

HUYGENS

TITRE : HUYGENS FLIGHT CHECKOUT F8 TEST REPORT

Doc n° HUY.ASPI.HIT.RE.0001

Ed. : n°01 Rév. :n°00 Date : 10/07/02

	FUNCTION	NAME	SIGNATURE	DATE
WRITTEN BY	TECHNICAL TEAM	P.COUZIN	27	10/07/02
APPROVED BY	PROGRAM MANAGER	G.HUTTIN	P.O.A	10/07/02
	4		JQ	

This document is the property of Alcatel Space Industries and shall not be reproduced or transmitted without their authorisation

		SOCIE	TE	N	IILITAII	RE		PROGRAMME	
CLASSE	S								
DE CONFIDEN	ITIALITE	Non Protégé :		Non Pr	otégé :	:	□ c	lasse 1/Grand Public :	
		Réservé Alcatel	:	Diff. Re	estreint	e:	□ c	lasse 2/Industrie :	
		Confid.Alcatel	: 🗆	Confid	Défen	se :	□ c	lasse 3/Diff. Restr. :	
		Secret AS :		Secret	Défens	e :	□ c	lasse 4/Confidentiel :	
		Clien	t	n°	contrat	ou		Programme	
CONTRAT ou I	MARCHE	ESA			marche	Ś		HUYGENS	
	-			12 1	50/96/1	NL/RE			
(Note Exte	rne)	Document Co	ntractuel		Lot			Poste	
		-			-			-	
TITRE HU	JYGENS FL	IGHT CHECKOU	T F8 TEST RI	EPORT				Catégorie de configurat	tion
								Configuré :	
								Non configuré :	
AUTEUR									
Sigle :O	SM/IE								
Nom . P	. Couzin								
Signature	Signature								
Date	Réf. i	nterne/Ed.	Réf. Prog	ramme/	Ed.	Nb pa	ages	Nb d'annexes	
10/07/02		1	HUY	(GENS 27 0			0		
RESUME D'AUTI	EUR								
Ce document pre s'est déroulé le 2	ésente l'éva 20 septembr	luation technique re 2001.	de la sonde l	HUYGEN	S pend	lant le	huiti	ème " cruise check out " (F8	s). F8
Références	Réf.	du fichier :			Langu	e du c	locur	ment : Ang	
Informatiques	Nor	n du logiciel :	WORD 95		Langue faisant foi : Ang				
		0	ETAT DES	EDITIO	NS			0	
N°			DATE			F	AISC	on de l'evolution	
1					Création -				
MOTS CLES		Catégori	e de diffusio	n					
HUYGENS		II	NTERET		Sigle		:		
CRUISE CHECK OUT		Court terme :			Nom		:		
		Moyen et lor	g termes :		Signa	ture			
		DIFFUSION	SUPPLEMEN	TAIRE					
		Autorisée :			Sigle :				
		Contrôlée :			Nom		:	M. HUTTIN	
					Signa	ture			

EXTERNAL COMPANIES						
Company	Nb of Copies					
ESA ESTEC	M. VERDANT	1				
ESA ESOC	C. SOLLAZZO	2				
ESA ESTEC	JP.LEBRETON	5				

Internal Diffusion Sheet

P.MAUTE	х
B.LAFOUASSE	х
G.HUTTIN	х
AM SCHIPPER	х
P. COUZIN	х

Change Notice

ED.	REV.	DATES	MODIFIED PAGES	CHANGES	APPROVAL
01	00	10/07/01		First Issue	

TABLE OF CONTENTS

1. SCOPE
2. APPLICABLE DOCUMENTS
3. CONFIGURATION
3.1. SPACECRAFT CONFIGURATION
3.2. RADIO FREQUENCY SUBSYSTEM
4. FLIGHT CHECK OUT 8 (F8)5
4.1. OPERATIONS
4.2. RESULTS
4.2.1. Telecommanding7
4.2.2. Telemetry Frames and packets structure
4.2.3. Telecommunication11
4.2.4. Power
4.2.5. Data handling15
4.2.6. On board software19
4.2.7. Thermal
4.2.8. Experiments status word25
5. CASSINI CHECK OUTS26
6. CONCLUSION

1. SCOPE

The present report covers the seventh flight cruise check-out (F8) performed in the frame of the phase F of the HUYGENS Probe.

F8 was run at launch + 47 months on the 20th of September 2001. The test was also run in between the so called **Probe Relay Tests 3** (PRT3) and 4 (PRT4) which purpose were to characterize the PSE performance in realistic RF link conditions.

This document aims at analyzing the behavior of the HUYGENS Probe system and subsystems during the test.

Note that experiments behavior analysis is not part of this report.

In addition,

- The present analysis is based on the data downlinked in near real time to HPOC/ESOC during F8 through CASSINI High Gain Antenna during a single DSN Goldstone pass. It was later cross checked with the same data recorded on board CASSINI SSR, and downloaded the day after F8.
- The reference test for comparison is mainly F4, run on the 15^{th} of September 1999 at launch + 23 months.
- □ After processing all the engineering data plots on the one hand, and dedicated status files on the other hand (relays, software status), were delivered to ALCATEL.

2. APPLICABLE DOCUMENTS

The tests have been performed according to the following documents:

- AD01: ESOC F8 sequence
- AD02: Spacecraft Data Operations Handbook (SDOH) : DOPS-SMD-HUY-DB-004, ISSUE 1.0, June 1996.

Reference documents for the present report are:

- RD01: T° Flight Prediction Report Doc. n° HUY.MBB.340.AN.0045, Issue 03
- RD02: Thermal model adjustment and recalculation of temperatures Doc. n° TN-RIA54-98-0018-A date 07/07/98
- RD03: Huygens Flight checkout F1 & F2 test report Doc. n° HUY.AS/c.100 .TR .600
- RD04: Huygens Flight checkout F3 test report Doc. n° HUY.AS/c.100 .TR .601
- RD05: Huygens Flight checkout F4 test report Doc. n° HUY.AS/c.100 .TR .602
- RD06: Huygens Flight checkout F5 test report Doc. n° HUY.AS/c.100 .TR .603
- RD07: Huygens Flight checkout F6 test report Doc. n° HUY.AS/c.100 .TR .604
- RD08: Huygens Flight checkout F7 test report Doc. n° HUY.AS/c.100 .TR .605
- RD09: Huygens F8 Checkout Operational Report Doc. n° TOS-OF-HFR-008

3. CONFIGURATION

3.1. SPACECRAFT CONFIGURATION

- F8 happens 9 months after the CASSINI Jupiter flyby. The Orbiter-Z axis, ie the High Gain Antenna axis is oriented towards the Earth. At the time of F8 the Sun-Spacecraft-Earth angle is about 10°. Location of CASSINI at F8 time, and planets/Sun geometry is illustrated in Fig.3.2 & 3.3. S/C orientation is Earth.
- The accuracy of the HGA pointing to the Earth, ie CASSINI AACS deadband is +/-2mrad for the X & Y axes and +/-20mrad for the Z axis of CASSINI
 - Distances to the Sun
- The relative distance to the Sun is \sim 6.35AU (see Fig 3.1) and to the Earth is \sim 6 AU

Fig. 3.1: CASSINI - Sun distance

- The CASSINI communication configuration status during F8 is :
 - Prime antenna is the HGA
- CASSINI instruments status is : in sleep mode, muted (as demonstrated compliant with Huygens checkout during an august 2001 dedicated flight test).

3.2. RADIO FREQUENCY SUBSYSTEM

TBD

Figure 3.3 : SUN-EARTH position around F8

4. FLIGHT CHECK OUT 8 (F8)

4.1. **OPERATIONS**

F8 consists in the execution of a so-called Checkout scenario 1b (CO#1b)), ie a simulated descent, where the "b" indicates that the link on the chain A uses TUSO & RUSO. Compared to the original CO#1 scenario, it also includes :

- ⇒ a repetition of the "Flight check out " alteration TC to have a better confidence in the TC execution. This mainly intends to ensure that GCMS will not operate its valves in checkout,
- \Rightarrow POSW and SASW E²PROMs dumps
- \Rightarrow some modifications requested by the PIs and explained below in italic letters.

The relevant SASF was loaded on board CASSINI, then executed at a pre-programmed time : execution start was at 11h20 UTC on the 20/9/2001. As already mentioned, CASSINI HGA was pointed towards the Earth, making feasible a real time transmission of the data. Probe telemetry was down linked at a 248.85kbits /s rate via the DSS25 DSN station in Goldstone.

The F8 structure is based on:

- PSA activation through Orbiter CDS "power on" TC at So-60mn
- Dump SASW A/B EEPROM at So-40mn
- Probe wake up by the CASSINI Orbiter via the Solid State Power Switches at So-34mn40s
- To simulated by Resume command at So and To detection at So+6.375 s
- descent simulation run with Chains A and B indicated as "valid" : experiments are directed to receive the broadcasted data from Chain A
- RF link on Chain A makes use of TUSO and RUSO (DWE experiment)
- HASI and SSP run a simulated descent then SSP performs a specific investigation activity on APIS at So+161mn19s for a 42s duration.
- ACP is in dormant mode during the first 110mn then in "mechanisms check mode"

from 140mn to 153mn.

- GCMS runs a simulated descent, with valves disabled by TCs.
- DISR runs a descent, with Spin simulation by TCs; a specific investigation activity is added at the end of the sequence, after SSP investigation on APIS.
- DUMP POSW A/B EEPROM starting at So+187mn23s

The F8 "as run" key events are:

EVENTS	SEQUENCE TIMING	EXECUTION TIME IN UTC
PSE turn on	So-1:00:00	2001-263 T11:20:00
RUSO ON	So-00:59:44	2001-263 T11:20:16
Select RUSO	S0-00:58:43	2001-263 T11:21:17
PROBE turn on	So-00:34:40	2001-263 T11:45:20
TUSO ON	So-00:34:24	2001-263 T11:45:36
Select TUSO	So-00:34:19	2001-263 T11:45:41
To detection	S0+0:6:375	2001-263 T12:20:06.375
PROBE OFF	S0+3:17:50	2001-263 T15:37:50°
PSA's OFF	S0+3:18:44	2001-263 T15:38:44

Checkouts durations are compared in Fig.4.1 hereunder. This shows that F8 is clearly the longest checkout.

Fig. 4.1: Checkouts durations

4.2. **RESULTS**

As already mentioned, the analysis is based both on engineering data plots received at ALCATEL Cannes, while the various status of the Probe were made available on the 24/03/01.

Reference for the analysis is **F4**, the previous CO#1b sequence performed on the 15th of September 1999, however comparisons are also performed with F7 results (F7 is a CO#2 sequence run on the 22/03/2001).

The main outcomes of the evaluation are:

- the timing requested by the scenario are correctly followed by the CDS and all 378 TCs generated by ground are correctly executed for both chain,
- the timeline shows no anomaly (an overview of the sequence is given by the DDB information versus time)
- all the status information was detaily checked and validated from the data retrieved.

The following presents the analysis of F8, per function.

4.2.1. Telecommanding

This section addresses the Probe System commanding function through the analysis of the reported PSA, CDMU A & B Telecommand counters, and of the reported CDMU's Mission timeline commands counts. This provides a good overview of the execution of the checkout sequence, and of the Mission timeline.

The Figure 4.2 hereafter shows the evolution of the different counters along F8, where the

time "0" corresponds to the start of F8 sequence, i.e. the turn ON of the PSA A & B. In this time scale, S0 event happens at t=3600s, and T0 is detected at t=3606.375s

Fig 4.2 : Telecommand counters telemetry

It clearly appears that :

- All ground telecommands have been accepted as valid, both on PSA's and CDMU's side,
- More telecommands have been sent to PSA A, which is due to the numerous commands for switching to basic frequency on chain A,
- Exactly the same number of valid TC have been forwarded to CDMU A & B,
- The evolution of the automatic commands counts, identical for A and B channels is in line with the stored MTT

4.2.2. Telemetry Frames and packets structure

This section deals with the review of the data contained in the telemetry frame and packets headers, especially the various sequence counters evolution with time.

- **PSA Delta Seq. Count**: A Delta value of 1 is nominally reported on both chains.
- PSA Delta Spacecraft Time: A Delta value of 1 is nominally reported on both chains.
- Super Packets Delta Seq. Count: A Delta value of 1 is nominally reported on both chains
- **Super Packets Master and Virtual Channels Frame Counts**: Periodical reset of the Master channel frame counts on both chains is nominally noticed.
- Dump Super Packets Delta Seq. Count and Sequence Count and Real Time Counter: A Delta value of 1 in the sequence count and in the spacecraft time is nominally reported on both chains. Similarly, a monotonous increase of the Dump Super Packets absolute Seq. Count is nominally reported on both and the RT Count on both chains increases and resets when the Probe is OFF.
- Probe HK packets Delta Seq. Counts: a Delta value of 1 is nominally reported on both chains for HK1, 2 & 3. One Delta value of 24 is nominally reported for HK4 on both chains: it corresponds to the reset of this HK packet (which contains Entry Acceleration data), 6.4 mn after T_{probe ON}. This mechanisms will permit to report the entry acceleration profile to CASSINI after the telecommunication link establishment, during the real mission.

4.2.3. Telecommunication

Here are addressed the telemetry parameters related to the telecommunication subsystem, its units, and the DWE experiment, as acquired in the Probe System housekeeping.

Main related features are :

- RF link on chain A makes use of TUSO and RUSO
- CASSINI HGA is pointed towards the Earth, and the Sun is constantly outside the HGA main lobe.
- PSA secondary voltages: PSA 12V, 5V and LNA supply voltage (nominally 12V), are in their nominal range and perfectly stable over the test.
- RUSO status: RUSO is turned ON 16s after PSA A is ON. RUSO reports lock status at about RUSO ON + 16 mn, well in line with expected behaviour and F5 results.
- TUSO status: TUSO is turned ON 16 s after Probe is ON. TUSO reports lock status at about TUSO ON+16mn. This duration is explained by the higher TUSO initial temperature, the higher the temperature, the shorter the time to lock. Note that the mission timeline permits warm up duration as long as 30mn.
- TCXOs status: TM nominally reports TCXO selection on B chain and not on A chain,
- **HPA/TX power**: As expected, HPA is OFF, and no power is monitored at TX output.
- Receivers status: TM nominally reflects a RSW state of 2 until TXs are turned ON, on both chains.

On Chain A, state 6 (carrier, subcarrier, bit sync and Sync Marker locked) has been reached after about the **6**th attempt to switch to Basic Frequency; this is slightly similar than during F4 (it shall be noticed that F1 showed a complete receiver lock on chain A during CO#2 at the **3**rd attempt ; and on ground at worst, lock was achieved at the **2**nd attempt). As noted for F4, this is not a concern (in total the sequence plans 28 attempts to switch to basic frequency) and it is strongly believed this phenomenon to be related to the initial T° of TUSO . It was colder during F5 (see later), about 10°, while it was higher during F1 ; a colder T° leads to a longer time for the TUSO oscillator frequency to stabilize and enter in the 30kHz PSA acquisition bandwidth. It should be pointed out that this problem will not happen during the mission : about 30mn TUSO warm up time is foreseen before PSA attempts to acquire the Probe RF signal in <u>basic frequency mode</u>, as in checkout because of the CASSINI-Huygens geometry change. At that time, the frequency variation of the transmitted signal will be far below the requested 30kHz).

As expected, on Chain B (no TUSO/RUSO), switch to basic frequency is successful at the 1st attempt.

■ AGC: The table hereunder evidences the AGC evolution since the first flight checkout. The AGC level for F8 is well in accordance with conclusions reached after the AGC specific test (see RD3) and confirmed by F3, F4, F5, F6 and F7 : the favorable AGC level is explained by the Earth-spacecraft-Sun geometry illustrated in Fig. 3.2 & 3.3, considering that the HGA is pointed towards the Earth.

TEST	AGC A	AGC B
F1	-101 dB+/-0.4 S shape period 85 mn	-100.6 dB +/-0.4 S shape period 85 mn
F2	-104 dB+/-0.5	-106 dB+/-0.4
Off Sun Test	-94.6 dB+/-0.1	-93.3 dB+/-0.1
F3	-98 dB→ -100.5 dB+/- 0.4	-97.8 dB →-98.8dB+/-0.4 small amplitude max 99.3 dB
F4	-98 dB +/-1dB S shape period 40 mn	-97 dB +/-1dB S shape period 40 mn
F5	-93.5 dB +/-0.5dB	-93 dB +/-0.5dB
F6	-93.8 dB +/-0.5dB	-93 dB +/-0.5dB
F7	-94.2dB +/-0.8dB	-93.1 dB +/-0.5dB
F8	-93.5dB +/-0.5dB	-93 dB +/-0.5dB

NCO: as far as the Probe System is concerned, NCO frequency changes are as expected, both on chain A (RUSO) and chain B (TCXO), and very similar. It shall be underlined that the NCO frequency modulation noticed by DWE, similar to those observed during F1, F3, F4, F5 & F7 (~0.367Hz with a maximum amplitude oscillation of about 25Hz, see DWE report) is currently not a Probe System concern Also, so called dF/dt parameters on both chains are within the expected range.

4.2.4. Power

• CASSINI Telemetry has shown :

- PSA A power consumption ranges from 40W during RUSO warm up phase, down to 32W afterwards,
- PSA B average consumption is 25W, which means a total PSE steady state consumption of 57W, identical to F5,
- Probe total average maximum consumption is 150W.

These values are well in line with reference test results.

- Current limiters status and Pyro relays status have been cross checked with the retrieved telemetry :
 - Nominal Current Limiters status changes during F8 are displayed in Fig 4.3. They are fully in line with the Mission Timeline and F8 sequencing.

Figure 4.3 : Nominal current limiters status changes along F8 ("0" = start of F8)

Pyros selection relays status changes during F8 are displayed in Fig 4.4 for both chains, with a zoom around T0. All the nominal and redundant relays are set and reset by each of the chain at the proper time, fully in line with the Mission Timeline and F8 sequencing. It shall be noted that

the period of reporting of the pyro selection relay status is 16s.

Doc. n° HUY.ASPI.HIT.RE.0001 Issue: 01 Rev.: 00 Date: 10/7/2002 Page 15

Figure 4.4 : Reported selection relay status changes along F8 (NB : S0 is at t=3600s)

This document is the property of Alcatel Space Industries and shall not be reproduced or transmitted without its prior written authorization

- □ Main bus voltage is 28.09 Volts, as expected.
- **Batteries voltages** telemetry at the end of the test are similar to the telemetry reported during F4 and F7, slightly higher.

	F1	F2	F3	F4	F5	F6	F7	F8
battery 1 A	2.93 V	2.28 V	2.00 V	2.6 V	2.00 V	2.28 V	2.6 V	2.6 V
battery 2 A	2.6V	2.28 V	2.00 V	2.28V	2.00 V	1.96 V	2.28 V	2.6 V
battery 3 A	1.3V	1.30 V	1.00 V	1.30 V	1.00 V	0.98 V	1.30 V	1.30 V
battery 3 B	1.3 V	1.30 V	1.00 V	1.30 V	1.00 V	0.98 V	1.30 V	1.30 V
battery 4 B	2.6 V	2.28 V	2.00 V	2.30 V	2.00 V	1.96 V	2.28 V	2.6 V
battery 5 B	2.28 V	1.96 V	1.63 V	1.96 V	1.63 V	1.63 V	2.28 V	2.28 V

Note that these voltages, as long as batteries are not connected to the PCDU, are not in any way representative of the actual batteries voltages. They actually reflect the leakage current in the measurement diode which is somewhat proportional to the PCDU temperature.

The lower battery 3 voltage parameter is due to the cross trapping of the relevant telemetry measurement electronics..

BDR currents are in accordance with the operating modes of the Probe System and experiments and identical to the reference test, ie, at different phases of the mission :

	Pre To	To to To+110 mn	To+140 mn	To+154 mn	Reference test
BDR1	0.55 A	0.82 A	0.82 A	0.5 A	F4
BDR2	0.49 A	0.72 A	0.72 A	0.45 A	F4
BDR3	0.49 A	0.72 A	0.72 A	0.45 A	F4
BDR4	0.49 A	0.72 A	0.72 A	0.45 A	F4
BDR5	0.55 A	0.82 A	0.82 A	0.5 A	F4

The unbalancing of the BDR's 1 & 5 is nominal, set to compensate the batteries 2, 3 & 4 discharge during the coast phase.

 Units and Experiments currents are summarized in the following table. They are in perfect accordance with the reference test and expected behavior.

UNITS	CURRENT	UNITS	CURRENT	Reference
				test
ΤΧ Α	0.19 A	тх в	0.195 A	F4
TUSO N	0.32 A warm up	TUSO R	0.3 A warm up	F4
	0.127 A steady state		0.120 A steady state	
CDMU A	0.326 A	CDMU B	0.337 A	F4
Prox Sensor A	0	Prox Sensor B	0	- (unit is OFF)
DISR1 N	0.16 A/peak 0.25 A	DISR1 R	0.15 A/peak 0.24 A	F4
DISR2 N	0	DISR2 R	0	F4
GCMS1 N	0.28 A in pre To	GCMS1 R	0.26 A in pre To	F4
	0.4 A in post To		0.38 A in post To	
GCMS2 N	0	GCMS2 R	0	F4
HASI1 N	0.2 A in post To	HASI1 R	0.18 A in post To	F4
HASI2 N	0	HASI2 R	0	F4
ACP1 N	0.07 A	ACP1 R	0.07 A	F4
ACP2 N	0	ACP2 R	0	F4
ACP3 N	Peaks up to 0.30 A	ACP3 R	Peaks up to 0.38 A	F4
SSP N	0.32 A	SSP R	0.027 A	F4

4.2.5. Data handling

This section deals with the analysis of all the telemetry data related to the CDMS, and to the PSA's data handling functions.

- **Central Acceleration data**: The reported TM on A and B nominally shows a 0 g value for the accelerometer 2 (parameters 2A, 2B).and 3 (parameters 3A, 3B).

For the CASU accelerometer 1, a value of 0g is reported on both 1A & 1B TM, with a spurious 1 LSB peak.

It shall be underlined that spurious drifts on the accelerometers 1 and 3 telemetry were evidenced during F1, F2, F3 & F4. While the noise peaks reported within F1 and F2 were marginal, the problem got much worse during F3 with noise peaks

reaching up to 2 LSBs, then slightly improved during F4.

The situation during F5, F6 and F7 was definitely better : only accelerometer 1 TM seldom showed 1LSB peaks. F8 is fully in line with the measurements observed during these last checkouts.

Tentative explanations were provided in the F3 report describing the noticed noise as possibly coming from a stiction effect at the level of the accelerometers 1 & 3. This is actually not in contradiction with the observed improvement, the stiction being strongly dependent upon the initial conditions of the test, and the entry acceleration parameters shall be kept under a close monitoring. It shall also be noticed that the stiction (dry friction) phenomenon may apply on both positive and negative directions. The fact that no spurious appears from accelerometers 1 & 3 could thus reflect a negative shift of these sensors, not visible because the negative values are « cut » by the TM acquisition electronics..

- Radial Acceleration data: The reported TM nominally shows a 0 g value.
- DDB Mission Phase flags: The telemetry properly reports the mission modes changes, identical to F3 : Flight Checkout Suspended and De-activate modes.
- DDB F1 & F2 flags status: To "detection" is correctly reported on both chains through F1 change. F2 nominally reports the TAT use over the whole sequence. Note that To corresponds to the time of pilot chute firing, and To = So +6.375s where So corresponds to the g-threshold detection by the POSW.
- DDB Time: For both chains, it is in line with Probe Real Time before To, then with Probe [Mission Time - 6.375s] from To (ie. here from Tp+34mn46.375s to probe off).
- DDB Altitude : Nominally set to 320 km until To, then follows the Time Altitude Table (TAT) down to "surface" (Proximity Sensor is OFF).
- DDB Spin : TM reports permanently 0rpm since Spin is not simulated in CO#2 type sequences.
- — µprocessor Valid : As expected, analysis of the Probe status shows that both CDMUs have been set as "valid " all over the test duration, giving the experiments the opportunity to listen to the A chain (CO#1). Processor Valid evolution along F8 is shown in Fig 4.5 hereafter.
- MTU : All three timers registers content, as read by both CDMUs, are reported to be 16#FFFF. These are the expected values when the MTU is turned on, but not programmed, as per F1, F2, F3, F4, F5, F6 & F7.

- EEPROM's : As for all previous checkouts, a complete CDMUs EEPROM (16kW) and PSA EEPROM (8kW) dump was performed, and the content was compared to the expected one, ie. in the present case, the memory contents as dumped during F7. No difference was noticed for all 4 memory banks, showing a good immunity of the CDMUs and PSA's EEPROM chips to Single Event Upsets in unbiased conditions.
- Processor boards : no anomaly in the PSA's and CDMU's init was noticed. In addition, no double nor single RAM (CDMU's o PSA's) error was flagged by the EDAC circuitry all over F8 duration.

Fig 4.5 : µp Valid changes along F8 (So is at t=3600s)

- Reference voltages : this telemetry provides highly accurate information on the current performance of the CDMUs acquisition chain in view to possibly adjust the analog parameters calibration curves, and especially the Entry Accelerometers ones, on board. There are 3 stabilized reference voltages :
 - 4.54V, and
 - 300mV and
 - 500mV

the later ones being set to be close to the voltage corresponding to the \mbox{Sp} g-threshold, ie. 522mV.

The Fig 4.6 and 4.7 hereafter show the evolution over F8 of the stabilized voltages as acquired by the CDMU's. The telemetry of the CDMU's 5V supply voltage is also displayed. This clearly demonstrate the very good operation of the Analog acquisition chain. Also, no degradation from launch time is evidenced.

Fig 4.6 : CDMU A Voltages (5V is not stabilized)

Fig 4.7 : CDMU B Voltages (5V is not stabilized)

4.2.6. On board software

4.2.6.1. SASW

This paragraph addresses the telemetry related to the SASW operation.

- High Stack Water Mark: This parameter aims at providing data on the stack usage by the SASW. It reports the 16bits address of the top of the stack, which shall be lower than the Stack base address, i.e. 16#EFFF. Value reported during F8 is in line with the requirement, but very marginally changed compared to F1, F2, F3, F4, F5 & F6 for which it was identical. No obvious explanation is found.
- SASW CUT Processing Time: It reflects the processor load for each CUT. As expected, and as per F1, F2, F3, F4, F5, F6 & F7, processing time ranges from 16ms to 27ms, representing a nominal PSA data handling processor load of about 20 %.
- DT Start/End Time, DT Start EXEC: The DTStart parameter provides the time within the CUT when the Dead Time Start signal is received by the SASW. It shall be <120ms. DTEnd parameter provides the time within the CUT when the DTStart interrupt processing stops. The interrupt processing duration is given by the DTStart EXEC parameter.</p>

During F8, on both chains, **DTStart** nominally happens generally 18.7ms after the CUT start; processing duration is in average 1.4ms, in line with the reference test results.

 FDI Start/End, FDI EXEC: The FDIStart signal provides the time when a Probe frame is received. FDIEnd provides the time when the FDI is serviced, while FDI EXEC simply indicates the duration of the interrupt servicing.

It shall be noticed that the **FDIStart** signal monotonously increases because of the Probe (CDMU's) TM clock drift w.r.t. CASSINI RTI.

Fig. 4.9 shows this clock drift computed as a function of the temperature measured at CDMU level over F3, F4, F5, F6 and F7. This demonstrates that the TM clock on board the CDMU's is well within its stability requirement, and has not degraded from F3. F8 measurements are in line with these figures.

Processing duration, given by **FDI EXEC** parameter is in average 0.8ms, in line with the reference tests results.

DMA Start/End, DMA EXEC: The DMAStart signal provides the time when a Direct Memory Access interrupt is received. DMAEnd provides the time when the DMA interrupt is serviced, while DMA EXEC indicates the duration

of the interrupt servicing.

The evolution of the telemetry related to DMA interrupt is quite similar to FDI related telemetry, with the same comments.

Duration of the interrupt servicing is, in average, 1.4ms, in line with the reference tests results.

As a conclusion, we have [DTStart EXEC + FDI EXEC + DMA EXEC = 3.6ms], and the constraint for a correct software operation being [DTStart EXEC + FDI EXEC + DMA EXEC < 4.5ms] is fulfilled.

Fig 4.8 : Computed CDMU A & B Data clock drift wrt CASSINI RTI

4.2.6.2. POSW

This paragraph addresses the telemetry specifically related to the POSW operation.

- High Stack Water Mark: This parameter aims at providing data on the stack usage by the POSW. It reports the 16 bits address of the top of the stack, which shall be lower than the Stack base address, i.e. 16#EFFF. Value reported during F7, 10#7425 is well in line with reference test data.
- POSW CUT Processing Time: It reflects the processor load for each CUT. The reported value is a worst case value over the 128 CUT major acquisition cycle and is actually the residual value of the CDMU's µprocessor timer B at the end of the processing time.

As expected, Processing time ranges from 56 ms to 60 ms, representing a nominal CDMU data handling processor load of about 55 % max. A slow increase of the processor load from To time can be noticed; it reflects the fact that the MTT processing time is correlated to the current Mission Time. The few peaks noticed in F7 do not reproduce here..

In total, the POSW processing time during F8 is very much comparable to F4, and shows a correct operation of the software over the whole checkout.

4.2.7. Thermal

This section discusses telemetry measurements related to the THSS : Probe and PSE temperatures in Probe housekeeping, including units internal T°, plus Probe and PSE temperatures in CASSINI housekeeping.

Temperatures values permanently acquired by CASSINI are summarized in the table hereafter:

IDENTIFICATION	F7 MEASURED RANGE	F7 MEASURED RANGE	F6 MEASURED RANGE	F5 MEASURED RANGE	F4 MEASURED RANGE
	INIT $T^\circ \rightarrow END T^\circ$	INIT $T^\circ \rightarrow END T^\circ$	INIT T° \rightarrow END T°	INIT $T^\circ \rightarrow END T^\circ$	INIT T° \rightarrow END T°
MIMI elec T°	22.5°C → 24.5°C	20.5°C → 22.5°C	15°C → 19°C	15°C → 19°C	22°C → 22°C
Probe T° 1	10°C → 34.5°C	13°C → 35°C	10°C → 32°C	10°C → 32°C	12°C → 35°C
Probe T° 2	10.5°C → 34°C	12.5°C → 35°C	10°C → 32°C	10°C → 32°C	12°C → 34°C
LNA A Temp	-8.5°C → -4.5°C	-7°C → -3°C	-10°C → -5°C	-10°C → -5°C	-4.7°C → 0.5°C
LNA B Temp	-9°C → -3°C	-8°C → -3.5°C	-10°C → -5°C	-10°C → -5°C	-5°C → 0.5°C
SEPS Temp 1	?	-51.2°C → -51.2°C	-51°C → -50°C	-51°C → -50°C	-50.2°C → -49.5°C
SEPS Temp 2	-53.2°C → -53.2°C	-50.2°C →50.2°C	-50.5°C → -48.5°C	-50.5°C → -48.5°C	-50.2°C → -49.5°C
SEPS Temp 3	-55.5°C → -55.5°C	-53.2°C → -53.2°C	-50.5°C → -49.5°C	-50.5°C → -49.5°C	-52.5°C → -52.8°C
SEPS Temp 4	-57°C → -57°C	-53.5℃ → -54℃	-54.1°C → -52.7°C	-54.1°C → -52.7°C	-54.8°C → -54.8°C

Temperatures values, in °C, acquired by the HUYGENS Probe are summarized in the tables hereafter:

- **F8 MEASUREMENTS F7 MEASUREMENTS F6 MEASUREMENTS F5 MEASUREMENTS** T° SENSOR ΤМ (20/09/2001) (22/03/2001) (28/07/2000) (2/02/2000) **IDENTIFICATION** Tinit Tend Delta T ini T end Delta Location T init T end Delta T init T end Delt а -47.7 SEPS A -50 -50 0 -48.2 -48.2 0 -48.6 -48.6 0 -47. 0 1A -50 -50 -47.7 -47.7 SEPS A 0 -47.7 0 -48.6 -48.6 0 -47.7 2B 0 1B SEPS B -53.5 -53.5 0 -50 -50 0 -50.9 -50.9 0 -48.6 -48.6 0 -54.3 -54.3 0 -50 -52.6 2A SEPS C -50 0 -52.6 0 -51 -50 1 PJM A -27.5 -26.9 0.4 -25 -24.6 0.4 -26.5 -25.9 0.6 -27 -26.3 0.7 3A -25.5 -25 0.5 -22.8 -24.4 -24.9 3B PJM B -23.2 0.4 0.5 -25 -24.3 0.7 PJM C -26.8 -26.3 -24.5 -24 -25.8 -25.3 -26 -25.6 4A 0.6 0.5 0.5 0.4 4B PDD -23 -23 0 -21 -21 0 -22.2 -21.9 0.5 -23 -22.5 0.5
- **a.** Descent module External units:

TM IDENTIFIC ATION	Sensor Location	F8 MEASUREMENTS (20/09/01)		F7 MEASUREMENTS (22/03/01)			F6 MEASUREMENTS (28/07/00)			F5 MEASUREMENTS (2/02/2000)			
		T ini	T end	Delta	T init	T end	Delta	T init	T end	Delta	T ini	T end	Delta
8A	PCDU	10.5	33.75	23.2	13	33.75	20.7	11.3	32.5	21.2	10	31.3	21.3
5A	BATT 1A	15	21	6	16.7	21.8	5.1	15.5	20.9	5.4	14	18.8	4.8
8B	BATT 1B	14.8	21	6.2	16.5	21.8	5.3	14	20.9	6.9	12	18.8	6.8
6B	BATT 2A	11.5	24.5	13	13	25.45	12.4	12	22.7	10.7	10.5	21.8	11.3
7B	BATT 3A	13	22	8	16.7	21.8	5.1	15	20	5	14	18.8	4.8
6A	BATT 3B	10.5	22	11.5	12.6	21.8	9.2	11.3	20	8.7	10	18.8	8.8
5B	BATT 4B	13.8	22.7	8.9	15	22.7	7.7	15	21.8	6.8	14	19.4	5.4
7A	BATT 5A	15	22.7	7.7	16.7	23.6	6.9	15.3	21.8	6.5	14	20.	6
9A	TX A	12.5	32.5	20	15	32.5	16.5	13.7	30	16.3	12	29.1	17.1
9B	тх в	12.5	30	17.5	15	30	15	13.7	28.2	15.5	12	26.4	14.4
10A	GCMS	13	28.1	15.1	15	29.1	14.1	14	28.1	14.1	12	27.3	15.3
10B	TUSO	11	36.2	25.2	13	37.5	24.5	12	25.5	13.5	10	33.7	23.7
11A	DISR I/F	-25.9	-25.9	0	-25	-24.1	0.9	-25.4	-25.3	0.1	-25.6	-25.6	0
11B	DISR SH	0	8.1	8.1	3	8.6	5.6	2	7.7	5.5	0	5.4	5.4
12A	FOAM int	7	25.5	18.5	9	25	14	8	22.7	14.7	7	22.7	15.7
12B	CONE (foam ext)	-18.5	-16.1	1.6	-17	-15	2	-18.3	-16.1	2.2	-19	-16.7	2.3

b. Descent Module Internal units

c. Probe units internal T° reported through the Probe TM are summarized in the table hereafter:

IDENTIFICATION	F7 MEASURED RANGE	F6 MEASURED RANGE	F5 MEASURED RANGE	F4 MEASURED RANGE	
	INIT T° \rightarrow END T°				
RUSO Lamp	112.5° C → 112.5° C	101.7° C → 101.7° C	112.5° C → 112.5° C	112.5° C → 112.5° C	
RUSO resonator	75°C → 75°C	64.4° C → 64.4° C	75°C → 75°C	75°C → 75°C	
RUSO crystal	72°C → 73°C	64.4° C → 64.4° C	72°C → 73°C	72°C → 73°C	
TUSO Lamp	112.5° C → 112.5° C	101.7° C → 101.7° C	112.5° C → 112.5° C	112.5° C → 112.5° C	
TUSO resonator	76.5° C → 76.5° C	64.4° C → 64.4° C	76.5° C → 76.5° C	76.5° C → 76.5° C	
TUSO crystal	73° C → 75.8° C	64.4° C → 64.4° C	74°C → 75°C	74°C → 75°C	
PSA A Temp	21.5° C → 40° C	19°C → 37.3°C	16.5° C → 36.4° C	22° C → 40° C	
PSA B Temp	21.5° C → 40° C	19°C → 37.3°C	16.5° C → 36.4° C	22° C → 40° C	
Τχ Α ΗΡΑ	13° C → 33.6° C	13°C → 33.2°C	13° C → 30.4° C	14° C → 33.3° C	
Тх В НРА	13° C → 31.6° C	13°C → 30°C	13°C → 28°C	14° C → 31.2° C	
CDMU A DC/DC 1	11° C → 37.5° C	12° C → 33.7° C	10° C → 33.7° C	13° C → 37.5° C	
CDMU A DC/DC 2	11°C → 35°C	12° C → 31.25° C	10° C → 31.2° C	13° C → 33.7° C	
CDMU B DC/DC 1	11° C → 33.75° C	11.5°C → 31.25°C	10° C → 30° C	12° C → 33.7° C	
CDMU B DC/DC 2	11°C → 31.25°C	11.5°C → 29.1°C	10° C → 28.2° C	12° C → 30° C	

Conclusion:

The initial steady state temperatures appear mostly related to the Sun to Spacecraft distance illustrated in Fig. 3.1, and to the Huygens Sun illumination : they are slightly warmer than during F7 and close to F6 temperatures. This is reflected in most of the measured temperatures, with the delta ranges presented below :

	F8-F7	F7-F6	F6-F5	F5-F4
Average delta initial T°	-2°C	+1.5°C	+1.5°C	-2°C to -4°C

The Figure 4.9 illustrates this overall behaviour by showing the evolution of the PCDU temperature over the checkouts.

Fig 4.9 : initial PCDU temperature evolution

This may be explained by considering that HUYGENS was completely shadowed by the CASSINI HGA during F1 to F5, partially subjected to - limited - solar illumination during F6 and F7. F8 reflects the effect of the Sun illumination decrease with distance.

The temperatures trends are in accordance with RD02, computed after the model adjustment in July 98 (RD01).

They are in addition fully in line with F2, F3, F4, F5, F6 & F7 measurements considering the respective checkouts durations (see Fig 4.1).

The overall Probe System thermal behavior is therefore considered nominal.

4.2.8. Experiments status word

The evolution of the Status Word for each instrument, is similar to its evolution during F4, used as the reference test.

Experiments detailed behavior analysis shall be found in the PI's F8 test reports: no anomaly related to the Probe System operation has been notified.

5. CASSINI CHECK OUTS

This chapter deals with the review of the technical issues raised, related to CASSINI and especially CASSINI experiments operations which have or may have an impact on the Huygens Probe System.

Belonging to that category, a statement was requested on the possibility to maintain nominally 6 of the CASSINI instruments in " ON " but " sleep " mode condition during future Probe Checkouts. EMC and 1553 Orbiter Data Bus issues have mainly been addressed via the analysis of documentation provided by JPL and dealing with :

- 1553 Bus muting
- EMC measurements recorded during " quiet test " on ground.

As mentioned in the F7 report, it was stated that :

- the mute mode proposed to be used to prevent data generation from CASSINI instruments during Probe Checkouts was fully satisfying HUYGENS request.
- the EMC results from ground testing were not considered to properly cover the conditions planned to be exercised in flight.

A dedicated flight test has been designed to assess the CASSINI instruments sleep mode impact on a " dummy " Probe Checkout.

This test has been run in august 2001, and has clearly demonstrated that the Probe was behaving nominally, and thus a flight checkout could be performed safely when CASSINI instruments were in sleep mode. F8 was run with CASSINI instruments in sleep mode.

6. CONCLUSION

The eighth Cruise Check out was completed on the 20^{nd} September 2001, 9 months after the Jupiter flyby, and at a distance from the Sun of ~6.35AU.

ALL THE HUYGENS SUB-SYSTEMS OPERATED NOMINALLY AND WERE STABLE W.R.T. PREVIOUS CHECKOUTS.

The unexplained behavior, evidenced in the previous checkouts, related to the noise level on CASU accelerometers 1 and 3, remained unchanged from F5, and is fully acceptable from a system point of view. The issue however is kept opened, and the corresponding TM parameters will continue to be carefully monitored.

The RF link between Probe and PSA was excellent, with an AGC signal in accordance with the expected value, without any Sun interference at CASSINI HGA input. The RF link with ground through the CASSINI HGA was nominal without loss of any packet and data.

This good quality of the overall HUYGENS to ground data path is confirmed by ESOC Reed Solomon analysis (see RD 09) which, except during transitions, shows that no Super Packet was rejected, while one single correction was performed over a total of 27623 received Super Packets. In total, 62024 packets were received during F8, including PSE HK packets and dump super packets.

To conclude, the HUYGENS Probe System status, as analysed from F8 after the Probe Relay Test 3, was very good.