A dataset provided by the European Space Agency

Name 020136
Title ARE MAGNETIC EARLY-TYPE STARS INTRINSIC X-RAY EMITTERS?
URL

http://nxsa.esac.esa.int/nxsa-sl/servlet/data-action-aio?obsno=0201360201

DOI 10.5270/esa-8av6ebq
Author Dr STEPHEN DRAKE
Description We propose to observe 2 magnetic early-type stars (56 Tau and nu Sco CD) that were previously detected as X-ray sources by ROSAT and as nonthermal radio sources by the VLA, so as to obtain well-exposed EPIC spectra and lightcurves. We will analyze their spectra for evidence for or against the hypothesis that the X-ray emitting plasma is intrinsic to the magnetic star (as opposed to being coronal emission from unresolved low-mass stellar companions), e.g., by comparing the inferred coronal elemental abundances to the peculiar Si-rich abundances of the magnetic stars. photospheres. We will also study the X-ray lightcurves of the 2 stars compared to their magnetic field variations and to their simultaneous radio light curves as a further test of the intrinsic vs. extrinsic hypothesis.
Publication The XMM-Newton serendipitous survey. V. The Second XMM-Newton serendipitous source catalogue . Watson, M. G., Schroder, A. C., et all. . A&A . 493-339 . 2009 . 2009A&A...493..339W ,
Statistical evaluation of the flux cross-calibration of the XMM-Newton EPIC cameras . Mateos, S., Saxton, R. D., et all. . A&A . 496-879 . 2009 . 2009A&A...496..879M ,
The XMM Cluster Survey: optical analysis methodology and the first data release . Mehrtens, Nicola, Romer, A. Kathy, et all. . MNRAS . 423-1024 . 2012 . 2012MNRAS.423.1024M ,
An XMM-Newton Survey of the Soft X-ray Background. I. The O VII and O VIII Lines Between l = 120 and l = 240 . Henley, David B., Shelton, Robin L., . ApJS . 187-388 . 2010 . 2010ApJS..187..388H ,
An All-Sky Atlas of Radio-X-ray Associations . Flesch, E., . PASA . 27-283 . 2010 . 2010PASA...27..283F ,
New X-ray observations of IQ Aurigae and alpha2 Canum Venaticorum. Probing the magnetically channeled wind shock model in A0p stars . Robrade, J., Schmitt, J. H. M. M., . A&A . 531-58 . 2011 . 2011A&A...531A..58R ,
The XMM Cluster Survey: X-ray analysis methodology . Lloyd-Davies, E. J., Romer, A. Kathy, et all. . MNRAS . 418-14 . 2011 . 2011MNRAS.418...14L ,
Exospheric solar wind charge exchange as seen by XMM-Newton . Carter, J. A., Semba, S., . AN . 333-313 . 2012 . 2012AN....333....,
An XMM-Newton Survey of the Soft X-Ray Background. II. An All-Sky Catalog of Diffuse O VII and O VIII Emission Intensities . Henley, David B., Shelton, Robin L., . ApJS . 202-14 . 2012 . 2012ApJS..202...14H ,
Automatic Classification of Time-variable X-Ray Sources . Lo, Kitty K., Farrell, Sean, et all. . ApJ . 786-20 . 2014 . 2014ApJ...786...20L ,
Sunyaev-Zel.dovich effect or not? Detecting the main foreground effect of most galaxy clusters . Xiao, Weike, Chen, Chen, et all. . MNRAS . 432-41 . 2013 . 2013MNRAS.432L..41X ,
X-rays from magnetic intermediate mass Ap-Bp stars . Robrade, Jan, . AdSpR . 58-727 . 2016 . 2016AdSpR..58..727R ,
The Interaction of the Fermi Bubbles with the Milky Way.s Hot Gas Halo . Miller, Matthew J., Bregman, Joel N., . ApJ . 829-9 . 2016 . 2016ApJ...829....9M ,
The Million Optical - Radio-X-ray Associations (MORX) Catalogue . Flesch, Eric W., . PASA . 33-52 . 2016 . 2016PASA...33...52F ,
Anisotropy of the galaxy cluster X-ray luminosity-temperature relation . Migkas, Konstantinos, Reiprich, Thomas H., . A&A . 611-50 . 2018 . 2018A&A...611A..50M ,
Imaging Plasma Density Structures in the Soft X-Rays Generated by Solar Wind Charge Exchange with Neutrals . Sibeck, David G., Allen, R., et all. . SSRv . 214-79 . 2018 . 2018SSRv..214...79S ,
The XMM Cluster Survey: Present status and latest results . Viana, P. T. P., Mehrtens, N., et all. . AN . 334-462 . 2013 . 2013AN....334..462V ,
Testing emergent gravity on galaxy cluster scales . Tamosiunas, Andrius, Bacon, David, et all. . JCAP . 5-53 . 2019 . 2019JCAP...05..053T ,
Chandra Follow-up of the SDSS DR8 Redmapper Catalog Using the MATCha Pipeline . Hollowood, Devon L., Jeltema, Tesla, et all. . ApJS . 244-22 . 2019 . 2019ApJS..244...22H ,
Stellar mass as a galaxy cluster mass proxy: application to the Dark Energy Survey redMaPPer clusters . Palmese, A., Annis, J., et all. . MNRAS . 493-4591 . 2020 . 2020MNRAS.493.4591P ,
Instrument EMOS1, EMOS2, EPN, OM, RGS1, RGS2
Temporal Coverage 2004-02-29T20:04:59Z/2004-03-01T08:01:37Z
Version 17.56_20190403_1200
Mission Description The European Space Agency's (ESA) X-ray Multi-Mirror Mission (XMM-Newton) was launched by an Ariane 504 on December 10th 1999. XMM-Newton is ESA's second cornerstone of the Horizon 2000 Science Programme. It carries 3 high throughput X-ray telescopes with an unprecedented effective area, and an optical monitor, the first flown on a X-ray observatory. The large collecting area and ability to make long uninterrupted exposures provide highly sensitive observations.
Since Earth's atmosphere blocks out all X-rays, only a telescope in space can detect and study celestial X-ray sources. The XMM-Newton mission is helping scientists to solve a number of cosmic mysteries, ranging from the enigmatic black holes to the origins of the Universe itself. Observing time on XMM-Newton is being made available to the scientific community, applying for observational periods on a competitive basis.
Creator Contact https://www.cosmos.esa.int/web/xmm-newton/xmm-newton-helpdesk
Date Published 2005-05-01T00:00:00Z
Publisher And Registrant European Space Agency
Credit Guidelines European Space Agency, 2005-05-01T00:00:00Z, 020136, 17.56_20190403_1200. https://doi.org/10.5270/esa-8av6ebq