM level 1A should correspond with the PDS CODMAC level 2. Under processing.

2.3.2.3.d Level 1B UV data

The SPICAM level 1B should correspond with the PDS CODMAC level 3 (calibrated data). Under processing.

2.3.2.3.e Level 2 UV data

Level 2 data will consist in derived science data products (see Table 1). The SPICAM level 2 will correspond with the PDS CODMAC level 5 (derived data).

Under processing.

2.4 Overview of Data Products

2.4.1 Instrument Calibrations

All information about calibration is related to flight model. Information needed to calibrate the UV and IR data are given in the SPICAM_UVCALIB_DESC.TXT and SPICAM_IRCALIB_DESC.TXT files respectively, in the DOCUMENT directory. These documents explain how the in-flight calibration is done for the various mode of observation for the UV and IR sensor.

For example, for UV data it gives information on :

- the exact timing of the data,
- temperatures,
- how to evaluate the dark current for the various mode,
- the wavelength assignment for the various mode,
- photometry.

Calibration files mentioned in SPICAM_UVCALIB_DESC.TXT or SPICAM_IRCALIB_DESC.TXT files are available in the CALIB directory of the corresponding MEXSPI_0AUV, MEXSPI_0BIR archive volume.

2.4.2 In-Flight Data Products

During the active mission UV and IR data from the CRUISE and MARS NOMINAL phases will be collected. A data set will be defined for each sensor (UV or IR) and for each data product level (level 0A, 1A, 1B and 2). Therefore, the SPICAM volume set will consist of 8 data volumes containing a single data set. At the moment, the UV 0A dataset contains the accumulation of data products, associated browse and geometry files, and documentation, needed to understand and use the observations.

2.4.3 Software

The ESA packets (level 0) are processed at LATMOS by the SPICAM team for technological verification and SPICAM level 0A data files and associated geometry files are produced:

- ESA packets are disassembled by sensor (UV, IR) and by observations (ON/OFF)
- Geometric parameters are generated with a SPICAM software using SPICE routines and SPICE kernels.

At the present time, we do not intend to archive software. All information needed to read the data file will be given in the SPICAM_UVDATAFILE_DESC.TXT or SPICAM_IRDATAFILE_DESC.TXT file in the DOCUMENT directory.

The SPICAM UV Level 0A and SPICAM IR Level 0B data can be read using the new version SBN (Small Bodies Node) software written in IDL as available for download in April 2005 from http://pdssbn.astro.umd.edu/nodehtml/software.shtml. These packages are intended primarily for end-users of PDS data. An examples directory is included with the distribution. It can be downloaded separately or as part of the complete package.

Below are examples on how to use and plot the UV and IR data with IDL after being read by the SBN software.

UV data

PRO readPDS_SPICAM_UV

```
;select a data label file *.LBL
  fn = dialog_pickfile(PATH=datapath)
  data = readpds(fn)
   ;The header_array contains detector parameters values and time of observation
   ;example to access the header_array of the first and the last record
  first_header_array = data.record_array[0].one_spicam_uv_record.header_array
  nb records = N_ELEMENTS(data.record_array)
  last_header_array = data.record_array[nb_records-1].one_spicam_uv_record.header_array
      code_op = first_header_array[40] ;operating code (100:full CCD - 101/102:5 bands)
      binning = first_header_array[46] ;binning (number of ccd lines analogically
summed, 0 = progressive binning)
      nlig = first_header_array[45]
      ncol = first_header_array[44]
  print, 'TIME_EXPOSURE', first_header_array[41] ; exposure time
  print,'CODE_OP',code_op
  print, 'Y0', first_header_array[43] ; first line of CCD read
  print, 'BIN', binning
  print, 'FIRST TIME', first_header_array[60:66] ; UTC time of first measurement
  print, 'LAST TIME', last_header_array[60:66]
                                                ; UTC time of last measurement
   ;The data_array contains 5 CCD "bands" of 408 pixels
```

	Mars Express SPICAM Light EAICD	Document No. Issue Date Page	: SA_MEX_ARCH_003 : 001 : 15 January 2012 : 14
--	---------------------------------------	---------------------------------------	---

;example to access the data_array of the first record first_data_array = data.record_array[0].one_spicam_uv_record.data_array ;In the BINNING or PROGRESSIVE BINNING mode, a temporal image can be obtained ;for each of the five bands. tempoimage_band1 = data.record_array.one_spicam_uv_record.data_array[*,0] tempoimage_band2 = data.record_array.one_spicam_uv_record.data_array[*,1] tempoimage_band3 = data.record_array.one_spicam_uv_record.data_array[*,2] tempoimage_band4 = data.record_array.one_spicam_uv_record.data_array[*,3] tempoimage_band5 = data.record_array.one_spicam_uv_record.data_array[*,4]

window,1

!p.multi =[0,5,1]

contour,tempoimage_band1,/fill,nlevels=30,xrange=[0,407],xstyle=1,title='band1',color=0,x
title='pixel'

contour,tempoimage_band2,/fill,nlevels=30,xrange=[0,407],xstyle=1,title='band2',color=0,x
title='pixel'

contour,tempoimage_band3,/fill,nlevels=30,xrange=[0,407],xstyle=1,title='band3',color=0,x
title='pixel'

```
contour,tempoimage_band4,/fill,nlevels=30,xrange=[0,407],xstyle=1,title='band4',color=0,x
title='pixel'
```

```
contour,tempoimage_band5,/fill,nlevels=30,xrange=[0,407],xstyle=1,title='band5',color=0,x
title='pixel'
```

END

IR data

PRO readSBN_IR

;select a data label file *.LBL fn = dialog_pickfile() ; the SBN routines create a structure x containing all the data objects x= readpds(fn)

;first record (contains first spectrum recorded by the 2 detectors) record0 = x.record_array[0].one_spicam_ir_record print,"TIME", record0.year,record0.month,record0.day

;plot the first spectrum recorded by the 2 detectors as a function of frequency window,0 plot, x.frequency_array,record0.data_array[*,0] oplot, x.frequency_array,record0.data_array[*,1]

;temporal image: a temporal image is obtained for each detector window,1 image0 = x.record_array.one_spicam_ir_record.data_array[*,0]

```
tvscale,image0 ;www.dfanning.com/programs/tvscale.pro
window,2
image1 = x.record_array.one_spicam_ir_record.data_array[*,1]
tvscale,image1
```


2.4.4 Documentation

This document (EAICD) will be provided in the DOCUMENT directory in PDF format. An ASCII version of the EAICD with PNG files for drawings or tables referenced in it will be also available.

The SPICAM Flight User Manual (FUM) and other technical document which could be helpful to use data will be provided in the DOCUMENT directory in PDF or ASCII format only.

The following SPICAM documents will be present in the DOCUMENT directory of the MEXSPI_0AUV archive volume :

- SPICAM_UVDATAFILE_DESC.TXT: This document describes the contents of the UV data files which are delivered in the MEXSPI_0AUV archive volume.

- SPICAM_GEOMETRY_DESC.TXT: This document describes the contents of the geometry files which are delivered in the the MEXSPI_0AUV archive volume.

- SPICAM_UVCALIB_DESC.TXT: This document describes the calibration of the SPICAM UV data which are delivered in the MEXSPI_0AUV archive volume.
- SPICAM_UVMODE_DESC.TXT: This document describes the different operating mode of the SPICAM UV spectrometer.
- SPICAM_UVT31DOC.PDF : This document describes the calibration factors of the SPICAM UV spectrometer channel.

The following SPICAM documents will be present in the DOCUMENT directory of the MEXSPI_0BIR archive volume :

- SPICAM_IRDATAFILE_DESC.TXT: This document describes the contents of the IR data files which are delivered in the MEXSPI_0BIR archive volume.
- SPICAM_IRCALIB_DESC.TXT: This document describes the calibration of the SPICAM IR data which are delivered in the MEXSPI_0BIR archive volume.

2.4.5 Derived and other Data Products

We do not intend to provide any other derived data or data products that result from co-operation with other instrument teams.

2.4.6 Ancillary Data Usage

SPICE files produced by PST/ESTEC in collaboration with NAIF/JPL from the Mars Express orbit files generated by ESOC will be used in our data processing chain, in particular to generate geometry files. SPICE files are available from the following file servers:

At ESTEC FTP Server : http://solarsystem.estec.esa.nl/pub/projects/mex/data/spice/

At NAIF FTP Server: http://naif.jpl.nasa.gov/pub/naif/MEX

Available SPICE files are:

- 1. SPK spacecraft/planet/satellites/asteroids ephemeris data kernel files
- 2. EK event kernel no EK available for MARS EXPRESS
- 3. CK C-matrix instrument attitude kernel files

Document No.	: SA_MEX_ARCH_003
Issue	: 001
Date	: 15 January 2012
Page	: 16

- 4. LSK leap second kernel files
- 5. FK frame kernel files
- 6. IK instrument kernel files
- 7. PCK planetary constant kernel files
- 8. SCLK spacecraft clock kernel files

Orbit numbering files, which are derived data product from the MEX kernel data set, are also available at ESTEC or NAIF FTP Servers (in the ORBNUM directory).

SPICE subroutines are also available at <u>ftp://naif.jpl.nasa.gov/pub/naif/toolkit/</u> to help the use of these kernels and tutorials and documentation can be retrieved from <u>http://naif.jpl.nasa.gov/naif/tutorials.html</u> and <u>http://naif.jpl.nasa.gov/naif/documentation.html</u>.

3 **Archive Format and Content**

This section describes the format of SPICAM Archive Volumes. Data that comprise the archive will be formatted in accordance with Planetary Data System specifications [2].

3.1 Format and Conventions

3.1.1 Deliveries and Archive Volume Format

3.1.1.1 SPICAM Delivery Schedule

After a final check, the processed data will be delivered to the co-Is and after the priority phase to PSA at ESTEC. The LATMOS is the single point of contact for the PSA archive team and for data distribution (during priority phase).

Deliveries to the PSA will be made by the SPICAM archive team lead by the PI F Montmessin. Data should be delivered in the long term by mission phases scheduled by MPS. Target date for delivery of SPICAM raw data (level 0A) to PSA is 9 months after the last data of a specific Mars mission phase. Level 1A and 1B data will be delivered at the same time or as soon as the data products are ready and validated by the SPICAM team. The level 2 scientific data set will be available to the public after the first major publication of this data set

An approximate SPICAM archive volume delivery schedule, based on the nominal science mission timeline, is shown below.

Mission phase	date	Delivery date	Data type	
Cruise Commissioning				
Near-Earth Commissioning	June/July 2003	January 2005	Level 0A,1A	
Cruise Commissioning	July/October 2003	January 2005	Level 0A,1A	
Mars Commissioning				
Mars Orbit Commissioning Phase (MOCP, orbits 0001-0482)	January-May 2004	Jan-Feb 2005	Level 0A,1A,1B	
Mission Term Planning				
MTP1 (orbits 0483-0582)	June 2004	9 months after last observation	Level 0A,1A,1B	
MTP2 (orbits 0583-0683)	July 2004	9 months after last observation	Level 0A,1A,1B	
Following phases	Scheduled by MSP	9 months after last observation	Level 0A,1A,1B	

3.1.1.2 Archive Volume Format and Concept of Deliveries

The SPICAM archive volume is organized according to the PDS standard for "one data set, one volume", each archive volume corresponding to a specific SPICAM data level as defined in section 2.3.2 (level 0A, level 1A, level 1B, ...) and to a specific type of data (UV or IR) ().

Each SPICAM archive volume has the name of the VOLUME_ID (section 3.1.1.3).

In each archive volume, the following standard directories may be included:

CATALOG	PDS catalog files
INDEX	Indices to assist in locating data of interest
GEOMETRY	Files describing the observational geometry
BROWSE	Reduced resolution versions of data products
DATA	Contains one or more subdirectories of data products. The DATA subdirectory is used to unclutter the root directory of a volume by providing a single entry point to multiple data subdirectories. This directory will contains data and detached label files, and also include files (*.FMT).
DOCUMENT	Documentation, supplementary and ancillary information to assist in understanding and using the data products.

CALIB Calibration files to process the data

Currently, there is SOFTWARE directory only in the UV dataset. This may be updated and completed in the future.

In the ROOT directory of each archive volume, 2 files give an overview of the archive volume in ASCII format (AAREADME.TXT file) and a description of the volume in PDS format (VOLDESC.CAT file).

Figure 2 SPICAM volume set organization

Within the Planetary Science Archive (PSA) the archive volume represents an online delivery. **Deliveries are based on the concept of a release and a revision of a well-defined period of time**. This concept [4] allows the delivery of experiment data without the delivery of all supplementary information, that has already been delivered at the first initial delivery of a fully PDS compatible archive volume, containing the VOLDESC.CAT file and all necessary CATALOG, DOCUMENT, INDEX, DATA, etc directories and their

Mars Express SPICAM Light EAICD

Document No.	: SA_MEX_ARCH_003
lssue	: 001
Date	: 15 January 2012
Page	: 19

content. The usage of the release object is not fully compliant with the PDS standard 3.6, however the full data set itself is PDS compatible. This concept should be transparent to the end user.

3.1.1.3 VOLDESC.CAT file

The VOLDESC.CAT file gives a description of the archive volume in a PDS format. Figure 2 gives an example of an initial VOLDESC.CAT file of the MEXSPI_0AUV archive volume.

PDS_VERSION_ID	= PDS3		
LABEL_REVISION_NOTE	= "2007-07-25"		
RECORD TYPE	= FIXED LENGTH		
RECORD BYTES	= 70		
RELEASE ID	= 0001		
REVISION ID	= 0000		
OBJECT	= VOLUME		
VOLUME SERIES NAME	= "MISSION TO MARS"		
VOLUME SET NAME	- "MARS FYDRESS SDICAM DATA DRODUCTS"		
VOLUME SET ID	= FR IDSLCNRS SA MEXSDI 1000		
VOLUME NAME	- WOLLINE 1. CDICAM IN MARC EXDRESS		
VOLONE_NAME	- VOLOME I. SPICAM OV MARS EXPRESS		
VOLUME TO	- MEYODI 1001		
VOLUME_ID	- MEASP1_1001		
VOLUME_VERSION_ID			
PUBLICATION_DATE	= 2007-07-25		
VOLUMES			
MEDIUM_TYPE	= "ONLINE"		
VOLUME_FORMAT	= "ISO-9660"		
DATA_SET_ID = "MEX	K-Y/M-SPI-2-UVEDR-RAWXCRU/MARS-VI.1"		
	umbén an langa an langa santaén na Masa		
DESCRIPTION	= "Inis volume release contains Mars		
	Express SPICAM UV Raw Data Products		
	(level UA), in ADU units, along		
	with documentation and other		
	ancillary information about the		
	data products."		
OBJECI	= DATA_PRODUCER		
INSTITUTION_NAME	= "SERVICE D'AERONOMIE, IPSL/CNRS,		
	FRANCE "		
FACILITY_NAME	= "N/A"		
FULL_NAME	= "JEAN-LOUP BERTAUX"		
DISCIPLINE_NAME	= "N/A"		
ADDRESS_TEXT	= "BP3		
	91371 Verrieres le Buisson Cedex		
	France"		
END_OBJECT	= DATA_PRODUCER		
AMICCION CAMALOC	- INTERION CATH		
AINSTON_CATALOG	= "MISSION.CAT"		
AINSTRUMENT_HOST_CATALOG	= "INSTHOST.CAT"		
TINSTRUMENT_CATALOG	= "INST.CAT"		
ADDATA_SET_CATALOG	= "DATASET.CAT"		
^PERSONNEL_CATALOG	= "PERS.CAT"		
DATA_SET_RELEASE_CATALOG	= "RELEASE.CAT"		
TREFERENCE_CATALOG	= "REFS.CAT"		
TARGET_CATALOG	= "TARGET.CAT"		
^SOFTWARE_CATALOG	= "SWINV.CAT"		
END_OBJECT	= CATALOG		
END OBJECT	= VOLUME		
END			

Figure 2 VOLDESC.CAT example for the initial release (RELEASE_ID=0001, REVISION_ID=0000)

3.1.1.3.a VOLUME_ID

The **VOLUME ID** of a SPICAM archive volume is composed by combining the following fields, using abbrevations, and separated by underscores:

- The mission identifier (MEX), followed by the instrument identifier (SPI),
- A 4-digit sequence identifier for the volumes corresponding to different data level and sensor : 1001 => 0AUV , 1002 => 0BIR

For example, the VOLUME_ ID of the data level 0A UV SPICAM archive volume is : MEXSPI_1001.

If a volume is redone because of errors in the initial production the volume ID should remain the same and the VOLUME_VERSION_ID incremented. This parameter is contained in the VOLDESC.CAT file on the volume.

3.1.1.3.b VOLUME SET ID

Each SPICAM archive volume is also identified by a VOLUME_SET_ID composed by combining the following fields, using abbrevations, and separated by indents:

- The country of origin, FR (FRANCE) The government branch, **IPSL-CNRS**
- The discipline within the branch that is producing the archive, Aeronomie, now called LATMOS)

SA (Service d

The VOLUME ID MEXSPI 1001

For example, the VOLUME SET ID of the data level 0 UV and IR SPICAM archive volume is :

FR_IPSLCNRS_SA_MEXSPI_1000

3.1.1.3.c RELEASE_ID and REVISION_ID

A data set release (or volume release) contains data from a well-defined period of time and is identified by first a RELEASE_ID keyword. The first release (RELEASE_ID = 0001) is a fully validated, complete PSA dataset. A volume release is made of at least one revision : the initial revision. The initial revision contains the initial data of a data set release and is identified by a REVISION_ID equal to 0000. All labels within the first release will also contain the two keywords

> $RELEASE_ID = 0001$ REVISION_ID = 0000

A following revision of the data set release (updated files, supplementary files, deleted files) would need the value of the REVISION_ID incremented by one (eg. RELEASE_ID = 0001, REVISION_ID = 0001). Labels of the updated files will have the two keywords

> RELEASE_ID = 0001 REVISION ID = 0001

Any further release covering a following period of time would need the value of the RELEASE_ID incremented by one, with an initial revision (eg. RELEASE_ID = 0002, REVISION_ID = 0000). The new data labels will contain the keywords

RELEASE_ID = 0002 REVISION_ID = 0000

The VOLDESC.CAT file shall contain the keywords RELEASE_ID and REVISION_ID set to the lastest RELEASE_ID and within this release to the latest REVISION_ID.

3.1.1.3.d CATALOG object

The VOLDESC.CAT file contains a CATALOG object with pointers to catalog files stored in the CATALOG directory. Files in the CATALOG directory provide a top-level understanding of the mission, spacecraft, instruments, and data sets.

One of these files, the RELEASE.CAT catalog file, contains a release object, which fully define the releases and revisions of deliveries.

3.1.1.4 The release object

A release object needs to be included in each archive volume to fully describe each release and revision within this release. This object is not PDS-compliant.

Figure 3 gives an example of the RELEASE.CAT catalog file in the SPICAM UV level 0A (MEXSPI_0AUV) Archive Volume.

PDS_VERSION_ID LABEL_REVISION_NOTE RECORD_TYPE RELEASE_ID REVISION_ID	= PDS3 = "A. REBERAC, 2005-01-21 (original)" = STREAM = 0001 = 0000	
OBJECT	= DATA SET RELEASE	
DATA_SET_ID	= "MEX-Y/M-SPI-2-UVEDR-RAWXCRUISE/MARS-V1.0"	
RELEASE_ID	= 0001	
DESCRIPTION = " This release contains the digital numbers (DN) contained in the telemetry (TM) packages of the UV SPICAM instrument on board of spacecraft Mars Express. Data not been further converted or calibrated. This release contains data from the cruise phase of the s/c including all data from the Near Earth Verification (EV) and Interplanetary Cruise (IC) phase from July 2003 until December 2003. It also contains data collected during the Mars Orbit Commissioning Phase, covering orbits 0001 to 0482. Revision 0000 contains the original delivery. "		
OBJECT	= REVISION	
REVISION_ID	= 0000	
REVISION_DATE REVISION MEDIA	= 2005-01-21 = "ONLINE"	
DESCRIPTION	<pre>= "FIRST DELIVERY: RELEASE 0001,REVISION: 0000"</pre>	
END_OBJECT	= REVISION	
END_OBJECT	= DATA_SET_RELEASE	

Figure 3 RELEASE.CAT example for the initial release (RELEASE_ID=0001, REVISION_ID=0000)

A release will concern a well-defined period of time, based on the nominal science mission timeline, as shown in the SPICAM archive volume delivery schedule (section 3.1.1.1). Each release will be described in this file by a DATA_SET_RELEASE object, containing all keyword-value pairs that are necessary to identify the release (DATA_SET_ID, RELEASE_ID, DESCRIPTION, ...). The DESCRIPTION part of the DATA_SET_RELEASE object will contain the full history of the release including all previous revisions. Each

Mars Express SPICAM Light EAICD

Document No.	: SA_MEX_ARCH_003
Issue	: 001
Date	: 15 January 2012
Page	: 22

revision of a release is added in the release catalog object and all necessary information about this revision is given by a REVISION object.

A revision of this release might be added after improvement of the data. Figure 4 gives an example of a revision of an initial release.

PDS VERSION ID = PDS3 = "A. REBERAC, 2004-12-01 (original)" LABEL_REVISION_NOTE RECORD_TYPE = STREAM RELEASE ID = 0001 REVISION_ID = 0000 = DATA_SET_RELEASE OBJECT DATA_SET_ID = "MEX-Y/M-SPI-2-UVEDR-RAWXCRUISE/MARS-V1.0" RELEASE ID = 0001 DESCRIPTION = " This release contains the digital numbers (DN) contained in the telemetry (TM) packages of the UV SPICAM instrument on board of spacecraft Mars Express. Data not been further converted or calibrated. This release contains data from the cruise phase of the s/c including all data from the Near Earth Verification (EV) and Interplanetary Cruise (IC) phase from July 2003 until December 2003. It also contains data collected during the Mars Orbit Commissioning Phase, covering orbits 0001 to 0482. Revision 0000 contains the original delivery. " = REVISION OBJECT REVISION_ID = 0000 REVISION_DATE = 2004-12-01 REVISION_MEDIA = "ONLINE" DESCRIPTION = "FIRST DELIVERY: RELEASE 0001, REVISION: 0000" END_OBJECT = REVISION OBJECT = REVISION REVISION_ID = 0001 REVISION_DATE = 2005-04-13 REVISION MEDIA = "ONLINE" DESCRIPTION = "FIRST DELIVERY: RELEASE 0001, REVISION: 0001 modification of the data representation in the label data files" END OBJECT = REVISION END_OBJECT = DATA_SET_RELEASE END

Figure 4 RELEASE.CAT example for RELEASE_ID=0001, REVISION_ID=0001

A following release of a new well defined period of time in the archive volume will be described by a new DATA_SET_RELEASE object in the same RELEASE.CAT file as shown in Figure 5.

3.1.1.5 Index files

The PDS standard defines index files (see section 3.4.3.3 for more details) as information that allows a user to locate data of interest. All index table files below the INDEX directory cover all data set releases and revisions. Therefore the index table files will contain at least two columns named RELEASE_ID and REVISION_ID.

The index label files describing the index table files shall contain the keywords RELEASE_ID and REVISION_ID, set to the latest RELEASE_ID and within this release to the latest REVISION_ID (same as the VOLDESC.CAT file).

Mars Express SPICAM Light EAICD

```
PDS_VERSION_ID
                          = PDS3
LABEL_REVISION_NOTE
                          = "A. REBERAC, 2004-12-01 (original)"
RECORD_TYPE
                          = STREAM
RELEASE_ID
                          = 0002
REVISION_ID
                          = 0000
OBJECT
                         = DATA SET RELEASE
DATA SET ID
                          = "MEX-Y/M-SPI-2-UVEDR-RAWXCRUISE/MARS-V1.0"
RELEASE_ID
                          = 0002
DESCRIPTION
                          = "
   This new release contains similar data as release 1 but collected during the
   Medium Term Planning Phase 1 (MTP1), covering orbits 0483 to 0582.
   Data have been stored in the DATA/MARS/MTP1_0483_0582 subdirectory.
   Revision 0000 contains the original delivery. "
OBJECT
                           = REVISION
   REVISION_ID
                            = 0000
   REVISION_DATE
                            = 2005 - 06 - 01
   REVISION_MEDIA
                            = "ONLINE"
   DESCRIPTION
                            = "SECOND DELIVERY: RELEASE 0002, REVISION: 0000"
 END_OBJECT
                           = REVISION
END_OBJECT
                          = DATA_SET_RELEASE
OBJECT
                          = DATA SET RELEASE
                          = "MEX-Y/M-SPI-2-UVEDR-RAWXCRUISE/MARS-V1.0"
DATA SET ID
RELEASE_ID
                          = 0001
DESCRIPTION
                          = "
   This release contains the digital numbers (DN) contained in the telemetry
    (TM) packages of the UV SPICAM instrument on board of spacecraft Mars
    Express. Data not been further converted or calibrated. This release
   contains data from the cruise phase of the s/c including all data from the
   Near Earth Verification (EV) and Interplanetary Cruise (IC) phase from
   July 2003 until December 2003. It also contains data collected during the
   Mars Orbit Commissioning Phase, covering orbits 0001 to 0482 .
   Revision 0000 contains the original delivery. "
 OBJECT
                          = REVISION
   REVISION_ID
                             = 0000
   REVISION_DATE
                              = 2005-01-21
                             = "ONLINE"
   REVISION_MEDIA
                              = "FIRST DELIVERY: RELEASE 0001,REVISION: 0000"
   DESCRIPTION
 END_OBJECT
                          = REVISION
                           = REVISION
 OBJECT
   REVISION_ID
                            = 0001
   REVISION_DATE
                            = 2005-04-13
   REVISION_MEDIA
                           = "ONLINE"
   DESCRIPTION
                            = "FIRST DELIVERY: RELEASE 0001, REVISION: 0001
                               modification of the data representation in the
                               label data files"
END_OBJECT
                           = REVISION
END OBJECT
                          = DATA_SET_RELEASE
END
```

Figure 5 RELEASE.CAT example for RELEASE_ID=0002, REVISION_ID=0000

3.1.2 Data Set Name and Data Set ID Formation

Each PDS data set must have a unique name (DATA_SET_NAME) and a unique identifier (DATA_SET_ID), both formed from up to seven components. The components are listed here:

Instrument host	MEX (Mars Express)
Target	M (Mars) or Y (Sky/CRUISE)
Instrument	SPI (SPICAM)
Data processing level number	see below
Data set type (optional)	see below
Description (optional)	see below
Version number	Vn.m

Within the DATA_SET_ID, acronyms are separated by hyphens. Multiple instrument hosts, instruments, or targets are referenced in a DATA_SET_NAME or DATA_SET_ID by concatenation of the values with a forward slash, "/", which is interpreted as "and."

Data processing level number

Data processing level number is the National Research Council (NRC) Committee on Data Management and Computation (CODMAC) data processing level number :

Level	Туре	Data Processing Level Description
1	Raw Data	Telemetry data with data embedded.
2	Edited Data	Corrected for telemetry errors and split or decommutated into a data set for a given instrument. Sometimes called Experimental Data Record (EDR).
3	Calibrated Data	Edited data that are still in units produced by instrument, but that have been corrected so that values are expressed in or are proportional to some physical unit such as radiance. No resampling, so edited data can be reconstructed.
4	Resampled Data	Data that have been resampled in the time or space domains in such a way that the original edited data cannot be reconstructed. Could be calibrated in addition to being resampled.
5	Derived Data	Derived results, as maps, reports, graphics, etc.
6	Ancillary Data	Nonscience data needed to generate calibrated or resampled data sets. Consists of instrument gains, offsets, pointing information for scan platforms, etc.
7	Correlative Data	Other science data needed to interpret space-based data sets.
8	User Description	Description of why the data were required, any peculiarities associated with the data sets, and enough documentation to allow secondary user to extract information from the data.
Ν	Ν	Not Applicable

SPICAM data set	Data processing level number
0A**	2
1A**	2

Mars Express
SPICAM Light
EAICD

Document No.	: SA_MEX_ARCH_003
Issue	: 001
Date	: 15 January 2012
Page	: 25

1B**	3
2X**	5
** : UV or IR.	

Data set type

Data set type is the concatenation of the data type (UV or IR) and of the PRODUCT_TYPE keyword provided in each PDS data product labels.

SPICAM data set	PRODUCT_TYPE value	Data set type
0A**	EDR	**EDR
1A**	EDR	**EDR
1B**	EDR	**EDR
2X**	RDR	**RDR

** : UV or IR.

Description

The CODMAC level for some of the datasets is the same, and this means the end user has no way of knowing which dataset he is looking at from the data processing level number alone. Therefore, in order to help the end user, the STANDARD_DATA_PRODUCT_ID keyword has been added to all of SPICAM data product labels and the value of this keyword is given in the Description component of the DATA_SET_ID. The value must be no more that 4 characters long.

Description should be always as follows: XXXXCRUISE/MARS, where XXXX is the value of the STANDARD_DATA_PRODUCT_ID keyword.

SPICAM data level	STANDARD_DATA_PRODUCT_ID value
0A	RAWX
1A	CORX
1B	SPEC
2	RDRX

For a data set containing the first version of UV experimental data records collected from the SPICAM instrument on Mars Express during the cruise and Mars nominal phases, the data set name and identifier would be:

DATA_SET_NAME = "MEX SPICAM CRUISE/MARS UV EDR-RAW V1.0"

DATA_SET_ID = "MEX-Y/M-SPI-2-UVEDR-RAWXCRUISE/MARS-V1.0"

For the new version of UV experimental data records generated in January 2012, the data set name and identifier are:

DATA_SET_NAME = "MEX SPICAM CRUISE/MARS UV EDR-RAW V2.0"

DATA_SET_ID = "MEX-Y/M-SPI-2-UVEDR-RAWXCRU/MARS-V2.0"

3.1.3 Data Directory Naming Convention

In the DATA directory, data are stored by mission phase (Figure 6). The CRUISE phase corresponds to data collected before the MOI (Mars Orbit Injection), including the Near Earth Verification (NEV) and

Interplanetary Cruise (IC) phases. After the MOI, the nominal mission, the different Mars mission phases in the MARS subdirectory are the one defined by the MARS EXPRESS mission planning.

In the MARS directory, the following directory naming conventions is used :

XXXX_nnnnn_ppppp data collected during a Mars mission phase from orbit nnnnn to ppppp, with XXXX the abbreviated name of the Mars mission phase XXXX can have the following values :

MOCP : Mars Orbit Commissioning Phase MTPnnn : Medium Term Planning n (nnn=001,002,003,...)

Figure 6. SPICAM DATA directories organization

3.1.4 Filenaming Convention

Data and browse files

Data products provided by the SPICAM team will have the following name:

SPIM_YYT_nnnnApp_M_vv.DAT

where

YY	2 letters describing the SPICAM data level (eg. 0A, 0B, 1A, 1B,)
Т	1 letter describing the type of data collected (U for UV and R for IR)
nnnnn	5 digits for the orbit number
Арр	sequence number indicating the order that data were collected for the nnnn orbit (A01, A02,).
M	1 letter describing the observation mode (eg. E:STAR, S:SUN, L:LIMB, N:NADIR,
	P:PHOBOS, Y:SKY, C:COMET, T:CALIBRATION)
vv	version number of the file

Mars Express SPICAM Light EAICD

note : For the CRUISE phase, which include the NEV and IC phases, the orbit number is not applicable. The 5 digits will contain the day of the year (2003) of the observation, preceeded by the letter N (for the NEV phase) or the letter C (for the IC phase).

Examples :

SPIM_0AU_0C195A01_Y_04.DAT Sky UV observation on the 13th of July 2003 during the CRUISE phase. SPIM_0AU_00017A01_E_04.DAT Star UV observation on orbit 17 during the MARS nominal phase. Associated detached label files and browse files follow the same filenaming convention with the _QL.LBL and _QL.PNG extension respectively.

Geometry files

Geometry files provided by the SPICAM team will have the following name:

SPIM_YYT_nnnnnApp_M_GO_vv.DAT

where

VV	2 letters describing the SPICAM data level (eq. 0.0, 0.0, 1.0, 1.0, $($
ΤΤ	Z retters describing the SPICAW data level (eg. UA, UD, TA, TD,)

T 1 letter describing the type of data collected (U for UV and R for IR)

nnnn 4 digits for the orbit number

- App sequence number indicating the order that data were collected for the nnnn orbit (A01, A02,...).
- M 1 letter describing the observation mode (eg. E:STAR, S:SUN, L:LIMB, N:NADIR,
- P:PHOBOS, Y:SKY)
- vv version number of the file

3.2 Standards Used in Data Product Generation

3.2.1 PDS Standards

The PDS standards used to describe data products in the SPICAM archive is that of PDS version 3.6 [2]. Each PDS archived product is described using label objects that provide information about the data types of

Each PDS archived product is described using label objects that provide information about the data type stored values.

In order to identify and describe the organization, content, and format of each data product, PDS requires a distinct data product label for each individual data product file. This data product label can be attached or detached from the data. The SPICAM PDS data product label is detached from the data and resides in a separate file which contains a pointer to the data product file. There is one detached label file for every data product file. The label file should have the same base name as its associated data file, but the extension .LBL.

Each PDS label must begin with the PDS_VERSION_ID data element. This element identifies the published version of the Standards to which the label adheres, for purposes of both validation as well as software development and support. For labels adhering to the standards version 3.6 the appropriate value is "PDS3":

PDS_VERSION_ID = PDS3

PDS data product labels contain data element information that describes important attributes of the physical structure of a data product file. The PDS file characteristic data elements are: RECORD_TYPE RECORD_BYTES FILE_RECORDS

The RECORD_TYPE data element identifies the record characteristics of the data product file. The RECORD_BYTES data element identifies the number of bytes in each physical record in the data product file. The FILE_RECORDS data element identifies the number of physical records in the file. The following data identification elements must be included in product labels for all spacecraft science data products:

products: DATA_SET_ID PRODUCT_ID INSTRUMENT_HOST_NAME INSTRUMENT_NAME TARGET_NAME START_TIME STOP_TIME SPACECRAFT_CLOCK_START_COUNT SPACECRAFT_CLOCK_STOP_COUNT PRODUCT_CREATION_TIME

The PDS requires a separate data object definition within the product label for each object in the product, to describe the structure and associated attributes of each constituent object.

Object definitions are of the form:

OBJECT = aaa where aaa is the name of the data object

END_OBJECT = aaa

Definitions of all objects and elements used to describe SPICAM data products are in section 4.1.3.

The PDS uses a pointer within the product labels to identify the file location for all objects which are described in the label file. For example,

^SPICAM_FILE_ARRAY = "SPIM_0AU_00017A01_E_04.DAT"

Examples of data product labels can be found in the Data Product Design section 4.1.

3.2.2 Time Standards

3.2.2.1 <u>START_TIME and STOP_TIME Formation</u>

The PDS formation rule for dates and time in UTC is:

YYYY-MM-DDThh:mm:ss.fff or YYYY-DDDThh:mm:ss.fff

With

YYYY year (0000-9999) MM month (01-12) DD day of month (01-31) DDD day of year (001-366) T date/time separator hh hour (00-23) mm minute (00-59)

ss second (00-59) fff fractions of second (000-999) (restricted to 3 digits)

The START_TIME and STOP_TIME data elements required in data product labels and catalog templates use the UTC format.

Times in any format other than the ISO/DIS 8601 format described above are considered to be in a format native to the data set, and thus "native times".

3.2.2.2 <u>SC_CLOCK_START_COUNT and SC_CLOCK_STOP_COUNT</u>

The spacecraft clock reading often provides the essential timing information for a space-based observation. Therefore, the elements SPACECRAFT_CLOCK_START_COUNT and SPACECRAFT_CLOCK_STOP_COUNT are required in labels describing space-based data. This value is formatted as a string to preserve precision. Spacecraft clock counts shall be represented as a right-justified character string field with a maximum length of thirty characters.

The SC_CLOCK*COUNTS represent the on-board time counters (OBT) of the spacecraft and instrument computers. This OBT counter is given in the headers of the experiment telemetry source packets. It contains the data acquisition start time as 32 bit of unit seconds followed by 16 bit of fractional seconds. The time resolution of the fractional part is $2^{-16} = 1.52 \times 10^{-5}$ seconds. Thus the OBT is represented as a decimal real number in floating-point notation with 5 digits after the decimal point.

A reset of the spacecraft clock is represented by an integer number followed by a slash, e.g. "1/" or "2/". Example 1:

SPACECRAFT_CLOCK_START_COUNT = "1/21983325.39258" Example 2: SPACECRAFT_CLOCK_START_COUNT = "21983325.39258" Example 3: SPACECRAFT_CLOCK_START_COUNT = "2/0000325.39008" Example 1 and Example 2 represents the same time instance.

3.2.2.3 OBT to UTC time conversion

UTC time is a function of the time correlation packages and the on-board time. The time correlation packages are archived and distributed in the SPICE auxiliary data set and contain linear segments that map the on-board time to UTC time. The linear segment is represented by a time offset and a time gradient. The conversion function is:

Time in utc = offset + (obt(seconds) + (obt(fractional part)*2^-16)) *gradient

3.2.3 Reference Systems

The SPICAM data products are not projected into any coordinate system, however some basic geometric parameters are provided in a associated geometry file (see 3.4.3.6.b).

3.3 Data Validation

	Mars Express SPICAM Light EAICD	Document No. Issue Date Page	: SA_MEX_ARCH_003 : 001 : 15 January 2012 : 30
--	---------------------------------------	---------------------------------------	---

To ensure that contents and format are free of errors, data validation will be first done via the Instrument to PSA end-to-end test [5] completed in three phases:

- 1. Individual label, data set structure validation and communication test (May 2004)
- 2. Full data set ingestion test, containing data from the Near Earth Verification and Interplanetary Cruise phases (May 2004)
- 3. Complete validation, ingestion and retrieval test (January 2005)

These tests will use the PSA Volume Verifier (PVV) tool [SOP-RSSD-UM-004] that will be used in the long-term to automate the label and dataset validation and the subsequent ingestion to the PSA.

3.4 Content

3.4.1 Volume Set

The SPICAM volume set contains all raw data products collected by the UV and IR SPICAM sensors during the CRUISE and Mars mission phases, and all derived products provided by the SPICAM team.

The Volume Set Name provides the full, formal name of a group of data volumes containing a data set or a collection of related data sets. Volume set names shall be at most 60 characters in length and must be in upper case.

The SPICAM VOLUME_SET_NAME keyword contained in the VOLDESC.CAT file on each volume has the following value :

VOLUME_SET_NAME = "MARS EXPRESS SPICAM DATA PRODUCTS"

A data set is defined for each sensor (UV or IR) and for each data product level (level 0A, 1A, 1B and 2). Therefore, the SPICAM volume set will consist of 8 data volumes containing a single data set.

3.4.2 Data Set

Each data set will contain the accumulation of data products of one sensor (UV or IR) and of one data level (0A, 1A, 1B or 2), ancilliary data, software, and documentation, needed to understand and use the observations.

Files in a data set share a unique data set name, a unique data set identifier, and are described by a single DATASET.CAT catalog object.

3.4.3 Directories

Each SPICAM archive volume (MEXSPI_1001, MEXSPI_1002, ...) is a PDS compatible archive volume, containing the VOLDESC.CAT and AAREADME.TXT files and all necessary CATALOG, DOCUMENT, INDEX, DATA, etc directories and their content. The MEXSPI_1001, MEXSPI_1002, ...directories are root directories.

3.4.3.1 <u>Root Directory</u>

Files in each ROOT directory include an overview of the archive, a description of the volume for the PDS Catalog, and a list of errata or comments about the archive.

The following files, provided by the SPICAM team, are contained in the ROOT Directory:

		Mars Express SPICAM Light EAICD	Document No. Issue Date Page	: SA_MEX_ARCH_003 : 001 : 15 January 2012 : 31
ROOT				
	- AAREADME.TXT	Volume content a	and format info	rmation
	 - ERRATA.TXT	Description of Description of Description of Description	known anomalies e.	and errors
	- AAREADME.LBL	PDS detached la	bel describing A	AAREADME.TXT
	 - VOLDESC.CAT	Description of t format for the l	the contents of PDS Catalog	the volume in a PDS

3.4.3.2 Catalog Directory

The files in each CATALOG Directory provide a top-level understanding of the mission, spacecraft, instruments, and data sets.

For example, The CATALOG directory of the MEXSPI_1001 (0AUV) volume archive follows the structure outlined below:

 CATINFO.TXT Description of files in this directory DATASET.CAT Description of the MEXSPI_1001 data set during the cruise phase RELEASE.CAT Release object of the MEXSPI_1001 data set MISSION.CAT Description of the Mars Express mission INSTHOST.CAT Description of the Mars Express spacecraft INST.CAT Description of the MEX SPICAM instrument PERS.CAT Listing of the people involved in the production of this archive volume REFS.CAT Description of the software included on the volume. 	-	[CATALOG] A directory	containing information about the data set
 DATASET.CAT Description of the MEXSPI_1001 data set during the cruise phase RELEASE.CAT Release object of the MEXSPI_1001 data set MISSION.CAT Description of the Mars Express mission INSTHOST.CAT Description of the Mars Express spacecraft INST.CAT Description of the MEX SPICAM instrument PERS.CAT Listing of the people involved in the production of this archive volume REFS.CAT List of pertinent references. SWINV.CAT Description of the software included on the volume. 		- CATINFO.TXT	Description of files in this directory
 RELEASE.CAT Release object of the MEXSPI_1001 data set MISSION.CAT Description of the Mars Express mission INSTHOST.CAT Description of the Mars Express spacecraft INST.CAT Description of the MEX SPICAM instrument PERS.CAT Listing of the people involved in the production of this archive volume REFS.CAT List of pertinent references. SWINV.CAT Description of the software included on the volume. 		- DATASET.CAT	Description of the MEXSPI_1001 data set during the cruise phase
 MISSION.CAT Description of the Mars Express mission INSTHOST.CAT Description of the Mars Express spacecraft INST.CAT Description of the MEX SPICAM instrument PERS.CAT Listing of the people involved in the production of this archive volume REFS.CAT List of pertinent references. SWINV.CAT Description of the software included on the volume. 		- RELEASE.CAT	Release object of the MEXSPI_1001 data set
 INSTHOST.CAT Description of the Mars Express spacecraft INST.CAT Description of the MEX SPICAM instrument PERS.CAT Listing of the people involved in the production of this archive volume REFS.CAT List of pertinent references. SWINV.CAT Description of the software included on the volume. 		- MISSION.CAT	Description of the Mars Express mission
 INST.CAT Description of the MEX SPICAM instrument PERS.CAT Listing of the people involved in the production of this archive volume REFS.CAT List of pertinent references. SWINV.CAT Description of the software included on the volume. 		- INSTHOST.CAT	Description of the Mars Express spacecraft
 PERS.CAT Listing of the people involved in the production of this archive volume REFS.CAT List of pertinent references. SWINV.CAT Description of the software included on the volume. 		- INST.CAT	Description of the MEX SPICAM instrument
- REFS.CAT List of pertinent references. - SWINV.CAT Description of the software included on the volume.		- PERS.CAT	Listing of the people involved in the
- SWINV.CAT Description of the software included on the volume.		- REFS.CAT	List of pertinent references.
		- SWINV.CAT	Description of the software included on the volume.

3.4.3.3 Index Directory

Files in the INDEX directory are provided by the SPICAM team to help the user to locate products on the archive volume.

As the typical index file requires to contain only information of the /DATA directory, PSA proposes to create an index file for the BROWSE and GEOMETRY directories.

3.4.3.3.a Structure of the INDEX directory

The INDEX directory of an archive volume follows the structure outlined below:

-	[INDEX]	А	directory	conta	ining	g an	in	dex	of	data	files.
	 - INDXINFO.TX	Г	Descrip	tion	of f:	lles	in	thi	is d	irect	cory.
	- INDEX.TAB		Index c	of dat	a fi	les	in	the	DAT	A di	rectory

3.4.3.3.b Content of Dataset Index Files

Each index table contains a number of columns describing a data product on a volume release. The table is formatted so that it can be read directly into many data management systems. All fields are separated by commas and character fields are enclosed in double quotation marks ("). Character fields are left justified and numeric fields are right justified. Each record (row) ends with ASCII carriage return <CR> (ASCII 13). All fields in the tables are fixed width. This allows the table to be treated as a fixed length record file.

In the data index table (INDEX.TAB) the fields are as follows:

File Specification Name - Pathname to the detached label which identifies this data file Product ID - The name of the data file, which is unique within this data set Product Creation Time - Time at which the data file was created Data Set ID - An identifier unique for the dataset Release id Revision id Start date and time of product observation or event Stop date and time of product observation or event Number of records in the data file

In the browse index table (BROWSE_INDEX.TAB) the fields are as follows:

File Specification Name - Pathname to the detached label which identifies this data file Product ID - The name of the data file, which is unique within this data set Source Product ID - The name of the source data file, which is unique within this data set Product Creation Time - Time at which the data file was created Data Set ID - An identifier unique for the dataset Release id Revision id

In the geometry index table (GEOMETRY_INDEX.TAB) the fields are as follows: File Specification Name - Pathname to the detached label which identifies this data file Product ID - The name of the data file, which is unique within this data set Source Product ID - The name of the source data file, which is unique within this data set Product Creation Time - Time at which the data file was created Data Set ID - An identifier unique for the dataset Release id Revision id

A description of the corresponding PDS label file which describes the content and structure of the fields (name, format, brief definition) is given in section 4.1.3.5.
	Mars Express SPICAM Light EAICD	Document No. Issue Date Page	: SA_MEX_ARCH_003 : 001 : 15 January 2012 : 33
--	---------------------------------------	---------------------------------------	---

The geometry index file (GEO_MARS.TAB) provides geometry and position information to locate the data within the data set. This file is required by the PSA. Within the PSA, the geometry index files are read by the database software and allow the ingestion of additional searching parameters into the database. For a detailed description of this file and of its associated label file, please refer to [6].

3.4.3.4 Data Directory

The DATA directory contains data subdirectories in which the Mars Express SPICAM standard data products are stored by mission phases (CRUISE, MARS). The MARS directory is divided in several directories, containing data from the Mars Orbit Commissioning Phase (MOCP) and from the different Medium Term Planning (MTP) phases.

The data subdirectories contain the table data products and corresponding PDS detached label describing the table data.

For example, The DATA directory of the MEXSPI_1001 (0AUV) volume archive follows the structure outlined below:

- [DATA] A directory containing the data + associated label files - DATAINFO.TXT Description of files in this directory -[CRUISE] A directory containing MEX SPICAM level 0A UV data collected during the cruise phase --- {file(s) *DAT, *.LBL} -[MARS] A directory containing MEX SPICAM level 0A UV data collected during the Mars nominal phase -[MOCP_00001_00482] --- {file(s) *DAT, *.LBL} -[MTP001_00483_00583] --- {file(s) *DAT, *.LBL}

3.4.3.5 Browse Directory and Browse Files

The BROWSE directory will contain reduced-size, easily viewed versions of data products to be used to help identify products of interest available on the archive volume. The BROWSE directory follows the same naming convention as the DATA directory. The format of the browse files is Portable Network Graphic (PNG). Browse images, provided by the SPICAM team, have the same name of the data product with a _QL.PNG extension. The browse subdirectories contain the browse image products and corresponding PDS detached label describing the browse image.

3.4.3.6 <u>Geometry Directory</u>

3.4.3.6.a Content of the geometry directory

The GEOMETRY directory will contain geometry files associated with data files. Therefore the GEOMETRY subdirectories will follow the same naming convention as the DATA subdirectories. Currently no plans exist for providing geometry files associated to observations obtained during the cruise phase. For example, The GEOMETRY directory of the MEXSPI_1001 (0AUV) volume archive follows the structure outlined below:

```
|- [GEOMETRY] A directory containing the geometry + associated label files
| - GEOMINFO.TXT Description of files in this directory
| -[MARS] A directory containing MEX SPICAM level 0A UV geometry
files associated to data collected during the Mars nominal phase
| | -[MOCP_00001_00482]
| | | -- {file(s) *TXT, *.LBL}
| | -- {file(s) *TXT, *.LBL}
| | | -- {file(s) *TXT, *.LBL}
....
```

3.4.3.6.b Content of the geometry files

Geometric parameters are generated with a SPICAM software using SPICE routines and SPICE kernels. Each geometry file contains two blocks: an header (comments) and a data table.

The header (see example in Figure 7), which ends with the "-- End Comments" line, gives information like:

- The name and the version of the software used to generate the geometry file, and the date of the file generation.
- The list of SPICE kernels required to perform the computations
- Solar related parameters (longitude, latitude, distance from the spacecraft...) at the first time of observation.
- The kind of target [NAD/LIMB, SUN, Oxx (name of the star)] : the processing of the geometry file is different for star and nadir, limb, sun observations.
- Parameters definition. The SPICAM team can generate a light (only some main parameters) or a full version of the geometry file. The list and a brief definition of parameters computed is given in the header. The number just before the parameter definition is an internal use (do not care).

The data table, which follows the header, is fully described in the associated detached PDS label file. The data table is in ASCII format and is based on fixed length rows. The number of rows is related with the sampling frequency of the observation. The geometry file has the same sampling resolution as the data file.

3.4.3.6.c Content of the geometry label files

The geometry PDS label files describe the content and structure of the fields (name, format, brief definition) in the geometry file.

The header in each geometry file is described by an HEADER object.

Each field of the geometry data table is then described in a data TABLE by a COLUMN object. gives an example of geometry PDS label file.

Geo File : SPIM_0AU_08302A01_E_GO_01.TXT Generation date : Sat Oct 8 01:19:16 2011 Data File source : SPIM_0AU_08302A01_E_04.DAT

Contents of metakernel file KPL/MK

	Mars Express SPICAM Light EAICD	Document No. Issue Date Page	: SA_MEX_ARCH_003 : 001 : 15 January 2012 : 35
This is the meta-kerne	al for Mars 2004 e100 from 20	003-12-22	
MEXFULL2 = uppercase i	name		
\begindata			
PATH_VALUES = (',	/net/nfs/spicam/orbito/spice/l	kernels')	
PATH_SYMBOLS =	('KER_PATH')		
PATH_SYMBOLS = KERNELS_TO_LOAD = (<pre>('KER_PATH/1sk/NAIF0009.TLS',</pre>	P.TSC', 906_00052.BSP', 000_00060.BSP', 000_00076.BSP', 000_00080.BSP', 000_00080.BSP', 000_00088.BSP', 000_00096.BSP', 000_00100.BSP', 000_00109.BSP', 000_00109.BSP', 000_00113.BSP', 000_00113.BSP', 000_00122.BSP', 000_00123.BSP', 000_00140.BSP', 000_00143.BSP', 000_00153.BSP', 000_00153.BSP', 000_00153.BSP', 000_00153.BSP', 000_00153.BSP', 000_00153.BSP', 000_00217.BSP', 000_0023.BSP', 000_0023.BSP', 000_00241.BSP', 000_00253.BSP', 000_00253.BSP', 000_00253.BSP', 000_00253.BSP', 000_00274.BSP', 000_00274.BSP', 000_00274.BSP', 000_00274.BSP', 000_00310.BSP', 000_00310.BSP', 000_00324.BSP', 000_00324.BSP', 000_00353.BSP', 000_00349.BSP', 000_00349.BSP', 000_00349.BSP', 000_00431.BSP', 000_00443.BSP', 000_00457.BSP', 000_00555.BSP', 000_00555.BSP', 000_00555.BSP', 000_00555.BSP', 000_00555.BSP', 000_00555.BSP', 000_00555.BSP', 000_00555.BSP', 000_00555.BSP', 000_00555.BSP', 000_00555.BSP', 000_00555.BSP', 000_00555.BSP', 000_00555.BSP', 000_00555.BSP', 000_00555.BSP', 000_00555.BSP', 000_00555.BSP',	
1	<pre>%KER_PATH/spk/ORMM081001000(%KER_PATH/spk/ORMM081101000(</pre>	000_00544.BSP', 000_00549.BSP',	
	\$KER_PATH/spk/ORMM_081201000	000_00553.BSP',	

	Mars Express SPICAM Light EAICD	Document No. Issue Date Page	: SA_MEX_ARCH_003 : 001 : 15 January 2012 : 36
<pre>\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$</pre>	PATH/spk/ORMM090101000000 PATH/spk/ORMM_090201000000 PATH/spk/ORMM_090301000000 PATH/spk/ORMM_090501000000 PATH/spk/ORMM_090501000000 PATH/spk/ORMM_090601000000 PATH/spk/ORMM_090701000000 PATH/spk/ORMM_090901000000 PATH/spk/ORMM_091001000000 PATH/spk/ORMM_091001000000 PATH/spk/ORMM_100101000000 PATH/spk/ORMM_1002010000000 PATH/spk/ORMM_100301000000 PATH/spk/ORMM_100301000000 PATH/spk/ORMM_100501000000 PATH/spk/ORMM_100501000000 PATH/spk/ORMM_100601000000 PATH/spk/ORMM_100701000000 PATH/spk/ORMM_100701000000 PATH/spk/ORMM_10010000000 PATH/spk/ORMM_10010000000 PATH/spk/ORMM_1000000000 PATH/spk/ORMM_101201000000 PATH/spk/ORMM_101201000000 PATH/spk/ORMM_101201000000 PATH/spk/ORMM_101201000000 PATH/spk/ORMM_110201000000 PATH/spk/ORMM_110201000000 PATH/spk/ORMM_1100000000 PATH/spk/ORMM_1100000000 PATH/spk/ORMM_110000000 PATH/spk/ORMM_1100000000 PATH/spk/ORMM_110000000 PATH/spk/ORMM_11000000000 PATH/spk/ORMM_11000000000 PATH/spk/ORMM_100	<pre>D_00562.BSP', D_00570.BSP', D_00580.BSP', D_00586.BSP', D_00594.BSP', D_00602.BSP', D_00611.BSP', D_00619.BSP', D_00648.BSP', D_00654.BSP', D_00654.BSP', D_00662.BSP', D_00662.BSP', D_00662.BSP', D_00688.BSP', D_00688.BSP', D_00740.BSP', D_00712.BSP', D_00712.BSP', D_00714.BSP', D_00731.BSP', D_00755.BSP', D_00758.BSP', D_00758.BSP', D_00788.BSP', D_00788.BSP', D_00788.BSP', D_00788.BSP', D_00788.BSP', D_00788.BSP', D_00788.BSP', D_00788.BSP', D_00788.BSP', D_00788.BSP', D_00788.BSP', D_00788.BSP', D_00788.BSP', D_00788.BSP', D_00788.BSP', D_00788.BSP', D_00802.BSP', D_00822.BSP</pre>	
SUN 1 AU (from Near Earth Obj LS (deg) at first time 20. SUN apparent position on (AU) : 52.987, 23.514, SUN ra, dec (deg, EMEJ200) TARGET 0060	ects Program) = 149 597 870 10-06-27T16:44:48.730: 110 planet (IAU_MARS) at firs 1.6280 0) at first time : 14.629,	691 km 389 time: Long (5.126	deg), Lat (deg), Dist
CENTER of slit, mechanica UV: codop, x0(first CCD band, width, height : 101	l offsets in SC axes (in deg column read), y0(first CCD 0 133 4 4 4 4	grees) : 90.0 line read), b 408 5	00 89.830 inning value for each
Parameters definition 1stB, 2ndB, 3rdB, 4thB, and For all kind of observation band is defined by SC att. In the case of star ob emanating from the UV CCD but defined by S/C position description of parameters to distinguish from LOS defined by	nd 5thB are center of UV Bar ons, the line of sight (LO itude. servations, geometry param center, on and Star direction. (This efined by SC attitude).	nds (binning ind 5) emanating fr eters are also 8 LOS is called	cluded). Fom the center of a UV to computed for a LOS LOSE in the following
Planproj is the projectio on MARS to vdir and perpendicular pole, u = right handed. The view direction is L attitude.	n plane (u,v,w frame) defin to vdir (view direction f OS emanating from the cer	ed as the plane com MEX); with ter of the CC	e at the nearest point w = -vdir , v = North CD and defined by SC

TimeUTC(A23)+(I5, F9.1, 2F8.2, F7.1, F8.2, F7.2, F7.1, F10.1, F11.2, F8.2,2F9.3,F7.2, 2F8.2, F6.2, F7.2, 2F10.1,F7.2, F8.2, F7.2, F11.2,2F9.3, F8.2, F7.2,F11.2,2F9.3, F8.2, F7.2, F11.2,2F9.3, F8.2, F7.2, F11.2,2F9.3, 9F11.6, F8.2,F8.2,10F10.2, 6F8.2, F8.2, F7.2, F7.1, F10.1, F11.2, F8.2, 2F9.3,F7.2, 2F8.2, F6.2, F7.2, F10.1) Number of parameters (without Time): 82 Reference number in geometry software, Column number, Label 0 1 Record number 2 Altitude of the spacecraft above PLANET ellipsoid (in km, IAU_MARS) 19 17 3 Longitude of the sub-spacecraft point (in degrees, increases toward East from 0 to 360, IAU_MARS) 4 Latitude of the sub-spacecraft point (in degrees, IAU_MARS) 18 5 Solar Zenith Angle at sub-spacecraft point (in degrees, IAU_MARS) 20 6 Longitude of nearest point on MARS ellipsoid to LOS emanating from the center of 141 3rdB band (in degrees, IAU_MARS) 142 7 Latitude of nearest point on MARS ellipsoid to LOS emanating from the center of 3rdB band (in degrees, IAU_MARS) 145 8 Solar zenith angle at nearest point on MARS ellipsoid to LOS emanating from the center of 3rdB band (in degrees, IAU_MARS) 144 9 Distance from MEX to nearest point on MARS ellipsoid to LOS emanating from the center of 3rdB band (in kms, IAU_MARS, < 0 if behind SC) 143 10 Altitude above the nearest point on MARS ellipsoid of LOS emanating from the center of 3rdB band (in kms, IAU_MARS, < 0 IF intersection) 146 11 Pixel (0.01 deg) size at nearest point on MARS ellipsoid to LOS emanating from the center of 3rdB band (in kms, IAU_MARS) 147 12 Right ascension of LOS emanating from the center of 3rdB band (in degrees, EMEJ2000) 148 13 Declination of LOS emanating from the center of 3rdB band (in degrees, EMEJ2000) 149 14 Angle between S/C-SUN vector and LOS emanating from the center of 3rdB band (in degrees, IAU_MARS) 150 15 Phase angle between the SUN and the Observer measured at the nearest point on MARS ellipsoid to LOS emanating from the center of 3rdB band (in degrees) 151 16 Solar incidence angle between SUN and Normal at nearest point on MARS ellipsoid to LOS emanating from the center of 3rdB band (in degrees) 152 17 Solar local time at nearest point on MARS ellipsoid to LOS emanating from the center of 3rdB band (in degrees) 153 18 Emission angle between Normal and Observer at nearest point on MARS ellipsoid to LOS emanating from the center of 3rdB band (in degrees) 155 19 Distance between the nearest point on LOS emanating from the center of 3rdB band (in degrees) and center of MARS (in kms) 154 20 Distance between MEX position and center of MARS (in kms) of SUN in MEX axes (relative to X, in degrees) 156 21 Azimut 101 22 Longitude of nearest point on MARS ellipsoid to LOS emanating from the center of lstB band (in degrees, IAU_MARS) 102 23 Latitude of nearest point on MARS ellipsoid to LOS emanating from the center of 1stB band (in degrees, IAU_MARS) 103 24 Altitude above the nearest point on MARS ellipsoid of LOS emanating from the center of 1stB band (in kms, IAU_MARS, < 0 IF intersection) 107 25 Right ascension of LOS emanating from the center of 1stB band (in degrees, EMEJ2000) of LOS emanating from the center of 1stB band (in degrees, 108 26 Declination EMEJ2000) 121 27 Longitude of nearest point on MARS ellipsoid to LOS emanating from the center of 2ndB band (in degrees, IAU_MARS) 122 28 Latitude of nearest point on MARS ellipsoid to LOS emanating from the center of 2ndB band (in degrees, IAU_MARS) 123 29 Altitude above the nearest point on MARS ellipsoid of LOS emanating from the center of 2ndB band (in kms, IAU_MARS, < 0 IF intersection) 127 30 Right ascension of LOS emanating from the center of 2ndB band (in degrees, EMEJ2000) 128 31 Declination of LOS emanating from the center of 2ndB band (in degrees, EMEJ2000) 161 32 Longitude of nearest point on MARS ellipsoid to LOS emanating from the center of 4thB band (in degrees, IAU_MARS) 162 33 Latitude of nearest point on MARS ellipsoid to LOS emanating from the center of 4thB band (in degrees, IAU_MARS) 163 34 Altitude above the nearest point on MARS ellipsoid of LOS emanating from the center of 4thB band (in kms, IAU_MARS, < 0 IF intersection) 167 35 Right ascension of LOS emanating from the center of 4thB band (in degrees, EMEJ2000)

Document No.	: SA_MEX_ARCH_003
Issue	: 001
Date	: 15 January 2012
Page	: 38

168 36 Declination of LOS emanating from the center of 4thB band (in degrees, EMEJ2000) 181 37 Longitude of nearest point on MARS ellipsoid to LOS emanating from the center of 5thB band (in degrees, IAU_MARS) 182 38 Latitude of nearest point on MARS ellipsoid to LOS emanating from the center of 5thB band (in degrees, IAU_MARS) 183 39 Altitude above the nearest point on MARS ellipsoid of LOS emanating from the center of 5thB band (in kms, IAU_MARS, < 0 IF intersection) 187 40 Right ascension of LOS emanating from the center of 5thB band (in degrees, EMEJ2000) 188 41 Declination of LOS emanating from the center of 5thB band (in degrees, EMEJ2000) 87 42 X component of the unit inertial pointing vector (1,0,0) in MEX coordinates relative to MARSIAU frame 88 43 Y component of the unit inertial pointing vector (1,0,0) in MEX coordinates relative to MARSIAU frame 89 44 Z component of the unit inertial pointing vector (1,0,0) in MEX coordinates relative to MARSIAU frame 90 45 X component of the unit inertial pointing vector (0,1,0) in MEX coordinates relative to MARSIAU frame 91 46 Y component of the unit inertial pointing vector (0,1,0) in MEX coordinates relative to MARSIAU frame 92 47 Z component of the unit inertial pointing vector (0,1,0) in MEX coordinates relative to MARSIAU frame 93 48 X component of the unit inertial pointing vector (0,0,1) in MEX coordinates relative to MARSIAU frame 94 49 Y component of the unit inertial pointing vector (0,0,1) in MEX coordinates relative to MARSIAU frame 95 50 Z component of the unit inertial pointing vector (0,0,1) in MEX coordinates relative to MARSIAU frame 312 51 Angle between the S/C X axis and the local verticale at MARS Nearest Point (in degrees) $30\overline{1}$ 52 Angle between the projection plane U axis and the S/C X axis projected on this plane (in degrees) 302 53 P1 u horizon point component in Planproj 303 54 P1 v horizon point component in Planproj 304 55 P2 u horizon point component in Planproj 305 56 P2 v horizon point component in Planproj 306 57 P3 u horizon point component in Planproj 307 58 P3 v horizon point component in Planproj 308 59 P4 u horizon point component in Planproj 309 60 P4 v horizon point component in Planproj 310 61 P5 u horizon point component in Planproj 311 62 P5 v horizon point component in Planproj 320 63 X ra component of transformation matrix from IAU_MARS to EMEJ2000 321 64 X dec component of transformation matrix from IAU_MARS to EMEJ2000 $322\ 65\ Y$ ra component of transformation matrix from IAU_MARS to EMEJ2000 323 66 Y dec component of transformation matrix from IAU_MARS to EMEJ2000 324 67 Z ra component of transformation matrix from IAU_MARS to EMEJ2000 325 68 Z dec component of transformation matrix from IAU_MARS to EMEJ2000 31 69 Longitude of nearest point on MARS ellipsoid to LOSE emanating from the CCD (in degrees, IAU_MARS) 32 70 Latitude of nearest point on MARS ellipsoid to LOSE emanating from the CCD (in degrees, IAU_MARS) 35 71 Solar zenith angle at nearest point on MARS ellipsoid to LOSE emanating from the CCD (in degrees, IAU_MARS) 34 72 Distance from MEX to nearest point on MARS ellipsoid to LOSE emanating from the CCD (in kms, IAU_MARS, < 0 if behind SC) 33 73 Altitude above the nearest point on MARS ellipsoid of LOSE emanating from the CCD (in kms, IAU_MARS, < 0 IF intersection) 36 74 Pixel (0.01 deg) size at nearest point on MARS ellipsoid to LOSE emanating from the CCD (in kms, IAU_MARS) 37 75 Right ascension of LOSE emanating from the CCD (in degrees, EMEJ2000) 38 76 Declination of LOSE emanating from the CCD (in degrees, EMEJ2000) 39 77 Angle between S/C-SUN vector and LOSE emanating from the CCD (in degrees, IAU MARS) 40 78 Phase angle between the SUN and the Observer measured at the nearest point on MARS ellipsoid to LOSE emanating from the CCD (in degrees) 41 79 Solar incidence angle between SUN and Normal at nearest point on MARS ellipsoid to LOSE emanating from the CCD (in degrees) 42 80 Solar local time at nearest point on MARS ellipsoid to LOSE emanating from the CCD (in degrees)

Mars Express SPICAM Light EAICD				C I F	Documen ssue Date Page	t No. : : :	SA_MEX_ 001 15 Janua 39	_ARCH_003 ary 2012	}
43 81 Emission angle b LOSE emanating from the 45 82 Distance between center of MARS (in kms)	etween No CCD (in the near	ormal an degrees est poin	nd Obser) nt on LO	ver at r SE emana	nearest ting fro	point c	on MARS CCD (in	ellipsoid degrees)	l to and
Time (UTC)	1	2	3	}	4	5	6	7	8
2010-06-27T16:44:48.730 2010-06-27T16:44:49.730 2010-06-27T16:44:50.730 2010-06-27T16:44:51.730 2010-06-27T16:44:51.730 2010-06-27T16:44:52.730	1 2 3 4 5	476.6 475.9 475.3 474.6 473.9	133.29 133.29 133.29 133.29 133.29 133.29	-42.12 -42.06 -42.00 -41.93 -41.87	98.8 98.8 98.7 98.7 98.7	132.38 132.39 132.40 132.42 132.43	3 -37.67 9 -37.67 9 -37.67 -37.67 -37.67	96.5 96.5 96.5 96.5 96.5	- - - -

Figure 7. Geometry file header example.

PDS_VERSION_ID = PDS3 RECORD_TYPE = FIXED_LENGTH RECORD_BYTES = 743 ^HEADER = ("SPIM_0AU_08302A01_E_GO_01.TXT",1<BYTES>) ^TABLE = ("SPIM_0AU_08302A01_E_GO_01.TXT",18067<BYTES>) FILE_NAME = "SPIM_0AU_08302A01_E_GO_01.TXT" DATA_SET_ID = "MEX-M-SPI-2-UVEDR-RAWXMARS-EXT3-V2.0" DATA_SET_NAME = "MEX EXT 3 SPICAM MARS UV EDR-RAW V2.0" RELEASE ID = 0001 REVISION_ID = 0000 PRODUCT_ID = "SPIM_0AU_08302A01_E_GO_01.TXT" PRODUCT_CREATION_TIME MISSION_NAME = 2011-10-08T01:19:27.000 = "MARS EXPRESS" = "MARS EXPRESS" INSTRUMENT_HOST_NAME INSTRUMENT_HOST_ID = MEX = "ME Phase 21" MISSION_PHASE_NAME INSTRUMENT_NAME = "SPICAM" = GEOMETRY DISTRIBUTION_TYPE DESCRIPTION = "This file contains geometry and position information of a UV SPICAM observation. The geometry file has the same sampling resolution as the data file. OBJECT = HEADER = 18067 BYTES RECORDS = 229 HEADER_TYPE = TEXT INTERCHANGE_FORMAT = ASCII DESCRIPTION = "The header, which ends with the --End Comments line, gives information like: the name and the version of the software used to generate the geometry file, and the date of the file generation; the list of SPICE kernels required to perform the computations, solar related parameters (longitude, latitude, distance from the spacecraft) at the first time of observation; the kind of target [NAD/LIMB, SUN, Oxx(name of the star)]: the processing of the geometry file is different for star and sun observations; parameters definition : the list and a brief definition of parameters computed is given. The number just before the parameter definition is an internal use (do not care). END_OBJECT = HEADER OBJECT = TABLE NAME = GEOMETRY INTERCHANGE_FORMAT = ASCII ROWS = 641 COLUMNS = 83

ROW_BYTES = 743 OBJECT = COLUMN NAME = GEOMETRY_EPOCH COLUMN_NUMBER = 1 DATA_TYPE = TIME START_BYTE = 1 BYTES = 23 FORMAT = "A23" = "UTC time when the geometrical and position parameters are DESCRIPTION computed" END_OBJECT = COLUMN OBJECT = COLUMN NAME = RECORD_NUMBER $COLUMN_NUMBER = 2$ DATA_TYPE = INTEGER START_BYTE = 24 = б BYTES = "I6" FORMAT DESCRIPTION = "Record number" END_OBJECT = COLUMN OBJECT = COLUMN NAME = SPACECRAFT_ALTITUDE $COLUMN_NUMBER = 3$ DATA_TYPE = ASCII_REAL START_BYTE = 30 = 9 BYTES FORMAT = "F9.1" DESCRIPTION = "Altitude of the spacecraft above Mars ellipsoid (in kms, IAU_MARS frame).' END OBJECT = COLUMN OBJECT = COLUMN = SUB_SPACECRAFT_LONGITUDE NAME $COLUMN_NUMBER = 4$ DATA_TYPE = ASCII_REAL START_BYTE = 39 BYTES = 8 FORMAT = "F8.2" MINIMUM = 0 = 359.999MAXTMUM DESCRIPTION = "Longitude of the sub-spacecraft point. Longitude increases towards East. (in degrees, IAU_MARS frame)" END_OBJECT = COLUMN OBJECT = COLUMN = SUB_SPACECRAFT_LATITUDE NAME COLUMN NUMBER = 5 DATA_TYPE = ASCII_REAL START_BYTE = 47 BYTES = 8 FORMAT = "F8.2" = -90.000 MINIMUM = 90.000 MAXIMUM = "Latitude of the sub-spacecraft point. (in degrees, IAU_MARS frame)" DESCRIPTION END_OBJECT = COLUMN OBJECT = COLUMN NAME = SOLAR_ZENITH_ANGLE $COLUMN_NUMBER = 6$ = ASCII_REAL DATA_TYPE START_BYTE = 55 = 7 BYTES = "F7.1" FORMAT DESCRIPTION = "Solar Zenith Angle at sub-spacecraft point. (in degrees, IAU_MARS frame)" END_OBJECT = COLUMN OBJECT = COLUMN

Document No.: SA_MEX_ARCH_003Issue: 001Date: 15 January 2012Page: 41

NAME = B3_MNP_LONGITUDE $COLUMN_NUMBER = 7$ = ASCII_REAL DATA_TYPE START_BYTE = 62 BYTES = 8 FORMAT = "F8.2" DESCRIPTION = "Longitude of nearest point on MARS ellipsoid to LOS emanating from the center of 3rd band. (in degrees, IAU_MARS)" END_OBJECT = COLUMN OBJECT = COLUMN NAME = B3_MNP_LATITUDE COLUMN NUMBER = 8= ASCII_REAL DATA_TYPE START_BYTE = 70 BYTES = 7 = "F7.2" FORMAT DESCRIPTION = "Latitude of nearest point on MARS ellipsoid to LOS emanating from the center of 3rd band. (in degrees, IAU_MARS)" END_OBJECT = COLUMN OBJECT = COLUMN NAME = B3_MNP_SZA $COLUMN_NUMBER = 9$ DATA_TYPE = ASCII_REAL START_BYTE = 77 = 7 BYTES FORMAT = "F7.1" DESCRIPTION = "Solar zenith angle at nearest point on MARS ellipsoid to LOS emanating from the center of 3rd band. (in degrees, IAU_MARS)" END_OBJECT = COLUMN OBJECT = COLUMN NAME = B3_SC_MNP_DISTANCE COLUMN NUMBER = 10DATA_TYPE = ASCII_REAL START_BYTE = 84 = 10 = "F10.1" BYTES FORMAT DESCRIPTION = "Distance from MEX to nearest point on MARS ellipsoid to LOS emanating from the center of 3rd band. (in kms, IAU_MARS, < 0 if behind SC)" END_OBJECT = COLUMN OBJECT = COLUMN NAME = B3_MNP_ALTITUDE COLUMN_NUMBER = 11 DATA_TYPE = ASCII_REAL START_BYTE = 94 BYTES = 10 = 10 = "F10.1" FORMAT DESCRIPTION = "Altitude above the nearest point on MARS ellipsoid of LOS emanating from the center of 3rd band. (in kms, IAU_MARS, < 0 IF intersection)" END_OBJECT = COLUMN = COLUMN OBJECT = B3_PIXEL_SIZE NAME COLUMN NUMBER = 12 = ASCII_REAL DATA_TYPE START_BYTE = 104 BYTES = 8 FORMAT = "F8.2" = "Pixel (0.01 deg) size at nearest point on MARS ellipsoid DESCRIPTION to LOS emanating from the center of 3rd band. (in kms, IAU_MARS)" END_OBJECT = COLUMN OBJECT = COLUMN NAME = B3_LOS_RA

 $COLUMN_NUMBER = 13$ DATA_TYPE = ASCII_REAL START_BYTE = 112 = 9 BYTES = "F9.3" FORMAT = "Right ascension of LOS emanating from the center of 3rd DESCRIPTION band.(in degrees, EMEJ2000)" END_OBJECT = COLUMN OBJECT = COLUMN NAME = B3_LOS_DEC COLUMN_NUMBER = 14 DATA_TYPE = ASCII_REAL START_BYTE = 121 = 9 BYTES FORMAT = "F9.3" DESCRIPTION = "Declination of LOS emanating from the center of 3rd band. (in degrees, EMEJ2000)" END_OBJECT = COLUMN OBJECT = COLUMN NAME = B3_MNP_SUN_ANGLE COLUMN_NUMBER = 15 = ASCII_REAL DATA_TYPE START_BYTE = 130 BYTES = 7 FORMAT = "F7.2" = "Angle between S/C-SUN vector and LOS emanating from the DESCRIPTION center of 3rd band. (in degrees, IAU_MARS)" END_OBJECT = COLUMN OBJECT = COLUMN = B3_MNP_PHASE_ANGLE NAME COLUMN_NUMBER = 16 = ASCII_REAL DATA_TYPE START_BYTE = 137 BYTES = 8 = "F8.2" FORMAT DESCRIPTION = "Phase angle between the SUN and the Observer measured at the nearest point on MARS ellipsoid to LOS emanating from the center of 3rd band. (in degrees)" END_OBJECT = COLUMN OBJECT = COLUMN = B3_MNP_INCIDENCE_ANGLE NAME $COLUMN_NUMBER = 17$ DATA_TYPE = ASCII_REAL START_BYTE = 145 BYTES = 8 = "F8.2" FORMAT = "Solar incidence angle between SUN and Normal at nearest DESCRIPTION point on MARS ellipsoid to LOS emanating from the center of 3rd band. (in degrees)" END_OBJECT = COLUMN OBJECT = COLUMN = B3_MNP_SOLAR_LOCAL_TIME NAME COLUMN_NUMBER = 18 DATA_TYPE = ASCII_REAL START_BYTE = 153 = б BYTES = "F6.2" FORMAT = "Solar local time at nearest point on MARS ellipsoid to LOS emanating from the center of 3rdB band (in degrees)" DESCRIPTION END_OBJECT = COLUMN OBJECT = COLUMN NAME = B3_MNP_EMISSION_ANGLE COLUMN_NUMBER = 19 DATA_TYPE = ASCII_REAL START_BYTE = 159 BYTES = 7 = "F7.2" FORMAT

SPICAM Light Date : 15 January 2012 EAICD Page : 43 DESCRIPTION = "Emission angle between Normal and Observer at nearest point on MARS ellipsoid to LOS emanating from the center of 3rd band. (in degrees)" END OBJECT = COLUMN OBJECT = COLUMN NAME = B3_MNP_MARS_DISTANCE $COLUMN_NUMBER = 20$ = ASCII_REAL DATA_TYPE START_BYTE = 166 BYTES = 10 FORMAT = "F10.1" DESCRIPTION = "Distance between the nearest point on LOS emanating from the center of 3rdB band (in degrees) and center of MARS. (in kms)" END_OBJECT = COLUMN OBJECT = COLUMN NAME = MEX_MARS_DISTANCE COLUMN_NUMBER = 21 DATA_TYPE = ASCII_REAL START_BYTE = 176 = 10 BYTES FORMAT = "F10.1" = "Distance between MEX position and center of MARS. DESCRIPTION (in kms)" END_OBJECT = COLUMN OBJECT = COLUMN NAME = AZIMUT_SUN $COLUMN_NUMBER = 22$ DATA_TYPE = ASCII_REAL START_BYTE = 186 BYTES = 7 = "F7.2" FORMAT DESCRIPTION = "Azimut of SUN in MEX axes. (relative to X, in degrees)" END_OBJECT = COLUMN OBJECT = COLUMN NAME = B1_MNP_LONGITUDE COLUMN_NUMBER = 23 DATA_TYPE = ASCII_REAL START_BYTE = 193 BYTES = 8 FORMAT = "F8.2" = "Longitude of nearest point on MARS ellipsoid to LOS DESCRIPTION emanating from the center of 1st band. (in degrees, IAU_MARS)" END_OBJECT = COLUMN OBJECT = COLUMN = B1_MNP_LATITUDE NAME $COLUMN_NUMBER = 24$ = ASCII_REAL DATA_TYPE START_BYTE = 201 = 7 BYTES = "F7.2" FORMAT = "Latitude of nearest point on MARS ellipsoid to LOS DESCRIPTION emanating from the center of 1st band. (in degrees, IAU_MARS)" END OBJECT = COLUMN OBJECT = COLUMN NAME = B1_MNP_ALTITUDE COLUMN_NUMBER = 25 = ASCII_REAL DATA TYPE START_BYTE = 208 BYTES = 10 FORMAT = "F10.1" DESCRIPTION = "Altitude above the nearest point on MARS ellipsoid of LOS emanating from the center of 1st band.

(in kms, IAU_MARS, < 0 IF intersection)"

END_OBJECT = COLUMN

Mars Express

Document No. : SA_MEX_ARCH_003

:001

Issue

OBJECT = COLUMN NAME = B1_LOS_RA COLUMN_NUMBER = 26 DATA_TYPE = ASCII_REAL START_BYTE = 218 BYTES = 9 FORMAT = "F9.3" DESCRIPTION = "Right ascension of LOS emanating from the center of 1st band. (in degrees, EMEJ2000)" END_OBJECT = COLUMN OBJECT = COLUMN = B1_LOS_DEC NAME COLUMN_NUMBER = 27 DATA_TYPE = ASCII_REAL START_BYTE = 227 BYTES = 9 FORMAT = "F9.3" = "Declination of LOS emanating from the center of 1st band. DESCRIPTION (in degrees, EMEJ2000)" END_OBJECT = COLUMN OBJECT = COLUMN NAME = B2_MNP_LONGITUDE $COLUMN_NUMBER = 28$ DATA_TYPE = ASCII_REAL START_BYTE = 236 = 8 BYTES FORMAT = "F8.2" DESCRIPTION = "Longitude of nearest point on MARS ellipsoid to LOS emanating from the center of 2nd band. (in degrees, IAU_MARS)" END_OBJECT = COLUMN OBJECT = COLUMN NAME = B2_MNP_LATITUDE COLUMN NUMBER = 29DATA_TYPE = ASCII_REAL START_BYTE = 244 = 7 BYTES FORMAT = "F7.2" = "Latitude of nearest point on MARS ellipsoid to LOS DESCRIPTION emanating from the center of 2nd band. (in degrees, IAU_MARS)" END_OBJECT = COLUMN OBJECT = COLUMN NAME = B2_MNP_ALTITUDE $COLUMN_NUMBER = 30$ = ASCII_REAL DATA TYPE START_BYTE = 251 BYTES = 10 FORMAT = "F10.1" above the nearest point on MARS ellipsoid of DESCRIPTION = "Altitude LOS emanating from the center of 2nd band. (in kms, IAU_MARS, < 0 IF intersection)" END_OBJECT = COLUMN OBJECT = COLUMN = B2_LOS_RA NAME COLUMN NUMBER = 31 = ASCII_REAL DATA_TYPE START_BYTE = 261 BYTES = 9 FORMAT = "F9.3" DESCRIPTION = "Right ascension of LOS emanating from the center of 2nd band. (in degrees, EMEJ2000)" END_OBJECT = COLUMN OBJECT = COLUMN NAME = B2_LOS_DEC $COLUMN_NUMBER = 32$

DATA_TYPE

Mars Express SPICAM Light EAICD

Document No. : SA_MEX_ARCH_003 Issue :001 Date : 15 January 2012 Page : 45

= ASCII_REAL START_BYTE = 270 = 9 BYTES = "F9.3" FORMAT = "Declination of LOS emanating from the center of 2nd band. DESCRIPTION (in degrees, EMEJ2000)" END_OBJECT = COLUMN OBJECT = COLUMN = B4_MNP_LONGITUDE NAME COLUMN_NUMBER = 33 DATA_TYPE = ASCII_REAL START_BYTE = 279 BYTES = 8 = "F8.2" FORMAT DESCRIPTION = "Longitude of nearest point on MARS ellipsoid to LOS emanating from the center of 4th band. (in degrees, IAU_MARS)" END_OBJECT = COLUMN OBJECT = COLUMN NAME = B4_MNP_LATITUDE COLUMN_NUMBER = 34 DATA_TYPE = ASCII_REAL START_BYTE = 287 BYTES = 7 FORMAT = "F7.2" DESCRIPTION = "Latitude of nearest point on MARS ellipsoid to LOS emanating from the center of 4th band. (in degrees, IAU_MARS)" END_OBJECT = COLUMN OBJECT = COLUMN NAME = B4_MNP_ALTITUDE COLUMN_NUMBER = 35 DATA_TYPE = ASCII_REAL START_BYTE = 294 = 10 BYTES FORMAT = "F10.1" = "Altitude above the nearest point on MARS ellipsoid of DESCRIPTION LOS emanating from the center of 4th band. (in kms, IAU_MARS, < 0 IF intersection)" END_OBJECT = COLUMN OBJECT = COLUMN NAME = B4_LOS_RA COLUMN_NUMBER = 36 DATA_TYPE = ASCII_REAL START_BYTE = 304 BYTES = 9 = "F9.3" FORMAT DESCRIPTION = "Right ascension of LOS emanating from the center of 4th band. (in degrees, EMEJ2000)" END_OBJECT = COLUMN OBJECT = COLUMN NAME = B4_LOS_DEC COLUMN_NUMBER = 37 DATA_TYPE = ASCII_REAL START_BYTE = 313 = 9 BYTES = "F9.3" FORMAT = "Declination of LOS emanating from the center of 4th band. DESCRIPTION (in degrees, EMEJ2000)" END_OBJECT = COLUMN OBJECT = COLUMN NAME = B5_MNP_LONGITUDE COLUMN_NUMBER = 38 DATA_TYPE = ASCII_REAL START_BYTE = 322 BYTES = 8 FORMAT = "F8.2"

DESCRIPTION = "Longitude of nearest point on MARS ellipsoid to LOS emanating from the center of 5th band. = "Latitude of nearest point on MARS ellipsoid to LOS emanating from the center of 5th band. = "Altitude above the nearest point on MARS ellipsoid of LOS emanating from the center of 5th band. (in kms, IAU_MARS, < 0 IF intersection)' = "Right ascension of LOS emanating from the center of 5th band. (in degrees, EMEJ2000)"

Issue

Date

Page

Document No. : SA_MEX_ARCH_003

:001

: 46

: 15 January 2012

```
COLUMN NUMBER = 42
             = ASCII_REAL
 DATA_TYPE
 START_BYTE
               = 356
 BYTES
               = 9
 FORMAT
               = "F9.3"
               = "Declination of LOS emanating from the center of 5th band.
 DESCRIPTION
                  (in degrees, EMEJ2000)"
END_OBJECT = COLUMN
OBJECT
          = COLUMN
 NAME
               = XSC_X
  COLUMN_NUMBER = 43
              = ASCII_REAL
 DATA_TYPE
 START BYTE
               = 365
               = 11
 BYTES
               = "F11.6"
 FORMAT
 DESCRIPTION
               = "X component of the unit inertial pointing vector (1,0,0)
                 in MEX coordinates relative to MARSIAU frame.'
END OBJECT = COLUMN
OBJECT
         = COLUMN
 NAME
               = XSC_Y
  COLUMN_NUMBER = 44
 DATA TYPE
              = ASCII_REAL
               = 376
 START_BYTE
               = 11
 BYTES
 FORMAT
               = "F11.6"
 DESCRIPTION
               = "Y component of the unit inertial pointing vector (1,0,0)
                  in MEX coordinates relative to MARSIAU frame.'
END_OBJECT = COLUMN
```


Document No.: SA_MEX_ARCH_003Issue: 001Date: 15 January 2012Page: 47

OBJECT = COLUMN NAME = XSC_Z $COLUMN_NUMBER = 45$ = ASCII_REAL DATA_TYPE START_BYTE = 387 BYTES = 11 FORMAT = "F11.6" DESCRIPTION = "Z component of the unit inertial pointing vector (1,0,0) in MEX coordinates relative to MARSIAU frame." END_OBJECT = COLUMN OBJECT = COLUMN NAME = YSC X COLUMN NUMBER = 46= ASCII_REAL DATA_TYPE START_BYTE = 398 BYTES = 11 FORMAT = "F11.6" DESCRIPTION = "X component of the unit inertial pointing vector (0,1,0) in MEX coordinates relative to MARSIAU frame." END_OBJECT = COLUMN OBJECT = COLUMN NAME = YSC_Y $COLUMN_NUMBER = 47$ DATA_TYPE = ASCII_REAL START_BYTE = 409 = 11 BYTES FORMAT = "F11.6" = "Y component of the unit inertial pointing vector (0,1,0) DESCRIPTION in MEX coordinates relative to MARSIAU frame." END_OBJECT = COLUMN OBJECT = COLUMN NAME = YSC_Z $COLUMN_NUMBER = 48$ DATA_TYPE = ASCII_REAL START_BYTE = 420BYTES = 11 FORMAT = "F11.6" DESCRIPTION = "Z component of the unit inertial pointing vector (0,1,0)in MEX coordinates relative to MARSIAU frame.' END_OBJECT = COLUMN OBJECT = COLUMN NAME = ZSC_X COLUMN NUMBER = 49= ASCII_REAL DATA_TYPE START_BYTE = 431 BYTES = 11 FORMAT = "F11.6" DESCRIPTION = "X component of the unit inertial pointing vector (0,0,1) in MEX coordinates relative to MARSIAU frame." END_OBJECT = COLUMN OBJECT = COLUMN NAME = ZSC_Y $COLUMN_NUMBER = 50$ DATA_TYPE = ASCII_REAL START_BYTE = 442 = 11 BYTES = "F11.6" FORMAT = "Y component of the unit inertial pointing vector (0,0,1)
in MEX coordinates relative to MARSIAU frame." DESCRIPTION END_OBJECT = COLUMN OBJECT = COLUMN NAME $= ZSC_Z$ COLUMN_NUMBER = 51 DATA_TYPE = ASCII_REAL START_BYTE = 453 BYTES = 11 = "F11.6" FORMAT

Document No.	: SA_MEX_ARCH_003
Issue	: 001
Date	: 15 January 2012
Page	: 48

DESCRIPTION = "Z component of the unit inertial pointing vector (0,0,1) in MEX coordinates relative to MARSIAU frame.' END_OBJECT = COLUMN OBJECT = COLUMN NAME = XSC_LV_MNP_ANGLE $COLUMN_NUMBER = 52$ DATA_TYPE = ASCII_REAL START_BYTE = 464 BYTES = 8 FORMAT = "F8.2" DESCRIPTION = "Angle between the S/C X axis and the local verticale at MARS Nearest Point. (in degrees)" END_OBJECT = COLUMN OBJECT = COLUMN NAME = UPLAN_XSC_ANGLE COLUMN_NUMBER = 53 DATA_TYPE = ASCII_REAL START_BYTE = 472 BYTES = 8 FORMAT = "F8.2" = "Angle between XSC and the projection plane U axis DESCRIPTION (in degrees). The projection plane (u,v,w frame) is defined as the plane at the nearest point on MARS and perpendicular to vdir (view direction from MEX), with w = -vdir,v = north pole , u = right handed END OBJECT = COLUMNOBJECT = COLUMN NAME = P1_U $COLUMN_NUMBER = 54$ = ASCII_REAL DATA TYPE START_BYTE = 480 BYTES = 10 FORMAT = "F10.2" DESCRIPTION = "The horizon is described by 5 points in the projection plane. P1_U is the u component of Point1 in the projection plane (see definition above)" END_OBJECT = COLUMN OBJECT = COLUMN = P1_V NAME COLUMN NUMBER = 55= ASCII_REAL DATA_TYPE START_BYTE = 490 = 10 = "F10.2" BYTES FORMAT = "The horizon is described by 5 points in the projection DESCRIPTION plane. P1_V is the v component of Point1 in the projection plane (see definition above)" END OBJECT = COLUMN OBJECT = COLUMN NAME = P2_U COLUMN NUMBER = 56 DATA_TYPE = ASCII_REAL START_BYTE = 500 BYTES = 10 FORMAT = "F10.2" = "The horizon is described by 5 points in the projection DESCRIPTION plane. P2_U is the u component of Point2 in the projection plane (see definition above)" END_OBJECT = COLUMN OBJECT = COLUMN NAME = P2_V $COLUMN_NUMBER = 57$ = ASCII_REAL DATA_TYPE START_BYTE = 510 BYTES = 10 = "F10.2" FORMAT = "The horizon is described by 5 points in the projection DESCRIPTION

Document No.	: SA_MEX_ARCH_003
Issue	: 001
Date	: 15 January 2012
Page	: 49

plane. P2_V is the v component of Point2 in the projection plane (see definition above)' END_OBJECT = COLUMN OBJECT = COLUMN NAME = P3_U COLUMN_NUMBER = 58 DATA_TYPE = ASCII_REAL START_BYTE = 520 = 10 BYTES FORMAT = "F10.2" DESCRIPTION = "The horizon is described by 5 points in the projection plane. P3_U is the u component of Point3 in the projection plane (see definition above)" END_OBJECT = COLUMN OBJECT = COLUMN = P3_V NAME COLUMN_NUMBER = 59 = ASCII_REAL DATA_TYPE START_BYTE = 530 BYTES = 10 FORMAT = "F10.2" = "The horizon is described by 5 points in the projection DESCRIPTION plane. P3_V is the v component of Point3 in the projection plane (see definition above)" END_OBJECT = COLUMN OBJECT = COLUMN NAME = P4_U $COLUMN_NUMBER = 60$ DATA_TYPE = ASCII_REAL START_BYTE = 540 BYTES = 10 FORMAT = "F10.2" = "The horizon is described by 5 points in the projection DESCRIPTION plane. P4_U is the u component of Point4 in the projection plane (see definition above) END_OBJECT = COLUMN OBJECT = COLUMN NAME = P4_V COLUMN NUMBER = 61= ASCII_REAL DATA_TYPE START_BYTE = 550 BYTES = 10 = "F10.2" FORMAT = "The horizon is described by 5 points in the projection DESCRIPTION plane. P4_V is the v component of Point4 in the projection plane (see definition above)' END OBJECT = COLUMN = COLUMN OBJECT = P5_U NAME $COLUMN_NUMBER = 62$ DATA TYPE = ASCII REAL = 560 START_BYTE BYTES = 10 FORMAT = "F10.2" = "The horizon is described by 5 points in the projection plane. P5_U is the u component of Point5 in the DESCRIPTION projection plane (see definition above) " END_OBJECT = COLUMN OBJECT = COLUMN = P5_V NAME COLUMN NUMBER = 63DATA_TYPE = ASCII_REAL START_BYTE = 570 BYTES = 10 = "F10.2" FORMAT = "The horizon is described by 5 points in the projection DESCRIPTION plane. P5_V is the v component of Point5 in the

Document No.	: SA_MEX_ARCH_003
Issue	: 001
Date	: 15 January 2012
Page	: 50

projection plane (see definition above)" END_OBJECT = COLUMN OBJECT = COLUMN = X_RA_TR NAME COLUMN_NUMBER = $6\overline{4}$ DATA_TYPE = ASCII_REAL START_BYTE = 580 BYTES = 8 = "F8.2" FORMAT DESCRIPTION = " The transformation matrix from IAU_VENUS to EMEJ2000 is defined as | Xra Xdec Yra Ydec Zra Zdec X_RA_TR, is the Xra component of the transformation matrix " END_OBJECT = COLUMN OBJECT = COLUMN NAME = X_DEC_TR $COLUMN_NUMBER = 65$ DATA_TYPE = ASCII_REAL START_BYTE = 588 BYTES = 8 FORMAT = "F8.2" DESCRIPTION = "X_DEC_TR , is the Xdec component of the transformation matrix (see above) " END OBJECT = COLUMNOBJECT = COLUMN NAME = Y_RA_TR $COLUMN_NUMBER = 6\overline{6}$ DATA_TYPE = ASCII_REAL START_BYTE = 596 BYTES = 8 FORMAT = "F8.2" DESCRIPTION = "Y_RA_TR , is the Yra component of the transformation matrix (see above) " END_OBJECT = COLUMN OBJECT = COLUMN NAME = Y_DEC_TR COLUMN NUMBER = $6\overline{7}$ DATA_TYPE = ASCII_REAL START_BYTE = 604 BYTES = 8 FORMAT = "F8.2" DESCRIPTION = "Y_DEC_TR , is the Ydec component of the transformation matrix (see above) " END_OBJECT = COLUMN OBJECT = COLUMN NAME = Z_RA_TR $COLUMN_NUMBER = 68$ = ASCII_REAL DATA_TYPE START_BYTE = 612 = 8 BYTES = "F8.2" FORMAT DESCRIPTION = "Z_RA_TR , is the Zra component of the transformation matrix (see above) END OBJECT = COLUMN OBJECT = COLUMN NAME = Z_DEC_TR $COLUMN_NUMBER = 69$ = ASCII_REAL DATA TYPE START_BYTE = 620 BYTES = 8 FORMAT = "F8.2" DESCRIPTION = "Z_DEC_TR , is the Zdec component of the transformation matrix (see above) END_OBJECT = COLUMN

= COLUMN OBJECT = LOS_MNP_LONGITUDE NAME $COLUMN_NUMBER = 70$ DATA_TYPE = ASCII_REAL START_BYTE = 628 BYTES = 8 FORMAT = "F8.2" DESCRIPTION = "Longitude of nearest point on MARS ellipsoid to LOSE emanating from the CCD. (in degrees, IAU_MARS)" END_OBJECT = COLUMN OBJECT = COLUMN NAME = LOS_MNP_LATITUDE COLUMN_NUMBER = 71 = ASCII_REAL DATA_TYPE START_BYTE = 636 BYTES = 7 = "F7.2" FORMAT DESCRIPTION = "Latitude of nearest point on MARS ellipsoid to LOSE emanating from the CCD. (in degrees, IAU_MARS)' END_OBJECT = COLUMN OBJECT = COLUMN NAME = LOS_MNP_SZA $COLUMN_NUMBER = 72$ DATA_TYPE = ASCII_REAL START_BYTE = 643 BYTES = 7 FORMAT = "F7.1" = "Solar zenith angle at nearest point on MARS ellipsoid to DESCRIPTION LOSE emanating from the CCD. (in degrees, IAU_MARS)" END_OBJECT = COLUMN OBJECT = COLUMN NAME = LOS_SC_MNP_DISTANCE $COLUMN_NUMBER = 73$ DATA_TYPE = ASCII_REAL START_BYTE = 650= 10 BYTES FORMAT = "F10.1" DESCRIPTION = "Distance from MEX to nearest point on MARS ellipsoid to LOSE emanating from the CCD. (in kms, IAU_MARS, < 0 if behind SC)" END_OBJECT = COLUMN OBJECT = COLUMN NAME = LOS_MNP_ALTITUDE $COLUMN_NUMBER = 74$ = ASCII_REAL DATA_TYPE START_BYTE = 660 BYTES = 10 = "F10.1" FORMAT = "Altitude above the nearest point on MARS ellipsoid of DESCRIPTION LOSE emanating from the CCD. (in kms, IAU_MARS, < 0 IF intersection)" END OBJECT = COLUMN OBJECT = COLUMN NAME = LOS_PIXEL_SIZE $COLUMN_NUMBER = 75$ = ASCII_REAL DATA TYPE START_BYTE = 670 BYTES = 8 FORMAT = "F8.2" DESCRIPTION = "Pixel (0.01 deg) size at nearest point on MARS ellipsoid to LOSE emanating from the CCD. (in kms, IAU_MARS)" END_OBJECT = COLUMN OBJECT = COLUMN = LOS_RA NAME $COLUMN_NUMBER = 76$ DATA_TYPE = ASCII_REAL

START_BYTE = 678 BYTES = 9 = "F9.3" FORMAT DESCRIPTION = "Right ascension of LOSE emanating from the CCD. (in degrees, EMEJ2000)" END_OBJECT = COLUMN OBJECT = COLUMN = LOS_DEC NAME COLUMN_NUMBER = 77 = ASCII_REAL DATA_TYPE START_BYTE = 687 = 9 BYTES FORMAT = "F9.3" = "Declination of LOSE emanating from the CCD. DESCRIPTION (in degrees, EMEJ2000)" END_OBJECT = COLUMN OBJECT = COLUMN = LOS_MNP_SUN_ANGLE NAME $COLUMN_NUMBER = 78$ DATA_TYPE = ASCII_REAL START_BYTE = 696 BYTES = 7 = "F7.2" FORMAT = "Angle between S/C-SUN vector and LOSE emanating from the DESCRIPTION CCD. (in degrees, IAU_MARS)" END OBJECT = COLUMNOBJECT = COLUMN NAME = LOS_MNP_PHASE_ANGLE $COLUMN_NUMBER = 79$ = ASCII_REAL DATA TYPE = 703 START_BYTE BYTES = 8 FORMAT = "F8.2" DESCRIPTION = "Phase angle between the SUN and the Observer measured at the nearest point on MARS ellipsoid to LOSE emanating from the CCD. (in degrees)" END_OBJECT = COLUMN OBJECT = COLUMN = LOS_MNP_INCIDENCE_ANGLE NAME $COLUMN_NUMBER = 80$ DATA_TYPE = ASCII_REAL START_BYTE = 711 = 8 BYTES = "F8.2" FORMAT DESCRIPTION = "Solar incidence angle between SUN and Normal at nearest point on MARS ellipsoid to LOSE emanating from the CCD. (in degrees)" END_OBJECT = COLUMN OBJECT = COLUMN = LOS_MNP_SOLAR_LOCAL_TIME NAME COLUMN NUMBER = 81 DATA_TYPE = ASCII_REAL START_BYTE = 719 BYTES = б = "F6.2" FORMAT = "Solar local time at nearest point on MARS ellipsoid to DESCRIPTION LOSE emanating from the CCD. (in degrees)" END_OBJECT = COLUMN OBJECT = COLUMN NAME = LOS_EMISSION_ANGLE COLUMN NUMBER = 82 DATA_TYPE = ASCII_REAL START_BYTE = 725 = 7 BYTES = "F7.2" FORMAT DESCRIPTION = "Emission angle between Normal and Observer at nearest point on MARS ellipsoid to LOSE emanating from the CCD.

Mars Express SPICAM Light EAICD		Document No. Issue Date Page	: SA_MEX_ARCH_003 : 001 : 15 January 2012 : 53	
(in de END_OBJECT = COLUMN	grees)"			
OBJECT = COLUMN NAME = LOS_MARS_DISTANCE COLUMN_NUMBER = 83 DATA_TYPE = ASCII_REAL START_BYTE = 732 BYTES = 10 FORMAT = "F10.1" DESCRIPTION = "Distance between the nearest point on LOSE emanating from the CCD and center of MARS. (in kms)" END_OBJECT = COLUMN				
END_OBJECT = TABLE				
END				

Figure 8. Geometry PDS label file example.

3.4.3.7 Software Directory

The SOFTWARE directory contains IDL routines to read the SPICAM UV data files, as a ZIP file SPICAM_READPDSZIP and its corresponding label file, SPICAM_READPDS.LBL.This zip file contains IDL software routines able to read the Mars Express SPICAM-UV PDS data and label files under Windows (not tested under other OS). The software requires RSI/IDL version 6.x. When unzipped, the software is located in the ROOT/SOFTWARE/SPICAM_READPDS directory. Instructions for running the routines are located in the file SPICAM_READPDS_README.TXT, located in the same directory. The main routine readPDS_SPICAM_UV.pro has been developed by the SPICAM team and calls the set of IDL procedures developed at the SBN (http://pdssbn.astro.umd.edu/nodehtml/software.shtml) and stored in the readpdsx 4.3 directory.

The DATA directory contains 2 examples of SPICAM data files and associated label filed. The LABEL directory contains the FMT included file describing the structure of the HEADER_ARRAY object in the SPICAM level 0AUV data products.

Version 01 of readPDS_SPICAM_UV works with readPDS version 4.3 Package. Nevertheless note that a small modification has been performed in the pointpds.pro routine on lines 150 and 175. (bug with call to the stregex routine under windows). That's the reason why the readPDS 4.3 Package is archived in the SPICAM UV dataset while it has not been updated by the SBN team. Please not that we do not guarantee that the readPDS_SPICAM_UV SPICAM routine version 01 works with previous or future versions of the readPDS package.

3.4.3.8 Calibration Directory

All calibration documentation needed to use the data will be stored in the DOCUMENT directory of each archive volume. Calibration data files mentioned in the documentation are contained in the CALIB directory of the archive volume.

3.4.3.9 Label Directory

N/A. All PDS detached label files describing data or document files in a volume are in the corresponding directory.

Include files (*.FMT (FORMAT)), containing additional description of data object and referenced by a pointer in a PDS label will be also stored in the corresponding directory of the label file.

3.4.3.10 Document Directory

The DOCUMENT directory contains at least :

- documentation to help the user to understand and use the archive data (this document).
- An ASCII SPICAM UV or IR data files description (eg. SPICAM_UVDATAFILE_DESC.TXT)
- An ASCII SPICAM geometry documentation (eg. SPICAM_GEOMETRY_DESC.TXT)
- An ASCII SPICAM UV or IR calibration documentation (eg. SPICAM_UVCALIB_DESC.TXT)
- An ASCII SPICAM UV operating mode description (SPICAM_UVMODE_DESC.TXT)
- An ASCII Flight User Manual (SPFUM408.PDF)
- An ASCII file informing on the usage of the spacecraft orientation on Mars Express (MEX_ORIENTATION_DESC.TXT)

The SPICAM EAICD document will be provided in both PDF (Adobe Portable Document Format) and ASCII formats, the ASCII version being strongly required by the PSA. PNG files for drawings or tables referenced in it will be also available.

Data file, geometry and calibration documentation will be provided in ASCII format, and the SPICAM flight user manual (FUM) in PDF format only.

Other helpful technical SPICAM documentation provided by the SPICAM team will be provided in the DOCUMENT directory.

4 Detailed Interface Specifications

4.1 Data Product Design

Following sections contain example labels for each of our different data product (for each sensor, and for each data product level). Definitions of individual items contained in the label are given in section 4.1.3. Valid values for each item are shown in brackets [], as appropriate.

4.1.1 Data product design and example label of a 0AUV data product

Data product design

A SPICAM 0AUV data product file contains one or several records of an observation. One SPICAM 0AUV record contains all the header and data information from one spicam UV integration result of one sequence of measurement. The header length is 256 bytes and the data length is 4096 bytes. More exactly, the valid data table consists in a array of 5 rows and 408 columns(2040*2 bytes) representing 5 bands of the CCD, each band containing 408 pixels. The last 16 bytes are ignored. The header has 128 elements which contain operation mode, date of observation informations, time exposure, etc ().

The internal representation of each value is integer with LOW byte first (LSB_INTEGER).

For more detailed information, see document SPICAM_UVDATAFILE_DESC.TXT

In the label, a SPICAM 0AUV data product is considered as an ARRAY object of one dimension, containing n records (Figure 9). Each record is then described by a COLLECTION object containing 3 ARRAY objects: HEADER_ARRAY, DATA_ARRAY, and SPARE_ARRAY. In the HEADER_ARRAY a statement pointer points to a file named "HEADER_ARRAY, FMT" that contains a description of the structure of the header array and information on how to access the time and date or peltier and CCD temperatures values. The other more relevant parameters of the header are described in the label as keywords:

MEX:SPICAM_UV_EXPOSURE_TIME	= HEADER_ARRAY[42]
MEX:SPICAM_UV_FIRST_BAND	= HEADER_ARRAY[44]
MEX:SPICAM_UV_CCD_ROWS_BINNED	= HEADER_ARRAY[47]
(Number of physical CCD row binned and conta	ined in one band. = 0 in the case of BINNINGP mode)
MEX:SPICAM_UV_HT	= HEADER_ARRAY[55]

The DATA_ARRAY is an ARRAY object of two dimensions, containing the 408*5 data values. The SPARE_ARRAY contains the 16 bytes not used.

Figure 9. SPICAM 0AUV data representation in the label file.

Example label of level 0A UV data product

/* /* /*	 DATA_ =4080	ARRAY */ bytes */
/* /*		*/
/* /* /*	SPARI =16 }	[_ARRAY */ >ytes */
/* FILE CHARA RECORD_TYPE	ACTERISTICS DATA	ELEMENTS */ = FIXED_LENGTH
RECORD_BYTES FILE_RECORDS		= 4352 = 520
/* DATA OBJECT ^RECORD_ARRAY	POINTERS IDENTIN	FICATION DATA ELEMENTS */ = "SPIM_0AU_2385A01_N_04.DAT"
FILE_NAME DATA_SET_ID DATA_SET_NAME RELEASE_ID REVISION_ID DISTRIBUTION_TY	YPE	<pre>= "SPIM_0AU_2385A01_N_04.DAT" = "MEX-Y/M-SPI-2-UVEDR-RAWXCRU/MARS-V1.1" = "MEX SPICAM CRUISE/MARS UV EDR-RAW V1.1" = 0001 = 0000 = DATA</pre>
PRODUCT_ID PRODUCT_CREATIO MISSION_NAME INSTRUMENT_HOST INSTRUMENT_HOST MISSION_PHASE_N	DN_TIME F_NAME F_ID NAME	<pre>= "SPIM_0AU_2385A01_N_04.DAT" = 2007-07-24T18:10:08.000 = "MARS EXPRESS" = "MARS EXPRESS" = MEX = "MR Phase 8"</pre>
TARGET_NAME TARGET_TYPE ^MEX_ORIENTATIC SPACECRAFT_POIN SPACECRAFT_POIN	ON_DESC NTING_MODE NTING_MODE_DESC	<pre>= "MARS" = PLANET = "MEX_ORIENTATION_DESC.TXT" = "NADIR" = "This pointing mode is used for science observations nominally around the pericentre. In this pointing mode the Z-axis of the spacecraft points towards the centre of Mars and the X-axis perpendicular to the ground track." </pre>
DECLINATION	N	= "N/A" = "N/A"
PRODUCT_TYPE STANDARD_DATA_H START_TIME STOP_TIME SPACECRAFT_CLOO ORBIT_NUMBER PRODUCER_ID PRODUCER_FULL_N PRODUCER_FULL_N PRODUCER_INSTIT INSTRUMENT_ID INSTRUMENT_NAMH INSTRUMENT_TYPH DESCRIPTION	PRODUCT_ID CK_START_COUNT CK_STOP_COUNT NAME TUTION_NAME E E	<pre>= EDR = RAWX = 2005-11-21T13:05:08.000 = 2005-11-21T13:13:47.000 = 1/0080658303.06897 = 1/0080658822.06898 = 2385 = MEX_SPI_TEAM = "FRANCK MONTMESSIN" = "LATMOS, IPSL/CNRS,FRANCE" = SPICAM = "SPICAM" = "SPICAM" = "SPECTROMETER" = "This file contains all records of a UV SPICAM observation; for completness, each record consists of a SPICAM header array, followed by the SPICAM spectra."</pre>
DATA_QUALITY_II DATA_QUALITY_DI	D ESC	<pre>= ILUUUUUUU = "See definitions in DATA_QUALITY_ID_DESC.TXT"</pre>
/* INSTRUMENT A CHANNEL_ID	AND DETECTOR DES	CRIPTIVE DATA ELEMENTS */ = "UV" - RINNING S
^SPICAM_MODE_DP	ESC	= "SPICAM_UVMODE_DESC.TXT"

Document No.: SA_MEX_ARCH_003Issue: 001Date: 15 January 2012Page: 58

= 45 /* (*10 msec) MEX:SPICAM_UV_EXPOSURE_TIME * / = 135 /*First band position MEX:SPICAM_UV_FIRST_BAND */ MEX:SPICAM_UV_CCD_ROWS_BINNED = 4 /*Number of physical CCD row binned */ */ /* and contained in one band. (=0 in the case of BINNINGP mode) MEX:SPICAM_UV_HT = 20 /*High Voltage put on the intensifier */ /*of the CCD /* DATA OBJECT DEFINITION */ = RECORD_ARRAY OBJECT = "SPICAM UV RECORD ARRAY" NAME INTERCHANGE_FORMAT = BINARY = 1 AXES AXIS_ITEMS = 520 = "This file contains all records of a UV SPICAM DESCRIPTION observation. A record is described by a COLLECTION object." OBJECT = COLLECTION = "ONE SPICAM UV RECORD" NAME BYTES = 4352 DESCRIPTION = "One spicam UV record contains all the header and data information from one spicam UV integration result of one sequence of measurement. The header length is 256 (HEADER_ARRAY) and the data length is 4080 (DATA_ARRAY). The last 16 bytes are ignored (SPARE_ARRAY)." OBJECT = HEADER_ARRAY ^STRUCTURE = "HEADER_ARRAY.FMT" END_OBJECT = HEADER_ARRAY OBJECT = DATA_ARRAY = "DATA ARRAY" NAME AXES = 2 = (408,5) AXIS ITEMS AXIS_NAME = (SAMPLE, BAND) START_BYTE = 257 DESCRIPTION = " A data table is contained in the last 4096 bytes of each EDR SPICAM record. More exactly, the valid data table consists in a array of 5 rows and 408 columns(2040*2 bytes) representing a band of 5 rows of the CCD, each row containing 408 pixels." OBJECT = ELEMENT NAME = "DN PIXEL VALUE" DESCRIPTION = "Pixel of a line of the CCD - the DN pixel value describes the value of analog to digital conversion of the charged collected by one pixel of a CCD during the integration time as a digital number" = LSB_INTEGER DATA TYPE BYTES = 2 END_OBJECT = ELEMENT END_OBJECT = DATA ARRAY OBJECT = SPARE_ARRAY = "SPARE ARRAY" NAME AXES = 1 AXIS ITEMS = 8 START_BYTE = 4337 DESCRIPTION = "This array contains the 16 bytes not used or ignored" OBJECT = ELEMENT NAME = "SPARE ELEMENT" DESCRIPTION = "Element not used"

DATA_TYPE BYTES END_OBJECT	= LSB_INTEGER = 2 = ELEMENT
END_OBJECT	= SPARE_ARRAY
END_OBJECT	= COLLECTION
END_OBJECT	= RECORD_ARRAY
END	

1	NAME	=	"HEADER ARRAY"
I	AXES	=	1
I	AXIS_ITEMS	=	128
S	START_BYTE	=	1
Ι	DESCRIPTION	=	"The header has 128 elements giving operation mode, date of observation, time exposure, peltier and CCD temperatures, etc. informations. All relevant parameters are in the label as keyword. Time of each record (year,month,day,hour, minute,second,centisecond) is given by the elements HEADER_ARRAY[61:67*]. Peltier and CCD temperatures are given by the elements HEADER_ARRAY[50:51*] (*count from 1). See SPICAM EAICD document in the /DOCUMENT directory for more informations."
(OBJECT	=	ELEMENT
	NAME	=	"HEADER ELEMENT"
	DESCRIPTION	=	"Element of the header"
	DATA_TYPE	=	LSB_INTEGER
	BYTES	=	2
	END_OBJECT	=	ELEMENT
HEADER ARRAY, FMT file			

4.1.2 Data product design and example label of a 0BIR data product

Data product design

A SPICAM OBIR data product file contains a general information header followed by a general frequency array and by one or several records of an observation from the two detectors of the infrared channel.

The spicam IR general header contains all the general information from one SPICAM IR sequence of measurement. The general header length is 50 x 2 bytes. They are command parameters and informations about the number of channels used, the expected points per spectrum, the number of spectra and the number of sessions per spectrum. The frequency array length is 4*expected_points bytes.

Each record contains : a header table (58 bytes), giving time and system monitor's values information and some satellite's parameters (temerature, current, ...), information at the beginning of each communication cycle. The header is followed by one or two data arrays, depending on the number of detector activated. Spectrum measurement can be done on three frequency windows, characterized by 3 parameters: FREQUENCY, POINTS and STEP. Along with spectrum measurement in three frequency windows a set of spectrum dots can be obtained during measurement cycle. Each dot represents a few adjacent spectrum points and can be viewed as a small window with predefined starting frequency, points number and

Document No.	: SA_MEX_ARCH_003
Issue	: 001
Date	: 15 January 2012
Page	: 60

frequency step. Height various sets of spectrum dots are predefined, with the possibility of 'no dots' measurement configuration.

Spectrum points recorded by a detector for one measurement cycle are stored in the following order : spectrum points of window 0, spectrum points of window 1, spectrum points of window 2 and spectrum points of dots set defined by the command.

The frequency array contains frequencies in the following order: frequencies of window 0, frequencies of window 1, frequencies of window 2 and frequencies of dots set defined by the command

A label associated to a SPICAM 0B IR data product contains 2 ARRAY objects : FREQUENCY_ARRAY and RECORD_ARRAY. The FREQUENCY_ARRAY contains all the frequency values, and the RECORD_ARRAY contains all the records. A SPICAM 0BIR record is then described by a COLLECTION object, containing 13 ELEMENTS objects, providing time and system monitor's values information at the beginning of each communication cycle, and one DATA_ARRAY containing the spectrum points recorded by the detectors.

The internal representation of each value is integer or float with LOW byte first (LSB_INTEGER or PC_REAL).

Figure 11. SPICAM OBIR data representation in the label file.

Example label of level 0B IR data product

ECORD_B	YTES = 58+(2*Expected_points*4 bytes)*number	r of records
	עדסא קקראקא	1
	$(50 \times 2 \text{ bytes})$	
	İ	ĺ
		1
	FREQUENCY ARRAY	
	_(4 expected_points/spectrum/ bytes	
		1
	RECORD ARRAY (1,n)	
	(7*2bytes+11*4+2*EXPECTED_POINTS*4bytes)	
	n recoras	
		record 1
	TIME and TEMPERATURE,	İ
	CURRENT information	
	Time and system monitor's values	
	information	
	DATA ARRAY_DETECTOR0	
	(Expected_points *4 bytes)	İ
	(Expected points *4 bytes)	
		İ
	· · · · ·	
	TIME and TEMPERATURE,	record n
	CURRENT information	
	Time and system monitor's values	
	DATA ARRAY_DETECTOR0	İ
	(Expected_points *4 bytes)	
	DATA ARRAY ההידהמייטרו	
	(Expected_points *4 bytes)	i i
		İ
	Iİ	

= 87

Document No. : SA_MEX_ARCH_003 Issue :001 : 15 January 2012 Date : 62 Page

FILE_RECORDS FILE NAME = "SPIM_0BR_2385A01_N_04.DAT" = "MEX-Y/M-SPI-2-UVEDR-RAWXCRU/MARS-V1.1" DATA_SET_ID DATA_SET_NAME = "MEX SPICAM CRUISE/MARS UV EDR-RAW V1.1" RELEASE_ID = 0001 REVISION ID = 0000 DISTRIBUTION_TYPE = DATA PRODUCT_ID = "SPIM_0BR_2385A01_N_04.DAT" PRODUCT_CREATION_TIME = 2007-07-24T18:10:26.000 = "MARS EXPRESS" MISSION NAME INSTRUMENT_HOST_NAME = "MARS EXPRESS" INSTRUMENT_HOST_ID = MEX = "MR Phase 8" MISSION_PHASE_NAME = "MARS" TARGET NAME TARGET_TYPE = PLANET ^MEX ORIENTATION DESC = "MEX_ORIENTATION_DESC.TXT" SPACECRAFT_POINTING_MODE = "NADIR" SPACECRAFT_POINTING_MODE_DESC = "This pointing mode is used for science observations nominally around the pericentre. In this pointing mode the Z-axis of the spacecraft points towards the centre of Mars and the X-axis perpendicular to the ground track." RIGHT_ASCENSION = "N/A" DECLINATION = "N/A" PRODUCT_TYPE = EDR STANDARD_DATA_PRODUCT_ID = RAWX START TIME = 2005-11-21T13:05:07.300 = 2005-11-21T13:13:43.300 STOP TIME SPACECRAFT_CLOCK_START_COUNT = 1/0080658302.26558 SPACECRAFT_CLOCK_STOP_COUNT = 1/0080658818.26559 ORBIT_NUMBER = 2385 = MEX SPT TEAM PRODUCER ID PRODUCER_FULL_NAME = "FRANCK MONTMESSIN" PRODUCER_INSTITUTION_NAME = "LATMOS, IPSL/CNRS, FRANCE" INSTRUMENT_ID = SPICAM INSTRUMENT_NAME = "SPICAM" = "SPECTROMETER" INSTRUMENT_TYPE DESCRIPTION = "This file contains a general header and a frequency array followed by all records of a IR SPICAM observation. A measurement requires several communication sessions to collect and transmit measurement data (a spectrum). Sessions of one spectrum are collected and transmitted in one measurement cycle. Each record consists of first a header providing the time of the beginning of the measurement cycle and six system monitor's values measured one time at the beginning of each measurement cycle. This header is then followed by detector 0 and/or 1 spectra." DATA_QUALITY_ID = 00000000 DATA_QUALITY_DESC = "See definitions in DATA_QUALITY_ID_DESC.TXT" /* INSTRUMENT AND DETECTOR DESCRIPTIVE DATA ELEMENTS * / CHANNEL ID = "IR" /* SPICAM IR COMMAND PARAMETERS - DEFINITIONS AND VALUES */ /* COMMAND_MODE = (EXIT, SOURCE, DETS, TIME) /* * / EXIT - A bit specifying a lab mode (bit set to 0) or a flight mode /* (bit set to 1) * / /* SOURCE - A bit specifying a host command (bit set to 0)or a ROM * /


```
Document No.: SA_MEX_ARCH_003Issue: 001Date: 15 January 2012Page: 63
```

command (bit set to 1). A host command is received from the * / memory of host computer, a ROM command is a command stored in*/ program controller and invoked by host command. , /* DETS - Detectors used for spectrum measurement : 0- detector 0 only, * / /* 1- detector 1 only, 2- both detector 0 and detector 1, * / /* 3- detector 0 and AOTF RF power. * / /* TIME - AOTF chopping period : 0- 1.4 ms, 1- 2.8 ms, 2- 5.6 ms, /* 3- 11.2 ms * / /* GAIN - Amplifiers gain factor : 0-1, 1-3, 2-8.25, 3-26 * / /* * / /* COMMAND_DAC - AOTF power control : 0...255. * / /* DAC value = 16*RF power control * / /* */ /* COMMAND_WINDOW0 = (FREQUENCY, POINTS, STEP) * / /* Three windows are specified in a command and are characterized by 3 * / /* values FREQUENCY, POINTS and STEP. * / /* FREQUENCY - determines starting frequency point of measured spectral * / /* interval in the first window: 0...255. The real frequency * / /* value in AOTF operating range from 80 MHz to 140 MHz is */ /* specified by 83.2 MHz + FREQUENCY*256*1.0e-3 in MHz. * / /* POINTS - Number of measured spectrum points in the window: 0..4095 * / /* Zero points number means that the window has not been processed */ STEP - Determines frequency step between points. Frequency increment /* * / /* is STEP*1.0e-3 in MHz, with STEP:0..15. Zero step means that all */ /* the spectrum points have been measured at the same frequency * / /* * / (time evolution of the spectrum) /* * / /* COMMAND_CONFIG = (COMMAND_DESCRIPTOR, DOTS_DESCRIPTOR) /* COMMAND_DESCRIPTOR - A set of 32 predefined commands is stored in . /* program memory (ROM commands). COMMAND_DESCRIPTOR field is a number * / /* (adress) of the command in this set. The adressed command can be * / /* activated by setting COMMAND_MODE_SOURCE bit of host command. * / /* DOTS_DESCRIPTOR -Along with spectrum measurement in three frequency * / /* * / frequency windows a set of specturm dots can be obtained during /* measurement cycle. Each dot represents a few adjacent spectrum points * / /* and can be viewed as a small window with predefined starting * / /* frequency, points number and frequency step. Height various sets of */ /* * / spectrum dots are predefined and each set has a unique number : DOTS_DESCRIPTOR. A zero value is reserved for 'no dots' measurement /* * / , /* * / configuration. MEX:SPICAM_IR_COMMAND_MODE = (1,0,2,0,2) MEX:SPICAM_IR_COMMAND_DAC = (1744, 0, 2)MEX:SPICAM_IR_COMMAND_WINDOW0 = (0.000,1.000,277,3.000) MEX:SPICAM_IR_COMMAND_WINDOW1 = (0.000,1.000,500,1.000) MEX:SPICAM_IR_COMMAND_WINDOW2 = (0.000,1.000,164,1.000) MEX:SPICAM_IR_COMMAND_CONFIG = (0,3) /* ACTIVE_CHANNELS - Number of channels activated /* EXPECTED_POINTS - Number of expected points by spectrum */ /* NUMBER_SPECTRA - Number of spectra in the sequence of measurement * / /* NUMBER_SESSIONS - Number of sessions by spectrum MEX:SPICAM_IR_ACTIVE_CHANNELS = 2 MEX:SPICAM_IR_EXPECTED_POINTS = 996 MEX:SPICAM IR NUMBER SPECTRA = 87 MEX:SPICAM IR NUMBER SESSIONS = 3 * DATA OBJECT POINTERS IDENTIFICATION DATA ELEMENTS **^FREOUENCY ARRAY** = ("SPIM_0BR_2385A01_N_04.DAT",101<BYTES>) ^RECORD_ARRAY = ("SPIM_0BR_2385A01_N_04.DAT",4085<BYTES>) /* DATA OBJECTS DEFINITION */ = FREQUENCY_ARRAY OBJECT NAME = "FREQUENCY ARRAY" INTERCHANGE FORMAT = BINARY = "Frequency array associated to each spectrum." DESCRIPTION AXES = 1 AXIS_ITEMS = 996

OBJECT BYTES DATA_TYPE NAME END_OBJECT	<pre>= ELEMENT = 4 = PC_REAL = "frequency value" = ELEMENT</pre>
END_OBJECT	= FREQUENCY_ARRAY
OBJECT NAME INTERCHANGE_FORMAT AXES AXIS_ITEMS DESCRIPTION	<pre>= RECORD_ARRAY = "SPICAM IR RECORD ARRAY" = BINARY = 1 = 87 = "This array contains all records of a IR SPICAM observation."</pre>
OBJECT NAME BYTES DESCRIPTION	<pre>= COLLECTION = "ONE_SPICAM_IR_RECORD" = 8026 = "A record is described by a COLLECTION object containing 18 elements, providing time and system monitor's values information at the beginning of each communication cycle, and one data array containing the spectrum points recorded by the detectors."</pre>
OBJECT NAME DATA_TYPE START_BYTE BYTES DESCRIPTION END OBJECT	<pre>= ELEMENT = YEAR = LSB_INTEGER = 1 = 2 = "year of time at the beginning of each measurement cycle" = ELEMENT</pre>
OBJECT NAME DATA_TYPE START_BYTE BYTES DESCRIPTION END_OBJECT	<pre>= ELEMENT = MONTH = LSB_INTEGER = 3 = 2 = "month of time at the beginning of each measurement cycle" = ELEMENT</pre>
OBJECT NAME DATA_TYPE START_BYTE BYTES DESCRIPTION END_OBJECT	<pre>= ELEMENT = DAY = LSB_INTEGER = 5 = 2 = "day of time at the beginning of each measurement cycle" = ELEMENT</pre>
OBJECT NAME DATA_TYPE START_BYTE BYTES DESCRIPTION END_OBJECT	<pre>= ELEMENT = HOUR = LSB_INTEGER = 7 = 2 = "hour of time at the beginning of each measurement cycle" = ELEMENT</pre>
OBJECT NAME DATA_TYPE START_BYTE BYTES DESCRIPTION	<pre>= ELEMENT = MINUTE = LSB_INTEGER = 9 = 2 = "minute of time at the beginning of each measurement cycle"</pre>

Document No.	: SA_MEX_ARCH_003
Issue	: 001
Date	: 15 January 2012
Page	: 65

END_OBJECT	= ELEMENT
OBJECT	= ELEMENT
NAME	= SECOND
תעעד איזאס	- LOR INTEGED
CTADT DVTT	- 11
DVTEC	- 11
BIILS	
DESCRIPTION	= "second of time at the beginning of each measurement cycle"
END_OBJECT	= ELEMENT
OBJECT	= ELEMENT
NAME	= CENTISECOND
DATA TYPE	= PC REAL
START BYTE	= 13
BYTES	= 4
DESCRIPTION	= "centisecond of time at the beginning of each
DEDORTITION	measurement cycle"
END_OBJECT	= ELEMENT
OBJECT	= ELEMENT
NAME	= SUTRP1_TEMP
DATA TYPE	= LSB INTEGER
START BYTE	= 17
BYTES	= 4
DECCEIDTION	 = "Temperature (ADII) of SII TPD1 Temperature of
DEDCUTAIION	Reference Point number 1 (near SPICAM foot on
END_OBJECT	= ELEMENT
OBJECT	= ELEMENT
NAME	= SUTRP2 TEMP
DATA TVDT	= LSB INTEGER
CUTADA DAAR	= <u>105_INIEGER</u> = 21
DVTEC	- 41 - A
DITES	
DF2CKILIION	Reference Point number 2 (on SOIR strap)"
END_OBJECT	= ELEMENT
OBJECT	= ELEMENT
NAME	= SOLARSHUTTER_TEMP
DATA TYPE	= LSB INTEGER
START BYTE	= 25
BYTES	= 4
DESCRIPTION	- = "Temperature (ADII) of SOLAR SHITTER Temperature on
DESCRIPTION	Baseplate near solar shutter"
END_ORJ ECT	= FTEMENJ.
OBJECT	= ELEMENT
NAME	= STRUCTURE_TEMP
DATA TYPE	= LSB_INTEGER
START BYTE	= 29
BYTES	= 4
DESCRIPTION	- = "Temperature (ADU) of STRUCTURE Temperature of
PERCIVITION	Baseplate (near HVDS in corner -7: +V)"
END_OBJECT	= ELEMENT
OBJECT	= ELEMENT
NAME	= DET0_TEMP
DATA TYPE	= PC REAL
START BYTE	= 33
BYTES	= 4
UNIT	= "Volt"
DESCRIPTION	= "Detector 0 temperature measured at the beginning of
	each measurement cycle"
FIND ORD F.C.I.	= ELLEPIENI
OBJECT	= ELEMENT
NAME	= DETL_TEMP
DATA_TYPE	= PC_REAL
START_BYTE	= 37
BYTES	= 4

Document No. Issue	: SA_MEX_ARCH_003 : 001
Date	: 15 January 2012
Page	: 66

UNIT	= "Volt"
DESCRIPTION	= "Detector 1 temperature measured at the beginning of
	each measurement cycle"
END_OBJECT	= ELEMENT
OBJECT	= ELEMENT
NAME	= AOTF_TEMP
DATA_TYPE	= PC_REAL
START_BYTE	= 41
BYTES	= 4
UNIT	= "Kelvin"
DESCRIPTION	= "AOTF temperature measured at the beginning of
	each measurement cycle"
END_OBJECT	= ELEMENT
OBJECT	= ELEMENT
	= BASE_TEMP
DATA_TYPE	= PC_REAL
START_BYTE	= 45
BYTES	= 4
UNIT	= "Kelvin" "Base whether terms are made at the basis in af
DESCRIPTION	= "Base plate temperature measured at the beginning of
	each measurement cycle"
END_OBJECT	= ELEMENT
OBJECT	= ELEMENT
NAME	= RF_POWER
DATA_TYPE	= PC_REAL
START_BYTE	= 49
BYTES	
UNIT	= "VOLT"
DESCRIPTION	= "RF power array at IIU MHZ (the middle of AUTF
	frequency range measured at the beginning of each
END OD IEGE	measurement cycle"
END_OBJECI	= FIFWEN1
OBJECT	ELEMENT
NAME DIMI MYDE	
DAIA_IYPE	= PC_REAL
SIARI_BIIL	= 55
BILLS	= 4
	= "VOIL"
DESCRIPTION	= "Suppry Voltage control measured at the beginning of
END OBJECT	- FLEMENT
END_0B0EC1	- EDEMENT
OBJECT	= ARRAY
NAME	= "DATA ARRAY"
AXES	= 2
AXIS ITEMS	= (996.2)
AXIS NAME	= (SAMPLE, DETECTOR)
START BYTE	= 57
DESCRIPTION	= "Spectrum points recorded by the 2 detectors for
	one measurement cycle, in the following order :
	spectrum points of window 0. spectrum points of
	window 1, spectrum points of window 2 and
	spectrum points of dots set defined by the
	command."
OBJECT	= ELEMENT
NAME	= "intensity value"
UNIT	= "Analog Digital Unit"
DATA_TYPE	= PC_REAL
BYTES	= 4
END_OBJECT	= ELEMENT
END_OBJECT	= ARRAY
END_OBJECT	= COLLECTION

END_OBJECT

= RECORD_ARRAY

END

SPIM_0BR_2385A01_N_04.LBL file (nadir observation in orbit 2385)

4.1.3 Label keywords descriptions

4.1.3.1 File and Data Characteristics Data Elements

PDS_VERSION_ID	Version number of the PDS standards document that is valid when a data product label is created. For labels adhering to the PDS Standards Reference, Version 3.6, the appropriate value is [PDS3].
RECORD_TYPE	Record format of a file. For binary data the RECORD_TYPE is [FIXED_LENGTH].
RECORD_BYTES	Number of bytes in a record. For example, a SPICAM UV record consists in a header table (256 bytes) followed by a data table (4096 bytes). The RECORD_BYTES value is then 4352 bytes ([4352] for 0AUV, 1AUVtbc).
FILE_RECORDS	Number of records in a file.
FILE_NAME	Name of the data file.
DATA_SET_ID	Unique alphanumeric identifier of this dataset. ["MEX-Y/M-SPI-2-UVEDR-RAWXCRU/MARS-V1.0", "MEX-Y/M-SPI-2-IREDR-RAWXCRU/MARS-V1.0"] The data_set_id is an abbreviation of the data_set_name.
DATA_SET_NAME	Full name given to a data set or a data product. The data_set_name typically identifies the instrument that acquired the data, the target of that instrument, and the processing level of the data. ["MEX_SPICAM_CRUISE/MARS_UV_EDR-RAW_V1.0", "MEX_SPICAM_CRUISE/MARS_IR_EDR-RAW_V1.0"]
PRODUCT_ID	Unique identifier assigned to a data product. Data file name is used.
PRODUCT_CREATION_TIME	Time of creation of this data file on the ground (in UTC).
MISSION_NAME	Name of the mission including the SPICAM instrument. ["MARS EXPRESS"]
INSTRUMENT HOST NAME	Name of the host spacecraft for the SPICAM instrument, ["MARS EXPRESS"]

INSTRUMENT_HOST_ID	Abbreviated name of the host spacecraft. ["MEX"]		
MISSION_PHASE_NAME	Mission subphases during which the data were collected. ["EV","IC,] following the table below :		
	"2003-06-09" " "EV" "2003-07-01" " "IC" "2003-12-30" 0" "MC Phase 0" "2004-01-13" 17" "MC Phase 1" "2004-01-28" 59" "MC Phase 2" "2004-02-12" 106" "MC Phase 3" "2004-03-16" 209" "MC Phase 4" "2004-04-07" 279" "MC Phase 5" "2004-04-20" 321" "MC Phase 5" "2004-06-05" 476" "MR Phase 6" "2004-08-16" 734" "MR Phase 1" "2004-08-16" 1251" "MR Phase 2" "2005-01-08" 1251" "MR Phase 4" "2005-03-05" 1455" "MR Phase 5" "2005-03-25" 1523" "MR Phase 6" "2005-07-13" 1916" "MR Phase 7" "2005-10-04" 2216" "MR Phase 8" "2005-12-01" 2419" "ME Phase 1"		
	Full definition of this table can be found in the Mars Express Master Science Plan (MSP). The data used to fill in this table are from the MSP MEX-EST-PL-11912 from 10 June 2004."		
TARGET_NAME	The name of the target observed in the data. ["SKY","STAR","MARS","PHOBOS","DEIMOS","COMET","CALIBRATION"]		
TARGET_TYPE	The target-type element identifies the type of a named target.		
PRODUCT_TYPE	Type or category of a data product within a data set.[EDR, RDR]		
STANDARD_DATA_PRODUC	T_ID Used to link a data product (file) to a standard data product (collection of similar files). [RAWX, CORX, SPEC, RDRX].		
START_TIME	The time of data acquisition of the first record (in UTC)		
STOP_TIME	The time of data acquisition of the last record (in UTC)		
SPACECRAFT_CLOCK_START_COUNT The value of the spacecraft clock at the beginning of data acquisition of the first record			
SPACECRAFT_CLOCK_STO	P_COUNT The time on the spacecraft clock at the end of data acquisition of the last record		
ORBIT_NUMBER	Spacecraft orbit during which this data was collected. Valid values are ["N/A"] during the CRUISE phase or the value of the orbit on 4 digits (e.g "0103") during the MARS phase.		
PRODUCER_ID	Identity of the producer of this dataset. [MEX_SPI_TEAM]		
PRODUCER_FULL_NAME	Full_name of the individual mainly responsible for the production of a data. ["FRANCK MONTMESSIN"].		
PRODUCER_INSTITUTION_N	IAME Institution associated with the production of a data set ["LATMOS, IPSL/CNRS,FRANCE"]		
	Mars Express SPICAM Light EAICD	Document No. Issue Date Page	: SA_MEX_ARCH_003 : 001 : 15 January 2012 : 69
-----------------	--	---------------------------------------	---
DATA_QUALITY_ID	This keyword provides a numerickey which identifies the quality of data available.		

DATA_QUALITY_DESC This describes the data quality which is associated with a particular data_quality_id value.

4.1.3.2 Data Object Pointers Identification Data Elements

***RECORD_ARRAY** Pointer to the file containing the SPICAM data and described in the label file.

4.1.3.3 Instrument and Detector Descriptive Data Elements

INSTRUMENT_ID	Acronym which identifies the instrument. ["SPICAM"]
---------------	---

INSTRUMENT_NAME name of the instrument. ["SPICAM"]

INSTRUMENT_TYPE Type of the instrument. ["SPECTROMETER"]

INSTRUMENT_MODE_ID Instrument-dependent designation of operating mode. The standard values for SPICAM are ["ALIGN", "BINNING", "BINNINGP" without the slit and "ALIGN_S", "BINNING_S", "BINNINGP_S" with the slit]. For more details, see the SPICAM_UVMODE_DESC.TXT file in the DOCUMENT directory.

CHANNEL_ID Instrument channel through which data were obtained ["UV" or "IR"]

4.1.3.4 Data Object and Data Element Definition

TABLE	The TABLE object is a uniform collection of rows containing ASCII and/or binary values stored in columns. Required elements are COLUMNS, ROW_BYTES, INTERCHANGE_FORMAT, and ROWS.
COLUMN	The COLUMN object identifies a single column in a data object. Required elements are BYTES, DATA_TYPE, START_BYTE and NAME.
ARRAY	The ARRAY object is provided to describe dimensioned arrays of homogeneous objects. Note that an ARRAY can contain only a single object, which can itself be another ARRAY or COLLECTION if required. Elements required in a ARRAY are the AXES, AXIS_ITEMS and NAME elements. Other elements are optional.
COLLECTION	The COLLECTION object allows the ordered grouping of heterogeneous objects into a named collection. The COLLECTION object may contain a mixture of different object types including other COLLECTIONS. The optional START_BYTE data element provides the starting location relative to an enclosing object. If a START_BYTE is not specified, a value of 1 is assumed. Elements required in a COLLECTION are the NAME and BYTES elements.

	Mars Express SPICAM Light EAICD	Document No. Issue Date Page	: SA_MEX_ARCH_003 : 001 : 15 January 2012 : 70
ELEMENT	The ELEMENT lowest level component of a dat of 8-bit bytes. The optional S relative to the enclosing object. = 1 is assumed for the ELEM	object provides ta object that is st TART_BYTE ele If not explicitly in ENT.	a means of defining a ored in an integral multiple ment identifies a location cluded, a START_BYTE
NAME	Literal value representing the common term used to identify an element or object		
INTERCHANGE_FORMAT AXES	Represents the manner in which data items are stored. [BINARY,ASCII]. Number of axes or dimensions of an array data object.		
AXIS_ITEMS	Dimension(s) of the axes of an array data object. For arrays with more than 1 dimension, this element provides a sequence of values corresponding to the number of axes specified.		
AXIS_NAME	Sequence of axis names of a array data object, and identifies the order in which the axes are stored in the object.		
BYTES	Number of bytes allocated for a particular data representation.		
DATA_TYPE	Internal representation of a valu	e.	
START_BYTE	Location of the first byte of the object, counting from 1. For nested objects, the start_byte value is relative to the start of the enclosing object.		
ROW_BYTES ROWS	Maximum number of bytes in each data object row. Number of rows in a data object.		
COLUMNS	Number of columns in each row of a data object.		
COLUMN_NUMBER	Location of a specific column wi	thin a larger data	object, such as a table
FORMAT	A specified arrangement of data within a file or on a storage medium. It is equivalent to the FORTRAN language format specification		

4.1.3.5 Parameters Index File Definition

The index PDS label files describe the content and structure of the fields (name, format, brief definition) in the index table.

Each field in the INDEX.TAB file is described in the index label file by a COLUMN object, containing the following keywords:

NAME	Name of the field	
COLUMN_NUMBER	Column number of the field in the index table	
DATA_TYPE	Internal representation of a value.	
START_BYTE	Location of the first byte of the object, counting from 1. The values for START_BYTE include commas between fields or quotation	

	Mars Express SPICAM Light EAICD	Document No. Issue Date Page	: SA_MEX_ARCH_003 : 001 : 15 January 2012 : 71
	marks surrounding character fiel character fields are enclosed in start_byte of the first field is equa	ds (All fields are s double quotatior al to 2).	eparated by commas and marks ("), therefore the
BYTES	Number representation.	of bytes allocate	ed for the particular data
FORMAT	Format of the value		
DESCRIPTION	brief definition of the field		

Figure 11 gives an example of PDS label file describing the content of the data index table within an archive volume.

PDS_VERSION_ID = PDS3 RECORD_TYPE = FIXED_LENGTH RECORD BYTES = 227 FILE_RECORDS = 2335 ^INDEX_TABLE = "INDEX.TAB" = MEX-Y/M-SPI-2-UVEDR-RAWXCRU/MARS-V1.1 DATA SET ID PRODUCT_NAME = "SPICAM DATA INDEX TABLE" PRODUCT_ID = INDEX = 0001 RELEASE_ID REVISION_ID = 0000 INSTRUMENT_HOST_NAME = "MARS EXPRESS" INSTRUMENT_NAME = "SPICAM" = "MARS" TARGET NAME = 2003-07-03T19:36:09.000 START TIME STOP_TIME = 2005-12-19T06:58:25.000 PRODUCT_CREATION_TIME = 2007-07-26T19:01:29.000 MISSION_PHASE_NAME = {"EV","IC","MC Phase 0","MC Phase 1", "MC Phase 2", "MC Phase 3", "MC Phase 4", "MC Phase 5", "MC Phase 6", "MR Phase 1", "MR Phase 2", "MR Phase 3", "MR Phase 4", "MR Phase 5", "MR Phase 6", "MR Phase 7", "MR Phase 8", "ME Phase 1" } DESCRIPTION = "This table contains the PDS-required index for all data files in the /MEXSPI_OAUV/DATA directory on the SPICAM level OA UV Archive Volume. It includes file location, and PDS identification information. OBJECT = INDEX_TABLE NAME = "MEX SPICAM level OA UV main Index" INTERCHANGE_FORMAT = ASCII ROWS = 2335 COLUMNS = 9 = 227 = SINGLE ROW_BYTES INDEX_TYPE INDEXED_FILE_NAME = { "DATA/*.LBL" } = "INDEX.TAB lists all label files in this volume." DESCRIPTION OBJECT = COLUMN = FILE_SPECIFICATION_NAME NAME COLUMN NUMBER = 1 DATA_TYPE = CHARACTER START_BYTE = 2 BYTES = 52 DESCRIPTION = "Pathname to the detached label which identifies this data

Mars Express SPICAM Light EAICD

Document No.	: SA_MEX_ARCH_003
Issue	: 001
Date	: 15 January 2012
Page	: 72

```
file. Or path name to text file"
  END_OBJECT = COLUMN
            = COLUMN
 OBJECT
   NAME
                 = PRODUCT_ID
   COLUMN_NUMBER = 2
   DATA_TYPE = CHARACTER
START_BYTE = 57
   START_BYTE
   BYTES
                  = 25
   BYTES = 25
DESCRIPTION = "The name of the data file, which is unique within this
                   data set."
  END_OBJECT = COLUMN
            = COLUMN
  OBJECT
                  = PRODUCT_CREATION_TIME
   NAME
   COLUMN_NUMBER = 3
   DATA_TYPE = CHARACTER
START BYTE = 85
   START_BYTE
                  = 85
   BYTES = 24
DESCRIPTION = "Time at which the data file was created."
  END_OBJECT = COLUMN
 OBJECT = COLUMN
   NAME
                = DATA_SET_ID
   COLUMN NUMBER = 4
   DATA_TYPE = CHARACTER
   START_BYTE
                  = 112
   BYTES = 37
DESCRIPTION = "An identifier unique for this dataset"
  END_OBJECT = COLUMN
            = COLUMN
 OBJECT
                 = RELEASE ID
   NAME
    COLUMN_NUMBER = 5
   DATA_TYPE = CHARACTER
START_BYTE = 152
   BYTES
                  = 4
   DESCRIPTION = "Release id"
 END_OBJECT = COLUMN
 OBJECT = COLUMN
   NAME
                  = REVISION ID
    COLUMN_NUMBER = 6
   DATA_TYPE = CHARACTER
START_BYTE = 159
BYTES = 4
DESCRIPTION = "Revision id"
  END_OBJECT = COLUMN
   ECT = COLUMN
NAME = START_TIME
OBJECT
   COLUMN_NUMBER = 7
   DATA_TYPE = TIME
   START_BYTE = 166
   BYTES
                = 24
   DESCRIPTION = "Start date and time of product observation or event"
 END_OBJECT = COLUMN
          = COLUMN
OBJECT
   NAME
               = STOP_TIME
    COLUMN_NUMBER = 8
   DATA_TYPE = TIME
   START_BYTE = 193
BYTES = 24
   DESCRIPTION = "Stop date and time of product observation or event"
  END_OBJECT = COLUMN
           = COLUMN
 OBJECT
   NAME
                 = NB_RECORDS
    COLUMN_NUMBER = 9
    DATA_TYPE = INTEGER
```


Figure 11. Data index label file example

4.1.3.6 Mission Specific Keywords

SPACECRAFT_POINTING_MODE Pointing mode of the spacecraft. The definition of the modes and the standard values are given via the spacecraft_pointing_mode_desc element ["NADIR", "INERT"]

SPACECRAFT_POINTING_MODE_DESC Definition of the different pointing modes of the spacecraft .

^MEX_ORIENTATION_DESC Pointer to a file containing Information about the spacecraft orientation.

5 Appendix: Example of Directory Listing of MEXSPI_1001 (0AUV) archive volume

RC	DOT		
	- AAREADME.TXT	The file you are reading	
	- ERRATA.TXT	Description of known anomalies and errors present on the volume.	
	- AAREADME.LBL	PDS detached label describing AAREADME.TXT	
- VOLDESC.CAT		Description of the contents of the volume in a PDS format for the PDS Catalog	
	- [DATA] A di	irectory containing the data + associated label files	
	- DATAINFO.TXT Description of files in this directory		
-[CRUISE] A directory containing MEX SPI level OA UV data collected during the cruise phase			
{file(s) *DAT, *.LBL}		e(s) *DAT, *.LBL}	
HEADER_ARRAY.FMT Include file containing a description of the H of a UV record. -[MARS] A directory containing MEX SPI level OA UV data collected during the MARS nominal phase -[MOCP_00001_00482]		ER_ARRAY.FMT Include file containing a description of the header of a UV record.	
		directory containing MEX SPI level OA UV data ollected during the MARS nominal phase	
		00001_00482]	
		<pre>{file(s) *DAT, *.LBL}</pre>	

*.TAB file

- [BROWSE] A directory containing reduced-size, easily viewed versions of data products. - BROWINFO.TXT Description of files in this directory. -[CRUISE] A directory containing browse images of MEX SPI level OA UV data collected during the cruise phase -- {file(s) *PNG, *.LBL} -[MARS] A directory containing browse images of MEX SPI level OA UV data collected during the MARS Mars nominal phase -[MOCP_00001_00482] -- {file(s) *PNG, *.LBL} -[MTP001_00483_00583] -- {file(s) *PNG, *.LBL} - [GEOMETRY] A directory containing geometry files associated to the data products. - GEOMINFO.TXT Description of files in this directory. -[MARS] A directory containing geometry of MEX SPI level OA UV data collected during the MARS Mars nominal phase -[MOCP_00001_00482] -- {file(s) *TXT, *.LBL} -[MTP001_00483_00583] -- {file(s) *TXT, *.LBL} . . . - [DOCUMENT] A directory containing information documents. - DOCINFO.TXT Description of files in this directory. - SA_MEX_ARCH_003_xx.PDF The SPICAM EAICD in PDF format - SA_MEX_ARCH_003_xx.ASC The SPICAM EAICD in ASCII format - SA_MEX_ARCH_003_xx.LBL PDS detached label that describes SA_MEX_ARCH_001_xx.PDF and SA_MEX_ARCH_001_xx.ASC - SPICAM_UVDATAFILE_DESC.TXT ASCII file describing the contents of the data files which are delivered in the Spicam data product. - SPICAM_UVDATAFILE_DESC.LBL PDS detached label that describes SPICAM_UVDATAFILE_DESC.TXT - SPICAM_UVCALIB_DESC.TXT ASCII file describing the calibration of the

Mars Express SPICAM Light EAICD

	Spicam UV data which are delivered in t dataset. - SPICAM_UVCALIB_DESC.LBL PDS detached label that describes	he Spicam UV
	SPICAM_UVCALIB_DESC.TXT	
	- SPICAM_GEOMETRY_DESC.TXT ASCII file describing the contents geometry files which are delivered	of the in the Spicam
I	data set. - SPICAM_GEOMETRY_DESC.LBL PDS detached label that describes SPICAM_GEOMETRY_DESC.TXT.	
I	-SPICAM_UVMODE_DESC.TXT- ASCII file describing the different of the UV SPICAM spectrometer.	operating modes
	-MEX_ORIENTATION_DESC.TXT - ASCII file informing on the usage the spacecraft orientation on Mars E	of xpress.
I	-MEX_ORIENTATION_DESC.LBL - PDS detached label that describes MEX_ORIENTATION_DESC.TXT.	
I		
	-[LABEL] A directory containing include (*.FMT) files for data prod	ucts
	-HEADER_ARRAY.FMT - Include file containing a description of	
- [SOF	FTWARE] A directory containing IDL routines to read UV data	
·		
	-SOFTINFO.TXT - Description of files in this direct	ory.
	- A ZIP file containing the IDL routi needed to read the SPICAM UV data fi	nes les
	-SPICAM_READPDS.LBL - PDS detached label that describes SPICAM_READPDS.ZIP	