PDS_VERSION_ID = PDS3 RECORD_TYPE = STREAM RELEASE_ID = 0001 REVISION_ID = 0000 OBJECT = TEXT PUBLICATION_DATE = 2005-05-31 NOTE = "Description of the CALIB directory contents for an ASPERA-3 release." END_OBJECT = TEXT END CALIB Directory Contents The CALIB directory contains calibration tables for a MEX ASPERA-3 archive volume. The files listed below are found in this directory. CALINFO.TXT - The file you are reading. ELSSCIH_CAL.TAB - The ASPERA-3 Electron Spectrometer (ELS) Science High range data Calibration Table. This table provides the calibration values per ELS sensor to convert the raw values (cnts/accum) into scientific units (number flux). It also provides calibration values to convert deflection voltages to center energies (eV) for the SCAN values. ELSSCIH_CAL.LBL - PDS label that describes the ASPERA-3 Electron Spectrometer (ELS) High range data Calibration Table. ELSSCIL_CAL.TAB - The ASPERA-3 Electron Spectrometer (ELS) Science Low range data Calibration Table. This table provides the calibration values per ELS sensor to convert the raw values (cnts/accum) into scientific units (number flux). It also provides calibration values to convert deflection voltages to center energies (eV) for the SCAN values. ELSSCIL_CAL.LBL - PDS label that describes the ASPERA-3 Electron Spectrometer (ELS) Low range data Calibration Table. Description of calibration table formulations and use: This is the calibration table formulation for the ELS High range science data (ELSSCIH) and the ELS Low range science data (ELSSCIL). These tables provide calibration values (columns) for each anode (16 rows) with a description of each calibration value and how to apply the value to the SENSOR data for converting raw [cnts/accum] to differential number flux [cnts/(cm**2-sr-s-eV)], and to the SCAN data for converting deflection potential (volts) to center energies (eV). The formulation and use of the tables are the same for both ELSSCIH and ELSSCIL, but the actual table values may differ, thus a separate table for each. To go from deflection potential (volts) to center energies (eV): Ec(i) = DV(i) * K_FACTOR where DV(i) is the deflection voltage for step i (SCAN row data) K_FACTOR is the eV/volt for each ELS anode (sector) foudn in the column one of the calibration tables. To go from cnts/accum to cnts/(cm**2-sr-s-eV): The differential number flux per energy channel per anode is: counts(i) * Sf j = -------------------------------------------------------- Ec(i) * [Ea/Er(i)] * Gf * Mt * Gt * Aa * Dt * Re where i is the scan step (energy channel) counts(i) = data value per energy channel (cnts/accum) Ec(i) = Energy channel value per scan step (eV) Er(i) = Relative efficiency per energy channel (Each anode has a polynomial to be solved per energy channel) (The polynomials are given below in the column descriptions) Ea = Absolute efficiency (detector efficiency) Gf = Geometric factor (cm**2-sr) Mt = MCP transparency (quoted by manufacturer) Gt = Grid transparency Aa = Active anode area ratio (Manufactured / Theory) Dt = Delta time (data accumulation time in seconds) Re = Resolution Sf = Scaling factor The CSV files contain the counts(i) and DV(i) values. The counts(i) values are in the SENSOR rows, and the DV(i) values are in the SCAN rows. The number of energy channels vary from file to file, but are constant within each CSV data file. In the corresponding LBL files, COLUMN 'VALUES' has ITEMS = x, where x is the number of energy channels for that file. The energy channel values (deflection voltages) are the same for each ELS anode, but can vary between data sweeps. The DV(i) values are included counts(i) values. The data values (counts(i)) are in the SENSOR rows and the energy channel values (deflection voltages DV(i)) are in the SCAN rows. A corresponding SCAN row follows the 16 sector (SENSOR) rows. For example, the CSV file layout for ELSSCIH is: Anode 0 SENSOR row: ELS Sector 0 HR, counts(i) in cnts/accum Anode 1 SENSOR row: ELS Sector 1 HR, counts(i) in cnts/accum . . Anode 15 SENSOR row: ELS Sector 15 HR, counts(i) in cnts/accum SCAN row: Deflection Potential, DV(i) in volts Relative Efficiency factors (Er(i)) for ELS are both energy and anode dependent. For the equations describing the Relative Efficiency factors, represent the particle energy by the plate voltage needed to detect that energy particle (remember that the particle energy and ELS deflection voltage are related by the K-factor). DV(i) in the equations (polynomials) below represents the ELS Deflection Voltage in volts of step i (found in SCAN rows of CSV data files). Use the DV(i) values per step per anode and the K_FACTOR per anode to calculate the center energies in eV: Ec(i) = DV(i) * K_FACTOR COLUMN 1 of CAL TABLE: K_FACTOR per anode (row in CAL TABLE) K-factors for Anodes 0 - 15 from left to right: 7.167, 7.152, 7.141, 7.165, 7.188, 7.625, 7.262, 7.266, 7.275, 7.254, 7.262, 7.255, 7.255, 7.271, 7.253, 7.188 (Remember each anode has a row of values, anodes are also referred to as sectors or sensors) Each DV(i) is different per energy step (i) and per anode. Use these values in the equations below to calculate the relative efficiency per energy channel Er(i). COLUMNS 2 - 12 of CAL TABLE: COEFF_xx, where xx = 00-10 These columns contain the coefficients for the polynomial: COEFF_00 + COEFF_01 * DV(i) + COEFF_02 * DV(i)**2 + COEFF_03 * DV(i)**3 + COEFF_04 * DV(i)**4 + COEFF_05 * DV(i)**5 + COEFF_06 * DV(i)**6 + COEFF_07 * DV(i)**7 + COEFF_08 * DV(i)**8 + COEFF_09 * DV(i)**9 + COEFF_10 * DV(i)**10 The equations are: Relative Efficiency [Er(i)] for ELS Anode 00 = 2141859e-6 + -6024497e-9 * DV(i) + 1794353e-11 * DV(i)**2 + -2796459e-14 * DV(i)**3 + 2543964e-17 * DV(i)**4 + -1395010e-20 * DV(i)**5 + 4532808e-24 * DV(i)**6 + -8024142e-28 * DV(i)**7 + 5954283e-32 * DV(i)**8 Relative Efficiency [Er(i)] for ELS Anode 01 = 1660858e-6 + -6522166e-9 * DV(i) + 3691054e-11 * DV(i)**2 + -1073737e-13 * DV(i)**3 + 1839852e-16 * DV(i)**4 + -1977613e-19 * DV(i)**5 + 1369280e-22 * DV(i)**6 + -6096699e-26 * DV(i)**7 + 1685387e-29 * DV(i)**8 + -2630885e-33 * DV(i)**9 + 1771363e-37 * DV(i)**10 Relative Efficiency [Er(i)] for ELS Anode 02 = 2021935e-6 + -5955053e-9 * DV(i) + 1878866e-11 * DV(i)**2 + -3736588e-14 * DV(i)**3 + 5172668e-17 * DV(i)**4 + -5034701e-20 * DV(i)**5 + 3363807e-23 * DV(i)**6 + -1488898e-26 * DV(i)**7 + 4137518e-30 * DV(i)**8 + -6504663e-34 * DV(i)**9 + 4399947e-38 * DV(i)**10 Relative Efficiency [Er(i)] for ELS Anode 03 = 1659460e-6 + -4954925e-9 * DV(i) + 1526991e-11 * DV(i)**2 + -2516840e-14 * DV(i)**3 + 2433297e-17 * DV(i)**4 + -1420192e-20 * DV(i)**5 + 4915142e-24 * DV(i)**6 + -9275283e-28 * DV(i)**7 + 7345382e-32 * DV(i)**8 Relative Efficiency [Er(i)] for ELS Anode 04 = 1731412e-6 + -5380326e-9 * DV(i) + 1709947e-11 * DV(i)**2 + -2884332e-14 * DV(i)**3 + 2826155e-17 * DV(i)**4 + -1658431e-20 * DV(i)**5 + 5735419e-24 * DV(i)**6 + -1076440e-27 * DV(i)**7 + 8447731e-32 * DV(i)**8 Relative Efficiency [Er(i)] for ELS Anode 05 = 1811691e-6 + -5230411e-9 * DV(i) + 1584896e-11 * DV(i)**2 + -2629686e-14 * DV(i)**3 + 2573125e-17 * DV(i)**4 + -1519547e-20 * DV(i)**5 + 5306596e-24 * DV(i)**6 + -1006748e-27 * DV(i)**7 + 7984914e-32 * DV(i)**8 Relative Efficiency [Er(i)] for ELS Anode 06 = 9984187e-7 + 2018039e-10 * DV(i) + -3170439e-12 * DV(i)**2 + 1589455e-14 * DV(i)**3 + -3484247e-17 * DV(i)**4 + 4156025e-20 * DV(i)**5 + -2951669e-23 * DV(i)**6 + 1283619e-26,* DV(i)**7 + -3351854e-30 * DV(i)**8 + 4821632e-34 * DV(i)**9 + -2933104e-38 * DV(i)**10 Relative Efficiency [Er(i)] for ELS Anode 07 = 1593066e-6 + -2964337e-9 * DV(i) + 3217016e-12 * DV(i)**2 + 9241350e-15 * DV(i)**3 + -3138800e-17 * DV(i)**4 + 4137379e-20 * DV(i)**5 + -3044785e-23 * DV(i)**6 + 1346434e-26 * DV(i)**7 + -3552330e-30 * DV(i)**8 + 5151235e-34 * DV(i)**9 + -3156380e-38 * DV(i)**10 Relative Efficiency [Er(i)] for ELS Anode 08 = 2097414e-6 + -3125151e-9 * DV(i) + -4329302e-12 * DV(i)**2 + 4317461e-14 * DV(i)**3 + -9923385e-17 * DV(i)**4 + 1177737e-19 * DV(i)**5 + -8280358e-23 * DV(i)**6 + 3573841e-26 * DV(i)**7 + -9293869e-30 * DV(i)**8 + 1335333e-33 * DV(i)**9 + -8131189e-38 * DV(i)**10 Relative Efficiency [Er(i)] for ELS Anode 09 = 2062909e-6 + -4885969e-9 * DV(i) + 1427184e-11 * DV(i)**2 + -2260352e-14 * DV(i)**3 + 2111094e-17 * DV(i)**4 + -1194770e-20 * DV(i)**5 + 4024074e-24 * DV(i)**6 + -7416131e-28 * DV(i)**7 + 5754756e-32 * DV(i)**8 Relative Efficiency [Er(i)] for ELS Anode 10 = 2180664e-6 + -6296202e-9 * DV(i) + 1891070e-11 * DV(i)**2 + -3064724e-14 * DV(i)**3 + 2948811e-17 * DV(i)**4 + -1724577e-20 * DV(i)**5 + 5997964e-24 * DV(i)**6 + -1138182e-27 * DV(i)**7 + 9060635e-32 * DV(i)**8 Relative Efficiency [Er(i)] for ELS Anode 11 = 1603139e-6 + -8534362e-10 * DV(i) + -8667849e-12 * DV(i)**2 + 4394307e-14 * DV(i)**3 + -8845054e-17 * DV(i)**4 + 9830094e-20 * DV(i)**5 + -6619258e-23 * DV(i)**6 + 2766078e-26 * DV(i)**7 + -7009821e-30 * DV(i)**8 + 9858768e-34 * DV(i)**9 + -5896570e-38 * DV(i)**10 Relative Efficiency [Er(i)] for ELS Anode 12 = 2026128e-6 + -3624418e-9 * DV(i) + 1755093e-12 * DV(i)**2 + 2385497e-14 * DV(i)**3 + -6688306e-17 * DV(i)**4 + 8554336e-20 * DV(i)**5 + -6280654e-23 * DV(i)**6 + 2795381e-26 * DV(i)**7 + -7448619e-30 * DV(i)**8 + 1092352e-33 * DV(i)**9 + -6770721e-38 * DV(i)**10 Relative Efficiency [Er(i)] for ELS Anode 13 = 4264294e-6 + -2121222e-8 * DV(i) + 8360316e-11 * DV(i)**2 + -1760020e-13 * DV(i)**3 + 2193857e-16 * DV(i)**4 + -1690439e-19 * DV(i)**5 + 8124086e-23 * DV(i)**6 + -2368735e-26 * DV(i)**7 + 3831171e-30 * DV(i)**8 + -2635711e-34 * DV(i)**9 Relative Efficiency [Er(i)] for ELS Anode 14 = 1871975e-6 + -2714091e-9 * DV(i) + -1640371e-12 * DV(i)**2 + 3116431e-14 * DV(i)**3 + -7626180e-17 * DV(i)**4 + 9286905e-20 * DV(i)**5 + -6636238e-23 * DV(i)**6 + 2903883e-26 * DV(i)**7 + -7657761e-30 * DV(i)**8 + 1117466e-33 * DV(i)**9 + -6928145e-38 * DV(i)**10 Relative Efficiency [Er(i)] for ELS Anode 15 = 1714980e-6 + -7089766e-9 * DV(i) + 3259217e-11 * DV(i)**2 + -8410868e-14 * DV(i)**3 + 1347052e-16 * DV(i)**4 + -1391524e-19 * DV(i)**5 + 9397261e-23 * DV(i)**6 + -4114030e-26 * DV(i)**7 + 1123482e-29 * DV(i)**8 + -1737531e-33 * DV(i)**9 + 1161350e-37 * DV(i)**10 Now, the hard part is done :) -- the relative efficiency per energy channel [Er(i)] has been determined. COLUMN 13 of CAL TABLE: ABS_EFF All anodes have absolute efficiency (Ea) of 0.95 COLUMN 14 of CAL TABLE: GEOM_FACTOR (cm**2-sr) All anodes have a Geometric Factor (Gf) of 0.000588 COLUMN 15 of CAL TABLE: MCP_TRANS All anodes have MCP Transparency (Mt) of 0.58 (quoted by manufacturer) COLUMN 16 of CAL TABLE: GRID_TRANS All anodes have Grid Transparency (Gt) of 0.81 COLUMN 17 of CAL TABLE: ANODE_RATIO All anodes have an Active anode area ratio (Aa) of 0.87 COLUMN 18 of CAL TABLE: DELTA_TIME All anodes have a delta time (Dt) of 0.028125 seconds COLUMN 19 of CAL TABLE: RESOLUTION Resolutions (Re) for Anodes 0 - 15 from left to right: 0.08653, 0.08394, 0.08331, 0.08579, 0.08124, 0.08480, 0.08194, 0.07890, 0.07812, 0.08094, 0.08095, 0.08346, 0.08297, 0.07353, 0.07396, 0.08843 COLUMN 20 of CAL TABLE: SCALING_FACTOR Scaling factors (Sf) for Anodes 0 - 15 from left to right: 2.632867, 1.000000, 0.635386, 0.712443, 0.810931, 0.896400, 1.370552, 0.928571, 0.665921, 1.000000, 0.807453, 1.000000, 0.988789, 1.461922, 0.928571, 2.146711 This completes the set of terms needed to determine the differential number flux [cnts/(cm**2-sr-s-eV)] per energy channel per anode using the equation given: counts(i) * Sf j = -------------------------------------------------------- Ec(i) * [Ea/Er(i)] * Gf * Mt * Gt * Aa * Dt * Re