

DFMS PDS L2-to-L3
Data Processing
Documentation

by
Michael A. Rinaldi
October 12, 2018

Version 1.5

 1

Introduction

 The Rosetta Rosina Double Focusing Mass Spectrometer (DFMS) is a high-resolution
mass spectrometer (resolution m/Δm 3000 at 1% peak height for m/z = 28) with a high dynamic
range and a good sensitivity.

The DFMS has two operating modes: a gas mode for analyzing cometary gases and an ion mode
for measuring cometary ions.

The main parts of the DFMS are the ion source, the analyzer, the detectors, and the zoom optics.

DFMS has three different detectors: MCP/LEDA, CEM, and FC. MCP/LEDA is a combination of
an MCP together with a linear detector array with two rows. CEM is a Channel Electron Multiplier
that is a used for redundancy of the MCP/LEDA and to measure m/z 12. The FC is a Faraday Cup
detector and used for absolute calibrations of the instrument. The code focused only on the main
detector MCP/LEDA data.

 Figure 1 below shows a graphical depiction of the instrument.

 Figure 1. The DFMS Instrument

The instrument has a large number of operational parameters that can be individually adjusted to
fit any specific measurement requirements. A specific set of these parameter settings comprises
an instrument mode. The instrument is run with specific mode sequences for each mission phase.
For more information on DFMS see, Space Science Reviews, February 2007, Volume 128, Issue
1-4, pp 745-801. Also see, http://www-
personal.umich.edu/~tamas/TIGpapers/2007/Balsiger2007.pdf

http://link.springer.com/journal/11214
http://link.springer.com/journal/11214/128/1/page/1
http://link.springer.com/journal/11214/128/1/page/1
http://www-personal.umich.edu/%7Etamas/TIGpapers/2007/Balsiger2007.pdf
http://www-personal.umich.edu/%7Etamas/TIGpapers/2007/Balsiger2007.pdf

 2

Scope

This document describes the software written to convert DFMS Planetary Data Systems (PDS)
processing level 2 (L2) data to DFMS PDS processing level 3 (L3) data.

The processing level 2 defines data with corrected (edited) telemetry. For this CODMAC level 2
the datasets contain data from all ROSINA sensors (if applicable).

The processing level 3 defines data with physical units. This is the detector current in number of
ions vs. mass scale in amu/e. For this CODMAC level 3 the datasets contain Calibrated data and
Reduced Data Records foreseen for delivery.

The input (L2) and output (L3) will comply with the PDS archival data product standard. The
PDS standard is the de-facto archival standard within the planetary community. Besides NASA,
also ESA adopted the PDS standard as the underlying base in building the Planetary Science
Archive (PSA), the mission archive for ESA's planetary missions.

The software assumes that L2 PDS data is defined and exists in archived form. This document
will describe the process whereby the L2 PDS data is placed into a form that will allow for peak
finding, peak fitting, and finally mass scale calibration. The process involves the translation of
raw L2 counts data to gain corrected science data. The final data is in the form of ions/spectrum
vs mass or the number of ions/spectrum vs mass pixel. The software requires PDS compliant
input tables. These are the instrument mode table, overall gain table, pixel gain table, and mass
peak search table. These tables are used throughout the L2 to L3 conversion process. In addition
to the PDS L3 final data product the software will also produce PDS compliant calibration files
called X0Fit files.

Following the generation of the DFMS PDS L3 products, a DFMS PDS L3 enhancement software
needs to be used to obtain DFMS PDS L3 products with an accurate mass scale. This enhancement
software is provided together with the DFMS PDS L2 to L3 conversion software, and is described in
SOFT_L3_DFMS_ENHANCEMENT.PDF.

 3

General Process Description

For each DFMS PDS MCP or CEM L2 data product a respective PDS L3 data product is created,
which for MCP will include a calibrated mass scale and corrected signal calibrated to the number
of ions for one spectrum. Below there is a section describing the general process to convert a CEM
L2 file into its L3 counterpart. This is followed by a section describing the processes converting
an L2 MCP file into an L3 file.

The MCP L2 data products are classified into three categories: GCU (Gas Calibration Unit)
measurements and two non-GCU measurements. The first nonGCU measurement is identified as
SLF (Self Calibrated) and the second as nonSLFnonGCU. SLF measurements are L2 files with
commanded masses that may contain known peaks (𝐻𝐻2𝑂𝑂,𝐶𝐶𝑂𝑂2 , …) which can be used for
verification/calibration. nonSLFnonGCU L2 files will contain unknown masses or peaks that
couldn’t be used for SLF calibration.

GCU measurements are made by mode sequences that are run roughly every month and designed
to allow for periodic in-flight calibration from gases with known species. GCU modes will have
an advantage in accurate mass-scale calibration as the measured signal represents a known gas
mixture with peaks of sufficient amplitude that cover a wide mass range. The SLF modes assume
the GCU mass scale and then re-calibrate based on SLF peaks found. The nonGCUnonSLF modes
are expected to typically produce higher uncertainties since calibration is accomplished using prior
linear fit information from both GCU and SLF x0Fit files. The nonGCUnonSLF measurements
will therefore reference recent GCU and SLF measurements in order to use their mass-scale
calibration information.

The general L2 to L3 conversion processes is comprised of two major steps.

Phase I, the first step, identifies all GCU and SLF files available in a block of data and processes
them to extract tables of commanded mass (𝑚𝑚0) versus the mass scale calibration variable (ie., the
calibration pixel offset point, 𝑝𝑝𝑝𝑝𝑥𝑥0). These tables are organized into 22 distinctive sets. For each
type of calibration file available (GCU or SLF) there are distinct arrays for low resolution / high
resolution (LR/HR), low mass / medium mass / high mass (LM/MM/HM), and finally Row-A /
Row-B. Where Row A/B refer to the two DFMS MCP/LEDA detector arrays. Medium mass
differentiation is only required for SLF modes. Tables 1 and 2 show the corresponding arrays used
to delineate the various types of resolution and masses. These arrays hold 𝑚𝑚0 and its corresponding
calibration value of 𝑝𝑝𝑝𝑝𝑥𝑥0.

 4

Array Name Variable Description
1 gcuLmLrA GCU mode Low Mass Low Resolution, Row A
2 gcuLmLrB GCU mode Low Mass Low Resolution, Row B
3 gcuHmLrA GCU mode High Mass Low Resolution, Row A
4 gcuHmLrB GCU mode High Mass Low Resolution, Row B
5 gcuLmHrA GCU mode Low Mass High Resolution, Row A

6 gcuLmHrB GCU mode Low Mass High Resolution, Row B

7 gcuMmHrA GCU mode Medium Mass High Resolution, Row A

8 gcuMmHrB GCU mode Medium Mass High Resolution, Row B

9 gcuHmHrA GCU mode High Mass High Resolution, Row A

10 gcuHmHrB GCU mode High Mass High Resolution, Row B

Table 1. Phase 1 GCU files segregation description

Array
Name

Variable Description

11 slfLmLrA SLF mode Low Mass Low Resolution, Row A
12 slfLmLrB SLF mode Low Mass Low Resolution, Row B
13 slfMmLrA SLF mode Medium Mass Low Resolution, Row A

14 slfMmLrB SLF mode Medium Mass Low Resolution, Row B
15 slfHmLrA SLF mode High Mass Low Resolution, Row A
16 slfHmLrB SLF mode High Mass Low Resolution, Row B
17 slfLmHrA SLF mode Low Mass High Resolution, Row A
18 slfLmHrB SLF mode Low Mass High Resolution, Row B

19 slfMmHrA SLF mode Medium Mass High Resolution, Row A
20 slfMmHrB SLF mode Medium Mass High Resolution, Row B
21 slfHmHrA SLF mode High Mass High Resolution, Row A
22 slfHmHrB SLF mode High Mass High Resolution, Row B

Table 2. Phase 1 SLF files segregation description

Assuming enough points exist (2 points for GCU and 3 for SLF, to be set in DFMS_Constants.dat)
we attempt to create a linear fit to the points, 𝑚𝑚0vs 𝑝𝑝𝑝𝑝𝑥𝑥0, for each of these array types. The resulting
linear fit parameters are written to PDS compliant files (x0 fit files), which are later used (Phase
II) to calculate the best pix0 for a given L2 file. The purpose of Phase I is to create the most recent

 5

set of GCU and/or SLF x0 fit files. Each block of L2 files processed will typically create only a
subset of the x0 fit files corresponding to the 22 described above. This is so because a block of
data is typically associated with a similar mass calibration. The similar mass calibration will in
general only sample a subset of the masses and resolutions, depending on the data block processed.
For example some mode sequences contain no Low-Resolution (LR) modes at all therefore only
High-Resolution (HR) (Table 1, rows 5-10, or, Table 2, rows 17-22) pix0 fit files will be created.
This is true for mass sampling as well. Many mode sequences will not contain many or enough
High mass (HM) files, for example, to allow the creation of a x0 fit file.

Phase II, the second step, runs through each L2 file (GCU, SLF, or nonGCUnonSLF) to perform
final mass scale calibration using the fitting parameters in the relevant x0 fit files to calculate the
best 𝑝𝑝𝑝𝑝𝑥𝑥0. An attempt is also made to characterize the accuracy of the mass scale by performing a
part per million deviation (𝑃𝑃𝑃𝑃𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷) calculation and thus quantify a mass scale quality ID where
applicable and then writes final requisite information to the PDS compliant L3 file. The Phase II
part of the software uses similar logic to Phase I to find the peak in the L2 data. See the next section
for the specific processes involved.

 6

The CEM L2 to L3 Process Description

With an integration time of typically one second the recording of a whole mass spectrum can be
measured with the Channel Electron Multiplier (CEM) detector. The process measures masses
from 12 to 140 amu/e.

To evaluate CEM data, the calculation of the ion current for CEM is described and the mass shift
between two steps to calculate the mass scale. The CEM detector is mainly operated in digital
mode, where CEM operates in a constant high gain plateau at a front voltage of -2337V. The
repetition voltage in the CEM is -100V In this mode events are counted, more precisely the
arrival of a secondary electron cloud, caused by an impacting ion. The saturation for counting is
around 2 x 106 events per second. A spectrum of the CEM detector is recorded by shifting the
ion beam in little mass steps over the entrance slit of the CEM detector. The nominal integration
time per step is 1000 ms and the number of steps is mass and resolution dependent.

 Step width Number of steps
Low Resolution ∆𝑚𝑚 =

𝑚𝑚
1000

 ~ 140
√𝑚𝑚

 + 1

High Resolution ∆𝑚𝑚 =
𝑚𝑚

10000
 ~ 240

√𝑚𝑚
 + 1

Table 3. CEM mass step width and number of steps per spectrum

The shifting of the ion beam over the entrance of the CEM detector causes an overlap of the ion
beam. The overlap is calculated as,

Col =
𝐷𝐷Δ𝑚𝑚𝑚𝑚
𝑊𝑊𝑊𝑊

Where D is the dispersion (127,000 um), Δ𝑚𝑚

𝑚𝑚
 is the step width and Ws is the width of the

entrance slit of 25um. For LR the overlap correction factor Col = 5.08 and for HR Col = 0.508.
The ion current of the species (ICEM,i) of the CEM detector operated in digital mode is calculated
as,

ICEM,I = Col ∙ Sumi
𝑡𝑡

The Sumi is the sum of the peak of species I and t is the integration time per step (nominal 1 s).

 7

The Process to convert one Level 2 PDS CEM file into a Level 3 is fairly straight forward.

1.) We first find the resolution per step (Δ𝑚𝑚

𝑚𝑚
) based on the mode resolution this is,

 Δ𝑚𝑚
𝑚𝑚

 = 1/1000 for LR

Δ𝑚𝑚
𝑚𝑚

 = 1/10000 for HR.

2.) Next we calculate the mass dependent step value (using the commanded mass m0),

For HR this is calculated as,

step0 = 3.6713*m0 – 10.85 m0 ≥ 12 and m0 ≤ 15:
step0 = 3.4728*m0 – 31.38 m0 ≥ 16 and m0 ≤ 18:
step0 = -26.49*log(m0) + 106.0 m0 ≥ 19 and m0 ≤ 45
step0 = 6.0 m0 ≥ 46 and m0 ≤ 140:

For LR this is calculated as,

step0 = -8.10*log(m0) + 40.68 for all masses

3.) Next we calculate the CEM signal as,

signal = D*Δ𝑚𝑚
𝑚𝑚

 / (Ws * t)

4.) Next we calculate the mass at step(i) as,

mi = m0*((stepi – step0)* Δ𝑚𝑚
𝑚𝑚

 + 1.0)

5.) Finally the current at i is calculated as,

Ii = signal * Sumi

The final results written to the L3 file in PDS format.

 8

The MCP/LEDA L2 to L3 Process Description

The method used to convert one L2 file to one L3 file consists of several steps. The first is to
ascertain the offset correction factor. Next the L2 pixel data is corrected for Overall Gain and
individual Pixel Gain. Once the data has been corrected for Offset and Gain we can then proceed
to calculate the number of ions attributed to each pixel. The final step is to perform the mass
calibration. The calibration of course depends on the L2 file mass and mode.

The Offset

The LEDA offset correction is calculated for every L2 file. This correction is modeled by a 3rd

order polynomial fit to the offset data. The polynomial is of the form,

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑂𝑂𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑐𝑐3𝑥𝑥3 + 𝑐𝑐2𝑥𝑥2 + 𝑐𝑐1𝑥𝑥 + 𝑐𝑐0 (1)

where x is the pixel number (1-512).

Each L2 file is fit with a 3rd order polynomial equation of the form in Eqn. (1) above. The
polynomial coefficients are, 𝑐𝑐3, 𝑐𝑐2, 𝑐𝑐1, 𝑐𝑐0 . In order to create a smooth data set that best represents
the best offset running from pixel 1-512 we remove the first and last 20 pixels and only fit pixels
20-492. This is done to remove the highly variable edge pixels that would tend to skew the true
offset. We also remove the peak(s) from the data. The process of removing peaks is accomplished
by reading input data consisting of main peak(s) location and pixel start/end data. This peak
exclusion data is read from two input files currently named, DFMS_20140401-
20160127_Peak_Exclusion.dat, and DFMS_20160127-20161001_Peak_Exclusion.dat. These
two files consist of up to ten peak boundaries for each relevant mass. The peak exclusion function
checks if each L2 file contains the relevant mass and then performs the peak subtraction, for each
peak expected to be in the L2 file data. Excluding peaks is done to present a more representative
offset without the overweighting of the peaks. Thus when performing the 3rd order polynomial fit
to the offset data we can start with a set of data that contains no edge effects or peaks. For each L2
file we also write the calculated polynomial coefficients to the housekeeping portion of the L3
Housekeeping object (for specific names see Note).

The 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑂𝑂𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is then subtracted from the original L2 raw data counts.

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑂𝑂𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (2)

A typical LEDA offset plot and calculated polynomial fit is shown in Figure 3,

 9

Figure 3. A plot of ADC (Raw) counts vs pixel number (mass/charge)

Note: The coefficients 𝑐𝑐0, 𝑐𝑐1, 𝑐𝑐2, 𝑜𝑜𝑎𝑎𝑜𝑜 𝑐𝑐3 are written to the housekeeping section of the output
L3 file. They are named ROSINA_DFMS_SCI_OFF_COEFF_Cx_y, where x = 1, 2, or 3 and y = A or
B. 𝑐𝑐0 is written as well and is called the ROSINA_DFMS_SCI_OFF_LEVEL_y, where y = A or
B.

Overall Gain and Pixel Gain Correction

After first subtracting the offset as shown above we then apply the overall gain and then pixel gain
corrections (Eqs.3,4). The time-dependent overall gain correction (e.g. tables/Gain/FS/
GAIN_TABLE_YYYYMMDD_FS.TAB) is a mode dependent value that represents the average number
of electrons that each ion creates when it impinges the DFMS MCP sensor. Since the raw counts
are based on the number of electrons detected on the LEDA and not the actual number of ions this
signal ‘amplification’ has to be corrected for by dividing the overall gain correction from the offset
corrected raw data. This results in the gain corrected data,

 𝑔𝑔𝑜𝑜𝑝𝑝𝑎𝑎𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 / 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑎𝑎 (3)

The overall gain is somewhat time dependent therefore the code will look for the gain tables nearest
the L2 file data and linearly interpolate or extrapolate to find the best overall gain.
Next we apply the individual pixel gain correction. The pixel gain (e.g. tables/Gain/FS
/20140725/PIXGAIN_20140725_M_FS_GS16.TAB) corresponds to a correction for each pixel in the
MCP sensor field. It is time varying and is often re-measured to compensate for MCP sensor
degradation (ageing). Thus for each pixel 𝑝𝑝, in the MCP we correct for pixel gain as,

 𝑝𝑝𝑝𝑝𝑥𝑥𝑜𝑜𝑜𝑜𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜[𝑝𝑝] = 𝑔𝑔𝑜𝑜𝑝𝑝𝑎𝑎𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 / 𝑝𝑝𝑝𝑝𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑎𝑎[𝑝𝑝] (4)

An example of a pixel gain spectra is shown in Figure 4:

 10

 Pixel number

Figure 4. A representative pixel gain spectra

With the availability of new pixel gain tables the code has been modified to include pixel gain
versus time interpolation. In many cases, where 2 or more pixel gain files exist with the same gain
step over a time range, this will allow for pixel gain values to be computed from linear interpolation
within an L2 file date range. This proceeds as follows. Before any L2 to L3 conversion is done the
code loads all existing pixel gain tables and sorts them according gain step value. For each gain
step value where 2 or more files exist we perform a linear interpolation between pixel gain value
(at each pixel number) versus time. The resulting interpolation parameters are stored in global
arrays and later used to calculate the proper pixel gain value for the specific L2 file date. In
situations where only one pixel gain file exists for a specific L2 gain step the code will look for
the pixel gain table nearest in time. In other possible situations where the L2 gain step is not
represented by any pixel gain table the code will look for the pixel gain table nearest in time and
then nearest in gain step value. Figure 5 below shows a typical Interpolation result using the
technique described above

 11

Figure 5. Example of interpolation used to find more accurate Pixel Gain
Calculating the Total Number of Ions

The final calculation is to convert the 𝑝𝑝𝑝𝑝𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑎𝑎𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 to the physically meaningful
value of the number of ions per spectrum. This is done on a per pixel (𝑝𝑝: 1-512) basis simply as,

 𝐼𝐼𝑜𝑜𝑎𝑎𝑜𝑜[𝑝𝑝] = 𝑝𝑝𝑝𝑝𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑎𝑎𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜[𝑝𝑝] * 𝐶𝐶𝐴𝐴𝐷𝐷𝐴𝐴 * 𝐶𝐶𝐿𝐿𝐿𝐿𝐷𝐷𝐴𝐴 / (𝑄𝑄*𝑦𝑦𝑊𝑊) (5)

Where,
𝐶𝐶𝐴𝐴𝐷𝐷𝐴𝐴 = 6.105𝑥𝑥10−4 𝑉𝑉
𝐶𝐶𝐿𝐿𝐿𝐿𝐷𝐷𝐴𝐴 = 4.22 𝑥𝑥1012 𝐹𝐹
𝑄𝑄 = 1.602 𝑥𝑥10−19 𝐶𝐶
𝑦𝑦𝑊𝑊 = 1.0 (detector yield per species normalized to N2 at 3000V)

The number of ions per spectrum is the final result of the L2 data conversion. Along with the
mass scale, which is calculated by finding the correct pix0 calibration value, the number of ions
per spectrum is written to the L3 file. The ROSINA_DFMS_SCI_SIGNAL_CAL_VAL_A and
ROSINA_DFMS_SCI_SIGNAL_CAL_DEV_A for row A and accordingly for row A can be
found in the L3 output.

Due to a mass dependence on yield the corrected Ions per spectrum is calculated as follows.

For ion mass < 70 the yield correction is defined as,

yCorr = 1.0 / (4.4892*10-7 * m4 - 8.8158*10-5 * m3 + 6.4995*10-3*m2 – 0.2223*m + 3.4922) (6)

 12

For ion mass >= 70 the yield correction depends on resolution as follows.

For Low Resolution spectra the yield correction is defined as,

 yCorr = 1.0 / (-2.400438*10-3 * m + 0.5684252) + 0.8 (7)

For High Resolution spectra the yield correction is defined as,

 yCorr = 1.0 / (-2.400438*10-3 * m + 0.5684252) (8)

In (Eq. 6-7) above ‘m’ is the DFMS detector commanded mass.

Therefore, the yield corrected Ions per spectrum is,

 Ions[i] = yCorr * 𝑝𝑝𝑝𝑝𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑎𝑎𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜[𝑝𝑝] * 𝐶𝐶𝐴𝐴𝐷𝐷𝐴𝐴 * 𝐶𝐶𝐿𝐿𝐿𝐿𝐷𝐷𝐴𝐴 / (𝑄𝑄*𝑦𝑦𝑊𝑊) (9)

The calculation of Ions per spectrum of (Eq. 9) replaces that of (Eq. 5).

 13

Peak Finding

Once we have established the ion number per pixel we proceed to identify all the peaks present in
the data and the main peak of interest, which we will fit later. A general peak finding algorithm is
applied to the raw data. This algorithm finds all peaks above a predefined threshold. The threshold
is defined as mean offset (c0) calculated above plus ~5 times the standard deviation to this mean
offset. The actual number of std deviations used is set by the user in the input configuration files
DFMS_Constants.dat Given a possible set of peaks (1 to N) finding the right peak for fitting
involves two criteria. The first is specifying the pixel boundaries within which to look and secondly
looking for the tallest peak within that boundary. For GCU files the peak pixel boundary is
specified in the MPS table. For the remainder of the L2 files (nonGCU) the peak is assumed to
exist within the pixel range 20 – 492. The detector edge pixels are left out since they have various
pixel calibration issues that distort the data. There is an ambiguity in that for some commanded
masses the tallest peak is not the correct peak to fit. This happens in situations (eg., commanded
mass 36) where the tallest peak within the 20-492 pixel boundary may not be the peak of interest.
Such tall peaks are typically near the edge of the accepted boundary (eg., pixel 430). In this case
the code applies an algorithm where the pixel boundary is set to 210-300. Within this smaller pixel
boundary we search for any peaks that are at least 50% of the height of the tallest peak in the full
boundary region (20-492). If one or more are found then the tallest of these is chosen as the main
peak used by the fitting algorithm.

 14

Peak Fitting

With the main peak identified the next step is to fit a simple Gaussian to it. The initial peak search
algorithm supplies the needed initial values of peak location, height and width. These initial values
are used as initial conditions for the non-linear least squares fit. Specifically, the fitting algorithm
performs a fit of a 2D (X,Y) data set to a simple Gaussian function by adjusting the initial set of
parameter values using a Levenberg-Marquardt Algorithm (LMA). The routine iterates until an
improvement of the chi-squared statistic is achieved from the initial parameters. Once the change
in the chi-squared reaches a predefined value (eg., 1.0e-8) we assume the fit has converged to the
best parameter values. The last fit coefficients are then used as the accepted fit parameters. See
Figure 6 for an example of the resulting Gaussian fit. Since we are mainly interested in the location
of the peak we can use a simple Gaussian function. In actuality a Pseudo-Voigt Gaussian is a better
function since it will generally do a better job at fitting the wings of the peak but using this type
of function introduces longer compute times and more fitting parameters. Nevertheless it maybe
considered for future implementation if other parameters like the precise peak fit area are required.

Figure 6. An example of a Gaussian fit to the Ion Number vs Mass

 15

Mass Scale Calibration

The purpose of mass scale calibration is to calculate the correct value of 𝑝𝑝𝑝𝑝𝑥𝑥0 (the calibration pixel
offset point). This is required in order to find the best possible mass scale. The calibration requires
that we make optimal use of the known mass peaks that exist. The most direct and accurate
calibration comes from data collected during GCU modes where known gases are used to calibrate
the instrument. Since GCU modes are not run very often we can also make use of peaks from
known mass species near the spacecraft. These are collectively called SLF masses since we attempt
to use them as SeLF-calibration peaks. These commanded masses are shown in Table 4 below.

Commanded Mass Expected Species
13 CH
15 CH3

15.01 CH3

16 ^16O
16.51 ^16O

18 𝐻𝐻2𝑂𝑂
 18.16 𝐻𝐻2𝑂𝑂

21.98 CO^2++
22 CO^2++
24 𝐶𝐶2

24.18 𝐶𝐶2
25 C2H

35.4 C3H
37 C3H

38.94 C3H3
39 C3H3

42.83 𝐶𝐶𝑂𝑂2
44 𝐶𝐶𝑂𝑂2

47.12 SO
48 SO
50 C4H2
51 C4H3

51.83 C4H3
53 C5
60 OCS

62.72 OCS
75.89 𝐶𝐶6𝐻𝐻6

76 CS2
78 𝐶𝐶6𝐻𝐻6
91 𝐶𝐶7𝐻𝐻7

91.83 𝐶𝐶7𝐻𝐻7

Table 4. SLF calibration masses

 16

[A Note on modifying the SLF masses] The values used in Table 4 above are variable in that they
depend on the expected species that will be found at various stages of the Rosetta mission. The user may
change the commanded masses that the code uses for SLF calibration. The number of masses used is set by
the variable NUMSLFPKMASSES which is defined in the source code DFMS_definedConstants.hh. The
associated SLF commanded mass values are set in the code DFMS_process_L2_to_L3.cc. Specifically, the
code that defines the currently used masses is,

double slfMasses[NUMSLFPKMASSES] = {13, 15, 15.01, 16, 16.51, 18, 8.16, 21.98, 22, 24.0, 24.18, 25,
35.4, 37, 38.94, 39, 42.83, 44, 47.12, 48, 50, 51, 51.83, 53, 60, 62.72, 75.89, 76, 78.0, 91, 91.83};

The user must modify this array to add or remove SLF masses and then adjust the value of the variable
NUMSLFPKMASSES (in DFMS_definedConstants.hh) to reflect the current number of SLF masses used.

The mass scale calibration process proceeds in two phases. The first phase creates the latest 𝑝𝑝𝑝𝑝𝑥𝑥0vs
𝑚𝑚0 linear fit (Eq. 10) and stores the offset (a) and slope (b) parameters in a PDS compliant file (or,
x0Fit file). The set of x0 fit files define a time series of fit parameters. In Phase II we use the latest
appropriate x0 fit file parameters to calculate 𝑝𝑝𝑝𝑝𝑥𝑥0.

Phase I – During this phase we collect all L2 files that are GCU modes and SLF files whose
commanded masses and resolutions are described in Table 1 and 2. The files are first ordered by
type, GCU modes are processed first followed by SLF. The resultant list of GCU/SLF files is then
time ordered. With an ordered set of L2 files we then perform peak finding and peak fitting to find
𝑝𝑝𝑝𝑝𝑥𝑥0 for each 𝑚𝑚0. For each type of file (GCU or SLF) we store the 𝑝𝑝𝑝𝑝𝑥𝑥0, m0 data into array based
on mass and resolution (Table 1,2). Once all the data is collected we proceed to perform linear
fitting to each set of pix0 vs 𝑚𝑚0 set of data. The fit is of the form,

 𝑝𝑝𝑝𝑝𝑥𝑥0𝑜𝑜𝑝𝑝𝑜𝑜 = 𝑜𝑜 + 𝑏𝑏 ∗ 𝑚𝑚0 (10)

The resulting fit parameters 𝑜𝑜, 𝑏𝑏 as well as the uncertainty (Eq. 18) in the final 𝑝𝑝𝑝𝑝𝑥𝑥0𝑜𝑜𝑝𝑝𝑜𝑜 value are
written to files with the naming convention x0_TYP_YYYYMMDD_HHMMSS_KIND.TAB. Where
TYP is one of GCU or SLF, YYYYMMDD_HHMMSS is the time stamp (based on the time of the
first L2 file - pix0,m0 pair used) , and KIND is one of LMLR (Low Mass Low Resolution), and
similarly HMLR, LMHR, HMHR. Thus ideally there should exist 8 distinct x0 fit files. There must
be at least 4 𝑝𝑝𝑝𝑝𝑥𝑥0, 𝑚𝑚0 pairs to perform a fit of GCU type and 3 𝑝𝑝𝑝𝑝𝑥𝑥0, 𝑚𝑚0 pairs for SLF type. The
resulting fit files will be added to a directory of existing fit files with the result that the appropriate
x0 fit file closest in time to the L2 file being processed will be used for final mass scale calibration.

Phase II - This phase follows a similar set of procedures (codes) as Phase I. We again perform
peak finding and fitting to gain the pixel location of the mass peak. We then attempt to find the
best mass scale as follows. We assume we have created or have access to the latest x0 fit files. The
calibration is performed differently for the different types of L2 file types. For GCU files we have,
as given, the specific commanded mass and the corresponding known value for this mass. The
calculation of pix0 for GCU is simply given by,

 𝑝𝑝𝑝𝑝𝑥𝑥0 = 𝑥𝑥 − log (𝑚𝑚

𝑚𝑚0
)/𝐶𝐶 (11)

where, x is the pixel location of the mass peak, m0 is the commanded mass, m is the known mass
from the Mass Peak Search Table, and,

 17

 𝐶𝐶 = 25.0

(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷∗𝑧𝑧𝑧𝑧𝑧𝑧𝑚𝑚)
 (12)

𝑧𝑧𝑜𝑜𝑜𝑜𝑚𝑚 is 1.0 for low resolution modes and 6.4 for high resolution modes.

In Eq. (12) the dispersion, DISP, is constant for masses < 70. For masses >= 70 the dispersion
follows a power law. In general, DISP, is calculated as follows,

 𝑜𝑜𝐼𝐼𝐷𝐷𝑃𝑃 = 127000, 𝑜𝑜𝑜𝑜𝑜𝑜 𝑚𝑚0 < 70 (12a)

 𝑜𝑜𝐼𝐼𝐷𝐷𝑃𝑃 = 382200 ∗ 𝑚𝑚0

(−0.34) , 𝑜𝑜𝑜𝑜𝑜𝑜 𝑚𝑚0 ≥ 70 (12b)

For the case of SLF files the process is different. Recall that an SLF file is defined as an L2 file
where the commanded mass (𝑚𝑚0) is such that it is likely that a known mass peak lies somewhere
between pixels 1-512. Therefore the calibration process proceeds in two steps. Using the
commanded mass 𝑚𝑚0, we first calculate an initial 𝑝𝑝𝑝𝑝𝑥𝑥0 given by the latest GCU calibration x0 fit
parameters. Namely,
 𝑝𝑝𝑝𝑝𝑥𝑥𝐺𝐺𝐴𝐴𝐺𝐺0 = 𝑜𝑜𝐺𝐺𝐴𝐴𝐺𝐺 + 𝑏𝑏𝐺𝐺𝐴𝐴𝐺𝐺 ∗ 𝑚𝑚0 (13)

where, 𝑜𝑜𝐺𝐺𝐴𝐴𝐺𝐺 is the offset and 𝑏𝑏𝐺𝐺𝐴𝐴𝐺𝐺 is the slope (see Eqn. 10) of the linear fit.

Using 𝑝𝑝𝑝𝑝𝑥𝑥𝐺𝐺𝐴𝐴𝐺𝐺0 we calculate a mass scale as,

 𝑚𝑚(𝑝𝑝) = 𝑚𝑚0 ∗ 𝑜𝑜(𝐴𝐴∗(𝑥𝑥(𝑖𝑖)−𝑝𝑝𝑖𝑖𝑥𝑥𝐺𝐺𝐺𝐺𝐺𝐺0)) (14)

This mass scale is then searched for the known SLF masses (one of the masses in Table 4). If one
of these masses lies within the bounds of this mass scale we then check if the known peak location
lies within +/- 0.1amu of the calculated 𝑝𝑝𝑝𝑝𝑥𝑥0 for each endpoint. That is, if 𝑝𝑝𝑝𝑝𝑥𝑥1 corresponds to
m+0.1, and 𝑝𝑝𝑝𝑝𝑥𝑥2 corresponds to m-0.1 (calculated from Eq. (10)) then if the peak location 𝑥𝑥 is
within the bounds of 𝑝𝑝𝑝𝑝𝑥𝑥1 and 𝑝𝑝𝑝𝑝𝑥𝑥2 we assume that the peak represents the known SLF mass. We
then calculate the SLF 𝑝𝑝𝑝𝑝𝑥𝑥0 calibration values as,

 𝑝𝑝𝑝𝑝𝑥𝑥𝐷𝐷𝐿𝐿𝑆𝑆0 = 𝑜𝑜𝐷𝐷𝐿𝐿𝑆𝑆 + 𝑏𝑏𝐺𝐺𝐴𝐴𝐺𝐺 ∗ 𝑚𝑚0 (15)

where 𝑜𝑜𝐷𝐷𝐿𝐿𝑆𝑆 is the offset (a) linear fit parameter from the latest Phase I SLF x0 fit file and 𝑏𝑏𝐺𝐺𝐴𝐴𝐺𝐺 is
the slope (b) linear fit parameter from the latest Phase I GCU x0Fit file. This calculation assumes
that the slope is best represented by the GCU fit while the offset by the SLF fit.

With the best 𝑝𝑝𝑝𝑝𝑥𝑥0 being established by either Eq (13) for GCU files of Eq (15) for SLF files we
then proceed to calculate the best mass scale using Eq. (14).

[Note on DFMS GCU failure] As of Dec. 28, 2014 the GCU calibration unit is no longer functioning.
Thus we define two different calibration scenarios based on the L2 data time stamp. For L2 files generated
before Jan 3, 2015 we can use the latest GCU and SLF pix0 fit files as described above. For all L2 data
after Jan 3, 2015 we now modify Eq 15 above so that we use the SLF slope instead of the GCU slope. Thus
for all L2 data after Jan 3, 2015 (Eq 15) is replaced with (Eq 15a) as,

 18

 𝑝𝑝𝑝𝑝𝑥𝑥𝐷𝐷𝐿𝐿𝑆𝑆0 = 𝑜𝑜𝐷𝐷𝐿𝐿𝑆𝑆 + 𝑏𝑏𝐷𝐷𝐿𝐿𝑆𝑆 ∗ 𝑚𝑚0 (15a)

Lastly, for nonGCUnonSLF files, we use the latest x0 fit files for both GCU and SLF to calculate
𝑝𝑝𝑝𝑝𝑥𝑥0 as,

 𝑝𝑝𝑝𝑝𝑥𝑥0 = 𝑜𝑜𝐷𝐷𝐿𝐿𝑆𝑆 + 𝑏𝑏𝐺𝐺𝐴𝐴𝐺𝐺 ∗ 𝑚𝑚0 (16)

Once again for all L2 data after Jan 3, 2015 (Eq 12) is replaced with (Eq 12a) as,

 𝑝𝑝𝑝𝑝𝑥𝑥0 = 𝑜𝑜𝐷𝐷𝐿𝐿𝑆𝑆 + 𝑏𝑏𝐷𝐷𝐿𝐿𝑆𝑆 ∗ 𝑚𝑚0 (16a)

Therefore Eq. (14) calculates the best mass scale for GCU files while Eqs (15 or 15a) and (16 or
16a) calculate the best mass scale for SLF and nonGCUnonSLF files respectively using Eqs. 15,16
for time periods before Jan 3, 2015 and Eqs. 15a,16a for time periods after Jan 3 2015.

ROSINA_DFMS_SCI_xxx_PIXEL0_y and ROSINA_DFMS_SCI_xxx_PIXEL0_UNC_y
provide the information of the px0 used to calibrate the mass scale provided in the L3 file, while
xxx can be GCU or SLF and y is either A or B. If only GCU calibration was used the according
PIXLE0 for SLF is N/A.

The Uncertainty in pix0

The pix0 uncertainty is dependent on resolution. Due to mass scale calibration complexities with
high-resolution modes the pix0 uncertainty for all high-resolution modes is fixed at 20.0 pixels.
This software does not attempt to use any special processing for high-resolution modes. This
software uses the same calibration technique for both low and high resolution modes. Therefore
the fixed high resolution pix0 uncertainty. For low-resolution modes the uncertainty is calculated
based on the data spread that is used to form the x0 fit file. For every fit file there is an uncertainty
in the pix0 value that is calculated as,

 𝜎𝜎𝑝𝑝𝑖𝑖𝑥𝑥0 = �∑ (𝑝𝑝𝑖𝑖𝑥𝑥0𝑆𝑆𝑖𝑖𝑡𝑡[𝑖𝑖]−𝑝𝑝𝑖𝑖𝑥𝑥0[𝑖𝑖])
𝑁𝑁−2

2
𝑁𝑁
𝑖𝑖=1 (17)

where N is the number of 𝑚𝑚0, 𝑝𝑝𝑝𝑝𝑥𝑥0 pairs used to calculate the fit. For self calibrated SLF files
the total error in pix0 is calculated as,

 𝜎𝜎𝑡𝑡𝑧𝑧𝑡𝑡 = �𝜎𝜎𝑝𝑝𝑖𝑖𝑥𝑥02 + 5.02 (18)

This includes a minimum error of 5 pixels in addition to the error calculated from the fit.

 19

Establishing the Mass Scale Quality

Once the mass scale has been calculated its accuracy or quality needs to be established. This mass
scale quality depends on comparison of the peak mass derived from the mass scale to the known
mass. We attempt to define a parts per million difference (𝑃𝑃𝑃𝑃𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷) between the known and mass
scale derived peak mass. For both GCU and SLF files this is simply calculated as,

 𝑃𝑃𝑃𝑃𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷 = | 𝑚𝑚𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘−𝑚𝑚(𝑥𝑥)

𝑚𝑚(𝑥𝑥) | ∗ 106 (19)

Where 𝑚𝑚(𝑥𝑥) is the mass at peak location x and 𝑚𝑚𝑘𝑘𝑘𝑘𝑧𝑧𝑘𝑘𝑘𝑘 is the known mass of that peak. If this
𝑃𝑃𝑃𝑃𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷 is < 500 we conclude that the mass scale is of good quality and the fit quality ID is set to
0.

For nonGCUnonSLF files the process is different. Since we don’t have a known peak mass the
best we can do is to infer the 𝑃𝑃𝑃𝑃𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷 from the best mass scale derived in the latest SLF type
𝑃𝑃𝑃𝑃𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷 calculations. In this regard we keep track of the 𝑃𝑃𝑃𝑃𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷 calculated during the processing
of the SLF files. Specifically, for each type of SLF (Low/High mass and Low/High resolution and
Row A/B) we keep track of the 𝑃𝑃𝑃𝑃𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷. When processing a similar type nonGCUnonSLF file we
simply assign the 𝑃𝑃𝑃𝑃𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷, closest in time, of the same type (eg., PPMDev_LmHrRowA,…). A
record of the 𝑃𝑃𝑃𝑃𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷 calculated for each SLF mass is held in volatile memory during a specific
code run. A code run typically covers periods of no longer than a few days worth of data therefore
the number of SLF masses and L2 modes is limited and may exclude certain resolution or mass
range regions. Often we do not have a candidate for every type of 𝑃𝑃𝑃𝑃𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷 these then are assigned
a value of N/A (Unknown or not Applicable).

ROSINA_DFMS_SCI_AVG_PPM_DEV_y for y A or B provides the parts per million described
above for the according file in the L3 output.

The Quality ID

Lastly quality ID flag for every L2 to L3 conversion is assigned. The Table below defines the
various Quality ID flags allowed.

Quality ID Description

0 Nominal quality, avg. PPM deviance < 500
1 Self-calibrated, GCU avg. PPM deviance >= 500, SLF < 500
2 Adopted mass scale avg. PPM deviance >= 500
3 Enhanced Noise
4 Not enough peaks found for accurate calibration/verification

Table 5. Quality ID definition

 20

Input Tables

The DFMS code requires several input tables to perform its functions. These are, the Overall Gain
table which lists the gain values for the 16 gain steps. There are up to 16 pixel gain tables
corresponding to each gain step. There are the Mass Peak Search Tables for GCU and SLF modes.
Finally there is the Mode ID Table.

1. Overall Gain Table – This table consists of two possible types, namely the FM (Flight
Model on ground) or FS (Flight model in Space) Gain table. Each consists of 16 gain values
corresponding to 16 possible gain steps. (See DFMS_GAIN_TABLE.FMT for a description
of the data fields).

2. Pixel Gain Tables – For each type of Overall Gain Table we have an associated (FM or
FS) Pixel Gain table. The pixel gain table is time stamped since the gain values for each
pixel are often recalculated do to the deterioration of the MCP detector. If 2 or more pixel
gain tables exist for the same gain step then the code will use the interpolation of pixel
gain values closest in time. If 1 or less pixel gain tables exist for the same gain step then
the code uses the pixel gain table closest in time and then gain step to the L2 file. (See
DFMS_PIXEL_GAIN_TABLE.FMT for a description of the data fields).

3. Mass Peak Search Table – These tables are used to associate a known mass value to GCU
or SLF commanded mass. They are also used to specify the pixel range over which to look
for the known peak. There are two types of MPS table, namely the GCU and SLF. (See
DFMS_MASS_PEAK_SEARCH_TABLE.FMT for a description of the data fields).

4. Mode ID Table – This table lists in ascending order the mode numbers that are defined by
the Rosina/DFMS instrument. Each mode number is unique and contains the necessary
information used by the code so that the proper mode related settings are defined. Over the
life of the Rosina/DFMS experiment new modes are often added to the Mode ID table. As
this happens a new Mode ID table is created and time stamped accordingly. The code
requires the user to define the specific Mode ID table to be used. This is done in the
ConfigFile.dat input file. (See DFMS_MODE_ID_TABLE.FMT for a description of the data
fields).

 21

Code Installation and Environment setup

The code is installed in a user-defined location. This installation directory is then called the DFMS
installation directory and defined by the user or system environment variable
DFMS_INSTALL_DIR. It is the users responsibility to define this environment variable after the
installation. On a Unix system this is simply done as,

unix> export DFMS_INSTALL_DIR=<install directory>

Where <install directory> is the location where the src/ directory exists.

In addition to the source code the installation requires the existence of the GNU open source
GSL libraries. The external codes in this library are used for the purpose of performing
polynomial fits. In particular the code uses the file gsl_multifit. The GNU GSL library is
available from https://www.gnu.org/software/gsl.

For proper installation, we need to specify the location of the include files,

For Cygwin/Linux setup add packages libgsl-devel-2.3-2 and gsl 2.3-2 (or latest available).
Once GSL is installed then make sure that the line in the Makefile,

CFLAGS += -w -g -Wall -c -I/usr/include/gsl -I/usr/include

points to the correct location where the gsl include files are installed. The code needs to find the
include files (.h files associated with gsl).

The sharable object files, libgsl.so.0, and libgslcblas.so.0, must also exist in the default location,
namely, /usr/lib.

Building the Executable

The installation source files include the file Makefile. This file is used to build the final executable
from the source files in the src/ directory. To build the executable issue the following commands
on the unix command line.

unix> make clean

unix> make

make clean will remove all existing object files in the directory obj/ as well as the current
executable file in the directory bin/.

make will create new versions of the object files and place them in the obj/ directory and then link
these objects and any libraries into an executable (named DFMS_PDS_L2_to_L3) that will be
placed in the bin/ directory.

 22

The Configuration Files

The DFMS L2 to L3 processing code requires the user to supply and maintain 5 configuration
files. They are ConfigFile.dat, DFMS_Constants.dat, DFMS_Exclusion_Times.dat,
DFMS_20140401-20160127_Peak_Exclusion.dat, and DFMS_20160127-
20161001_Peak_Exclusion.dat. Each file is self-documented therefore please inspect the file for
the definitions of the required constants. In general the ConfigFile.dat configuration file contains
non-DFMS specific variable definitions, the DFMS_Constants.dat configuration file contains
variable definitions pertaining to the DFMS experiment. Changes in this file will have an impact
on the results. The DFMS_Exclusion_Times.dat contains starting and ending times within which
the L2 to L3 processing should be skipped. During these time ranges instrument parameters were
changed, therefore a scientific calibration of the data is not feasible. The peak exclusion files are
needed in identifying peaks and peak boundaries for a given mass. The peaks will then be removed
from offset polynomial fitting input data.

Initial starting condition of the software
The software needs a set of GCU X0 fit files as starting point. Since the number of GCU
calibration measurements is limited this set is limited too. The GCU X0 fit files are produced
with the software by processing all available GCU measurements. (These files are located in the
folder data/X0fit)

Array Size and Other Required Values

The file DFMS_definedConstants.hh contains a list of C pre-processor (#define) definitions that
must be set in order for the code to compile and execute. These are mainly array size parameters
for arrays that cannot be dynamically sized as well as other non DFMS related constants that the
code requires.

Running the Executable

The DFMS L2 to L3 conversion code (DFMS_PDS_L2_to_L3) can be executed in two general
ways from the Unix command line.

1. The most common way is to process all L2 files in a given directory. The directory is
defined in ConfigFile.dat by the variable sL2sourcePath. Note that this directory as well as all
other directories listed in this configuration file is specified to be relative to the Installation
directory $DFMS_INSTALL_DIR. With $DFMS_INSTALL_DIR properly set then to execute the
code simply issue the command,

unix> bin/DFMS_PDS_L2_to_L3

This will process all L2 files in the directory sL2sourcePath and place the resulting L3 files in the
directory defined by sL3outputPath. The code will generate a time tagged log file with processing
information and place it in the directory defined by sLogPath. The log files are named,

 23

DFMS_processLogFile-yyymmdd_hhmmss.log. The user can optionally set the code (via setting the
configuration variable L3INFOTOFILE to 1) to write an easily readable L2->L3 processing
summary file into the directory defined by sL3InfoLogPath. These files are called,
DFMS_L3InfoLogFile-yyymmdd_hhmmss.log. The user may also optionally set the code (via setting
the configuration variable QLINFOFILE to 1) to write a quick look summary file into the directory
defined by sQLLogPath. These files are called, DFMS_QuickLookLogFile-yyymmdd_hhmmss.log and
consist of one line per L2 converted file. Lastly, the user may set the code to create an ascii file
containing a table for each L3 file listing the resulting pixel/mass scale/ion number for later
plotting using user developed code. Setting the configuration variable DIAGTOFILE to 1 does
this. The files created are named, MC_<yyyymmdd_hhmmss>_M<xxxx>_Mass_<mm>_plot.dat.

The user can also take advantage of several Command Line Arguments (CLA) to execute the
code in specific ways. These are, for example,

1. unix> bin/DFMS_PDS_L2_to_L3 –f MC_20150103_000337564_M0600.TAB. The
code will convert only the single file specified after the –f argument.

2. unix> bin/DFMS_PDS_L2_to_L3 –l This
allows the user to skip the Phase I processing and thereby speed up the L2 to L3 conversion
time. But this method will ONLY use existing pix0 fit files. It will skip the creation of new
ones associated with the current set of L2 files.

3. unix> bin/DFMS_PDS_L2_to_L3 –m 600 This
method allows the user to process only a specific mode. In the example above the code will
only process mode 600 L2 files.

4. In general use the command unix> bin/DFMS_PDS_L2_to_L3 –h for a complete list of
command line arguments accepted by the code.

Note: If you are running CEM files then you must set the DOCEM variable in the file
ConfigFile.dat to “true”. If running MCP files then set DOCEM to “false”.

2. The code can also be executed via a quasi-batch method which uses an accompanying
Perl script runOneDay.pl. The Perl script is designed to process CEM and/or MCP data in
natural blocks. DFMS modes are run in a specific sequence. In between sequences there exists a
natural time gap where a new sequence is loaded. The Perl script exploits this time gap to create
blocks of L2 files that are related to a specific mode sequence. Typically, there are 2-3 mode
sequences per day. The Perl script will look at all CEM and/or MCP L2 files and COPS files in
either a main directory in called, AllData or in file type specific directories called, MCPData,
CEMData, copsBGData, copsNGData, and copsRGData. The user specifies in the input
configuration file, runOneDay.dat, which method to use and the full pathname to the specific or
all-inclusive files directories. The script then defines blocks of L2 files based on the time gap
described above and places them (one block at a time) in a directory called data/OneDayOfData,
which is assigned (in the ConfigFile.dat file) to sL2sourcePath as defined above. The Perl script
will then automatically execute the DFMS code for each block of L2 files. Upon completion of
this block of files the script deletes them from the directory data/OneDayOfData and then the
next block is copied. This loop will continue until all blocks are processed.

The procedure to execute the code using the Perl Script is as follows,

 24

1. Place at least 2 and up to N days of COPS, CEM and/or MCP level 2 data files in the
directory called AllData or, alternatively, identify the specific file type directories in the
script input configuration file, runOneDay.dat.

2. The file ConfigFile.dat must have the following definition for sL2sourcePath set,
 # Location of L2 files relative to env var DFMS_INSTALL_DIR
 sL2sourcePath data/ OneDayOfData /
 3. unix> cd $DFMS_INSTALL_DIR
 4. To run CEM files use the command,
 unix> ./runOneDay.pl CE (making sure that DOCEM is set to "true" in ConfigFile.dat)
5. To run MCP files use the command,

 unix> ./runOneDay.pl MC (making sure that DOCEM is set to "false" in ConfigFile.dat)

Perl Script Configuration file

The perl script, runOneDay.pl, requires the user defined input configuration file, runOneDay.dat
to exist in the same directory as the script. A typical input configuration file looks like the
following,

This config file is for the user to setup specific run parameters
Please make all changes to this file only. Do not edit the perl script

Full path to Legacy alldata directory
ALLDATA = /Users/marinaldi/xcode/data/AllData/

Full path to One day of data directory
ONEDAYDIR = /Users/marinaldi/xcode/data/OneDayOfData/

Full path to MCP L2 file directory
MCPDIR = /Users/marinaldi/xcode/data/MCPData/

Full path to CEM L2 file directory
CEMDIR = /Users/marinaldi/xcode/data/CEMData/

Full path to COPS NG file directory
COPSNGDIR = /Users/marinaldi/xcode/data/copsNgData/

Full path to COPS RG file directory
COPSRGDIR = /Users/marinaldi/xcode/data/copsRgData/

Full path to COPS BG file directory
COPSBGDIR = /Users/marinaldi/xcode/data/copsBgData/

Set legacy variable
If set to 1 then the code assumes data is coming from a single user created data directory (ALLDATA).
If set to 0 then code assumes data is coming from separate data directories, as defined above.
LEGACYPROCESSING = 0

Set time gap variables
GAPTIMEDELTA = 3540.0 # Gap time in seconds
MAXTIME = 86400.0 # Max Time, 24 hours in seconds

 25

Perl Installation Requirements

The perl script, runOneDay.pl, requires the external CPAN packages Date::Calc, Carp::Clan, and
Bit::Vector. To install these modules manually proceed as follows,

First download them from CPAN,

For Date::Calc go to: http://search.cpan.org/~stbey/Date-Calc-6.4/lib/Date/Calc.pod
For Carp::Clan go to: http://search.cpan.org/~kentnl/Carp-Clan-6.06/lib/Carp/Clan.pod
For Bit::Vector go to: http://search.cpan.org/~stbey/Bit-Vector-7.4/Vector.pod

(Note that these links show the latest versions of each package. Newer ones maybe available)

In each of these CPAN pages look for the download link on the upper right side of the page.
Click the download link. For the purpose of this tutorial assume that you have downloaded each
of these CPAN external package distributions (Date::Cal, Carp::Clan, Bit::Vector) into the
directory, /home/download. For each distribution do the following,

unix> cd /home/download
unix> gzip –d Bit-Vector-7.4.tar.gz
unix> tar –xvf Bit-Vector-7.4.tar
unix> cd Bit-Vector-7.4
unix> perl Makefile.pl
unix> make
unix> make test
unix> make install

Repeat this process for Carp::Clan and then Date::Calc. Install them in this order.

If necessary then install them to perl so that it knows about them,

unix> perl –MCPAN –e shell
cpan> install Bit::Vector
cpan> install Carp::Clan
cpan> install Date::Calc
cpan> exit

http://search.cpan.org/%7Estbey/Date-Calc-6.4/lib/Date/Calc.pod
http://search.cpan.org/%7Ekentnl/Carp-Clan-6.06/lib/Carp/Clan.pod
http://search.cpan.org/%7Estbey/Bit-Vector-7.4/Vector.pod

 26

The L3 Data PDS Keyword Description

The final data product produced by the software is an archival set of L3 PDS complaint files.
The L3 file contains a PDS header followed by 3 Data Object descriptions. These are the
DFMS_HK_TABLE (DFMS Housekeeping data Table), the DFMS_MASS_CAL_TABLE
(DFMS Mass Calibration Table), and the MCP_DATA_L3_TABLE (The L3 mass vs number of
ions per spectrum data). Below is a description of the PDS Keywords used in the PDS Header
and the DFMS_HK_TABLE Object. These are new keywords that are introduced and are unique
to the L3 PDS files.

ROSETTA:ROSINA_CAL_ID4: Mass calibration file containing the linear fit for px0 vs mass derived from GCU files.
‘None’ if no GCU available (after Jan 3. 2015).
ROSETTA:ROSINA_CAL_ID4: Mass calibration file containing the linear fit for px0 vs mass derived from SLF files.
ROSETTA:ROSINA_CAL_ID6: Mass calibration file used, only if a calibration peak was found in that file.
ROSETTA:ROSINA_PIXEL0_A_MASS Mass at px0 for mass calibration for row A
ROSETTA:ROSINA_PIXEL0_B_MASS Mass at px0 for mass calibration for row B
(ROSETTA:ROSINA_INST_MODEL) Instrument model FS (Flight model in Space) or FM (Flight model on Ground)

ROSINA_DFMS_SCI_SIGNAL_CAL_VAL_A Calibration factor used to convert the L2 data signal into ions/spectra for row A
ROSINA_DFMS_SCI_SIGNAL_CAL_DEV_A Uncertainty in % of the calibration factor for row A (1%)
ROSINA_DFMS_SCI_SIGNAL_CAL_VAL_B Calibration factor used to convert the L2 data signal into ions/spectra for row B
ROSINA_DFMS_SCI_SIGNAL_CAL_DEV_B Uncertainty in % of the calibration factor for row B (1%)
ROSINA_DFMS_SCI_OFF_LEVEL_A offset subtracted for row A (zero order polynomial part)
ROSINA_DFMS_SCI_OFF_STDEV_A Standard deviation of offset subtracted for row A
ROSINA_DFMS_SCI_OFF_COEFF_FILE File used for 3rd order polynomial fit to subtract offset
ROSINA_DFMS_SCI_OFF_COEFF_C1_A First order coefficient of polynomial fit to subtract offset for row A
ROSINA_DFMS_SCI_OFF_COEFF_C2_A Second order coefficient of polynomial fit to subtract offset for row A
ROSINA_DFMS_SCI_OFF_COEFF_C3_A Third order coefficient of polynomial fit to subtract offset for row A
ROSINA_DFMS_SCI_OFF_LEVEL_B Offset subtracted for row B (zero order polynomial part)
ROSINA_DFMS_SCI_OFF_STDEV_B Standard deviation of offset subtracted for row B
ROSINA_DFMS_SCI_OFF_COEFF_C1_B First order coefficient of polynomial fit to subtract offset for row B
ROSINA_DFMS_SCI_OFF_COEFF_C2_B Second order coefficient of polynomial fit to subtract offset for row B
ROSINA_DFMS_SCI_OFF_COEFF_C3_B Third order coefficient of polynomial fit to subtract offset for row B
ROSINA_DFMS_SCI_GCU_PIXEL0_A pix0 (mass calibration) derived from GCU files for row A
ROSINA_DFMS_SCI_GCU_PIXEL0_UNC_A Uncertainty of px0 (mass calibration) derived from GCU files for row A
ROSINA_DFMS_SCI_GCU_PIXEL0_B pix0 (mass calibration) derived from GCU files for row B
ROSINA_DFMS_SCI_GCU_PIXEL0_UNC_B Uncertainty of px0 (mass calibration) derived from GCU files for row B
ROSINA_DFMS_SCI_SELF_PIXEL0_A pix0 (mass calibration) derived from SLF files for row A
ROSINA_DFMS_SCI_SELF_PIXEL0_UNCA Uncertainty of px0 (mass cal.) derived from SLF files for row A
ROSINA_DFMS_SCI_SELF_PIXEL0_B pix0 (mass calibration) derived from SLF files for row B
ROSINA_DFMS_SCI_SELF_PIXEL0_UNCB Uncertainty of px0 (mass calibration) derived from SLF files for row B
ROSINA_DFMS_SCI_AVG_PPM_DEV_A Deviation of the calculated masses of the peak from their known mass, in parts per

million for row A. The deviation of the mass peak is the absolute value of the mass
difference.

ROSINA_DFMS_SCI_AVG_PPM_DEV_B Deviation of the calculated masses of the peak from their known mass, in parts per
million for row B. The deviation of the mass peak is the absolute value of the mass
difference.

 27

 28

 29

 30

Algorithmic Procedure

Below is the step-by-step overview of the setup of the code and then Phase I and II that do the
conversion from one PDS level 2 data file to its corresponding PDS level 3 output data file. The
step numbers pertain to actual DFMS_process_L2_to_L3.cc::main() source code comment fields.
Sub sections refer to either the breakout of the step into sub steps within a loop in the same source
code or the sub steps in a referred function or Class method (eg.,
DFMS_PDS_L2_dir_Class::processPix0FitData(). Refers to the class method
processPix0FitData() in the Class file DFMS_PDS_L2_dir_Class.cc). These referred steps are
indicated in red below.

1. Process Command Line Arguments (CLA).
2. Read configuration file to specify run specific requirements.
3. Read DFMS Constants configuration file to specify run specific DFMS values.
4. Read the latest DFMS mode ID table file.
5. Read the overall gain table file.
6. Retrieve all file information for available Pixel Gain Table files.

a. Perform linear interpolation between pixel gain versus time for all pixel gain tables with
the same gain step.

7. Retrieve all file information for available GCU MPS table files.
8. Retrieve all file information for available nonGCU MPS table files.
9. Retrieve all file information for available L2 source file data files in the L2 source directory

(defined in the configuration file from step 2 above).
10. Retrieve all file information for available COPS (NG/RG/BG) data files.

11. PHASE I processing. This phase finds all GCU and SLF files and performs peak fitting to

calculate the required calibration value pix0. For each pix0 and commanded mass pair store
information for later linear fitting. The process follows the steps below. Step 11 subsections
pertain to DFMS_PDS_L2_dir_Class::processPix0FitData().
11.1. Gather all GCU files, if they exist, in the L2 source directory.
11.2. Gather all SLF files in the L2 source directory.
11.3. Find pix0 for Low Mass/Low Res GCU files. For each of steps 3-10 (in Phase I

processing) the following procedure is enumerated. Step 11.3 subsections pertain to
the steps in the source code DFMS_PDS_L2_dir_Class::findPix0ForGCUSLFType().
11.3.0. Ascertain date. If date < 1/5/2015 then use GCU data when available. If not,
 then use SLF for all calibrations.
11.3.1. Get mode ID for this L2 file.
11.3.2. Get the best GCU or nonGCU MPST file from MPST file info.
11.3.3. Get the best Pixel Gain Table file from PGT file info.
11.3.4. Get overall gain for this L2 file.
11.3.5. Read an L2 file. Store PDSheader, HouseKeeping and Data.
11.3.6. Create the pix0 fit file object that does all the work.
11.3.7. Process an L2 file and find the comm. mass (m0) and its pix0 cal value.
11.3.8. Release dynamically allocated memory.
11.3.9. If there are enough m0/pix0 points perform a linear fit.
11.3.10. Create the X0Fit file for this specific GCU/SLF L2 file type.

 31

11.4. Find pix0 for High Mass/Low Res GCU files.
11.5. Find pix0 for Low Mass/High Res GCU files.
11.6. Find pix0 for Medium Mass/High Res GCU files.
11.7. Find pix0 for High Mass/High Res GCU files.
11.8. Find pix0 for Low Mass/Low Res SLF files.
11.9. Find pix0 for High Mass/Low Res SLF files.
11.10. Find pix0 for Low Mass/High Res SLF files.
11.11. Find pix0 for Medium Mass/High Res SLF files.
11.12. Find pix0 for High Mass/High Res SLF files.

12. PHASE II processing. The purpose of this phase is to retrieve the best X0Fit file associated
with a specific L2 mode and use it to calculate the calibration value, pix0, needed to create the
best mass scale. It then produces the mass scale and writes the resultant PDS L3 file to disk.
The process follows the steps below.
12.1. Get mode information for the specific L2 file.
12.2. Get the current L2 file name from the L2 files object.
12.3. Create the L3 file info object to hold all L3 information needed by the PDS L3 file.
12.4. Read an L2 file. Store PDSheader, HouseKeeping and Data.
12.5. Check resolution type of this mode. If high res then warn or skip.
12.6. Check file type (ie., MCP,CEM or FAR).
12.7. Get the best GCU or nonGCU MPST file from MPST file info in Step 6.
12.8. Get the best COPS NG/RG/BG file from COPS file info in Step 9.
12.9. Get the best Pixel Gain Table file from PGT file info in Step 6. If 2 or more pixel

gain tables exist, for this L2 gain step, then use the pixel gain fit parameters
calculated in Step 6a to find the best fit pixel gain values and skip to step 12.11. If 1
or less pixel gain tables exist, for this L2 gain step, then proceed to step 12.10.

12.10. Read best Pixel Gain table for this L2 file.
12.11. Get overall gain for this L2 file.
12.12. Enter main L2 to L3 conversion code. The next subsections pertain to

DFMS_ProcessMCP_Class::processL2().
12.12.1. Find all available pix0 fit files.
12.12.2. Get MPS table data from file.
12.12.3. For each of Row A/B perform mass scale calibration. For loop steps

12.12.3.1. Optionally write raw data to file for GnuPlot plotting
12.12.3.2. Calculate the offset to the raw data.
12.12.3.3. Define peak threshold based on mean offset.
12.12.3.4. Define object to search for all peaks.
12.12.3.5. Get all peaks above threshold.
12.12.3.6. Output peaks found info to screen.
12.12.3.7. Apply offset correction.
12.12.3.8. Apply overall and pixel gain correction.
12.12.3.9. Convert corrected raw count data to number of ions.
12.12.3.10. Perform initialization of peak fitting algorithm.
12.12.3.11. Perform peak fitting using simple Gaussian function.
12.12.3.12. Calculate fit parameter errors.
12.12.3.13. If fit succeeded save fit results for later use.
12.12.3.14. Assign the base level L3 Info values to step 12.3 object.

 32

12.12.3.15. If fit did not succeed assign default fit parameters to L3.
12.12.3.16. Read latest GCU X0fit file.
12.12.3.17. If GCU construct the best mass scale.
12.12.3.18. For SLF file read the latest X0fit file.
12.12.3.19. If SLF construct the best mass scale.
12.12.3.20. If nonGCUnonSLF construct the best mass scale.
12.12.3.21. Optionally write raw and fit data to file for GnuPlot plotting.
12.12.3.22. Release dynamically allocated memory for this internal loop.

12.12.4. Create mass scale for best calibration.
12.12.5. Add COPS NG/RG/BG info to L3 object.
12.12.6. Write time series information for special masses to file.
12.12.7. Printout results to screen and l3 log file.
12.12.8. Get the needed L3 HK data.
12.12.9. Form the L3 HK data output array.
12.12.10. Form the Calibration data output array.
12.12.11. Output GCU MPS table if requested.
12.12.12. Define the number of HK values.
12.12.13. Create the L3 PDS object.
12.12.14. Write the final PDS L3 file to disk.
12.12.15. Optionally write L2/L3 data to file for external plotting.
12.12.16. Optionally output L3 data for Gnuplot plotting.
12.12.17. Release dynamically allocated memory used in internal loop.

12.13. Release dynamically allocated memory used in L2 to L3 conversion loop.

13. Output the number of modes present in this session.
14. Output the statistics for the 𝑃𝑃𝑃𝑃𝑀𝑀𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷 calculated in this session.
15. Calculate and output the total time used for this session.
16. Output all end of run statistics to screen, process log, and optionally to alternate L3

information log files.
17. Release remaining dynamically allocated memory

See Appendix 1 for flow chart documents for procedure flow and details.

Note: Although the L2 to L3 conversion is handled one spectra file at a time, the conversion
software has been developed to process multiple spectra (all L2 files in a single directory) during
the execution of the program. This is desirable not only because of the large amount of data, but
because the individual files are tied together as described above, in that, nonGCUnonSLF spectra
reference recent GCU/SLF spectra for the purposes of mass scale calibration. SLF files also
reference recent GCU files for the purpose of mass scale calibration.

 33

 34

 35

 36

 37

 38

 39

 40

	DFMS PDS L2-to-L3
	Data Processing
	Documentation
	Michael A. Rinaldi
	Version 1.5
	Introduction
	Figure 1. The DFMS Instrument
	Scope
	General Process Description
	The general L2 to L3 conversion processes is comprised of two major steps.
	Table 1. Phase 1 GCU files segregation description
	Table 2. Phase 1 SLF files segregation description
	The CEM L2 to L3 Process Description
	Col = ,𝐷,Δ𝑚-𝑚.-𝑊𝑠.
	ICEM,I = ,Col ∙ Sumi-𝑡.
	The Sumi is the sum of the peak of species I and t is the integration time per step (nominal 1 s).
	The Process to convert one Level 2 PDS CEM file into a Level 3 is fairly straight forward.
	For HR this is calculated as,
	step0 = 3.6713*m0 – 10.85 m0 ≥ 12 and m0 ≤ 15:
	For LR this is calculated as,
	The MCP/LEDA L2 to L3 Process Description
	The Offset
	The 𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝑂𝑓𝑓𝑠𝑒𝑡 is then subtracted from the original L2 raw data counts.
	A typical LEDA offset plot and calculated polynomial fit is shown in Figure 3,
	Figure 3. A plot of ADC (Raw) counts vs pixel number (mass/charge)
	Overall Gain and Pixel Gain Correction
	Pixel number
	Figure 5. Example of interpolation used to find more accurate Pixel Gain
	Calculating the Total Number of Ions
	Due to a mass dependence on yield the corrected Ions per spectrum is calculated as follows.
	For ion mass < 70 the yield correction is defined as,
	For ion mass >= 70 the yield correction depends on resolution as follows.
	For Low Resolution spectra the yield correction is defined as,
	For High Resolution spectra the yield correction is defined as,
	In (Eq. 6-7) above ‘m’ is the DFMS detector commanded mass.
	Therefore, the yield corrected Ions per spectrum is,
	The calculation of Ions per spectrum of (Eq. 9) replaces that of (Eq. 5).
	Peak Finding
	Peak Fitting
	Figure 6. An example of a Gaussian fit to the Ion Number vs Mass
	Mass Scale Calibration
	Table 4. SLF calibration masses
	Once again for all L2 data after Jan 3, 2015 (Eq 12) is replaced with (Eq 12a) as,
	The Uncertainty in pix0
	This includes a minimum error of 5 pixels in addition to the error calculated from the fit.
	Establishing the Mass Scale Quality
	The Quality ID
	Table 5. Quality ID definition
	Input Tables
	Code Installation and Environment setup
	Building the Executable
	The Configuration Files
	Initial starting condition of the software
	Array Size and Other Required Values
	Running the Executable
	2. The file ConfigFile.dat must have the following definition for sL2sourcePath set,
	Algorithmic Procedure
	See Appendix 1 for flow chart documents for procedure flow and details.

