INAF-IFSI MARS EXPRESS PLANETARY FOURIER SPECTROMETER

MEX-PFS

To Planetary Science Archive Interface Control Document

MEX-PFS-PSA-ICD-25

Issue 2.5

30 January 2008

Prepared by: Mario D'Amore

Approved by: Vittorio Formisano

Distribution List

Recipient	Organisation
Joe Zender	RSSD/ESTEC
David Heather	RSSD/ESTEC

Change Log

Date	Sections Changed	Reasons for Change
30 January 2007	All	General Archive Modification
30 January 2008	All	General update for review

TBD ITEMS

Section	Description

Table of Contents

1	Intr	roduction	1
	1.1	Purpose and Scope	1
	1.2	Archiving Authorities	1
	1.2.	.1 ESA's Planetary Science Archive (PSA)	1
	1.3	Contents	1
	1.4	Intended Readership	1
	1.5	Scientific Objectives	2
	1.6	Applicable Documents	2
	1.7	Relationships to Other Interfaces	3
	1.8	Acronyms and Abbreviations	
	1.9	Contact Names and Addresses	
2		erview of Instrument Design, Data Handling Process and Product Generation	
	2.1	Technical description .1 Module O	
	2.1.		
	2.1.		
	2	2.1.3.1 The optical bench	9
		2.1.3.2 The pendulum system	
		2.1.3.3 The gas-tight box	
	2.1.	1 5	
		2.1.4.1 The thermal control 2.1.4.2 The ASTRA system	
			10
	2.2	Detailed Scientific Objectives	
	2.2 2 3	Detailed Scientific Objectives	
	2.3	Data Handling Process	11
	2.3 2.4	Data Handling Process Overview of Data Products	11 12
	2.3 2.4 2.4.	Data Handling Process Overview of Data Products .1 In-Flight Data Products	11 12 12
	2.3 2.4 2.4. 2.4.	Data Handling Process Overview of Data Products .1 In-Flight Data Products .2 Software	11 12 12 12
	2.3 2.4 2.4.	Data Handling Process Overview of Data Products .1 In-Flight Data Products .2 Software .3 Documentation	11 12 12 12 16
	2.3 2.4 2.4. 2.4. 2.4.	Data Handling Process Overview of Data Products 1 In-Flight Data Products 2 Software 3 Documentation .4 Derived and other Data Products	11 12 12 12 16 16
	2.3 2.4 2.4. 2.4. 2.4. 2.4. 2.4. 2.4.	Data Handling Process Overview of Data Products .1 In-Flight Data Products .2 Software .3 Documentation .4 Derived and other Data Products	11 12 121212161616
3	2.3 2.4 2.4. 2.4. 2.4. 2.4. 2.4. 2.4.	Data Handling Process Overview of Data Products. .1 In-Flight Data Products. .2 Software. .3 Documentation. .4 Derived and other Data Products. .5 Ancillary Data Usage.	11 12 12 12 16 16 16 17
3	2.3 2.4 2.4. 2.4. 2.4. 2.4. 2.4. 2.4. <i>Arc</i>	Data Handling Process Overview of Data Products 1 In-Flight Data Products 2 Software 3 Documentation .4 Derived and other Data Products .5 Ancillary Data Usage chive Format and Content Format and Conventions	11 12 12 12 12 12 12 12 12 12
3	2.3 2.4 2.4. 2.4. 2.4. 2.4. 2.4. 2.4. Arc 3.1	Data Handling Process Overview of Data Products 1 In-Flight Data Products 2 Software 3 Documentation .4 Derived and other Data Products .5 Ancillary Data Usage <i>chive Format and Content</i> .1 Deliveries and Archive Volume Format .2 Data Set ID Formation	
3	2.3 2.4 2.4. 2.4. 2.4. 2.4. 2.4. 2.4. 3.1 3.1. 3.1. 3.1.	Data Handling Process Overview of Data Products 1 In-Flight Data Products 2 Software 3 Documentation .4 Derived and other Data Products .5 Ancillary Data Usage .6 Format and Content .7 Deliveries and Archive Volume Format .2 Data Set ID Formation .3 Data Directory Naming Convention	
3	2.3 2.4 2.4. 2.4. 2.4. 2.4. Arc 3.1 3.1. 3.1. 3.1. 3.1. 3.1.	Data Handling Process Overview of Data Products 1 In-Flight Data Products 2 Software 3 Documentation 4 Derived and other Data Products 5 Ancillary Data Usage chive Format and Content Format and Content 1 Deliveries and Archive Volume Format 2 Data Set ID Formation 3 Data Directory Naming Convention 3.1.3.1 Cruise and Near Earth Verification Phase Data Directory Structure	
3	2.3 2.4 2.4. 2.4. 2.4. 2.4. 2.4. 3.1. 3.1. 3.1. 3.1. 3.1. 3.1. 3.1. 3	Data Handling Process Overview of Data Products 1 In-Flight Data Products 2 Software 3 Documentation 4 Derived and other Data Products 5 Ancillary Data Usage chive Format and Content Format and Content 1 Deliveries and Archive Volume Format 2 Data Set ID Formation 3 Data Directory Naming Convention 8.1.3.1 Cruise and Near Earth Verification Phase Data Directory Structure 8.1.3.2 Nominal and Extended Mission Phase Data Directory Structure	
3	2.3 2.4 2.4. 2.4. 2.4. 2.4. 2.4. 3.1 3.1. 3.1. 3.1. 3.1. 3.1. 3.1.	Data Handling Process Overview of Data Products 1 In-Flight Data Products 2 Software 3 Documentation 4 Derived and other Data Products 5 Ancillary Data Usage Chive Format and Content Format and Content In Deliveries and Archive Volume Format 2 Data Set ID Formation 3 Data Directory Naming Convention 8.1.3.1 Cruise and Near Earth Verification Phase Data Directory Structure 8.1.3.2 Nominal and Extended Mission Phase Data Directory Structure 4 File naming Convention	11 12 12 12 12 16 16 16 17 17 17 17 17 18 18 18 19
3	2.3 2.4 2.4. 2.4. 2.4. 2.4. 2.4. <i>Arc</i> 3.1 3.1. 3.1. 3.1. 3.1. 3.1. 3.2	Data Handling Process Overview of Data Products 1 In-Flight Data Products 2 Software 3 Documentation 4 Derived and other Data Products 5 Ancillary Data Usage <i>chive Format and Content</i> 1 Deliveries and Archive Volume Format 2 Data Set ID Formation 3 Data Directory Naming Convention 3.1.3.1 Cruise and Near Earth Verification Phase Data Directory Structure 3.1.3.2 Nominal and Extended Mission Phase Data Directory Structure 4 File naming Convention 5 Standards Used in Data Product Generation	
3	2.3 2.4 2.4. 2.4. 2.4. 2.4. 2.4. Arc 3.1. 3.1. 3.1. 3.1. 3.1. 3.1. 3.1. 3.2. 3.2.	Data Handling Process Overview of Data Products 1 In-Flight Data Products 2 Software 3 Documentation 4 Derived and other Data Products 5 Ancillary Data Usage <i>chive Format and Content</i> Format and Conventions 1 Deliveries and Archive Volume Format 2 Data Set ID Formation 3 Data Directory Naming Convention 3.1.3.1 Cruise and Near Earth Verification Phase Data Directory Structure 8.1.3.2 Nominal and Extended Mission Phase Data Directory Structure 4 File naming Convention 3.1 PDS Standards	
3	2.3 2.4 2.4. 2.4. 2.4. 2.4. 2.4. Arc 3.1 3.1. 3.1. 3.1. 3.1. 3.1. 3.2. 3.2. 3.2.	Data Handling Process Overview of Data Products 1 In-Flight Data Products 2 Software 3 Documentation 4 Derived and other Data Products 5 Ancillary Data Usage <i>chive Format and Content</i> Format and Conventions 1 Deliveries and Archive Volume Format 2 Data Set ID Formation 3 Data Directory Naming Convention 3 1.3.1 Cruise and Near Earth Verification Phase Data Directory Structure 8.1.3.2 Nominal and Extended Mission Phase Data Directory Structure 4 File naming Convention 3 1.3.2 Notice and Near Earth Verification Phase Data Directory Structure 4 File naming Convention 4.1 File naming Convention 5.2 Time Standards 2 Time Standards	11 12 12 12 12 12 12 12 12 12 12 12 16 16 16 16 16 17 17 17 17 18 18 19 21 21 21 21
3	2.3 2.4 2.4. 2.4. 2.4. 2.4. 2.4. 3.1. 3.1. 3.1. 3.1. 3.1. 3.1. 3.1. 3.1. 3.2. 3.2. 3.2. 3.2. 3.2. 3.2. 3.2. 3.2. 3.3. 3.	Data Handling Process Overview of Data Products 1 In-Flight Data Products 2 Software 3 Documentation 4 Derived and other Data Products 5 Ancillary Data Usage Chive Format and Content Format and Content Format and Conventions 1 Deliveries and Archive Volume Format 2 Data Set ID Formation 3 Data Directory Naming Convention 8.1.3.1 Cruise and Near Earth Verification Phase Data Directory Structure 8.1.3.2 Nominal and Extended Mission Phase Data Directory Structure 4 File naming Convention 1 PDS Standards 2 Time Standards 3 START TIME and STOP TIME Formation	11 12 12 12 12 12 12 12 12 12 12 12 16 16 16 16 16 17 17 17 17 18 18 19 21 21 21 21 21 21 21
3	2.3 2.4 2.4. 2.4. 2.4. 2.4. 2.4. 3.1. 3.2. 3.3. 3.1. 3.2. 3.3. 3.	Data Handling Process Overview of Data Products 1 In-Flight Data Products 2 Software 3 Documentation 4 Derived and other Data Products 5 Ancillary Data Usage <i>chive Format and Content</i> Format and Conventions 1 Deliveries and Archive Volume Format 2 Data Set ID Formation 3 Data Directory Naming Convention 3 1.3.1 Cruise and Near Earth Verification Phase Data Directory Structure 8.1.3.2 Nominal and Extended Mission Phase Data Directory Structure 4 File naming Convention 3 1.3.2 Notice and Near Earth Verification Phase Data Directory Structure 4 File naming Convention 4.1 File naming Convention 5.2 Time Standards 2 Time Standards	11 12 12 12 12 12 12 12 12 12 12 12 16 16 16 16 16 17 17 17 17 17 17 17 18 18 19 21
3	2.3 2.4 2.4. 2.4. 2.4. 2.4. 2.4. 3.1. 3.2. 3.3. 3.1. 3.2. 3.3. 3.	Data Handling Process Overview of Data Products 1 In-Flight Data Products 2 Software 3 Documentation 4 Derived and other Data Products 5 Ancillary Data Usage <i>chive Format and Content</i> Format and Conventions 1 Deliveries and Archive Volume Format 2 Data Set ID Formation. 3 Data Set ID Formation. 3 Data Directory Naming Convention 31.3.1 Cruise and Near Earth Verification Phase Data Directory Structure 8.1.3.2 Nominal and Extended Mission Phase Data Directory Structure 4 File naming Convention 5 Standards Used in Data Product Generation 1 PDS Standards. 2 Time Standards 32.2.1 START_TIME and STOP_TIME Formation 32.2.2 SC_CLOCK_START_COUNT and SC_CLOCK_STOP_COUNT 32.2.3 On-Board Time (OBT) to UTC time conversion	11 12 12 12 12 12 12 12 12 12 12 12 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 18 18 18 18 19 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21

Document No. Issue/Rev. No. Date Page

3.3.1 3.3.2	Internal Data Validation PSA and External Validations (Peer Reviews)	
	ntent	
3.4.1	Volume Set	
3.4.2	Directories	
3.4.2.		
3.4.2.		
3.4.2.		
3.4.2.		
3.4.2.		
3.4.2.	5	
3.4.2.	· · · · · · · · · · · · · · · · · · ·	
3.4.2.	J	
3.4.2.	> = = = = = = ;	
3.4.2.		
3.4.2.	11 Software Directory	
Detailea	l Interface Specifications	
	<i>l Interface Specifications</i> ructure and Organization Overview	
4.1 Str		
4.1 Str 4.2 Da 4.3 Da	ructure and Organization Overview ta Sets, Definition and Content ta Product Design	
4.1 Str 4.2 Da 4.3 Da 4.3.1	ructure and Organization Overview ta Sets, Definition and Content ta Product Design Data Product Design	
4.1 Str 4.2 Da 4.3 Da <i>4.3.1</i> <i>4.3.1</i>	ructure and Organization Overview ta Sets, Definition and Content ta Product Design Data Product Design 1 File Characteristics Data Elements	
4.1 Str 4.2 Da 4.3 Da <i>4.3.1</i> <i>4.3.1</i> <i>4.3.1</i> <i>4.3.1</i>	ta Sets, Definition and Content	
4.1 Str 4.2 Da 4.3 Da <i>4.3.1</i> <i>4.3.1</i> <i>4.3.1</i> <i>4.3.1</i>	ructure and Organization Overview ta Sets, Definition and Content ta Product Design Data Product Design 1 File Characteristics Data Elements 2 Data Object Pointers Identification Data Elements 3 Identification Data Elements	
4.1 Str 4.2 Da 4.3 Da <i>4.3.1</i> 4.3.1 4.3.1 4.3.1 4.3.1	ructure and Organization Overview ta Sets, Definition and Content ta Product Design Data Product Design 1 File Characteristics Data Elements 2 Data Object Pointers Identification Data Elements 3 Identification Data Elements 4 Instrument Related Parameters	
4.1 Str 4.2 Da 4.3 Da <i>4.3.1</i> <i>4.3.1</i> <i>4.3.1</i> <i>4.3.1</i> <i>4.3.1</i> <i>4.3.1</i> <i>4.3.1</i> <i>4.3.1</i>	ructure and Organization Overview ta Sets, Definition and Content ta Product Design Data Product Design 1 File Characteristics Data Elements 2 Data Object Pointers Identification Data Elements 3 Identification Data Elements 4 Instrument Related Parameters 5 Data Object Definition	
4.1 Str 4.2 Da 4.3 Da 4.3.1 4.3.1 4.3.1 4.3.1 4.3.1 4.3.1 4.3.1 4.3.1 4.3.1 4.3.1 4.3.2 1	ructure and Organization Overview ta Sets, Definition and Content ta Product Design Data Product Design 1 File Characteristics Data Elements 2 Data Object Pointers Identification Data Elements 3 Identification Data Elements 4 Instrument Related Parameters 5 Data Object Definition Data Product B Design	
4.1 Str 4.2 Da 4.3 Da <i>4.3.1</i> <i>4.3.1</i> <i>4.3.1</i> <i>4.3.1</i> <i>4.3.1</i> <i>4.3.1</i> <i>4.3.1</i> <i>4.3.1</i>	ructure and Organization Overview ta Sets, Definition and Content ta Product Design Data Product Design 1 File Characteristics Data Elements 2 Data Object Pointers Identification Data Elements 3 Identification Data Elements 4 Instrument Related Parameters 5 Data Object Definition Data Product B Design	
4.1 Str 4.2 Da 4.3 Da <i>4.3.1</i> <i>4.3.1</i> <i>4.3.1</i> <i>4.3.1</i> <i>4.3.1</i> <i>4.3.1</i> <i>4.3.1</i> <i>4.3.1</i> <i>4.3.1</i> <i>4.3.2</i> <i>4.3.2</i>	ructure and Organization Overview ta Sets, Definition and Content ta Product Design Data Product Design 1 File Characteristics Data Elements 2 Data Object Pointers Identification Data Elements 3 Identification Data Elements 4 Instrument Related Parameters 5 Data Object Definition Data Product B Design	

1 Introduction

1.1 Purpose and Scope

The purpose of this EAICD (Experimenter to (Science) Archive Interface Control Document) is twofold. First, it provides users of the MEX-PFS instrument with a detailed description of the product and a description of how it was generated, including data sources and destinations. Secondly, it is the official interface between the Planetary Fourier Spectrometer (PFS) instrument and the archiving authority at the European Space Agency (ESA).

1.2 Archiving Authorities

The Planetary Data System Standard is an archiving standard used by

- NASA for U.S. planetary missions, implemented by the PDS
- ESA, for European planetary missions, implemented by the Research and Scientific Support Department (RSSD) of ESA.

1.2.1 ESA's Planetary Science Archive (PSA)

ESA implements an online science archive called the PSA:

- to support and ease data ingestion
- to offer additional services to the scientific user community and science operations teams, such as:
 - \circ $\,$ search queries that allow searches across instruments, missions and scientific disciplines
 - several data delivery options, such as:
 - direct download of data products, linked files and data sets
 - ftp download of data products, linked files and data sets

The PSA aims for online ingestion of logical archive volumes and will offer the creation of physical archive volumes on request.

1.3 Contents

This document describes the data flow of the PFS instrument on Mars Express (MEX), from the spacecraft until ingestion into the PSA for ESA. It includes information on how data were processed, formatted, labeled and uniquely identified. The document discusses general naming schemes for data volumes, data sets, data and label files. Standards used to generate the product are explained. Software that may be used to access the product is explained further on.

The design of the data set structure and the data product is provided. Examples of these are given in the appendix.

1.4 Intended Readership

This document will be of interest to any user who is interested to understand the format, design and content of the PFS data products and datasets. This will include any potential user of the MEX-PFS data sets and the staff of the archiving authority (Planetary Science Archive, ESA, RSSD, design team).

1.5 Scientific Objectives

PFS is capable of investigating both the atmospheric and surface properties of Mars, as well as the interaction between the two. The primary scientific objectives include:

- Three dimensional modelling of the current Martian climate, including physical and chemical parameters, and mapping of circulation features throughout the Mars Express mission
- Mapping seasonal variations of the atmosphere and the thermal properties of the Martian surface
- Constraining the mineralogical properties of the surface layer of Mars

Details of the individual scientific objectives and a breakdown on the measurements PFS will take to achieve these goals can be found in Section 2.2.

1.6 Applicable Documents

Rif.	Reference	Notes
[1]	Planetary Data System Standards Reference, August 1, 2003, Version 3.6, JPL, D-7669, Part 2	
[2]	Mar Express Archive Generation, Validation and Transfer Plan, May 10, 2003, Rev 1.1, ESA-MEX-TN-4009	
[3]	The Planetary Fourier Spectrometer (PFS) onboard the European Mars Express mission	see DOCUMENT/ PFS_ON_MARS_EXP RESS.PDF
[4]	Calibration of the Planetary Fourier Spectrometer Short Wavelength Channel	see DOCUMENT/ PFS_SWC_CALIB.PD F
[5]	Calibration of the Planetary Fourier Spectrometer Long Wavelength Channel	see DOCUMENT/ PFS_LWC_CALIB.PD F
[6]	PFS Flight User Manual 9, Tm_Tc interface	see DOCUMENT/ PFS_MEX_FUM9.PDF
[7]	PFS Flight User Manual 1, Instrument Description	see DOCUMENT/ PFS_MEX_FUM9.PDF
[8]	Master Science Plan Overview Documentation, Part I – Introduction MEX-EST-PL-11912	
[9]	RMCS/MMCS/VMCS Data Delivery Interface Document MEX-ESC-IF-5003	
[10]	ESA Packet Telemetry Standard ESA-PSS-04-106	
[11]	MEX-PFS-NEV-REPORT PFS Near Earth Verification Operations Report	

1.7 Relationships to Other Interfaces

- Other interfaces that have an impact upon the generation, packaging, distribution and documentation involved in the PFS dataset / volume production include:PFS raw data: these are produced from telemetry and are used to produce the PDS compliant data found in the PFS datasets. Any reprocessing of these data, for any reason, will have a direct impact upon the data provided in the datasets produced by PFS.
- SPICE data: The SPICE data used to to produce the GEOMETRY information (see Section 3.4.2.6) are retrieved from ESTEC / NAIF. Any changes made to these files will directly affect the GEOMETRY information provided in the dataset.
- Software libraries: The PSA and NAIF software libraries used for SPICE and for the generation of the geometry index file. If these libraries are update, this could lead to the generation of new geometry files for the PFS datasets.
- PFS software: software used to pipeline the PFS data to the PDS format. If this software is changed, there will be a direct impact upon the final PFS datasets.
- PFS calibration procedures: the calibration procedures affect the PFS calibrated data. Details of the calibration procedures are provided in [3] and [4].
- PSA Delivery Requirements: Any changes made to the requirements for the delivery of datasets to the PSA could change the way the PFS datasets are to be packaged and distributed.
- PVV software: The PSA Volume Verification (PVV) software is used to validate the PFS datasets before they are ingested into the Planetary Science Archive at ESA. Any updates to this software could require updates to the PFS dataset deliveries.
- Mars Express Archive Plan [2]: Any update to the Mars Express Data Archive Plan [2] can affect the design, packaging and / or deliver of the PFS data products and data sets.

1.8 Acronyms and Abbreviations

ADC Analog Digital Converter APID **Application Process Identifier** A/D Analog-to-digital CTE Coefficient of Thermal Expansion DDS Data Distribution System DOF Degree Of Freedom DTM Data Transmission Mode FFT **Fast Fourier Transformation** FOV Field Of View FUM Flying User Manual **FWHM** Full width at half maximum ΗK Housekeeping IΒ Internal Blackbody IDL Interactive Data Language ICD Interface Control Document IFSI Istituto di Fisica dello spazio Interplanetario INAF Istituto Nazionale di Astrofisica LW Long Wavelength MEX Mars Express MLI Multi-Layer Insulation NEB Noise Equivalent Brightness NER Noise Equivalent Radiance

Document No.: MEX-PFS-DARC-EAICD-25PFS EAICDIssue/Rev. No.: 2.5Date: 30 January 2008Page: 4

OB	On-Board
OBDM	Optical Bank Digital Module
OBS	On Board Software
PDF	Portable Document Format
PDS	Planetary Data System
PFS	Planetary Fourier Spectrometer
PNG	Portable Network Graphics
PSA	Planetary Science Archive
PVV	PSA Volume Verifier
SCET	Spacecraft Elapsed Time
SW	Short Wavelength
TRW	TRW Incorporeted
ZOPD	Zero Optical Path Difference

1.9 Contact Names and Addresses

The following persons are involved in the PFS instrument design and data archiving:

Institute	Name	E-Mail	Telephone	Position
INAF-IFSI	Formisano , Vittorio	formisano@ifsi-roma.inaf.it	+390649934362	Principal Investigator
INAF-IFSI	D'Amore , Mario	damore@ifsi-roma.inaf.it	+390649934363	Data Archiving manager
INAF-IFSI	Giuranna , Marco	giuranna@ifsi-roma.inaf.it	+390649934042	Calibrations responsible

2 Overview of Instrument Design, Data Handling Process and Product Generation

PFS is a double pendulum interferometer working in two wavelength ranges (1.2 - 5.5 and 5.5 - 45 µm). Mars radiation is split into 2 beams by a dichroic mirror and then filtered so that the two ranges also correspond to 2 planes, one on top of the other, in which the two interferometers are placed. In this way, the same motor can simultaneously move the 2 pendulums, and the two channels are sampled simultaneously and independently. The pendulum motion is accurately controlled by means of a laser diode reference channel making use of the same optics as for Martian radiation.

The same laser diode also generates the sampling signal for the A/D converter, measuring displacements of the double pendulum mirror of 600 nm (sampled 4 times per movement, back or forward).

The measurements obtained are double sided interferograms, so that on-board FFT can be computed without caring much about the zero optical path difference location.

Table 1 - DETAILED PFS SCIENTIFICS PARAMETERS

PARAMETERS	SW	LW	UNITS
SPECTRAL RANGE	1.2 - 5.5	5.5 – 45	[µ m]
SPECTRAL RANGE	1700 - 8200	250 - 1700	[cm ⁻¹]
SPECTRAL RESOLUTION (by triangular apodization)	1.3	1.3	[cm ⁻¹]
FOV FWHM	1.6	2.8	(deg)
NEB	5 10 ⁹	4 10 ⁸ (1)	[W cm ⁻² sr ⁻¹]
MEASUREMENT CYCLE DURATION	8.5	8.5	[s]
DETECTOR TYPE	Photoconductor	Pyroelectric	-
MATERIAL	PbSe	LiTaO3	-
SHAPE/SIZE	Square / 0.7x0.7	Round / r=1.4	<i>[mm]</i>
NEP	1 10 ¹² (2)	4 10 ¹⁰ (3)	[W/Hz ⁵]
SENSITIVITY	<i>90 (2)</i>	30 (3)	[KV/W]
TEMPERATURE	220 (4)	290	[K]
INTERFEROMETER TYPE	Double Pendulum	Double Pendulum	-
REFLECTING ELEMENTS	Cubic corner reflectors	Cubic corner reflectors	-
BEAMSPLITTER	CaF_2	CsI	-
REFL. ELEMENTS MOTION	+/- 1.5	+/- 1.5 (5)	<i>[mm]</i>
MAX OPTIC PATH DIFFER.	5	5	[mm]
TIME FOR MOTIONS	5	5	[s]
TIME FOR MEASUREMENTS	4.5	4.5	[s]
REFERENCE SOURCE	Laser diode	Laser diode	-
REF. SOURCE WAVELENGTH	1216	1216	[nm]
COLLECTOR OPTICS	Parabolic mirror	Parabolic mirror	-
DIAMETER	49	38	<i>[mm]</i>
FOCAL LENGTH	20	20	<i>[mm]</i>
COATING	Gold	Gold	-
SW/LW SEPARATION		5 with a multilayer coating reflecting SW radiation	
OPTICS TRANSMISSION	0.64	0.78 (6)	-
MODULATION FACTOR	0.87	0.98 (7)	-
INTERFEROGRAM	TWO-SIDED	TWO-SIDED	-
SAMPLINGS NUMBER	16384	4096	-

: MEX-PFS-DARC-EAICD-25

: 2.5

30 January 2008

6

SAMPLING STEP	608	2432	[nm]
DYNAMICAL RANGE	+/- 2 ¹⁵	+/- 215	-
SPECTRA (from on-board FFT)			-
QUANTITY OF POINT	8192	2048	-
DYNAMICAL RANGE	6000	6000	-
ELECTRONICS			
MODULATION FREQUENCY RANGE	423-1600	50-400	[Hz]
ONB FFT COMPUTATION TIME	3.35	0.83	[s]
BUFFER MEMORY VOLUME	32	2	[MBits]

(1) Values are given for wavelengths 2.5 and 15 $\mu m.\,$ Results of measurements for PFS FM1.

(2) In peak of the spectral responsivity curve (near 4.8 µm and for the modulation frequency 1000 Hz).

(3) By the modulation frequency 200 Hz. NEB and sensitivity are given for the output of the preamplifier.

(4) Radiative cooling.

(5) Linearized deviation from the position, corresponding to zero path difference.

(6) From measurements of reflection and transmission of optical elements. Values are given for wavelengths 2.5 and 15 μm

(7) From estimates of tolerances. Values are given for wavelengths 2.5 and 15 microns.

TABLE 2 - DETAILED PFS TECHNICAL PARAMETERS

PARAMETERS	VALUES	UNITS
FULL PFS MASS (all blocks)	31.2	[Kg]
MODULE O (Optics and part of electron.)	19.9	[Kg]
MODULE E (Main electronics)	3.5	[Kg]
MODULE P (DC/DC converter, Power)	2.3	[Kg]
MODULE S (Pointing/scanning system)	4.0	[Kg]
HARNESS	1.1	[Kg]
PFS POWER CONSUMPTION		
IN FLIGTH ON MARS	5	[W]
PEAK DURING OBSERVATIONS	45	[W]
ON THE ORBIT IN "SLEEPING MODE"	10	[W]

2.1 Technical description

The flight hardware of the experiment is divided into four parts called modules, plus the connecting cables. The four modules are: the Interferometer with its optics and proximity electronics, which is the core of the experiment, and is called Module O. The pointing device, which receives radiation from Mars or from the in-flight calibration sources, which is called Module S. The Digital electronics, including a 32 Mbit mass memory, and a real time FFT, called Module E. The Power Supply, Module P, with the DC/DC converter, the redundancies, and the galvanic separated power for the 16 bits A/D converters.

Below we describe Module O (the core of the experiment) in further detail. Details of other modules can be found in FUM Manual 1 [7].

2.1.1 <u>Module O</u>

Module O is the core of PFS. Module O (hereafter PFS-O), stands for Optical Module and contains the interferometer with its proximity electronics. PFS-O is divided into two blocks: IB (Interferometer Block) and EB (Electronics Block). The two blocks are mechanically separated but electrically connected through a six cable interface. Furthermore IB is a gas tight box filled with dry nitrogen in order to preserve the optical parts that are hygroscopic. The IB is very compact and in practice it contains two interferometers working simultaneously, covering the full range of PFS between 1.2 μ m

and 45 μ m. The two ranges are named "SW" as Short Wavelength and "LW" as Long Wavelength. The range of the SW channel is within (1.2 - 5.5) μ m while the LW is within (5.5 – 45) μ m.

2.1.2 Optical scheme of PFS-O

Martian radiation

The main optical design of the PFS is shown in Figure 1. The incident IR beam falls onto the entrance filter that separates the radiation of SW channel from the LW channel and directs each into the appropriate interferometer channel.

The scanner in front of the interferometer allows the FOV to be pointed along and laterally to the projection of the flight path onto the Martian surface. It also directs the FOV at internal black body sources, diffusers and to open space for in-flight calibration.

The optical path difference is generated by the angular movement of the retroreflectors. The controller of the torque motor uses the outputs of two reference channels, which are equipped with laser diodes. This interferometer design is very robust against slight misalignment in harsh environment compared with the classical Michelson-type interferometer.

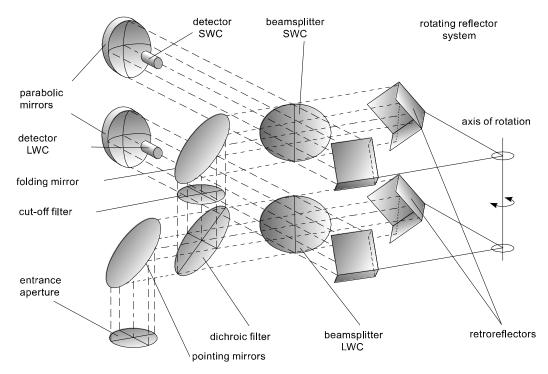


Fig.1 Optical scheme of PFS

The cube corners make it possible to use a double pendulum configuration in an easy way without complex mechanics. At the same time, they can lower the sensitivity of the interferometer in terms of mirrors tilting. Furthermore, the optical alignment of the instrument becomes easier and faster. The double pendulum axis rotates by means of a brushless motor (two for redundancy) that does not experience any kind of mechanical friction. Thus the shaft of the double pendulum is sustained just by two preloaded ball bearings at very low friction. An additional mechanical friction instead is added for the purpose of a better stability of the pendulum speed.

The reference channel

The source of the reference beam is a laser diode (InGaAsP at 1.2 μ m) and its detector is an infrared photodiode with maximum responsivity at about 1.2 μ m. The beam of the reference channel is processed like the input signal so that the optical path of the reference is almost exactly coincident

with the optical path of the signal to be studied. At the corner cubes the laser beam moves from one side to the other of the main beam, so that the part of the beam directed backward toward the source is displaced with respect to the inward part. This part terminates into an optical trap (one per each channel).

The zero optical path difference signal (ZOPD)

The ZOPD signal is generated using IR radiation from a TRW device, which, if a thin mirror is placed at the correct distance, will give a pulse when the mirror is in front of the device, while no signal is obtained for any other position. The linear mirror for PFS is placed on the edge of an arrow fixed to the shaft of the double pendulum. During assembly it is adjusted so that its signal is within 100 pulses from the optical zopd. During the double pendulum motion the arrow moves in front of the TRW detector so that a pulse is generated at the zopd position.

The detectors : SW

We use a photo-conductor type detector for the SW channel capable of working at temperatures down to 200K. The main characteristics of this detector are listed in Table 4.

Main characteristics of the SW detector		
Size [mm] 0.7 x 0.7 square		
Spectral range [µm]	1.2 - 5.5	
D*(λ max) [cm Hz1/2 /W]	0.9 1011 at 200 K, 1.2 kHz	
$D^*(\lambda max)$ [cm Hz1/2 /W]	0.3 1011 at 250 K, 1.2 kHz	

Table 4. SW detector characteristics

The SW detector is passively cooled through a radiator and its holder is partially insulated from the rest of theIB. The minimum conductance between the holder and the fixing point acts as a thermal sink to cool down the whole IB itself. The operative temperature of the SW detector is about 220K.

The detectors :LW

For the LW channel we have used a pyroelectric detector whose characteristics are listed in Table 5.

Main characteristics of the LW detector		
Size [mm]	1.4 \varnothing round	
Spectral cutoff [µm]	> 50	
Threshold [W/ Hz ^{1/2}]	About 5 10 ⁻¹⁰ at 200 Hz	
Responsivity [V/W]	About 70k	
Noise [V/Hz]	About 5 10 ⁻⁶	

Table 5. LW detector characteristics

The LW detector is able to work without performance degradation even at ambient temperature. In our case the ambient temperature is the temperature of the IB, which is about 13°C.

2.1.3 <u>Mechanical description of PFS-O</u>

Module

«O» contains the interferometer that consists of three main parts: the optical bench, the pendulum system, and the gas tight box.

2.1.3.1 The optical bench

The optical bench is a structure made in Al7075 alloy, obtained by machining and electro-erosion from a single aluminum alloy billet. All the optical elements of the interferometer are directly mounted or have a reference to the optical bench. The beam splitters are flange mounted on the reference plane of the optical bench while the supports of the axle on which the cubic corners are mounted are machined with a strict tolerance of planarity with the reference plane. The sensors are mounted on a surface of the optical bench with a 2 DOF regulation system that allows to align the detector group axes with the instrument one.

2.1.3.2 The pendulum system

The pendulum shaft is mounted on two angular contact ball bearings, axially pre-loaded with an elastic system allowing the differential thermal expansion without inducing sensible stress. The movement of the axle is a rotation of about $\pm 1.5^{\circ}$ for the useful part and is up to 2.5° considering the extra-travels. The rotation is made by an electrical brushless torque motor that, for safety, is totally redundant. For the stability of the control loop a friction torque is applied to the axle. A locking device keeps the pendulum in a position outside the useful travel during the launch phase and in case of orbit correction/manoeuvring. The locking/unlocking procedures take about 10 minutes, the actuator being a paraffin one. The movement is therefore slow and no vibration or relevant electromagnetic fields are induced. The balancing mass is kinetically mounted on the pendulum axle to avoid thermal stresses induced by the different CTE of the materials. Regulation devices are mounted in place of the balancing mass during the alignment of the interferometer and afterwards removed.

2.1.3.3 The gas-tight box

The optical bench is included in a gas-tight box that during ground operation has to be filled with dry nitrogen. The gas tight box is required to avoid the degradation of the CsI beam splitter for moisture absorption. A bellow valve automatically opens and stays open when the environment pressure goes below 90 kPa allowing the inner gas to leave the instrument; when the external pressure increases above that value the valve closes again. The failure position of the valve is open in order to avoid an excessive overpressure in the instrument that would damage the entrance optics.

The gas tight box is also mechanically supporting the thermal interface to the radiator, where a thermal flexible strap is fixed.

2.1.4 Thermal description of PFS-O

PFS-O has four main thermal requirements: the temperature of the Short Wavelength detector, the Temperature/stability of the Long Wavelength detector, the temperature/stability of the two diode lasers and the temperature/stability of the optical bench.

The requirement for the SW detector is to have a working temperature lower than 220 K. This goal is achieved by means of a passive radiator, connected to the sensor by means of an aluminum cold finger.

The requirement for the long wavelength sensor are less stringent for the working temperature, about 25 °C, but challenging for the stability, <0.01°C/h. The sensor is mounted on an insulating stainless steel structure and the temperature is controlled by an electrical heater placed at its back, fed by an electronic circuit.

A wrong operative temperature of the diode lasers along with its fluctuations in time may cause degradation of the spectral resolution of the interferometer. For this reason the choice of the best operative temperature of the diode lasers must be planned in the calibration procedure. The temperature itself can be set in a wide range, from 2°C up to 42°C, but the maximum allowed depends on the operative temperature of the IB. In our case a gradient of 4°C between the fixing points and the laser diode case is achieved as a maximum.

In the interferometer unit there is, during operation, a dissipation of about 5 W of electrical power, mainly in the motor of the pendulum and the sensors proximity electronics. The thermal requirement is mainly in uniformity of the temperature; differences of the order of 2 °C between the average temperatures of the brackets of the pendulum leads to a reduction of the SNR of 1%. The whole

module "O" is thermally insulated from the spacecraft because of the low thermal conductance of the dampers and of the MLI covering all the external surfaces.

2.1.4.1 The thermal control

Thermal control is also very important for an infrared interferometer and for PFS this is achieved using eight points to read the temperatures across the instrument and to heat the structure. The controlling is passive so that only heating is permitted. Every point is read and set again through OBDM. Additionally, the two detectors (SW and LW) are thermally controlled. This is important to accurately maintain the radiometric calibration without greatly increasing the in-flight calibration cycles. In this way, the temperature of the IB is kept at a constant temperature of 13°C.

2.1.4.2 The ASTRA system

An additional thermal control with no electrical connections to the rest of PFS, is the block named "ASTRA". This stand-alone electronics box provides thermal control for the IB during the cruise phase, while the instrument is off. In this way, the temperature inside the IB is kept around the operative temperature and the thermal cycles are reduced ta a minimum even while PFS is in operation during the cruise phase. The total power dissipated by ASTRA is 6 W.

2.2 Detailed Scientific Objectives

The Planetary Fourier Spectrometer (PFS) is an infrared spectrometer optimised for atmospheric studies. The instrument is able to cover wavelengths from 1.2 to 45 μ m, divided into two channels with a boundary at 5.5 μ m.

The spectral resolution is 2 cm⁻¹. The instrument field of view (FOV) is about 1.6° for the Short Wavelength (SW) channel and 2.8 ° for the Long Wavelength (LW) channel, which corresponds to a spatial resolution of 7 and 12 km respectively, when Mars is observed from an height of 250 km (nominal height of the pericentre).

PFS can give unique data necessary to improve our knowledge not only of the atmospheric properties of Mars, but also about the mineralogical composition of the surface and the surface-atmosphere interaction.

The scientific objectives of the PFS experiment can be summarised as follows:

1) Atmospheric studies:

a) global long duration monitoring of the three-dimensional temperature field in the lower atmosphere (from the surface up to 40-60 km);

b) measurements of the minor constituents variations (water vapour and carbon monoxide);

c) search for other possible small components of the atmosphere;

d) new determination of the D/H ratio;

e) study of the optical properties of the atmospheric aerosols: dust clouds, ice clouds, hazes; determination of the size distribution and chemical composition;

f) investigation of radiance balance of the atmosphere and the influence of aerosols on energetics of the atmosphere.

g) study of global circulation, mesoscale dynamics and wave phenomena.

2) Surface studies:

a) monitoring of the surface temperature;

b) determination of the thermal inertia obtained from the daily surface temperature variations;

c) determination of constraints on the mineralogical composition of the surface layer;

d) determination of the nature of the surface condensate and seasonal variations of its composition;

e) measurements of the scattering phase function for selected regions of interest on the planet's surface;

f) local pressure and height determination (CO2 altimetry) for selected regions;

g) surface-atmosphere exchange processes.

The experiment will have real-time FFT on-board to be able to select the spectral range of interest for data transmission to ground. Measurement of the 15 micron CO_2 band is very important. Its profile gives, by means of a complex temperature profile retrieval technique, the vertical pressure temperature relation, which forms the basis of the global atmospheric study. Since the repetition time

of the measurements is 8.5 to 10 sec and the working time is \pm 40 minutes around pericentre, a total of more than 564 measurements per orbit will be acquired, corresponding to 1790 measurements per day for a 7.6 hours orbit.

In the 80 minutes of data collection, the atmospheric measurements will be made at high altitude, because high space resolution is not needed, while surface oriented measurements will be taken closer to pericenter, where higher spatial resolution can be achieved. An important requirement of PFS is that we need to measure at all local times in order to have the atmospheric vertical temperature profiles also from the night side.

2.3 Data Handling Process

On the spacecraft, data from each sensor are either downloaded as raw or are downloaded after running through an onboard FFT. Both types of data are retrieved from ESA's Data Distribution System (DDS) at INAF-IFSI. These are splitted into the two sensors channel and calibrated using the procedure fully described in [4] and [5] and then distributed to Co-Is as working data for internal purposes. The calibration to this level involves Marco Giuranna. The PDS archive data are produced for each Mission Phase, i.e. Nominal Mission and Extended Mission. These data are Experimental Data Records – CODMAC level 2, and are then pipelined through to a complete PDS formatted data set via a piece of software developed at INAF-IFSI by Mario D'Amore. The rough data flow is illustrated in the figure below.

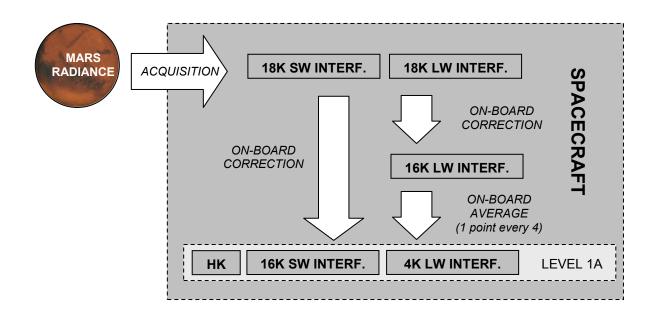


Fig.2 PFS data acquisition and processing scheme.

1. ACQUISITION

The OBS acquires 18000 points from the ADC converters of each channel in 4.5 seconds. These are sampled by a laser diode reference signal (for more information see [3])

2. ON-BOARD CORRECTION

The OBS finds the central part of the interferograms using the Hardware (HW) zero signal read from the sensor, and adds the ZOPD offset (this value is the difference between the interferogram central part and the and the position of HW zero) taking 8192 points from the left side and 8192 points from the right

side. The final SW and LW size is 16384 points and both interferograms are centered to the Zero Optical.

3. ON-BOARD AVERAGE

In this stage LW interferogram is smoothed by averaging every four points, resulting in a reduction from 16384 to 4096 poins.

2.4 Overview of Data Products

2.4.1 In-Flight Data Products

Raw data (at ESOC, PSA and IFSI-INAF)

ESOC and PSA will archive all data downlinked by MEX, sorted by APID IAS will archive the packets relevant to PFS in DDS format (definied in [9] and [10])

Experiment Data Records (at IFSI-INAF and PSA)

Level-1A Science data product filename convention :

PFS_<orbit>_<inst_mode>_<datatype>_<detector>.DAT¹

During cruise and Mars orbital phases, PFS produces eight files in PDS format for each orbit (or cruise sub-phase), including decompressed science data (level-1A), and all PFS acquired instrumental housekeeping information.

The product name (PRODUCT_ID) contains the following information (see Section 3.1.4 for details):

- PFS_<orbit or cruise sub-phase >_ YYYY _ ZZ _KK.DAT :

for a fixed <orbit> value represent all the data from a single orbit or cruise sub-phase

- PFS_XXXX_<*inst_mode*>_ZZ_KK.DAT :

for a fixed < *inst_mode*> value represent all the data from an instrument mode (i.e.

calibration measurements or science data).

- PFS_XXXX YYYY

for a fixed < datatype> value represent all the data for a single datatype (i.e. the housekeeping or PFS measurements)

- PFS_XXXX_YYYY_ZZ_<detector>.DAT :

for a fixed <detector> value represent all the data from a single detector (i.e. SW or LW)

Letters blocks represent all the possible accepted value for each position in filename, or:

- XXXX = mission orbit
- YYYY = inst mode
- ZZ = datatype
- KK = detector

2.4.2 Software

1

see Section 3.1.4 for details

Provided software in the SOFTWARE directory are functions in IDL language, suited to read data and labels (in FUNCTIONS subdirectory in SOFTWARE directory) both for DATA or GEOMETRY geometry products. These routines are intended as lower level interface between user program and the PFS data. Some example programs, showing how to read data products, are provided in DATA and in GEOMETRY subdirectories as IDL program files, based on routines mentioned. When downloading the SOFT.ZIP file, the user should put it in a working directory dedicated to PFS software, then unzip it. This will create two subdirectories:

/SOFTWARE/

|- /DATA/

```
|-/GEOMETRY/
```

The essential functions to open and read the data are in the **FUNCTIONS** subdirectory.

To run example code do the following steps:

- 1. open a .PRJ file (for DATA or for GEOMETRY)
- 2. change the PATH variable to your PFS Data directory
- 3. Menu Project > Compile > All Files
- 4. Menu Project > Run

Follow a list of provided functions to open and read the data and their output.

Function read_pfs_data(FILE,NUM,RECORDS)

return a structured variable array with the data. Array length is NUM.

PFS EAICD

Each array element is defined as :

OBT_OBSERVATION_TIME:	OUBLE PRECISION FLOAT
SCET_OBSERVATION_TIME:	UNSIGNED LONG INTEGER
INTERFEROGRAM:	INTEGER ARRAY WHITH
LENGHT = RECORDS	

INPUT:

FILE	: path of the data file to
NUM	: total number of the field (= observation) stored in the file
RECORDS	: length of a single interferogram

Function read_pfs_hk(FILE,NUM):

return a structured variable array with the housekeeping data. Array length is NUM.

Each array element is defined as :

OBT_OBSERVATION_TIME :	DOUBLE PRECISION FLOAT
SCET_OBSERVATION_TIME :	UNSIGNED LONG INTEGER
TypeOfMes :	UNSIGNED LONG INTEGER
SD_Version :	UNSIGNED LONG INTEGER

Document No Issue/Rev. No PFS EAICD Date

Page

) .	: MEX-PFS-DARC-EAICD-25
0.	: 2.5
	: 30 January 2008
	: 14

ZOPD_SW_FWD : ZOPD SW REV: ZOPD_LW_FWD : ZOPD LW REV: SCANPOS : SW_ZeroX_Cutoff_Status : LW ZeroX Cutoff Status : SPEEDCLOCK_Status : ADCCLOCK Status : SW_Detector_Cutoff_Status : LW_Detector_Cutoff_Status : SWGAIN Status : LWGAIN_Status : First_ADC_1_Status : Second_ADC_1_Status : First_ADC_2_Status : Second ADC 2 Status : Select Motor Coil Status : **DPDIR Status:** SW_ZOPD_Position : LW_ZOPD_Position : Right_Collisions : Left Collisions : SWLASERPWR 10V: LWLASERPWR_10V: SWPHOTODIODEPWR 10V: LWPHOTODIODEPWR_10V : T1 10V: T2 10V: T3_10V: T4_10V : T5_10V: T6 10V: T7 10V: T8_10V: LDTEMPSW_10V: LDTEMPLW 10V: SWTEMP 10V: LWTEMP 10V: DOUBLE PRECISION FLOAT TEMPA1_10V:

UNSIGNED LONG INTEGER DOUBLE PRECISION FLOAT UNSIGNED LONG INTEGER DOUBLE PRECISION FLOAT DOUBLE PRECISION FLOAT

TEMPA2_10V :	DOUBLE PRECISION FLOAT
SWTRW_10V:	DOUBLE PRECISION FLOAT
LWTRW_10V :	DOUBLE PRECISION FLOAT
CLVOLTAGE_10V :	DOUBLE PRECISION FLOAT

INPUT:

FILE :	path of the data file to open
NUM:	total number of the field (= observation) stored in the file

Function read_pfs_label(FILE,NAME)

return value stored in a PDS label file in the NAME field of provided LABEL file.

INPUT:

FILE :	path of the label file to open
NAME:	name if the fiel to search for (i.e. ROWS or FIELDS)

Function reader_geometry(FILE,NUM)

return a structured variable array with all the geometrical information. Array length is NUM.

Each array element is defined as :

DOUBLE PRECISION FLOAT
DOUBLE PRECISION FLOAT
DOUBLE PRECISION FLOAT
DOUBLE PRECISION FLOAT
SINGLE PRECISION FLOAT
DOUBLE PRECISION FLOAT
SINGLE PRECISION FLOAT
DOUBLE PRECISION FLOAT
DOUBLE PRECISION FLOAT
SINGLE PRECISION FLOAT
DOUBLE PRECISION FLOAT
DOUBLE PRECISION FLOAT
DOUBLE PRECISION FLOAT

	PFS EAICD	Document No. Issue/Rev. No. Date Page	: MEX-PFS-DARC-EAICD-25 : 2.5 : 30 January 2008 : 16
AIR_MASS :		SINGLE PRECISION F	LOAT
INPUT:			
FILE :		path of the geometry file	e to open
NUM :		total number of the field	I (= observation) stored in the file

The data are in standard PDS format and should be open with any standard PDS viewer also. These packages are all available for download from the PDS website (<u>http://pds.jpl.nasa.gov</u>).

2.4.3 Documentation

Several documents are provided in the document directory of the PFS data set. The following documents are useful to the understanding of the data set / archive, and the PFS instrument itself:

- 1. The PFS Experimenter to Archive Interface Control Document (this document). This document describes the details of the PFS data products and data sets and provides all of the information necessary for a user to understand how to use the data products.
- 2. PFS Flight User Manual, in which details of the PFS instrument are described, includes the instrument itself, the structure of the HK products, the structure of the science products, and many other aspects of the instrument operations and functionality.
- 3. "The Planetary Fourier Spectrometer (PFS) onboard the European Mars Express mission" document that describe the PFS instrument.
- 4. "Calibration of the Planetary Fourier Spectrometer Short Wavelength Channel" document that describe the procedure for the SW channel calibration.
- 5. "Calibration of the Planetary Fourier Spectrometer Long Wavelength Channel" document that describe the procedure for the LW channel calibration.

All documentation that is critical to the understanding and use of this data set is provided in plain ASCII format as well as other non-proprietary formats (e.g. PDF for documents and PNG for figures). Non-critical documentation is only delivered in PDF format and no ASCII version is provided.

2.4.4 Derived and other Data Products

It is intention of the PI and the team to provide in a later stage both calibrated absolute spectral radiance for both LWC and SWC plus the temperature vertical profiles retrieved from 15 μ m CO2 band in the LWC (See also documents [4] and [5]).

2.4.5 Ancillary Data Usage

Orbit, attitude and event data provided from ESOC and translated into SPK, PcK, CK, SCLK, Orbnum Spice Kernels files are used to compute the geometry files provided in the PFS data set. For each measurement, the SCET (Spacecraft Event Time) is transformed into UTC and used to compute all of the geometric and illumination parameters that describe the measurements. Information about the footprint on the planet and the relative positions of MEX, Mars, Sun and Earth are also provided. These data are distributed to the Cols and archived in the Geometry Directory. In

the Geometry file (one for each orbit), the list of the actual Spice Kernels used to compute these parameters for each measurement is provided (see par.3.4.2.9).

3 Archive Format and Content

This chapter contains general rules and constraints for the PFS data sets. The schemes or conventions used for naming the directories and files is specified below.

Specific and detailed information are provided in subchapters of chapter 4.3.

3.1 Format and Conventions

3.1.1 Deliveries and Archive Volume Format

PFS team will deliver a complete dataset for each Mission Phase (NOMINAL, EXTENDED 1 etc.), conforming to the schedule outlined in the Mars Express Archive Plan [2]. Because the PSA is an online archive, we do not deal directly with volumes in the same sense as the PDS. For the purposes of the PSA, a volume is equivalent to a dataset, so volume identifiers are typically not applicable. The VOLUME_SET_ID follows a strict formation rule defined in [1][1], section 19.5.1, with the Country (IT for Italy), Government Branch (CNR), Discipline within government branch (IFSI), mission and instrument ID (MEXPFS), and a 4-digit sequence number (1001). For the number, the first digit represents the VOLUME_SET and the last number the VOLUME within the VOLUME_SET. The keyword used thorugh the datase are then:

VOLUME_SERIES_NAME	=	"MISSION TO MARS"
VOLUME_SET_ID	=	IT_CNR_IFSI_MEXPFS_1000
VOLUME_SET_NAME	=	"MARS EXPRESS PFS DATA"
VOLUME_ID	=	MEXPFS_1001
VOLUME_NAME	=	"VOLUME 1: MARS EXPRESS PFS

3.1.2 Data Set ID Formation

The PFS data set ID is generated using the follow syntax:

<mission ID>-<target>-<instrument ID>-<processing level>-<data set type>-<description>-V<version>

Where:

<mission id="">:</mission>	MEX	this is fixed, and is the mission ID for Mars Express.
<target>:</target>	М	this is fixed, and refers to the target of Mars.
<instrument id="">:</instrument>	PFS	this is fixed and identifies the instrument as PFS (Planetary Fourier Spectrometer).
<processing level="">:</processing>	2	this number indicates the level of processing the data has undergone on the CODMAC scale. A full description of the CODMAC levels is provided in [1].
<data set="" type="">:</data>	EDR	this represents the type of data in the data set. For the standard PFS deliveries, this will always be set to 'EDR' meaning 'Experimental Data Record'. A description of the different data set types can be found in [1].
<description>:</description>	this is a descriptive secion of the ID and will typically refer to the mission phase ID or an orbital range for the nominal mission.	

	PFS E	AICD	Document No. Issue/Rev. No. Date Page	: MEX-PFS-DARC-EAICD-25 : 2.5 : 30 January 2008 : 18
	NOMINAL	nominal mis	sion phase.	
	EXT1	first extende	d mission phase.	
	EXT2	second exte	nded mission phase	э.
<version>:</version>	<1.0>			set, starting at 1.0 and increasing ade to the products or the dataset

When all of this is put together, it provides a data set ID of the form:

MEX-M-PFS-2-EDR-NOMINAL-V1.0 or MEX-M-PFS-2-EDR- EXT1-V1.0

3.1.3 Data Directory Naming Convention

Inside the DATA directory, the data products are organized into several subdirectories. The structure of the directories will depend upon the phase of the mission in the dataset.

3.1.3.1 Cruise and Near Earth Verification Phase Data Directory Structure

During the Near Earth Verification (NEV) and Interplanetary Cruise (IC) phases of the mission, PFS only took measurements of the internal calibration source (Internal Black Body and Lamp) and of deep space. The limited number of observations are simply divided by sensor into the following directory structure:

3.1.3.2 Nominal and Extended Mission Phase Data Directory Structure

For the nominal and extended mission phases at Mars, data will be split into groups of 10 orbits, whith the following syntax:

The base directory will be MARS as all products from these phases will be from the planet. Beneath this, data will be separated into observations from the long-wave (LWC) and short-wave (SWC) sensors. Finally, data will be divided into blocks of 10 orbits using the following taxonomy:

ORB<YYY>X

ORB This is fixed and means ORBIT

<YYY> This will be the first 3 digits of all orbits contained in this directory

X This is fixed and means that inside this directory are data from orbits YYY0 to YYY9.

For example, the directory ORB000X will contain all products from orbits 0001 to 0009.

The DATA subdirectory structure for the nominal mission data will therefore follow the scheme:

D	ΑΤΑ	
L		
-	NEV	
I	1	
I	-LWC	•

	PFS EAICD	Document No. Issue/Rev. No. Date Page	: MEX-PFS-DARC-EAICD-25 : 2.5 : 30 January 2008 : 19
-SWC -IC -LWC -SWC -MARS -MARS -ORB001X -ORB001X -ORB001X -ORB001X -ORB002X			

3.1.4 File naming Convention

The data products are identified principally by orbit numer and detector type, following the scheme:

PFS_<orbit>_<inst mode>_<datatype>_<detector>.<ext>

<orbit> Orbit number.
For the Near Earth Verification and Interplanetary Cruise Phase the Orbit field is
substitute with the name of the Phase and Sub-phase (for a Phase and Subphase definition see [8], table.1, pag.9) <Phase><Sub-phase>.
<Phase>:

- IC for Interplanetary Cruise Phase
- **NEV** for Near Earth Verification Phase

<Sub-phase>:

- **C** Check Out Sub-phase
- **D** Dry Earth Sub-phase
- E Earth Moon Sub-phase (Observation to Earth and Moon)
- **1** PS001 Sub-phase (First Switch ON)
- 2 PS002 Sub-phase (Calibration)
- **3** PS003 Sub-phase (DTM, Pericenter Pass Simulation, Calibration)
- 4 PS004 Sub-phase (FOV, Calibration)
- 5 PS005 Sub-phase (Calibration, heating of SW detector)
- **S** Star Calibration Sub-phase
- M Mars Crossing Sub-phase

all the sub-phases refer to specific PFS test operations performed during the NEV phase and described in [11]. Special files should have descriptive value in the *<orbit>* field different from orbit number or mission phase. These special files are the calibration tables stored in the CALIB/ directory and cointaining the average responsivity and average Deep Space observation. These special files value have an *<orbit>* field composed by:

<orbit> =<Descpritive_Field> = <Type_of_Measurement >_<Pendulum_Direction>

<Type_of_Measurement >:

DS Observation of deep space **RESP** Instrumental responsivity

< Pendulum_Direction >

FWD Forward pendulum direction

REV Reverse pendulum direction

Further details on the meaning of <T*ype_of_Measurement* > and <Pendulum_Direction> can be found in the CALINFO.TXT and in the [4],[5] and [6] documents.

<inst mode> Defines if the instrument is in calibration mode or in measurement mode:

CAL Calibration

MEAS Measurement

For the *HK* file <inst mode> field is referred to the corrisponding RAW file <inst mode> field.

- *<datatype>* indicates the type of data provided: RAW HK RAD GEO.
 - RAW contains interferogram
 - **HK** contains the HK information about PFS during the acquisition
 - **RAD** contains radiance spectra (calibrated data only).

GEO contains geometrical data and are located in the GEOMETRY directory (see Section 3.4.2.7).

<detector> defines the type of the detector used for the interferogram acquisition: Short wavelength (SW) or Long wavelength (LW).

<ext> the extension depends on the type of file (LBL for a label file, DAT for the data product associated with the label).

E.G. :

For Mars:

PFS_0010_MEAS_HK_SW.LBL PFS_0010_MEAS_HK_SW.DAT

would be a PFS product from Mars orbit 0010. It would be a raw calibration data product from the short wavelength sensor with its associated label.

'For the Near Earth Verification and Interplanetary Cruise Phase:

PFS_NEV1_MEAS_HK_SW.DAT PFS_NEV1_MEAS_HK_SW.LBL

would be a PFS product from the PS001 Sub-phase of the Near Earth Verification phase. It would be a raw calibration product from the short wavelength sensor with its associated label.

PFS_IC_CAL_HK_SW.DAT PFS_IC_CAL_HK_SW.LBL

would a PFS product from the Check Out sub-phase of the Interplanetary Cruise. It would be a raw calibration product from the long wavelength sensor with its associated label.

3.2 Standards Used in Data Product Generation

3.2.1 PDS Standards

The PFS archive follows the Planetary Data System (PDS) standards as detailed by the PDS Standards Reference document [1]. For this archive, we use Version 3.6 of the Standards Reference, dated August 1, 2003.

3.2.2 <u>Time Standards</u>

Within the data products themselves, the time standard used is SCET (Spacecraft Elapsed Time), which is an integer with seconds and fractions of seconds. This value does not have fixed calibration, and is dependent upon the spacecraft. To address this issue, the time is also provided in Julian Date, starting from 1970-01-01t12:00:00.

Outside of the products themselves, there are several instances in the PFS data sets where time flags are provided. The main time values are provided in the data product labels, which provide a start and stop time for the measurement, and a corresponding clock count from the spacecraft. Below, the standards used to define these values are described, and the method by which the onboard time is converted to universal time.

3.2.2.1 START_TIME and STOP_TIME Formation

The PDS formation rule for dates and time in UTC is:

YYYY-MM-DDThh:mm:ss.fff or **YYYY-DDDThh:mm:ss.fff**

YYYY year (0	000-9999)
--------------	-----------

- *MM* month (01-12)
- **DD** day of month (01-31)
- **DDD** day of year (001-366)
- T date/time separator
- *hh* hour (00-23)
- *mm* minute (00-59)
- **ss** second (00-59)
- fff fractions of second (000-999) (restricted to 3 digits)

This standard is followed for all START_TIME and STOP_TIME values in the products included in the PFS data sets. The first formation rule is applied for PFS (YYYY-MM-DDThh:mm:ss:fff).

3.2.2.2 SC_CLOCK_START_COUNT and SC_CLOCK_STOP_COUNT

The SC_CLOCK_START_COUNT and SC_CLOCK_STOP_COUNT values represent the on-board time counters (OBT) of the spacecraft and instrument computers. This OBT counter is given in the headers of the experiment telemetry source packets. It contains the data acquisition start time as 32-bit of unit seconds followed by 16-bit of fractional seconds. The time resolution of the fractional part is $2^{-16} = 1.52 \times 10^{-5}$ seconds. Thus, the OBT is represented as a decimal real number in floating-point notation with 5 digits after the decimal point.

A reset of the spacecraft clock is represented by an integer number followed by a slash, e.g. "1/" or "2/".

Example 1: SPACECRAFT_CLOCK_START_COUNT = "1/21983325.39258" Example 2: SPACECRAFT_CLOCK_START_COUNT = "21983325.39258" Example 3: SPACECRAFT_CLOCK_START_COUNT = "2/0000325.39008" Example 1 and Example 2 represents the same time instance.

3.2.2.3 On-Board Time (OBT) to UTC time conversion

UTC time is a function of the time correlation packages and the on-board time. The time correlation packages are archived and distributed in the SPICE auxiliary data set and contain linear segments that map the on-board time to UTC time. The linear segment is represented by a time offset and a time gradient. The conversion function is:

Time in utc = offset + (obt(seconds) + (obt(fractional part)*2^-16)) *gradient

3.2.3 Cartographic Standards

Inertial Reference frame – The Earth Mean Equator and Equinox of Julian Date 2451545.0 (referred to as the J2000 system) is standard inertial frame.

Mars Body-Fixed Frame – Body fixed frames are reference frames that do not move with respect to surface features of an object. The Mars Body-Fixed frame center is the center of mass of Mars. The spin axis of Mars defines the z-axis, whereas the prime meridian provides the direction of the x-axis that lies on the equatorial plane. The y-axis completes the right-handed frame. Values used to model the orientation of the North Pole (including precession), and the prime meridian as a function of time, are those recommended by the International Astronomical Union and adopted by the Mars Express project.

Coordinates System – We use the planetocentric coordinates system that consists of longitude measured positive eastward and planetocentric latitude, defined as the angle between the equatorial plane and a line from the center of mass of Mars to given point. This system is right-handed and identical to spherical polar coordinates as commonly defined. Longitudes range from 0 to 360 degrees, and latitudes range from –90 to 90 degrees.

Reference Surface – The standards used to model the surface of Mars is a triaxial ellipsoid centered on the planetocentric system origin, as in SPICE.

3.3 Data Validation

3.3.1 Internal Data Validation

Before delivery to the PSA for archiving, the PFS data are processed to CODMAC level 2 and are validated both in terms of PDS compliance and for quality of data. Data are checked for syntax, PDS Standards compliance and volume / data set integrity using the PVV software provided by the PSA.

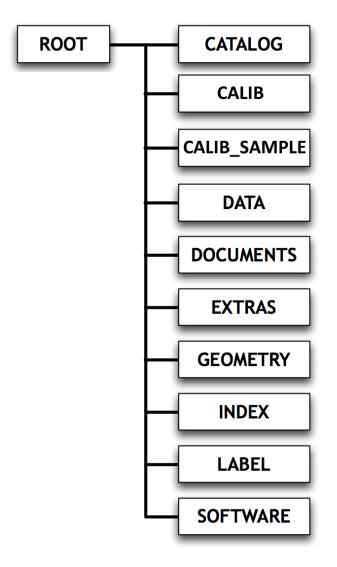
3.3.2 PSA and External Validations (Peer Reviews)

Before the PFS data are archived and released to the scientific community, the data sets and documentation undergo a thorough peer review. This is completed in several stages by independent external reviewers who validate the usefulness of the archive and provide constructive input to improve the data sets in the same way as a professional paper may be reviewed.

In addition, prior to the data being ingested into the online Planetary Science Archive (<u>http://www.rssd.esa.int/PSA</u>), the data sets are fully tested for compliancy using the 'PVV' tool (PSA Volume Verifier Tool). This software checks the syntax of all keywords and labels within the data sets,

and crosschecks values for keywords that should be identical. If the PVV tool successfully verifies a data set then the data set is PSA compliant and will be ingested into the online PSA.

3.4 Content


In this Section , we outline the non-data directory contents and information that will remain effectively static for all PFS data sets. This includes details of documentation, catalog information and calibration or geometry information, as well as details of the volume conventions used for PFS data sets.

3.4.1 Volume Set

For the Mars Express PFS data deliveries to the PSA, a data set is equivalent to a volume, since no physical media are to be generated. Therefore, the volume as defined by the PDS does not apply to the PFS data sets and all volume identifiers are delivered with a specific PSA defined value (see 3.1.1).

3.4.2 Directories

The structure of our volume-set/data-set is illustrated below:

3.4.2.1 ROOT Directory

The following files are contained in the data set root directory, prepared by the PFS team. These files are required by the PDS Standards [1]:

- AAREADME.TXT: This file is the entry point to the PFS data sets, and provides a complete description of the organisation and contents of the PFS data sets.
- VOLDESC.CAT: This is a description of the volume (data set) in PDS format, describing the catalog documentation provided in the archive and all volume identifiers.
- ERRATA.TXT: This file describes known errors and anomalies of PFS on this volume.

The CATALOG directory contains all standard PDS catalog files, see [1].

3.4.2.2 Catalog Directory

The CATALOG directory contains a series of plain text files describing the various elements of the PFS data set / instrument and the Mars Express spacecraft / mission. These files are a basic reference resource that should be used to provide a fundamental understanding of the PFS data, its acquisition and use, and any issues that may be present in its scientific application. The CATALOG directory contains the following files:

- CATINFO.TXT: This file identifies and describes the function of each file in the CATALOG subdirectory
- **DATASET.CAT**: Data set information for the PDS catalog, as know problems in the dataset at the moment of archive creation and team citation.
- **INST.CAT**: Instrument information for the PDS catalog
- **INSTHOST.CAT**: Instrument host (spacecraft) information for the PDS catalog
- MISSION.CAT: Mission information for the PDS catalog
- **REFERENCE.CAT**: Bibliographic reference used in the Dataset and the documentation
- **RELEASE.CAT**: For each data set, there is one release catalog file which defines, through release objects, a data products delivery to the PSA
- SOFT.CAT: Software information for the PDS catalog
- TARGET.CAT: Primary target (Mars) description

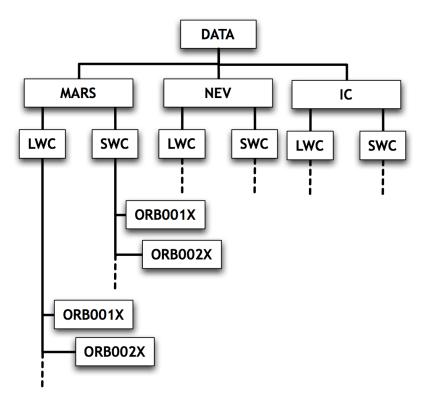
3.4.2.3 Calib Directory

0

The CALIB directory contains plain text calibration tables, needed to calibrate the example calibrated data stored in the CALIB_SAMPLE/ top-level directory. The files in this directory follow the special filenaming convection in 3.1.4. The detail of the directory structure is:

- LWC/ Directory containing the calibration tables for the long wavelenght channel
 - PFS_DS-FWD_CAL_RAW_LW.DAT > Deep Space/ Forward Pendulum Data
 - PFS_DS-FWD_CAL_RAW_LW.LBL > Deep Space/ Forward P. Label
 - PFS_DS-REV_CAL_RAW_LW.DAT > Deep Space/ Reverse P. Data
 - PFS_DS-REV_CAL_RAW_LW.LBL
 > Deep Space/ Reverse P. Label
 - PFS_RESP-FWD_CAL_RAW_LW.DAT > Responsivity/ Forward P. Data

0


- PFS_RESP-FWD_CAL_RAW_LW.LBL > Responsivity/ Forward P. Label
 - PFS RESP-REV CAL RAW LW.DAT > Responsivity/ Reverse P. Label
- PFS_RESP-REV_CAL_RAW_LW.LBL > Responsivity/ Reverse P. Label
- SWC/ Directory containing the calibration tables for the short wavelenght channel
 - \circ **LASER_ON/** Directory for the SWC laser diode switched on
 - [Same files as in the LWC/ directory but for short wavelenght channel]
 - LASER_OFF/ Directory for the SWC laser diode switched off
 - [Same files ad the LASER_ON/ directory]

3.4.2.4 Calib_Samples Directory

The CALIB_SAMPLES directory contains some examples of calibrated data products for PFS. The files in this directory follow the filenaming convection in 3.1.4, and are relative to the observation taken during the orbit 0037 and 1401 of the MEX spacecraft.

3.4.2.5 Data Directory

The DATA directory contains all data products for PFS. Each data set contains several orbits of data, organized into subdirectories containing blocks of 10 orbits. The scheme used for this is described in detail in Section 3.1.3 and is presented in the figure below.

Details of the products to be provided in the DATA directory and their structure and labelling can be found in Section 4.3 and its sub-sections.

7757 7

3.4.2.6 Document Directory

This directory contains all of the Flight user manual documents, which have been divided into 9 chapters, describing in detail all of the features of the experiment. In addition, the ICD (this document) is provided also in ASCII format, and papers describing the calibration procedures for PFS are provided. A complete list and a short description:

DOCUMENTS directory content list DOCINFO.TXT CALIBR_REPORTS_LONG_TERM.TXT Calibration Reports, warnings on Calibration and long term _ calibration notes. CALIB SAMPLES NOTE.TXT Reports on how to obtain the files in CALIB SAMPLES/ from the RAW data. MEX-PFS-PSA-ICD-24.ASC Interface Control Document in ASCII Format MEX-PFS-PSA-ICD-24.LBL Label file for Interface Control Document MEX-PFS-PSA-ICD-24.PDF Interface Control Document in Portable Document Format MEX-PFS-PSA-ICD FIG 1.PNG ICD figure 1 – Pfs optical scheme MEX-PFS-PSA-ICD FIG 2.PNG ICD figure 2 - Data acquisition and processing scheme _ MEX-PFS-PSA-ICD FIG 3.PNG ICD figure 3 – High level directory structure MEX-PFS-PSA-ICD FIG 4.PNG ICD figure 4 – DATA directory structure MEX ORIENTATION DESC.LBL Label file for Mars express spacecraft orientation MEX ORIENTATION DESC.TXT Mars express spacecraft orientation Label file for Internal Note on Pfs Calibration - Volume I PFS CAL LAB 1.LBL PFS CAL LAB 1.PDF Internal Note on Pfs Calibration - Volume I PFS CAL LAB 2.LBL Label file for Internal Note on Pfs Calibration - Volume I PFS CAL LAB 2.PDF Internal Note on Pfs Calibration - Volume II PFS CAL NEAREARTH.LBL Label file for Internal Note on Pfs Calibration in Space PFS CAL NEAREARTH.PDF Internal Note on Pfs Calibration in Space PFS_LWC_CALIB.LBL Label file for LWC channel Calibration article PFS_LWC_CALIB.PDF LWC channel Calibration article PFS_MEX_FUM.LBL Label file for FUMs Index PFS_MEX_FUM.PDF FUMs Index PFS_MEX_FUM1.LBL Label file for FUM 1 - Instrument description PFS_MEX_FUM1.PDF FUM 1 - Instrument description Label file for FUM 2 - Instrument performance budgets PFS_MEX_FUM2.LBL PFS_MEX_FUM2.PDF FUM 2 - Instrument performance budgets Label file for FUM 3 - Instrument software and PFS MEX FUM3.LBL memory map PFS MEX FUM3.PDF FUM 3 - Instrument software and memory map PFS MEX FUM4.LBL Label file for FUM 4 - Housekeeping information PFS MEX FUM4.PDF FUM 4 - Housekeeping information PFS MEX FUM5.LBL Label file for FUM 5 - Operating, non-operating conditions and interfaces PFS MEX FUM5.PDF FUM 5 - Operating, non-operating conditions and interfaces Label file for FUM 7 - Instrument operation manual PFS MEX FUM7.LBL PFS MEX FUM7.PDF FUM 7 - Instrument operation manual PFS MEX FUM8.LBL Label file for FUM 8 - Science operations PFS_MEX_FUM8.PDF PFS_MEX_FUM9.LBL FUM 8 - Science operations Label file for FUM 9 - Tm tc interface data base PFS MEX FUM9.PDF FUM 9 - Tm tc interface data base PFS_ON_MARS_EXPRESS.LBL Label file for Instruments description article Instruments description article PFS_ON_MARS_EXPRESS.PDF Label file for SWC channel Calibration article PFS_SWC_CALIB.LBL SWC channel Calibration article PFS_SWC_CALIB.PDF

3.4.2.7 Extras Directory

The EXTRAS directory contains items that may be useful to a user, but are non-essential for the use of the data in the PFS data sets and are not essential for the PSA or compliance to the PDS Standards. The contents of the EXTRAS directory do not need to conform to PDS standards, and all

files within this directory are produced and presented by the PFS team. In the PFS EXTRAS directory is a file that describes any special features of a given orbit. For example, any specific scientific objectives targeted, special events that occurred or tests that were completed for a given orbit are listed in this file. The file is presented in ASCII format.

3.4.2.8 Index Directory

In this directory, there will be the following files produced by the PFS team. The PVV tool provided by the PSA generates the standard PDS index files automatically. The geometry index files are generated using the library provided by the PSA team.

- INDXINFO.TXT: This ASCII file describes the contents of the INDEX directory
- INDEX.TAB: This table lists the PFS data products in the data set
- INDEX.LBL: This PDS detached label describes the INDEX.TAB file
- GEO_MARS.TAB: A table of geometry and position information for the data products with a target reference body of Mars.
- GEO_MARS.LBL: A PDS detached label describing the GEO_MARS.TAB file.

3.4.2.9 Geometry Directory

The GEOMETRY directory contains the geometry file for PFS observation. The sub-directory structure is the same as the DATA directory, i.e. separated for LW and SW sensor and split in groups of 10 orbits. GEOMETRY data are only provided for Mars Commissioning Phase and only during science data acquisition: for these data there is a one-to-one link between data files and geometry files. The reason is that geometry information are used to localize each single observation in the local coordinate system of Mars, thus observations not relative to Mars have not meaningful geometry data. (except for Phobos) Geometry data structure are explained in detail in Par.4.3.2.1:Geometry Product A Design . These products are essential for data calibration and data analysis.

GEÓMETRY directory structure outline:

GEOMETRY

```
| -LWC
| |- ORB001X
| |- ORB002X
|
|- SWC
| - ORB001X
| - ORB002X
```

GEOMETRY files naming convection:

PFS_<orbit>_MEAS_GEO_<detector>.DAT

- <detector> defines the type of the detector used for the interferogram acquisition: Short wavelength (SW) or Long wavelength (LW).
- <ext> extension depends on the type of file (LBL for a label file, DAT for the data product associated with the label).

E.G. :

PFS_0030_MEAS_GEO_LW.DAT

PFS_0030_MEAS_GEO_LW.LBL

The '.DAT' product and '.LBL' label above are product associated to data file aquired during science data acquisition in the orbit 30, namely the files

PFS_0030_MEAS_HK_LW.DAT > housekeeping information collected during science data acquisition in orbit 30

PFS_0030_MEAS_RAW_LW.DAT> RAW data collected during science data acquisition in orbit 30

3.4.2.10Label Directory

The LABEL directory includes files that describe specific aspects of the data format and organization, like the common format for housekeeping and geometric data:

- **LABINFO.TXT**: This file identifies and describes the function of each file in the LABEL subdirectory
- **PFS_HK.FMT**: PFS Housekeeping file common structure definition

3.4.2.11 Software Directory

The SOFTWARE directory contains software designed to extract the data from the all the .DAT files (Raw data, housekeeping data, geometry data, calibrated data) and the calibration software used to produce the calibrated data in the CALIB_SAMPLES/ directory.

It is written in IDL language. For analyses, the PFS team use internal software specifically developed. The products are in standard PDS format, so it is possible to use PDS reader software to read all products. Subdirectory contains:

- **SOFTINFO.TXT**: This file identifies and describes the function of each file in the SOFTWARE subdirectory
- **ZIPINFO.ZIP**: This file provides an overview of the ZIP file format
- **SOFT.ZIP**: This file contains all provided software in ZIP format. For extended description see SOFT_README.TXT inside

4 Detailed Interface Specifications

This section describes in detail the contents of the PFS data sets, describing the structure of the data sets themselves and the design of the individual data products provided. The Appendices provide examples of the PDS labels and the complete directory structure of an example data set.

4.1 Structure and Organization Overview

The PFS data sets are structured as illustrated in Section 3.4.2. During the nominal mission, essentially 20 products will be provided for every observational orbit. These will be organized into DATA subdirectories as described in chapter 3.4.2.5, separating observations into groups of 10 orbits. For each orbit, 8 files will be present, 4 for each sensor. In the long-term when calibrated data are available, a further 2 products will be available, one for each sensor, as listed below:

	PFS EAICD	Document No. Issue/Rev. No. Date Page	: MEX-PFS-DAR : 2.5 : 30 January 200 : 29		CD-25
PFS_ <orbit>_C</orbit>	AL_RAW_SW.DAT	PFS_ <orbit>_CAL_I</orbit>	RAW_SW.LBL		
PFS_ <orbit>_C</orbit>	AL_HK_SW.DAT	PFS_ <orbit>_CAL_I</orbit>	HK_SW.LBL		
PFS_ <orbit>_N</orbit>	IEAS_RAW_SW.DAT	PFS_ <orbit>_MEAS</orbit>	RAW_SW.LBL		
PFS_ <orbit>_N</orbit>	IEAS_HK_SW.DAT	PFS_ <orbit>_MEAS</orbit>	S_HK_SW.LBL	elivery	
PFS_ <orbit>_C</orbit>	AL_RAW_LW.DAT	PFS_ <orbit>_CAL_I</orbit>	RAW_LW.LBL	Current Delivery	
PFS_ <orbit>_C</orbit>	AL_HK_LW.DAT	PFS_ <orbit>_CAL_I</orbit>	HK_LW.LBL	U	
PFS_ <orbit>_N</orbit>	IEAS_RAW_LW.DAT	PFS_ <orbit>_MEAS</orbit>	RAW_LW.LBL		
PFS_ <orbit>_N</orbit>	IEAS_HK_LW.DAT	PFS_ <orbit>_MEAS</orbit>	_HK_LW.LBL		
PFS_ <orbit>_N</orbit>	IEAS_RAD_SW.DAT	PFS_ <orbit>_MEAS</orbit>	RAD_SW.LBL	Long term	
PFS_ <orbit>_N</orbit>	IEAS_RAD_LW.DAT	PFS_ <orbit>_MEAS</orbit>	_RAD_LW.LBL	Long	
PFS_ <orbit>_M</orbit>	IEAS_GEO_SW.DAT	PFS_ <orbit>_MEAS</orbit>	GEO_SW.LBL	Current Delivery	
PFS_ <orbit>_N</orbit>	IEAS_GEO_LW.DAT	PFS_ <orbit>_MEAS</orbit>	GEO_LW.LBL	Current	

Files are named according to the scheme described in Section 3.1.4:

PFS_<orbit>_<inst mode>_<datatype>_<detector>.<ext>

As can be seen, there will be a data product, and associated geometry and housekeeping files for each orbit, along with their corresponding detached PDS label files. The data provided contain the raw data from the SW and LW sensors. These are interferograms acquired directly from PFS with no modification or validation. Currently, there are no plans to deliver higher-level products to the PSA for archiving, as the calibration is extremely unstable (see [4] and [5])

4.2 Data Sets, Definition and Content

PFS data sets will be generated and delivered to the PSA for every mission phase. The data sets will follow the identifier conventions outlined in Section 3.1.2, whereby a DATA_SET_ID will be of the form:

<mission ID>-<target>-<instrument ID>-<processing level>-<data set type>-<description>-V<version>

Where:

<mission ID> = MEX for Mars Express

	PFS	EAICD	Document No. Issue/Rev. No. Date Page	: MEX-PFS-DARC-EAICD-25 : 2.5 : 30 January 2008 : 30
<target></target>	=	М	for Mars.	
<instrument id=""></instrument>	=	PFS	for the Planetary	y Fourier Spectrometer
<processing level=""></processing>	=	2	the CODMAC p	rocessing level [1]
<data set="" type="">:</data>	=	EDR	the type of data	in the data set (Experimental Data
			Record) [1].	
<description>:</description>	=	NOMINAL	this will refer to	the mission phase.
<version></version>	=	<1.0>	the version of th	ne data set

This gives a data set ID of the form:

MEX-M-PFS-2-EDR-NOMINAL-V1.0 > data set for the nominal mission phase data. **MEX-M-PFS-2-EDR-EXT1-V1.0** > data set containing data from the first extended mission phase.

During the nominal Mars phase, the Mars Express spacecraft completes approximately 100 orbits every 4 weeks, of which around 80 will be science orbits.

4.3 Data Product Design

In this section, we break down the structure of the individual product labels and describe the PDS keywords used for each data product type.

4.3.1 Data Product Design

The following is a breakdown of an example label for the data product. A complete label example is provided in Appendix 7.

4.3.1.1 File Characteristics Data Elements

These elements are present in the labels for every data product, and they describe the basic characteristics of the data product in terms of structure and naming:

RECORD_TYPE = FIXED_LENGTH

This describes the type of records used in the file. A 'record' is a single line in a data product, and records can therefore be fixed in length throughout the product, variable in length within a product, or can be a stream. For PFS products, every record inside the file has a fixed length.

RECORD_BYTES = 32780

This element defines the length for every record. The value used is different for the SW and LW channel data and depend on the transmission mode used. The example above is for data from the SW channel using DTM 17 (for details on data packet structure see [6]).

FILE_RECORDS = 240

This element defines the number of records inside the file. The value depends of the acquisition session duration inside the orbit.

FILE_NAME = "PFS_0010_MEAS_RAW_SW.LBL"

This element defines the Product File Name.

4.3.1.2 Data Object Pointers Identification Data Elements

These elements are the same for every data product, and point to the data product that corresponds to the label being read:

^TABLE =" PFS_0010_MEAS_RAW_SW.DAT"

For PFS, only one pointer is present, identifying the binary table within which the data are stored.

4.3.1.3 Identification Data Elements

These elements are present in every product label, and are used to describe and identify the data set, the target, and the mission.

DATA_SET_ID = MEX-M-PFS-2-EDR-NOMINAL-V1.0 Data set ID that uniquely identifies the PFS dataset.

DATA_SET_NAME = "Mars Express Mars PFS EDR Nominal Mission Data V1.0" Dataset Name describing in long hand the identification elements of the DATA_SET_ID.

PRODUCT_ID = PFS_0010_MEAS_RAW_SW This element uniquely identifies the product within the data set.

PRODUCT_CREATION_TIME = 2007-02-01T10:08:39 MISSION_NAME = "MARS EXPRESS" INSTRUMENT_HOST_NAME = "MARS EXPRESS" INSTRUMENT_HOST_ID = MEX PRODUCT_TYPE = EDR The product type keyword describes the type of data pres

The product type keyword describes the type of data present. For the default PFS datasets, this will always be EDR, meaning Experiment Data Record. This corresponds to CODMAC level 2 data [1].

TARGET_NAME = "MARS" Target Name for the observation: "MARS", "PHOBOS", "INTERNAL SOURCE" or "DEEP SPACE"

TARGET_TYPE = "CALIBRATION" Type of target observed: "CALIBRATION", "PLANET" or "SATELLITE"

MISSION_PHASE_NAME =" *MC Phase 0*" This identifies the phase of the mission in which the data were produced.

START_TIME = 2004-01-10T12:55:37.796 **STOP_TIME** = 2004-01-10T12:59:37.845 Start and stop time of the observation.

SPACECRAFT_CLOCK_START_COUNT = 1\ 21819852.1234 **SPACECRAFT_CLOCK_STOP_COUNT** = 1\ 21819856.1234 For details of the spacecraft, clock formation, please see Section 3.2.2 on Time Standards.

PRODUCER_ID = "PFS_TEAM" **PRODUCER_FULL_NAME** = "PFS SCIENCE TEAM" **PRODUCER_INSTITUTION_NAME** = "INAF-CNR"

4.3.1.4 Instrument Related Parameters These elements are present in the labels of every data product

INSTRUMENT_ID = "INFRARED INTERFEROMETER" INSTRUMENT_NAME = "PLANETARY FOURIER SPECTROMETER" INSTRUMENT_TYPE = "SPECTROMETER" INSTRUMENT_MODE_ID = CAL_17

Instrument mode used for this observation. For details of the various instrument modes, please see [6], chapter 4.5. Each mode contains data packets of different length and different kind: for example the most used, themode 17, contains a 256 byte header, the full interferogram from SW channel

(32768 byte) and the full interferogram from LW channel (8192 byte). On the other hand the mode 0, used to test instrument perfomances, contains a 512 byte header, a data section of 32768 bytes filled with the zero crossing of the reference channel, a 8100 byte length section containing sinewave from reference channel with different sampling and a 72 byte empty byte.

DETECTOR_ID = "SW"

Inside PFS, there is a Short Wavelength detector and Long Wavelength detector. This object indicates which detector is used to acquire the data: SW for Short Wavelength detector and LW for Long Wavelength detector.

DETECTOR_DESC = "SW IS A SHORT WAVELENGTH DETECTOR; LW IS A LONG WAVELENGTH DETECTOR"

SPACECRAFT_POINTING_MODE = NADIR

For Mars Express the following pointing modes are possible: NADIR, ALONGTRACK, ACROSSTRACK, TRACKING, INERT, LIMB.

SPACECRAFT_POINTING_MODE_DESC = "NADIR - This pointing mode is used to define a pointing to center the target body"

SPACECRAFT_ORIENTATION = (0,1,0) **^MEX_ORIENTATION_DESC =** "MEX_ORIENTATION_DESC.TXT"

INSTRUMENT_CALIBRATION_DESC = "N/A"

The INSTRUMENT_CALIBRATION_DESC element explains the calibration method adopted and identifies reference documents, which explain in detail the calibration of the instrument. For example, this element might explain whether the calibration was time-independent (i.e. a single algorithm was used) or time-dependent, and whether the calibration was performed in-flight or in a laboratory. This keyword will only be used for the calibrated data set and will remain "N/A:" for all other data sets.

4.3.1.5 Data Object Definition

This section of the label defines the structure and content of the data product. For PFS, these are different for the LW and SW detectors. The data objects for PFS are binary tables. The columns within each table are described in the sections below.

4.3.1.5.1 SW channel RAW data file content for mesurement and calibration

IA	TABLE = SW_PERICENTER_UNPROCESSED_TABLE SIZE = 32780 byte						
Ç	OBT OBSERVATION TIME	10 byte	REAL	enumerated C			
	Start Time of observation given in SCET, the SCET is a time format given in sun modified Julian date starting from 1970-01-01T12:00:00 (TBC).						
С	SCET OBSERVATION TIME	4 byte	PC_INTEGER	enumerated C			
	rt Time of observation given in on-boai 3-05-04 (TBC).	rd time that is se	conds and fraction o	f seconds since			
_							
С	SW RAW POINT	2 byte	PC_INTEGER	enumerated C			
SW	SW RAW POINT interferogram quantization element. T verter connected to SWC detector. Ev	his is the RAW v	 value acquired direct				
SW con	' ' interferogram quantization element. T	his is the RAW v ery point is a 16	- value acquired direct bit signed integer.				

TABLE = LW_PERICENTER_UNPR	OCESSED_TA	BLE	<i>SIZE</i> = 8204 by	/te
C OBT OBSERVATION TIME	10 byte	PC_REAL	enumerated	С
Start Time of observation given in SCET, date starting from 1970-01-01T12:00:00 (ne format given in st	ın modified Julia	n
C SCET OBSERVATION TIME	4 byte	PC_INTEGER	enumerated	С
Start Time of observation given in on-boa 2003-05-04 (TBC).	rd time that is se	conds and fraction o	f seconds since	
C LW RAW POINT	2 byte	PC_INTEGER	enumerated	С
SW interferogram quantization element. T converter connected to LWC detector. Ev			from the AD	
END TABLE = LW_PERICENTER_	UNPROCESSE	D_TABLE		
.3.1.5.3 <u>LW and SW channel HK data</u>	file content			
C OBT OBSERVATION TIME	10 byte	PC_INTEGER	enumerated	С
Start Time of observation given in SCET date starting from 1970-01-01T12:00:00 (time format given in	sun modified Ju	ulian
C SCET OBSERVATION TIME	4 byte	PC_INTEGER	enumerated	С
Start Time of observation given in on-bo 2003-05-04 (TBC).	pard time that is	seconds and fraction	on of seconds s	ince
C TYPE OF MEASUREMENTS	2 byte	PC_UNS_INT	enumerated	С
Type of measurement: (0 : Calibration, 1 :	Real Measureme	ent, 2 : Reference Cha	annel).	
C SOFTWARE VERSION	2 byte	PC_UNS_INT	enumerated	С
Number of software version.				
C ZOPD SW FW	2 byte	PC_UNS_INT	enumerated	С
Number of point offset for SW channel ze	ro optical path di	fference in forward.		
C ZOPD SW RV	2 byte	PC_UNS_INT	enumerated	С
Number of point offset for SW channels z	ero optical path c	lifference in reverse.		
C ZOPD LW FW	2 byte	PC_UNS_INT	enumerated	С
Number of point offset for LW channel zer	ro optical path dii	fference in forward.		
C ZOPD LW RV	2 byte	PC_UNS_INT	enumerated	С
Number of point offset for LW channel zer	ro optical path dii	fference in reverse.		_ L
C SCANNER POSITION	2 byte	PC_UNS_INT	enumerated	С
Scanner orientation: (0 – Internal Black B Nadir; 6 - Angle -12.5; 4 - Angle -25; 5 – I		-	3 - Angle +12.5;	7 -
C HIGHEST CUTOFF FREQ. SW ZER	OX 4 byte	PC_REAL	Hz	С

This parameter defines the period of the highest cutoff frequency for the SW Zero Crossing Preamplifier Filter (8th order). The lowest cutoff frequency is fixed (500 Hz, 2nd order) and unalterable. This value should be at least twice the reference frequency in order to maintain the speed control loop within the settling time value. This is of course true only for the reference signal used for such a purpose.

30 January 2008

C HIGHEST CUTOFF FREQ. LW ZEROX	4 byte	PC_REAL	Hz C			
The same as "HIGHEST CUTOFF FREQ. S\ Filter.	N ZEROX" but	for the LW Zero C	rossing Preamplifier			
C SPEED CLOCK	4 byte	PC_REAL	Hz C			
This parameter sets the reference frequency this value sets the speed of the double per frequency of the reference channel used for o	ndulum and col	nsequently also th				
C ADCs SERIAL CONVERTERS CLOCK	4 byte	PC_REAL	Hz C			
This parameter defines the frequency used for normal conditions it should not be touched.	or the serial to p	oarallel converter fo	or the ADCs. In			
C HIGHEST CUTOFF FREQ. SW DET	4 byte	PC_REAL	Hz C			
This parameter defines the period of the high Filter (8th order). The lowest one is fixed (50 quantization error, it is set at 4.4 kHz. This should be changed according to the speed frequency, it also limits the band pass of sig too.	0 Hz, 2nd orde filter is an anti d of the doubl	r). It should be set i-aliasing filter for a le pendulum. Alon	at 4 kHz but for the the SW ADCs, so it og the lowest cutoff			
C HIGHEST CUTOFF FREQ. LW DET	4 byte	PC_REAL	Hz C			
This parameter defines the period of the highest cutoff frequency for the LW Detector Preamplifier Filter (8th order). The lowest one is fixed (50 Hz, 2nd order). It should be set at 500 Hz but for the quantization error, it is set at 513 Hz. This filter is an anti-aliasing filter for the LW ADCs, so it should be changed according to the speed of the double pendulum. Along the lowest cutoff frequency, it also limits the band pass of signal and noise and consequently the spectral range, too.						
C SW DETECTOR GAIN	2 byte	PC_UNS_INT	enumerated C			
SW detector gain (1 to 128)						
C LW DETECTOR GAIN	2 byte	PC_UNS_INT	enumerated C			
LW detector gain (1 to 8)						
C SW ADC	2 byte	PC_UNS_INT	enumerated C			
SW channel A/D converter (1 : Wake up Al pulse (Default); 2 : Wake up ADC 2b SW (Recovery))"						
C SW ADC SECOND	2 byte	PC_UNS_INT	enumerated C			
Redundant SW channel A/D converter (1: W crossing pulse (Default); 2: Wake up ADC 2 (Recovery))"						
C LW ADC	2 byte	PC_UNS_INT	enumerated C			
LW channel A/D converter(1 : Wake up ADC (Default); 2 : Wake up ADC 1b LW signal sam						
C LW ADC SECOND	2 byte	PC_UNS_INT	enumerated C			
Redundant LW channel A/D converter (1: W crossing pulse (Default); 2: Wake up ADC 1 (Recovery))"						
C PENDULUM MOTOR	2 byte	PC_UNS_INT	enumerated C			
This value shows the double pendulum moto or driver failure one can select the working 0:Secondary ;1:Primary).						

С

κ

	TTO EXICE	Date Page	: 30 January 2 : 35	2008
		rage	. 55	
СР	ENDULUM DIRECTION	2 byte	PC_UNS_INT	enumerated C
Doubl	le Pendulum direction 0:Forward; 1:Rev	verse).		
CZ	OPD SW	2 byte	PC_UNS_INT	enumerated C
(ZOPI The c SW in	represents the Zero Optical Path Dif DD). This information gives to OBDM th orrect value should be around 18000 (n nterferogram) but it can change a little (terferogram centered.	he reference in number of bytes	order to centre the from the beginnin	e SW interferogram. g up to the centre of
CZ	OPD LW	2 byte	PC _UNS_INT	enumerated C
This ii value interfe	represents the Zero Optical Path Different offormation gives to OBDM the reference should be around 4500 (number of erogram) but it can change a little (over erogram centered.	e in order to cei bytes from the	ntre the LW interfe e beginning up to	orogram. The correct to the centre of LW
СР	ENDULUM END RIGHT	2 byte	PC _UNS_INT	enumerated C
	reveals if during the measure the doub how many times it did. If different from (
СР	ENDULUM END LEFT	2 byte	PC_UNS_INT	enumerated C
	reveals if during the measure the doubl ow many times it did. If different from 0 t			
CL	ASER 1 POWER	8 byte	PC _REAL	mW C
the po the w	parameter defines the power set point ower can be changed from 0 up to 4.97 orking Temperature and on the single ency modulation due to the side lobs.	7 mW, normally device), which	there is an ideal reduces at the mi	value (depending on nimum level the low
CL	ASER 2 POWER	8 byte	PC _REAL	mW C
The s	ame as Laser 1 Power but for Long Wa	velength.		
CD	ETECTOR 1 POWER	8 byte	PC _REAL	mW C
This p	parameter defines the power set point fo	or the Short Wa	velength Detector.	
CD	ETECTOR 2 POWER	8 byte	PC _REAL	mW C
The s	ame as Detector 1 Power but for Long	Wavelength.		
CIE	31 TEMP	8 byte	PC_REAL	κ C
a goo points kept a	thermal gradients on the mono block (the od start point to begin a measurement, of the 8 individual temperature contro at 13°C. In the FUM document you car aced inside IB (Interferometer Block)".	so we should l llers. Normally,	reduce them. IB1, in the real conditi	IB8 defines the set ons, they should be
CIE	32 TEMP	8 byte	PC _REAL	κ C
The s	ame as the IB 1 temp.			
CIE	33 ТЕМР	8 byte	PC_REAL	κ с
The s	ame as the IB 1 temp.			
CIE	34 TEMP	8 byte	PC_REAL	К С
The s	ame as the IB 1 temp.			
1 1				

8 byte

PC_REAL

The same as the IB 1 temp.

C IB5 TEMP

PPS7	PFS EAICD	Document No. Issue/Rev. No. Date Page	: MEX-PFS-D. : 2.5 : 30 January 2 : 36	ARC-EAICD-2 2008
C IB6 TEMP		8 byte	PC _REAL	к
The same as the	e IB 1 temp.	ý	_	
C IB7 TEMP	- -	8 byte	PC_REAL	К
The same as the	e IB 1 temp.			
C IB8 TEMP		8 byte	PC_REAL	К
The same as the	e IB 1 temp.			
C LASER DIC	DDE 1 TEMP	8 byte	PC_REAL	К
make them beco not capable of course use the Laser is also im versus Tempera	Laser, more than the po ome so strong that the sp taking any measurement other reference channel, portant for the spectral ca ature for approximately 0.	beed controller could ts at all!). In case of the one not used a alibration, because t	fail (in this extrem of this very bad c t the moment. The the emission line v	e case Module ondition, we c e temperature o
C LASER DIC	DDE 2 TEMP	8 byte	PC _REAL	К
The same as La	aser 1 (SW) Temperature	but for Long Wavel	ength.	
C SW DETEC	CTOR TEMP	8 byte	PC _REAL	К
should be set be	defines the set point tem etween 200 K and 250 K			
	he detector changes its reperture controlling is don	esponsivity along w	ith its temperature	
clearly the temp	he detector changes its re	esponsivity along w	ith its temperature	
clearly the temp C LW DETEC This parameter	he detector changes its re perature controlling is don	esponsivity along w e by set-points level 8 byte perature for the Long	ith its temperature PC _REAL g Wavelength dete	. Keep in min K
clearly the temp C LW DETEC This parameter in this case the	ne detector changes its re perature controlling is don CTOR TEMP defines the set point temp	esponsivity along w e by set-points level 8 byte perature for the Long	ith its temperature PC _REAL g Wavelength dete	. Keep in mine K
clearly the tempCLW DETECThis parameterin this case theCINTERNAL	the detector changes its re- berature controlling is don CTOR TEMP defines the set point temp temperature controlling is	esponsivity along wi e by set-points level 8 byte perature for the Long done by set-points 8 byte	ith its temperature PC _REAL g Wavelength dete level. PC _REAL	k. Keep in mind K ector controller K
clearly the temp C LW DETEC This parameter in this case the C INTERNAL This parameter	the detector changes its re- berature controlling is don CTOR TEMP defines the set point temp temperature controlling is BLACKBODY TEMP. 1	esponsivity along wi e by set-points level 8 byte perature for the Long done by set-points 8 byte	ith its temperature PC _REAL g Wavelength dete level. PC _REAL	k. Keep in mind K ector controller K
clearly the tempCLW DETECThis parameterin this case the inCINTERNALThis parameterCINTERNAL	the detector changes its re- berature controlling is don- CTOR TEMP defines the set point temp temperature controlling is BLACKBODY TEMP. 1 defines the set point Tem	esponsivity along wi e by set-points level 8 byte perature for the Long 6 done by set-points 8 byte perature for the inte 8 byte	ith its temperature PC _REAL g Wavelength dete level. PC _REAL ernal Blackbody so PC _REAL	k. Keep in mind K ector controller. K urce. K
clearly the tempCLW DETECThis parameterin this case the inCINTERNALThis parameterCINTERNAL	the detector changes its re- berature controlling is done CTOR TEMP defines the set point temp temperature controlling is BLACKBODY TEMP. 1 defines the set point Tem BLACKBODY TEMP. 2 defines the redundant se	esponsivity along wi e by set-points level 8 byte perature for the Long 6 done by set-points 8 byte perature for the inte 8 byte	ith its temperature PC _REAL g Wavelength dete level. PC _REAL ernal Blackbody so PC _REAL	k. Keep in mind K ector controller. K urce. K
clearly the temp C LW DETEC This parameter in this case the C INTERNAL This parameter C INTERNAL This parameter	the detector changes its re- berature controlling is done CTOR TEMP defines the set point temp temperature controlling is BLACKBODY TEMP. 1 defines the set point Tem BLACKBODY TEMP. 2 defines the redundant set	esponsivity along wi e by set-points level 8 byte perature for the Long done by set-points 8 byte perature for the inte 8 byte 8 byte t point Temperature	ith its temperature PC _REAL g Wavelength dete level. PC _REAL ernal Blackbody so PC _REAL for the internal Bla	k. Keep in mind K ector controller. K urce. K ackbody source
clearly the tempCLW DETECThis parameterin this case theCINTERNALThis parameterCINTERNALThis parameterCINTERNALThis parameterCTRW 1 TEN	the detector changes its reperature controlling is done CTOR TEMP defines the set point temp temperature controlling is BLACKBODY TEMP. 1 defines the set point Temp BLACKBODY TEMP. 2 defines the redundant se MP SW TRW.	esponsivity along wi e by set-points level 8 byte perature for the Long done by set-points 8 byte perature for the inte 8 byte 8 byte t point Temperature	ith its temperature PC _REAL g Wavelength dete level. PC _REAL ernal Blackbody so PC _REAL for the internal Bla	k. Keep in mind K ector controller. K urce. K ackbody source
clearly the temp C LW DETEC This parameter in this case the C INTERNAL This parameter C INTERNAL This parameter C TRW 1 TEM Temperature of	the detector changes its reperature controlling is done CTOR TEMP defines the set point temp temperature controlling is BLACKBODY TEMP. 1 defines the set point Temp BLACKBODY TEMP. 2 defines the redundant set MP SW TRW. MP	esponsivity along wi e by set-points level 8 byte perature for the Long done by set-points 8 byte perature for the inte 8 byte t point Temperature 8 byte	PC _REAL PC _REAL g Wavelength dete level. PC _REAL mal Blackbody so PC _REAL for the internal Black	Keep in mine K ector controller K urce. K ackbody source K

4.3.2 Data Product B Design

4.3.2.1 Geometry Product A Design

C = column

PFS EAICD

C SCET Spacecraft event time	8 byte	PC_REAL	sec	С
C LONGITUDE FOV center Longitude	8 byte	PC_REAL	deg	С
C LATITUDE FOV center Latitude	8 byte	PC_REAL	deg	С
C SPACECRAFT_ALTITUDE Spacecraft altitude	8 byte	PC_REAL	Km	С
C Local_Time	4 byte	PC_REAL	Hours	С
FOV center local time C Solar_Longitude	8 byte	PC_REAL	deg	С
Solar Longitude C INCIDENC_EANGLE	4 byte	PC_REAL	deg	С
Incidence angle C EMISSION_ANGLE	4 byte	PC_REAL	deg	С
Emission angle C PHASE_ANGLE	4 byte	PC_REAL	deg	С
Phase angle C MOLA_ALTIMETRY	4 byte	PC_REAL	m	С
FOV center Mola Altimetry C LW_TANGENT_ALTITUDE	4 byte	PC_REAL	Km	С
Limb altitude C LW_TARGET_DISTANCE	4 byte	PC_REAL	Km	С
Distance from the spacecraft to the target processor C SOLAR_DISTANCE	oint 4 byte	PC_REAL	AU	С
Mars-Solar distance C SUBSOLAR_LONGITUDE	8 byte	PC_REAL	deg	с
Longitude of the sub-solar pointCSUBSOLAR_LATITUDE	8 byte	PC_REAL	deg	С
Latitude of the sub-solar point C PLANETARY_PHASE_ANGLE	4 byte	PC_REAL	deg	С
Planetary phase angle C SUB_SPACECRAFT_LONGITUDE	8 byte	PC_REAL	deg	С
Longitude of the sub-spacecraft point C SUB_SPACECRAFT_LATITUDE	8 byte	PC REAL	deg	c
Latitude of the sub-spacecraft point				С
Julian Date	8 byte	PC_REAL		
C AIR_MASS	4 byte	PC_REAL		С

PFS EAICD

Secant of the emission angle

TABLE = SW_PERICENTER_UNPROCESSED_TABLESIZE = 32780 byte						
C OBT OBSERVATION TIME	10 byte	10 byte REAL				
Start Time of observation given in SCET, the SCET is a time format given in sun modified Julian date starting from 1970-01-01T12:00:00 (TBC).						
C SCET OBSERVATION TIME	4 byte	PC_INTEGER	enumerated C			
Start Time of observation given in on-board time that is seconds and fraction of seconds since 2003-05-04 (TBC).						
C SW RAW POINT	2 byte	PC_INTEGER	enumerated C			
SW interferogram quantization element. This is the RAW value acquired directly from the AD converter connected to SWC detector. Every point is a 16 bit signed integer.						
TABLE = SW_PERICENTER_UNPROCESSED_TABLE						

5 Appendix: Example of Directory Listing of PFS Data Set

A full example of PFS Dataset structure is listed here. Some obvious repetition are not shown here, but replaced with [...] : e.g., for DATA subdirectory, from LW/ to SW/ subdirectories the only changes is "LW" to "SW" in filename.

```
ROOT/
```

```
|-AAREADME.TXT
L
|-CATALOG/
   |-CATINFO.TXT
   |-DATASET.CAT
   |-INST.CAT
L
   |-INSTHOST.CAT
L
   |-MISSION.CAT
L
   |-REFERENCE.CAT
   |-RELEASE.CAT
L
   |-SOFT.CAT
   |-TARGET.CAT
I
|-CALIB/
   |-CALINFO.TXT
   |-LWC/
         |-PFS_DS-FWD_CAL_RAW_LW.DAT
   I
   L
         |-PFS_DS-FWD_CAL_RAW_LW.LBL
         |-PFS_DS-REV_CAL_RAW_LW.DAT
   I
         |-PFS_DS-REV_CAL_RAW_LW.LBL
I
   L
```


	Page : 3
I	-PFS_RESP-FWD_CAL_RAW_LW.DAT
I	-PFS_RESP-FWD_CAL_RAW_LW.LBL
I	-PFS_RESP-REV_CAL_RAW_LW.DAT
I	-PFS_RESP-REV_CAL_RAW_LW.LBL
	 -SWC/
1	-LASER_OFF/
i	-PFS_DS-FWD_CAL_RAW_SW.DAT
i	-PFS_DS-FWD_CAL_RAW_SW.LBL
i	-PFS_DS-REV_CAL_RAW_SW.DAT
i	-PFS_DS-REV_CAL_RAW_SW.LBL
i	-PFS_RESP-FWD_CAL_RAW_SW.DAT
I	-PFS_RESP-FWD_CAL_RAW_SW.LBL
I	-PFS_RESP-REV_CAL_RAW_SW.DAT
1	-PFS_RESP-REV_CAL_RAW_SW.LBL
I	
I	-LASER_ON/
I	-PFS_DS-FWD_CAL_RAW_SW.DAT
I	-PFS_DS-FWD_CAL_RAW_SW.LBL
I	-PFS_DS-REV_CAL_RAW_SW.DAT
I	-PFS_DS-REV_CAL_RAW_SW.LBL
I	-PFS_RESP-FWD_CAL_RAW_SW.DAT
I	-PFS_RESP-FWD_CAL_RAW_SW.LBL
I	-PFS_RESP-REV_CAL_RAW_SW.DAT
I	-PFS_RESP-REV_CAL_RAW_SW.LBL
 -	-CALIB_SAMPLES/
Ì	– -CALSAMPLESINFO.TXT
1	-LWC/
1	-PFS_0037_MEAS_RAD_LW.DAT
I	-PFS_0037_MEAS_RAD_LW.LBL
I	-SWC /
I	-LASER_OFF/
I	-PFS_1401_MEAS_RAD_SW.DAT
I	-PFS_1401_MEAS_RAD_SW.LBL
I	
I	-LASER_ON/
I	-PFS_0037_MEAS_RAD_SW.DAT
I	-PFS_0037_MEAS_RAD_SW.LBL

		. 10	
I			
' -DA	ATA/		
·	-IC/		
·	-LWC/		
Ì	│ │ │-PFS_ICM_CAL_HK_LW.DAT		
I	-PFS_ICM_CAL_HK_LW.LBL		
I	-PFS_ICM_CAL_RAW_LW.DAT		
I	-PFS_ICM_CAL_RAW_LW.LBL		
I	-PFS_ICM_MEAS_HK_LW.DAT		
I	-PFS_ICM_MEAS_HK_LW.LBL		
I	-PFS_ICM_MEAS_RAW_LW.DAT		
I	-PFS_ICM_MEAS_RAW_LW.LBL		
I	-SWC/		
I	-[]		
I	-MARS/		
I	LWC/		
I	-ORB001X/		
I			
I			
I			
I			
I	-PFS_0010_MEAS_HK_LW.DAT		
I	-PFS_0010_MEAS_HK_LW.LBL		
	-PFS_0010_MEAS_RAW_LW.DAT		
	-PFS_0010_MEAS_RAW_LW.LBL		
1	-ORB002X/		
1			
1	-SWC/		
1	-[] -NEV/		
1	-NEV/		
1	-LWC/ -PFS_NEV2_CAL_HK_LW.DAT		
1	-PFS_NEV2_CAL_HK_LW.LBL		
י ו	-PFS_NEV2_CAL_RAW_LW.DAT		
' 	-PFS_NEV2_CAL_RAW_LW.LBL		
I	-PFS_NEV2_MEAS_HK_LW.DAT		
I	-PFS_NEV2_MEAS_HK_LW.LBL		
	-PFS_NEV2_MEAS_RAW_LW.DAT		
-	· ·		

|-SWC/

I

I

| |-PFS_NEV2_MEAS_RAW_LW.LBL

|-[...] I |-DOCUMENT/ |-DOCINFO.TXT L |-CALIBR_REPORTS_LONG_TERM.TXT |-CALIBR_REPORTS_LONG_TERM.LBL L |-CALIB_SAMPLES_NOTE.TXT L |-CALIB_SAMPLES_NOTE.LBL L |-MEX-PFS-PSA-ICD-24.ASC L |-MEX-PFS-PSA-ICD-24.LBL |-MEX-PFS-PSA-ICD-24.PDF L |-MEX-PFS-PSA-ICD_FIG_1.PNG L |-MEX-PFS-PSA-ICD_FIG_2.PNG L |-MEX-PFS-PSA-ICD_FIG_3.PNG L |-MEX-PFS-PSA-ICD_FIG_4.PNG |-MEX_ORIENTATION_DESC.LBL L |-MEX_ORIENTATION_DESC.TXT L |-PFS_CAL_LAB_1.LBL L |-PFS_CAL_LAB_1.PDF I |-PFS_CAL_LAB_2.LBL |-PFS_CAL_LAB_2.PDF L |-PFS_CAL_NEAREARTH.LBL |-PFS_CAL_NEAREARTH.PDF L |-PFS_LWC_CALIB.LBL L |-PFS_LWC_CALIB.PDF |-PFS_MEX_FUM.LBL I |-PFS_MEX_FUM.PDF |-PFS_MEX_FUM1.LBL L |-PFS_MEX_FUM1.PDF L |-PFS_MEX_FUM2.LBL |-PFS_MEX_FUM2.PDF L |-PFS_MEX_FUM3.LBL |-PFS_MEX_FUM3.PDF L |-PFS_MEX_FUM4.LBL L |-PFS_MEX_FUM4.PDF L |-PFS_MEX_FUM5.LBL L |-PFS_MEX_FUM5.PDF


```
|-PFS_MEX_FUM7.LBL
Т
   |-PFS_MEX_FUM7.PDF
L
   |-PFS_MEX_FUM8.LBL
L
   |-PFS_MEX_FUM8.PDF
|-PFS_MEX_FUM9.LBL
L
   |-PFS_MEX_FUM9.PDF
L
   |-PFS_ON_MARS_EXPRESS.LBL
L
   |-PFS_ON_MARS_EXPRESS.PDF
L
   |-PFS_SWC_CALIB.LBL
L
   |-PFS_SWC_CALIB.PDF
L
L
|-ERRATA.TXT
Т
|-EXTRAS/
   |-EXTRINFO.TXT
L
   |-PFS_REPORT.LBL
L
   |-PFS_REPORT.TXT
L
|-GEOMETRY/
   |-GEOMINFO.TXT
L
   |-LWC/
| |-ORB001X/
L
   | | |-PFS_0010_MEAS_GEO_LW.DAT
L
   | | |-PFS_0010_MEAS_GEO_LW.LBL
L
   | |-ORB002X/
L
        |-[...]
   L
   |-SWC/
L
      |-[...]
|-INDEX/
L
|-LABEL/
   |-LABINFO.TXT
L
   |-PFS_HK.FMT
L
|-SOFTWARE/
   |-SOFT.LBL
L
   |-SOFT.zip
Т
   |-SOFTINFO.TXT
L
```


| |-ZIPINFO.TXT | |-VOLDESC.CAT

6 Appendix: Complete Label file Examples

PDS_VERSION_ID LABEL_REVISION_NOTE /* File Characteristics */	= =	PDS3 "PFS PRODCUTION SOFTWARE 2.10"
RECORD_TYPE RECORD_BYTES FILE_RECORDS FILE_NAME RELEASE_ID REVISION_ID /* Data Pointers */	= = = = =	FIXED_LENGTH 8204 240 "PFS_0010_MEAS_RAW_LW.LBL" 1 0
^TABLE	=	"PFS_0010_MEAS_RAW_LW.DAT"
/* Identification Elements */ DATA_SET_ID DATA_SET_NAME	= =	"MEX-M-PFS-2-EDR-NOMINAL-V1.0" "Mars Express Mars PFS EDR Nominal Mission Data V1.0"
PRODUCT_ID PRODUCT_CREATION_TIME MISSION_NAME INSTRUMENT_HOST_NAME INSTRUMENT_HOST_ID	= = = =	PFS_0010_MEAS_RAW_LW 2007-02-06T15:10:25.980 "MARS EXPRESS" "MARS EXPRESS" MEX
PRODUCT_TYPE	=	EDR
TARGET_TYPE TARGET_NAME	= =	"PLANET" "MARS"
MISSION_PHASE_NAME ORBIT_NUMBER	= =	"MC Phase 0" 10
START_TIME STOP_TIME SPACECRAFT_CLOCK_START_COUNT SPACECRAFT_CLOCK_STOP_COUNT	= = =	2004-01-10T11:04:12.189 2004-01-10T12:55:38.719 21819852.18989 21826538.71960
PRODUCER_ID PRODUCER_FULL_NAME PRODUCER_INSTITUTION_NAME	= = =	PFS_TEAM "PFS SCIENCE TEAM" "INAF-CNR"
INSTRUMENT_ID INSTRUMENT_NAME	= =	PFS "PLANETARY FOURIER SPECTROMETER"

	PFS EAICD		Document No Issue/Rev. No Date Page	0. :	MEX-PFS-DARC-EAICD-25 2.5 30 January 2008 44
INSTRUMENT_TYPE		=	או"	NFRAR	ED INTERFEROMETER"
INSTRUMENT_MODE	_ID	=	M	EAS_1	7
DETECTOR_ID		=	LV	V	
DETECTOR_DESC		=	DE	ETECT	A SHORT WAVELENGTH OR; LW IS A LONG ENGTH DETECTOR"
SPACECRAFT_POIN1	—	=		ADIR	
SPACECRAFT_POINT	TING_MODE_DESC	=	de		 This pointing mode is used to pointing to centre the target
SPACECRAFT_ORIEN	TATION	=	(0,	,1,0)	
^MEX_ORIENTATION	_DESC	=	"M	IEX_O	RIENTATION_DESC.TXT"
INSTRUMENT_CALIB	RATION_DESC	=	"N	/A"	
/* Object Definitions *	1				
OBJECT		=	TA	ABLE	
NAME		=			_RAW_DATA
INTERCHANGE_FOR	MAT	=		NARY	
ROWS		=	24		
ROW_BYTES		=		204	
		=	3		Τ.
DESCRIPTION		=	R/	AW DA	
OBJECT		=	CC	OLUM	N
BYTES		=	8		
DATA_TYPE		=		EAL	
		=		BT OE	SERVATION TIME"
START_BYTE		=	1		
UNIT DESCRIPTION		=		econd"	TIME OF OBSERVATION
DESCRIPTION		=	GI FC	VEN IN DRMAT	N SCET, THE SCET IS A TIME GIVEN IN SUN MODIFIED DATE "
END_OBJECT		=	CC	OLUMN	Ν
OBJECT		=			N
BYTES		=	4		
DATA_TYPE		=		B_FLC	
NAME START_BYTE		=	9	CETU	BSERVATION TIME"
UNIT		-	9 "U	т"	
DESCRIPTION		=	-		TIME OF OBSERVATION
			GI	VEN I	N ON-BOARD TIME THAT IS DS SINCE 2003-05-03 "
END_OBJECT		=	CC	OLUM	N
OBJECT		=	CC		N
BYTES		=		92	
DATA_TYPE		=		_	EGER
NAME		=			EROGRAM RAW DATA"
ITEMS		=	40	96	

	PFS EAICD	Document No. Issue/Rev. No. Date Page	: MEX-PFS-DARC-EAICD-25 : 2.5 : 30 January 2008 : 45
ITEM_BYTES DESCRIPTION			
START_BYTE UNIT END_OBJECT		= 13 = "N/A	ECTLY FROM LW CHANNEL" ." .UMN
END_OBJECT		= TAB	LE

END

_