MCR-93-1349
Rev: C
Contract Number 196603

EXPERIMENT USER'S MANUAL

CDRL\#-OP001 \& SW002

FOR
HUYGENS PROBE
DESCENT IMAGER / SPECTRAL RADIOMETER

Sept 13, 1996

Prepared By:
D. B. Whiteaker

Approval:
J. C. Flemming Martin Marietta Astronautics

Approval:

Larry Padgett
Martin Marietta Astronautics

Prepared for:

University of Arizona
Lunar and Planetary Laboratory
Tucson, Arizona

Prepared by:
Martin Marietta Astronautics
P. O. Box 179, MS B0560

Denver, Colorado
80201

DOCUMENT CHANGE LOG

REV. LETTER	REV. DATE	PAGE	
DRAFT	$6 / 24 / 94$	All	Draft release
DRAFT	$8 / 3 / 94$	All	Draft 2 release
NEW	$10 / 8 / 94$	None	Initial Release
A	$6 / 7 / 95$	All	Rev A Release
B	$9 / 20 / 95$	All	Rev B Release
C	$9 / 13 / 96$	All	Rev C Release

1.0 SCOPE 1
1.1 Identification 1
1.2 Purpose 1
1.3 Introduction 1
2.0 APPLICABLE DOCUMENTS 2
3.0 SCIENCE OVERVIEW 3
3.1 Introduction 3
3.2 Scientific Objectives 3
3.2.1 Thermal Balance and Dynamics 3
3.2.2 Distribution and Properties of Aerosol and Cloud Particles 3
3.2.3 Nature of the Surface 4
3.2.4 Composition of the Atmosphere 4
3.3 Instrument Approach 5
4.0 INSTRUMENT OVERVIEW 8
4.1 Instrument Configuration 8
4.2 Functional Design and Operating Principles 8
4.3 Performance Characteristics 11
4.4 Interfaces 12
4.5 Telemetry and Telecommands 12
4.6 Serial Status Word 14
4.6.1 Overall Format 14
4.6.2 Initialization Mode 14
4.6.3 Descent Mode 15
4.6.4 Calibration Mode 15
4.6.5 Single Measurement Mode 16
4.6.6 Memory Access Mode 16
5.0 NOMINAL OPERATIONS 18
5.1 Descent Operations 18
5.1.1 Purpose 18
5.1.2 Constraints 18
5.1.3 Operational Characteristics 18
5.1.4 Consumption Characteristics 18
5.1.5 Operating Procedures 18
5.2 Cruise Operations - Simulated Descent 18
5.2.1 Purpose 18
5.2.2 Constraints 18
5.2.3 Operational Characteristics 18
5.2.4 Consumption Characteristics 19
5.2.5 Operating Procedures 19
5.3 Cruise Operations - Health Check 19
5.3.1 Purpose 19
5.3.2 Constraints 19
5.3.3 Operational Characteristics 19
5.3.4 Consumption Characteristics 19
5.3.5 Operating Procedures 19
5.4 Cruise Operations - In - Flight Calibration 20
5.4.1 Purpose 20
5.4.2 Constraints 20
5.4.3 Operational Characteristics 20
5.4.4 Consumption Characteristics 20
5.4.5 Operating Procedures 20
5.5 Test Operations - Safe Mode 20
5.5.1 Purpose 20
5.5.2 Constraints 20
5.5.3 Operational Characteristics 20
5.5.4 Consumption Characteristics 21
5.5.5 Operating Procedures 21
5.6 Test Operations - Telemetry Source Mode 21
5.6.1 Purpose 21
5.6.2 Constraints 21
5.6.3 Operational Characteristics 21
5.6.4 Consumption Characteristics 21
5.6.5 Operating Procedures 21
5.7 Test Operations - Modification of Operational Parameters 21
5.7.1 Purpose 21
5.7.2 Constraints 22
5.7.3 Operational Characteristics 22
5.7.4 Consumption Characteristics 22
5.7.5 Operating Procedures 22
6.0 COMMANDING THE INSTRUMENT 23
6.1 Telecommand Overview 23
6.2 Descent Data Broadcast Telecommand 23
6.3 Enable Command Receipt Telecommand 23
6.4 Scenario Change Telecommand 23
6.5 Perform One Measurement Telecommand 24
6.5.1 General Command Parameters 24
6.5.2 ULVS Measurement 26
6.5.3 DLVS Measurement 26
6.5.4 Dark Current Measurement 26
6.5.5 Image Set Measurement 26
6.5.6 Strip Measurement 27
6.5.7 Solar Aureole Measurement 27
6.5.8 Full CCD Measurement 27
6.5.9 DLIS Measurement 27
6.5.10 ULIS Measurement 27
6.5.11 Combined ULIS/DLIS Measurement 27
6.5.12 Long Integration IR Measurement 27
6.5.13 DLV Measurement 27
6.5.14 ULV Measurement 28
6.5.15 Shutter Test 28
6.5.16 DCS Test 28
6.5.17 Heater Test 28
6.5.18 Calibration Lamp Test 28
6.5.19 Surface Lamp Test 29
6.5.20 Sun Lamp Test 29
6.5.21 IR Command Generation 29
6.6 Memory Upload Telecommand 30
6.7 Dump Memory Telecommand 30
7.0 SOFTWARE ARCHITECTURE 32
7.1 System Memory Map 32
7.2 Data Structures Overview 33
7.2.1 Bad Pixel Map 33
7.2.2 Instrument Misalignment Table 34
7.2.3 Frame Buffer Use 34
7.2.4 Extended Memory Register Assignments 36
7.2.5 Hardware / Software Registers 36
7.2.6 Interrupt Use 46
7.2.7 Flat Field Area 47
7.2.8 Memory Map 47
8.0 NOTES 142
8.1 Acronyms 142
8.2 Bit Numbering 142
Appendix A - TELECOMMAND FORMATS A-1
A. 1 General Telecommand Format A-1
A.1.1 Header Word Formats A-1
A. 2 Broadcast Command Formats A-2
A. 3 DISR Command Format A-3
A.3.1 Command ID Field A-3
A.3.2 Opcode Word Format A-3
A.3.3 Specific DISR Software Commands A-4
A.3.3.1 Enable Command Receipt Command A-4
A.3.3.2 Change Mode Command A-4
A.3.3.3 Single Measurement Command A-5
A.3.3.4 Single Test Command A-8
A.3.3.5 EEPROM Uplink Command A-9
A.3.3.6 RAM Uplink Command A-11
A.3.3.7 Dump Memory Command A-12
Appendix B - TELEMETRY FORMATS B-1
B. 1 General Packet Format B-1
B. 2 Probe Header Field Format B-1
B. 3 DISR Header B-2
B. 4 Source Data Field Format B-2
B. 5 CRC Field B-4
B. 6 Data Set Definitions B-5
B.6.1 Message Data Set B-5
B.6.2 Time Data Set B-6
B.6.3 Sun Sensor Data Set B-7
B.6.4 Attitude Data Set (Deleted) B-8
B.6.5 Housekeeping Data Set B-9
B.6.6 Lamp Data Set B-10
B.6.7 Descent Cycle Data Set B-11
B.6.8 Calibration Cycle Data Set B-12
B.6.9 Violet Data Set B-14
B.6.10 IR Data Set B-15
B.6.10.1 Examples B-18
B.6.11 Dark Current Data Set B-20
B.6.11.1 Examples B-22
B.6.12 Image and Raw Image Data Set B-23
B.6.12.1 Data Set for DCS Compressed Images B-25
B.6.12.1.1 Examples B-25
B.6.12.2 Data Set for Uncompressed or Noiselessly Compressed Images B-26
B.6.12.2.1 Examples B-27
B.6.13 Strip Data Set B-28
B.6.13.1 Examples B-30
B.6.14 Solar Aureole Data Set B-31
B.6.14.1 Examples B-33
B.6.15 Visible Data Set B-34
B.6.15.1 Examples B-36
B.6.16 Full CCD Data Set B-37
B.6.16.1 Examples B-39
B.6.17 DCS Test Data Set B-40
B.6.18 IR Shutter Test Data Set B-42
B.6.19 Heater Test Data Set B-46
B.6.20 Cal Lamp Test Data Set B-47
B.6.21 Surface Lamp Test Data Set B-48
B.6.22 Sun Lamp Test Data Set B-49
B.6.23 Bad RAM Data Set B-50
B.6.24 Bad EEPROM Data Set B-51
B.6.25 Memory Dump Data Set B-52
B.6.26 Empty Data Set B-53
Appendix C - MESSAGES C-1

Figure 1 - DISR Instrument in the Huygens Probe
Figure 2 - DISR EA Unit . 9
Figure 3 - DISR Sensor Head Unit . 10
Figure 4 - CDMU Selection Flow . 13
Figure 5 - Linker Directives . 47
Figure 6 - Instruction RAM Memory Allocation . 55
Figure 7 - Data RAM Memory Allocation . 86
Table 1 - Instrument Summary (Upward Looking Instruments) 6
Table 2 - Instrument Summary (Downward Looking Instruments) 6
Table 3 - Summary of Onboard Sources 7
Table 4 - DISR Operational Modes 10
Table 5 - IDSs Relating to Instrument Performance 11
Table 6 - IDSs Relating to the Probe Interface 12
Table 7 - Overall Serial Status Word Format 14
Table 8 - Serial Status Word for Initialization Mode 15
Table 9 - Serial Status Word for Descent Mode 15
Table 10 - Serial Status Word for Calibration Mode 16
Table 11 - Serial Status Word for Single Measurement Mode 16
Table 12 - Serial Status Word for Memory Access Mode 16
Table 13 - Mode Change Telecommand Parameters 24
Table 14 - Common Command Parameters 25
Table 15 - General Processing Options 26
Table 16 - Image Processing Options 26
Table 17 - DCS Test Parameter Description 28
Table 18 - Heater Test Parameter Description 28
Table 19 - Calibration Lamp Test Parameter Description 29
Table 20 - Surface Lamp Test Parameter Description 29
Table 21 - Sample IR Commands with Shutter Operations 30
Table 22 - Sample IR Commands without Shutter Operations 30
Table 23 - Dump Memory Command Address Ranges 31
Table 22 - System Memory Map 32
Table 23 - Bad Pixel Map Data Structure 33
Table 24 - Instrument Misalignment Table Data Structure 34
Table 25 - Frame Buffer Allocations 35
Table 26 - Extended Memory Register Assignments 36
Table 27 - Register Descriptions 37
Table 28 - Interrupt Level Usage 46
Table 29 - Flat Field Memory Assignments 47
Table 30 - Addresses for Key Memory Locations 141
Table 31 - DISR Source Field Data Sets Names B-3
Table 32 - Flight Error and Informational Messages C-1

1.0 SCOPE

1.1 Identification

This document is the Experiment User's Manual for the Descent Imager / Spectral Radiometer (DISR) system. It also serves as the flight Software User's Manual.

1.2 Purpose

The purpose of this document is to describe the operations of the DISR instrument. It will be used as a reference manual during AIV, launch, and actual operations. Facets of the as-built experiment which are relevant for instrument operations are described. Operation of the experiment with reference to commands and expected telemetry are included. Error conditions are described as well as the diagnostic features built into the software. All formats for Telecommands and Telemetry are covered. The software is described and addressed from a user's view and also from the maintenance view. The use of the GSE to perform specific tests, how to build commands, how to start the system, etc. is described in the GSE Users Manual.

1.3 Introduction

The DISR system is an instrument that is part of the Huygens Probe. The Huygens probe is in turn part of the Cassini Spacecraft. The mission of the Cassini Spacecraft is to study Saturn and its moon system. The specific purpose of the Huygens probe is to study the atmosphere and surface of Titan, one of the moons of Saturn. DISR will make spectral measurements of the moon and the atmosphere as the probe descends into the atmosphere of Titan. In addition, it will take image measurements of the surface and the cloud structures.

The flight software controls the operation of the DISR instrument during the descent, during in flight cruise operations, during calibration operations, and finally for test operations. Specifically, it will schedule measurements to be taken, control the actual collection of data, perform some data reduction, put the data into telemetry packets, and provide telemetry packets to the probe. The probe relays the telemetry packets to the Cassini spacecraft and Cassini relays the packets to Earth.

> All numbering of bits in this document use the 1750 standard convention that bit 0 is the most significant bit of a word and bit 15 is the least significant. This is distinctly different from the Huygens convention of bit 15 being the most significant bit and 0 being the least significant bit.

2.0 APPLICABLE DOCUMENTS

The Descent Imager/Spectral Radiometer (DISR) Instrument Aboard the Huygens Entry Probe of Titan

3.0 SCIENCE OVERVIEW

The information for this section was taken entirely from the document "The Descent Imager/Spectral Radiometer (DISR) Instrument Aboard the Huygens Entry Probe of Titan". The referenced document contains much more information than is presented here.

3.1 Introduction

Sunlight plays a key role in driving many important physical processes in planetary physics. Absorption of ultraviolet light drives photochemical reactions, leading to changes in atmospheric composition and to the production of atmospheric aerosols. The size, shape, composition, and distribution of aerosols and cloud particles determine their optical properties and their ability to absorb sunlight and emit thermal infrared radiation, thus playing a key role in the thermal balance of the atmosphere. The net radiative heating or cooling rate provides the forcing for atmospheric dynamics, which in turn can affect the distribution of aerosol and cloud particles and climate. The composition, thermal balance, dynamics, and meteorology of the atmosphere also affect (and are affected by) the nature of the surface. Images of the surface in reflected sunlight together with near infrared reflection spectra can reveal the nature of the surface and its interactions with atmospheric processes. Thus, optical measurements in the wavelength of solar radiation made inside a planetary atmosphere can reveal a great deal about many important physical processes occurring there.

The Descent Imager/Spectral Radiometer (DISR) is the optical instrument that makes measurements at solar wavelengths aboard the Huygens Probe of the Cassini mission. This instrument is being developed in a collaborative effort by scientists from the US, France, and Germany. DISR measures solar radiation using silicon photodiodes, a two-dimensional silicon Charge Coupled Device (CCD) detector and two InGaAs near-infrared linear array detectors. The light is brought to the detectors using fiber optics from many separate sets of foreoptics that collect light from different directions and in different spectral regions. In this way the instrument can make a suite of measurements which are carefully selected to answer key questions concerning the nature of the surface and the composition, meteorology, thermal balance, and clouds and aerosols in the atmosphere of Titan.

3.2 Scientific Objectives

3.2.1 Thermal Balance and Dynamics

The first objective of DISR is to measure directly the vertical profile of the solar heating rate. This will be done using measurements of the upward and downward solar flux over the spectral interval from 0.35 to $1.7 \mu \mathrm{~m}$ from 160 km to the surface at a vertical resolution of approximately 2 km . The downward flux minus the upward flux gives the net flux, and the difference in the net flux at two altitudes gives the amount of solar energy absorbed by the intervening layer of atmosphere. This basic measurement gives an important quantity for understanding the thermal balance of Titan's atmosphere.

From other Huygens measurements of the temperature profile and the gaseous composition, the science team plans to model the radiative cooling rate at wavelengths in the thermal infrared. An important contribution to this calculation will be the measurements of the size, shape, optical properties, and vertical distribution of aerosol and cloud particles determined by other DISR measurements. The combination of the measured solar heating rate with the computed thermal cooling rate will give the net radiative drive for atmospheric dynamics. Model computations can be used to estimate the wind field from the radiative forcing.

Finally, the science team plans to measure the horizontal wind direction and speed as functions of altitude from images of the surface obtained every few kilometers in altitude which will show directly the drift of the probe over the surface of Titan. The measured wind speed and direction determined by DISR can be compared to the wind field computed from the net radiative forcing determined above.

3.2.2 Distribution and Properties of Aerosol and Cloud Particles

Several properties of the cloud and aerosol particles are important for understanding their interaction with solar and thermal radiation field. The size of the particles compared to the wavelength of the radiation is important for understanding their scattering properties. Measurements of both the forward scattering and polar-
izing nature of the aerosols on Titan have been used to show that spherical particles can not simultaneously explain these two types of observations (see Hunten et al., 1984). We are therefore interested in knowing particle shape as well as size. The vertical distribution of the particles is obviously important for knowing their influence on the profiles of solar and thermal radiation. Finally, a suite of optical properties are needed as functions of wavelength to permit accurate computations of the interactions of the particles with radiation. These include the optical depth, single scattering albedo, and the shape of the scattering phase function. These properties together with the determinations of size and shape can yield the imaginary refractive index (and possibly constrain the real refractive index also) and thus constrain the composition of the particles.

We plan to measure as many of these properties as possible by combinations of measurements of small angle scattering in the solar aureole in two colors, by measurements of side and back scattering in two colors and two polarizations, by measurements of the extinction as a function of wavelength from the blue to the near infrared, and by measurements of the diffuse transmission and reflection properties of layers in the atmosphere as described in sections III and IV.

3.2.3 Nature of the Surface

The surface of Titan was hidden from view of the cameras aboard the Pioneer and Voyager spacecraft by the layers of small haze particles suspended in the atmosphere. Nevertheless, intriguing suggestions regarding the nature of the surface have been made (Lunine, 19xx), including the possibility that the surface consists of a global ocean of liquid methane-ethane. Recent radar observations (Muhlman, 19xx) and direct observations at longer wavelengths (Smith et al., 19xx; Lemmon et al., 1993) strongly hint that the surface is not a global ocean. The range of fascinating surfaces observed by the Voyager mission on satellites of the outer solar system showed a surprising range of phenomena including craters, glacial flows, frost and ice coverings, and active geysers and volcanoes. These preliminary explorations of the small bodies of the outer solar system suggest that the surface of Titan also may well contain new surprises.

We plan to measure the state (solid or liquid) of the surface near the probe impact site, and to determine the fraction of the surface that is solid and liquid in this region. We plan to measure the topography of the surface, and explore the range of physical phenomena that have formed the surface. We plan to measure the reflection spectra of surface features from the blue to the near infrared in order to constrain the composition of the different types of terrain observed. In addition, we plan to image the surface at resolution scales from hundreds of meters (similar to those accessible from the orbiter) to tens of centimeters over as large an area as possible to study the physical properties occurring on the surface and to understand the interactions of the surface and the atmosphere.

3.2.4 Composition of the Atmosphere

The Huygens Probe contains a mass spectrometer/gas chromatograph to measure directly the composition of the atmosphere. Nevertheless, direct sampling techniques can have problems with constituents that can condense in the atmosphere should a cloud particle enter and slowly evaporate in the sampling system of such an instrument. The DISR will provide an important complementary capability by being able to record the spectrum of the downward streaming sunlight which shows the absorption bands of methane, the most likely condensable constituent. The observations of the visible and near infrared absorption bands of methane will be used to determine the profile of the mixing ratio of methane gas during the descent of the Huygens Probe.

Methane can exist as a solid, liquid, or gas on Titan, and has been suggested to play a role in the meteorology of Titan similar to the role played by water on the Earth. Our measurements of methane mixing profile will be analogous to a relative humidity profile on the Earth.

Finally, the atmosphere of Titan is believed to consist primarily of nitrogen, methane and argon. Our measurements of the mixing ratio of methane together with the determination of total mean molecular weight of the atmosphere by radio occultation measurements made by the Cassini Orbiter will indirectly yield the argon to nitrogen mixing ratio as an important backup to the mass spectrometer measurements planned for the Huygens Probe.

3.3 Instrument Approach

In order to achieve this broad range of scientific objectives, it is necessary to measure the brightness of the sunlight in Titan's atmosphere with several different spatial fields of view, in several directions, and with various spectral resolutions. For measurements of solar energy deposition, for example, measurements of the downward and upward solar flux is needed with broad and flat spectral sensitivity, and with a cosine zenith angle weighting. For determination of the composition of the surface, spectral resolution is desirable, and spatial information is necessary. For determination of the physical processes occurring on the surface, images with very broad fields of view looking downward toward the surface are needed. To determine the size distribution of aerosol particles above the altitude of the probe, upward-looking measurements of the brightness of the region of the sky near the sun (the solar aureole) are needed in at least two colors with modest angular resolution. Images looking outward toward the horizon are useful for sensing the presence of thin haze layers during the descent.

It is not possible to include in the limited payload of the Huygens Probe separate instruments devoted to each of these scientific objectives. Nevertheless, it has been possible to increase considerably the usefulness of the single Huygens optical instrument by making extensive use of fiber optics to collect the light from different directions and bring the light to a few centrally located detectors after various spectral or spatial analyses. In this way redundant electrical systems have been minimized, and moving mechanical parts have been all but eliminated. A summary of the locations of the fields of view and spectral coverage of the DISR optical measurements is given in Table 1 (upward looking instruments) and Table 2 (downward looking instruments) while the onboard sources are summarized in Table 3.

One of the detectors around which the DISR is build is a 512×520 Charge Coupled Device (CCD) silicon detector with a wavelength response from 400 nm to 1000 nm . The surface of the CCD is divided into 9 separate regions, with the light collected by different foreoptics and brought to the detector by fiber optic bundles and ribbons. These include imagers that look in three different directions with different fields of view and angular resolutions, two regions fed by light collected by upward and downward looking grating spectrometers for flux measurements and for making spatially resolved spectra of the surface in the spectral range from 480 nm to 960 nm , and four regions devoted to measurements across the solar aureole in two colors and in two different polarization states.

The second type of DISR detector is a pair of 150 element InGaAs near-infrared linear arrays. The two InGaAs arrays are mounted side-by-side in the focal plane of a second grating spectrometer covering the spectral region from 870 to 1650 nm . This spectrometer is also fed by two sets of optical fibers which collect

1) the downward flux from a horizontal diffusing flux plate which is sensitive to half the upper hemisphere and
2) a slit looking at the ground to permit a measure of the upward flux as well as a measure of the reflectivity of a well defined region on the ground.

The third detector type is single silicon photodiodes with enhanced ultraviolet response to extend the upward and downward flux measurements to 350 nm from the short wavelength limit of the visible spectrometer at 480 nm . This type of detector is also used in a separate optical system to detect the azimuth of the sun for controlling data collection timing.

We begin a more detailed discussion of the instrument by turning first to the detectors around which the DISR is built. Other significant aspects of the instrument such as a lamp for providing spectrally continuous illumination of the surface just before impact, and the ambitious in flight relative calibration system as well as the shadow bars and optical baffles are discussed later when we review each system in turn.

Table 1 - Instrument Summary (Upward Looking Instruments)

Upward-Looking In- strument	Azimuth Range	Zenith Range	Spectral Range (nm)	Spectral Scale (per pix- el)	Spatial Scale (per pix- el)	Pixel Format
Violet Photometer (ULV)	170°	$5^{\circ}-88^{\circ}$	$350-480$	-	-	1
Visible Spectrometer (ULVS)	170°	$5^{\circ}-88^{\circ}$	$480-960$	2.4 nm	-	8×200
Infrared Spectrometer (ULIS)	170°	$5^{\circ}-88^{\circ}$	$870-1700$	6.3 nm	-	132
Solar Aureole (SA 1) Vertical Polarization	6°	$25^{\circ}-75^{\circ}$	500 ± 25	-	1°	6×50
Solar Aureole (SA 2) Horizontal Polarization	6°	$25^{\circ}-75^{\circ}$	500 ± 25	-	1°	6×50
Solar Aureole (SA 3) Vertical Polarization	6°	$25^{\circ}-75^{\circ}$	935 ± 35	-	1°	6×50
Solar Aureole (SA 4) Horizontal Polarization	6°	$25^{\circ}-75^{\circ}$	935 ± 35	-	1°	6×50
Sun Sensor (SS) (64 cone FOV)	64° cone	$25^{\circ}-75^{\circ}$	939 ± 6	-	-	1

Table 2 - Instrument Summary (Downward Looking Instruments)

Downward-Looking Instrument	Azimuth Range	Nadir Range	Spectral Range (nm)	Spectral Scale (per pix- el)	Spatial Scale (per pix- el)	Pixel Format
Violet Photometer (DLV)	170°	$5^{\circ}-88^{\circ}$	$350-480$	-	-	1
Visible Spectrometer (DLVS)	4°	$10^{\circ}-50^{\circ}$	$480-960$	2.4 nm	2°	20×200
Infrared Spectrometer (DLIS)	3°	$15.5^{\circ}-24.5^{\circ}$	$870-1700$	6.3 nm	-	132
High-Resolution Imag- er (HRI)	9.6°	$6.4^{\circ}-21.6^{\circ}$	$660-1000$	-	0.06°	160×254
Medium-Resolution Imager (MRI)	21.1°	$15.75^{\circ}-46.25^{\circ}$	$660-1000$	-	0.12°	176×254
Side-Looking Imager (SLI)	25.6°	$45.2^{\circ}-96^{\circ}$	$660-1000$	-	0.20°	128×254

Table 3 - Summary of Onboard Sources

System	Number of Lamps	Power each	Field	Spectral Range $(\mathbf{n m})$	Optics
Inflight Calibration	3	1 watt	Fills each instru- ment FOV	$400-2000$	$\mathrm{f} / 2$ fiber feed
Surface Science Lamp (SSL)	1	20 watts	$4^{\circ} \times 12^{\circ}$ centered on DLIS FOV	$400-2000$	50 mm pa- rabola
Sun Sensor Stimula- tor	1	$x x$ mwatt diode	Illuminates only sun sensor detector	939 ± 6	feeds fiber

4.0 INSTRUMENT OVERVIEW

4.1 Instrument Configuration

The DISR instrument physically consists of two separate units. A Sensor Head (SH) unit and an Electrical Assembly (EA) unit. The Sensor Head unit includes all of the optical elements, the detectors, and a small number of electrical components, primarily used for preamplification of the signal data. This unit is installed in the probe with part of it extending outside of the aft cone of the probe. The Electrical Assembly unit is located near the SH unit in the probe and is connected to it via three cables for signal and power transmission. Figure 1 shows the DISR instrument configuration in the probe. The EA unit is pictured in Figure 2 and the SH unit in Figure 3.

4.2 Functional Design and Operating Principles

The DISR flight software was developed using an object-oriented design in the ADA language. The software uses a re-entrant event dispatcher to control execution based on the priorities of events occurring in both the hardware and software. Multi-tasking is not used. Hardware interrupts are used to provide services for the probe interface, the sun sensor, a general purpose event timer, the telemetry channels, the direct memory access controllers, the CCD, the IR detector, and the hardware data compressor.

The software controls the calibration and surface science lamps. The calibration lamps are turned on during appropriate parts of calibrations cycles. The surface science lamp is turned on at a preset altitude (currently 400 meters).

All commands to the DISR are processed by the software. Only six commands exist, although some may have a variety of parameters.

1) A receipt-enable telecommand must begin a commanding session. This command is used as an error protection feature against spurious commands.

Figure 1 - DISR Instrument in the Huygens Probe
2) A change mode telecommand may be used to change the operating mode of the DISR into descent mode (the default mode), calibration mode, single telecommand mode, and memory access mode. (See Table 4 below for a description of these modes.)
3) Single measurement telecommands direct the instrument to perform one or more iterations of a particular measurement. These commands are useful during instrument calibration and test.
4) Single test telecommands are similar to single measurement telecommands, except they initiate preprogrammed test sequences on the IR shutter, hardware data compressor, heaters, and lamps.
5) Memory upload commands are used in memory access mode to store new tables which are read by the software to control bad pixel maps, square root compression tables, and possibly measurement scheduling and processing parameters .
6) Memory dump telecommands permit dumping of any portion of DISR memory into telemetry for verification.

Figure 2 - DISR EA Unit

Figure 3 - DISR Sensor Head Unit

Table 4 - DISR Operational Modes

Mode No.	Mode Name	Mode Characteristics
1	Nominal descent mode	Default mode on power up. Operations are defined by ROM- based descent sequence tables as modified by uploaded changes in EEPROM. Sub-modes: imaging 1, imaging 2, non- imaging, spectrophotometric, descent calibration, flat field cal- ibration, near-surface, surface.
2	Single measurement mode	Acquire measurements specifically commanded through subse-- quent telecommand requests. Each sub-instrument canbe acti- vated, and all data gathering and processing options can be spe- cified for that sub-instrument. This is the principal mode for ground calibration.

Rev: C

Mode No.	Mode Name	Mode Characteristics
3	Calibration mode	Includes two sub-modes: Health check sequence and calibra- tion sequence.
4	Memory access mode	Enables access to memory dump of PROM, EEPROM, and RAM. Enables access to load EEPROM.

The software also coordinates and controls all data collection. Optimum exposure times are computed for each subinstrument using the CCD and IR detectors. These times are based on the data number population histograms of the most recent previous exposure of the same type. The exposure time can also be limited by the amount of smear caused by the spin of the probe. For example, the exposure time of the imagers is limited to 1.5 pixels of motion in the center of the High Resolution Imager (HRI).

On-board data processing functions also include several miscellaneous functions. Adjacent columns of pixels within the same instrument field of view may be averaged. This is done, e.g., in the DLVS where the highest spatial resolution is not required and may be traded off in favor of measurement frequency (vertical resolution). Data for the hardware data compressor must be reformatted before it is fed to the compressor. Lossless compression is done entirely in software. Bad pixels are eliminated according to a bad pixel map which is stored in EEPROM.

Data from the imagers are also reduced from 12 bits to 8 bits before being fed to the hardware data compressor. This is done using a table lookup which performs a pseudo-square root transformation of the raw data. The table is based on an algorithm which degrades the signal-to-noise ratio of the data in each pixel, but keeps it above 100 for those pixels where it initially exceeds 100 (based on a noise model of the instrument). The signal-to-noise ratio for pixels with initial signal-to-noise ratios less than 100 is degraded by only 7.6\%.

4.3 Performance Characteristics

The DISR Instrument performance conforms to the constraints previously documented in various Interface Data Sheets (IDS). Specifically the IDSs that describe performance characteristics are shown in Table 5.

Table 5 - IDSs Relating to Instrument Performance

IDS Page	IDS Title	Performance Characteristic
1	Mechanical/Thermal Characteristics - EA	Thermal
2	Mechanical/Thermal Characteristics - SH	Thermal
$2 \mathrm{~d}-1$	Sensor Head Thermal/Interface Drawing	Thermal
$2 \mathrm{~d}-2$	Electronics Assembly Thermal Interface Drawing	Thermal
3a	Electrical Power Demand: Average - Main	Electrical
3b	Electrical Power Demand: Peak - Main	Electrical
3c	Electrical Power Profile Curve: Average-Main-Descent	Electrical
3d	Electrical Power Profile Table: Average-Main-Descent	Electrical
3e	Electrical Power Profile Curve: Peak-Main-Descent	Electrical
3 f	Electrical Power Profile Table: Peak-Main-Descent	Electrical
3g	Electrical Power Profile Curve: Average-Main-Cruise-Health Check	Electrical
3h	Electrical Power Profile Table: Average-Main-Cruise-Health Check	

IDS Page	IDS Title	Performance Characteristic
3 i	Electrical Power Profile Curve: Average-Main-Cruise-Cal- ibration	Electrical
3 j	Electrical Power Profile Table: Average-Main-Cruise-Cal- ibration	Electrical
3 k	Electrical Power Profile Curve: Average-Main-Cruise-De- scent	Electrical
31	Electrical Power Profile Table: Average-Main-Cruise-De- scent	Electrical
3 m	Electrical Power Profile Curve: Peak-Main-Cruise	Electrical
3 n	Electrical Power Profile Table: Peak-Main-Cruise	Electrical
4	Electrical Power Demand: Average-Lamp	Electrical

4.4 Interfaces

The DISR instrument interfaces to the probe in many forms but has no interfaces to any of the other instruments that are in the probe. All of the key interfaces are documented in the IDSs. Those IDSs are shown in Table 6.

Table 6 - IDSs Relating to the Probe Interface

IDS Page	IDS Title	Interface Type
2 b	Sensor Head Interface Drawing - Envelope	Mechanical
2 c	Sensor Head Interface Drawing - Seal Flange, Lugs	Mechanical
2 e	DISR Probe Interface	Mechanical
$2 \mathrm{f}-2 \mathrm{p}$	xxx FOV (Field of View)	Mechanical
$5 \mathrm{a}-5 \mathrm{~g}$	Cable and pin allocations	Mechanical Electrical
6	Telecommand	Software
7	Telemetry	Software
8	Probe Interface (Circuit Diagram)	Electrical
10 a	Power Interface - Power Supply	Electrical
10 b	Power Interface - Lamp Regulator	Electrical
11	Grounding Scheme	Electrical
$14 \mathrm{a}-\mathrm{g}$	Thermal	Thermal

4.5 Telemetry and Telecommands

The Telemetry and Telecommand formats are described in Appendix A and Appendix B. The DISR Instrument is designed to adjust to changes in the telemetry rates dynamically. The instrument operational sequences have been optimized for the telemetry rates specified in the EID Part A. The instrument sends most of the telemetry data types on both telemetry channels to ensure good transmission. However, some of the data types, primarily image data, is transmitted on only one of the two channels. Since the image data accounts for a large portion of the overall telemetry data stream this allows DISR to potentially acquire twice as much image data as would otherwise be possible. The risk is the loss of half of that image data, but that corresponds to the situation if all data was sent on both channels.

The instrument is also designed to dynamically switch from the telecommand channel A to B or back depending of the quality of data being received and the state of the processor valid flag provided by the probe CDMU. The design is graphically described in Figure 4 and has the following key properties:

1) The side indicated by processor valid is always tried first.
2) If processor valid changes a switch is always made to the new processor valid channel.
3) If valid data is being received over the channel indicated by processor valid then that data is used.
4) If no "valid" data is being received over the processor valid channel a switch is made to the other channel.
The simple data check is a check that the first word is a valid DISR command or DDB message command identifier. Whenever a switch is made from one side to the other a message is placed into the telemetry stream

Figure 4 - CDMU Selection Flow
indicating the switch that is being made. This message is also sent out during the initialization process when the initial side selection is made.

There is a potential situation where a channel not indicated by processor valid could be used to receive data even though data is being sent on the processor valid channel. This requires the following sequence of events:

1) DISR selects side A (processor valid is true);
2) no data is received over that channel for over 15 seconds (at least 7 broadcast message periods);
3) the processor valid flag never changes to side B; and
4) valid data then resumes on channel A.

Except for this scenario it is believed that the proposed solution to the problem is better than simply using the processor valid flag as the absolute truth since it can react to channel errors other than those that go into constructing the processor valid signal. Such failures as a DISR channel A failure would be included in those that can be corrected for by the proposed algorithm that could not be accounted for with a reliance on processor valid only.

4.6 Serial Status Word

The format of the DISR serial status word is described in the following paragraphs. The format is provided in both the 1750 standard used internally and the Huygens standard as specified in the EID Part A. The MSB is always transmitted first as required by the interface.

4.6.1 Overall Format

Table 7 - Overall Serial Status Word Format

Bit 0 (Huygens 15) of the status word is used to indicate the hardware status summary. If no hardware problems are known it is set to a value of 1 . If any hardware problems are known it is set to a value of 0 .

Bits 1 to 3 (Huygens 12 to 14) of the status word is used to indicate the operating mode of the instrument according to the following list (all values are binary)

1) " 000 " Not used
2) "001" During initialization of the instrument
3) "010" Descent Mode
4) "011" Calibration Mode
5) "100" Single Measurement Mode
6) "101" Memory Access Mode
7) "110" Spare
8) "111" Spare

Bits 4 to 15 (Huygens 0 to 11) of the status word is used to indicate mode specific processing state. Specific mode bit allocations are listed in the following requirements.

4.6.2 Initialization Mode

The format for the serial status word for the initialization mode is shown in Table 8.

Table 8 - Serial Status Word for Initialization Mode

For initialization mode the mode specific bits of the status word is used as follows:

1) Bit 4 (Huygens 11) - Used to indicate if the execution has started in the PROM. A 1 indicates that execution has started and a 0 indicates it has not.
2) Bits 5 and 6 (Huygens 9 and 10) - Used to indicate the memory test status. A " 00 " indicates the memory test has not started, a "01" is not used, a "10" indicates it completed unsuccessfully, and a "11" indicates a successful completion.
3) Bits 7 and 8 (Huygens 7 and 8) - Unused
4) Bit 9 (Huygens 6) - Set immediately after transfer from PROM to RAM execution. It is 0 before the transfer and 1 after the transfer.
5) Bit 10 (Huygens 5) - Set after the Ada kernel transfers to the DISR code. It is 0 before the DISR specific code starts and 1 after that.
6) Bit 11 (Huygens 4) - Set after all DISR initialization is complete except the reception of the first broadcast pulse and DDB message. It is 0 before the initialization is complete and 1 after initialization is complete and the instrument is waiting for the first broadcast pulse.
7) Bit 12 (Huygens 3) - Set to 1 after the first broadcast pulse is received.
8) Bits 13 to 15 (Huygens 0 to 2) - Spares - Set to 0

4.6.3 Descent Mode

The format for the serial status word for the descent mode is shown in Table 9.
Table 9 - Serial Status Word for Descent Mode

For descent mode the mode specific bits of the status word is used as follows:

1) Bits 4 to 9 (Huygens 6 to 11) - The cycle number mod 64.
2) Bits 10 to 15 (Huygens 0 to 5) - The number of measurements complete within the cycle mod 64 . Set to " 63 " when all measurements in a cycle are complete.

4.6.4 Calibration Mode

The format for the serial status word for the calibration mode is shown in Table 10.
Table 10 - Serial Status Word for Calibration Mode

MSB	1010	LSB													
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

For Calibration mode the mode specific bits of the status word is used as follows:

1) Bits 4 to 6 (Huygens 9 to 11) - The calibration cycle number.
2) Bits 7 to 13 (Huygens 2 to 8) - The number of measurements complete within the cycle mod 128. Use "127" when all measurements in the sequence are done.
3) Bits 14 to 15 (Huygens 0 and 1) - Spares - Set to 0

4.6.5 Single Measurement Mode

The format for the serial status word for the single measurement mode is shown in Table 11.
Table 11 - Serial Status Word for Single Measurement Mode

For Single Measurement Mode the mode specific bits of the status word is used as follows:

1) Bits 4 to 9 (Huygens 6 to 11) - The number of measurements taken since the mode was entered $\bmod 64$
2) Bits 10 to 14 (Huygens 1 to 5) - The last measurement accepted type ID number
3) Bit 15 (Huygens 0) - The last measurement accepted completion flag. Set to 0 when the measurement is accepted and set to 1 when it completes.

4.6.6 Memory Access Mode

The format for the serial status word for the memory access mode is shown in Table 12.
Table 12 - Serial Status Word for Memory Access Mode

For memory access mode the mode specific bits of the status word is used as follows:

1) Bits 4 to 8 (Huygens 7 to 11) - The number of memory dump commands executed since the mode was entered mod 32
2) Bits 9 to 13 (Huygens 2 to 6) - The number of memory load commands executed since the mode was entered $\bmod 32$
3) Bit 14 (Huygens 1) - The last command type accepted. A 0 is used to memory load command and a 1 for memory dump command.
4) Bit 15 (Huygens 0) - The last command completion flag. Set to 0 when the command is accepted and set to 1 when it completes.

5.0 NOMINAL OPERATIONS

This section describes the planned operations for descent, cruise, and ground testing.

5.1 Descent Operations

5.1.1 Purpose

This section describes the operating sequence for the descent mode of operation. This is the mode that is used during the Titan descent.

5.1.2 Constraints

Care should be taken when performing descents during ground test operations. The surface lamp will be turned on at the appropriate time (altitude) for the descent. Since the surface lamp is a limited life item it is desired that for the majority of the descent runs performed the power controlling the surface lamp be disabled so that even though the software may "turn it on" the lamp will not really be used.

5.1.3 Operational Characteristics

This is a fairly complex mode to describe. Activities are scheduled in cycles with the cycle type being dependent on parameters such as time, altitude, spin rate, and telemetry buffer fullness. The most common cycles are imaging cycles and non-imaging cycles. Other cycle types are calibration cycles (4 sets performed for a full descent), flat field cycles (1), drain cycles (1), spectrophotometric cycles(2), and various near-surface and surface cycles. Within cycles the measurements are scheduled based on resource availability and azimuth. Azimuth is determined based on input received from the sun sensor or extrapolated from the last data based on the spin rate from the DDB messages. Within cycles the IR, CCD, and violet measurements are scheduled independently and in many cases concurrently. This is the only mode where concurrent measurements using the different detectors are performed.

5.1.4 Consumption Characteristics

In this mode the instrument will consume some of all of the consumable items. In particular it will consume calibration lamp time (all lamps), IR shutter cycles, and surface lamp time (only if power is enabled).

5.1.5 Operating Procedures

This is the default operating mode for the DISR instrument. If power is applied to the instrument unless specific command sequences are sent to the instrument it will start executing the descent operating mode within two minutes of power on. As long as DDB messages are being received a nominal type descent will be performed. With no DDBs being received a descent like sequence will be performed but no altitude keyed measurements will be taken. This includes all of the near surface operations, the spectrophotometric cycles, and the surface operations.

5.2 Cruise Operations - Simulated Descent

5.2.1 Purpose

The purpose of a simulated descent during the cruise phase is to operate the instrument in as descent like a condition as possible.

5.2.2 Constraints

Due to power constraints the simulated descent needs to be performed with only a single lamp enabled for the calibration cycles that are performed during the descent. In addition the power for the surface lamp should be disabled for the simulated descent.

5.2.3 Operational Characteristics

The simulated descent has the same operational characteristics as the actual descent with a few differences. As planned only one of the calibration lamps will be used. The calibration lamps are only used for the
calibration cycles which occur at four times during the descent. Secondly, since the sun simulator LED is enabled a constant spin rate of 4.578 rpm (13.1072 seconds per rotation) is used throughout the descent.

5.2.4 Consumption Characteristics

In this mode the instrument will consume some of all of the consumable items. In particular it will consume calibration lamp time (a single lamp), IR shutter cycles, and surface lamp time (only if power is enabled).

5.2.5 Operating Procedures

If the simulated descent were identical to the real descent the operating procedures would be the same. However, there are two key differences. First, two of the three calibration lamps must be disabled to limit the peak current. Second, the internal sun simulator LED must be enabled. To do this the following should be done at instrument power on.

1) Start sending these commands 38 ± 10 seconds after instrument power on
2) Command to enable command receipt
3) Command to memory access mode
4) Wait for 45 seconds - instrument still waits before going to memory access mode
5) Command to modify memory (Change 2 RAM locations to change lamp configuration for the two calibration cycles with lamps on)
6) Command to descent mode with the sun simulator LED on
7) Command to disable command receipt

With this set of commands the instrument will start a descent with the LED on and will only use the calibration lamp specified with the modify memory commands.

5.3 Cruise Operations - Health Check

5.3.1 Purpose

The purpose of the health check sequence is to check out all instrument functions. This is a built in sequence for the instrument that can be initiated by sending a sequence of commands.

5.3.2 Constraints

There are no specific constraints in this mode.

5.3.3 Operational Characteristics

The health check sequence is a built in sequence of measurements that are performed when commanded. This sequence is designed to use all instrument functions to determine if all are operating normally. The health check sequence performs measurements in a known sequence as quickly as possible. If the measurement taking proceeds faster than the telemetry can be sent out of the system and the telemetry buffer fills up the measurement taking process is stopped to allow telemetry buffer space to become available. The IR, CCD and violet measurements are performed sequentially with no overlap. In addition all tests, except the surface science lamp test, are performed as part of this sequence.

5.3.4 Consumption Characteristics

In this mode the instrument will consume some of all of the consumable items. In particular it will consume calibration lamp time (all lamps), and IR shutter cycles.

5.3.5 Operating Procedures

The health check sequence is a built in sequence within the DISR instrument. To initiate that sequence a series of commands should be executed. They are:

1) Start sending these commands 38 ± 10 seconds after instrument power on
2) Command to enable command receipt
3) Command to go to calibration mode and execute sequence number 1
4) Command to disable command receipt

The sequence will start within 45 seconds of receiving this set of commands. When the sequence is done the instrument will finish transmitting all telemetry for the cycle and then be in a idle state. In this state no measurements will be taken. However, a time data set will be produced once every 40 seconds and a housekeeping data set will be produced once every 2 minutes.

5.4 Cruise Operations - In-Flight Calibration

5.4.1 Purpose

The purpose of the In-Flight calibration sequence is to characterize the DISR instrument and measure any changes in performance since ground calibration.

5.4.2 Constraints

There are no specific constraints in this mode.

5.4.3 Operational Characteristics

The In-Flight calibration sequence is a built in sequence of measurements that are performed when commanded. This sequence is designed to determine if the instrument performance has changed since the ground calibration was performed. The In-Flight calibration sequence performs measurements in a known sequence as quickly as possible. If the measurement taking proceeds faster than the telemetry can be sent out of the system and the telemetry buffer fills up the measurement taking process is stopped to allow telemetry buffer space to become available. The IR, CCD and violet measurements are performed sequentially with no overlap.

5.4.4 Consumption Characteristics

In this mode the instrument will consume some of all of the consumable items. In particular it will consume calibration lamp time (all lamps) and IR shutter cycles.

5.4.5 Operating Procedures

The in-flight calibration sequence is a built in sequence within the DISR instrument. To initiate that sequence a series of commands should be executed. They are:

1) Start sending these commands 38 ± 10 seconds after instrument power on
2) Command to enable command receipt
3) Command to go to calibration mode and execute sequence number 2
4) Command to disable command receipt

The sequence will start within 45 seconds of receiving this set of commands. When the sequence is done the instrument will finish transmitting all telemetry for the cycle and then be in a idle state. In this state no measurements will be taken. However, a time data set will be produced once every 40 seconds and a housekeeping data set will be produced once every 2 minutes.

5.5 Test Operations - Safe Mode

5.5.1 Purpose

The purpose of this mode of operation is to be in a state where the instrument is on but does as close to nothing as possible. This could be used for a number of purposes as part of the integration type activities.

5.5.2 Constraints

There are no specific constraints in this mode.

5.5.3 Operational Characteristics

As planned this mode is a very do-nothing mode. In this state no measurements will be taken. However, a time data set will be produced once every 40 seconds and a housekeeping data set will be produced once
every 2 minutes. Because of this a very low rate of telemetry will be created (an average of two packets per channel per minute).

5.5.4 Consumption Characteristics

If run as planned, this mode will consume no consumable items.

5.5.5 Operating Procedures

The actual mode used is the single measurement mode with no commands to do measurements. To initiate this mode a series of commands should be executed. They are:

1) Start sending these commands 38 ± 10 seconds after instrument power on
2) Command to enable command receipt
3) Command to go to single measurement mode
4) Command to disable command receipt

5.6 Test Operations - Telemetry Source Mode

5.6.1 Purpose

The purpose of this mode of operation is to be a telemetry source for probe integration checkout. In this mode the DISR instrument creates telemetry as fast as the probe takes it. The instrument can remain in this mode indefinitely and with the sequence planned it can produce over 24 hours of continuous telemetry.

5.6.2 Constraints

There are no specific constraints in this mode.

5.6.3 Operational Characteristics

As planned this mode will keep the telemetry channel busy all the time. It can adjust to wide changes in the telemetry rate from small rates (such as a few packets every 16 seconds) to maximum rates (theoretically up to 128 packets per 16 seconds). CCD measurements will be taken as needed to maintain this rate. Also the time data sets (once per 40 seconds) and housekeeping data sets (once per 2 minutes) will be produced during this mode.

5.6.4 Consumption Characteristics

If run as planned, this mode will consume no consumable items.

5.6.5 Operating Procedures

The actual mode used is the single measurement mode with a single command to do 255 full CCD readouts. To initiate this mode a series of commands should be executed. They are:

1) Start sending these commands 38 ± 10 seconds after instrument power on
2) Command to enable command receipt
3) Command to go to single measurement mode
4) Wait for an additional 45 seconds
5) Command to do 255 full CCD readouts

The telemetry will start within 45 seconds of receiving this set of commands and will continue for at least 24 hours. The actual time depends on the exact rate at which telemetry is taken from the DISR instrument.

5.7 Test Operations - Modification of Operational Parameters

5.7.1 Purpose

There are occasions when operational parameters need to be modified. These occur during testing, primarily at the factory but potentially at other locations. Some examples of parameters that could change for specific testing purposes are listed here:

1) Modify the temperature set points for controlling the heaters
2) Change the frequency of creation of housekeeping data sets
3) Modification of bad pixel maps

5.7.2 Constraints

There are no particular constraints associated with this type of operation. However, the modification of some parameters can affect the use of some of the limited use items. Care should be taken to insure that this does not occur.

5.7.3 Operational Characteristics

These types of operations should be planned in advance and all commands reviewed thoroughly before being used. The system can be used in other operational modes after the desired operations are completed. Address of memory to be modified should be identified by using the memory map.

5.7.4 Consumption Characteristics

No specific consumables are used by this procedure although this procedure may change the consumptions of resources for other modes.

5.7.5 Operating Procedures

The system must be in memory access mode to perform this procedure since the modification is performed in this manner.

1) Start sending these commands 38 ± 10 seconds after instrument power on
2) Command to enable command receipt
3) Command to go to memory access mode
4) Wait for an additional 45 seconds
5) Send memory modification commands to perform the changes desired.
6) Command to new mode desired

6.0 COMMANDING THE INSTRUMENT

This section is primarily intended to describe the use of the telecommands and not the format. The format is described in complete detail in Appendix A.

6.1 Telecommand Overview

There are two basic types of commands that can be sent over the telecommand channels. The first is the Descent Data Broadcast (DDB) messages. These are produced inside the probe and provide DISR with a time reference, the current altitude, and the current spin rate. These are processed by DISR whenever they are received. That is, enabling and disabling command receipt has no affect on DDB messages. The second type of message are commands intended to change the mode or operations of the DISR instrument. If none of these are received the DISR instrument will execute a standard descent sequence.

The DISR instrument has two interfaces for reception of telecommands. They are referred to as channel A and channel B. Associated with the telecommand channel is a flag, called processor valid, which indicates which channel the probe thinks is the best one to use. If both channels perform properly then channel A will be used for the entire mission. However, if there are problems the system will switch from one to the other. The switching algorithm can be summarized as follows:

1) Start using the channel indicated by the processor valid flag
2) If the processor valid flag changes state, switch to the channel indicated by processor valid
3) If no valid data is being received on the channel being used, switch sides

This algorithm protects against errors occurring both on the probe side of the interface and against errors occurring on the DISR side of the interface.

In addition to the words coming across the memory load interface there is a broadcast pulse interface. The broadcast pulse is used by DISR for two distinct purposes. The first is to distinguish when entire commands have been received and should be processed by the instrument. If any words have been received and are not yet processed when a broadcast pulse is received, the words are processed as a group. The DISR instrument is able to handle a DDB message and a commanding type of command received between two broadcast pulses. These two types can be received in either order and still be processed successfully. The second purpose of the broadcast pulse is to indicate a time reference. When a DDB is received the time in the message is the time at which the next DDB is sent. This is used by the DISR instrument to synchronize its internal clock (resolution 0.1 millisecond) with the time from the probe. When a clock drift of more than 2 milliseconds is detected the clocks are re-synchronized and a message is placed into the telemetry stream indicating the time it occurred.

6.2 Descent Data Broadcast Telecommand

This message is received once every 2 seconds during the mission. The contents of the message include the time (at the next broadcast pulse), the altitude, and the spin rate. There are also some other parameters not used by the DISR instrument, including some mission flags. These DDB messages are used by the flight software to synchronize the internal clock with the probe time, to determine the altitude, and to determine the spin rate. This spin rate is only used if there are no sun pulses being received by the sun sensor which is the preferred source of spin rate and azimuth.

6.3 Enable Command Receipt Telecommand

The purpose of this command to to protect the flight software from executing unexpected commands. The initial state of the software is that any commands received are ignored. This does not apply to the DDB messages which are always allowed and processed. Before sending any command to change the operating state of the DISR instrument the enable command receipt telecommand must be sent. As many commands as desired may then be sent and processed. There is a corresponding command to disable command receipt when all desired commands have been sent.

6.4 Scenario Change Telecommand

This command is used to change the operating mode of the DISR instrument. As previously indicated the initial operating mode is the descent mode of operations. Initially the instrument gets prepared to start
operations and then waits for 30 seconds before proceeding to the descent mode. During this time a scenario change mode command would have the effect of having the instrument start in the new mode rather than descent mode. After that time period the instrument can still be commanded to a different mode but the timing will be hard to predict. Once a descent cycle has been started the new mode will not take effect until the current cycle has completed. This is generally true with any mode switch, the current cycle will be completed before the mode switch takes effect. Depending on the current mode this has the following effect:

1) In descent mode the new mode does not start until the end of the current cycle (usually no more than 3 minutes).
2) In calibration mode the new mode does not start until the end of the current cycle (this could be a long time since there are not a lot of cycles for the two calibration sequences).
3) In single measurement mode the new mode starts after the current measurement is complete or immediately if no measurement or test is currently in progress.
4) In memory access mode the new mode starts after the current command has been completed or immediately if no command is in progress.

Note : Do not send a change mode command to enter Memory Access mode if DISR is already running in Memory Access mode. Although the command will execute correctly, the usage block that counts updates to EEPROM will not be updated properly. Updates since the last Change Mode command will not be counted.

There are parameters allowed with mode change telecommands are shown in Table 13.

Table 13 - Mode Change Telecommand Parameters

New Mode	Parameter Description
Descent	Sun simulator flag - indicates if the sun simulator is to be enabled or disabled
Calibration	Scenario to execute $1-$ Health Check $2-$ In-Flight Calibration $3-8-$ User defined sequences
	None
Single Measurement	None
Memory Access	

Within the descent and calibration modes no additional commands are required to perform the measurements desired. Within the single measurement and memory access modes additional commands are required to actually perform an action. The mode change command simply puts the system into a state where those additional commands are accepted and acted upon. The specific single measurement commands and memory access commands are accepted and acted upon if the previous command has completed.

6.5 Perform One Measurement Telecommand

This command is only valid in the Single Measurement mode of operations. It actually is a series of commands all having the same format to take a science measurement or to perform one of the six built in tests. All of these can be commanded multiple times with a single command (a command repeat capability). There are actually two different command formats one for a single scientific type measurement and another for a single test. Appendix A has a section for each of these commands.

6.5.1 General Command Parameters

Many of the commands to take measurement have parameters which are included in all or many of the individual commands. These include exposure times, repeat counts, and processing flags. These are described in Table 14 and then indicated if they are applicable for a particular type of measurement.

Table 14 - Common Command Parameters

Parameter Name	Parameter Use
Repetitions	Indicates the number of times to repeat the measure- ment.
Exposure Time	Used for all CCD measurements. Indicates the exposure time for the CCD measurement. Values of from 0.0 milli- seconds to 32 seconds are allowed with a 0.5 millisecond resolution.
Collection Time	Used for all IR measurement. Indicates the total collec- tion time for the measurement. See below for a thorough discussion of the relationships between the collection time, the shutter time, and the sample times.
Shutter Time	Used for all IR measurements performing shutter activity. This is not strictly the shutter period although it is related to the period. See below for a thorough discussion of the relationships between the collection time, the shutter time, and the sample times.
Shutter Operating Mode	Used for IR measurements. Indicates what type of shut- ter operations are to be used. Options are: Closed for the entire collection Open for the entire collection Alternating
Sample Time (ULIS, DLIS)	Used for all IR measurements. This is the time for each individual readout of the IR. See below for a thorough discussion of the relationships between the collection time, the shutter time, and the sample times.
Lamp States	The lamp states to use for the measurement. Each of the three calibration lamps and the surface lamp can be com- manded on for this measurement. After a measurement the lamps remain in the state that was commanded to until a subsequent measurement changes the lamp state. This is done to reduce the number of times the lamps are switched on or off. For the single test commands the lamps are always returned to the state they were in be- fore the test was performed.
General Processing Op-	
tions	A flag indicating if the auto-exposure tables are to be used instead of the supplied tables.
These indicate a whole set of processing options avail- able. Note that not all options are allowable for each mea- surement type. These options are shown in Table 15.	
Image Processing Options	These indicate a set of options available only for image measurements. These options are shown in Table 16.
masure	

The IR collection time, shutter time, and sample time are related in a fairly complex way.

Table 15 - General Processing Options

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
bad pixel elim	sqrt proc	$\begin{gathered} \text { summ } \\ - \text { ing } \end{gathered}$	calc opt expose times	compress data	include error bits	unused		num fields of view							
$\begin{aligned} & 0=\text { no } \\ & 1=\text { yes } \end{aligned}$	$\begin{aligned} & \hline 0=\text { no } \\ & 1=\text { yes } \end{aligned}$	$\begin{aligned} & \hline 0=\text { no } \\ & 1=\text { yes } \end{aligned}$	$\begin{aligned} & \hline 0=\text { no } \\ & 1=\text { yes } \end{aligned}$	$\begin{aligned} & \hline 0=\text { no } \\ & 1=\text { yes } \end{aligned}$	$\begin{aligned} & \hline 0=\text { no } \\ & 1=\text { yes } \end{aligned}$	00									
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Table 16 - Image Processing Options

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
perf dark meas	single image	half image	$\begin{aligned} & \text { comp } \\ & \text { type } \end{aligned}$	compression ratio							which image only if single image options selected				
$\begin{aligned} & \hline 0=\text { no } \\ & 1=\text { yes } \end{aligned}$	$\begin{aligned} & 0=\text { no } \\ & 1=\text { yes } \end{aligned}$	$\begin{aligned} & 0=\text { no } \\ & 1=\text { yes } \end{aligned}$	$\begin{aligned} & 0=\mathrm{HW} \\ & 1=\mathrm{SW} \end{aligned}$	1-16 valid							$\begin{gathered} \hline \text { DLI } 2=21=15_{16} \\ \text { SLI }=22=16_{16} \\ \text { DLI }=23=17_{16} \end{gathered}$				
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Note that there are two different fields controlling optimum exposure calculations. The "use auto-exposure" option specifies that the measurement is to use the data already in the table. The "calc opt expose times" is used to update the value in the table. Any combination of these flags may be used. Thus you may start off an auto exposure sequence specifying not to use the value but to update it and then perform a series to both use it and updated it.

6.5.2 ULVS Measurement

This measurement takes a ULVS measurement using the CCD detector. General command parameters "repetitions", "Exposure Time", "Lamp States", "Use Auto-Exposure", and "General Processing Options" are used with this command. The general processing options which are applicable for a ULVS measurement are "bad pixel elim", "summing", "calc opt expose times", and "compress data". If summing is performed it is fixed at two fields of view, each one the sum of 4 columns of data.

6.5.3 DLVS Measurement

This measurement takes a DLVS measurement. General command parameters "repetitions", "Exposure Time", "Lamp States", "Use Auto-Exposure", and "General Processing Options" are used with this command. The general processing options which are applicable for a DLVS measurement are "bad pixel elim", "summing", "calc opt expose times", "compress data", and "num fields of view". The number of fields of view can be 2,5 , or 10 .

6.5.4 Dark Current Measurement

This measurement takes a Dark measurement using the CCD detector. General command parameters "repetitions", "Exposure Time", "Lamp States", and "General Processing Options" are used with this command. The general processing options which are applicable for a Dark measurement are "bad pixel elim", "summing", and "compress data". If summing is specified the number of fields of view is 2 each on the sum of two columns of data.

6.5.5 Image Set Measurement

This measurement takes an image set measurement. General command parameters "repetitions", "Exposure Time", "Lamp States", "Use Auto-Exposure", "General Processing Options", and "Image Processing

Options" are used with this command. The general processing options which are applicable for an image set measurement are "bad pixel elim", "square root", "calc opt expose times", and "compress data". All image processing options are available.

6.5.6 Strip Measurement

This measurement takes a Strip measurement using the CCD detector. General command parameters "repetitions", "Exposure Time", "Lamp States", "Use Auto-Exposure", and "General Processing Options" are used with this command. The general processing options which are applicable for a Strip measurement are "bad pixel elim", "summing", "calc opt expose times", and "compress data". If summing is performed it is fixed at two fields of view each the sum of 13 columns of data. In addition there is an additional parameter which is only applicable for the strip measurement. This parameter is called the "strip column" and specifies the number of the column to use as the "center" column for the measurement.

6.5.7 Solar Aureole Measurement

This measurement takes a Solar Aureole measurement using the CCD detector. General command parameters "repetitions", "Exposure Time", "Lamp States", "Use Auto-Exposure", and "General Processing Options" are used with this command. The general processing options which are applicable for a SA measurement are "bad pixel elim", "summing", "calc opt expose times", and "compress data". If summing is performed it is fixed at 4 fields of view, each one the sum of 6 columns of data.

6.5.8 Full CCD Measurement

This measurement takes a Full CCD readout measurement using the CCD detector. General command parameters "repetitions", "Exposure Time", "Lamp States", and "General Processing Options" are used with this command. The general processing options which are applicable for a Full measurement are "compress data" and "include error bits".

6.5.9 DLIS Measurement

This measurement takes a DLIS measurement using the IR detector. General command parameters "repetitions", "Collection Time", "Shutter Time", "Shutter Operating Mode", "Sample Time" (DLIS only), "Lamp States", and "General Processing Options" are used with this command. The only general processing options which is applicable for a DLIS measurement is "compress data".

6.5.10 ULIS Measurement

This measurement takes a ULIS measurement using the IR detector. General command parameters "repetitions", "Collection Time", "Shutter Time", "Shutter Operating Mode", "Sample Time" (ULIS only), "Lamp States", and "General Processing Options" are used with this command. The only general processing options which is applicable for a ULIS measurement is "compress data".

6.5.11 Combined ULIS/DLIS Measurement

This measurement takes a combined IR measurement using the IR detector. General command parameters "repetitions", "Collection Time", "Shutter Time", "Shutter Operating Mode", "Sample Time" (both ULIS and DLIS), "Lamp States", and "General Processing Options" are used with this command. The only general processing options which is applicable for a combined IR measurement is "compress data".

6.5.12 Long Integration IR Measurement

This measurement takes a long integration IR measurement using the IR detector. General command parameters "repetitions", "Collection Time", "Lamp States", and "General Processing Options" are used with this command. The only general processing options which is applicable for a combined IR measurement is "compress data".

6.5.13 DLV Measurement

This measurement takes a DLV measurement using the downward looking violet detector. General command parameters "repetitions" and "Lamp States" are used with this command.

6.5.14 ULV Measurement

This measurement takes a ULV measurement using the upward looking violet detector. General command parameters "repetitions" and "Lamp States" are used with this command.

6.5.15 Shutter Test

This measurement takes an IR shutter test. General command parameters "repetitions" is used with this command. In addition there is a single word parameter associated with the command. This parameter is used to specify the number of shutter tests to perform. Each single measurement is for one shutter cycle (close and then open).

6.5.16 DCS Test

This measurement performs a DCS test. General command parameters "repetitions" is used with this command. In addition there is a single word parameter associated with the command. This parameter is used to specify the type of software image to generate and the compression ratio. The GSE software compares with a standard image generated but will still display the other types. The standard type is a checkerboard pattern of 15×15 blocks. The second type is a repeated 15×15 pattern with a peak in the center of each 15×15 block and then a gradual decrease towards the outside of the block. The last pattern is a slope in both the x and y direction. A DCS internal test takes 20 seconds to complete so the entire test takes about 25 seconds or less.

Table 17 - DCS Test Parameter Description

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
unused									image type		compression ratio				
0									0 - Checkerboard 1 - Center peaks 2 - Gradual slope		2-16				
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

6.5.17 Heater Test

This measurement performs a heater test. General command parameters "repetitions" is used with this command. In addition there is a single word parameter associated with the command. This parameter is used to specify which heaters to test. The least significant bit controls the test for the focal plane heater test and the next to least significant bit controls the aux board heater test. A 0 in the respective location causes no test to be performed while a 1 causes the test to be performed. This is summarized in Table 18. Each heater tested takes 90 seconds to complete the test for that heater.

Table 18 - Heater Test Parameter Description

Parameter Value	Action
0001_{16}	Focal plane heater test only
0002_{16}	SH aux board heater test only
0003_{16}	Test both heaters (This is also the default if any value other than 1 or 2 is selected)

6.5.18 Calibration Lamp Test

This measurement performs a calibration lamp test. General command parameters "repetitions" is used with this command. In addition there is a single word parameter associated with the command. This parameter is used to specify which lamps to turn on during the test. Bit 15 (the least significant bit) is used to control
turning on lamp 3, bit 14 is used to control turning on lamp 2, and bit 13 is used to control turning on lamp 1. A 0 in the respective bit location means to leave the lamp off, a 1 means to turn the lamp on. This is summarized in Table 19.

Table 19 - Calibration Lamp Test Parameter Description

Parameter Value	Lamp 1	Lamp 2	Lamp 3
0000_{16}	off	off	off
0001_{16}	off	off	on
0002_{16}	off	on	off
0003_{16}	off	on	on
0004_{16}	on	off	off
0005_{16}	on	off	on
0006_{16}	on	on	off
0007_{16}	on	on	on

6.5.19 Surface Lamp Test

This measurement performs a surface lamp test. General command parameters "repetitions" is used with this command. In addition there is a single word parameter associated with the command. This parameter is used to specify whether to turn on the surface lamp during the test. A 0 means to leave the lamp off, a 1 means to turn the lamp on. This is summarized in Table 20.

Table 20 - Surface Lamp Test Parameter Description

Parameter Value	Lamp State
0000_{16}	off
0001_{16}	on

6.5.20 Sun Lamp Test

This measurement performs a sun lamp test. General command parameters "repetitions" is used with this command. In addition there is a single word parameter associated with the command. This parameter is not used by the system.

6.5.21 IR Command Generation

The process of generating commands for the IR subsystem that do what you need them to has been a difficult one to work out. However, it is now well understood and can be used to reliably generate the commands that you need. The following is what to do for standard alternating shutter operations.

1) Decide on the sample time. This parameter understands that 8 is really 8.064 so for the purposes of calculating sample time assume that a frame period is exactly 8 milliseconds long.
2) Determine how many samples you want in a full shutter open (or closed) cycle. For example the famous 6-12-6 has 12 samples in a full shutter open. This number must be even since with the first and last closed cycles being only half as long the number you choose needs to be divisible by 2 . Take that number (eg. 12), multiply by the sample time divided by 8 , add 2 and then multiply by 8.064 . This is the shutter time to enter into the command generation window. The number will have to be "rounded" up to the next multiple of 1 millisecond. Example: for the 6-12-6, shutter time $=\left(12^{*} 1+2\right)^{*} 8.064=112.896$, rounded up to 113 .
3) Determine how many shutter cycles you want to include. This is often 1 cycle but is not limited to 1 . For example the 6-12-6 is one cycle. A 6-12-12-12-6 is 2 cycles. Take the shutter time
computed in the previous step, multiply by 2 times the number of cycles desired, and then add 16.128. This is the collection time needed. Again for the 6-12-6 the computation is 112.896 * 2 * $1+16.128=241.92$. Again this number needs to be "rounded" up to the next multiple of 1 millisecond to be entered into the menu.
This should allow the user to create IR commands that do what is desired. Table 21 shows a number of IR commands that may be useful.

Table 21 - Sample IR Commands with Shutter Operations

Measurement description	Sample Time	Shutter Time	Collection Time
$6-12-6$	8	113	242
$1-2-1$	8	33	81
$2-4-2$	8	49	113
$3-6-3$	8	65	146
16 msec sample $-2^{*} 16$ msec sample -16 msec sample	16	49	113
$6-12-12-12-12-12-12-12-12-12-6$	8	113	1146

Commands for the IR not involving the shutter are somewhat easier to generate. The shutter time can be set to 0 since it is never used. Sample times are always entered using a frame as exactly 8 milliseconds. The collection time is the total number of frame times required (sample time divided by 8 times the number of samples desired), plus 2 , times 8.064 . Table 22 shows a number of useful IR command parameters.

Table 22 - Sample IR Commands without Shutter Operations

Measurement description	Sample Time	Collection Time
Single 8 msec read	8	25
10×8 msec read	8	97
1 second read	1000	1025

6.6 Memory Upload Telecommand

Memory uploads can be made to either EEPROM or to RAM. The purpose of EEPROM uploads is to permanently modify the system. On initialization the EEPROM is examined for modifications to the PROM code and/or data and changes are made after the PROM has been copied but before the system really starts to run. Thus, these changes are incorporated to the running system every time it is started. These changes need to include where in the EEPROM the change will reside as well as the locations and data that need to be modified in the RAM area. These changes do not take affect until the next time the system starts from a power up. On the other hand RAM memory loads take immediate effect but do not carry over once the power is turned off. EEPROM changes would be used to make changes to descent or calibration sequences while the RAM changes are used for such things as running a simulated descent since the changes should only be in effect for that run of the system.

6.7 Dump Memory Telecommand

Memory dumps are performed to examine the contents of the various memory locations. All memory can be dumped although some may not be particularly useful to dump. Up to 10 ranges of memory may be dumped at any time. Each range is limited to a 16 bit address range. In addition the ranges must be within allowable ranges with not overlap of different regions. The allowable ranges with their general content is shown in Table 23.

Table 23 - Dump Memory Command Address Ranges

Range (hex)	Type of Memory
$0-$ F,FFF	RAM
$10,000-1$ F,FFF	Instruction RAM
$20,000-2 F$, FFF	EEPROM
$40,000-4$ F,FFF	PROM
$100,000-1$ BF,FFF	Frame Buffer
$200,000-207$, FFF	IR RAM
$310,000-32 F, F F F$	Flat Field
$400,000-43 F$, FFF	DCS RAM

7.0 SOFTWARE ARCHITECTURE

7.1 System Memory Map

Table 24 contains a summary of the data space map for normal operations.
Table 24 - System Memory Map

Start address (hex)	End address (hex)	Size (K Words)	Description
0	7,FFF	32	Data Ram area
8,000	8,FFF	4	Extended memory area 1
9,000	9,FFF	4	Extended memory area 2
A,000	A,FFF	4	Extended memory area 3
B,000	B,FFF	4	Extended memory area 4
C,000	C,FFF	4	Extended memory area 5
D,000	D,FFF	4	Extended memory area 6
E,000	E,FFF	4	Extended memory area 7
F,000	F,FFF	4	Extended memory area 8
10,000	1F,FFF	64	Instruction RAM (not available through extended memory)
20,000	2F,FFF	64	EEPROM - 8 bit data only (not available through extended memory)
30,000	30,02F	<1	CPU I/O (not available through extended memory)
30,030	3F,FFF		Not used
40,000	4F,FFF	64	PROM data (not available through extended memory)
50,000	50,02F	<1	CPU I/O (not available through extended memory)
50,030	FF,FFF		Not used
100,000	1BF,FFF	768	Frame buffer
100,000	1C0,05F	<1	TM / DMA / CCD
1C0,060	1FF,FFF		Not used
200,000	203,FFF	16	IR RAM - Commands
204,000	207,FFF	16	IR RAM - Data
208,000	20F,FFF	32	Spare (IR RAM)
210,000	210,001	<1	IRIF I/O
210,002	2FF,FFF		Not used
300,000	300,0FF	<1	Aux Board I/O
300,100	3FF,FFF		Not used
310,000	32F,FFF	128	Flat Field
330,000	3FF,FFF		Not used

Start address (hex)	End address (hex)	Size (K Words)	Description
400,000	$41 F$, FFF	128	DCS Image Buffer -8 bit data only
420,000	$43 F$, FFF	128	DCS Result Buffer -8 bit data only
440,000	440,000	<1	DCS command/status
440,001	$500,01 F$		Not used
500,020	$500,03 F$	<1	Interrupt Acknowledge Registers
500,040	FFF,FFF		Not used

7.2 Data Structures Overview

7.2.1 Bad Pixel Map

The bad pixel map contains bad pixels for the CCD. They are arranged into two different areas. One for the bad pixels in the spectral readout areas and the other for bad pixels in the image areas. Both are arranged so that if a column or a part of a column is bad a single entry is made in the bad pixel map. In both cases the entries include the column that is bad, the first bad row and the last bad row. For the image are a substitute row to use in its place is also included. The maximum number of spectral readout bad pixel entries is 10 and the maximum number of image area bad pixel entries is 700 . The bad pixel map data structure is shown in Table 25. Entries are shown with both a table offset (the value to add to the beginning of the data area to get the address that contains the particular variable of interest) and the word number (a sequential word count starting at 1). See Table 32 for the location of the bad pixel map in memory.

Table 25 - Bad Pixel Map Data Structure

Table Offset	Word Number	Description
0	1	Number of spectral area bad pixels defined Range: $0 . .10$
1	2	Number of image area bad pixels defined Range: $0 . .700$
2	3	lst Spectral area entry - column number Range: $0 . .53$
3	4	1st Spectral area entry - first (most significant byte) and last (least significant byte) row affected by the bad pixel area Range: $0 . .255$
$4-5$	$5-6$	2nd Spectral area entry - Same format as the 1st entry
$6-7$	$7-8$	3rd Spectral area entry - Same format as the 1st entry
\ldots	\ldots	\ldots
$2 n-2 n+1$	$2 n+1-2 n+2$	nth Spectral area entry - Same format as the 1st entry
\ldots	\ldots	\ldots
$18-19$	$19-20$	9th Spectral area entry - Same format as the 1st entry
$20-21$	$21-22$	10th Spectral area entry - Same format as the 1st entry
22	23	1st Image area entry - column number Range: $54 . .255$
23	24	1st Image area entry - substitute column number Range: $54 . .255$

Table Offset	Word Number	Description
24	25	1st Image area entry - first (most significant byte) and last (least sig- nificant byte) row affected by the bad pixel area Range: 0..255
$25-27$	$26-28$	2nd Image area entry - Same format as the 1st entry
$28-30$	$29-31$	3rd Image area entry - Same format as the 1st entry
\ldots	\ldots	\ldots
$3 n+19-$ $3 n+21$	$3 n+20-3 n+22$	nth Image area entry - Same format as the 1st entry
\ldots	\ldots	\ldots
$2116-2118$	$2117-2119$	699th Image area entry - Same format as the 1st entry
$2119-2121$	$2120-2122$	700 th Image area entry - Same format as the 1st entry

7.2.2 Instrument Misalignment Table

The instrument misalignment table contains an entry for each different measurement type. In some cases a single measurement uses more than one instrument. In that case the entry in the misalignment table will have to be a compromise for the misalignments of the different instruments. The entries in the table are in units of 0.01 degrees and can be both positive and negative values. Entries are shown with both a table offset (the value to add to the beginning of the data area to get the address that contains the particular variable of interest) and the word number (a sequential word count starting at 1). The instrument misalignment table data structure is shown in Table 26. See Table 32 for the location of the instrument misalignment table in memory.

Table 26 - Instrument Misalignment Table Data Structure

Table Offset	Word Number	Measurement Type
0	1	ULVS/ULV
1	2	ULVS
2	3	DLVS
3	4	Full CCD
4	5	Dark
5	6	Image
6	7	Strip
7	8	SA
8	9	DLIS
9	10	ULIS
10	11	IR Combined
11	12	IR Long
12	13	DLV
13	14	ULV

7.2.3 Frame Buffer Use

The frame buffer is located in the system memory from address $100,000_{16}$ through $1 \mathrm{BF}, \mathrm{FFF} \mathrm{F}_{16}$. This area has been partitioned for use in a large number or areas. The bulk of the area is used for a telemetry buffer and CCD readout buffers. The entire use of the area is shown in Table 27.

Rev: C

Table 27 - Frame Buffer Allocations

Use	Address Range (hex)	Description
Telemetry Buffer	100,000-149,FFF	This stores telemetry until it can be sent out the telemetry channels. It is organized in 4 KW groups with the last 16 words of each group being unused.
Spare	14A,000-14B,FFF	Currently unused. This will be allocated to the frame buffer in the flight unit.
Adjusted Square root table	14C,000-14C,FFF	This is the square root table after it has been adjusted to account for the histogram of the actual data for an image set.
Square root table	14D,000-14D,FFF	This is the table for square root lookup used in preparation for the hardware compression process.
SW compressor	14E,000-14E,FFF	Allocated to the software compressor. Used to store some intermediate versions of a data stream being compressed.
Memory dump	14F,000-14F,FFF	Allocated to the memory dump function. Used to temporarly store a 4KW chunck of memory being prepared for telemetry packets.
IR rotation data area	150,000-150,FFF	Used to store data associated with IR region and rotations. See object 0414_IR_Raw_Data for the specific definition of the data format. Note the last 4 words are not used.
IR spectral data area	$\begin{aligned} & 151,000-151, \mathrm{~F} 6 \mathrm{~F} \\ & 152,000-152, \mathrm{~F} 6 \mathrm{~F} \\ & 153,000-153, \mathrm{~F} 6 \mathrm{~F} \end{aligned}$	Used to store IR recorded data that is awaiting science processing. Note the unused space at the end of each 4KW block is to facilitate the use of extended memory to access the data. See object 0414_IR_Raw_Data for the specific definition of the data format.
Unused	$\begin{aligned} & \hline \text { 151,F70 - 151,FFF } \\ & \text { 152,F70 - 152,F7F } \end{aligned}$	144 words 16 words
Telemetry A packet	152,F80-152,FBE	Telemetry channel packet buffer for DMA transfer
Telemetry B packet	152,FBF - 152,FFD	Telemetry channel packet buffer for DMA transfer
Unused	$\begin{aligned} & \text { 152,FFE - 152,FFF } \\ & \text { 153,F70 - 153,FDF } \end{aligned}$	2 words 112 words
Telemetry work area	153,FE0-153,FFF	Allocated to the telemetry processing area.
CCD or IR work area	154,000-175,5FF	Used to prepare science data sets for telemetry transmission.
Unused	175,600-175,FFF	2560 words
CCD readout buffer full readout - \# 1	176,000-196,BFF	Used for full CCD readout storage before science processing of data.
Unused	196,C00-196,FFF	1024 words
CCD readout buffer full readout - \# 2	197,000-1B7,BFF	Used for full CCD readout storage before science processing of data.
Unused	1B7,C00-1B7,FFF	1024 words
CCD readout buffer spectral readout - \# 1	1B8,000-1BB,4FF	Used for spectral CCD readout storage before science processing of data.

Use	Address Range (hex)	Description
Unused	$1 \mathrm{BB}, 500-1 \mathrm{BB}, \mathrm{FFF}$	2816 words
CCD readout buffer - spectral readout $-\# 2$	$1 \mathrm{BC}, 000-1 \mathrm{BF}, 4 \mathrm{FF}$	Used for spectral CCD readout storage before science processing of data.
Unused	$1 \mathrm{BF}, 500-1 \mathrm{BF}, 7 \mathrm{FF}$	768 words
CCD exposure histo- gram	$1 \mathrm{BF}, 800-1 \mathrm{BF}, \mathrm{FFF}$	Used to save a histogram of CCD counts for auto-ex- posure processing.

7.2.4 Extended Memory Register Assignments

An approach to access of the frame buffer without use of a DMA has been defined. Since there are only 32 KW of local processor memory and there up to 64 KW can be accessed by the 1750 processor we will use the high order 32 KW of that area to map to other areas of the memory. The high order 32 KW will be broken up into 8 pieces of 4 KW each. There will be 8 registers specifying the high order 12 bits of address for each of these pieces. The low order 12 bits will be taken from the processor. The high order 4 bits of the processor address will be used to determine which register to use. This is only done if the processor address indicates an address in the range of the upper 32KW of the local memory area. Note that this is not limited to the frame buffer area only. It could be used for other areas of memory. However it cannot be used to access the instruction RAM as data, the PROM, the CPU I/O registers, or the EEPROM data areas.

The reason for 8 memory areas is that the software needs 7 areas and there is a spare for future expansion if necessary. The software uses the registers is shown in Table 28.

Table 28 - Extended Memory Register Assignments

Register Number	Address Range (hex)	Use
1	$8,000-8$, FFF	Science processing
2	$9,000-9$, FFF	Science processing
3	A,000 - A,FFF	Telemetry manager
4	B,000 - B,FFF	Telemetry manager
5	C,000 - C,FFF	Telemetry buffer refresh
6	D,000 - D,FFF	IR manager / shutter test
7	E,000 - E,FFF	Software compressor
8	F,000 - F,FFF	Spare

7.2.5 Hardware / Software Registers

The interface between hardware and software is primarily through a series of memory mapped registers. There addresses and use is summarized in Table. More complete descriptions can be found in the Electronics Assembly Specification and the Flight Software Specification.

Table 29 - Register Descriptions

Identifier	Address (hex)	Name	Description
HW reset_sts	30,000	Hardware reset status	16-bit value bit 0 Type of reset (=0 Power on boot, $=1$ bits $1-15$ Watchdog timer reset) Unused read only H/W initial value $=0$
$\begin{aligned} & \begin{array}{l} \text { CCD_IF_ } \\ \text { sts } \end{array} \end{aligned}$	30,001	CCD Interface status	16-bit value bit 0 CCDDataReq bit 1 CCDError bit 2 CCDExecutCmpl bit 3 Always 0 bit 4 Always 1 bit 5 Always 1 bit 6 Always 1 bit 7 Always 0 bit 8 Unknown - usually 1 bit 9 Always 0 bits 10-15 Unknown - usually 1 read only
Test_reg	30,002	Test register	16-bit balue Always reads "6EBF"
CFW	30,003	CFW test register	16-bit value Always reads "8EBF"
$\begin{array}{\|l\|} \hline \begin{array}{l} \text { IRIF } \\ \text { Cmd } \end{array} \end{array}$	30,004	IRIF command	
$\begin{aligned} & \text { EDAC_Ct } \\ & 1 \end{aligned}$	30,008	EDAC Control Register	```16-bit value bit 0 EDAC up enable (0=enabled) H/W initial value =0```

Identifier	Address (hex)	Name	Description
Reset_ctl	30,00C	Reset control	
PROM_ pwr	30,010	PROM_ power_control	16 -bit value bit 0 Default $=0$$\quad$ Power on ($1=$ off, $0=o n$)
Timer_ WD_ Isb	30,018	Watchdog Timer	```16-bit value Clock frequency is }100\textrm{Hz bits 0-7 watchdog timer least significant 8 bits bits 8-15 unused write only H/W initial value = 0```
Timer_ WD_ msb	30,019	Watchdog Timer	```16-bit value Clock frequency is }100\textrm{Hz bits 0-7 watchdog timer most significant 8 bits bits 8-15 unused write only H/W initial value = 0```
DMA_ctl	30,01C	DMA control	16-bit value bit 0 DMA Enable ($=1$ enable, $=0$ disable) bit 1 Watchdog timer enable ($=0$ enable, $=1$ dis- able) See also bit 7 of $30,00 \mathrm{C}$ bits $2-15$ Unused write only H/W initial value $=0$
Ext_ Mem_1	50,020	Extended memory area 1 address	$16-$ bit value Bits 0-11 High order 12 bits of the physical address for local processor addresses with the high order 4 bits of the 16 bit address of 1000 (binary). Note the MSB is always 0 be- cause of the address range supported by the processor. Units 12-15 Unusd H/W initial value $=0$

$\left.\begin{array}{|l|l|l|ll|}\hline \text { Identifier } & \begin{array}{ll}\text { Address } \\ \text { hex) }\end{array} & \text { Name } & \text { Description } \\ \hline \begin{array}{ll}\text { Ext_ } \\ \text { Mem_2 }\end{array} & 50,021 & \begin{array}{l}\text { Extended memory } \\ \text { area } 2 \text { address }\end{array} & \begin{array}{l}\text { 16-bit value } \\ \text { Bits } 0-11\end{array} & \begin{array}{l}\text { High order } 12 \text { bits of the physical address } \\ \text { for local processor addresses with the high } \\ \text { order } 4 \text { bits of the } 16 \text { bit address of } 1001 \\ \text { (binary). Note the MSB is always } 0 \text { be- } \\ \text { cause of the address range supported by } \\ \text { the processor. }\end{array} \\ \text { Unusd }\end{array}\right]$

Identifier	Address (hex)	Name	Description
Ext Mem_7	50,026	Extended memory area 7 address	16-bit value High order 12 bits of the physical address Bits $0-11$ for local processor addresses with the high order 4 bits of the 16 bit address of 1110 (binary). Note the MSB is always 0 be- cause of the address range supported by the processor. Bits 12-15 Unusd H/W initial value $=0$
Ext_ Mem_8	50,027	Extended memory area 8 address	16-bit value Bits 0-11 High order 12 bits of the physical address for local processor addresses with the high order 4 bits of the 16 bit address of 1111 (binary). Note the MSB is always 0 be- cause of the address range supported by the processor. Bits 12-15 Unusd H/W initial value $=0$
Probe Cmd_A	1C0,000	Command A	
Probe Sts_A	1C0,001	Status A	16-bit value bit 0 ML A interrupt active (Reading the MLC data register causes this bit to be cleared) $-1=$ active bit 1 Select A side active (Readback of bit 0 of the command register) $m-1=$ side selected bit 2 Processor valid flag (For channel A only) - $1=$ =processor valid bits 3-15 Unused read only
Mem Load_A	1-0,002	Memory Load A	16-bit value read only Contains data from ML interface to the probe. Max rate 1 word / 128μ-sec Reading this word clears the ML interrupt line Signaled by interrupt

Identifier	Address (hex)	Name	Description
Ser_ Status_A	1C0,003	Serial Status A	16-bit value entirely determined by software write only
TM Chnl_A	1C0,004	Telemetry channel A	16-bit value data moved here by the TLM A DMA write only
Probe IF_A	1C0,005	Probe Interface A	16-bit value bits $0-3$ unused bit 4 probe interrrupt level $0=$ level 12 bit 5 CCD level 13 13 $0=$ disabled $1=$ enabled bits $6-15$ unused
Probe Cmd B	1C0,010	Command B	Same as A side
Probe Sts B	1C0,011	Status B	Same as A side
Mem Load_B	1C0,012	Memory Load B	Same as A side
Ser Status B	1C0,013	Serial Status B	Same as A side
TM Chnl_B	1C0,014	Telemetry channel B	Same as A side
Probe IF_B	1C0,015	Probe Interface B	Same as A side
$\begin{aligned} & \text { DMA_A_ } \\ & \mathrm{ctl} \end{aligned}$	1C0,020	DMA channel A control TM channel A	16-bit value bit 0 Mode ID - msb bit 1 Mode ID - Isb bit 2 Interrupt enable (1=enabled) (not used) bit 3 DMA channel enable ($1=$ enabled) bit 4 interrupt acknowledge ($1=$ acknowledge) bit 5 DMA channel reset (1=reset) bits 6-15 TBD The Mode ID is a 2 bit field with the following definition: $00-$ unused $01-$ TM channel A $10-$ CCD $11-$ TM channel B write only

Identifier	Address (hex)	Name	Description
$\begin{aligned} & \text { DMA_A_ } \\ & \text { sts } \end{aligned}$	1C0,021	DMA channel A status	16-bit value bit 0 DMA in progress (1=in progress) bit 1 DMA complete (1=complete) bit 2 DMA error (CCD channel only) (1=error) bits 3-15 TBD read only
$\begin{array}{\|l} \hline \text { DMA_A_ } \\ \text { fix } \end{array}$	$\begin{aligned} & \hline 1 \mathrm{CO}, 022 \\ & 1 \mathrm{Co}, 023 \end{aligned}$	DMA channel A fixed address	22-bit value 1C0,022 - upper word (6 Isb) 1C0,023 - lower word (16 bits) For the CCD channel this is the source For the TM channels this is the destination write only
$\begin{aligned} & \begin{array}{l} \text { DMA_A_ } \\ \text { chg } \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \mathrm{CO}, 024 \\ & 1 \mathrm{Co}, 025 \end{aligned}$	DMA channel A changing address	22-bit value 1C0,024 - upper word (6 Isb) 1C0,025 - lower word (16 bits) For the CCD channel this is the destination For the TM channels this is the source write only
$\begin{aligned} & \text { DMA_A_ } \\ & \text { wc } \end{aligned}$	$\begin{aligned} & \hline 1 \mathrm{CO}, 026 \\ & 1 \mathrm{Co}, 027 \end{aligned}$	DMA channel A word count	18-bit value 1C0,026 - upper word (2 Isb) 1C0,027 - lower word (16 bits) write only
$\begin{aligned} & \text { DMA_B_ } \\ & \mathrm{ctl} \end{aligned}$	1C0,030	DMA channel B control TM channel B	Same as channel A
$\begin{array}{\|l} \hline \text { DMA_B_ } \\ \text { sts } \end{array}$	1C0,031	DMA channel B status	Same as channel A
$\begin{aligned} & \text { DMA_B_ } \\ & \text { fix } \end{aligned}$	$\begin{aligned} & 1 \mathrm{CO}, 032 \\ & 1 \mathrm{C} 0,033 \end{aligned}$	DMA channel B fixed address	Same as channel A
$\begin{aligned} & \begin{array}{l} \text { DMA_B_ } \\ \text { chg } \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \mathrm{CO}, 034 \\ & 1 \mathrm{Co}, 035 \end{aligned}$	DMA channel B changing address	Same as channel A
$\begin{aligned} & \text { DMA_B_ } \\ & \text { wc } \end{aligned}$	$\begin{aligned} & 1 \mathrm{C} 0,036 \\ & 1 \mathrm{C} 0,037 \end{aligned}$	DMA channel B word count	Same as channel A
$\begin{aligned} & \text { DMA_C_ } \\ & \mathrm{ctl} \end{aligned}$	1C0,040	DMA channel C control CCD channel	Same as channel A
$\begin{aligned} & \text { DMA_C_ } \\ & \text { sts } \end{aligned}$	1C0,041	DMA channel C status	Same as channel A
$\begin{aligned} & \text { DMA_C_ } \\ & \text { fix } \end{aligned}$	$\begin{aligned} & 1 \mathrm{C0}, 042 \\ & 1 \mathrm{Co}, 043 \end{aligned}$	DMA channel C fixed address	Same as channel A
$\begin{aligned} & \text { DMA_C_ } \\ & \text { chg } \end{aligned}$	$\begin{aligned} & 1 \mathrm{CO}, 044 \\ & 1 \mathrm{C}, 045 \end{aligned}$	DMA channel C DMA changing address	Same as channel A
$\begin{aligned} & \text { DMA_C_ } \\ & \text { wc } \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \mathrm{CO}, 046 \\ & 1 \mathrm{C} 0,047 \\ & \hline \end{aligned}$	DMA channel C word count	Same as channel A

Identifier	Address (hex)	Name	Description
$\begin{aligned} & \mathrm{CCD}_{-}^{-} \\ & \mathrm{Cmd}^{-} \end{aligned}$	1C0,050	CCD command	16-bit value bit 15 Not used bit 14 Full CCD readout bit 13 Spectra readout bit 12 Continuous readout bits 11..0 Spares write only
$\begin{aligned} & \text { CCD_ } \\ & \text { Data } \end{aligned}$	1C0,051	CCD data	16-bit word The CCD writes to this register The CCD DMA transfers data from this register to the frame buffer read only
$\begin{aligned} & \text { CCD_- } \\ & \text { Time } \end{aligned}$	1-0,052	CCD Integration time	```16-bit value 0.5 millisecond units 0.5 to 32 seconds write only```
IRIF_CtI	210,000	IRIF Control	16-bit value bit 0 Latchup enable (1=enable, $0=$ disable) bits 1-15 Unused write only .
IRIF_Sts	210,001	IRIF Status	16-bit value bit 15 IRIF execution complete (1=complete) bit 14 IR ADC power status (1=power enabled) read only
$\begin{aligned} & \text { ADC_ } \\ & \text { Cmd } \end{aligned}$	300,000	A/D Converter Cmd	Any write causes start convert write only
$\begin{aligned} & \hline \begin{array}{l} \text { ADC_ } \\ \text { Val } \end{array} \end{aligned}$	300,001	A/D latch Value	16-bits, 12 for data, others for status bit 0-2 Unused bit 3 Conversion complete bit 4-15 data value read only
$\begin{aligned} & \text { ADC_-_S } \\ & \text { MUX_Sel } \end{aligned}$	300,002	MUX / DEMUX Select	```16-bit word (7 bits needed) - See section 8.0 bits 0-6 MUX channel bits 7-15 unused write only```
MISC	300,003	Miscellaneous	

Identifier	Address (hex)	Name	Description
SS_cmd	300,004	Sun Sensor command register	16 -bit value bit 0 Peak/Hold (1=clear), must be set for at least $10 u-$ sec write only
Time_ Master	$\begin{aligned} & \hline 300,006 \\ & 300,007 \end{aligned}$	Master Timer	27-bit value 300,006 - bits 0-4 unused 300,006 - upper word (11 Isb) 300,007 - lower word (16 bits) read only
Time_BP	$\begin{aligned} & \hline 300,008 \\ & 300,009 \end{aligned}$	Broadcast Pulse Time	27-bit value 300,008 - bits 0-4 unused 300,008 - upper word (11 Isb) 300,009 - lower word (16 bits) read only
Time Event	$\begin{aligned} & \hline 300,00 \mathrm{~A} \\ & 300,00 \mathrm{~B} \end{aligned}$	Event Timer Value	27-bit value 300,00A - bits 0-4 unused 300,00A - upper word (11 Isb) 300,00B - lower word (16 bits) write only
$\begin{aligned} & \text { Time_ } \\ & \text { SP_LE } \end{aligned}$	$\begin{aligned} & \hline 300,00 \mathrm{C} \\ & 300,00 \mathrm{D} \end{aligned}$	Sun Pulse Leading Edge Time	27-bit value $300,00 \mathrm{C}$ - bits 0-4 unused $300,00 \mathrm{C}$ - upper word (11 Isb) $300,00 \mathrm{D}$ - lower word (16 bits) read only
Time SP_TE	$\begin{aligned} & 300,00 \mathrm{E} \\ & 300,00 \mathrm{~F} \end{aligned}$	Sun Pulse Trailing Edge Time	27-bit value 300,00E - bits 0-4 unused 300,00E - upper word (11 Isb) 300,00F - lower word (16 bits) read only

Identifier	Address (hex)	Name	Description
DCS Cmd/Sts	440,000	DCS status	16-bit value bits 7-0 Not used bit 8 HiLURAM bit 9 LoLURAM bit 10 CPU crash bit 11 HiLUComp bit 12 LoLUComp bit 13 Not used bit 14 Operation status ($0=$ success) bit 15 DCS ready read only
		DCS command	16-bit value bits 7-0 Not used bit 8 EnHiLURAM bit 9 EnLoLURAM bit 10 EnHiLUComp bit 11 EnLoLUComp bits 12-15 DCS command DCS commands (see 12-15) 0001 Start compression 0011 Start self test 0101 Recover from compressor LU xxx0 Change LU bits only write only
ML Ack	500,025	ML interrupt acknowledge	16-bit value, Any read or write causes the ML interrupt to be acknowledged. This must be done by software because the timing of the hardware pulse is not sufficient to allow the hardware to do it correctly.
BP Ack	500,031	BP interrupt acknowledge	16-bit value, Any read or write causes the BP interrupt to be acknowledged. This must be done by software because the timing of the hardware pulse is not sufficient to allow the hardware to do it correctly.
SS Ack	500,035	SS interrupt acknowledge	16-bit value, Any read or write causes the SS interrupt to be acknowledged. This must be done by software because the timing of the hardware pulse is not sufficient to allow the hardware to do it correctly.
ET Ack	500,037	ET interrupt acknowledge	16-bit value, Any read or write causes the ET interrupt to be acknowledged. This must be done by software because the timing of the hardware pulse is not sufficient to allow the hardware to do it correctly.

Identifier	Address (hex)	Name	Description
TMA Ack	500,039	TM A interrupt ac- knowledge	16-bit value, Any read or write causes the TM A interrupt to be ac- knowledged. This must be done by software because the timing of the hardware pulse is not sufficient to allow the hardware to do it correctly.
TMB Ack	$500,03 B$	TM B interrupt ac- knowledge	16-bit value, Any read or write causes the TM B interrupt to be ac- Anowledged. This must be done by software because the timing of the hardware pulse is not sufficient to allow the hardware to do it correctly.

7.2.6 Interrupt Use

There are a total of 9 interrupt levels that have not been predefined by the 1750 architecture. The current assignment uses 6 of the 9 leaving 3 spare. These are shown in Table 30.

Table 30 - Interrupt Level Usage

Identifier	Interrupt Level	Name	Interrupt Clearing Mechanism	Description
ML	$\begin{aligned} & \hline \text { INT02 } \\ & \# 2 \\ & \text { LP }=24_{16} \\ & \text { SP }=25_{16} \end{aligned}$	Memory Load	Read the MLC word.	One interrupt per word.
BP	$\begin{array}{\|l\|} \hline \text { INT08 } \\ \# 8 \\ \text { LP }=30_{16} \\ \text { SP }=31_{16} \\ \hline \end{array}$	Broadcast Pulse	Auxiliary Digital command register / bit 0	Interrupt when broadcast pulse is received. Needs to be maskable
SS	$\begin{array}{\|l\|} \hline \text { INT10 } \\ \# 10 \\ \text { LP }=34_{16} \\ \text { SP }=35_{16} \\ \hline \end{array}$	Sun Sensor	Auxiliary Digital command register / bit 1	Interrupt when a sun pulse has been detected. Both rising edge and trailing edge time registers have good times in them.
ET	$\begin{array}{\|l\|} \hline \text { INT11 } \\ \# 11 \\ \text { LP }=36_{16} \\ \text { SP }=37_{16} \\ \hline \end{array}$	Event Timer	Auxiliary Digital command register / bit 2	Interrupt when event timer value is equal to the mission timer.
TLM A	$\begin{array}{\|l\|} \hline \text { IOI } 1 \\ \# 12 \\ \mathrm{LP}=38_{16} \\ \mathrm{SP}=39_{16} \end{array}$	Telemetry channel A - word	Probe command A / bit 1	This is used for operating the telemetry channel without a DMA. This interrupt indicates an interrupt for one word on the channel A side or completion of the last word when used with the DMA.
TLM B	$\begin{array}{\|l} \hline \text { INT13 } \\ \# 13 \\ \text { LP }=3 \mathrm{~A}_{16} \\ \text { SP }=3 \mathrm{~B}_{16} \end{array}$	Telemetry channel B - word	Probe command B / bit 1	This is used for operating the telemetry channel without a DMA. This interrupt indicates an interrupt for one word on the channel B side or completion of the last word when used with the DMA.

Rev: C

7.2.7 Flat Field Area

The flat field area is divided into 3 sections, one for each of the imagers. Table 31 defines the address range of each of the imagers. Within each section, the flat field is organized so that the first pixel read from the CCD is the first pixel in the table and it continues for all pixels of the imager.

Table 31 - Flat Field Memory Assignments

Address Range (hex)	Use
$310,000-31$ A,FFF	DLI2
$31 B, 000-322$, FFF	SLI
$323,000-32$ C,FFF	DLI1
$32 \mathrm{E}, 000-32 \mathrm{~F}$, FFF	unused

7.2.8 Memory Map

The linker directives used for linking the software are shown in Figure 5. The memory allocation map for the instruction space is shown in Figure 6 and the memory allocation map for the data space is shown in Figure 7. A set of key memory addresses are provided in Table 32.

Figure 5 - Linker Directives

```
Command Line Switches:
tldlnk -directive=exec.dir -map
--
-- template.dir
--
-- Author: Dave Gingerich
--
-- Released: March 31, 1994
-- Modified: April 27, 1994
-- daveg: Brought RAM_Write into Startup so runs from RAM
-- after short initial load while in PROM. Can't read PROM
-- past 41FFFh while in PROM.
--
-- Purpose: Provides a template directive file for linking DISR flight
-- software. Just need to add the specific user modules. It also
-- provides comments about process.
-- Set max address to 24 bits and set load module type to hp (Hewlett Packard)
maxadr FFFFFF --Set maximum address to 24 bits
ldmtype = hp --Set load module type to hp (Hewlett Packard)
-- Set aside 1750 user address space not used by DISR
reserve 30020, 3FFFF
reserve 50000, FFFFF
reserve 1D0000,1FFFFF
reserve 210001,2FFFFF
reserve 300100,3FFFFF
reserve 440001,FFFFF0
-- Name the main node
node root
-- Define symbols needed somewhere, maybe only during link/bind, by TLDacs.
let A$PDG = 0 --Set page descriptor to zero (TLD variable)
let A$STSIZ = 01000 --Set stack size to 1000h (TLD variable)
let A$HEAP = 0.6FFFo --Set start of heap address (TLD variable)
let A$HEAPND = 0.07FFFo --Set end of heap address (TLD variable)
let A$UNDEFINED = 0 --Turn this symbol off (TLD variable)
-- Define symbols created by and used by DISR code.
let STACK = 7FFF --Set start of stack location. Builds down
```

```
-- Assign logical pages to physical pages.
-- lpage = Logical page number in form {a.}n{i|o} where a is address space
-- (default is 0), n is a hex number from 0 to F giving the page number
-- within the addr space and i or o indicates instruction or operand.
-- ppage = A physical page # in hex from 0 to FF.
assign 0.00 00 10 --assign lpage, ppage, number-pages (all in hex)
assign 0.0i 10 10 --assign lpage, ppage, number-pages (all in hex)
```

-- Reserve space set aside by 1750 MIL-SPEC.
reserve $0.00020,0.001$ Fo
reserve $0.80000,0$.EFFFo
-- Include DISR flight software. The includes can be in any order.
include /users/disr/SW/ateam/DISR_Macros/disr_start.obj
include /users/disr/SW/ateam/DISR_Macros/verfy_ram.obj
include /users/disr/SW/ateam/DISR_Macros/common_int.obj
-- These modules are only used to build the flight software.
-- mark.obj places some useful labels. prom_wr copies the code and constant
-- data from the target RAM into some EEPROMs. These EEPROMs are then
-- removed from the target system and copied into flight PROMs with a
-- PROM-programmer.
-- The module prom_wr, is not copied into the EEPROMs so it isn't copied
-- into the flight PROMs. It is only used to program the EEPROMs and isn't
-- needed after that point.
-- cksum calculates checksums for the 16 flight PROMs based upon the
-- code burned into the EEPROMs. It saves the 16 checksums to RAM where
-- the user reads them with the emulator. These checksums are NOT a good
-- way to verify the flight PROMs as each of the $2 * * 16$ checksums could be
-- the result of 1 of 32 completely different PROM configurations. So,
-- not counting complimentary bit flips, the checksum catches just 99.9\%
-- (999 in 1000) errors.
-- verfy_prom is used to read some real flight PROMs or EEPROMs and
-- verify that they match the code downloaded into RAM. This is the best
-- way to validate the flight PROMs.
include /users/disr/SW/ateam/DISR_Macros/mark.obj
include /users/disr/SW/ateam/DISR_Macros/prom_wr.obj
include /users/disr/SW/ateam/DISR_Macros/verfy_prom.obj
include /users/disr/SW/ateam/DISR_Macros/cksum.obj

```
-- Rest of DISR flight software is included here.
--<<< Begin user unique includes >>>--
include /disk2/sqa/flight/FSW_EA1_B/source/dispatch.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/dispatch_E1.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/dispatch_E2.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/dispatch_E3.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/dispatch_E4.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/dispatch_M.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/event_priority.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/event_que.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/exec.obj
include /disk2/sqa/flight/FSW_EA1_B/source/exec_e.obj
include /disk2/sqa/flight/FSW_EA1_B/source/mcode.obj
include /disk2/sqa/flight/FSW_EA1_B/source/object_instan.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/proj_lib.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O0011_Alarm_Queue.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O001_Clock.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O002_Loader.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O004_Memory.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O005_Populated_Memory.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O007_RAM_Data_Set.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O008_Dump_Data_Set.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O011_Command_Buffer.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O012_Probe_Cmd.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O013_Broadcast_Cmd.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O021_Enable_Cmd.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O022_Change_Mode_Cmd.s.obj
```

include /disk2/sqa/flight/FSW_EA1_B/source/O023_Single_Meas_Cmd.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O024_Single_Test_Cmd.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O026_Dump_Cmd.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O027_Uplink_EEPROM_Cmd.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O028_Uplink_RAM_Cmd.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O030_Attitude.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O031_Altitude.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O040_Descent_Scheduler.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/0041_Scenario_Spec.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O042_Cycle_Spec.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O044_Descent_Cycle_Data_Set.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O045_Inst_Misalignment.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O050_CCD_Manager.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O051_CCD_Meas_Set.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O052_CCD_Index_Table.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O053_CCD_Exposure.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O054_CCD_Meas_Spec.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O055_CCD_Exposure_Limits.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O059_CCD_Background.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O060_IR_Manager.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O061_IR_Meas_Spec.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/0062_IR_Region_Spec.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O063_IR_Exposure.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O064_IR_Regions.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/0069_IR_Background.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O070_Violet_Manager.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O071_Violet_Meas_Set.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O072_Violet_Meas_Spec.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/0074_ULV_Collection.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O079_Violet_Background.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O080_SPM_Scheduler.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O081_SPM_CCD_Manager.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O082_SPM_IR_Manager.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O085_Cal_Scheduler.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/0086_Cal_Cycle_Spec.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O087_Cal_Spec_Index_Table.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O088_Cal_Cycle_Data_Set.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O089_Cal_Violet_Index_Table.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O090_Cal_CCD_Manager.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O091_Cal_CCD_Exposure.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O092_Cal_CCD_Meas_Spec.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O093_Cal_CCD_Index_Table.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O094_Cal_IR_Spec.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O095_Cal_IR_Manager.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O096_Cal_IR_Exposure.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O097_Cal_Violet_Manager.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O098_Cal_Violet_Spec.s.obj include /disk2/sqa/flight/FSW_EA1_B/source/O099_Cal_IR_Index_Table.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O100_Operating_Mode.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O122_EEPROM_Data_Set.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O123_Patch_Data.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O124_EEPROM_Patch.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O125_EEPROM_Usage.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O130_Error_Detect.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O131_Angle_Lib.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O132_Sqrt.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O180_Packet_Manager.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O181_Tlm_Queue_Control.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O182_Data_Set_Header.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O183_Free_Packet_Control.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O184_Partial_Packet.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O185_Tlm_Channel_Manager.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O186_Predicted_Tlm_Rates.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O187_Tlm_Queue.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O188_Pending_Tlm_Requests.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O190_Message.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O191_Message_Data_Set.s.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O200_CCD.s.obj

include	/disk2/sqa/flight/FSW_EA1_B/source/O201_CCD_Data_Buffer.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O210_Probe_Input_Buffer.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O213_Probe_Cmd_Reg.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O217_TM_Refresher.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O218_TM_DMAs.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O229_DCS_Test_Data_Set.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O230_DCS.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O240_Sun_Sensor.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O241_Sun_Data_Set.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O242_Sun_Sensor_Constants.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O250_Watchdog.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O251_PROM_Power.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O260_Shutter_Tester.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O261_DCS_Tester.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O262_Heater_Tester.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O263_Cal_Lamp_Tester.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O264_Surface_Lamp_Tester.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O265_Sun_Lamp_Tester.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O266_Shutter_Test_Data_Set.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O267_Heater_Test_Data_Set.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O268_Cal_Lamp_Test_Data_Set.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O269_Surface_Lamp_Test_Data_Set.s.ob
include	/disk2/sqa/flight/FSW_EA1_B/source/O270_Broadcast_Pulse.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O271_Sun_Lamp_Test_Data_Set.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O283_Time_Data_Set.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O290_Interrupt_Controller.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O291_Interrupt_IF.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O292_Reset_Control.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O293_DMA_Control.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O294_Ext_Mem_Registers.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O295_Memory_Management.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O298_Ext_Mem.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O301_Radio_Processor.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O302_CCD_Transposed.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O303_CCD_Format.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/0304_Bad_Pixel_Map.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O305_CCD_Optimum_Exposure.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/0306_IR_Optimum_Sampling.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/0308_SW_Compressor.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/0309_Bit_Processor.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O313_IR_Set.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O314_Dark_Set.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O315_Image_Set.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O316_Strip_Set.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O317_Solar_Set.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O318_Visible_Set.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O319_CCD_Set.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O320_Violet_Measure.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O330_IR_Spectrum.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O340_Dark_Current.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O350_Image_Pic.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O358_Flat_Field_Lookup.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O359_LookUp_Table.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O360_Image_Strip.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/0370_Solar_Aureole.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O380_Visible_Spectrum.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O390_Full_CCD.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O400_Multiplexed_Device.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O404_Housekeeping_Data_Set.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O410_IR_Interface.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O414_IR_Raw_Data.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O442_Sun_Sensor_Lamp.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O450_Heater.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O460_Lamp.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O461_Lamp_Data_Set.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O465_Misc_Dev_Control_Register.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O470_Thermal_Manager.s.obj
include	/disk2/sqa/flight/FSW_EA1_B/source/O480_Status_Word.s.obj

include /disk2/sqa/flight/FSW_EA1_B/source/dispatch.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/event_que.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/proj_lib.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/00011_Alarm_Queue.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O001_Clock.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/0002_Loader.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O004_Memory.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O005_Populated_Memory.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O007_RAM_Data_Set.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O008_Dump_Data_Set.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O011_Command_Buffer.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O012_Probe_Cmd.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O013_Broadcast_Cmd.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O021_Enable_Cmd.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O022_Change_Mode_Cmd.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O023_Single_Meas_Cmd.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O024_Single_Test_Cmd.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O026_Dump_Cmd.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O027_Uplink_EEPROM_Cmd.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O028_Uplink_RAM_Cmd.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O030_Attitude.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/0031_Altitude.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O040_Descent_Scheduler.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/0041_Scenario_Spec.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O042_Cycle_Spec.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O044_Descent_Cycle_Data_Set.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O045_Inst_Misalignment.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O050_CCD_Manager.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O051_CCD_Meas_Set.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O052_CCD_Index_Table.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O053_CCD_Exposure.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O054_CCD_Meas_Spec.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/O055_CCD_Exposure_Limits.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/O059_CCD_Background.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/O060_IR_Manager.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/O061_IR_Meas_Spec.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/0062_IR_Region_Spec.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/O063_IR_Exposure.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/O064_IR_Regions.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/0069_IR_Background.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/0070_Violet_Manager.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/0071_Violet_Meas_Set.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/O072_Violet_Meas_Spec.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/0074_ULV_Collection.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/O079_Violet_Background.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/O080_SPM_Scheduler.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/O081_SPM_CCD_Manager.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/O082_SPM_IR_Manager.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/O085_Cal_Scheduler.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/0086_Cal_Cycle_Spec.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/O087_Cal_Spec_Index_Table.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/0088_Cal_Cycle_Data_Set.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/O089_Cal_Violet_Index_Table.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/O090_Cal_CCD_Manager.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/O091_Cal_CCD_Exposure.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/O092_Cal_CCD_Meas_Spec.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/O093_Cal_CCD_Index_Table.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/O094_Cal_IR_Spec.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/O095_Cal_IR_Manager.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/O096_Cal_IR_Exposure.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/0097_Cal_Violet_Manager.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/O098_Cal_Violet_Spec.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/0099_Cal_IR_Index_Table.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/O100_Operating_Mode.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/O122_EEPROM_Data_Set.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/O123_Patch_Data.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/O124_EEPROM_Patch.b.obj include /disk2/sqa/flight/FSW_EA1_B/source/O125_EEPROM_Usage.b.obj

include /disk2/sqa/flight/FSW_EA1_B/source/O130_Error_Detect.b.obj	
lude	/disk2/sqa/flight/FSW_EA1_B/source/O131_Angle_Lib.
de	/disk2/sqa/flight/FSW_EA1_B/sou
de	/disk2/sqa/flight/FSW_EA1_B/source/O180_Packet_M
include	/disk2/sqa/flight/FSW_EA1_B/source/O181_Tlm_Queue_Co
include	
nclude	/disk2/sqa/flight/FSW_EA1_B/source/O183_Free_Pa
include /disk2/sqa/flight/FSW_EA1_B/source/O184_Partial_Packet.b.obj	
nclude	/disk2/sqa/flight/FSW_EA1_B/source/O185_Tlm_Channel_Manager.b.obj
include /disk2/sqa/flight/FSW_EA1_B/sour	
include /disk2/sqa/flight/FSW_EA1_B/source/O187_Tlm_Queue.b.obj	
include /disk2/sqa/flight/FSW_EA1	
include /disk2/sqa/flight/FSW	
include /disk2/sqa/flight/FSW_EA1_B/source/O218_TM_DMAs.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O229_DCS_Test_Data_Set.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O230_DCS.b.obj	
include /disk2/sqa/flight/FSW_EA1	
include /disk2/sqa/flight/FSW_EA1_B/source/O241_Sun_Data_Set.b.obj	
include /disk2/sqa/flight/FSW_EA1	
include	
include /disk2/sqa/flight/FSW_EA1_B/source/O251_PROM_Power.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O260_Shutter_Tester.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O261_DCS_Tester.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O262_Heater_Tester.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O263_Cal_Lamp_Tester.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O264_Surface_Lamp_Tester.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O265_Sun_Lamp_Tester.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O266_Shutter_Test_Data_Set.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O267_Heater_Test_Dat	
include /disk2/sqa/flight/FSW_EA1_B/source/O268_Cal_Lamp_Test_Data_Set.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O269_Surface_Lamp_Test_Data_Set.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O270_Broadcast_Pulse.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O271_Sun_Lamp_Test_Data_Set.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O283_Time_Data_Set.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O290_Interrupt_Controller.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O291_Interrupt_IF.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O292_Reset_Control.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O293_DMA_Control.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O294_Ext_Mem_Registers.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O295_Memory_Management.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O298_Ext_Mem.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O301_Radio_Processor.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O302_CCD_Transposed.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O303_CCD_Format.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O304_Bad_Pixel_Map.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O305_CCD_Optimum_Exposure.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O306_IR_Optimum_Sampling.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O308_SW_Compressor.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O309_Bit_Processor.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O313_IR_Set.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O314_Dark_Set.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O315_Image_Set.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O316_Strip_Set.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O317_Solar_Set.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O318_Visible_Set.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O319_CCD_Set.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O320_Violet_Measure.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O330_IR_Spectrum.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O340_Dark_Current.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O350_Image_Pic.b.obj	
include /disk2/sqa/flight/FSW_EA1_B/source/O358_Flat_Field_Lookup.b.obj	

```
include /disk2/sqa/flight/FSW_EA1_B/source/O360_Image_Strip.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O370_Solar_Aureole.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O380_Visible_Spectrum.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O390_Full_CCD.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O400_Multiplexed_Device.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O404_Housekeeping_Data_Set.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O410_IR_Interface.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O414_IR_Raw_Data.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O442_Sun_Sensor_Lamp.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O450_Heater.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O460_Lamp.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O461_Lamp_Data_Set.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O465_Misc_Dev_Control_Register.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O470_Thermal_Manager.b.obj
include /disk2/sqa/flight/FSW_EA1_B/source/O480_Status_Word.b.obj
--<<< End user unique includes >>>--
-- Search for any assembly langauge programs called by above included modules.
-- Only modules explicitly called will be included.
search /users/disr/SW/ateam/DISR_Macros/lo_int.obj
search /users/disr/SW/ateam/DISR_Macros/blk_cp.obj
search /users/disr/SW/ateam/DISR_Macros/w_mlt.obj
search /users/disr/SW/ateam/DISR_Macros/pack.obj
search /users/disr/SW/ateam/DISR_Macros/unpack.obj
search /users/disr/SW/ateam/DISR_Macros/disr_crc.obj
search /users/disr/SW/ateam/DISR_Macros/wait.obj
search /users/disr/SW/ateam/DISR_Macros/bld_hist.obj
search /users/disr/SW/ateam/DISR_Macros/sqrt_proc.obj
search /users/disr/SW/ateam/DISR_Macros/flat_fld.obj
-- Search these (modified) TLD libraries for remaining unresolved modules.
-- These have been modified to fit DISR program needs.
-- standard math, standard functions and Ada POS function (one version)
-- DON'T search any other TLD libraries.
search /users/disr/SW/ateam/DISR_Macros/stnmth.obj
search /users/disr/SW/ateam/DISR_Macros/stnfnc.obj
search /users/disr/SW/ateam/DISR_Macros/stnpos.obj
-- Group the control section in the desired order into control groups. Then
-- their attributes can be set as a group. Only the new TLDlnk has this option.
group in_order :code_area= (*:START,*:DISRCODE,
    *:$ISECT$,*:A$KCOD,*:RAM_CODE_END, \
    *:BURN_PROM, *:CHKSUMCODE)
group in_order :vector_tbl= (*:INT_VECTORS)
group in_order :cons_area= (*:DISRCONS,*:$CONS$, *:A$KCNS,*:CONS_END)
group in_order :data_area= (*:DISRDATA,*:$DATA$,*:DATA_END,*:CHKSUMDATA)
```


Figure 6 - Instruction RAM Memory Allocation

1103	11103	5	\$ISECT\$ F	F	RR I	F
1103	11103 INIT_\$023001					
			O218_TM_DMAS.INIT_\$025001			
1108	11108	14	\$ISECT ${ }^{\text {d }}$	F	RR	F
1108	11108		INIT_\$025001			
			O229_DCS_TEST_DATA_SET.INIT_\$026001			
111C	1111C	A	\$ISECT\$ F	F	RR	F
111C	1111C		INIT_\$026001			
			O230_DCS.INIT_\$027001			
1126	11126	39	\$ISECT\$ F	F	RR	F
1126	11126		INIT_\$027001			
			O240_SUN_SENSOR.INIT_\$028001			
115F	1115F	B	\$ISECT\$ F	F	RR	F
115 F	1115F		INIT_\$028001			
			O241_SUN_DATA_SET.INIT_\$029001			
116A	1116A	D	\$ISECT\$ F	F	RR I	F
116A	1116A		INIT_\$029001			
			O242_SUN_SENSOR_CONSTANTS.INIT_\$03I001			
1177	11177	27	\$ISECT\$ F	F	RR	F
1177	11177		INIT_\$O3I001			
			O250_WATCHDOG.INIT_\$03J001			
119E	1119E	9	\$ISECT\$ F	F	RR	F
119 E	1119E		INIT_\$03J001			
			O251_PROM_POWER.INIT_\$03K001			
11A7	111A7	7	\$ISECT\$	F	RR	F
11A7	111A7		INIT_\$03K001			
			O260_SHUTTER_TESTER.INIT_\$O3L001			
11AE	111AE	7	\$ISECT\$ F	F	RR	F
11AE	111AE		INIT_\$O3L001			
			O261_DCS_TESTER.INIT_\$03M001			
11B5	111B5	7	\$ISECT\$ F	F	RR	F
1185	111B5		INIT_\$03M001			
			O262_HEATER_TESTER.INIT_\$O3N001			
11BC	111BC	C	\$ISECT\$ F	F	RR	F
11BC	111BC		INIT_\$O3N001			
			O263_CAL_LAMP_TESTER.INIT_\$03000			
11C8	111C8	10	\$ISECT\$ F	F	RR I	F
11C8	111C8		INIT_\$030001			
			O264_SURFACE_LAMP_TESTER.INIT_\$03P001			
11D8	111D8	10	\$ISECT\$ F	F	RR	F
11D8	111D8		INIT_\$O3P001			
			O265_SUN_LAMP_TESTER.INIT_\$03Q00			
11E8	111E8	B	\$ISECT\$ F	F	RR I	F
11E8	111E8		INIT_\$030001			
			O266_SHUTTER_TEST_DATA_SET.INIT_\$03R001			
11 F 3	111F3	B	\$ISECT\$ F	F	RR	F
11F3	111F3		INIT_\$O3R001			
			O267_HEATER_TEST_DATA_SET.INIT_\$O3S001			
11FE	111FE	9	\$ISECT\$ F	F	RR I	F
11FE	111FE		INIT_\$03S001			
			0268_CAL_LAMP_TEST_DATA_SET.INIT_\$03T001			
1207	11207	8				F
1207	11207		INIT_\$03T001			
			0269_SURFACE_LAMP_TEST_DATA_SET.INIT_\$0			
120F	1120F	8	\$ISECT\$ F	F	RR I	F
120 F	1120F		INIT_\$03U001			
			0271_SUN_LAMP_TEST_DATA_SET.INIT_\$03W001			
1217	11217	8	\$ISECT\$ F	F	RR	F
1217	11217		INIT_\$03W001			
			O283_TIME_DATA_SET.INIT_\$03X001			
121F	1121F	21	\$ISECT\$ F	F	RR I	F
121 F	1121F		INIT_\$03X001			
			O290_INTERRUPT_CONTROLLER.INIT_\$03Y001			
1240	11240	17	\$ISECT\$ F	F	RR	F
1240	11240		INIT_\$03Y001			
			O292_RESET_CONTROL.INIT_\$04A001			
1257	11257	7	\$ISECT\$ F	F	RR I	F
1257	11257		INIT_\$04A001			

2C8A	12C8A	7 E
2C8A	12C8A	
2D08	12D08	3D
2D08	12D08	
2D45	12D45	EF
2D45	12D45	
2E34	12E34	1 E
2E34	12E34	
2E52	12E52	60
2E52	12E52	
2EB2	12EB2	8
2EB2	12EB2	
2EBA	12EBA	3B
2EBA	12EBA	
2EF5	12EF5	3 F
2EF5	12EF5	
2F34	12F34	4 F
2F34	12F34	
2 F 83	12F83	C
2F83	12F83	
2 F 8 F	12F8F	30
2 F 8 F	12F8F	
2 FBF	12 FBF	2A
2 FBF	12 FBF	
2FE9	12FE9	17
3000	13000	4 E
2FE9	12FE9	
304 E	1304 E	1D
304 E	1304 E	
306 B	1306 B	6D
306 B	1306 B	
30D8	130D8	78
30D8	130D8	
3150	13150	66
3150	13150	
31B6	131B6	7
31B6	131B6	
31 BD	131BD	29
31 BD	131BD	
31 E 6	131E6	19
31 E 6	131E6	
31 FF	131FF	1 E
31 FF	131 FF	
321D	1321D	23
321 D	1321D	

```
O040_DESCENT_SCHEDULER.CHECK_CYCLE_END_$O1J031
    $ISECT$ F F RR I F
            CHECK_CYCLE_END_$O1J109
O040_DESCENT_SCHEDULER.END_CYCLE_$O1J032
    $ISECT$ F F RR I F
        END_CYCLE_$O1J110
O041_SCENARIO_SPEC.SEARCH_SCEN_CRITERIA_$O1K02Y
    $ISECT$ F F RR I F
            SEARCH_SCEN_CRITERIA_$O1K106
0041_SCENARIO_SPEC.RESET_EXEC_DONE_$01K02Z
    $ISECT$ F F RR I F
            RESET_EXEC_DONE_$01K107
O042_CYCLE_SPEC.GET_CYCLE_LIMITS_$O1L02Y
    $ISECT$ F F RR I F
                GET_CYCLE_LIMITS_$O1L106
O042_CYCLE_SPEC.GET_LAMP_DESIRED_$O1L02Z
    $ISECT$ F F RR I F
            GET_LAMP_DESIRED_$O1L107
O042_CYCLE_SPEC.GET_CYCLE_MEAS_$O1L030
    $ISECT$ F F RR I F
        GET_CYCLE_MEAS_$O1L108
O042_CYCLE_SPEC.CHECK_CYCLE_ID_$O1L031
    $ISECT$ F F RR I F
        CHECK_CYCLE_ID_$O1L109
O044_DESCENT_CYCLE_DATA_SET.GEN_DESCENT_CYCLE_DA_$O1M02X
    $ISECT$ F F RR I F
        GEN_DESCENT_CYCLE_DA_$O1M105
O045_INST_MISALIGNMENT.GET_INST_MISALIGNMEN_$O1N02X
    $ISECT$ F F RR I F
        GET_INST_MISALIGNMEN_$O1N105
O050_CCD_MANAGER.INIT_CCD_$O1O02W
    $ISECT$ F F RR I F
        INIT_CCD_$010104
O050_CCD_MANAGER.CHECK_READOUT_SPACE_$O1O02X
    $ISECT$ F F RR I F
        CHECK_READOUT_SPACE_$010105
O050_CCD_MANAGER.PICK_NEXT_MEAS_$O1O02Y
    $ISECT$ F F RR I F
        PICK_NEXT_MEAS_$010106
O050_CCD_MANAGER.START_AZIM_TIMER_$O1002Z
    $ISECT$ F F RR I F
        START_AZIM_TIMER_$010107
O050_CCD_MANAGER.PICK_ALTERNATE_MEAS_$010030
    $ISECT$ F F RR I F
        PICK_ALTERNATE_MEAS_$010108
O050_CCD_MANAGER.START_INTEGRATION_$O1O031
    $ISECT$ F F RR I F
        START_INTEGRATION_$010109
O050_CCD_MANAGER.START_CCD_PROC_$010032
    $ISECT$ F F RR I F
        START_CCD_PROC_$010110
O050_CCD_MANAGER.WAIT_AZIM_$O1O033
    $ISECT$ F F RR I F
        WAIT_AZIM_$010111
O050_CCD_MANAGER.CHECK_END_MEAS_$O1O034
        $ISECT$ F F RR I F
        CHECK_END_MEAS_$O1O112
O050_CCD_MANAGER.START_MAX_TIMER_$O10035
        $ISECT$ F F RR I F
        START_MAX_TIMER_$010113
O050_CCD_MANAGER.CHECK_READOUTS_$O1O036
        $ISECT$ F F RR I F
        CHECK_READOUTS_$O10114
O050_CCD_MANAGER.REPORT_MAX_EXCEEDED_$O10037
    $ISECT$ F F RR I F
        REPORT_MAX_EXCEEDED_$010115
O050_CCD_MANAGER.RECALC_AZIM_TIME_$010038
```


3 C 30	13 C 30	5D	\$ISECT\$ F F RR I F
3C30	13 C 30		RECALC_START_AZIM_\$01V111
			O060_IR_MANAGER.SEND_IR_TABLE_\$01V034
3C8D	13C8D	41	\$ISECT\$ F F RR I F
3C8D	13C8D		SEND_IR_TABLE_\$01V112
			O060_IR_MANAGER.WAIT_FOR_STARTING_Az_\$01V035
3CCE	13CCE	1B	\$ISECT\$ F F RR I F
3CCE	13CCE		WAIT_FOR_STARTING_AZ_\$01V113
			0061_IR_MEAS_SPEC.GET_IR_COLLECT_SPEC_\$01W02Y
3CE9	13CE9	5A	\$ISECT\$ \quad F F RR I F
3CE9	13CE9		GET_IR_COLLECT_SPEC_\$01W106
			O061_IR_MEAS_SPEC.GET_IR_PROC_SPEC_\$01W02Z
3D43	13D43	12	\$ISECT\$ \quad F F RR I F
3D43	13D43		GET_IR_PROC_SPEC_\$01W107
			0061 _IR_MEAS_SPEC.GET_REGION_SET_NUMBE_\$01w030
3D55	13D55	E	\$ISECT\$ \quad F F RR I F
3D55	13D55		GET_REGION_SET_NUMBE_\$01W108
			O062_IR_REGION_SPEC.GET_REGION_CNT_\$01X02X
3D 63	13D63	21	\$ISECT\$ F F RR I F
3D 63	13D63		GET_REGION_CNT_\$01X105
			0062 _IR_REGION_SPEC.GET_REGION_AZIM_SPEC_\$01X02Y
3D84	13D84	1 C	\$ISECT\$ F F RR I F
3D84	13D84		GET_REGION_AZIM_SPEC_\$01X106
			O062_IR_REGION_SPEC.GET_BIN_NUMBERS_\$01X02Z
3DA0	13DA0	1 E	\$ISECT\$ F F RR I F
3DA0	13DA0		GET_BIN_NUMBERS_\$01X107
			O062_IR_REGION_SPEC.FIND_NEXT_REGION_\$01X030
3DBE	13DBE	68	\$ISECT\$ \quad F F RR I F
3DBE	13DBE		FIND_NEXT_REGION_\$01X108
			0062 _IR_REGION_SPEC.FIND_CURRENT_REGION_\$01X031
3E26	13 E 26	7 E	\$ISECT\$ \quad F F RR I F
3E26	13E26		FIND_CURRENT_REGION_\$01X109
			O063_IR_EXPOSURE.STORE_SAMPLE_TIME_\$01Y02Z
3EA4	13EA4	32	\$ISECT\$ \quad F F RR I F
3EA4	13EA4		STORE_SAMPLE_TIME_\$01Y107
			O063_IR_EXPOSURE.GET_SAMPLE_TIME_\$01Y030
3ED6	13 ED 6	3 C	\$ISECT\$ F F RR I F
3ED6	13ED6		GET_SAMPLE_TIME_\$01Y108
			O063_IR_EXPOSURE.GET_DARK_EXPOSURE_\$01Y031
3 F 12	13 F 12	13	\$ISECT\$ F F RR I F
3 F 12	13 F 12		GET_DARK_EXPOSURE_\$01Y109
			O064_IR_REGIONS.GEN_IR_REGION_TIMES_\$01202W
3F25	13 F 25	DB	\$ISECT\$ F F RR I F
4000	14000	141	
3F25	13 F 25		GEN_IR_REGION_TIMES_\$01Z104
			O070_VIOLET_MANAGER.INIT_VIOLET_\$O2B02W
4141	14141	2 E	\$ISECT\$ F F RR I
4141	14141		INIT_VIOLET_\$O2B104
			O070_VIOLET_MANAGER.PICK_NEXT_VIOLET_\$02B02X
416F	1416F	3 D	\$ISECT\$ \quad F F RR I
416 F	1416F		PICK_NEXT_VIOLET_\$O2B105
			O070_VIOLET_MANAGER.START_AZIM_TIMER_\$02B02Y
41AC	141AC	19	\$ISECT\$ F F RR I F
41AC	141AC		START_AZIM_TIMER_\$02B106
			O070_VIOLET_MANAGER.START_VIOLET_COLLECT_\$O2B02Z
41C5	141C5	40	\$ISECT\$ $\quad \mathrm{F}$ F RR I F
41C5	141 C 5		START_VIOLET_COLLECT_\$02B107
			O070_VIOLET_MANAGER.CHECK_VIOLET_END_\$O2B030
4205	14205	23	\$ISECT\$ F F RR I F
4205	14205		CHECK_VIOLET_END_\$02B108
			O070_VIOLET_MANAGER.REPORT_MAX_EXCEEDED_\$02B031
4228	14228	23	\$ISECT\$ \quad F F RR I F
4228	14228		REPORT_MAX_EXCEEDED_\$02B109
			O070_VIOLET_MANAGER.RECALC_AZIM_TIME_\$02B032
424B	1424B	38	\$ISECT\$ \quad F F RR I F
424B	1424B		RECALC_AZIM_TIME_\$02B110
			O070_VIOLET_MANAGER.START_MAX_TIMER_\$02B033

4283	14283	19	\$ISECT\$ F F RR I F
4283	14283		START_MAX_TIMER_\$02B111
			0071_VIOLET_MEAS_SET.GEN_VIOLET_TABLE_\$O2C02W
429C	1429C	BC	\$ISECT\$ F F RR I F
429C	1429C		GEN_VIOLET_TABLE_\$02C104
			O071_VIOLET_MEAS_SET.FIND_NEXT_VIOLET_\$O2C02X
4358	14358	9A	\$ISECT\$ F F RR I F
4358	14358		FIND_NEXT_VIOLET_\$02C105
			O071_VIOLET_MEAS_SET.STORE_VIOLET_MEAS_DO_\$O2C02Y
$43 F 2$	$143 F 2$	6	\$ISECT\$ F F RR I F
43F2	143 F 2		STORE_VIOLET_MEAS_DO_\$O2C106
			O071_VIOLET_MEAS_SET.REPORT_VIOLET_LEFT_\$O2C02Z
43 F 8	143F8	29	\$ISECT\$ F F RR I F
43F8	143F8		REPORT_VIOLET_LEFT_\$02C107
			0072_VIOLET_MEAS_SPEC.GET_VIOLET_SPEC_\$O2D02X
4421	14421	2E	\$ISECT\$ \quad F F RR I F
4421	14421		GET_VIOLET_SPEC_\$O2D105
			O072_VIOLET_MEAS_SPEC.GET_NUM_VIOLET_\$O2D02Y
444 F	1444 F	26	\$ISECT\$ \quad F F RR I F
444 F	1444 F		GET_NUM_VIOLET_\$02D106
			0074_ULV_COLLECTION.WAIT_ULV_AZIM_\$02E02W
4475	14475	4 F	\$ISECT\$ F F RR I F
4475	14475		WAIT_ULV_AZIM_\$O2E104
			0074_ULV_COLLECTION.START_ULV_\$O2E02X
44C4	144 C 4	34	\$ISECT\$ F F RR I F
44 C 4	144 C 4		START_ULV_\$02E105
			O080_SPM_SCHEDULER.START_SPM_MEASUREMEN_\$O2G02W
44F8	144F8	35	\$ISECT\$ F F RR I F
44F8	144 F 8		START_SPM_MEASUREMEN_\$O2G104
			0080_SPM_SCHEDULER.CHECK_SPM_END_\$02G02X
452D	1452D	27	\$ISECT\$ \quad F F RR I F
452D	1452D		CHECK_SPM_END_\$02G105
			O081_SPM_CCD_MANAGER.SETUP_SPM_CCD_\$O2H02Y
4554	14554	28	\$ISECT\$ \quad F F RR I F
4554	14554		SETUP_SPM_CCD_\$O2H106
			O081_SPM_CCD_MANAGER.CHECK_READOUT_SPACE_\$02H02Z
457C	1457C	1A	\$ISECT\$ F F RR I F
457c	1457C		CHECK_READOUT_SPACE_\$O2H107
			O081_SPM_CCD_MANAGER.START_MEASUREMENT_\$02H030
4596	14596	28	\$ISECT\$ F F RR I F
4596	14596		START_MEASUREMENT_\$O2H108
			O081_SPM_CCD_MANAGER.START_CCD_PROC_\$O2H031
45BE	145BE	5F	\$ISECT\$ F F Fr I F
45BE	145BE		START_CCD_PROC_\$02H109
			0081_SPM_CCD_MANAGER.END_SPM_CCD_\$O2H032
461D	1461D	10	\$ISECT\$ F F RR I F
461D	1461D		END_SPM_CCD_\$O2H110
			0082_SPM_IR_MANAGER.SETUP_SPM_IR_\$O2I02X
462D	1462D	28	\$ISECT\$ F F RR I F
462D	1462D		SETUP_SPM_IR_\$O2I105
			0082_SPM_IR_MANAGER.CHECK_READOUT_SPACE_\$02I02Y
4655	14655	B	\$ISECT\$ F F RR I F
4655	14655		CHECK_READOUT_SPACE_\$O2I106
			0082_SPM_IR_MANAGER.DO_IR_SELF_CAL_\$02102Z
4660	14660	C	\$ISECT\$ \quad F F RR I F
4660	14660		DO_IR_SELF_CAL_\$02I107
			0082_SPM_IR_MANAGER.START_IR_COLLECTION_\$02I030
466C	1466C	68	\$ISECT\$ \quad F F RR I F
466C	1466C		START_IR_COLLECTION_\$02I108
			O082_SPM_IR_MANAGER.CHECK_COLLECTION_END_\$O2I031
46D4	146D4	6B	FISECT\$ F F R ICHECK_COLLECTION_END_\$O2I109O082_SPM_IR_MANAGER.END_SPM_IR_\$02IO32
46D4	146D4		
473 F	1473F	10	\$ISECT\$ F F RR I F
473 F	1473F		END_SPM_IR_\$O2I110
			0085_CAL_SCHEDULER.START_CAL_SCENARIO_\$02J02W
474 F	1474 F	38	\$ISECT\$ \quad F F RR I
474F	1474F		START_CAL_SCENARIO_\$02J104

57C9	157C9	CONVERT_BYTES_TO_PAT_\$014107	
		O125_EEPROM_USAGE.GET_USAGE_BLOCK_\$01502W	
57D9	157D9	D	\$ISECT\$ F F RR I F
57D9	157D9	GET_USAGE_BLOCK_\$015104	
		O125_EEPROM_USAGE.SAVE_USAGE_BLOCK_\$01502X	
57 E 6	157E6	16	\$ISECT\$ F F RR I F
57E6	157E6	SAVE_USAGE_BLOCK_\$015105	
		O125_EEPROM_USAGE.INCR_USAGE_CNT_\$01502Y	
57 FC	157FC	16	\$ISECT\$ F F RR I F
57 FC	157FC	INCR_USAGE_CNT_\$O15106	
O131_ANGLE_LIB.ADD_ANGLE_\$O1702V			
5812	15812	1 F	\$ISECT\$ F F RR I F
5812	15812	ADD_ANGLE_\$017103	
O131_ANGLE_LIB.SUBT_ANGLE_\$01702W			
5831	15831	1 F	\$ISECT\$ F F RR I F
5831	15831	SUBT_ANGLE_\$O17104	
O132_SQRT.SQRT_\$01802V			
5850	15850	40	\$ISECT\$ F F RR I F
5850	15850	SQRT_\$018103	
		O180_PACKET_MANAGER.DETERMINE_TLM_SPACE_\$O1902W	
5890	15890	69	\$ISECT\$ F F RR I F
5890	15890	DETERMINE_TLM_SPACE_\$019104	
		O180_PACKET_MANAGER.WAIT_TLM_SPACE_\$01902X	
58F9	158F9	6 E	\$ISECT\$ F F RR I F
58F9	158F9	WAIT_TLM_SPACE_\$019105	
		O180_PACKET_MANAGER.DATA_SET_PACKAGED_\$01902Y	
5967	15967	76	\$ISECT\$ F F RR I F
5967	15967	DATA_SET_PACKAGED_\$019106	
		O180_PACKET_MANAGER.SETUP_PENDING_TLM_\$01902Z	
59DD	159DD	3 E	\$ISECT\$ F F RR I F
59DD	159DD	SETUP_PENDING_TLM_\$019107	
		O180_PACKET_MANAGER.PACK_DATA_IN_PACKETS_\$019030	
5A1B	15A1B	1B4	\$ISECT\$ F F RR I F
5A1B	15A1B	PACK_DATA_IN_PACKETS_\$019108	
		O181_TLM_QUEUE_CONTROL.ADD_TLM_QUEUE_\$O2Y02X	
5BCF	15 BCF	AD	\$ISECT\$ \quad F F RR I F
5BCF	15BCF	ADD_TLM_QUEUE_\$O2Y105	
		O181_TLM_QUEUE_CONTROL.GET_NEXT_PACKET_\$O2Y02Y	
5C7C	15C7C	D2	\$ISECT\$ $\quad \mathrm{F}$ F RR I F
5C7C	15C7C	GET_NEXT_PACKET_\$O2Y106	
		O181_TLM_QUEUE_CONTROL.UPDATE_PACKET_SENT_\$O2Y02Z	
5D4E	15D4E	5 C	\$ISECT\$ F F RR I F
5D4E	15D4E	UPDATE_PACKET_SENT_\$O2Y107	
		O181_TLM_QUEUE_CONTROL.REBUILD_TLM_LINKS_\$O2Y031	
5DAA	15DAA	C4	\$ISECT\$ F F RR I F
5DAA	15DAA	REBUILD_TLM_LINKS_\$O2Y109	
		O181_TLM_QUEUE_CONTROL.INIT_USED_PKT_LISTS_\$O2Y030	
5E6E	15E6E	18	\$ISECT\$ F F RR I F
5E6E	15E6E	INIT_USED_PKT_LISTS_\$02Y108	
		O181_TLM_QUEUE_CONTROL.PICK_SMALLER_QUEUE_\$O2Y032	
5E86	15E86	34	\$ISECT\$ F F RR I F
5E86	15E86	PICK_SMALLER_QUEUE_\$O2Y110	
		O181_TLM_QUEUE_CONTROL.REPORT_LESSER_PKT_CN_\$O2Y033	
5EBA	15EBA	44	\$ISECT\$ F F RR I F
5EBA	15EBA	REPORT_LESSER_PKT_CN_\$O2Y111	
		O182_DATA_SET_HEADER.GENERATE_DATA_SET_HE_\$O2Z02W	
5EFE	15EFE	26	\$ISECT\$ F F RR I F
5EFE	15EFE	GENERATE_DATA_SET_HE_\$O2Z104	
		O183_FREE_PACKET_CONTROL. REMOVE_FREE_PACKET_\$O3A02W	
5F24	15F24	4 C	\$ISECT\$ F F RR I F
5F24	15F24	REMOVE_FREE_PACKET_\$O3A104	
		O183_FREE_PACKET_CONTROL.ADD_FREE_PACKET_\$O3A02X	
5F70	15F70	5B	\$ISECT\$ F F RR I F
5F70	15F70	ADD_FREE_PACKET_\$03A105	
		O183_FREE_PACKET_CONTROL.REPORT_FREE_PACKETS_\$O3A02Y	
5FCB	15FCB	C	\$ISECT\$ F F RR I F
5 FCB	15FCB		REPORT_FREE_PACKETS_\$O3A106
			O183_FREE_PACKET_CONTROL.INIT_FREE_PKT_LIST_\$O3A02Z

5 FD 7	15 FD 7	29	\$ISECT\$ F F RR I F
6000	16000	25	
5 FD 7	15 FD 7		INIT_FREE_PKT_LIST_\$03A107
			O183_FREE_PACKET_CONTROL.STORE_PKTS_NEEDED_\$O3A030
6025	16025	5	\$ISECT\$ F F RR I F
6025	16025		STORE_PKTS_NEEDED_\$03A108
			0184_PARTIAL_PACKET.GET_PARTIAL_PACKET_\$03B02Y
602A	1602A	1 C	\$ISECT ${ }^{\text {a }}$ (F F RR I F
602A	1602A		GET_PARTIAL_PACKET_\$03B106
			O184_PARTIAL_PACKET.STORE_PARTIAL_PACKET_\$O3B02Z
6046	16046	12	\$ISECT\$ F F RR I F
6046	16046		STORE_PARTIAL_PACKET_\$03B107
			0184_PARTIAL_PACKET.FLUSH_PARTIAL_PACKET_\$03B030
6058	16058	4 C	\$ISECT\$ F F RR I F
6058	16058		FLUSH_PARTIAL_PACKET_\$03B108
			O185_TLM_CHANNEL_MANAGER.SETUP_NEXT_TLM_\$03C02Z
60A4	160A4	6B	\$ISECT\$ \quad F F FR I F
60A4	160 A 4		SETUP_NEXT_TLM_\$03C107
			O185_TLM_CHANNEL_MANAGER.FINISH_AND_SEND_PKT_\$O3C032
610F	1610F	72	\$ISECT\$ F F RR I F
610F	1610F		FINISH_AND_SEND_PKT_\$O3C110
			O185_TLM_CHANNEL_MANAGER.INIT_PROBE_TLM_\$03C030
6181	16181	39	\$ISECT\$ \quad F F RR I F
6181	16181		INIT_PROBE_TLM_\$03C108
			O185_TLM_CHANNEL_MANAGER.CHECK_CHAN_IN_USE_\$O3C031
61BA	161BA	3 E	\$ISECT\$ F F RR I F
61BA	161BA		CHECK_CHAN_IN_USE_\$O3C109
			O185_TLM_CHANNEL_MANAGER.SET_CHAN_OP_STATE_\$03C033
61F8	161F8	11	\$ISECT\$ \quad F F RR I F
61 F 8	161F8		SET_CHAN_OP_STATE_\$O3C111
			O185_TLM_CHANNEL_MANAGER.CURRENT_CHAN_OP_STAT_\$O3C034
6209	16209	8	\$ISECT\$ $\quad \mathrm{F}$ F RR I F
6209	16209		CURRENT_CHAN_OP_STAT_\$O3C112
			O186_PREDICTED_TLM_RATES.PREDICT_TLM_EMPTY_TI_\$O3D02X
6211	16211	34	\$ISECT\$ F F RR I F
6211	16211		PREDICT_TLM_EMPTY_TI_\$O3D105
			O186_PREDICTED_TLM_RATES.GET_PREDICTED_RATE_\$O3D02Y
6245	16245	26	\$ISECT\$ F F RR I F
6245	16245		GET_PREDICTED_RATE_\$O3D106
			0187_TLM_QUEUE.INIT_TLM_PTR_\$03E02Y
626B	1626B	7	\$ISECT\$ F F RR I F
626B	1626B		INIT_TLM_PTR_\$03E106
			O187_TLM_QUEUE.MAP_TLM_NDX_\$03E02Z
6272	16272	35	\$ISECT\$ \quad F F RR I F
6272	16272		MAP_TLM_NDX_\$03E107
			O188_PENDING_TLM_REQUESTS.ADD_TLM_REQ_\$03F02Y
62A7	162A7	E7	\$ISECT\$ F F RR I F
62A7	162A7		ADD_TLM_REQ_\$03F106
			O188_PENDING_TLM_REQUESTS.PENDING_TLM_\$03F02z
638 E	1638 E	9	\$ISECT\$ \quad F F RR I F
638 E	1638 E		PENDING_TLM_\$03F107
			O188_PENDING_TLM_REQUESTS.REMOVE_PENDING_\$03F030
6397	16397	48	\$ISECT\$ \quad F F RR I F
6397	16397		REMOVE_PENDING_\$03F108
			O190_MESSAGE.MESSAGE_SENT_\$O3G02W
63DF	163DF	45	\$ISECT\$ F F RR I F
63DF	163DF		MESSAGE_SENT_\$03G104
			O190_MESSAGE.SAVE_MESSAGE_\$O3G02X
6424	16424	52	\$ISECT\$ F F RR I F
6424	16424		SAVE_MESSAGE_\$03G105
			0191_MESSAGE_DATA_SET.GENERATE_MESSAGE_DAT_\$03H02W
6476	16476	3 C	\$ISECT\$ \quad F F RR I F
6476	16476		GENERATE_MESSAGE_DAT_\$O3H104
			O191_MESSAGE_DATA_SET.MESSAGE_PACKAGED_\$03H02X
64B2	164B2	8	\$ISECT\$ F F RR I F
64B2	164B2		MESSAGE_PACKAGED_\$03H105
			O200_CCD.START_CCD_INT_\$020037
64BA	164 BA	97	\$ISECT\$ F F RR I F

699F	$1699 F$$1699 F$		SISECT\$RETRIEVE_COMP_DATA_\$O27122O230_DCS.RELEASE_BUFFER_\$02703F		RR I				
699F			RETRIEVE_COMP_DATA_\$027122						
	O230_DCS.RELEASE_BUFFER_\$02703F								
69 EF	169EF	D	\$ISECT\$ F	F	RR I	F			
69 EF	169EF		RELEASE_BUFFER_\$027123						
			O230_DCS.WAIT_AGAIN_\$02703G						
69FC	169FC	2A	\$ISECT\$	F	RR	F			
69FC	169FC		WAIT_AGAIN_\$027124						
			O230_DCS.CHECK_STATUS_\$02703H						
6A26	16A26	79	\$ISECT\$	F	RR	F			
6A26	16A26		CHECK_STATUS_\$027125						
			O240_SUN_SENSOR.PULSE_WIDTH_IS_VALID_\$02802						
6A9F	16A9F	18	\$ISECT\$	F	RR	F			
6A9F	16A9F		PULSE_WIDTH_IS_VALID_\$028106						
			O240_SUN_SENSOR.PULSE_GAP_IS_VALID_\$02802Z						
$6 \mathrm{AB7}$	16AB7	18	\$ISECT\$ F	F	RR I	F			
$6 \mathrm{AB7}$	$16 \mathrm{AB7}$		PULSE_GAP_IS_VALID_\$028107						
			O240_SUN_SENSOR.INTERPULSE_RATIO_IS__\$02803						
6ACF	16ACF	1 C	\$ISECT\$	F	RR	F			
6ACF	16ACF		INTERPULSE_RATIO_IS__\$028108						
			O240_SUN_SENSOR.INIT_SUN_PROC_\$028031						
6AEB	16AEB	41	\$ISECT\$ F	F	RR	F			
6AEB	16AEB		INIT_SUN_PROC_\$028109						
			O240_SUN_SENSOR.START_SEARCH_\$028032						
6B2C	16B2C	50	\$ISECT\$	F	RR	F			
$6 \mathrm{B2C}$	16B2C		START_SEARCH_\$028110						
			O240_SUN_SENSOR.START_DETECTION	\$0	28033				
6B7C	16B7C	5C	\$ISECT\$ F	F	RR I	F			
6 B 7 C	16B7C		START_DETECTION_\$028111						
			O240_SUN_SENSOR.SEARCH_FOR_LOCK_\$028034						
6BD8	16BD8	1 F	\$ISECT\$ F	F	RR	F			
6BD8	16BD8		SEARCH_FOR_LOCK_\$028112						
			O240_SUN_SENSOR.ACQUIRE_PULSE_DATA_\$028039						
6BF7	16BF7	67	\$ISECT\$ F	F	RR I	F			
6BF7	16BF7		ACQUIRE_PULSE_DATA_\$028117						
			O240_SUN_SENSOR.TRIPLET_IS_VALID_\$02803A						
6 C 5 E	16C5E	6D	\$ISECT\$ F	F	RR	F			
6 C 5 E	16C5E		TRIPLET_IS_VALID_\$028118						
			O240_SUN_SENSOR.STARTING_LOCKED_MODE_\$02803						
6 CCB	16 CCB	2 F	\$ISECT\$ F		RR	F			
6 CCB	16 CCB		STARTING_LOCKED_MODE_\$028113						
			O240_SUN_SENSOR.PROCESS_A_TRIPLET_\$02803B						
6CFA	16CFA	59	\$ISECT\$ F	F	RR	F			
6CFA	16CFA		PROCESS_A_TRIPLET_\$028119						
			O240_SUN_SENSOR.LOCKED_TO_SIGNAL_\$028036						
6D53	16D53	37	\$ISECT\$ F	F	RR	F			
6D53	16D53		LOCKED_TO_SIGNAL_\$028114						
			O240_SUN_SENSOR.CENTER_PULSE_IS_VALI_\$02803						
6D8A	16D8A	4A	\$ISECT\$ F		RR I	F			
6D8A	16D8A		CENTER_PULSE_IS_VALI_\$028121						
			O240_SUN_SENSOR.SIGNAL_LOST_\$028037						
6DD4	16DD4	26	\$ISECT\$ F	F	RR	F			
6DD4	16 DD 4		SIGNAL_LOST_\$028115						
			O240_SUN_SENSOR.INTRAPULSE_RATIO_IS__\$028038						
6DFA	16DFA	17		F RR I		F			
6DFA	16DFA								
			O240_SUN_SENSOR.INTERPULSE_RATIO_IS__\$02803C						
6 E 11	16E11	17	\$ISECT\$ F F RR I INTERPULSE_RATIO_IS__\$028120 O240_SUN_SENSOR.SEARCH_FOR_MAX_\$O2803E \$ISECTS			F			
6 E 11	16E11								
6E28	16E28	33				\$ISECT\$ F F RR I F			
6E28	16E28								
			O241_SUN_DATA_SET.ADD_TO_DATA_SET_\$02902W						
6E5B	16E5B	2E	\$ISECT\$ F	F	RR	F			
6E5B	16E5B		ADD_TO_DATA_SET_\$029104						
			O241_SUN_DATA_SET.SEND_DATA_SET	\$0	2902x				
6E89	16E89	60	\$ISECT\$ F	F	RR	F			
6E89	16E89		SEND_DATA_SET_\$029105						

			ROL. RESET_HAR
76E9	176E9	27	\$ISECT\$ F F RR I F
76E9	176E9		RESET_HARDWARE_\$04A104
			O292_RESET_CONTROL.WATCHDOG_ENABLE_\$O4A02X
7710	17710	B	\$ISECT\$ F F RR I F
7710	17710		WATCHDOG_ENABLE_\$04A105
			O292_RESET_CONTROL.WATCHDOG_DISABLE_\$O4A02Y
771B	1771B	B	\$ISECT \$ F F RR I F
771B	1771B		WATCHDOG_DISABLE_\$04A106
			O293_DMA_CONTROL.SET_DMA_STATE_\$O4B02W
7726	17726	11	\$ISECT\$ F F RR I F
7726	17726		SET_DMA_STATE_\$O4B104
			O293_DMA_CONTROL.WATCHDOG_ENABLE_\$O4B02X
7737	17737	B	\$ISECT\$ F F RR I F
7737	17737		WATCHDOG_ENABLE_\$O4B105
			O293_DMA_CONTROL.WATCHDOG_DISABLE_\$O4B02Y
7742	17742	B	\$ISECT\$ \quad F F RR I F
7742	17742		WATCHDOG_DISABLE_\$04B106
			O294_EXT_MEM_REGISTERS.MAP_EXT_MEM_\$O4C02V
774 D	1774D	17	\$ISECT\$ F F RR I F
774 D	1774D		MAP_EXT_MEM_\$04C103
			O301_RADIO_PROCESSOR.PROCESS_NEW_MEASUREM_\$030031
7764	17764	D6	\$ISECT\$ F F RR I F
7764	17764		PROCESS_NEW_MEASUREM_\$030109
			O301_RADIO_PROCESSOR.SCIENCE_CONTROLLER_\$030032
783A	1783A	18	\$ISECT\$ F F RR I F
783A	1783A		SCIENCE_CONTROLLER_\$030110
			0301_RADIO_PROCESSOR.SCIENCE_PROCESSOR_\$030033
7852	17852	1A	\$ISECT\$ F F RR I F
7852	17852		SCIENCE_PROCESSOR_\$030111
			O301_RADIO_PROCESSOR.CCD_PROCESSING_\$030034
786C	1786C	1DD	\$ISECT\$ F F RR I F
786C	1786C		CCD_PROCESSING_\$030112
			O301_RADIO_PROCESSOR.SUM_NULL_PIXS_\$030038
7A49	17A49	69	\$ISECT\$ F F RR I
7A49	17A49		SUM_NULL_PIXS_\$030116
			O301_RADIO_PROCESSOR.SET_CCD_FLAGS_\$030037
7AB2	17AB2	68	\$ISECT\$ F F RR I F
7AB2	17AB2		SET_CCD_FLAGS_\$030115
			O301_RADIO_PROCESSOR.STRIP_ROWS_COLS_\$030039
7B1A	17B1A	100	\$ISECT\$ F F RR I F
7B1A	17B1A		STRIP_ROWS_COLS_\$030117
			O301_RADIO_PROCESSOR.MOVE_TRANSPOSE_\$030036
7C1A	17C1A	57	\$ISECT \$ F F RR I F
7C1A	17C1A		MOVE_TRANSPOSE_\$030114
			0301_RADIO_PROCESSOR.TLM_DATA_PACKAGED_\$030035
$7 \mathrm{C71}$	$17 \mathrm{C71}$	36	\$ISECT\$ F F RR I F
7C71	$17 \mathrm{C71}$		TLM_DATA_PACKAGED_\$030113
			O305_CCD_OPTIMUM_EXPOSURE.EXCLUDE_PIXELS_\$034022
7CA7	17 CA 7	A9	\$ISECT\$ \quad F F RR I F
7CA7	17 CA 7		EXCLUDE_PIXELS_\$034107
			O305_CCD_OPTIMUM_EXPOSURE.OPT_EXPOSURE_\$034030
7D50	17 D 50	125	\$ISECT\$ F F RR I F
7D50	17D50		OPT_EXPOSURE_\$034108
			O305_CCD_OPTIMUM_EXPOSURE.CLEAR_HISTGRAM_\$034031
7 E 75	17E75	8	\$ISECT\$ \quad F F RR I F
7E75	17E75		CLEAR_HISTGRAM_\$034109
			O306_IR_OPTIMUM_SAMPLING.OPT_SAMPLING_\$03502X
7E7D	17E7D	87	\$ISECT\$ F F RR I F
7E7D	17E7D		OPT_SAMPLING_\$035105
			O306_IR_OPTIMUM_SAMPLING.SORT_VALUES_\$03502Y
7F04	17F04	4A	\$ISECT\$ F F FR I F
7F04	17F04		SORT_VALUES_\$035106
			0308_SW_COMPRESSOR.COMPRESS_\$03602Z
7F4E	17F4E	B2	\$ISECT\$ F F RR I F
8000	18000	35	
7F4E	17F4E		COMPRESS_\$036107
			O308_SW_COMPRESSOR.GEN_FUND_SEQ_\$036030

93B8	193B8		DCS_ACCESS_NOT_GRANT_\$04N112	
			O350_IMAGE_PIC.FILL_WITH_RAW_IMAGE_\$O4N03E	
93DF	193DF	ED	\$ISECT\$ F F RR I	F
93DF	193DF		FILL_WITH_RAW_IMAGE_\$04N122	
			O350_IMAGE_PIC.HW_COMP_TLM_SENT_\$O4N035	
94CC	194 CC	1A	\$ISECT\$ \quad F F RR I	F
94 CC	194 CC		HW_COMP_TLM_SENT_\$04N113	
			O350_IMAGE_PIC.SW_COMP_TLM_SENT_\$04N036	
94 E 6	194E6	9	\$ISECT\$ F F RR I	F
94 Eb	194E6		SW_COMP_TLM_SENT_\$04N114	
			O350_IMAGE_PIC.PREP_FOR_NEXT_IMAGE_\$O4N03H	
94EF	194EF	5D	\$ISECT\$ F F RR I	F
94EF	194EF		PREP_FOR_NEXT_IMAGE_\$O4N125	
			O350_IMAGE_PIC.UN_COMP_TLM_SENT_\$04N037	
954 C	1954C	9	\$ISECT\$ \quad F F RR I	F
954 C	1954C		UN_COMP_TLM_SENT_\$04N115	
			O350_IMAGE_PIC.END_IMAGE_PROCESSING_\$O4N0	
9555	19555	29	\$ISECT\$ \quad F F RR	F
9555	19555		END_IMAGE_PROCESSING_\$04N116	
			O350_IMAGE_PIC.SET_UP_DARK_CURRENT_\$O4N03	
957E	1957E	6 F	\$ISECT\$ \quad F F RR I	F
957E	1957E		SET_UP_DARK_CURRENT_\$O4N121	
			O350_IMAGE_PIC.OPT_TIME_CALC_\$O4N039	
95ED	195ED	33	\$ISECT\$ F F RR	F
95ED	195ED		OPT_TIME_CALC_\$04N117	
			O350_IMAGE_PIC.COLLECT_IMAGE_\$04N03A	
9620	19620	69	\$ISECT\$ \quad F F RR I	F
9620	19620		COLLECT_IMAGE_\$04N118	
			O350_IMAGE_PIC.HW_COMP_PREP_\$04N03B	
9689	19689	FA	\$ISECT\$ F F RR	F
9689	19689		HW_COMP_PREP_\$O4N119	
			O350_IMAGE_PIC.FRAME_RUNOUT_CORRECT_\$O4N0	
9783	19783	A4	\$ISECT\$ \quad F F RR I	F
9783	19783		FRAME_RUNOUT_CORRECT_\$O4N132O350_IMAGE_PIC.SETUP_SW_COMP_\$04N03C	
9827	19827	7 D	\$ISECT\$ F F RR	F
9827	19827		SETUP_SW_COMP_\$04N120	
			O350_IMAGE_PIC.PROC_ACCORD_REQS_\$04N03F	
98A4	198A4	17C	\$ISECT\$ F F RR I	F
98A4	198A4		PROC_ACCORD_REQS_\$04N123	
			O350_IMAGE_PIC.ADJUST_SQRT_TABLE_\$04N03S	
9A20	19A20	36E	\$ISECT\$ \quad F F RR I	F
9A20	19A20		ADJUST_SQRT_TABLE_\$04N136	
			O350_IMAGE_PIC.BAD_PIX_DETECT_\$04N03P	
9D8E	19D8E	1	\$ISECT\$ \quad F F RR	F
$9 \mathrm{D8E}$	19D8E		BAD_PIX_DETECT_\$04N133	
			O350_IMAGE_PIC.PROCESS_IMAGE_DATA_\$04N03G	
9D8F	19D8F	79	\$ISECT\$ \quad F F RR I	F
9D8F	19D8F		PROCESS_IMAGE_DATA_\$04N124	
			O350_IMAGE_PIC.DCS_ACCESS_GRANTED_\$04N03I	
9E08	19 E 08	A4	\$ISECT\$ \quad F F RR I	F
9E08	19 E 08		DCS_ACCESS_GRANTED_\$04N126	
			O350_IMAGE_PIC.WRITE_IMAGE_TO_DCS_\$04N03J	
9EAC	19EAC	90	\$ISECT\$ \quad F F RR I	F
9EAC	19 EAC		WRITE_IMAGE_TO_DCS_\$04N127	
			O350_IMAGE_PIC.SW_COMP_IMAGE_\$04N03K	
9F3C	19F3C	79	\$ISECT\$ F F RR	F
9 F 3 C	19F3C		SW_COMP_IMAGE_\$04N128	
			O350_IMAGE_PIC.GENERATE_TLM_\$04N03L	
9FB5	19FB5	4B	\$ISECT\$ \quad F F RR I	F
A000	1A000	9 B		
9 FB 5	19FB5		GENERATE_TLM_\$04N129	
			O350_IMAGE_PIC.PICK_NEXT_IMAGE_\$04N032	
A09B	1A09B	9	\$ISECT\$ F F RR	F
A09B	1 A 09 B		PICK_NEXT_IMAGE_\$O4N134	
			O350_IMAGE_PIC.PICK_NEXT_IMAGE2_\$04N03R	
A0A4	1A0A4	3 C	\$ISECT\$ F F RR I	F
A0A4	1A0A4		PICK_NEXT_IMAGE2_\$04N135	

AOEO	1AOEO	46	\$ISECTS
AOEO	1AOEO		GENERATE_TABLE_\$O4P107
			O360_IMAGE_STRIP.PROCESS_STRIP_DATA_\$04Q02Z
A126	1A126	1EE	\$ISECT\$ F F RR I F
A126	1A126		PROCESS_STRIP_DATA_\$04Q107
			O360_IMAGE_STRIP.MARK_BAD_PIX_\$04Q030
A314	1A314	8 F	\$ISECT\$ $\mathrm{F}^{\text {F }}$ F RR I F
A314	1A314		MARK_BAD_PIX_\$04Q108
			0370_SOLAR_AUREOLE.PROCESS_SOLAR_DATA_\$04R02Z
A3A3	1 A 3 A 3	1B9	\$ISECT\$ $\mathrm{F}^{\text {F }}$ F RR I F
A3A3	1 АЗА3		PROCESS_SOLAR_DATA_\$04R107
			0370_SOLAR_AUREOLE.MARK_BAD_PIX_\$04R030
A55C	1A55C	91	\$ISECT \$ F F RR I F
A55C	1A55C		MARK_BAD_PIX_\$04R108
			0380_VISIBLE_SPECTRUM.PROCESS_VISIBLE_DATA_\$04S033
A5ED	1A5ED	2C9	\$ISECT\$ F F RR I F
A5ED	1A5ED		PROCESS_VISIBLE_DATA_\$04S111
			O380_VISIBLE_SPECTRUM.MARK_BAD_PIX_\$04S034
A8B6	1A8B6	87	\$ISECT\$ $\mathrm{F}^{\text {F F F }}$ R I F
A8B6	1A8B6		MARK_BAD_PIX_\$04S112
			0380_VISIBLE_SPECTRUM.PROCESS_VISIBLE_EXT__\$04S035
A93D	1A93D	F6	\$ISECT\$ \quad F F RR I F
A93D	1A93D		PROCESS_VISIBLE_EXT__\$04S113
			O390_FULL_CCD.PROCESS_FULLCCD_DATA_\$04T02Z
AA33	1AA33	3A	\$ISECT\$ F F RR I F
AA33	1AA33		PROCESS_FULLCCD_DATA_\$04T107
			O390_FULL_CCD.COMPRESS_FULLCCD_PIE_\$04T030
AA6D	1AA6D	75	\$ISECT ${ }^{\text {a }}$ (F F RR I F
AA6D	1AA6D		COMPRESS_FULLCCD_PIE_\$04T108
			O390_FULL_CCD.TELEMETER_FULLCCD_PI_\$04T031
AAE2	1AAE2	9 E	\$ISECT\$ \quad F F RR I F
AAE2	1AAE2		TELEMETER_FULLCCD_PI_\$04T109
			O400_MULTIPLEXED_DEVICE.READ_MUX_\$040031
AB80	1AB80	6 F	\$ISECT\$ F F RR I F
AB80	$1 \mathrm{AB80}$		READ_MUX_\$040109
			O404_HOUSEKEEPING_DATA_SET.GENERATE_HK_DATA_SET_\$04102Y
ABEF	1 ABEF	BC	\$ISECT\$ F F RR I F
ABEF	1 ABEF		GENERATE_HK_DATA_SET_\$041106
			O404_HOUSEKEEPING_DATA_SET.NEW_MODE_\$04102Z
ACAB	1 ACAB	39	\$ISECT\$ \quad F F RR I F
ACAB	1 ACAB		NEW_MODE_\$041107
			O410_IR_INTERFACE.SELF_CALIBRATING_\$042031
ACE4	1ACE4	2F	\$ISECT\$ F F RR I
ACE4	1ACE 4		SELF_CALIBRATING_\$042109
			O410_IR_INTERFACE.READY_TO_START_\$042032
AD13	1AD13	c	\$ISECT\$ \quad F F FR I F
AD13	1AD13		READY_TO_START_\$042110
			O410_IR_INTERFACE.GENERATING_SEQUENCE_\$042033
AD1F	1AD1F	18D	\$ISECT\$ F F RR I F
AD1F	1AD1F		GENERATING_SEQUENCE_\$042111
			O410_IR_INTERFACE.GEN_SHUTTER_TEST_SEQ_\$042037
AEAC	1AEAC	5 E	\$ISECT\$ \quad F F RR I F
AEAC	1AEAC		GEN_SHUTTER_TEST_SEQ_\$042115
			0410_IR_INTERFACE.GEN_CMD_SEQ_\$042036
AF0A	1AFOA	F6	\$ISECT\$ F F RR I F
B000	$1 \mathrm{B0} 00$	291	
AF0A	1 AFOA		GEN_CMD_SEQ_\$042114
			0410_IR_INTERFACE.NEXT_CMD_IDX_\$O4203A
B291	1B291	42	\$ISECT\$ F F RR I F
B291	18291		NEXT_CMD_IDX_\$042118
			O410_IR_INTERFACE.WAITING_FOR_NEXT_SEG_\$042034
B2D3	1B2D3	45	\$ISECT\$ \quad F F RR I F
B2D3	182D3		WAITING_FOR_NEXT_SEG_\$042112
			O410_IR_INTERFACE.IR_OFF_\$042035
B318	1 B 318	16	\$ISECT\$ F F RR I F
B318	1 B 318		IR_OFF_\$042113
			O410_IR_INTERFACE.BUF_ID_FOR_BIN_\$04203C

BBC1	1BBC1	12
BBC1	1BBC1	
BBD3	1BBD3	48
BBD3	1BBD3	
BC1B	18C1B	98
BC1B	1BC1B	
вCB3	18CB3	F
BCB3	18CB3	
BCC2	1BCC2	27
BCC2	1BCC2	
BCE9	1BCE9	1 F
BCE9	1BCE9	
BD08	1BD08	1A
BD08	1BD08	
BD22	1BD22	20
BD22	1BD22	
BD 42	1BD 42	26
BD 42	1BD 42	
BD 68	1BD68	1A
BD68	1BD68	
BD82	1BD82	31
BD82	1BD82	
BDB3	1BDB3	13
BDB3	1BDB3	
BDC6	1BDC6	3B
BDC6	1BDC6	
BE01	18E01	13
BE01	1BE01	
BE14	1BE14	17
BE14	1BE14	
BE2B	18E2B	58
BE2B	18E2B	
BE83	1BE83	17
BE83	1BE83	
BE9A	18E9A	2F
BE9A	1BE9A	
BEC9	18EC9	2B
BEC9	1BEC9	
BEF4	18EF4	93
BEF4	1BEF4	
BF87	18F87	38
BF87	1BF87	
BFBF	18FBF	c
BFBF	18FBF	
BFCB	18FCB	1 C

Figure 7 - Data RAM Memory Allocation


```
        +AGG\$_\$O2J012
O085_CAL_SCHEDULER.START_CAL_VIOLET_\$O2J033
    \$CONS\$ F F RR O F
        +AGG\$_\$O2J013
O085_CAL_SCHEDULER.START_DCS_TEST_\$O2J034
    SCONS \$ F F RR O F
        +AGG\$_\$O2J014
        +AGG\$_\$O2J015
O085_CAL_SCHEDULER.START_HEATER_TEST_\$O2J035
    \$CONS\$ \(F\) F RR O F
        +AGG\$_\$O2J016
        +AGG\$_\$O2J017
O085_CAL_SCHEDULER.START_CAL_LAMP_TEST_\$O2J036
    \$CONS\$ \(\quad\) F F RR O F
        +AGG\$_\$O2J018
        +AGG\$_\$O2J019
O085_CAL_SCHEDULER.START_SURF_LAMP_TEST_\$O2J037
    \$CONS\$ \(F\) F RR O F
        +AGG\$_\$O2J020
        +AGG\$_\$O2J021
O085_CAL_SCHEDULER.START_SUN_LAMP_TEST_\$O2J038
    \$CONS \(\$ \quad\) F F RR O F
        +AGG\$_\$O2J022
        +AGG\$_\$O2J023
O088_CAL_CYCLE_DATA_SET.GEN_CAL_CYCLE_DATA_S_\$O2M02X
    \$CONS\$ F F RR O F
O090_CAL_CCD_MANAGER.START_CCD_PROC_\$O2O02W
    \$CONS\$ F F RR O F
        +AGG\$_\$O20001
        +AGG\$_\$O20002
        +AGG\$_\$020003
        +AGG\$_\$O20004
        +AGG\$_\$020005
        +AGG\$_\$020006
O090_CAL_CCD_MANAGER.END_CAL_CCD_\$O2002X
    \$CONS \(\quad\) F F RR O F
        +AGG\$_\$020007
        +AGG\$_\$020008
O090_CAL_CCD_MANAGER.INIT_CAL_CCD_\$O2O02Y
    SCONS\$ F F RR O F
        +AGG\$_\$020009
        +AGG\$_\$O20010
O090_CAL_CCD_MANAGER.PICK_CAL_CCD_MEAS_\$O2O02Z
    \$CONS\$ F F RR O F
        +AGG\$_\$020011
        +AGG\$_\$020012
O090_CAL_CCD_MANAGER.START_ONE_CCD_\$O2O030
    \$CONS\$ F F RR O F
                +AGG\$_\$O20013
O090_CAL_CCD_MANAGER.SETUP_MEAS_\$O20031
    \$CONS\$ F F RR O F
            +AGG\$_\$O20014
O090_CAL_CCD_MANAGER.CHECK_READOUT_SPACE_\$O20032
    \$CONS\$ F F RR O F
                +AGG\$_\$O20015
O091_CAL_CCD_EXPOSURE.CAL_CONSTRAIN_EXPOSU_\$O2P02X
    \$CONS \(\$ \mathrm{~F}\) F RR O F
O095_CAL_IR_MANAGER.CAL_IR_INIT_\$O2T02W
    \$CONS\$ \(F\) F RR O F
                +AGG\$_\$O2T001
                +AGG\$_\$O2T002
O095_CAL_IR_MANAGER.CHECK_READOUT_SPACE_\$O2T02X
    \$CONS\$ \(F\) F RR O F
                +AGG\$_\$O2T003
                +AGG\$_\$O2T004
O095_CAL_IR_MANAGER.CHECK_IR_END_\$O2T030
    \$CONS\$ F F RR O F
        +AGG\$_\$O2T005
```


274A	274A	+AGG\$_\$O4N014	
274B	274B	+AGG\$_\$O4N015	
O359_LOOKUP_TABLE.GENERATE_TABLE_\$04P02Z			
274 C	274C	2	\$CONS\$ F F RR O F
O360_IMAGE_STRIP.PROCESS_STRIP_DATA_\$O4Q02Z			
274 E	274 E	C	\$CONS\$ F F RR O F
O370_SOLAR_AUREOLE.PROCESS_SOLAR_DATA_\$04R02Z			
275A	275A	E	\$CONS\$ F F RR O F
0380_VISIBLE_SPECTRUM.PROCESS_VISIBLE_DATA_\$04S033			
2768	2768	C	\$CONS\$ F F RR O F
0380_VISIBLE_SPECTRUM.PROCESS_VISIBLE_EXT__\$04S035			
2774	2774	6	\$CONS\$ $\quad \mathrm{F}$ F RR O F
O390_FULL_CCD.PROCESS_FULLCCD_DATA_\$O4T02Z			
277A	277A	6	\$CONS\$ F F RR O F
O390_FULL_CCD.COMPRESS_FULLCCD_PIE_\$O4T030			
2780	2780	4	\$CONS\$ $\quad \mathrm{F}$ F RR O F
O390_FULL_CCD.TELEMETER_FULLCCD_PI_\$O4T031			
2784	2784	8	\$CONS\$ $\quad \mathrm{F}$ F RR O F
O400_MULTIPLEXED_DEVICE.READ_MUX_\$040031			
278C	278C	6	\$CONS\$ $\quad \mathrm{F}$ F RR O F
			O404_HOUSEKEEPING_DATA_SET.GENERATE_HK_DATA_SET_\$04102Y
2792	2792	4	\$CONS\$ $\quad \mathrm{F}$ F RR O F
O404_HOUSEKEEPING_DATA_SET.NEW_MODE_\$O4102Z			
2796	2796	2	\$CONS\$ F F RR O F
2796	2796		+AGG\$_\$O41001
O410_IR_INTERFACE.SELF_CALIBRATING_\$042031			
2798	2798	B	\$CONS\$ F F RR O F
2798	2798		+AGG\$_\$042001
2799	2799		+AGG\$_\$042002
O410_IR_INTERFACE.READY_TO_START_\$042032			
27A3	27A3	1	\$CONS\$ F F RR O F
27A3	27A3		+AGG\$_\$042003
O410_IR_INTERFACE.GENERATING_SEQUENCE_\$042033			
27A4	27A4	15	\$CONS\$ F F RR O F
27A4	27A4		+AGG\$_\$042004
27A6	27A6		+AGG\$_\$042005
O410_IR_INTERFACE.GEN_SHUTTER_TEST_SEQ_\$042037			
27B9	27B9	2A	\$CONS\$ F F RR O F
27B9	27B9		+AGG\$_\$042008
27BB	27BB		+AGG\$_\$042009
27BD	27BD		+AGG\$_\$042010
27BF	27BF		+AGG\$_\$042011
27 Cl	27C1		+AGG\$_\$042012
27 C 3	27C3		+AGG\$_\$042013
27C5	27C5		+AGG\$_\$042014
$27 \mathrm{C7}$	27C7		+AGG\$_\$O42015
27C9	27C9		+AGG\$_\$042016
27 CB	27CB		+AGG\$_\$O42017
27 CD	27 CD		+AGG\$_\$042018
27 CF	27 CF		+AGG\$_\$042019
27D1	27D1		+AGG\$_\$042020
27D3	27D3		+AGG\$_\$042021
27D5	27D5		+AGG\$_\$042022
27D7	27D7		+AGG\$_\$042023
27D9	27D9		+AGG\$_\$042024
27DB	27DB		+AGG\$_\$042025
27DD	27DD		+AGG\$_\$042026
27DF	27DF		+AGG\$_\$042027
O410_IR_INTERFACE.GEN_CMD_SEQ_\$O42036			
27E3	27E3	1B	\$CONS\$ $\quad \mathrm{F}$ F RR O F
27E3	27E3		+LOG2_TABLE_\$042128
			O410_IR_INTERFACE.NEXT_CMD_IDX_\$04203A
27 FE	27 FE	A	\$CONS $\$$ $F \quad F \quad R R \quad O \quad F$
O410_IR_INTERFACE.WAITING_FOR_NEXT_SEG_\$O42034			
2808	2808	7	\$CONS\$ F F RR O F
2808	2808		+AGG\$_\$042006
280A	280A		+AGG\$_\$042007
O410_IR_INTERFACE.IR_OFF_\$042035			

3D11	3D11	+TEMP__\$O2Q105	
3D12	3D12	O092_CAL_CCD_MEAS_SP_\$02Q103	
			O093_CAL_CCD_INDEX_TABLE.O093_CAL_CCD_INDEX_TABLE
3F6A	3F6A	14	\$DATA\$ F F RA O F
3F6A	3F6A		O093_CAL_CCD_INDEX_T_\$O2R103
			O094_CAL_IR_SPEC.O094_CAL_IR_SPEC
3F7E	3F7E	82	\$DATA\$ F F RA O F
4000	4000	2F	
3F7E	3F7E		+TEMP__\$O2S105
3F7F	3F7F		O094_CAL_IR_SPEC_DAT_\$02S103
			O095_CAL_IR_MANAGER.0095_CAL_IR_MANAGER
402F	402F	14	\$DATA\$ F F RA O F
402F	402F		O095_CAL_IR_MANAGER__\$O2T103
			O096_CAL_IR_EXPOSURE.O096_CAL_IR_EXPOSURE
4043	4043	8	\$DATA\$ F F RA O F
4043	4043		O096_CAL_IR_EXPOSURE_\$O2U103
			O097_CAL_VIOLET_MANAGER.O097_CAL_VIOLET_MANAGER
404B	404B	6	\$DATA\$ F F RA O F
404B	404B		O097_CAL_VIOLET_MANA_\$O2V103
			O098_CAL_VIOLET_SPEC.O098_CAL_VIOLET_SPEC
4051	4051	19	\$DATA\$ F F RA O F
4051	4051		+TEMP__\$O2W105
4052	4052		O098_CAL_VIOLET_SPEC_\$O2W103
			O099_CAL_IR_INDEX_TABLE.O099_CAL_IR_INDEX_TABLE
406A	406A	5	\$DATA\$ F F RA O F
406A	406A		O099_CAL_IR_INDEX_TA_\$02X103
			O100_OPERATING_MODE.O100_OPERATING_MODE
406 F	406 F	7	\$DATA\$ F F RA O F
406 F	406 F		
			2_EEPROM_DATA_SET.O122_EEPROM_DATA_SET
4076	4076	34	\$DATA\$ F F RA O F
4076	4076		O122_EEPROM_DATA_SET_\$O12103
40A9	40A9		O122_EEPROM_DATA_SET_\$012104
			O123_PATCH_DATA. O123_PATCH_DATA
40AA	40AA	49	\$DATA\$ F F RA O F
40AA	40AA		O123_PATCH_DATA_DATA_\$013103
			O124_EEPROM_PATCH.O124_EEPROM_PATCH
40F3	40F3	41F	\$DATA\$ F F RA O F
40F3	40F3		O124_EEPROM_PATCH_DA_\$O14103O125_EEPROM_USAGE.O125_EEPROM_USAGE
4512	4512	21	\$DATA\$ F F RA O F
4512	4512		O125_EEPROM_USAGE_DA_\$015103
			O180_PACKET_MANAGER.O180_PACKET_MANAGER
4533	4533	48	\$DATA\$ F F RA O F
4533	4533		O180_PACKET_MANAGER__\$019103
			O181_TLM_QUEUE_CONTROL.O181_TLM_QUEUE_CONTROL
457B	457B	10	\$DATA\$ $\quad \mathrm{F}$ F RA O F
457B	457B		O181_TLM_QUEUE_CONTR_\$O2Y103
458A	458A		O181_REBUILD_IN_PROG_\$O2Y104
			O182_DATA_SET_HEADER.O182_DATA_SET_HEADER
458B	458B	1	\$DATA\$ $\quad \mathrm{F}$ F RA O F
458B	458B		O182_DATA_SET_HEADER_\$O2Z103
			O183_FREE_PACKET_CONTROL.O183_FREE_PACKET_CONTROL
458C	458C	4	\$DATA\$ F F RA O F
458C	458 C		O183_FREE_PACKET_CON_\$O3A103
			O184_PARTIAL_PACKET. 0184 _PARTIAL_PACKET
4590	4590	B3	\$DATA\$ F F RA O F
4590	4590		+TEMP__\$O3B104
4591	4591		+TEMP __\$O3B105
4592	4592		O184_PARTIAL_PACKET__\$03B103
			O185_TLM_CHANNEL_MANAGER.O185_TLM_CHANNEL_MANAGER
4643	4643	87	\$DATA\$ F F RA O F
4643	4643		+TEMP__\$O3C104
4644	4644		+TEMP__\$O3C105
4645	4645		O185_TLM_CHANNEL_MAN_\$O3C103
46C9	46C9		O185_SEND_PKTS_\$O3C106
			O186_PREDICTED_TLM_RATES.0186_PREDICTED_TLM_RATES
46 CA	46 CA	C	\$DATA\$ F F RA O F

46 CA	46 CA	O186_PREDICTED_TLM_R_\$O3D103			
O187_TLM_QUEUE.O187_TLM_QUEUE					
46D6	46D6	3	\$DATA\$ F	F RA O	F
46D6	46D6	O187_TLM_REG_PTR_\$O3E103			
46D7	46D7	O187_CURR_REG_\$03E104			
46D8	46D8	O187_WROTE_TO_SEND_A_\$03E105			
		O188_PENDING_TLM_REQUESTS.O188_PENDING_TLM_REQUESTS			
46D9	46D9	14B	\$DATA\$ F	F RA O	F
46D9	46D9	+TEMP__\$O3F104			
46DA	46DA	+TEMP__\$O3F105			
46DB	46DB	O188_PENDING_TLM_REQ_\$O3F103			
O190_MESSAGE.O190_MESSAGE					
4824	4824	7 F	\$DATA\$ F	F RA O	F
4824	4824		O190_MESSAGE_DATA_\$O3G103		
		O191_MESSAGE_DATA_SET.O191_MESSAGE_DATA_SET			
48A3	48A3	5	\$DATA\$ F	F RA O	F
48A3	48A3	O191_MESSAGE_DATA_SE_\$O3H103			
		O200_CCD. 0200 _CCD			
48A8	48A8	7	\$DATA\$ F	F RA O	F
48A8	48A8	LAST_NEWLINE_VAL_\$020109			
48A9	48A9	LAST_PIXEL_VAL_\$020110			
48AA	48AA	NEW_FRAME_VAL_\$020111			
48AB	48AB	O200_CCD_DATA_\$020114			
		O201_CCD_DATA_BUFFER.O201_CCD_DATA_BUFFER			
48AF	48AF	7	\$DATA\$ F	F RA O	F
48AF	48AF	O201_PNTR_\$O21103			
48B0	48B0	O201_CCD_DATA_BUFFER_\$021107			
		O210_PROBE_INPUT_BUFFER.O210_PROBE_INPUT_BUFFER			
48B6	48B6	108	\$DATA\$ F	F RA O	F
48B6	48B6	+TEMP__\$022104			
48B7	48B7	+TEMP__\$O22105			
48B8	48B8	O210_PROBE_INPUT_BUF_\$022103			
		O213_PROBE_CMD_REG.O213_PROBE_CMD_REG			
49BE	49BE	4	\$DATA\$ F	F RA O	F
49BE	49BE	O213_PROBE_CMD_REG_D_\$023103			
		O218_TM_DMAS.O218_TM_DMAS			
49C2	49C2	C	\$DATA\$ F	F RA O	F
49C2	49C2	PROBE_IF_A_\$O25104			
49C3	49C3	PROBE_IF_B_\$O25105			
49C4	49C4	O218_TM_DMAS_DATA_\$025106			
		O229_DCS_TEST_DATA_SET.O229_DCS_TEST_DATA_SET			
49CE	49CE	6	\$DATA\$ F	F RA O	F
49CE	49 CE	O229_DCS_TEST_DATA_S_\$026103			
		O230_DCS.0230_DCS			
49D4	49D4	18	\$DATA\$ F	F RA O	F
49D4	49D4		LATCHUP_ON_\$O27103		
49D5	49D5		LATCHUP_OFF_\$O27104		
49D6	49D6	START_DCS_\$027105			
49D7	49D7	START_SELF_TEST_\$027106			
49D8	49D8	DCS_OK_\$027107			
49D9	49D9	O235_ADDR_\$027108			
49DB	49DB	O235_PARM_\$027109			
49DD	49DD	O231_ADDR_\$027110			
49DF	49DF	O231_PARM_\$027111			
49E1	49E1	SELF_CAL_TIMEOUT_\$027112			
49E3	49E3	STD_COMP_TIMEOUT_\$027113			
49E5	49E5	READY_TIMEOUT_\$027114			
49 E 7	49E7	MAX_READY_COUNT_\$027115			
49E8	49E8	O230_DO_DCS_BAD_PIX_\$027116			
49E9	49E9	O230_DCS_DATA_\$027117			
		O240_SUN_SENSOR.O240_SUN_SENSOR			
49EC	49EC	41	\$DATA\$ F	F RA O	F
49 EC	49EC		PEAK_HOLD_CLEAR_\$028103		
49ED	49ED		PEAK_HOLD_ENABLE_\$028104		
49EE	49EE		O240_SUN_SENSOR_DATA_\$028105		
		O241_SUN_DATA_SET. 0241 _SUN_DATA_SET			
4A2D	4A2D	162	\$DATA\$ F	F RA O	F
4A2D	4A2D		O241_SUN_DATA_SET_DA_\$029	103	

MCR-93-1349
Rev: C
Experiment User's Manual
OP001 \& SW002

	6545	6545	30
	6575	6575	2D
	65A2	65A2	1
	65A2	65A2	
	65A3	65A3	20
	65A3	65A3	
END OF	GROUP	: DATA	
	6 FFF	6 FFF	1
	7000	7000	00

Sept 13, 1996

Table 32 - Addresses for Key Memory Locations

Address (hex)	Description
4FEB-5834	Bad pixel map - See section 7.2.1 for a description of the format of the bad pixel table
5B34-5B35	Housekeeping data set time period. Not used during descent mode of operation. Units are 0.0001 seconds.
5CE9 - 5CEA	Thermal control monitor period. Units are 0.0001 seconds.
5CEB	Set point for the focal plane heater. The built in value for this is $1492=5$ D 4_{16}.
5CEC	Set point for the SH aux board heater. The built in value for this is $2285=8 \mathrm{ED}_{16}$.
2EB8-2EC5	Instrument misalignment table.
4B8F - 4B9B	Sun sensor constants.
5CD0-5CD1	Calibration lamp turn off delay. Units are 0.0001 seconds. The built in value is $100 \mathrm{~m}-\mathrm{sec}=1,000=3 \mathrm{E} 8_{16}$.
5CD2 - 5CD3	Calibration lamp turn on delay. Units are 0.0001 seconds. The built in value is $500 \mathrm{~m}-\mathrm{sec}=5,000=1,388_{16}$.
5CD4-5CD5	Lamp data set reporting period. Units are 0.0001 seconds. The built in value is 5 seconds $=50,000=C, 350_{16}$.

Rev: C

8.0 NOTES

8.1 Acronyms

CCD	Charge Coupled Device
CRC	Cyclic Redundancy Check
CSCI	Computer Software Configuration Item
DISR	Descent Imager / Spectral Radiometer
DLI	Downward Looking Imager
DLIS	Downward Looking Infrared Spectrum
DLV	Downwrad Looking Violet
DLVS	Downwark Looking Visible Spectrum
EEPROM	Electrically Erasable Programmable Read-Only Memory
PROM	Programmable Read-Only Memory
RAM	Random Access Memory
SA	Solar Aureole
SLI	Side Looking Imager
SUM	Software User's Manual
ULIS	Upward Looking Infrared Spectrum
ULV	Upward Looking Violet
ULVS	Upward Looking Visible Spectrum

8.2 Bit Numbering

All numbering of bits in this document use the 1750 standard convention that bit 0 is the most significant bit of a word and bit 15 is the least significant. This is distinctly different from the Huygens convention of bit 15 being the most significant bit and 0 being the least significant bit.

Appendix A - TELECOMMAND FORMATS

This section specifies the format of the commands the DISR flight software processes. Commands may either be directly specifically to the DISR instrument or to all of the instruments. Commands directed to all instruments are referred to as broadcast commands. Information that distinguishes which type of command is being sent will be included in the header information.

> All numbering of bits in this document (including the telecommand definitions) use the 1750 standard convention that bit 0 is the most significant bit of a word and bit 15 is the least significant. This is distinctly different from the Huygens convention of bit 15 being the most significant bit and 0 being the least significant bit.

MSB	1750 Standard														
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

A. 1 General Telecommand Format

All telecommands sent by the probe to the DISR instrument will contain three header words, the specific command words and a checksum word. The total number of command words can vary per specific command. Commands have the following format:

0	Header word 1
	Header word 2
	Header word 3
data word 1	
data word 2	
•	
\bullet	
	\bullet
data word $\mathrm{n}-1$	
CRC	

A.1.1 Header Word Formats

The header words are specified by JPL and ESA and they will contain a 16-bit Packet ID, a 16 -bit Sequence Control and a 16 -bit Packet Length for a total of 48 bits.

0	Packet ID
	15

Sequence Control
Command Length

The Packet ID header word is comprised of the following bit fields:

where:

Name	Description	Comments
VER	Version Number	3 bits - set to 000_{2}
D	Direction	1 bit - set to $12 .(A " 1 "$ indicates a packet being sent from the probe)
H	Header Flag	1 bit - set to 1_{2}
ID	Application ID	11 bits - This field is uniquely identifies the commands as being for a particular instrument.

For the broadcast commands the application id field will equal 78Fh if the command is sent on side A and 7AFh for side B. For DISR specific commands it is set to 792 h for side A and 7B2h for side B. Therefore the first header word will always equal 1F8Fh or 1FAFh for broadcast commands and 1F92h or 1FB2h for DISR specific commands.
The Sequence Control header word contains the following bit fields:

$0{ }^{0} 1$	2	3		6	7	8	9	10	11	12	13	14	15
SEG	Seq_count												

where

Name	Description	Comments
SEG	Segmentation Flag	2 bits - set to "112". (Segmentation is not performed.)
Seq_ count	Source Sequence Count	14 bits containing "0000000000000002". (Incoming com- mands will not contain sequence numbers.)

Therefore the second header word will always equal C000h.
The Command Length header word will contain the number of 8-bit bytes in the command after three header words -1 .

A. 2 Broadcast Command Formats

Like all commands the broadcast command will contain the three header words, followed by the data values being broadcast, and a CRC. The application ID field will be set to 78 Fh for commands sent on side A and 7AFh for commands send on side B,

where:

Name	Comments
time	Mission time at which other values are valid (LSB = 2 seconds)
TT	Flag indicating if time is before or after t0 (not used)
altitude	Probe altitude at time (LSB $=10$ meters)
A	Flag indicating if the altitude is read from the probe altimeter or gen- erated from a lookup table (not used)
spin	Probe spin rate at time (LSB $=0.1$ rpm)
flags	Mission control flags (not used)

A. 3 DISR Command Format

The following diagram shows the format of commands sent only to the DISR instrument. It is composed of the three header words, an opcode word, up to 121 data words, and a checksum word.

0	78	15
	Header word 1	
	Header word 2	
	Header word 3	
	Command ID	
	Opcode word	
	data word 1	
	data word 2	
	-	
	-	
	-	
	data word n -1	
	CRC	

A.3.1 Command ID Field

0	Command ID
	15

The command ID word will be sent back with any ACK or NAK message generated by this command. It is intended that this field be unique, although no checking is preformed to verify that it is, for each command sent so that the ACK/NAK messages can be correlated to the commands sent. The command ID could be generated as a counter for each command or simply as a unique number for each different command being sent.

A.3.2 Opcode Word Format

0	Opcode word
	15

The opcode word will uniquely identify the type of command being send. The possible opcodes are included in the following table and the specific command formats for each opcode will be included in Section A.3.3.

Opcode	Command
1	Enable Command Receipt
2	Change Mode
3	Single Measurement
4	Single Test
5	Uplink EEPROM
6	Uplink RAM
7	Dump Memory

A.3.3 Specific DISR Software Commands

A.3.3.1 Enable Command Receipt Command

This command is included in order to protect against inadvertent commands effecting operations. This command must be received with the value set to enable before the software will accept any other command. This command with the value set to disable will halt the acceptance of other commands until another of these commands is received with the value set to enable.

The opcode for this command equals 1 . Its format is as follows:

0	Header word 1
	Header word 2
Header word 3	
Command ID	
Opcode word $=1$	
receipt enable	
CRC	

where:

Name	Comments
Receipt Enable	0 for disable receipt of commands 1 for enable receipt of commands

A.3.3.2 Change Mode Command

This command causes the fight software to change to the new operating mode. If the mode to change to is the descent mode, the sun simulator may commanded on or off. If the sun simulator is commanded on it will remain on until a change mode command to descent mode is received with the flag set to OFF or a change mode command to a mode other than descent is received. If the mode to change to is calibration mode, the command must also specify the number of the calibration sequence to run.

The change to the new mode will occur immediately if the currently running mode is Single Measurement or Memory Access. For descent or calibration mode, the currently running cycle will be completed before the new mode is entered.

Note : Do not send a change mode command to enter Memory Access mode if DISR is already running in Memory Access mode. Although the command will execute correctly, the usage block that counts updates to EEPROM will not be updated properly. Updates since the last Change Mode command will not be counted.

The opcode for this command equals 2 . Its format is as follows:

0	7	8
Header word 1		
Header word 2		
Header word 3		
Command ID		
Opcode word =2		
mode		scenario \#
sun simulator flag		
CRC		

where:

Name	Comments
mode	What mode to go to. 1 = Descent 2 = Calibration 3 = Single measurement 4 = Memory access
scenario \#	The new calibration scenario to run. Valid scenario numbers are 1..8. Note: This field is used only if the mode is calibration Health check sequence is scenario 1. In-flight calibration sequence is scenario 2.
sun simulator flag	Flag indicating if the sun simulator is to be turned ON or OFF. Note: This field is used only if the mode is descent. 0 to turn the sun simulator OFF 1 to turn the sun simulator ON

A.3.3.3 Single Measurement Command

This command allows measurements to be collected, processed and telemetered upon request. The flight software must already be executing in Single Measurement mode before this command will be accepted.

Many of the parameters are only used if another parameter is set to a particular state. The measurement type, repetition and lamp state parameters are used for all commands. For violet measurements, none of the other parameters are used. For the CCD commands, the auto exposure flag, the exposure time, both processing option words and the strip column are used. For IR commands, the auto exposure flag, collection time, shutter time, sample times, shutter operating mode, and the general processing option word are used. The image option word is used only if the measurement type equals image set. The strip column word is used only if the measurement type equals SLI strip.

The opcode for this command equals 3 . Its format is as follows:

0	1	2	3	4	5	6		7	8			10	11		12	13	14	15
Header word 1																		
Header word 2																		
Header word 3																		
Command_ID																		
Opcode Word = 3																		
measurement type																		

repetitions	unused	c1	c2	c3	sl	A
exposure time						
collection time (MSW)						
collection time (LSW)						
shutter period						
shutter operating mode						
ULIS sample time						
DLIS sample time						
general processing options						
image set processing option						
strip column						
CRC						

where:

Name	Comments
type	Measurement to take. A list of measurement types and their corre- sponding values are included in a table below.
repetitions	Number of times the measurement is to be performed, $1 . .255$.
c1	State the calibration lamp \#1 is to be set to $(0=$ off, $1=$ on $)$
c2	State the calibration lamp \#2 is to be set to $(0=$ off, $1=$ on $)$
c3	State the calibration lamp \#3 is to be set to $(0=$ off, $1=$ on $)$
sl	State the surface lamp is to be set to $(0=$ off, $1=$ on $)$
A	Flag indicating if the exposure time from the optimum exposure time table or from the command is to be used $0=$ use command time value $1=$ use optimum exposure time table value
exposure time	Exposure time to take CCD measurements for (unused if A $=0)$ - in 0.5 millisecond units
collection time	Collection time to take IR measurements for - in milliseconds
shutter period	Interval between times the shutter state is changed for IR measure- ments- in millliseconds
shutter operat- ing mode	How the shutter is to be operated during the collection. (closed for the whole collection $=0$, open for the whole collection $=1$, alternating $=$ 2)
ULIS sample time	Sample time to take ULIS measurements for (unused if A $=0)$ -in milliseconds
DLIS sample time	Sample time to take DLIS measurements for (unused if A $=0)$ -in millliseconds
general proces- sing options	Options used to determine what types of processing should be done on the measurement data
image proces- sing option	Option used to determine what types of additional processing should be done on image set data
strip column	The number of the column to be used as the center column for SLI strip measurements.

The following table corelates measurement types to specific values.

Measurement Name	Value
ULVS	2
DLVS	3
Full CCD	4
Dark Current	5
Image Set	6
SLI Strip	7
Solar Aureole	8
DLIS	9
ULIS	10
Combined ULIS/DLIS	11
Long Integration IR	12
DLV	13
ULV	14

The general processing option word is further broken down into individual fields as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
B	Q	S	E	C	I	unused	field of view								

B	Flag indicating if bad pixel elimination is to be done $(0=$ false, $1=$ true $)$
Q	Flag indicating if square root processing is to be done $(0=$ false, $1=$ true $)$
S	Flag indicating if summing is to be done $(0=$ false, $1=$ true $)$
E	Flag indicating if the optimum exposure time table is to be updated with the measurement data $(0=$ false, $1=$ true $)$
C	Flag indicating if compression is to be done $(0=$ false, $1=$ true $)$
I	Flag indicating if all 16 bits of CCD data is to be included in telemetry $(0=$ false, $1=$ true $)$
field of view	Number of fields of view the data is to be summed into (used only if measurement type $=$ DLVS and $S=1)$

Many of the processing options are only available for some measurement types. The following table defines which options are available for each measurement type.

measurement type	B	Q	S	E	C	I	FOV
DLVS	X		X	X	X		X
ULVS	X		X	X	X		
Dark Current	X		X		X		
Solar Aureole	X		X	X	X		
SLI Strip	X		X	X	X		
Image Set	X	X		X	X		

Full_CCD					X	X	
IR (all)					X		

The image processing option word is further broken down into individual fields as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
D	O	H	T			compression ratio							which imag		

D	Flag indicating if a dark current measurement is to be done from the same input as the image data $(0=$ false, $1=$ true $)$.
O	Flag indicating if a single section of the image area is to be processed or if all three image set sections are to be processed $(0=$ all section, $1=$ single piece $)$
H	Flag indicating if each image is to be telemetered as two halves or as a single data set. ($0=$ single, $1=$ halves $)$
T	Flag indicating which type of compression is to be used $(0=\mathrm{HW}, 1=$ SW) Used only if flag $\mathrm{C}=1$.
compression ratio	The compression ratio to send the hardware compressor. Used only if $\mathrm{T}=0$. Valid ratio $=1 . .64$.
which image	Flag indicating which section will be done if only a single image is done. (0x15 = DLI- $-2,0 \times 16=\mathrm{SLI}, 0 \times 17=$ DLI-1) Used only if $\mathrm{O}=1$.

A.3.3.4 Single Test Command

This command allows hardware tests to be performed upon request. The hardware tests that can be performed include shutter test, DCS test, heater test, calibration lamp test, surface lamp test, and sun lamp test. The flight software must already be executing in Single Measurement mode before this command will be accepted.

Each type of hardware test can be sent a parameter and the meaning of the parameter is different for each test type. For the shutter test, the parameter is the number of times the basic shutter sequence shall be repeated for the test. For the DCS test, the parameter is the compression ratio; legal values include 1 .. 64. For the heater test the parameter represents which heaters are to be tested; $1=$ heater $A, 2=$ heater B, 3 = both heaters. For the calibration lamp test, the parameter represents which calibration lamps will be powered on for the test; bit 13 for cal lamp \#1, bit 14 for cal lamp \#2, and bit 15 for cal lamp \#3. The lamps states are $0=0$ ff and $1=\mathrm{on}$. For the surface lamp test, the parameter represents the state the surface lamp will be in for the test, $0=$ off and $1=0$. For the sun lamp test, the parameter is not used.

The opcode for this command equals 4 . It format is as follows:

where:

Rev: C

test type	HW test to perform to take. A list of measurement types and their corresponding values are included in a table below.
test parameter	parameter specific to type of test
repetitions	Number of times the measurement is to be performed, 1..512.

The following table correlates test types to specific values.

Measurement Name	Value	Parameter Use			
Shutter test	32	Number of individual shutter tests to perform for this test.			
DCS test	33	Compression factor (range is 2 to 16) You can also select a different compression type than the normal by setting some of the high order bits. Add the following number to the compression factor for these types of tests $0-$ Normal (Checkerboard pattern - 15x15 squares) $64-1 /($ distance from center) type - 15x15 squares $128-$ Gradual change across and down area.			
Heater test	34	What heater to test $1-$ Focal plane only $2-$ SH Aux only			
$3-$ Both			$	$	Calibration Lamp test
:---					

A.3.3.5 EEPROM Uplink Command

A EEPROM Uplink command replaces slots in the EEPROM memory area specified in the command with the data words, patches, in the command. The flight software must already be executing in Memory Access mode before this command will be accepted.

Each patch can be stored into 2 different slots in EEPROM. To get redundant copies in different EEPROM chips, one should be stored in slots $1 . .512$ and the other in slots 513..1023.

The opcode for this command equals 5 . Its format is as follows:

0	1	2	3	4	5	6	7		8	9	10	11	12	13	14	15
Header word 1																
Header word 2																
Header word 3																
Command_ID																

Opcode Word = 5	
patch type	number patches
Patch 1	
Patch 2	
Patch 3	
CRC	

where:

Name	Comments
patch type	$=0 ;$ patch is to EEPROM area at 20,000 $=1 ;$ patch is to flat field area
number patches	number of patches send in this command $(=1 . .3)$

If a patch is for the EEPROM at address $20,000 \mathrm{~h}$ thru $2 \mathrm{~F}, \mathrm{FFFh}$ (patch type $=0$), it is formatted as follows:

where:

EEPROM slot number 1	The first slot in EEPROm to store the patch. $(0=$ no first slot, slots $=$ $1 . .1023)$
EEPROM slot number 2	The second slot in EEPROM to store the patch. $(0=$ no second slot, slots = $1 . .1023)$
Patch CRC	The CRC of the next 31 words of the patch
length	The number of words actually used in the patch (1..29)
C	Flag indicating if the patch is to be made to instruction or data RAM. $(0=$ data, $1=$ instruction $)$
next link	The slot number of the next patch in a group
RAM address	The address in RAM the patch is eventually destined for (16 LSBs)
words	see next paragraph

The words 1 thru 29 must start with the words that are to be uplinked to the RAM address specified. If there is enough space left over, other small patches may be packed into the unused space. Each small patch
must include the length, C, next link, RAM address, and words to uplink. Any unused space must be set to zero.

If the patch is for the flat field area (patch type $=1$), it is formatted as follows :

0	1	2	3	4	5	6	7	8	8	9	10	11	12	13	14	15
Flat Field Address (MSB)																
Flat_Field Address (LSB)																
word 1																
...																
word 32																

where:

Flat Field Ad- dress	The address in the flat field area were this block of 32 words is to start. (address should be on 32 word boundary.)
words	Words to upload to memory

A.3.3.6 RAM Uplink Command

A RAM uplink command replaces a RAM area specified in the command with the data words in the command. Any number of consecutive words from 1 to 120 may be replaced at one time. Either data tables or code areas may be overwritten. The flight software must already be executing in Memory Access mode before this command will be accepted.

The opcode for this command equals 6 . Its format is as follows:

0	1	2	3		4	5	6		7	8	9	10	11		12	13	14	15	5
Header word 1																			
Header word 2																			
Header word 3																			
Command ID																			
Opcode Word = 6																			
length										code_fl									
address																			
data word 1																			
-																			
.																			
data word n																			
CRC																			

where:

Name	Comments
code_fl	Flag indicating if the destination of the upload is in the instruction or data RAM area
address	Starting RAM address to replace (16 LSBs)
length	Number of 16-bit words to replace (= 1..120)
data words	New words to load in RAM

A.3.3.7 Dump Memory Command

This command will cause the specified range of memory locations to be placed in telemetry packets for relaying to the ground. The flight software must already be executing in Memory Access mode before this command will be accepted. Up to 10 distinct ranges of memory can be dumped by one command. All of the following areas can dumped : instruction RAM, data RAM, PROM, EEPROM, Frame Buffer, IR Buffer, DCS Buffer, Flat Field. Note that the ranges must not overlap between different types of memory. For example a range can't start in the instruction RAM area and end in the data RAM area.

The opcode for this command equals 7 . Its format is as follows:

15	$8 \mid 7$	0
	Header word 1	
	Header word 2	
	Header word 3	
	Command ID	
	Opcode word = 7	
	number ranges	
	range 1 : start address (high 16 bits)	
	range 1 : start address (low 16 bits)	
	range 1 : length (high 16 bits)	
	range 1 : length (low 16 bits)	
	\ldots	
	range n : start address (high 16 bits)	
	range n : start address (low 16 bits)	
	range n : length (high 16 bits)	
	range n : length (low 16 bits)	
	CRC	

where:

Name	Comments
number ranges	number of different memory dump ranges specified in this command $(=1 . .10)$
start address	Memory address of where to start dumping memory at
length	Number of 16-bit words to dump

Appendix B - TELEMETRY FORMATS

All numbering of bits in this document (including the telemetry definitions) use the 1750 standard convention that bit 0 is the most significant bit of a word and bit 15 is the least significant. This is distinctly different from the Huygens convention of bit 15 being the most significant bit and 0 being the least significant bit.

MSB		1750 Standard												LSB	
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

B. 1 General Packet Format

The telemetry output by the DISR instrument is in the form of packets. Each packet will contain header information followed by DISR specific data and a CRC. Each packet will be 126 bytes long. (This equals 63 16 -bit words or 1008 bits.) The general packet format is

PROBE HEADER
DISR HEADER
SOURCE DATA
CRC

B. 2 Probe Header Field Format

The probe header information field contains the same fields as for the incoming commands but some fields have different values. The fields are a 16-bit Packet ID, a 16 -bit Sequence Control, and a 16 -bit Packet Length for a total of 48 bits.

The Packet ID header word is comprised of the following bit fields:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	5
	VER		D	H	ID											

where:

Name	Description	Comments
VER	Version Number	3 bits - set to OOO_{2}

D	Direction	1 bit - set to 0_{2}. (indicates a packet being sent to the probe)
H	Header Flag	1 bit - set to $1_{2 \text {. (indicates a data field header exists) }}$
ID	Application ID	11 bits - set to "111100100102" or 792_{16} for channel A and "11110110010" or $7 \mathrm{~B} 2_{16}$ for chanel B. (uniquely identifies the packet as being from DISR)

Therefore the first header word will always equal 0F92h or 0FB2h.
The Sequence Control word in the probe header contains the following:

where

Name	Description	Comments
SEG	Segmentation Flag	2 bits - set to "112". (Segmentation is not performed.)
Seq count	Source Sequence Count	14 bits containing a straight sequential count (modulo 16384) of the number of DISR telemetry packets down- linked since the last DISR reset.

The 16-bit Packet Length field in the probe header contains the number of bytes, minus 1, in the packet, not including the probe header bytes. Since the whole packet is always 126 bytes long, this value will always be 119.

B. 3 DISR Header

The DISR header contains information that identifies which telemetry channel the packet was received over, and which priority level the data is associated with. Data generated by DISR is considered to be at one of two priority levels. High priority data is always sent over both channels and low priority data is sent over one channel or the other.

The format of the DISR header is :

where

Name	Description	Comments
C	Telemetry Chan- nel	1 bit, $=0$ for telemetry channel A $=1$ for telemetry channel B
P	Priority Level	1 bit,$=0$ for high priority
$=1$ for low priority		

B. 4 Source Data Field Format

The source data field is 58 words long and contains all the science and engineering data produced by DISR. The data will be logically grouped into data sets. More than one data set can be contained in one packet, or one data set may be packaged across several telemetry packets. None of the data sets appear in fixed locations within the field and not all the data set types will be represented in every telemetry packet. Each data set occupies an integral number of words, i.e., an even number of bytes.

Since a data set may be broken up across many packets, each piece will be called a data set segment. Each segment will have a data set header attached to the front of it. The header will containing the data set
name, a data set id, a segment number, and the number of data words in the segment. The format of the source data field is shown in the following figure.

where:

Name	Comments
data set name	A unique identifier for each type of data set that can be teleme- tered. Table 33 lists the names of the data sets.
data set id	A sequential number associated with the particular type of data. For example, all message data sets will be numbered sequential- ly.
L	0 for not last data set segment for this data set 1 for last data set segment for this data set
segment number	data set segment number
segment length	the number of data words in the segment, not including the data set header

Table 33 - DISR Source Field Data Sets Names

Data Set Name	Number
Message	1
Time	2
Sun Sensor	3
Attitude (Deleted)	4
Housekeeping	6
Lamp	7
Descent Cycle	8
Calibration Cycle	9
Visible	10
Image	11
Strip	12
Solar Aureole	13
Dark Current	14
Full CCD	15
IR	16

Violet	17
Shutter Test	20
DCS Test	21
Heater Test	22
Calibration Lamp Test	23
Surface Lamp Test	24
Sun Lamp Test	25
Bad RAM	26
Bad EEPROM	27
Memory Dump	28
Empty	0

B. 5 CRC Field

A CRC will be calculated for all telemetry packet words including the header words. It will be added to the packet as the last word.

B. 6 Data Set Definitions

B.6.1 Message Data Set

A message is an indication of a change in the condition of the DISR instrument or a detection of an error that needs to be reported to the ground. Each time a new message is identified for transmission, a message data set is produced. The data set will include a code indicating the type of message, an identification field that is specific to the type of message, and the mission time that the message was generated. Appendix C lists all the message codes, gives a description of each, and defines the identification field.

Messages, and therefore message data sets, may be generated in any operating mode of the flight software. Since most of the messages are error conditions, they are never expected to occur unless there are hardware failures or conditions at Titan are not as expected. There are a very few messages that will be generated during nominal conditions.

The message data set format is as follows:

where:

Name	Comments
message code	a unique value for the type of message generated.
message id	additional information specific to the type of message
message time	mission time when message was detected; specified in 0.1 milli- second units

The size of the message data set is always 4 words.

B.6.2 Time Data Set

The time data set is used to record the correlation between the mission time as kept by the probe and sent to DISR in the probe broadcast messages and the master time which is kept by a hardware clock. The data set is produced as soon as enough data is collected to fill up the data set. The definition of the data set includes 20 pairs of time. With a pair being generated each 2 seconds this causes a data set to be produced every 40 seconds.
The time data set consists of the following data:

where:

Name	Comments
number of pairs of data	The number of pairs of data included in the data set. Fixed at 20.
Broadcast Time	The mission time from the descent data broadcast message. This number is in 0.0001 second increments from the beginning of the mission.
Master Time	The master timer value corresponding to the mission time. This is the value latched by the hardware when the broadcast pulse is detected. This number is also in 0.0001 second increments.

The size of the time data set is [4*(number of pairs of data) +1] words. For the nominal data set consisting of 20 pairs this is 81 words and it is sent once every 40 seconds.

B.6.3 Sun Sensor Data Set

The sun sensor data set is used to record the sun pulse data. This data is collected for each sun pulse received by the system. It is used dynamically in the instrument to determine the azimuth and rotation rate of the probe and sent to the ground for further analysis for those purposes and in addition to determine the zenith angle of the sun.

The sun sensor data set is generated once per data cycle or when it is full which ever is first. The actual rate will depend on the spin rate of the probe. At a 25 rpm spin rate the data set would be generated once every minute at a minimum.
The sun sensor data set consists of the following data:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	number of triplets in the data set															
- 1	1st pulse center time - MSP															
- 2	1st pulse center time - LSP															
- 3	2nd pulse center time - MSP															
- 4	2nd pulse center time - LSP															
- 5	3rd pulse center time - MSP															
- 6	3rd pulse center time - LSP															
- 7	2nd pulse amplitude															

where:

Name	Comments
number of triplets in the data set	Sun sensor data is provided for validated triplets only. Each pulse in a triplet is represented by the average time of the lead- ing and trailing edge times for the actual pulses (the "center" time). In addition the amplitude of the center of the three pulses is included for each triplet. Maximum value is 25.
"center" time	The 27-bit time associated with the average of the leading and trailing edge times. It is split into the least significant part (16 bits) and the most significant part (11 bits). Each time value is in 0.0001 second units.
pulse amplitude	A 12 bit value associated with the pulse amplitude for the center pulse of the triplet. This is a raw A/D value.

The size of the data set is [7^{*} (number of triplets) +1$]$ words. For a full data set of 25 pulses this is 176 words.

B.6.4 Attitude Data Set (Deleted)

The attitude data set has been deleted.

Rev: C

B.6.5 Housekeeping Data Set

The housekeeping data set is used to record some overall housekeeping data. It is generated once per cycle during descent mode and once every two minutes for other modes of operation. The data set includes a number of temperature measurements and some standard voltage point measurements. The housekeeping data set consists of the following data:

	0			3		4			7		8			11	12			15
1	Time - MSH																	
2	Time - LSH																	
3	EA box (motherboard) temperature																	
4	Thermal strap temperature																	
5	CCD tab temperature																	
6	Sensor head board temperature																	
7	Sensor head box temperature																	
8	Violet temperature																	
9	Optics temperature																	
10	CCD chip temperature																	
11	Aux board voltage																	
12	CPU board voltage																	
13	Calibrated source voltage																	
14	ADC offset voltage																	
15	ADC gain voltage																	
16	Dispatcher queue maximum size																	
17	Alarm queue maximum size																	
18	Telemetry queue maximum size																	
19	Science processing queue maximum size																	
20	Stack maximum size																	

where:

Name	Comments
Time	Start time of the data set collection - Mission time in 0.1 millisec- ond units.
"X" temperature	The raw reading from the ADC for the specified temperature measurement point.
"X" voltage	The raw reading from the ADC for the specified voltage mea- surement point.
"X" maximum size	Each of the queues in the system has a maximum used size maintained and reported in this data set. Whenever the data is collected it is also zeroed so that the maximum is actually the maximum size since the last data set.

The size of the data set is 20 words.

B.6.6 Lamp Data Set

The lamp data set is used to record the lamp performance data whenever any of the lamps are on. The data set is generated once just after one or more lamps are turned on and then every 30 seconds until all lamps are turned off. During the descent this would be for the calibration cycles and near the surface. The lamp data set consists of the following data:

where:

Name	Comments
Time	Start time of the data set collection - Mission time in 0.1 millisec- ond units
Cn	The state of calibration lamp n (off=0, on=1)
S	The state of the surface lamp (off $=0$, on $=1$)
Cal lamp n, voltage m	The raw reading from the ADC for the specified calibration lamp voltage measurement point.
Surface lamp volt- age	The raw reading from the ADC for the surface lamp voltage mea- surement point.
Surface lamp cur- rent	The raw reading from the ADC for the surface lamp current mea- surement point.

The size of the data set is 11 words.

Rev: C

B.6.7 Descent Cycle Data Set

A descent cycle data set is generated for each cycle during the descent mode. It describes the state of some of the selection criteria parameters at the start of the cycle. It also includes information on what cycle type and measurements were specified to be done during the cycle.

The descent cycle data set contains the following fields:

| | 0 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

where:

Name	Comments
cycle number	the number of the current cycle
start time	mission time for the start of the cycle; specified in 0.1 millisecond units
start azimuth	the azimuth at the start of the cycle; specified as 0.1 deg units
start altitude	the altitude at the start of the cycle; specified as 10 meter units
start spin	the probe spin rate at the start of the cycle; specified as 0.1 deg units
scenario step	the entry number in the cycle criteria table for which the criteria was met
cycle type	the entry number in the cycle specification table which was per- formed during the cycle
SPM flag	flag indicating whether a spectrophotometric cycle was per- formed
CCD meas set	the number of the CCD measurement set performed during the cycle
IR meas set	the number of the IR measurement set performed during the cycle
violet meas set	the number of the violet measurement set performed during the cycle

The size of the descent cycle data set is always 9 words.

B.6.8 Calibration Cycle Data Set

A calibration cycle data set is generated for each cycle during the calibration mode. It includes information on what measurements and hardware tests were specified to be done during the cycle.

A calibration cycle data set is formatted as follows:

where:

Name	Comments
scenario number	the number of the calibration sequence being run
cycle number	the number of the current cycle
start time	mission time for the start of the cycle; specified in 0.1 millisecond units.
CCD meas set	the number of the CCD calibration measurement set performed during the cycle
CCD repetitions	the number of times the CCD measurement set is to be repeated
IR meas set	the number of the IR calibration measurement set performed during the cycle
IR repetitions	the number of times the IR measurement set is to be repeated
violet meas set	the number of the violet measurement set performed during the cycle
violet repetitions	the number of times the violet measurement set is to be re- peated
shutter test reps	the number of times the IR shutter test is to be repeated
shutter test params	number of shutter cycles per shutter test
DCS test reps	the number of times the DCS test is to be repeated
DCS test params	compression ratio to use during DCS test
heater test reps	the number of times the heater test is to be repeated
heater test params	flags indicating which heaters were tested
cal lamp test reps	the number of times the calibration lamp test is to be repeated

cal lamp test pa- rams	flags indicating the state of the calibration lamps during the test
surf lamp test reps	the number of times the surface lamp test is to be repeated
surf lamp test pa- rams	flag indicating if the surface lamp is to be on or off for the surface lamp test
sun lamp test reps	the number of times the sun lamp test is to be repeated
sun lamp test pa- rams	parameter used for the sun lamp test; currently undefined

The size of the calibration cycle data set is always 12 words.

B.6.9 Violet Data Set

This data set provides to the user the violet photometer measurement data and information associated with the measurement.

where:

Name	Comments
measure type	$6=$ DLV $7=$ ULV
L1	calibration lamp 1 state: $0=$ OFF; $1=$ ON
L2	calibration lamp 2 state: $0=$ OFF; $1=$ ON
L3	calibration lamp 3 state: $0=$ OFF; $1=$ ON
SL	surface science lamp state: $0=$ OFF; $1=$ ON
cycle number	number of cycle in which measurement was taken
mission time	time at which measurement was begun MSW = upper 16 bits of mission time LSW $=$ lower 16 bits of mission time Time is in 0.1 millisecond units.
target azimuth	azimuth at which measurement should have been taken. Azi- muth is in 0.01 degree units.
actual azimuth	azimuth at which measurement was actually taken. Azimuth is in 0.01 degree units.
violet sensor temp	temperature of the violet sensor. Raw A/D converter units.
measurement data	measurement value from the instrument. Raw A/D converter units.

There is only one word of measurement data for the ULV photometer and one word of measurement data for the DLV photometer.

TOTAL LENGTH for the data set is 8 words.

Rev: C

B.6.10 IR Data Set

This data set provides to the user the IR measurement data and information associated with the measurement. The IR data is read from the IR collection buffer as 32-bit data values. This data is averaged to reduce the data to 14 -bits. The data may or may not be compressed.

	0			3	4		7	8			11	12			15
1	measure type						NOT USED			B	C	L1	L2	L3	SL
2	cycle number														
3	mission time (MSW)														
4	mission time (LSW)														
5	IR status word														
6	begin focal temp														
7	end focal temp														
8	IRPA temp														
9	actual azimuth														
10	precharge val up														
11	precharge val down														
12	collection time (MSW)														
13	collection time (LSW)														
14	up looking target percent									up looking specific no					
15	down looking target percent								down looking specific no						
16	number of rotations							number of bins							
17	no of regions														
- 1	region number														
- 2	region start azimuth														
- 3	region angular width														
- 4	up bin number								down bin number						
- 1	rotation number								region number						
- 2	collection start time (MSW)														
- 3	collection start time (LSW)														
- 4	collection duration														
- 5	shutter period														
- 6	sample time														
- 1	bin number							NOT USED						L	S
- 2	total sample time (MSW)														
- 3	total sample time (LSW)														
- 4	number of reads														
- 5	N		no pixels per spec							N	no bits sample				
- 6	NOT USED					comp scheme			NOT USED			no bits split			
- 7	reference predictor														

>8	length of data	
$>$	1	measurement data

where:

Name	Comments
measure type	$\begin{aligned} 8 & =\text { DLIS } \\ 9 & =\text { ULIS } \\ 10 & =\text { IR_Comb } \\ 11 & =\text { IR_Long } \end{aligned}$
B	optimum sampling calculation flag for bright (open shutter) data $0=$ no calculation; $1=$ calculate optimum times
C	compression flag $0=$ no compression; $1=$ data is compressed
L1	calibration lamp 1 state: $0=\mathrm{OFF} ; 1=\mathrm{ON}$
L2	calibration lamp 2 state: $0=$ OFF; $1=\mathrm{ON}$
L3	calibration lamp 3 state: $0=$ OFF; $1=\mathrm{ON}$
SL	surface science lamp state: $0=$ OFF; 1 = ON
cycle number	number of cycle in which measurement was taken
mission time	time at which measurement was begun MSW = upper 16 bits of mission time LSW = lower 16 bits of mission time Time is in 0.1 millisecond units.
IR status word	IR hardware status word
begin focal temp	optics focal plane temperature at start of measurement collection. Raw A/D converter units.
end focal temp	optics focal plane temperature at start of measurement collection. Raw A/D converter units.
FPA temp	FPA temperature. Raw A/D converter units.
IRPA temp	IRPA temperature. Raw A/D converter units.
actual azimuth	actual starting azimuth of the IR in spectrophotometric mode. Azimuth is in 0.01 degree units.
precharge val up	precharge vaule for upward looking instrument. Raw A/D converter units.
precharge val down	precharge vaule for downward looking instrument. Raw A/D converter units.
collection time	IR collection time used for this measurement MSW = upper 16 bits of mission time LSW = lower 16 bits of mission time Time is in 0.1 millisecond units.
up looking target percent	targeted percentage pixel value used in optimum sampling time calculations for upward looking data collections. 1 percent units.
up looking specific number	which of the sorted pixel values used in optimum sampling time calculations for upward looking data collections
down looking target percent	targeted percentage pixel value used in optimum sampling time calculations for downward looking data collections. 1 percent units.

down looking specific number	which of the sorted pixel values used in optimum sampling time calculations for downward looking data collections
number of rotations	number of rotations for which data was collected
no of regions	number of regions included in telemetry
number of bins	number of collection bins included in telemetry
region number	region number of the specific rotation data
region start azimuth	defined region starting azimuth
region angular width	defined region angular width
bin number	bin number of this data for optimum sampling time calculations
up bin number	defined region bin number for upward looking data collection
down bin number	defined region bin number for downward looking data collection
region number	region number of the specific region data for this rotation
rotation number	rotation number of the specific rotation data
collection start time	start time of the data collection for this region MSW = upper 16 bits of mission time LSW = lower 16 bits of mission time Time is in 0.1 millisecond units.
collection duration	duration of the collection for this region in IR frame periods
shutter period	shutter period used for this region in IR frame periods
sample time	sample time used to collect data for region in IR frame periods
bin number	bin number of this spectrum
L	channel look direction: 0 = down looking; 1 = up looking
S	shutter status: $0=$ open; 1 = closed
total sample time	total sample time for the data collected for this spectrum MSW = upper 16 bits of mission time LSW = lower 16 bits of mission time Time is in 0.1 millisecond units.
number of reads	number of sample reads collected and summed for this spectrum
N	NOT USED
no pixels per spec	number of pixels per spectrum transmitted $=150$
no bits sample	number of bits per sample; used in de-compression
comp scheme	```compression scheme used for this spectrum (bit pattern): 1111 = no compression 0000 = psi-0 compression 0001 = psi-1 compression 0010 = NOT USED 0011 = psi-F compression 0100 = psi-14 compression```
no bits split	number of low order bits split from the data in the spectrum
reference predictor	reference predictor used in data compression
length of data	number of bits transmitted for the data in this spectrum
measurement data	measurement value from the instrument. (Measurement data is the total data collected for a bin divided by the number of samples for the bin and the result multiplied by 4)

If data compression was not selected, each spectrum of transmitted data will have a length of 2400 bits. The number of words of measurement data will be 15016 -bit words. If data compression was selected, each spectrum of transmitted data will have a different length depending on the amount of compression. The number of words of measurement data for a spectrum will be a whole number of 16-bit words.

The total number of words for the data set is the sum of the different groups of data that are repeated for each region and each rotation and each spectrum (or bin) for processing purposes and general information associated with the measurement and the measurement data itself. There is a maximum of 4 upward looking collections and 8 downward looking collections. Each collection may have an open shutter spectrum and a closed shutter spectrum. There is, therefore, a maximum of 24 spectra (or bins).
number of words for measurement information $=17$
number of words for region definition $=4$ * (number of regions) $=32$
there are 8 regions defined for descent data collection
number of words for spectrum information $=8$ * (number of bins) there is one bin for each spectrum; there is a maximum of 24 spectra (or bins)
number of words for the spectra $=($ number of bins) * (number of words for a spectrum) there is a maximum 150 words for each spectrum
number of words for rotation information $=6$ * (number of regions) * (number of rotations) there is a maximum capability of 34 rpm ; space is allocated for 35 rotations for data collection
TOTAL WORDS =
number of words for measurement information
17

+ number of words for region definition
+ number of words for bin identification
+ number of words for spectra
+ number of words for rotation information

B.6.10.1 Examples

1. $\mathbf{1}$ spectrum for calibration
a) assumptions

2:1 SW compression: number of words for a spectrum $=75$
number of words for bin identification $=8$
number of words for the bin(s) $=83$
1 RPM rotation rate: TOTAL WORDS $=17+4+83+6=110$
5 RPM rotation rate: TOTAL WORDS $=17+4+83+30=134$
25 RPM rotation rate: \quad TOTAL WORDS $=17+4+83+150=254$
b) assumptions

NO compression: \quad number of words for a spectrum $=150$
number of words for bin identification $=8$ number of words for the $\operatorname{bin}(\mathrm{s})=158$
1 RPM rotation rate: \quad TOTAL WORDS $=17+4+158+6=185$
5 RPM rotation rate: TOTAL WORDS $=17+4+158+30=209$
25 RPM rotation rate: TOTAL WORDS $=17+4+158+150=329$
2. $\mathbf{2}$ spectra for long integration IR: one each for upward looking and downward looking
a) assumptions

2:1 SW compression: number of words for a spectrum $=75$
number of words for bin identification $=8$ number of words for the bin(s) $=166$
1 RPM rotation rate: TOTAL WORDS $=17+4+166+6=193$
5 RPM rotation rate: TOTAL WORDS $=17+4+166+30=217$
25 RPM rotation rate: TOTAL WORDS $=17+4+166+150=337$
3. $\mathbf{2 4}$ spectra for upward and downward looking bright and dark IR
a) assumptions

2:1 SW compression: number of words for a spectrum $=75$

	number of words for bin identification $=8$ number of words for the $\operatorname{bin}(\mathrm{s})=1992$
$\mathbf{1}$ RPM rotation rate:	TOTAL WORDS $=17+32+1992+48=$
5 RPM rotation rate:	TOTAL WORDS $=17+32+1992+240=$
$\mathbf{2 5}$ RPM rotation rate:	TOTAL WORDS $=17+32+1992+1200=3289$

B.6.11 Dark Current Data Set

This data set provides to the user the dark current measurement data and information associated with the measurement. The dark current measurement data includes all rows of the CCD. It s split in two sections with two columns on the edge of the CCD and two columns in the area between the spectral and image parts of the CCD. The data may or may not have bad pixels eliminated. The data may or may not be summed. The data may or may not be compressed. The data will be processed regardless of the condition of the CCD status flags.

where:

Name	Comments
measure type	$18=$ CCD dark current data
N	NOT USED
B	bad pixel elimination flag $0=$ no elimination; $1=$ eliminated bad pixels
S	summing flag $0=$ no summing; $1=$ summing performed
C	noiseless compression flag $0=$ no compression; $1=$ data is compressed
F	new frame CCD status flag $0=$ new frame bit not set; $1=$ new frame bit set
L	new line CCD status flag $0=$ new line bit not set; $1=$ new line bit set
P	no pixel error CCD status flag $0=$ pixel error bit set; $1=$ no pixel error bit set

L1	calibration lamp 1 state: $0=$ OFF; $1=\mathrm{ON}$
L2	calibration lamp 2 state: $0=$ OFF; 1 = ON
L3	calibration lamp 3 state: $0=$ OFF; $1=\mathrm{ON}$
SL	surface science lamp state: $0=$ OFF; 1 = ON
cycle number	number of cycle in which measurement was taken
mission time	time at which measurement was begun MSW = upper 16 bits of mission time LSW = lower 16 bits of mission time Time is in 0.1 millisecond units.
target azimuth	azimuth at which measurement should have been taken. Azimuth is in 0.01 degree units.
actual azimuth	azimuth at which measurement was actually taken. Azimuth is in 0.01 degree units.
CCD status word	CCD hardware status word
focal plane temp	optics focal plane temperature. This is a raw A/D measurement value.
chip temp	temperature of the CCD chip. This is a raw A/D measurement value.
exposure time	CCD exposure time used for this measurement. Exposure time is in 0.5 millisecond units.
null pixel 2	sum of null pixel 2 value on each CCD row
null pixel 3	sum of null pixel 3 value on each CCD row
number of columns	number of columns of data transmitted
no pixels per col	number of pixels per column of data transmitted $=256$
N	NOT USED
no bits sample	number of bits per sample; used in de-compression
comp scheme	```compression scheme used for this spectrum (bit pattern): 1111 = no compression 0000 = psi-0 compression 0001 = psi-1 compression 0010 = NOT USED 0011 = psi-F compression 0100 = psi-14 compression```
no bits split	number of low order bits split from the data in this column
reference predictor	reference predictor used in data compression
length of data	number of bits transmitted for the data in this column
measurement data	measurement value from the instrument

If data summing was selected, the transmitted data will consist of 2 columns. Summed data requires 13 bits for each sample. Otherwise, there will be 4 columns of data where 12 bits is required for each sample.

If data compression was not selected, each column of transmitted data will have a length of 4096 bits. The number of words of measurement data will be 256 16-bit words. If data compression was selected, each column of transmitted data will have a different length depending on the amount of compression. The number of words of measurement data for a column will be a whole number of 16-bit words.

TOTAL WORDS $=12+($ number of columns $) *(4+($ number of words for each column $))$

B.6.11.1 Examples

1. descent mode dark current measurement
a) assumptions summing: \quad number of columns $=2$
2:1 SW compression: number of words for a column $=((256 * 13) / 2) / 16=104$ TOTAL WORDS = 224
2. calibration mode dark current measurement
a) assumptions

NO summing: \quad number of columns $=4$
2:1 SW compression: number of words for a column $=((256$ * 12$) / 2) / 16=96$ TOTAL WORDS = 412
b) assumptions

NO summing:
NO compression:
number of columns = 4
number of words for a column $=256$
TOTAL WORDS = 1052

Rev: C

B.6.12 Image and Raw Image Data Set

These data set provides to the user the image measurement data and information associated with the measurement. Image data sets are generated every time a image measurement is taken during any mode. Raw image data sets are generated only if DCS compression was requested for an image measurement, but either no or not enough output data was generated by the DCS compressor. Not enough data is defined as less than 80% of the data that was expected given the input compression ratio. The amount of data sent in the raw image data set is the closest number of whole rows of data that bring the total data generated up to the expected amount. Image and raw image data sets have the same format except for in the Raw Image data sets some of the flags are always set to one state and the amount of data will not be the entire image area.

All image measurements read all rows of the CCD except the first and last rows. The DLI_1 image measurement data includes 160 columns, the DLI_2 image includes 176 columns, and the SLI image includes 128 columns. The data may or may not have bad pixels replaced. The data may or may not have square root data reduction performed. The data may or may not be compressed. If the data is DCS compressed, then the top and bottom rows (rows 0 and 255) will be replaced with the values of the adjacent rows.

The image data can be DCS compressed or noiselessly compressed or uncompressed. DCS compressed images have a data set structure that differs from the data set structure for uncompressed or noiselessly compressed images. The information below is the beginning of the image data set for both structures. The next two subparagraphs describe the format of the remaining data set structure depending on the type of data compression completed for the data. Raw Image data sets contain only uncompressed data.

where:

Name	Comments
measure type	$\begin{array}{rlrl} \hline 0 & =\text { U_DLI_1 } & \text { upper half DLI-1 image } \\ 1 & =\text { U_DLI_2 } & \text { upper half DLI-2 image } \\ 2 & =\text { U_SLI } & & \text { upper half SLI image } \\ 3 & =\text { L_DLI_1 } & \text { lower half DLI-1 image } \\ 4 & =\text { L_DLI_2 } & & \text { lower half DLI-2 image } \\ 5 & =\text { L_SLI } & & \text { lower half SLI image } \\ 21 & =\text { DLII } & & \text { whole DLI-2 image } \\ 22 & =\text { SLI } & & \text { whole SLI image } \\ 23 & =\text { DLI_1 } & & \text { whole DLI-1 image } \end{array}$
F	new frame flag $0=$ new frame bit not set; $1=$ new frame bit set
L	new line flag $0=$ new line bit not set; $1=$ new line bit set
P	no pixel error flag $0=$ pixel error bit set; $1=$ no pixel error bit set
L1	calibration lamp 1 state: $0=O F F ; 1=0 N$
L2	calibration lamp 2 state: $0=$ OFF; 1 = ON
L3	calibration lamp 3 state: $0=$ OFF; $1=\mathrm{ON}$
SL	surface science lamp state: $0=$ OFF; $1=\mathrm{ON}$
B	bad pixel replacement flag $0=$ no replacement; $1=$ replaced bad pixels Flag set to 0 for Raw Image data sets
Q	square root flag $0=$ no square root; $1=$ square root data reduction performed Flag set to 0 for Raw Image data sets
C	compression flag $0=$ no compression; $1=$ data is compressed Flag set to 0 for Raw Image data sets
D	type of data compression $0=$ DCS compression; 1 = noiseless compression
E	optimum exposure time calculation flag $0=$ no calculations; $1=$ calculate optimum exposure time
cycle number	number of cycle in which measurement was taken
mission time	time at which measurement was begun MSW = upper 16 bits of mission time LSW = lower 16 bits of mission time Time is in 0.1 millisecond units.
target azimuth	azimuth at which measurement should have been taken. Azimuth is in 0.01 degree units.
actual azimuth	azimuth at which measurement was actually taken. Azimuth is in 0.01 degree units.
DCS status word	DCS hardware status word
CCD status word	CCD hardware status word
focal plane temp	optics focal plane temperature. This is a raw A/D measurement value.
chip temp	temperature of the CCD chip. This is a raw A/D measurement value.

exposure time	CCD exposure time used for this measurement. Exposure time is in 0.5 millisecond units.
target percent	CCD targeted full well percentage
histogram percent	CCD histogram percentile pixel value used in calculations
null pixel 2	sum of null pixel 2 value on each CCD row
null pixel 3	sum of null pixel 3 value on each CCD row
image minimum	minimum value used by the adjustable square root processor
image maximum	maximum value used by the adjustable square root processor
amount of data	for SW compressed or UN--compressed data number of rows of data transmitted $=254$ for whole rows $=127$ for half rows numpressed data number bytes of compressed data for the image fumber of rows of data transmitted

B.6.12.1 Data Set for DCS Compressed Images

Each DCS compressed image will be compressed as a whole giving a stream of byte values. These values are packed 2 byte values per word in the telemetry stream.

>1	measurement data	measurement data

where:

Name	Comments
measurement data	compressed measurement data from the instrument

For DCS compressed data, each image will have a different length depending on the amount of compression. The number of words of measurement data for the image will be a whole number of 16 -bit words.

TOTAL WORDS $=16+($ number of words for the image)

B.6.12.1.1 Examples

1. DLI-1 image: $\mathbf{1 6 0}$ columns and 256 rows $=40960$ pixels of 8 bits each
a) assumptions

8:1 HW compression: number of words $=((40960 * 8) / 8) / 16=2560$
TOTAL WORDS = 2576
2. DLI_1 half image: 160 columns and 128 rows $=20480$ pixels of 8 bits each
a) assumptions

8:1 HW compression: number of words $=((20480 * 8) / 8) / 16=1280$
TOTAL WORDS = 1296
3. DLI_2 image: 176 columns and 256 rows $=45056$ pixels of 8 bits each
a) assumptions

8:1 HW compression: number of words $=((45056$ * 8$) / 8) / 16=2816$ TOTAL WORDS = 2832
4. DLI_2 half image: $\mathbf{1 7 6}$ columns and 128 rows $=\mathbf{2} 2528$ pixels of 8 bits each
a) assumptions

8:1 HW compression: number of words $=((22528 * 8) / 8) / 16=1408$

TOTAL WORDS = 1424
5. SLI image: 128 columns and 256 rows $=32768$ pixels of 8 bits each
a) assumptions

8:1 HW compression: number of words $=((32768 * 8) / 8) / 16=2048$
TOTAL WORDS = 2064
6. SLI half image: 128 columns and 128 rows $=16284$ pixels of 8 bits each
a) assumptions

8:1 HW compression: number of words $=((16284 * 8) / 8) / 16=1024$ TOTAL WORDS = 1040

B.6.12.2 Data Set for Uncompressed or Noiselessly Compressed Images

Each noiselessly compressed image will be compressed by row. These compressed rows and the uncompressed image rows will be transmitted in telemetry by row (not by column as with other measurements).

- 1	sync word			
- 2	row number			
- 3	no pixels per row		N	no bits sample
- 4	NOT USED	comp scheme	NOT USED	no bits split
- 5	reference predictor			
- 6	length of data			
- 1	measurement data			

where:

Name	Comments
sync word	sync word to indicate the start of a new row = 6969 (hex)
row number	row number of data transmitted
no pixels per row	number of pixels per row of data transmitted: for DLI-1 $=160$ for DLI-2 $=176$ for SLI $=128$
N	NOT USED
no bits sample	number of bits per sample; used in de-compression
comp scheme	compression scheme used for this spectrum (bit pattern): $1111=$ no compression $0000=$ psi-0 compression $0001=$ psi-1 compression $0010=$ NOT USED $0011=$ psi-F compression $0100=$ psi-14 compression
no bits split	number of low order bits split from the data in this column
reference predictor	reference predictor used in data compression
length of data	number of bits transmitted for the data in this column
measurement data	measurement data from the instrument

If data compression was not selected, each row of transmitted data will have a length dependent upon the image type. The number of words of measurement data in each row will be a whole number of 16-bit words:

1. DLI_ 1 image data has a length of 2,560 bits $=160$ words.
2. DLI_2 image data has a length of 2,816 bits $=176$ words.
3. SLI image data has a length of 2,048 bits $=128$ words.

If data compression was selected, each row of transmitted data will have a different length depending on the amount of compression. The number of words of measurement data will be a whole number of 16 -bit words.

TOTAL WORDS $=16+($ number of rows $)$ * ($6+$ number of words for each row $)$

B.6.12.2.1 Examples

1. DLI_1 image: $\mathbf{1 6 0}$ columns and 254 rows
a) assumptions

2:1 SW compression: \quad number of words $=((160 * 12) / 2) / 16=60$
TOTAL WORDS $=16,778$
no compression: number of words $=160$
TOTAL WORDS $=42,180$
2. DLI_1 half image: 160 columns and 127 rows
a) assumptions

2:1 SW compression: number of words $=((160 * 12) / 2) / 16=60$ TOTAL WORDS $=8,398$
3. DLI_2 image: 176 columns and 254 rows
a) assumptions
2:1 SW compression: number of words $=((176 * 12) / 2) / 16=66$ TOTAL WORDS = 18,304
no compression:
number of words $=176$
TOTAL WORDS = 46,244
4. DLI_2 half image: 176 columns and 127 rows
a) assumptions

2:1 SW compression: number of words $=((176 * 12) / 2) / 16=66$
TOTAL WORDS $=9,160$
5. SLI image: 128 columns and 254 rows
a) assumptions

2:1 SW compression: number of words $=((128 * 12) / 2) / 16=48$
TOTAL WORDS $=13,732$
no compression: number of words $=128$
TOTAL WORDS $=34,052$
6. SLI half image: 128 columns and 127 rows
a) assumptions

2:1 SW compression: number of words $=((128 * 12) / 2) / 16=48$
TOTAL WORDS $=6,874$

B.6.13 Strip Data Set

This data set provides to the user the measurement data and information associated with the measurement. The image strip measurement data contains all rows of the CCD except the top and bottom rows and it it 26 columns wide. The specific set of 26 columns is based on the target and actual azimuth in descent mode, on table values in calibration mode, and on an input value in single measurement mode. The data may or may not have bad pixels eliminated. The data may or may not be summed. The data may or may not be compressed. The data will be processed regardless of the condition of the CCD status flags.

where:

Name	Comments
measure type	$12=$ CCD SLI strip measurement data
E	optimum exposure time calculation flag $0=$ no calculations; $1=$ calculate optimum exposure time
B	bad pixel elimination flag $0=$ no elimination; $1=$ eliminated bad pixels
S	summing flag $0=$ no summing; $1=$ summing performed
C	noiseless compression flag $0=$ no compression; $1=$ data is compressed
F	new frame flag $0=$ new frame bit not set; $1=$ new frame bit set

L	new line flag $0=$ new line bit not set; $1=$ new line bit set
P	no pixel error flag $0=$ pixel error bit set; $1=$ no pixel error bit set
L1	calibration lamp 1 state: $0=$ OFF; $1=\mathrm{ON}$
L2	calibration lamp 2 state: $0=O F F ; 1=O N$
L3	calibration lamp 3 state: $0=O F F ; 1=O N$
SL	surface science lamp state: $0=$ OFF; $1=0 \mathrm{~N}$
cycle number	number of cycle in which measurement was taken
mission time	time at which measurement was begun MSW = upper 16 bits of mission time LSW = lower 16 bits of mission time Time is in 0.1 millisecond units.
target azimuth	azimuth at which measurement should have been taken. Azimuth is in 0.01 degree units.
actual azimuth	azimuth at which measurement was actually taken. Azimuth is in 0.01 degree units.
CCD status word	CCD hardware status word
focal plane temp	optics focal plane temperature. This is a raw A / D measurement value.
chip temp	temperature of CCD chip. This is a raw A/D measurement value.
exposure time	CCD exposure time used for this measurement. Exposure time is in 0.5 millisecond units.
target percent	CCD targeted full well percentage
histogram percent	CCD histogram percentile pixel value used in calculations
null pixel 2	sum of null pixel 2 value on each CCD row
null pixel 3	sum of null pixel 3 value on each CCD row
strip center column	center column of SLI imaging area to used as center of strip in calibration or single measurement mode
first column	first column of the strip from the right edge of the CCD
number of columns	number of columns of data transmitted
no pixels per col	number of pixels per column of data transmitted = 254
N	NOT USED
no bits sample	number of bits per sample; used in de-compression
comp scheme	```compression scheme used for this spectrum (bit pattern): 1111 = no compression 0000 = psi-0 compression 0001 = psi-1 compression 0010 = NOT USED 0011 = psi-F compression 0100 = psi-14 compression```
no bits split	number of low order bits split from the data in this column
reference predictor	reference predictor used in data compression
length of data	number of bits transmitted for the data in this column
measurement data	measurement value from the instrument

If data summing was selected, the transmitted data will consist of 2 columns. Summed data requires 16 bits for each sample. Otherwise, there will be 26 columns of data where 12 bits is required for each sample.

If data compression was not selected, each column of transmitted data will have a length of 4064 bits. The number of words of measurement data will be 25416 -bit words. If data compression was selected, each column of transmitted data will have a different length depending on the amount of compression. The number of words of measurement data for a column will be a whole number of 16-bit words.

TOTAL WORDS $=16+($ number of columns) * ($4+($ number of words for each column))

B.6.13.1 Examples

1. nominal strip measurement
a) assumptions
summing: \quad number of columns $=2$
2:1 SW compression: number of words for a column $=((254 * 16) / 2) / 16=127$
TOTAL WORDS = 278

Rev: C

B.6.14 Solar Aureole Data Set

This data set provides to the user the measurement data and information associated with the measurement. The solar aureole instrument consists of 4 channels with 4 separate measurement areas on the CCD. Each solar aureole measurement represents an area 6 columns by 50 rows. The data may or may not have bad pixels eliminated. The data may or may not be summed. The data may or may not be compressed. The data will be processed regardless of the condition of the CCD status flags.

where:

Name	Comments
measure type	$14=$ CCD solar aureole measurement data
E	optimum exposure time calculation flag $0=$ no calculations; $1=$ calculate optimum exposure time
B	bad pixel elimination flag $0=$ no elimination; $1=$ eliminated bad pixels
S	summing flag $0=$ no summing; $1=$ summing performed
C	noiseless compression flag $0=$ no compression; $1=$ data is compressed
F	new frame flag $0=$ new frame bit not set; $1=$ new frame bit set
L	new line flag $0=$ new line bit not set; $1=$ new line bit set

P	no pixel error flag $0=$ pixel error bit set; $1=$ no pixel error bit set
L1	calibration lamp 1 state: $0=$ OFF; $1=\mathrm{ON}$
L2	calibration lamp 2 state: $0=O F F ; 1=O N$
L3	calibration lamp 3 state: $0=O F F ; 1=O N$
SL	surface science lamp state: $0=$ OFF; $1=\mathrm{ON}$
cycle number	number of cycle in which measurement was taken
mission time	time at which measurement was begun MSW = upper 16 bits of mission time LSW = lower 16 bits of mission time Time is in 0.1 millisecond units.
target azimuth	azimuth at which measurement should have been taken. Azimuth is in 0.01 degree units.
actual azimuth	azimuth at which measurement was actually taken. Azimuth is in 0.01 degree units.
CCD status word	CCD hardware status word
focal plane temp	optics focal plane temperature. This is a raw A/D measurement value.
chip temp	temperature of CCD chip. This is a raw A/D measurement value.
exposure time	CCD exposure time used for this measurement. Exposure time is in 0.5 millisecond units.
target percent	CCD targeted full well percentage
histogram percent	CCD histogram percentile pixel value used in calculations
null pixel 2	sum of null pixel 2 value on each CCD row
null pixel 3	sum of null pixel 3 value on each CCD row
number of columns	number of columns of data transmitted for each channel
no pixels per col	number of pixels per column of data transmitted $=50$
N	NOT USED
SA	solar aureole channel: 0=SA_1; 1=SA_2; 2=SA_3; 3=SA_4*
no bits sample	number of bits per sample; used in de-compression
comp scheme	compression scheme used for this spectrum (bit pattern): 1111 $=$ no 0000 $=$ compression 0001 $=$ psi-0 compression 0010 $=$ 0011 $=$ compression 0100 $=$ psi-F compression psi-14 compression NOT USED
no bits split	number of low order bits split from the data in this column
reference predictor	reference predictor used in data compression
length of data	number of bits transmitted for the data in this column
measurement data	measurement value from the instrument

* SA_1 refers to the solar aureole block closest to the imagers on the CCD. SA_2 is beside SA-1 and SA_3 is beside SA_2. SA_4 is the solar aureole block farthest from the imagers on the CCD.

If data summing was selected, the transmitted data will consist of 4 columns, one for each solar aureole channel. Summed data requires 15 bits for each sample. Otherwise, there will be 24 columns of data, six for each solar aureole channel, where 12 bits is required for each sample.

If data compression was not selected, each column of transmitted data will have a length of 300 bits. The number of words of measurement data will be 50 16-bit words. If data compression was selected, each column of transmitted data will have a different length depending on the amount of compression. The number of words of measurement data for a column will be a whole number of 16-bit words.

TOTAL WORDS $=14+(\text { number of columns })^{*}(4+($ number of words for each column $))$

B.6.14.1 Examples

1. nominal solar aureole measurement

a) assumptions
summing:
2:1 SW compression:
number of columns $=6$
number of words for a column $=((50 * 15) / 2) / 16=24$
TOTAL WORDS = 182
b) assumptions

NO summing:
2:1 SW compression:
number of columns $=24$
number of words for a column $=((50 * 12) / 2) / 16=19$
TOTAL WORDS = 566
c) assumptions

NO summing:
NO compression:
number of columns $=24$
number of words for a column $=50$
TOTAL WORDS = 1310

B.6.15 Visible and Visible Ext Data Set

The visible data set provides to the user the measurement data and information associated with DLVS and ULVS measurements. The ULVS measurement data is 8 columns wide and the DLVS measurement data is 20 columns wide. The data may or may not have bad pixels eliminated. The data may or may not be summed. The data may or may not be compressed. The data will be processed regardless of the condition of the CCD status flags.

The visible ext data set contains two vectors taken at the same time as a DLVS or ULVS measurement. These vectors contain data from the same rows but from two columns on either side of the cooresponding DLVS or ULVS. This data is compressed the same way as the cooresponding DLVS or ULVS.

	0				3	4			7	8			11	12			15
1	measure type						E	B	S	C	F	L	P	L1	L2	L3	SL
2	cycle number																
3	mission time (MSW)																
4	mission time (LSW)																
5	target azimuth																
6	actual azimuth																
7	CCD status word																
8	focal plane temp																
9	chip temp																
10	exposure time																
11	target percent									histogram percent							
12	null pixel 2																
13	null pixel 3																
14	no fields of view																
- 1	N		no pixels per col									N	no bits sample				
- 2	NOT USED					comp scheme				NOT USED				no bits split			
- 3	reference predictor																
- 4	length of data																
- 1	measurement data																

where:

Name	Comments				
measure type	$15=$ near surface DLVS				
	$16=$ DLVS				
	$17=$ ULVS				
	$30=$ DLVS_Ext				
$31=$ ULVS_Ext		$	$		optimum exposure time calculation flag $0=$ no calculations; $1=$ calculate optimum exposure time Flag set to 0 for Visible_Ext data sets
:---	:---				
E	bad pixel elimination flag $0=$ no elimination;1 $=$ eliminated bad pixels Flag set to 0 for Visible_Ext data sets				
B					

S	summing flag $0=$ no summing; $1=$ summing performed Flag set to 0 for Visible_Ext data sets
C	noiseless compression flag $0=$ no compression; $1=$ data is compressed
F	new frame flag $0=$ new frame bit not set; $1=$ new frame bit set
L	new line flag $0=$ new line bit not set; $1=$ new line bit set
P	no pixel error flag $0=$ pixel error bit set; $1=$ no pixel error bit set
L1	calibration lamp 1 state: $0=$ OFF; $1=\mathrm{ON}$
L2	calibration lamp 2 state: $0=$ OFF; $1=\mathrm{ON}$
L3	calibration lamp 3 state: $0=O F F ; 1=O N$
SL	surface science lamp state: $0=$ OFF; 1 = ON
cycle number	number of cycle in which measurement was taken
mission time	time at which measurement was begun MSW = upper 16 bits of mission time LSW = lower 16 bits of mission time Time is in 0.1 millisecond units.
target azimuth	azimuth at which measurement should have been taken. Azimuth is in 0.01 degree units.
actual azimuth	azimuth at which measurement was actually taken. Azimuth is in 0.01 degree units.
CCD status word	CCD hardware status word
focal plane temp	optics focal plane temperature. This is a raw A/D measurement value.
chip temp	temperature of CCD chip. This is a raw A/D measurement value.
exposure time	CCD exposure time used for this measurement. Exposure time is in 0.5 millisecond units.
target percent	CCD targeted full well percentage Value set to 0 for Visible_Ext data sets
histogram percent	CCD histogram percentile pixel value used in calculations Value set to 0 for Visible_Ext data sets
null pixel 2	sum of null pixel 2 value on each CCD row
null pixel 3	sum of null pixel 3 value on each CCD row
no fields of view	number of fields of view of data transmitted
no pixels per col	number of pixels per column of data transmitted = 200
N	NOT USED
no bits sample	number of bits per sample; used in de-compression

comp scheme	```compression scheme used for this spectrum (bit pattern): 1111 = no compression 0000 = psi-0 compression 0001 = psi-1 compression 0010 = NOT USED 0011 = psi-F compression 0100 = psi-14 compression```
no bits split	number of low order bits split from the data in this column view
reference predictor	reference predictor used in data compression
length of data	number of bits transmitted for the data in this column view
measurement data	measurement value from the instrument

If data summing was selected for ULVS, the transmitted data will consist of 2 columns. Summed data requires 14 bits for each sample. Otherwise, there will be 8 columns of data, where 12 bits is required for each sample.

If data summing was selected for DLVS, the number of fields of view (FOV) must be specified. The transmitted data will consist of a number of columns equal to the number of FOV; otherwise, there will be 20 columns of data, where 12 bits is required for each sample. If 2 FOV is specified, the 4 pixels in each row centered in the light of the surface science lamp will be summed together in groups of 2 to form 2 columns of data, where 13 bits is required for each sample. If 5 FOV is specified, the 20 pixels in each row will be summed together in groups of 4 to form 5 columns of data, where 15 bits is required for each sample. If 10 FOV is specified, the 20 pixels in each row will be summed together in groups of 2 to form 10 columns of data, where 13 bits is required for each sample.

If data compression was not selected, each column of transmitted data will have a length of 3200 bits. The number of words of measurement data will be 200 16-bit words. If data compression was selected, each column of transmitted data will have a different length depending on the amount of compression. The number of words of measurement data for a column will be a whole number of 16-bit words.

TOTAL WORDS $=14$ + (number of columns) * (4 + (number of words for each column))

B.6.15.1 Examples

1. nominal visible measurement
a) assumptions

ULVS summing: number of columns = 2
2:1 SW compression: number of words for a column $=((200 * 14) / 2) / 16=88$ TOTAL WORDS = 198
b) assumptions

ULVS NO summing: number of columns = 8
2:1 SW compression: number of words for a column $=((200 * 12) / 2) / 16=75$
TOTAL WORDS = 646
c) assumptions

ULVS NO summing: number of columns $=8$
NO compression:
number of words for a column $=200$
TOTAL WORDS $=1646$
d) assumptions

DLVS 2 FOV summing: number of columns = 2
2:1 SW compression: \quad number of words for a column $=((200 * 13) / 2) / 16=82$ TOTAL WORDS = 186
e) assumptions

DLVS 5 FOV summing: number of columns $=5$
2:1 SW compression: number of words for a column $=((200 * 14) / 2) / 16=88$
TOTAL WORDS = 474
f) assumptions

DLVS 10 FOV summing: number of columns $=10$
2:1 SW compression: number of words for a column $=((200 * 13) / 2) / 16=82$ TOTAL WORDS = 874
g) assumptions

DLVS NO summing: number of columns $=20$
2:1 SW compression: number of words for a column $=((200 * 12) / 2) / 16=75$ TOTAL WORDS = 1674
h) assumptions

DLVS NO summing: number of columns $=20$
NO compression:
number of words for a column $=200$ TOTAL WORDS $=4094$

1. visible ext measurement
a) assumptions

Ext, No compression
number of words for a column $=204$ TOTAL WORDS = 422
b) assumptions

EXT, compression:
number of words for a column $=200 / 2+4=104$
TOTAL WORDS = 222

B.6.16 Full CCD Data Set

This data set provides to the user the measurement data and information associated with the measurement. The full CCD measurement data is read from the CCD in columns 0 through 523 (524 columns) and rows 0 through 255 (256 rows). The full CCD measurement data is transmitted in half rows of 262 values. The data may or may not be compressed. The data will be processed regardless of the condition of the CCD status flags.

where:

Name	Comments
measure type	$19=$ full CCD
C	compression flag $0=$ no compression; $1=$ data is compressed
F	new frame flag $0=$ new frame bit not set; $1=$ new frame bit set
L	new line flag $0=$ new line bit not set; $1=$ new line bit set
P	no pixel error flag $0=$ pixel error bit set; $1=$ no pixel error bit set
L1	calibration lamp 1 state: $0=$ OFF; $1=$ ON
L2	calibration lamp 2 state: $0=$ OFF; $1=$ ON
L3	calibration lamp 3 state: $0=$ OFF; $1=$ ON

SL	surface science lamp state: $0=0 F F ; 1=0 \mathrm{~N}$
cycle number	number of cycle in which measurement was taken
mission time	time at which measurement was begun upper half = MSH (upper 16 bits) of mission time lower half $=$ LSH (lower 16 bits) of mission time Time is in 0.1 millisecond units.
target azimuth	azimuth at which measurement should have been taken. Azimuth is in 0.01 degree units.
actual azimuth	azimuth at which measurement was actually taken. Azimuth is in 0.01 degree units.
CCD status word	CCD hardware status word
focal plane temp	optics focal plane temperature. This is a raw A/D measurement value.
chip temp	temperature of the CCD chip. This is a raw A/D measurement value.
exposure time	CCD exposure time used for this measurement. Exposure time is in 0.5 millisecond units.
null pixel 2	sum of null pixel 2 value on each CCD row
null pixel 3	sum of null pixel 3 value on each CCD row
number of rows	number of half rows of data transmitted: 512
sync word	sync word to indicate the start of a new row = 6969 (hex)
row number	half row number of data transmitted: odd number is the first half of the actual row: actual row $=($ half row number +1$) / 2$ even number is the second half of the actual row: actual row = half row number / 2
no pixels per row	number of pixels per row of data transmitted = 262
N	NOT USED
no bits sample	number of bits per sample; used in de-compression
comp scheme	compression scheme used for this spectrum (bit pattern): $1111=$ no compression $0000=$ psi-0 compression $0001=$ psi-1 compression $0010=$ NOT USED $0011=$ psi-F compression $0100=$ psi-14 compression
no bits split	number of low order bits split from the data in this column
reference predictor	reference predictor used in data compression
length of data	number of bits transmitted for the data in this column
measurement data	measurement data from the instrument

If data compression was not selected, each half row of transmitted data will have a length of 4192 bits. The number of words of measurement data will be 262 16-bit words. If data compression was selected, each half row of transmitted data will have a different length depending on the amount of compression. The number of words of measurement data for a column will be a whole number of 16-bit words.

TOTAL WORDS $=14+(512) *(6+($ number of words for each each half row $))$

B.6.16.1 Examples

1. nominal full CCD measurement
a) assumptions 2:1 SW compression: number of words for a row $=((262$ * 12$) / 2) / 16=99$ TOTAL WORDS = 53774

Rev: C

B.6.17 DCS Test Data Set

The DCS Test Data Set contains data associated with a DCS test. There are two components to the DCS test. The first performs the self-test function of the DCS. This is entirely internal to the DCS unit. The only indication of success or failure is the byte of data returned from the DCS in the DCS status area. This byte includes indicators of latchup condition detected (4), of CPU crash condition, of operations status, and of DCS ready. The second component of the test is to load a fixed sequence into the DCS image buffer area and compress it. The results are put into the telemetry stream. The data may be compressed with different compression ratios. The data loaded into the memory area is the size of the largest image or 176 by 256.

This data set is used whenever a DCS test is performed. This may be done either by a single test command or as part of a calibration sequence. A test of the DCS is planned as part of the health check sequence but not as part of the in-flight calibration sequence.

The data set format is as follows:

where;

Name	Comments
Time	Start time of the test - Mission time in 0.1 milliseconds
overall test status	This is an indicator of the success or failure of the overall test. It indicates if the DCS could not be accessed to perform one or more of the tests.
target compression ratio	The target compression ratio for the test. This is the value used for the software test.
self test status	The byte of DCS status information returned after the completion of the self test function.
SW test status	The byte of DCS status information returned after the completion of the software test function.
number of bytes of compressed data	The number of bytes of compressed data for the software test.
compressed data	An individual byte of compressed data.

The size of the data set depends on the compression ratio chosen. Actual sizes are not known at this time but an estimate of the actual size can be made assuming that the data is compressed exactly as specified. The size of the data set as a function of the compression ratio is shown in the following table.

Compression Ratio	Data Set Size (words)
1	22,533
2	11,269
3	7,515
4	5,637
5	4,511

6	3,760
7	3,224
8	2,821
9	2,509
10	2,258
11	2,053
12	1,883
13	1,738
14	1,615
15	1,507
16	1,413

The nominal compression ratio is 8 which gives a data set size of 2,821 words.

Rev: C

B.6.18 IR Shutter Test Data Set

The IR shutter Test Data Set contains data for a single shutter test. The shutter test command sequence is as follows:

1. Open the shutter and reset up and down channels - repeated 10 times to make sure the shutter has had plenty of time to be open.
2. Open shutter and read both the up and down looking channels (measurement number 1). This measurement provides a baseline for the nominal shutter open values.
3. Close shutter and read both the up and down looking channels (measurements 2 through 7). This measurement is repeated six times. This provides up to 6 measurements for when the shutter is in the process of closing. Since the shutter close operation should take less than 2 of the 6 this should catch the shutter in the process of closing and should show three measurements where the shutter is fully closed.
4. Close the shutter and reset both up and down looking channels for 10 IR commands. This will allow the shutter to close even if it takes longer than expected.
5. Close shutter and read both the up and down looking channels (measurement number 8 and 9). These two measurements provide a baseline long after the shutter has completely closed.
6. Open shutter and read both the up and down looking channels (measurements 10 through 15). This measurement is repeated six times. This provides up to 6 measurements for when the shutter is in the process of opening. Since the shutter open operation should take less than 2 of the 6 this should catch the shutter in the process of opening and should show three measurements where the shutter is fully opened.
7. Open the shutter and reset up and down channels - repeated 10 times to make sure the shutter has had plenty of time to be open.
8. Open shutter and read both the up and down looking channels (measurement number 16).

This data set is used whenever an IR shutter test measurement is performed. This may be commanded from the single measurement mode of operation or may be commanded as part of a calibration sequence. It is included as a measurement in the health check calibration sequence but not the in-flight calibration sequence.

For each read of the IR data, 6 data set values are returned; 3 data set items for the ULIS and 3 for the DLIS. The three data set set items include a precharge value, a dark value, and a signal value. The precahrge value is the average of IR pixels 148 and 149. The dark current value is the average of pixels 2 thru 5 and 144 thru 147. The signal value is the average of pixels 9 thru 140.

Calibration lamps are not explicitly commanded on for this test.
The data set format is as follows:

12	meas 4 - up, close, precharge
13	meas 4 - up, close, dark
14	meas 4 - up, close, signal
15	meas 5 - up, close, precharge
16	meas 5 - up, close, dark
17	meas 5 - up, close, signal
18	meas 6 - up, close, precharge
19	meas 6 - up, close, dark
20	meas 6 - up, close, signal
21	meas 7 - up, close, precharge
22	meas 7 - up, close, dark
23	meas 7 - up, close, signal
24	meas 8 - up, close, precharge
25	meas 8 - up, close, dark
26	meas 8 - up, close, signal
27	meas 9 - up, close, precharge
28	meas 9 - up, close, dark
29	meas 9 - up, close signal
30	meas 10 - up, open, precharge
31	meas 10 - up, open, dark
32	meas 10 - up, open signal
33	meas 11 - up, open, precharge
34	meas 11 - up, open, dark
35	meas 11 - up, open signal
36	meas 12 - up, open, precharge
37	meas 12 - up, open, dark
38	meas 12 - up, open signal
39	meas 13 - up, open, precharge
40	meas 13 - up, open, dark
41	meas 13 - up, open signal
42	meas 14 - up, open, precharge
43	meas 14 - up, open, dark
44	meas 14 - up, open signal
45	meas 15 - up, open, precharge
46	meas 15 - up, open, dark
47	meas 15 - up, open signal
48	meas 16 - up, open, precharge
49	meas 16 - up, open, dark
50	meas 16 - up, open signal

51	meas 1 - down, open, precharge
52	meas 1 - down, open, dark
53	meas 1 - down, open signal
54	meas 2 - down, close, precharge
55	meas 2 - down, close, dark
56	meas 2 - down, close, signal
57	meas 3 - down, close, precharge
58	meas 3 - down, close, dark
59	meas 3 - down, close, signal
60	meas 4 - down, close, precharge
61	meas 4 - down, close, dark
62	meas 4 - down, close, signal
63	meas 5 - down, close, precharge
64	meas 5 - down, close, dark
65	meas 5 - down, close, signal
66	meas 6 - down, close, precharge
67	meas 6 - down, close, dark
68	meas 6 - down, close, signal
69	meas 7 - down, close, precharge
70	meas 7 - down, close, dark
71	meas 7 - down, close, signal
72	meas 8 - down, close, precharge
73	meas 8 - down, close, dark
74	meas 8 - down, close, signal
75	meas 9 - down, close, precharge
76	meas 9 - down, close, dark
77	meas 9 - down, close signal
78	meas 10 - down, open, precharge
79	meas 10 - down, open, dark
80	meas 10 - down, open signal
81	meas 11 - down, open, precharge
82	meas 11 - down, open, dark
83	meas 11 - down, open signal
84	meas 12 - down, open, precharge
85	meas 12 - down, open, dark
86	meas 12 - down, open signal
87	meas 13 - down, open, precharge
88	meas 13 - down, open, dark
89	meas 13 - down, open signal

90	meas 14 - down, open, precharge
91	meas 14 - down, open, dark
92	meas 14 - down, open signal
93	meas 15 - down, open, precharge
94	meas 15 - down, open, dark
95	meas 15 - down, open signal
96	meas $16-$ down, open, precharge
97	meas 16 - down, open, dark
98	meas $16-$ down, open signal

where:

Name	Comments
Time	Start time of the test - Mission time in 0.1 milliseconds
meas m, open/closed, up/down, precharge	This is the precharge value for a particular test, a particular shut- ter test, the upward or downward looking channel and measure- ment m in the sequence. The 4 precharge pixels of data are av- eraged to produce the value placed into the telemetry data set.
meas m, open/closed, up/down, dark	This is the dark value for a particular test, a particular shutter test, the upward or downward looking channel and measurement m in the sequence. The 8 dark pixels of data are averaged to produce the value placed into the telemetry data set.
meas m, open/closed, up/down, signal	This is the signal value for a particular test, a particular shutter test, the upward or downward looking channel and measurement m in the sequence. The 132 active pixels of data are averaged to produce the value placed into the telemetry data set.

The size of the data set is 98 words.

B.6.19 Heater Test Data Set

The heater test may be performed on either or both heaters at any one time. The test of an individual heater consists of reading an associated temperature, turning on the heater, and then measuring the temperature every 15 seconds for a total of 2 minutes. If both heaters are tested the tests are performed sequentially.

This data set is used whenever a heater test is performed. This may be done either by a single test command or as part of a calibration sequence. A test of both heaters is planned as part of the health check sequence but not as part of the in-flight calibration sequence.
The heater test data set consists of the following data:

where:

Name	Comments
Time	Start time of the test - Mission time in 0.1 milliseconds
number of heaters tested	The number of heaters that were tested. May be either 1 or 2.
heater id	The id of the heater test data included The id for the focal plane heater is 1 and the id for the SH aux heater is 2.
measurement at time $\mathrm{x}: \mathrm{xx}$	The value returned from the A/D converter for the thermistor associated the the heater being tested. The time is shown in se- conds relative to the start of the individual test.

The size of the data set is either 13 words for a single heater or 23 words for both heaters.

B.6.20 Cal Lamp Test Data Set

The cal lamp test may be performed on any combination of the three calibration lamps at any one time. The test of the lamps is to put them in the desired state (on or off), wait until they have had time to settle, and measure the two voltage points for each lamp.

This data set is used whenever a calibration lamp test is performed. This may be done either by a single test command or as part of a calibration sequence. A test of the calibration lamps is planned as part of the health check sequence but not as part of the in-flight calibration sequence.
The calibration lamp test data set consists of the following data:

	0			3	4			7	8	8		11	12		15
1	Time - MSH														
2	Time - LSH														
3	Lamp 1 state														
4	Lamp 1, Voltage 1														
5	Lamp 1, Voltage 2														
6	Lamp 2 state														
7	Lamp 2, Voltage 1														
8	Lamp 2, Voltage 2														
9	Lamp 3 state														
10	Lamp 3, Voltage 1														
11	Lamp 3, Voltage 2														

where:

Name	Comments
Time	Start time of the test - Mission time in 0.1 milliseconds
Lamp n state	The state of the nth lamp (On=1, Off=0)
Lamp n, Voltage m	The raw reading from the ADC for the specified lamp and voltage measurement point.

The size of the data set is 11 words.

B.6.21 Surface Lamp Test Data Set

The test of the surface lamp is to put it in the desired state (on or off), wait until the lamp has had time to settle, and measure the current and voltage for the lamp.

This data set is used whenever a surface lamp test is performed. This may be done either by a single test command or as part of a calibration sequence. A test of the surface lamp is planned as part of the health check sequence but not as part of the in-flight calibration sequence. The surface lamp test data set consists of the following data:

where:

Name	Comments
Time	Start time of the test - Mission time in 0.1 milliseconds
Lamp state	The state of the lamp (On=1, Off=0)
Voltage	The raw reading from the ADC for the specified lamp voltage measurement point.
Current	The raw reading from the ADC for the specified lamp current measurement point.

The size of the data set is 5 words.

B.6.22 Sun Lamp Test Data Set

The test of the sun lamp is to cause the lamp to go on and measure the two voltage points and the response for the lamp.

This data set is used whenever a sun lamp test is performed. This may be done either by a single test command or as part of a calibration sequence. A test of the sun lamp is planned as part of the health check sequence but not as part of the in-flight calibration sequence.
The sun lamp test data set consists of the following data:

where:

Name	Comments
Time	Start time of the test - Mission time in 0.1 milliseconds
Voltage n	The raw reading from the ADC for the specified lamp voltage measurement point.
Sun Sensor Re- sponse	The raw reading from the ADC for the sun sensor response mea- surement point.

The size of the data set is 5 words.

B.6.23 Bad RAM Data Set

The Bad RAM Data Set will be generated once after a power up or restart occurs. It defines the ranges of memory addresses that failed the memory verification check. If no addresses fails the check, the data set will not be produced. If more than 50 ranges fail the check, the overflow flag will be set and the additional ranges will not be recorded.

A bad RAM data set contains the following fields:

where:

Name	Comments
number ranges	the number of ranges in the data set
O	flag indicating if there were more entries than would fit in the data set
start address	the starting address of a bad address range
end address	the ending address of a bad address range

The size of the bad RAM data set is 1 + (number ranges * 4) words. Since there is a maximum of 50 entries possible for this data set, the data set can contain a maximum of 201 words.

B.6.24 Bad EEPROM Data Set

The Bad EEPROM Data Set will be generated once after a power up or restart occurs. It identifies which EEPROM patches failed the CRC check. If no EEPROM patches fails the check, the data set will not be produced. If more than 50 patches fail the check, the overflow flag will be set and the indexes will not be recorded.

The contents of the bad EEPROM data set are:

where:

Name	Comments
number indexes	the number of patch indexes in the data set
O	flag indicating if there were more entries than would fit in the data set
patch index	the patch index that failed the CRC check

The size of the bad EEPROM data set is $1+$ (number indexes * 1) words. Since there is a maximum of 50 entries possible for this data set, the data set can contain a maximum of 51 words.

B.6.25 Memory Dump Data Set

Memory Dump Data Sets will be generated upon receipt of a valid memory dump command in the memory access mode. Each range of addresses in the command will generate at least one data set. For each range which is greater than $2^{* *} 12$ words, it will be divided into sections of not more than $2^{* *} 12$ words each and several memory dump data sets will be produced.

The format of the memory dump data set is as follows:

where:

Name	Comments
dump start address	the address of the first data word in the data set
dump length	the number of data words in the data set
B	flag indicating if addresses containing only byte information were packed together
data word	the contents of the address

The size of the memory dump data set is $3+$ (dump length * 1) words. Since there is a maximum of $2^{* *} 12$ words possible for a memory dump section, the data set can contain a maximum $2^{* *} 12+3$ words.

B.6.26 Empty Data Set

At least 3 words are required to identify a data set and have a data value. If any words remain at the end of a packet, they will be filled with zeros. This is also used to fill partial packets if there is nothing else to send.

Rev: C

Appendix C - MESSAGES

A message is an indication of a change in condition of the DISR instrument or a detection of an error that needs to be reported to the ground. Each message will include a code indicating the type of message and an identification field that is specific to the type of message. Table 34 defines the message codes and the identification field that is associated with them.

Table 34 - Flight Error and Informational Messages

Code	Name	Description
0	ACK_cmd	This message is generated for every command that is determined to be valid. The parameter is the command id field from the command.
1	NAK_bad_cmd_dest	This messsage is produced if the destination field in the command does not match one of the two expected destination fields. The parameter is the command id field from the command.
2	NAK_bad_cmd_crc	This message is generated if the CRC calculated for a command doesn't match the one received with the command. The parameter is the command id field from the command.
3	NAK_bad_brdcast_crc	This message is generated if the CRC calculated for a DDB command doesn't match the one received with the command. The parameter is the command id field from the command.
4	NAK_illegal_opcode	This message is generated if the opcode field in a command does not match one of the expected opcode values. The parameter is the command id field from the command.
5	NAK_cmd_recpt_dsable	This message indicates that an Enable Command was not received before this new command was received. The parameter is the command id field from the command.
6	NAK_bad_cmd_length	This message indicates that the proper number of words were not received with a command for the type of command indicated. The parameter is the command id field from the command.
7	NAK_bad_bc_length	This message indicates that the proper number of words were not received for a DDB command. There is no parameter wiht this message.
8	NAK_bad_new_mode	This message indicates that the new mode field of a Change Mode command was not an expected value. The parameter is the command id field from the command.
9	NAK_bad_sngl_mes_typ	This message indicates that the measurement type field of a Single Measurement command was not an expected value. The parameter is the command id field from the command.
10	NAK_bad_op_mode	This message indicates that the flight software was not running in the proper mode to execute this command. The parameter is the command id field from the command.
11	NAK_bad_sngl_tst_typ	This message indicates that the test type field of a Single Measurement command was not an expected value. The parameter is the command id field from the command.

Code	Name	Description
12	NAK_prv_cmd_not_comp	This message is generated if a command was still being processed when this command was received. The parameter is the command id field from the command.
13	NAK_bad_dump_cmd	This message indicates that a Dump command was received with too many pairs of addresses requested. The parameter is the command id field from the command.
14	NAK_bad_EEPROM_cmd	This message indicates that the number of patches field of an Uplink EEPROM command does not match the number of words received for patches. The parameter is the command id field from the command.
15	bad_dump_range	Memory dump range is bad.
16	bad_EEPROM_index	This message indicates that both EEPROM indexes specified with an Uplink EEPROM command indicate that a patch is to be stored to illegal locations. The index value must be a number between 1 and 1023. The parameter is the index number that was illegal.
17	bad_EEPROM_load	This message indicates that both attempts to store a patch into EEPROM failed. All of the patch words were stored but a problem was detected reading back at least one of the words. There is no parameter with this message.
18	bad_uplink_RAM_addr	This message indicates that the address specified to store the command words is an illegal address. Addresses that are illegal to uplink to include those used by the extended memory, 8000 h thru FFFFh. The parameter is the 16 least significant bits of the address.
19	tlm_space_full	This message is generated in descent mode if there is not enough space left in the telemetry queue to store the data set currently requesting to be packaged. In this case the data set is discarded without being saved in telemetry and the associated data is lost. The parameter indicates the type of data set the was discarded.
20	rebuilding_tlm_links	This message indicates that the telemetry queue links are being rewritten. This happens if a problem in the link information was found when a new telemtry packet was being stored or when an old packet was released The link field must be greater than zero or less than TBD and the field indicating which subqueue, high, low channel A or low channel B, must be as expected. This error should only happen if an SEU alters a buffer location including the link information. Note that after the queue has been rebuilt, the telemetry packets may not be received in the order they are expected so reassembling the data sets will be difficult. There is no parameter with this message.
21	data_set_dropped	This message indicates that a data set was discarded in calibration or do single mode. The data set will be discarded if the telemetry queue was full and the queue of pending telemetry requests was full. The parameter indicates the type of data set that was discarded.
22	old_pkts_deleted	TBD

Code	Name	Description
23	data_set_too_big	TBD
24	no_free_pkt_avail	This message is generated if a request to store a data set into the telemetry buffer is made but when packets were being re- quested to put the data into, no packet was available. The only reason for this error to occur is that an SEU has altered linkage information for the packets in the telemetry queue. If the telem- etry buffer was too full to store the data set, the tlm_buffer_full message would be generated instead. If this message does occur, the next message received should be a rebuilding_tm_- queue message. Part of the current data set may be stored in the telemetry queue before the error condition is detected and the remaining data is discarded. There is no parameter with this message.
25	release_pkts_err	TBD
26	message_overflow	This message is generated if more requests to store messages are received than can be stored in an internal message queue. Messages are only stored in this queue until internal operating priorities are correct for the messages to be stored in the te- lemetry buffer. The message won't be generated until the other messages have been put in telemety and the internal queue is empty. There is no parameter with this message.
27	mode_change_ignored	This message is generated if a Change mode command is re- ceived before the last thange mode command has been pro- cessed. In this case the old unexecuted command is ignore and the new Change Mode command is executed as expected. The parameter is an indication of the mode for the discarded command.
28	sun_pulse_too_close	TBD
29	using_sun_pulses	This message is generated when the flight software changes from using probe information to using sun sensor information for predicting azimuth.
30	sun_pulse_lost	tBD
32	third_sun_pulse_lost	TBD
33	bad_cal_se_id_found	This message is generated if during descent mode, a cycle number is identified for use that is not defined in the internal scheduling tables. This error should not happen unless EE- PROM uploads overwrite the orginal table values and the new values are in error. The parameter is the number of the cycle that was bad.

Code	Name	Description
34	bad_cal_scen_entry	This message is generated during calibraion mode if there is a problem in the cycle definition for a cycle. This error should not happen unless EEPROM uploads overwrite the orginal table values and the new values are in error. The parameter is the number of the cycle that was bad.
35	bad_CCD_set_num	This message is generated in descent mode if the CCD measurement set number for a cycle indicates a set that is not defined. This error should not happen unless EEPROM uploads overwrite the orginal table values and the new values are in error. The parameter is the number of the measuarment set that was bad.
36	bad_cal_CCD_entry	This message is generated during descent mode if there is a problem in the CCD measurment set definition for a cycle. This error should not happen unless EEPROM uploads overwrite the orginal table values and the new values are in error. The parameter is the number of the measurement set that was bad.
37	bad_IR_set_num	This message is generated in descent mode if the IR measurement set number for a cycle indicates a set that is not defined. This error should not happen unless EEPROM uploads overwrite the orginal table values and the new values are in error. The parameter is the number of the measuarment set that was bad.
38	bad_cal_IR_entry	This message is generated during descent mode if there is a problem in the IR measurment set definition for a cycle. This error should not happen unless EEPROM uploads overwrite the orginal table values and the new values are in error. The parameter is the number of the measurement set that was bad.
39	bad_violet_set_num	This message is generated in descent mode if the violet measurement set number for a cycle indicates a set that is not defined. This error should not happen unless EEPROM uploads overwrite the orginal table values and the new values are in error. The parameter is the number of the measuarment set that was bad.
40	bad_cal_violet_entry	This message is generated during descent mode if there is a problem in the violet measurment set definition for a cycle. This error should not happen unless EEPROM uploads overwrite the orginal table values and the new values are in error. The parameter is the number of the measurement set that was bad.
41	CCD_meas_not_done	This message is generated if the maximum cycle time is reached but not all CCD measurements were performed during the cycle. The parameter indicates how many CCD measurements were left to be performed.
42	violet_meas_not_done	This message is generated if the maximum cycle time is reached but not all violet measurements were performed during the cycle. The parameter indicates how many violet measurements were left to be performed.
43	measurement_dropped	TBD

Code	Name	Description
44	IR_coll_ID_not_found	TBD
45	new_time_correction	This message indicates that the clock has determined that the master timer and the mission timer have drifted and that a new time correction is needed. The parameter is used to indicate the reason for the correction. A 1 indicates that the mission time (from DDB) looked OK but that the master timer did not. A 2 indicates that the master timer appeared correct but that the mission time did not. A 3 indicates that both appeared incorrect. This usually happens for the first DDB received. Finally a 0 indicates that both appear correct but that cumulative drift has caused a new correction to be needed.
46	swtch_probe_cmd_side	This message indicates that the software is switching sides in using the telecommand channels. The switch occurs for two possible reasons. First, a switch will be made if the current channels appears to be sending incorrect data (bad first word of the messages for at least 15 seconds). The second reason for a switch is that the processor valid flag has changed state. In this case the software will always switch to the side indicated by the new processor valid flag. In this case the message is sent even if the side is the same as the current side. So if processor valid indicates the use of side A, but the software has not gotten data for side A and switched to side B, and then the processor valid switched to side B, a message will still indicate switching to side B even though it was already using side B. The parameter indicates the new channel in use (1 for side A, 2 for side B).
47	input_buf_not_rel	This message means that one of the command buffers has not been released when it is needed again. The software maintains two input command buffers that it useses in an alternating manner. This message is an indication that the software is not processing the data quickly enough and that it is possible for a command to be lost.
48	TM_channel_down	This message indicates that three successive tries to send a telemetry packet all resulted in failures. The software continues to attempt to send the packet and if it succeeds a TM_channel_up message will be sent. The parameter indicates which telemetry channel (0 for channel A, 1 for channel B).
49	TM_channel_up	This message indicates that a previously down telemetry channel is now believed to be working. The parameter indicates which telemetry channel (0 for channel A, 1 for channel B).
50	Mux_Channel_Failure	This is an informational message that a read from the Mux returned a bad stats. The channel number in question is placed into the ID field. Continued failures will not produce any more error messages but a good read will be indicated by the Mux_Channel_OK message.
51	Mux_Channel_OK	This is an informational message that a previously bad Mux channel now appears to be working. The parameter is the channel ID.

Code	Name	Description
52	DCS_not_ready	This message indicates that the DCS never returned a ready status. The software tries to wait for a ready status for up to 5 seconds when DCS access is needed. If does not get a ready in this time it produces this message and resets the DCS hardware.
53	DCS_failure	This message is indicates that the DCS compression failed. The software tries to wait for twice the standard delay before indicating a failure of this type. A reset of the DCS is attemped after this condition is detected.
54	SunSensor_locked	This message is placed into telemetry whenever the software determines that the sun sensor has locked onto sun pulses.
55	SunSensor_sig_lost	This message indicates that the sun sensor had previously obtained a lock on the sun pulses but has lost it. The parameter indicates the reason that the pulse was rejected. This is summarized as follows: 21 - 2 nd pulse of triplet - width of 1 st and 2 nd pulses were too different 22 - 2nd pulse of triplet - ratio of gap time to pulse widths was too small 23 - 2nd pulse of triplet - ratio of rotation period to gap time too small 24 - 2nd pulse of triplet - pulse amplitude is too small 31 - 3rd pulse of triplet - width of 2nd and 3rd pulses were too different. 32 - 3rd pulse of triplet - width of 1 st and 2 nd pulses were too different. 33 - 3rd pulse of triplet - gap between 1-2 and gap between 2-3 were too different. 34 - 3rd pulse of triplet - ratio of gap time to pulse widths is too small 35 - 3rd pulse of triplet - ratio of rotation period to gap time is too small 36 - 3rd pulse of triplet - pulse amplitude is too small 99 - No valid triplet received within time limit
56	bad_RAM_copy	If this message is output it means that the copy from PROM to RAM detected errors. Each word is copied, verified, and recopied if found to be in error. However, if there is still an error this message is produced.
57	no_bc_mess_recd	This message appears near the beginning of DISR operations if no broadcast message is received for the standard timeout period (30 seconds).
58	timer_test_result	This message signifies the results of the timer test that is performed as part of the initialization of the instrument. The expected range is between TBD and TBD.

Code	Name	Description
59	unexpected_BP	This occurs if the broadcast pulses are not received with the expected frequency. They should be received once each 125 milliseconds. If they are not received at this frequence $(+/-0.1$ millisecond) the error message is generated. The parameter is the actual difference in times between the last broadcast pulse and this broadcast pulse (in 0.1 millisecond units). Only the first 100 such errors are reported.
60	ML_int_stuck_on	This occurs when the software detects that the ML interrupt is stuck on. The software then disables that interrupt level so it will never occur again. This is a very serious error in that no commands or DDB messages can be received after this occurs.
61	BP_int_stuck_on	This occurs when the software detects that the BP interrupt is stuck on. The software then disables that interrupt level so it will never occur again. This is a very serious error in that no commands or DDB messages can be received after this occurs.
62	SS_int_stuck_on	This occurs when the software detects that the SS interrupt is stuck on. The software then disables that interrupt level so it will never occur again. This is a fairly serious error in that no subsequent sun sensor data will be received.
63	ET_int_stuck_on	This occurs when the software detects that the ET interrupt is stuck on. The software then disables that interrupt level so it will never occur again. This is a fatal error in that the system will not function without this interrupt.
64	TMA_int_stuck_on	This occurs when the software detects that the TMA interrupt is stuck on. The software then disables that interrupt level so it will never occur again. This is a fairly serious error in that it effectively disables that telemetry channel.
65	TMB_int_stuck_on	This occurs when the software detects that the TMB interrupt is stuck on. The software then disables that interrupt level so it will never occur again. This is a fairly serious error in that it effectively disables that telemetry channel.
66	ET_int_missed	This error occurs if the event timer misses an interrupt. The flight code has background loop checking for this condition. When it occurs it causes the same processing that would normally occur when the timer interrupt occurs. However, this may not occur until well after the interrupt should have occurred.
67	IR_Cmd_Buf_Overflow	The requested IR command required more than the allowable total commands to generate. The command sequence will definitely be in error.
68	DMA_controller_reset	Both DMA controlled TM devices are reporting error conditions. It is likely that the DMA controller has hung up. A reset of the controller is being tried to get them working again.
69	Bad_flat_field_addr	For an Upload EEPROM commands with the patch type $=1$, the address sent was not within the flat field area.

