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Abstract

The Advanced Moon micro-Imager Experiment (AMIE), on-board SMART-1, the first European mission to the Moon, is an
imaging system with scientific, technical and public outreach objectives. The science objectives are to image the lunar South Pole,
permanent shadow areas (ice deposit), eternal light (crater rims), ancient lunar non-mare volcanism, local spectrophotometry and
physical state of the lunar surface, and to map high latitudes regions (south) mainly at far side (South Pole Aitken basin). The tech-
nical objectives are to perform a Laserlink experiment (detection of laser beam emitted by ESA/Tenerife ground station), flight dem-
onstration of new technologies and on-board autonomy navigation. The public outreach and educational objectives are to promote
planetary exploration and space. We present here the first results obtained during the cruise phase.

© 2005 Published by Elsevier Ltd on behalf of COSPAR.
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1. Introduction

The Advanced Moon micro-Imager Experiment
(AMIE) is the imaging system on-board ESA mission
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to the Moon SMART-1; it makes use of a miniaturised
micro-camera and micro-processor electronics devel-
oped by SPACE-X, Space Exploration Institute, CH-
Neuchatel, based on developments made in the frame
of the ESA technological research programme. The
AMIE camera will provide high resolution CCD images
of selected lunar areas and it will perform colour imag-
ing through three filters at 750, 915 and 960 nm with a
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maximum resolution of 27 m/pixel at the perilune of
300 km. Specific scientific objectives include (1) imaging
of the lunar South Pole, study of permanently shadowed
regions (2) imaging features of the far side and in partic-
ular the South Pole Aitken basin (SPA) (3) study of
photometric properties of the lunar surface from obser-
vations at different phase angles for the determination of
the regolithic structure parameters, (4) prognosis of
chemical and mineral composition of the regolith upper
layer, (5) detection and characterisation of lunar non-
mare volcanic units, (6) study of lithological variations
from impact craters and implications for crustal hetero-
geneity. The AMIE camera also supports a Laserlink
experiment to Earth, an On-Board Autonomous Navi-
gation investigation and a lunar libration experiment
coordinated with radio science measurements. Finally,
AMIE will provide the spatial and geologic context for
the compositional data acquired by the spectrometer
SIR on-board SMART-1.

2. The AMIE camera

The AMIE imaging system is constituted of two
units, a camera unit and a dedicated electronics unit
(Fig. 1). The camera includes a tele-objective with a
5.3°x5.3° field of view and an imaging sensor of
1024 x 1024 pixels. The AMIE camera will acquire
images in three spectral filters, at wavelengths of 750,
915 and 960 nm; the filters are directly in front of the
CCD covering an area of 11/16 of the total CCD area,
with one 1/16 used by the laser filter at 847 nm, while
the remaining 512 x 512 pixels (i.e., 1/4 of the CCD
area) are not covered by filters and thus devoted to total
light imaging. It should be noted that while the filters at
750 and 915 nm are two narrow-band filters (respective
width 10 and 30 nm), that at 960 nm is a high-pass filter
with steep transmission edge which critically convolves
with the negative slope of the CCD spectral response
in the longer wavelengths region of the spectrum. The
layout of the filters on the CCD is shown in Fig. 2;

Fig. 1. AMIE Imaging System.
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Fig. 2. Filters.

the filters disposition allows a mapping of the lunar sur-
face during the 2 orbit configurations around the Moon,
1.e. it allows the same region on the lunar surface to be
imaged in the three spectral filters during the two differ-
ent orbital attitudes.

The dedicated electronic unit insures the following
functions: (i) data control and power management of
the camera; (ii) image data storage into a mass memory
buffer; (iii) data control and power management of a
cube Micro-DPU (image processing, e.g. compression);
(iv) communication with the S/C through the S/C
CAN Bus Interface; (v) adaptation of the S/C supply
voltage (S/C Power Bus Interface) to the levels required
by its electronics and the camera.

AMIE performances are:

e 5.3°x5.3° FOV — Images 45 km x 45 km at 500 km

e CCD 1024 x 1024 — resolution 45 m/pixel at 500 km
with 10 bits/pixel

e Powerful image compression unit — high data com-
pression rate

e Power supply I/F board (PSIF)

e System control unit (SCU): pP board, buffer
memory. ..

e Specific radiation shielding

e Total mass 2 kg

The nominal operational lunar orbit of the spacecraft
SMART-1 will be polar, with the perilune lowest alti-
tude at approximately 300km and apolune at
3000 km. At a distance of 300 km, the field of view of
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AMIE (5.3° % 5.3°) corresponds to 27 km: the spatial
resolution for the 1024 x 1024 CCD is therefore 27 m
at perilune.

3. Scientific objectives

The AMIE camera will carry out both scientific
objectives and technological objectives. The AMIE cam-
era will produce multicolour images in three spectral
bands, thus allowing us to discriminate by the Fe®"
absorption feature at 0.95 pm between mafic minerals
(pyroxenes, olivines) that compose the mare and high-
land materials. It will also be possible to study surface
alteration processes on the lunar surface, under the
influence of the solar wind and micro-meteorites (the
maturation processes). The possibility for reliable prog-
nosis of chemical/mineral composition and maturity de-
gree of the lunar surface materials using AMIE/
SMART-1 filters was shown in (Shkuratov et al.,
2003a).

The investigation by the AMIE micro-camera will ad-
dress a number of specific scientific objectives.

3.1. Detailed high resolution imaging of the South Pole

The South Polar Region is one of the priority targets
of the mission. The possibility of ice deposits in the per-
manently shadowed regions in the South Pole was put
forward as a probable explanation for results from the
Clementine Bistatic radar experiment (Nozette et al.,
1996) and seems to be confirmed by the results of the lu-
nar prospector neutron spectrometer (Feldman et al.,
2001). Icy deposits can exist in “double shadow™ re-
gions, i.e. small craters in permanently shadowed areas,
which protect the deposit from sunlight diffused by the
rims, though these deposits can survive not only in dou-
ble shadowed regions (Vasavada et al., 1999). Further-
more, the South at farside is on the rim of a major
geologic feature, the South Pole Aitken basin, more than
2500 km in diameter, the largest such feature on the
Moon (see the discussion in Head et al., 1993 and Pieters
et al., 1993). The impact event which produced South
Pole Aitken basin penetrated very deep into the far side
crust, but the basin was not filled up by lava flows as was
the case for similar features on the near side. There is
therefore a strong interest in investigating at close range
the mineralogical composition of ejecta, which provide a
vertical view of the far side crust down to several 10 km.
Images in the three AMIE filters could be used to search
for cryptomaria (Head and Wilson, 1992; Yingst and
Head, 1997) around dark halo craters in the SPA region.
AMIE will directly contribute to the characterisation of
surface mineralogy and geology in the SPA region, in
combination with other elements of the SMART-I
payload.

3.2. Study of lithological compositional diversity across
the exposed walls of impact craters

Compositional heterogeneities have been observed in
morphological structures (central peaks, floor, walls,
rims) of impact craters: indeed, a global survey of cen-
tral peaks of 109 craters (Tompkins and Pieters, 1999)
in the diameter range from 40 to 180 km has shown that
40% of them exhibit multiple lithology, considered to be
associated with vertical and lateral differences in the
composition of the lunar crust. The characterisation of
structural lithological variations on the walls of large
impact craters, such as Copernicus shown by multispec-
tral telescopic then Clementine images (Pinet et al.,
1993; Pieters et al., 1994) or complex lithological varia-
tions observed for example in Aristarchus (see, e.g.,
Pinet et al., 1999; Le Mouelic et al., 2000; Chevrel
et al., 2004) could be significantly improved at a spatial
resolution of 50 m/pixel scale. New higher resolution
data from AMIE, combined with spectroscopic infor-
mation from SIR, could identify combination of smal-
ler, lithologically distinct units within their central
peaks and walls. The characterization and the distribu-
tion of fresh crater materials (including the ejecta blan-
ket), respectively at high spatial and spectral resolution
by AMIE and SIR, will also contribute to better docu-
ment the processes of excavation and production of im-
pact materials (e.g., abundance of rocks versus melt
products).

3.3. Detection and characterisation of the ancient lunar
non-mare volcanism

While lunar mare volcanism appears both widespread
and well documented, little is known about the emplace-
ment of lunar non-mare volcanic units before and dur-
ing the period of mare basaltic volcanism (Head and
Wilson, 1992). The best candidates today for non-mare
volcanic deposits are a number of small lunar areas
called red spots characterised by a relatively high albedo
and a strong absorption in the UV relative to the visible
(Malin, 1974; Chevrel et al., 1999; Hawke et al., 2003;
Wilson and Head, 2003). The AMIE camera will pro-
vide high spatial resolution imaging associated with dif-
ferent geometry conditions of observation and
combined with multispectral mapping, giving access to
mineralogy, morphology and surface physical
characteristics.

3.4. Physical properties of regolith

The lunar regolith is a complex end-product of the
bombardment history of the Moon: lunar surface mate-
rials were fractured, melted, welded (forming complex
breccias) and displaced during the major cratering
events, and reworked during the smaller ones. For this
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reason, it is difficult to understand the regolith evolu-
tion, its distribution on the Moon or its depth. A de-
tailed study of the lunar regolith provides a key for
understanding the soil maturation processes including
impact comminution, accumulation of agglutinates,
and production of reduced iron from vacuum reduction
of Fe*" in minerals and glasses. The study of the regolith
distribution requires high resolution imaging. Observa-
tions planned at different phase angles during the
SMART-1 mission, will allow us to study the photomet-
ric properties of the regolith, from which physical prop-
erties of the surface can be inferred (see, e.g., Pinet et al.,
2000; Shkuratov et al., 1999, 2003b; Muinonen et al.,
2002; Kreslavsky and Shkuratov, 2003).

Three different kind of photometric studies with the
AMIE camera of SMART-1 mission will be possible:
(1) mapping slope of phase function, (2) studying the
opposition spike, and (3) detailed study of photometric
function in tracking mode of SMART-1. The first kind
allows studies of photometric anomalies related to fresh
impact craters for estimates of the regolith gardening
rate and projectile flux in recent epoch; investigations
of regolith structure anomalies associated with swirl,
searching for evidences of recent seismic events. The sec-
ond kind makes possible the study of regional variations
of the characteristic soil particle size and particle aggre-
gate structure. The third one (tracking mode or spot
pointing) allows us to perform detailed study of photo-
metric function giving information about meso-scale
structure of the lunar surface. These observations will
improve our understanding of the subsurface regolith
layering and reworking.

A more detailed description of scientific objectives
and expected results for the AMIE camera in lunar orbit
is given in Pinet et al. (2005).

4. First results

Numerous images have been taken since the launch in
September 2003, as part of the pre-commissioning and
commissioning, Laserlink experiment, OBAN experi-
ment, Earth and Moon imaging.

Pre-commissioning was performed on 3 October
2003. It was intended to verify the health of the instru-
ment after launch. The entire process of the pre-commis-
sioning was performed nominally and as planned. After
AMIE System Control Unit (SCU) had been switched
on by the spacecraft, several commands were sent to
AMIE allowing switching on and off the AMIE subsys-
tems: the Camera and the Image Compression Unit
(ICU). In particular, a specific “diagnostic’’ command
allowed checking deeply the electrical behavior of the
complete imaging system. All the results were nominal.
The data downloaded from AMIE have shown the good
electrical behavior of the instrument, as well as some

indication on the good physical condition of the filters
and the data acquisition chain. The power consumption
was nominal with respect to the various AMIE
configurations.

In-flight calibration has been performed during com-
missioning (bright star imaging in all filters, Moon imag-
ing in all filters, uncompressed Moon images, flat fields,
AMIE-SIR coalignment). Preliminary results show that
the camera performance is more or less unchanged with
respect to the ground performance. The number of bad
pixels increased, as expected — but still the number of
bad pixels is very small, which will not affect the science
return. Fig. 3 shows one of the results — the image of the
standard star Vega in the none filter area of the detector.
So far only in one image, we measured the Point Spread
Function of the star to be 1.20 pixels, which is in excel-
lent agreement with the ground-based value of
(1.21 +0.06) pixels. The lunar images show that we
can indeed image extended objects. Fig. 4 shows an
example of two ratio images of different wavelengths
(colour indexes 0.915/0.75 um and 0.96/0.75 pm). As
has been shown (Shkuratov et al., 2003a), these colour
indexes can be potentially used to map the Fe content
and maturity degree of the lunar soil (see Fig. 2 for a
definition of the filter names). Again, these were uncali-
brated images. We checked the deviations of the ratio to
the mean value, and the numbers are well within the ex-
pected values, giving us high confidence that we will be
able to perform the mineralogical studies planned with
the camera.

During the Earth Escape phase, many images of the
Moon and the Earth have been taken. In the first picture
of the Moon, shown in Fig. 5, taken on 18 January 2004,
it is possible to identify Grimaldi crater and Mare
Humorum. Numerous views of the Earth have been
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Fig. 3. The star Vega in the none filter area of AMIE. 500 ms
exposure.
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Fig. 4. Ratios images FeH/VIS (left) and FeL/VIS (right).

Mare Humorum

Grimaldi Crater

Fig. 5. First Moon picture taken with the AMIE Camera.

obtained, with different scales, depending on the posi-
tion of the spacecraft on its elliptical orbit. Fig. 6 shows
an image taken at about 110,000 km from the Earth.
This large view from Europe to Sri Lanka, taken in a
single shot, covers half of the image taken by AMIE
and covers 4 filters.

110, 110, 145,110
LLE 5
35 x 35 pixels
Images
110, 128 145, 128
Imax = 849 DN
110, 145 145, 145

Fig. 7. Laserlink spot acquired at 50,000 km from the Earth.

Fig. 6. Earth taken by AMIE on 21 June 2004 at 110,000 km from Earth.
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In February 2004, a Laserlink experiment was per-
formed at ~50,000 km from the Earth. Fig. 7 shows
the laser spot in the specific dedicated area of the
detector.

5. Conclusions

The AMIE experiment on-board the SMART-1 mis-
sion is a new generation of advanced imaging system,
combining a miniaturised detector with micro-processor
electronics. First results from pre-commissioning, com-
missioning and cruise science indicate that AMIE is per-
forming nominally and that it will be able to achieve its
scientific objectives during the lunar observation phase
starting with the commissioning of the instruments in lu-
nar orbit from January 15th 2005.

Specific scientific objectives for lunar imaging will in-
clude (i) the detailed imaging of the lunar South Pole
and study of permanently shadowed regions, (ii) imag-
ing features of the far side and in particular the South
Pole Aitken basin (SPA) (iii) the study of photometric
properties of the lunar surface from observations at dif-
ferent phase angles for the determination of the rego-
lithic structure parameters, (iv) the prognosis of
chemical and mineral composition of the regolith upper
layer, (v) the detection and characterisation of lunar
non-mare volcanic units, (vi) the study of the local lith-
ological variations from impact craters and implications
for crustal heterogeneity.

Laserlink and OBAN experiments were successfully
performed during cruise.
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