HASI-PWA Calibration Document Doc. Ref. : HASI-PWA-FM-DOC-41 Issue: Draft Rev. : 1 Date : 28.06.06 TABLE OF CONTENTS 1 Scope 6 2 PWA Science Data Packets 7 3 AC/DC-Science Data Packet 7 3.1 Block diagram for Schumann, AC Spectrum and Lightning measurement 7 3.2 Schumann Data (type 131) 10 3.2.1 Digital Data Processing: 10 3.2.2 Analogue Calibration of Schumann data (type 131) 12 3.2.3 Analogue + Digital Calibration of Schumann data (type 131) within m-pwa software: 13 3.3 Integrated AC-Spectrum (type 131) 14 3.3.1 Digital Data Processing: 14 3.3.2 Analogue Calibration of integrated AC spectrum (type 131): 17 3.3.3 Analogue + Digital Calibration of integrated AC spectrum data (type 131) within m-pwa software: 18 3.4 Lightning = AC Burst (type 131) 19 3.4.1 Digital Data Processing: 19 3.4.2 Analogue Calibration of Lightning data (type 131): 22 3.4.3 Analogue + Digital Calibration of Lightning data (type 131) within m-pwa software: 24 4 AC/DC/AU-Science Data Packet 25 4.1 Block diagram for Schumann, AC Spectrum and Lightning measurement 25 4.2 Block diagram for ACU measurement 25 4.3 Sequence and timing of ACDCAU measurements 25 4.4 Schumann Data (type 132) 28 4.4.1 Digital Data Processing: 28 4.4.2 Analogue Calibration of Schumann data (type 132) 30 4.4.3 Analogue + Digital Calibration of Schumann data (type 132) within m-pwa software: 31 4.5 Integrated AC-Spectrum (type 132) 32 4.5.1 Digital Data Processing: 32 4.5.2 Analogue Calibration of integrated AC spectrum (type 132): 34 4.5.3 Analogue + Digital Calibration of integrated AC spectrum data (type 132) within m-pwa software: 35 4.6 Lightning = AC Burst (type 132) 36 4.6.1 Digital Data Processing: 36 4.6.2 Analogue Calibration of Lightning data (type 132): 40 4.6.3 Analogue + Digital Calibration of Lightning data (type 132) within m-pwa software: 42 4.7 Acoustic spectrum 43 4.7.1 Digital Data Processing: 43 4.7.2 Analogue Calibration of integrated ACU spectrum : 45 4.7.3 Analogue + Digital Calibration of integrated ACU spectrum data within m-pwa software: 47 4.8 Acoustic Burst 48 4.8.1 Digital Data Processing: 48 4.8.2 Analogue Calibration of ACU burst data : 51 4.8.3 Analogue + Digital Calibration of ACU burst data within m-pwa software: 51 5 MI-Science Data Packet 53 5.1 Block diagram for MI measurement 53 5.2 Timing of MI measurements 54 5.3 MI spectrum 56 5.3.1 Digital Data Processing: 56 5.3.2 Analogue Calibration of integrated MI spectrum : 58 5.3.3 Analogue + Digital Calibration of integrated MI spectrum data within m-pwa software: 59 5.4 MI Amplitude 60 5.4.1 Digital Data Processing: 60 5.4.2 Analogue Calibration of MI amplitude data : 62 5.4.3 Analogue + Digital Calibration of MI amplitude data within m-pwa software: 62 5.5 MI Phase 63 5.5.1 Digital Data Processing: 63 5.5.2 Analogue Calibration of MI phase data : 63 5.5.3 Analogue + Digital Calibration of MI phase data within m-pwa software: 64 5.6 MI Standard Deviation 65 5.6.1 Digital Data Processing: 65 5.6.2 Analogue Calibration of MI standard deviation data : 66 5.6.3 Analogue + Digital Calibration of MI amplitude data within m-pwa software: 67 6 RAE-(RADAR) Science Data Packet 68 6.1 Block diagram for RAE measurements 68 6.2 Sequence and timing of RAE measurements 68 6.3 Radar Mode estimation 68 6.4 Radar spectra / Time samples 69 6.4.1 Digital Data Processing: 69 6.4.2 Analogue Calibration of Radar spectrum /amplitude: 73 6.4.3 Analogue + Digital Calibration of Radar spectrum within m-pwa software: 74 6.5 Radar Altitude estimation 75 6.5.1 Processing 75 7 Block diagram for Schumann, AC Spectrum and Lightning RP-Science Data Packet 76 7.1 Block diagram for RP measurement 76 7.2 Sequence and timing of RP measurements 76 7.3 RP data 78 7.3.1 Digital and Analog Data Processing: 78 7.3.2 Analogue Calibration of RP data : 78 7.3.3 Analogue + Digital Calibration RP data within m-pwa software: 78 8 Appendix 79 8.1 Schumann Calibration Tables 79 8.2 AC Calibration Tables 81 8.3 LI (AC Burst) Calibration Tables 87 8.4 ACU Calibration Tables 92 8.5 MI Calibration Tables 94 8.6 Radar Calibration Tables 104 8.7 Relaxation Probe Calibration Tables 109 1Scope This document is intended to describe details of the Digital Signal Processing of the PWA-instrument onboard the Huygens Probe and to describe the approach of analogue calibration and measurement timing. The main scope is the definition of the individual steps performed by the software and description of the resulting numerical scaling of telemetry data. The fixed-point Digital Signal Processor (DSP) used for the calculations onboard the PWA-instrument inherits a need of number scaling for computations to optimize the numerical resolution of the computed results. Sometimes the computations may look disorientated, but each step has been optimized to reach best numerical resolution in the DSP. For each measurement or experiment at least two sorts of equations are shown: the first equation gives the numerical computation of telemetry data for and particular input signal and the second inverse equation allows back-computation from telemetry data to input signals. The equations given in this document are absolutely true for all existing PWA-models and are independent of environmental influences. The analog calibration values included in the document are valid for the flight model only, whereas the procedure of calibration stays the same for any model. All these analog calibrations are implemented the m_pwa data processing tool, Including calibrations for different PWA models as well. Figure 1 The whole document is based on the document 'HASI-PWA properties of digital signal processing', Issue 2. Rev. 2, by Peter Falkner. 2PWA Science Data Packets For PWA Science Data, 5 different types of science data packets do exist: Type 131: ACDC: contains Schumann, AC-Spectrum and Lightning measurements Type 132: ACDCAU: contains Schumann, AC-Spectrum, Lightning, Acoustic Spectrum and Acoustic Burst measurements Type 133: RAE: contains Radar Spectrum and Altitude measurements Type 134: MI: contains Mutual Impedance measurements Type 135: RP: contains Relaxation Probe Measurements For details refer to HASI-PWA-FM-DOC-016 (HASI-PWA Software Data Format Definition, Issue 2, Rev. 2) 3AC/DC-Science Data Packet The AC/DC Science Data Packet contains 3 different types of data: Schumann, AC spectrum and Lightning data. 3.1Block diagram for Schumann, AC Spectrum and Lightning measurement Figure 2 Sequence of measurements: 1) Schumann 2) AC (Spectrum + Lightning) Timing of ACDC measurements: Figure 3 Page left blank intentionally 3.2Schumann Data (type 131) Measurement principle: sample 2 x 1024 points with 3.072 kHz calculate 2 x 1024 point FFT -> calculate 2 power spectres calculate the average of the two power spectres logarithmic compression and offset transfer the first 32 lines (without DC line) of the averaged power spectrum to telemetry 3.2.1Digital Data Processing: Sampling frequency Figure 4 Processing: - 2 times {take 1024 samples ? scale (1/4) ? calculate 1024p-FFT ? calculate power Spectrum} - Sum of 2 power spectra - Pre scale (divide by 2) - Logarithmic compression + Offset Value (0x570) - Result: 512 Spectral Lines (Line 0 - Line 511), only 32 are transferred Numerical Scaling: Figure 5 3.2.2Analogue Calibration of Schumann data (type 131) Figure 6 For analogue calibration, the following Flight Model measurements have been taken into account: Transfer functions from PWA FM RX electrodes to Test point on PWA-A FM (is situated between the buffer and the attenuator) for receiver high gain only (as there is no receiver low gain Schumann measurement) Separate measurements of the gain of the attenuator on PWA-A FM These measurements have been made with a Bruel Kjaer Audio Analyser, Type 2012, in June 1995 at IWF Graz. Files: HASI\CASSINI.FM\FM_TEST\GRAZ0695.FM\ BOOM1RXH.ada BOOM2RXH.ada Attenuator gain: 0.34 = -9.37042165915 dB from FM-ADP, PWA-FM-DOC-010 Calibration process : - Calculate average value from boom1 and boom2 transfer functions for receiver high gain (RXH) - Calculate gain on the Schumann (type 131) data frequency bins by interpolation (3-99 Hz with 3 Hz resolution) - Subtract attenuator gain (9.37042165915 dB) - Results sh131rxh.cal (see attachment) 3.2.3Analogue + Digital Calibration of Schumann data (type 131) within m-pwa software: - Calculate amplitudes at all Schumann frequency bins at the ADC-input out of Schumann telemetry data ( TM ) in dBVpeak: Figure 7 amplitudes in dBVp at ADC-input subtract analogue calibration data ( SH131rxh.cal for RX high gain) for RXH: srxh = sADC - sh131rxh.cal Result: voltage measured at the RX electrodes in dBVpeak versus frequency ( dB relative to 1 Vpeak versus frequency in Hz) 3.3Integrated AC-Spectrum (type 131) Measurement principle: sample 80 x 128 points with 23.04 kHz (attention:7.4 ms from start sampling 128 points to start sampling next 128 points ->1.777ms gaps) calculate 80 x 128 point FFT -> calculate 80 power spectras calculate the average of the 80 power spectras logarithmic compression and offset transfer all 64 lines of the averaged power spectrum to telemetry 3.3.1Digital Data Processing: Figure 8 Processing - {Take 128 samples ? apply Hamming window ? scale by 1/4? calculate 128p FFT ? calculate power spectra} Repeat 80 times - Integrate 80 power spectra's - Scale by 1/16 - Logarithm ( ) + offset value - Result: 64 spectral lines (line 0 - line 63) Hamming Window The samples are weighted with a Hamming window. This is done to reduce the so-called picked fence effect or spectral leakage. But the window (like every window) has an effect on the resulting amplitude, where the ratio of the 'real' (= applied signal) amplitude to the estimated amplitude depends on frequency, but is roughly 1.88 : 1 for a pure sine wave, on channel2. To demonstrate the effect: if you apply a sine wave signal with amplitude equal 1.0 the Hamming weighted FFT will give an amplitude of 1/1.88 = 0.53. If the signal is off-channel3, the amplitude is spread on separate frequency bins, where the ratio of amplitudes depends on the location of the signal frequency in respect to FFT-frequency bins. To demonstrate the effect: if you apply a sine wave signal with amplitude equal 1.0 and a frequency exact between two frequency bins, the Hamming weighted FFT will give two amplitude of roughly 0.28 on the frequency bins left and right of the actual frequency. In the following paragraph 'Numerical Scaling' the reduction of sine wave on-channel signals is taken into account and equations and are compensated for on-channel signals. Off-channel signals will show levels, which are around 1.7 dB smaller. Numerical Scaling Figure 9 3.3.2Analogue Calibration of integrated AC spectrum (type 131): Figure 10 For analogue calibration, the following Flight Model measurements have been taken into account: Transfer functions from PWA FM RX electrodes to Test point on PWA-A FM (is situated between the buffer and the attenuator) Separate measurements of the gain of the attenuator on PWA-A FM These measurements have been made with a Bruel Kjaer Audio Analyser, Type 2012, in June 1995 at IWF Graz. Files: HASI\CASSINI.FM\FM_TEST\GRAZ0695.FM\ BOOM1RXL.ada BOOM2RXL.ada BOOM1RXH.ada BOOM2RXH.ada Attenuator gain: 0.34 = -9.37042165915 dB from FM-ADP, PWA-FM-DOC-010 Calibration process : - Calculate average value from boom1 and boom2 transfer functions for receiver low gain (RXL) and receiver high gain (RXH) - Calculate gain on the AC field (type 131) data frequency bins by interpolation (0Hz - 11.52 kHz with 180 Hz resolution) - Subtract attenuator gain (9.37042165915 dB) - Results ac131rxl.cal ac131rxh.cal (see attachment) 3.3.3Analogue + Digital Calibration of integrated AC spectrum data (type 131) within m-pwa software: - Calculate amplitudes at all AC frequency bins at the ADC-input out of AC/DC telemetry data ( TM ) in dBVpeak: Figure 11 amplitudes in dBVp at ADC-input subtract analogue calibration data (ac131rxl.cal for RX low gain, ac131rxh.cal for RX high gain) for RXL: srxl = sADC - ac131rxl.cal for RXH: srxh = sADC - ac131rxh.cal Result: voltage measured at the RX electrodes in dBVpeak versus frequency (amplitude in dB relative to 1 Vpeak versus frequency in Hz) 3.4Lightning = AC Burst (type 131) Measurement principle: take the 80 power spectras calculated during 3.4 (AC spectrum type131) (80 x 128p FFT, sampling frequency =23.04 kHz) within every single spectrum sum up lines to get mean power values for 3 frequency ranges: f1 = ?(Line 1 to Line 16)/16 (without DC line!) (sum of 16 lines) f2 = ?(Line 17 to Line 32)/16 (sum of 16 lines) f3 = ?(Line 33 to Line 63)/32 (sum of 31 lines) logarithmic compression and offset transfer power of 80 x 3 spectral ranges to telemetry 3.4.1Digital Data Processing: Figure 12 Processing {take 128 samples ? apply Hamming window ? scale by 1/4 ? calculate 128p FFT ? calculate power spectra}6 gives 64 spectral lines (line0 - line63) f1=?(line1 to line16)/16 (Sum of 16 Lines) f2=?(line17 to line32)/16 (Sum of 16 Lines) f3=?(line33 to line63)/32 (Sum of 31 Lines) Logarithmic compression + Offset Value (0xd80) } - REPEAT 80 times - Result: 80 x 3 Spectral Ranges (f1(t0),f2(t0),f3(t0),....,f1(t79),f2(t79),f3(t79)) Numerical Scaling Figure 13 note1: The limited resolution of the fixed point DSP adds some small amount of noise to the results, which gives after integration of 16 or 32 lines considerable increase of the numbers given in the table above. The effort to make an analytical calculation of this effect is considered to be to high, hence a simulation using the DSP-simulator was done to verify the calculation performed in the 'real' DSP. The results of the simulation are given in the following table. note2: The second digit is always 1 (for all values between min and max) and therefore not transmitted in the telemetry data (like a 'hidden 1'). But it has to be taken into account! Results from runs with ADSP simulator: Figure 14 3.4.2Analogue Calibration of Lightning data (type 131): Figure 15 For analogue calibration, the following Flight Model measurements have been taken into account: Transfer functions from PWA FM RX electrodes to Test point on PWA-A FM (is situated between the buffer and the attenuator) Separate measurements of the gain of the attenuator on PWA-A FM These measurements have been made with a Bruel Kjaer Audio Analyser, Type 2012, in June 1995 at IWF Graz. Files: HASI\CASSINI.FM\FM_TEST\GRAZ0695.FM\ BOOM1RXL.ada BOOM2RXL.ada BOOM1RXH.ada BOOM2RXH.ada Attenuator gain: 0.34 = -9.37042165915 dB from FM-ADP, PWA-FM-DOC-010 Timing measurements performed with a PWA-D and PWA-A bread board model Calibration process: - Take files ac131rxl.cal and ac131rxh.cal (see 3.3.2) - Calculate average gain for the 3 Lightning frequency ranges out of ac131rxl.cal and ac131rxh.cal - Results li131rxl.cal li131rxh.cal (see attachment) timing: distance of lightning measurements = 7.432 ms (7.4 ms taken for calibration) Result: li131_ti.cal (see attachment) 3.4.3Analogue + Digital Calibration of Lightning data (type 131) within m-pwa software: - Calculate amplitudes for all 3 Lightning frequency ranges at the ADC-input out of Lightning telemetry data ( TM ) in dBVpeak: Figure 16 amplitudes in dBVp at ADC-input subtract analogue calibration data (li131rxl.cal for RX low gain, li131rxh.cal for RX high gain) for RXL: srxl = sADC - li131rxl.cal for RXH: srxh = sADC - li131rxh.cal Result: mean voltage measured for the lightning (type 131) frequency ranges at the RX electrodes in dBVpeak versus time (amplitude in dB relative to 1 Vpeak versus time in seconds) 4AC/DC/AU-Science Data Packet The AC/DC/AU Science Data Packet contains 5 different types of data: Schumann spectrum, AC spectrum, Lightning (AC burst) data, Acoustic spectrum and Acoustic burst data. 4.1Block diagram for Schumann, AC Spectrum and Lightning measurement Figure 17 4.2Block diagram for ACU measurement Figure 18 4.3Sequence and timing of ACDCAU measurements Sequence of measurements: 1) Schumann 2) AC (Spectrum + Lightning) + AU (Spectrum + Burst) Timing of ACDCAU measurements: Figure 19 Page left blank intentionally 4.4Schumann Data (type 132) Measurement principle: sample 2 x 1024 points with 3.072 kHz calculate 2 x 1024 point FFT -> calculate 2 power spectras calculate the average of the two power spectras add always 2 lines together (skip DC line, L1 = L1+L2, L2= L3+L4,....L16=L31+L32) logarithmic compression and offset transfer the resulting 16 lines to telemetry(-> frequency resolution only 6 Hz) 4.4.1Digital Data Processing: Figure 20 Processing The processing of Schumann Data in AC/DC/AU-data packets is the same as for AC/DC-data packets, except that the frequency resolution is reduced by a factor of 2. Adding two and two spectra lines together does this. - 2 times {take 1024 samples ? scale (1/4) ? calculate 1024p-FFT ? calculate power Spectrum} - Sum of 2 power spectra - Pre scale (divide by 2) - Result: 512 Spectral Lines (Line 0 - Line 511) - Add 2 Lines together (Skip L0; Line1=L1+L2, Line2=L3+L4, Line3=L5+L6,...; Line16=L31+L32) - Logarithm( ) + Offset Value (0x570) - Result: 16 Spectral Lines (Line 0 - Line 15) Numerical Scaling Figure 21 4.4.2Analogue Calibration of Schumann data (type 132) Figure 22 For analogue calibration, the following Flight Model measurements have been taken into account: Transfer functions from PWA FM RX electrodes to Test point on PWA-A FM (is situated between the buffer and the attenuator) for receiver high gain only (as there is no receiver low gain Schumann measurement) Separate measurements of the gain of the attenuator on PWA-A FM These measurements have been made with a Bruel Kjaer Audio Analyser, Type 2012, in June 1995 at IWF Graz. Files: HASI\CASSINI.FM\FM_TEST\GRAZ0695.FM\ BOOM1RXH.ada BOOM2RXH.ada Attenuator gain: 0.34 = -9.37042165915 dB from FM-ADP, PWA-FM-DOC-010 Calibration process : - Calculate average value from boom1 and boom2 transfer functions for receiver high gain (RXH) - Calculate gain on the Schumann (type 132) data frequency bins by interpolation (3-99 Hz with 6 Hz resolution) - Subtract attenuator gain (9.37042165915 dB) - Results sh132rxh.cal (see attachment) 4.4.3Analogue + Digital Calibration of Schumann data (type 132) within m-pwa software: - Calculate amplitudes at all Schumann frequency bins at the ADC-input out of Schumann telemetry data ( TM ) in dBVpeak: Figure 23 amplitudes in dBVp at ADC-input subtract analogue calibration data ( SH132rxh.cal for RX high gain) for RXH: srxh = sADC - sh132rxh.cal Result: voltage measured at the RX electrodes in dBVpeak versus frequency ( dB relative to 1 Vpeak versus frequency in Hz) 4.5Integrated AC-Spectrum (type 132) Measurement principle: sample 80 x 64 points with 23.04 kHz (attention: 9 ms from start sampling 128 points to start sampling next 128 points -> 6 ms gaps) calculate 80 x 64 point FFT -> calculate 80 power spectras calculate the average of the 80 power spectras logarithmic compression and offset transfer all 32 lines of the averaged power spectrum to telemetry 4.5.1Digital Data Processing: Figure 24 Processing - 64 samples -> divide by 4 -> Hamming Wind. -> calculate 64p-FFT -> calculate power spectra - Sum of 80 power spectra - Pre scale (divide by 16) - Logarithm( ) + Offset Value (0x570) - Result: 32 Spectral Lines (Line 0 - Line 31) Numerical Scaling Figure 25 4.5.2Analogue Calibration of integrated AC spectrum (type 132): Figure 26 For analogue calibration, the following Flight Model measurements have been taken into account: Transfer functions from PWA FM RX electrodes to Test point on PWA-A FM (is situated between the buffer and the attenuator) Separate measurements of the gain of the attenuator on PWA-A FM These measurements have been made with a Bruel Kjaer Audio Analyser, Type 2012, in June 1995 at IWF Graz. Files: HASI\CASSINI.FM\FM_TEST\GRAZ0695.FM\ BOOM1RXL.ada BOOM2RXL.ada BOOM1RXH.ada BOOM2RXH.ada Attenuator gain: 0.34 = -9.37042165915 dB from FM-ADP, PWA-FM-DOC-010 Calibration process : - Calculate average value from boom1 and boom2 transfer functions for receiver low gain (RXL) and receiver high gain (RXH) - Calculate gain on the AC field (type 132) data frequency bins by interpolation (360Hz - 10.44 kHz with 360 Hz resolution) - Subtract attenuator gain (9.37042165915 dB) - Results ac132rxl.cal ac132rxh.cal (see attachment) 4.5.3Analogue + Digital Calibration of integrated AC spectrum data (type 132) within m-pwa software: - Calculate amplitudes at all AC frequency bins at the ADC-input out of AC/DC telemetry data ( TM ) in dBVpeak: Figure 27 amplitudes in dBVp at ADC-input subtract analogue calibration data (ac132rxl.cal for RX low gain, ac132rxh.cal for RX high gain) for RXL: srxl = sADC - ac132rxl.cal for RXH: srxh = sADC - ac132rxh.cal Result: voltage measured at the RX electrodes in dBVpeak versus frequency (amplitude in dB relative to 1 Vpeak versus frequency in Hz) 4.6Lightning = AC Burst (type 132) Measurement principle: take the 80 power spectras calculated during 4.5 (AC spectrum type132) (80 x 64p FFT, sampling frequency =23.04 kHz) within every single spectrum sum up lines to get mean power values for 3 frequency ranges: f1 = ?(Line 1 to Line 16)/16 (without DC line!) (sum of 16 lines) f2 = ?(Line 17 to Line 32)/16 (sum of 16 lines) f3 = ?(Line 33 to Line 63)/32 (sum of 31 lines) logarithmic compression and offset transfer power of 80 x 3 spectral ranges to telemetry 4.6.1Digital Data Processing: Figure 28 Processing - [take 64 samples -> scale (divide by 4) -> apply Hamming Window -> 64p FFT -> Power Spectrum - gives 32 Spectral Lines (L0 - L31) - f1=?(L1 to L8)/8 Sum of 8 Lines f2=?(L9 to L16)/8 Sum of 8 Lines f3=?(L17 to L31)/16 Sum of 15 Lines - Logarithm( ) + Offset Value (0xd80) ] Repeat 80 times - Result: 80 x 3 Spectral Ranges (f1(t0), f2(t0), f3(t0), ...., f1(t79), f2(t79), f3(t79)) Numerical Scaling Figure 29 Note1: The limited resolution of the fixed point DSP adds some small amount of noise to the results, which gives after integration of 16 or 32 lines considerable increase of the numbers given in the table above. The effort to make an analytical calculation of this effect is considered to be to high, hence a simulation using the DSP-simulator was done to verify the calculation performed in the 'real' DSP. The results of the simulation are given in the following table. Note2: The second digit is always 1 (for all values between min and max) and therefore not transmitted in the telemetry data (like a 'hidden 1'). But it has to be taken into account! Results from runs with ADSP simulator: Figure 30 Note: the last two lines in the previous table give wrong results. This is due to the fact that full scale input signals lead to a wrap around in the data result. That means, that signals with very high amplitude can not be distinguished from signals with very low amplitudes! 4.6.2Analogue Calibration of Lightning data (type 132): Figure 31 For analogue calibration, the following Flight Model measurements have been taken into account: Transfer functions from PWA FM RX electrodes to Test point on PWA-A FM (is situated between the buffer and the attenuator) Separate measurements of the gain of the attenuator on PWA-A FM These measurements have been made with a Bruel Kjaer Audio Analyser, Type 2012, in June 1995 at IWF Graz. Files: HASI\CASSINI.FM\FM_TEST\GRAZ0695.FM\ BOOM1RXL.ada BOOM2RXL.ada BOOM1RXH.ada BOOM2RXH.ada Attenuator gain: 0.34 = -9.37042165915 dB from FM-ADP, PWA-FM-DOC-010 Timing measurements performed with a PWA-D and PWA-A bread board model Calibration process: - Take files ac132rxl.cal and ac132rxh.cal (see 4.5.2) - Calculate average gain for the 3 Lightning frequency ranges out of ac132rxl.cal and ac132rxh.cal - Results li132rxl.cal li132rxh.cal (see attachment) timing: distance of lightning measurements = 8.9881 ms (9.0 ms taken for calibration) Result: li132_ti.cal (see attachment) 4.6.3Analogue + Digital Calibration of Lightning data (type 132) within m-pwa software: - Calculate amplitudes for all 3 Lightning frequency ranges at the ADC-input out of Lightning telemetry data ( TM ) in dBVpeak: Figure 32 amplitudes in dBVp at ADC-input subtract analogue calibration data (li132rxl.cal for RX low gain, li132rxh.cal for RX high gain) for RXL: srxl = sADC - li132rxl.cal for RXH: srxh = sADC - li132rxh.cal Result: mean voltage measured for the lightning (type 132) frequency ranges at the RX electrodes in dBVpeak versus time (amplitude in dB relative to 1 Vpeak versus time in seconds) 4.7Acoustic spectrum Measurement principle: sample 80 x 64 points with 15.36 kHz (attention: 9 ms from start sample 128 points to start sample next 128 points -> 6 ms gaps) calculate 80 x 64 point FFT -> calculate 80 power spectras calculate the average of the 80 power spectras logarithmic compression and offset transfer all 32 lines of the averaged power spectrum to telemetry 4.7.1Digital Data Processing: Figure 33 Processing - 64 samples -> divide by 4 -> Hamming Wind. -> 64p FFT -> Power Spectrum - Integration of 80 power spectra - Divide by 16 - Logarithmic compression + Offset Value (0x570) - Result: 32 Spectral Lines (Line 0 - Line 31) Numerical Scaling Figure 34 4.7.2Analogue Calibration of integrated ACU spectrum : Figure 35 Measurement principle: Vented Gage (with reference open to atmosphere) SI-membrane with resistor bridge FM-Sensor: Sensitivity: 0.289mV/mBarVG = 2.89uV/Pa VG (measured by manufact.) FS-Sensor: Sensitivity: 0.275mV/mBarVG = 2.75uV/Pa VG (measured by manufact.) For analogue calibration, the following Flight Model measurements have been taken into account: Sensitivity: 0.289mV/mBarVG = 2.89uV/Pa VG (measured by manufact.) Transfer functions: Figure 36 Files: FM: acufm.prn (20.5.95, B&K2012) -> data extracted manually from printout -> fmacu_bk.asc FS: acup5fs.dat (9.2.97, B&K2012) -> ASCII generated with B&K -> fsacu_bk.asc BAL: acu5.dat (17.11.95, HP35665A) -> ASCII generated with 'sdftoasc.exe' -> acu5.asc Separate measurements of the gain of the attenuator on PWA-A FM (in front of ADC, not included in the transfer function): Figure 37 - Measured attenuator gain: FM: 0.34 = -9.37042166 dB (see FM-ADP) These measurements have been made with a Bruel Kjaer Audio Analyser, Type 2012, at IWF Graz. Calibration process : - Take fsacu_bk.asc transfer function for acoustic amplifier (equal to fm) - Calculate gain on the ACU spectrum frequency bins by interpolation (240Hz - 6.72 kHz with 240 Hz resolution) - Subtract attenuator gain (9.37042165915 dB) - Results au.cal (see attachment) 4.7.3Analogue + Digital Calibration of integrated ACU spectrum data within m-pwa software: - Calculate amplitudes at all ACU frequency bins at the ADC-input out of ACU telemetry data ( TM ) in dBVpeak: Figure 38 amplitudes in dBVp at ADC-input subtract analogue calibration data (au.cal) sACU = sADC - au.cal Result: voltage measured at ACU sensor output in dBVpeak versus frequency (amplitude in dB relative to 1 Vpeak versus frequency in Hz) calculate sound pressur level pACU = sACU - 20*log10(sensitivity [V/Pa]*p0[Pa]) = sACU - 20*log10(0.00000289*0.00002) Result: Sound pressure measured by ACU sensor in dBSPL versus frequency (amplitude in dB relative to p0=20uPa versus frequency in Hz) 4.8Acoustic Burst Measurement principle: take the 80 power spectras calculated during 4.7 (ACU spectrum) (80 x 64p FFT, sampling frequency =15.36 kHz) within every single spectrum sum up lines to get mean power values for 2 frequency ranges: f1 = ?(Line 1 to Line 8)/8 (without DC line!) (sum of 8 lines) f2 = ?(Line 9 to Line 24)/16 (sum of 16 lines) logarithmic compression and offset transfer power of the first 20 (of 80) x 2 spectral ranges to telemetry 4.8.1Digital Data Processing: Figure 39 Processing - 64 samples -> divide by 4 -> Hamming Wind. -> 64p FFT -> Power Spectrum - 32 Spectral Lines (L0 - L31) - f1=?(L1 to L8)/8 (Sum of 8 Lines) f2=?(L9 to L24)/16 (Sum of 16 Lines) - Logarithmic compression + Offset Value (0xd80) - repeat 80 times - Result: 80 x 2 Spectral Ranges (f1(t0),f2(t0),....,f1(t79),f2(t79)) Numerical Scaling Figure 40 Note1: The limited resolution of the fixed point DSP adds some small amount of noise to the results, which gives after integration of 16 or 32 lines considerable increase of the numbers given in the table above. The effort to make an analytical calculation of this effect is considered to be to high, hence a simulation using the DSP-simulator was done to verify the calculation performed in the 'real' DSP. The results of the simulation are given in the following table. Note2: The second digit is always 1 (for all values between min and max) and therefore not transmitted in the telemetry data (like a 'hidden 1'). But it has to be taken into account! Results from runs with ADSP simulator: Figure 41 Note: the last five lines in the previous table give wrong results. This is due to the fact that full scale input signals lead to a wrap around in the data result. That means, that signals with very high amplitude can not be distinguished from signals with very low amplitudes! In practical use this is no problem, because the Acoustic sensor will most probably not deliver output signals of such high amplitudes. Moreover the total power within ACU integrated spectra can be taken as reference to judge if a possible wrap around in ACU burst data may have occurred. 4.8.2Analogue Calibration of ACU burst data : Details of ACU sensor: see 4.7.2 (ACU Spectrum calibration) Timing measurements performed with a PWA-D and PWA-A bread board model Calibration process: - Take file acu.cal (see 4.7.2) - Calculate average gain for the 2 ACU burst frequency ranges out of acu.cal - Results au_burst.cal (see attachment) timing: distance of lightning measurements = 8.9881 ms (9.0 ms taken for calibration) Result: au_btime.cal (see attachment) 4.8.3Analogue + Digital Calibration of ACU burst data within m-pwa software: - Calculate amplitudes both ACU frequency ranges at the ADC-input out of ACU burst telemetry data ( TM ) in dBVpeak: Figure 42 amplitudes in dBVp at ADC-input subtract analogue calibration data (au.cal for RX high gain) sACU = sADC - li132rxl.cal Result: mean voltage measured for the ACU burst frequency ranges at the sensor output in dBVpeak versus time (amplitude in dB relative to 1 Vpeak versus time in seconds) calculate sound pressur level pACU = sACU - 20*log10(sensitivity [V/Pa]*p0[Pa]) = sACU - 20*log10(0.00000289*0.00002) Result: Sound pressure measured for the ACU burst frequency ranges by ACU sensor in dBSPL versus frequency (amplitude in dB relative to p0=20uPa versus frequency in Hz) 5MI-Science Data Packet 5.1Block diagram for MI measurement Figure 43 5.2Timing of MI measurements Figure 44 Page left blank intentionally 5.3MI spectrum Measurement principle sample 25 x 1024 points with 46.08 kHz (attention: between sampling of 1024 points and the next 1024 points gaps of 22.22ms or 44.44 ms for data processing) calculate 25 x 1024 point FFT -> calculate 25 power spectras calculate the average of the 25 power spectras logarithmic compression and offset transfer the first 204 lines of the averaged power spectrum to telemetry (including DC line) 5.3.1Digital Data Processing: Figure 45 Processing - 25 times {take 1024 samples ? scale (1/4) ? calculate 1024p-FFT ? calculate power spectra} - Make sum of 25 power spectra - Scaling (1/16) - Calculate log10(x + offset value (0x570) / 256) (note: offset is used to get only positive numbers) - Result: 512 logarithmic spectral lines (line 0 - line 511, but only 204 are transmitted) Numerical Scaling Figure 46 Signal to Noise The calculation of SADC is based on the calculation of the power spectra. Hence the result will differ from the amplitude calculated from means of real-parts and means of imaginary parts. The reason is due to the fact that averaging of power spectra does not reduce noise levels (scalars are summed up) as strong as averaging of real parts and imaginary parts (vectors are summed up). It may be useful to compare results of amplitude estimation from (.63) and (.73) and express the result as signal to noise ratio. Figure 47 5.3.2Analogue Calibration of integrated MI spectrum : Figure 48 For analogue calibration, the following Flight Model measurements have been taken into account: Transfer functions from PWA FM RX electrodes to Test point on PWA-A FM (is situated between the buffer and the attenuator) Separate measurements of the gain of the attenuator on PWA-A FM These measurements have been made with a Bruel Kjaer Audio Analyser, Type 2012, in June 1995 at IWF Graz. Files: HASI\CASSINI.FM\FM_TEST\GRAZ0695.FM\ BOOM1RXL.ada BOOM2RXL.ada BOOM1RXH.ada BOOM2RXH.ada Attenuator gain: 0.34 = -9.37042165915 dB from FM-ADP, PWA-FM-DOC-010 Calibration process : - Calculate average value from boom1 and boom2 transfer functions for receiver low gain (RXL) and receiver high gain (RXH) - Calculate gain on the MI data frequency bins by interpolation (0 Hz - 9.225 kHz with 45 Hz resolution) - Subtract attenuator gain (9.37042165915 dB) - Results mirxl.cal mirxh.cal (see attachment) 5.3.3Analogue + Digital Calibration of integrated MI spectrum data within m-pwa software: - Calculate amplitudes at all MI frequency bins at the ADC-input out of MI telemetry data ( TM ) in dBVpeak: Figure 49 amplitudes in dBVp at ADC-input subtract analogue calibration data (mirxl.cal for RX low gain, mirxh.cal for RX high gain) for RXL: srxl = sADC - mirxl.cal for RXH: srxh = sADC - mirxh.cal Result: amplitude measured at the RX electrodes in dBVpeak versus frequency (amplitude in dB relative to 1 Vpeak versus frequency in Hz) 5.4MI Amplitude Measurement principle: take the 25 spectras (calculated during 5.3 (MI spectrum) (25 x 1024p FFT, sampling frequency = 46.08 kHz) at the actual TX frequency (usually 45 Hz, also higher frequencies in ground mode) calculate the sum of the 25 real parts and the sum of the 25 imaginary parts of this frequency line. logarithmic compression and offset transfer real and imaginary part to telemetry 5.4.1Digital Data Processing: Figure 50 Processing - 25 times {take 1024 samples ? scale by 1/4 ? calculate 1024p-FFT ? real & imag. parts} - Sum of 25 real parts, sum of 25 imaginary parts at TX-frequency ? RE, IM Data format RE 16.0 unsigned (!)2 IM 16.0 unsigned (!)3 Numerical Scaling Figure 51 5.4.2Analogue Calibration of MI amplitude data : Details of MI receiver analogue path: see 5.3.2 (MI Spectrum calibration) Calibration process: - Take file mi.cal (see 5.3.2) - Take gain at MI transmitter frequency out of mi.cal and use it for calibration of MI amplitude data 5.4.3Analogue + Digital Calibration of MI amplitude data within m-pwa software: - Calculate MI amplitude at the ADC-input out of MI amplitude telemetry data (TMRE and TMIM) in Volts (Vpeak) Figure 52 ..MI amplitude at ADC-input in Volts Divide by gain factor at TX frequency taken from analogue calibration data (calculate gain factor out of gain in dBV first) (mirxl.cal for RX low gain mirxh.cal for RX high gain) Figure 53 Result: voltage measured at MI transmitter frequency in Volts 5.5MI Phase Measurement principle: see MI amplitude 5.5.1Digital Data Processing: Figure 54 5.5.2Analogue Calibration of MI phase data : There is no analog calibration of MI phase available yet. 5.5.3Analogue + Digital Calibration of MI phase data within m-pwa software: Calculate MI phase in [deg] out of telemetry data for actual MI TX frequency (without subtraction of group delay) fi = a tan((TM_1M-32768)/(TM_RE-32768)) ..MI phase in [deg] without considering group delay Make a continuous angle scale by selecting the right quadrant if {(TMRE-32767.5)<0}&{(TMIM-32767.5)<0} -> fi = fi +180.0 if {(TMRE-32767.5)>0}&{(TMIM-32767.5)>0} -> do nothing ! if {(TMRE-32767.5)>0}&{(TMIM-32767.5)<0} -> fi = fi +360.0; if {(TMRE-32767.5)<0}&{TMIM-32767.5)>0} -> fi = fi +180.0 Subtract group delay fi = fi - delta - 90 Correct for going from quadrant 4 to quadrant 1 ( not to end up at -90 deg) If fi<0 -> fi = fi +360.0; 5.6MI Standard Deviation Measurement principle: take the 25 spectres (calculated during 5.3 (MI spectrum) (25 x 1024p FFT, sampling frequency = 46.08 kHz) take real and imaginary parts of the 25 spectres at the actual TX frequency (usually 45 Hz, also higher frequencies in ground mode) calculate standard deviation for the 25 real and 25 imaginary parts transfer SDR (standard deviation for real parts) and SDI (standard deviation for imaginary parts) to telemetry 5.6.1Digital Data Processing: S = Standard deviation - definition of standard deviation Processing - 25 times {1024 samples ? divide by 4 ? 1024p FFT} - Gives 25 real parts, 25 imag. parts at TX-frequency - Calculate standard deviation for 25 real and 25 imaginary parts ? SDR, SDI Figure 55 with: rei , imi .... real and imag. part of emitted freq. in the i-th spectrum ( i= 1..25) note: factor 2 within the square root comes because of multiplication habit of ADSP-2100 Data Format SDI 16.0 unsigned SDR 16.0 unsigned Numerical Scaling Figure 56 Physical value Figure 57 5.6.2Analogue Calibration of MI standard deviation data : Details of MI receiver analogue path: see 5.3.2 (MI Spectrum calibration) Calibration process: - Take file mi.cal (see 5.3.2) - Take gain at MI transmitter frequency out of mi.cal and use it for calibration of MI amplitude data 5.6.3Analogue + Digital Calibration of MI amplitude data within m-pwa software: - Calculate MI standard deviation for real and imaginary part at the ADC-input out of MI amplitude telemetry data (SDR and SDI) in Volts (Vpeak) Figure 58 .Standard Deviations at ADC-input in Volts Divide by gain factor at TX frequency taken from analogue calibration data (calculate gain factor out of gain in dBV first) (mirxl.cal for RX low gain mirxh.cal for RX high gain) Figure 59 Result: Standard deviations of MI amplitude at MI Receiver in Volts (at MI TX frequency) 6RAE-(RADAR) Science Data Packet 6.1Block diagram for RAE measurements Figure 60 6.2Sequence and timing of RAE measurements 6.3Radar Mode estimation Look for blanking pulses (polling via digital port, count number of ADC interrupts) IF no pulses THEN timeout ? sample 104 points ? put them to telemetry (in logarithmic form) IF pulses exist THEN measure time for 2 ramps plus 2 pulses ? calculate Testim IF Testim > 150 THEN Radar Mode = 52 ? do 128pFFT IF Testim > 80 THEN Radar Mode = 26 ? do 64pFFT IF Testim > 38 THEN Radar Mode = 13 ? do 32pFFT IF Testim <=38 THEN Radar Mode = 0 ? 104 logarithmic time samples 6.4Radar spectra / Time samples 6.4.1Digital Data Processing: Processing RM52 - sample 128 points ? scale (divide by 4) ? Hamming Window ? 128pFFT - repeat 8 times (4x ramp1, 4x ramp2) - calculate 8 power spectra - sum up (1x integrate 4 ramp1 power spectra ? 1 spectra , same for ramp2) - Logarithm(spectra) + Offset Value (0x500) - Result: 1 x 64p power spectrum (Line 0 - Line 63), ramp1, 4 times averaged 1 x 64p power spectrum (Line 0 - Line 63), ramp2, 4 times averaged RM26 - sample 64 points ? scale (divide by 4) ? Hamming Window ? 64pFFT - repeat 16 times (8x ramp1, 8x ramp2) - calculate 16 power spectra - sum up (2 x integrate 4 ramp1 power spectra ? 2 spectra, same for ramp2) - Logarithm(spectra) + Offset Value (0x500) - Result: 2 x 32p power spectra (Line 0 - Line 31), ramp1, 4 times averaged 2 x 32p power spectra (Line 0 - Line 31), ramp2, 4 times averaged RM13 - sample 32 points ? scale (divide by 4) ? Hamming Window ? 32pFFT - repeat 32 times (16x ramp1, 16x ramp2) - calculate 32 power spectra - sum up (4 x integrate 4 ramp1 power spectra ? 4 spectra, same for ramp2) - Logarithm(spectra) + Offset Value (0x500) - Result: 4 x 16p power spectra (Line 0 - Line 15), ramp1, 4 times averaged 4 x 16p power spectra (Line 0 - Line 15), ramp2, 4 times averaged RM 0 - sample 104 points - Logarithmic compression + Offset Value (0x500) - Result: 104 Time samples Telemetry data Figure 61 Numerical Scaling for RM52, RM26, RM13-Spectra Figure 62 FIgure 63 Numerical Scaling for RM0 - Time Samples Figure 64 6.4.2Analogue Calibration of Radar spectrum /amplitude: Figure 65 Measured attenuator gain: FM: 0.34 = -9.37042166 dB (see FM-ADP) Files: RM56.cal RM26.cal RM13.cal 6.4.3Analogue + Digital Calibration of Radar spectrum within m-pwa software: - Calculate amplitudes at all RAE frequency bins at the ADC-input out of RAE telemetry data (TM) in dBVpeak: Figure 66 - with RM52: X=32.73, RM26: X=23.09, RM13: X=13.46 -> amplitudes in dBVp at ADC-input subtract analogue calibration data (attenuator gain: -9.37042166 dB) for RXL: srae = sADC - (-9.37042166 dB) Result: voltage measured at the output of the RAE board in dBVpeak versus frequency (amplitude in dB relative to 1 Vpeak versus frequency in Hz) 6.5Radar Altitude estimation 6.5.1Processing RM52 Measure 4 x ramp1 time period -> integrate -> T1avg Measure 4 x ramp2 time period -> integrate -> T2avg RM26 Measure 8 x ramp1 time period -> integrate -> T1avg Measure 8 x ramp2 time period -> integrate -> T2avg RM13 Measure 16 x ramp1 time period -> integrate -> T1avg Measure 16 x ramp2 time period -> integrate -> T2avg RM0 Measure 16 x ramp1 time period -> integrate -> T1avg Measure 16 x ramp2 time period -> integrate -> T2avg Note: there is no direct indication to decide which ramp is ramp1 or ramp2 . But data analysis has shown that the two ramp time periods give always a systematic deviation from Tavg (ramp1 has always smaller periods than ramps 2 or vice versa). This may be used to distinguish between the two ramps. FIgure 67 7Block diagram for Schumann, AC Spectrum and Lightning RP-Science Data Packet 7.1Block diagram for RP measurement Figure 68 7.2Sequence and timing of RP measurements Sampling relative to t0 = slot_sync of packet with slot counter no. 0 t0: Relays switched on (to +5V, -5V or GND), (t0 = Start of slot 0) t0+500ms: take 1 sample of RP1, 1 sample of RP2 t0+1s: switch relays off t0+1.05s: start of fast sampling period for RP1, 40 samples, ?t = 20ms, last fast RP1 sample at t0+1.83s t0+1.06s: start of fast sampling period for RP2, 40 samples, ?t = 20ms, last fast RP2 sample at t0+1.84s t0+2.00011s: start of slow sampling period, every 2s 4samples are taken ( 2 x RP1, 2 x RP2 ) with ?t = 110us t0+2.00011s: 1st RP1 sample, t0+2.00022s: 2nd RP1 sample t0+2.00033s: 1st RP2 sample t0+2.00044s: 2nd RP2 sample t0+4.00011s: next 4 samples . . 2 x 28 slow samples for RP1 2 x 28 slow samples for RP2 (last slow RP sample at t0+56.00044s) 7.3RP data 7.3.1Digital and Analog Data Processing: Figure 69 7.3.2Analogue Calibration of RP data : Measured attenuator gain: FM: 0.34 = -9.37042166 dB (see FM-ADP) Files: Rp_time.asc 7.3.3Analogue + Digital Calibration RP data within m-pwa software: RP = (TM-128)*(4.5V/128)*(-1/0.34) Result: potential at RP1, RP2 electrode versus time (potential in Volts time in seconds) 8Appendix 8.1Schumann Calibration Tables SH131RXH.CAL: frequency[Hz] gain[dBV] 3.0000000e+000 1.1231232e+000 6.0000000e+000 1.8660239e+001 9.0000000e+000 1.9080689e+001 1.2000000e+001 1.9479211e+001 1.5000000e+001 2.0324056e+001 1.8000000e+001 2.0936742e+001 2.1000000e+001 2.1453719e+001 2.4000000e+001 2.1861730e+001 2.7000000e+001 2.2163358e+001 3.0000000e+001 2.2363422e+001 3.3000000e+001 2.2530710e+001 3.6000000e+001 2.2676570e+001 3.9000000e+001 2.2829501e+001 4.2000000e+001 2.2913598e+001 4.5000000e+001 2.2971712e+001 4.8000000e+001 2.3025847e+001 5.1000000e+001 2.3075197e+001 5.4000000e+001 2.3113044e+001 5.7000000e+001 2.3152217e+001 6.0000000e+001 2.3195261e+001 6.3000000e+001 2.3238305e+001 6.6000000e+001 2.3267990e+001 6.9000000e+001 2.3297234e+001 7.2000000e+001 2.3323652e+001 7.5000000e+001 2.3345862e+001 7.8000000e+001 2.3368071e+001 8.1000000e+001 2.3393118e+001 8.4000000e+001 2.3420758e+001 8.7000000e+001 2.3448399e+001 9.0000000e+001 2.3474467e+001 9.3000000e+001 2.3496715e+001 9.6000000e+001 2.3518964e+001 SH132RXH.CAL: frequency[Hz] gain [dBV] 4.5000000e+000 1.5379893e+001 1.0500000e+001 1.9080949e+001 1.6500000e+001 2.0633175e+001 2.2500000e+001 2.1642746e+001 2.8500000e+001 2.2270059e+001 3.4500000e+001 2.2602901e+001 4.0500000e+001 2.2884295e+001 4.6500000e+001 2.2998779e+001 5.2500000e+001 2.3094120e+001 5.8500000e+001 2.3173739e+001 6.4500000e+001 2.3253368e+001 7.0500000e+001 2.3311857e+001 7.6500000e+001 2.3356966e+001 8.2500000e+001 2.3406938e+001 8.8500000e+001 2.3462219e+001 9.4500000e+001 2.3507839e+001 8.2AC Calibration Tables AC131RXL.CAL: f[Hz] gain[dBV] 0.0000000e+000 -2.2547122e+001 1.8000000e+002 -2.2739329e+001 3.6000000e+002 -2.2623667e+001 5.4000000e+002 -2.2584069e+001 7.2000000e+002 -2.2575974e+001 9.0000000e+002 -2.2587158e+001 1.0800000e+003 -2.2619995e+001 1.2600000e+003 -2.2671165e+001 1.4400000e+003 -2.2730775e+001 1.6200000e+003 -2.2803215e+001 1.8000000e+003 -2.2888958e+001 1.9800000e+003 -2.2983322e+001 2.1600000e+003 -2.3088084e+001 2.3400000e+003 -2.3201169e+001 2.5200000e+003 -2.3320585e+001 2.7000000e+003 -2.3452932e+001 2.8800000e+003 -2.3589309e+001 3.0600000e+003 -2.3733429e+001 3.2400000e+003 -2.3882749e+001 3.4200000e+003 -2.4038911e+001 3.6000000e+003 -2.4197893e+001 3.7800000e+003 -2.4363845e+001 3.9600000e+003 -2.4529796e+001 4.1400000e+003 -2.4703450e+001 4.3200000e+003 -2.4878125e+001 4.5000000e+003 -2.5054480e+001 4.6800000e+003 -2.5238268e+001 4.8600000e+003 -2.5422056e+001 5.0400000e+003 -2.5606765e+001 5.2200000e+003 -2.5796452e+001 5.4000000e+003 -2.5986139e+001 5.5800000e+003 -2.6175826e+001 5.7600000e+003 -2.6369803e+001 5.9400000e+003 -2.6565144e+001 6.1200000e+003 -2.6760484e+001 6.3000000e+003 -2.6955825e+001 6.4800000e+003 -2.7153071e+001 6.6600000e+003 -2.7350424e+001 6.8400000e+003 -2.7547777e+001 7.0200000e+003 -2.7745129e+001 7.2000000e+003 -2.7943278e+001 7.3800000e+003 -2.8141820e+001 7.5600000e+003 -2.8340361e+001 7.7400000e+003 -2.8538902e+001 7.9200000e+003 -2.8737444e+001 8.1000000e+003 -2.8935804e+001 8.2800000e+003 -2.9134138e+001 8.4600000e+003 -2.9332472e+001 8.6400000e+003 -2.9530805e+001 8.8200000e+003 -2.9729139e+001 9.0000000e+003 -2.9927002e+001 9.1800000e+003 -3.0124366e+001 9.3600000e+003 -3.0321731e+001 9.5400000e+003 -3.0519096e+001 9.7200000e+003 -3.0716460e+001 9.9000000e+003 -3.0913825e+001 1.0080000e+004 -3.1109481e+001 1.0260000e+004 -3.1303000e+001 1.0440000e+004 -3.1496520e+001 1.0620000e+004 -3.1690040e+001 1.0800000e+004 -3.1883560e+001 1.0980000e+004 -3.2077080e+001 1.1160000e+004 -3.2270600e+001 1.1340000e+004 -3.2462328e+001 AC131RXH.CAL: Frequency[Hz] Gain[dBV] 0.0000000e+000 2.1861713e+001 1.8000000e+002 2.3690484e+001 3.6000000e+002 2.3766160e+001 5.4000000e+002 2.3803052e+001 7.2000000e+002 2.3794139e+001 9.0000000e+002 2.3713297e+001 1.0800000e+003 2.3652444e+001 1.2600000e+003 2.3542072e+001 1.4400000e+003 2.3451618e+001 1.6200000e+003 2.3293423e+001 1.8000000e+003 2.3162570e+001 1.9800000e+003 2.2969404e+001 2.1600000e+003 2.2770397e+001 2.3400000e+003 2.2549192e+001 2.5200000e+003 2.2311809e+001 2.7000000e+003 2.2088314e+001 2.8800000e+003 2.1850878e+001 3.0600000e+003 2.1586662e+001 3.2400000e+003 2.1319833e+001 3.4200000e+003 2.1049564e+001 3.6000000e+003 2.0775720e+001 3.7800000e+003 2.0493044e+001 3.9600000e+003 2.0210367e+001 4.1400000e+003 1.9878162e+001 4.3200000e+003 1.9539391e+001 4.5000000e+003 1.9207067e+001 4.6800000e+003 1.8903297e+001 4.8600000e+003 1.8599526e+001 5.0400000e+003 1.8289948e+001 5.2200000e+003 1.7949015e+001 5.4000000e+003 1.7608083e+001 5.5800000e+003 1.7267150e+001 5.7600000e+003 1.6928905e+001 5.9400000e+003 1.6591515e+001 6.1200000e+003 1.6254125e+001 6.3000000e+003 1.5916735e+001 6.4800000e+003 1.5578925e+001 6.6600000e+003 1.5241092e+001 6.8400000e+003 1.4903259e+001 7.0200000e+003 1.4565426e+001 7.2000000e+003 1.4227559e+001 7.3800000e+003 1.3889677e+001 7.5600000e+003 1.3551794e+001 7.7400000e+003 1.3213911e+001 7.9200000e+003 1.2876028e+001 8.1000000e+003 1.2544220e+001 8.2800000e+003 1.2213314e+001 8.4600000e+003 1.1882408e+001 8.6400000e+003 1.1551502e+001 8.8200000e+003 1.1220596e+001 9.0000000e+003 1.0895302e+001 9.1800000e+003 1.0575941e+001 9.3600000e+003 1.0256581e+001 9.5400000e+003 9.9372210e+000 9.7200000e+003 9.6178608e+000 9.9000000e+003 9.2985007e+000 1.0080000e+004 8.9841008e+000 1.0260000e+004 8.6759013e+000 1.0440000e+004 8.3677018e+000 1.0620000e+004 8.0595024e+000 1.0800000e+004 7.7513029e+000 1.0980000e+004 7.4431034e+000 1.1160000e+004 7.1349039e+000 1.1340000e+004 6.8303036e+000 AC132RXL.CAL: frequency [Hz] gain[dBV] 3.6000000e+002 -2.2623667e+001 7.2000000e+002 -2.2575974e+001 1.0800000e+003 -2.2619995e+001 1.4400000e+003 -2.2730775e+001 1.8000000e+003 -2.2888958e+001 2.1600000e+003 -2.3088084e+001 2.5200000e+003 -2.3320585e+001 2.8800000e+003 -2.3589309e+001 3.2400000e+003 -2.3882749e+001 3.6000000e+003 -2.4197893e+001 3.9600000e+003 -2.4529796e+001 4.3200000e+003 -2.4878125e+001 4.6800000e+003 -2.5238268e+001 5.0400000e+003 -2.5606765e+001 5.4000000e+003 -2.5986139e+001 5.7600000e+003 -2.6369803e+001 6.1200000e+003 -2.6760484e+001 6.4800000e+003 -2.7153071e+001 6.8400000e+003 -2.7547777e+001 7.2000000e+003 -2.7943278e+001 7.5600000e+003 -2.8340361e+001 7.9200000e+003 -2.8737444e+001 8.2800000e+003 -2.9134138e+001 8.6400000e+003 -2.9530805e+001 9.0000000e+003 -2.9927002e+001 9.3600000e+003 -3.0321731e+001 9.7200000e+003 -3.0716460e+001 1.0080000e+004 -3.1109481e+001 AC132RXH.CAL: f[Hz] gain[dBV] 3.6000000e+002 2.3766160e+001 7.2000000e+002 2.3794139e+001 1.0800000e+003 2.3652444e+001 1.4400000e+003 2.3451618e+001 1.8000000e+003 2.3162570e+001 2.1600000e+003 2.2770397e+001 2.5200000e+003 2.2311809e+001 2.8800000e+003 2.1850878e+001 3.2400000e+003 2.1319833e+001 3.6000000e+003 2.0775720e+001 3.9600000e+003 2.0210367e+001 4.3200000e+003 1.9539391e+001 4.6800000e+003 1.8903297e+001 5.0400000e+003 1.8289948e+001 5.4000000e+003 1.7608083e+001 5.7600000e+003 1.6928905e+001 6.1200000e+003 1.6254125e+001 6.4800000e+003 1.5578925e+001 6.8400000e+003 1.4903259e+001 7.2000000e+003 1.4227559e+001 7.5600000e+003 1.3551794e+001 7.9200000e+003 1.2876028e+001 8.2800000e+003 1.2213314e+001 8.6400000e+003 1.1551502e+001 9.0000000e+003 1.0895302e+001 9.3600000e+003 1.0256581e+001 9.7200000e+003 9.6178608e+000 1.0080000e+004 8.9841008e+000 8.3LI (AC Burst) Calibration Tables LI131RXL.CAL: freq.range gain [dBV] 1 -2.2932328e+001 2 -2.5086709e+001 3 -2.9622659e+001 LI131RXH.CAL: freq.range gain [dBV] 1 2.3087270e+001 2 1.9194612e+001 3 1.1451990e+001 LI132RXL.CAL: freq.range gain [dBV] 1 -2.3002058e+001 2 -2.5265021e+001 3 -2.9721320e+001 LI132RXH.CAL: freq.range gain [dBV] 1 2.2943177e+001 2 1.8879380e+001 3 1.1286295e+001 LI131_ti.CAL: time[s] 0.0000000e+000 7.4000000e-003 1.4800000e-002 2.2200000e-002 2.9600000e-002 3.7000000e-002 4.4400000e-002 5.1800000e-002 5.9200000e-002 6.6600000e-002 7.4000000e-002 8.1400000e-002 8.8800000e-002 9.6200000e-002 1.0360000e-001 1.1100000e-001 1.1840000e-001 1.2580000e-001 1.3320000e-001 1.4060000e-001 1.4800000e-001 1.5540000e-001 1.6280000e-001 1.7020000e-001 1.7760000e-001 1.8500000e-001 1.9240000e-001 1.9980000e-001 2.0720000e-001 2.1460000e-001 2.2200000e-001 2.2940000e-001 2.3680000e-001 2.4420000e-001 2.5160000e-001 2.5900000e-001 2.6640000e-001 2.7380000e-001 2.8120000e-001 2.8860000e-001 2.9600000e-001 3.0340000e-001 3.1080000e-001 3.1820000e-001 3.2560000e-001 3.3300000e-001 3.4040000e-001 3.4780000e-001 3.5520000e-001 3.6260000e-001 3.7000000e-001 3.7740000e-001 3.8480000e-001 3.9220000e-001 3.9960000e-001 4.0700000e-001 4.1440000e-001 4.2180000e-001 4.2920000e-001 4.3660000e-001 4.4400000e-001 4.5140000e-001 4.5880000e-001 4.6620000e-001 4.7360000e-001 4.8100000e-001 4.8840000e-001 4.9580000e-001 5.0320000e-001 5.1060000e-001 5.1800000e-001 5.2540000e-001 5.3280000e-001 5.4020000e-001 5.4760000e-001 5.5500000e-001 5.6240000e-001 5.6980000e-001 5.7720000e-001 5.8460000e-001 LI132_ti.CAL: time[s] 0.0000000e+000 9.0000000e-003 1.8000000e-002 2.7000000e-002 3.6000000e-002 4.5000000e-002 5.4000000e-002 6.3000000e-002 7.2000000e-002 8.1000000e-002 9.0000000e-002 9.9000000e-002 1.0800000e-001 1.1700000e-001 1.2600000e-001 1.3500000e-001 1.4400000e-001 1.5300000e-001 1.6200000e-001 1.7100000e-001 1.8000000e-001 1.8900000e-001 1.9800000e-001 2.0700000e-001 2.1600000e-001 2.2500000e-001 2.3400000e-001 2.4300000e-001 2.5200000e-001 2.6100000e-001 2.7000000e-001 2.7900000e-001 2.8800000e-001 2.9700000e-001 3.0600000e-001 3.1500000e-001 3.2400000e-001 3.3300000e-001 3.4200000e-001 3.5100000e-001 3.6000000e-001 3.6900000e-001 3.7800000e-001 3.8700000e-001 3.9600000e-001 4.0500000e-001 4.1400000e-001 4.2300000e-001 4.3200000e-001 4.4100000e-001 4.5000000e-001 4.5900000e-001 4.6800000e-001 4.7700000e-001 4.8600000e-001 4.9500000e-001 5.0400000e-001 5.1300000e-001 5.2200000e-001 5.3100000e-001 5.4000000e-001 5.4900000e-001 5.5800000e-001 5.6700000e-001 5.7600000e-001 5.8500000e-001 5.9400000e-001 6.0300000e-001 6.1200000e-001 6.2100000e-001 6.3000000e-001 6.3900000e-001 6.4800000e-001 6.5700000e-001 6.6600000e-001 6.7500000e-001 6.8400000e-001 6.9300000e-001 7.0200000e-001 7.1100000e-001 8.4ACU Calibration Tables AU.CAL: Frequency [Hz] gain[dBV] 2.4000000e+002 8.5555578e+001 4.8000000e+002 8.5629578e+001 7.2000000e+002 8.5629578e+001 9.6000000e+002 8.5629578e+001 1.2000000e+003 8.5629578e+001 1.4400000e+003 8.5629578e+001 1.6800000e+003 8.5568378e+001 1.9200000e+003 8.5486778e+001 2.1600000e+003 8.5390778e+001 2.4000000e+003 8.5287578e+001 2.6400000e+003 8.5184378e+001 2.8800000e+003 8.5081178e+001 3.1200000e+003 8.4981578e+001 3.3600000e+003 8.4885578e+001 3.6000000e+003 8.4789578e+001 3.8400000e+003 8.4693578e+001 4.0800000e+003 8.4589578e+001 4.3200000e+003 8.4469578e+001 4.5600000e+003 8.4349578e+001 4.8000000e+003 8.4229578e+001 5.0400000e+003 8.4109578e+001 5.2800000e+003 8.3989578e+001 5.5200000e+003 8.3869578e+001 5.7600000e+003 8.3749578e+001 6.0000000e+003 8.3629578e+001 6.2400000e+003 8.3468778e+001 6.4800000e+003 8.3307978e+001 6.7200000e+003 8.3147178e+001 AU_BURST.CAL: sensitivity [V/Pa] .00000289 freq.range gain[dBV] 1 8.5574228e+001 2 8.4493103e+001 AU_BTIME.CAL: time[s] 0.0000000e+000 9.0000000e-003 7.2000000e-002 8.1000000e-002 1.4400000e-001 1.5300000e-001 2.1600000e-001 2.2500000e-001 2.8800000e-001 2.9700000e-001 3.6000000e-001 3.6900000e-001 4.3200000e-001 4.4100000e-001 5.0400000e-001 5.1300000e-001 5.7600000e-001 5.8500000e-001 6.4800000e-001 6.5700000e-001 8.5MI Calibration Tables MIRXL.CAL: frequency [Hz] Gain[dBV] 0.0000000e+000 -2.2095484e+001 4.5000000e+001 -2.2883792e+001 9.0000000e+001 -2.2806941e+001 1.3500000e+002 -2.2767654e+001 1.8000000e+002 -2.2739329e+001 2.2500000e+002 -2.2704147e+001 2.7000000e+002 -2.2672714e+001 3.1500000e+002 -2.2634771e+001 3.6000000e+002 -2.2623667e+001 4.0500000e+002 -2.2607046e+001 4.5000000e+002 -2.2597344e+001 4.9500000e+002 -2.2590863e+001 5.4000000e+002 -2.2584069e+001 5.8500000e+002 -2.2578542e+001 6.3000000e+002 -2.2574312e+001 6.7500000e+002 -2.2575452e+001 7.2000000e+002 -2.2575974e+001 7.6500000e+002 -2.2574489e+001 8.1000000e+002 -2.2575494e+001 8.5500000e+002 -2.2581159e+001 9.0000000e+002 -2.2587158e+001 9.4500000e+002 -2.2594544e+001 9.9000000e+002 -2.2601930e+001 1.0350000e+003 -2.2610757e+001 1.0800000e+003 -2.2619995e+001 1.1250000e+003 -2.2629540e+001 1.1700000e+003 -2.2643411e+001 1.2150000e+003 -2.2657281e+001 1.2600000e+003 -2.2671165e+001 1.3050000e+003 -2.2685622e+001 1.3500000e+003 -2.2700080e+001 1.3950000e+003 -2.2714537e+001 1.4400000e+003 -2.2730775e+001 1.4850000e+003 -2.2748151e+001 1.5300000e+003 -2.2765527e+001 1.5750000e+003 -2.2782903e+001 1.6200000e+003 -2.2803215e+001 1.6650000e+003 -2.2824355e+001 1.7100000e+003 -2.2845495e+001 1.7550000e+003 -2.2866635e+001 1.8000000e+003 -2.2888958e+001 1.8450000e+003 -2.2912549e+001 1.8900000e+003 -2.2936140e+001 1.9350000e+003 -2.2959731e+001 1.9800000e+003 -2.2983322e+001 2.0250000e+003 -2.3008790e+001 2.0700000e+003 -2.3035221e+001 2.1150000e+003 -2.3061653e+001 2.1600000e+003 -2.3088084e+001 2.2050000e+003 -2.3114516e+001 2.2500000e+003 -2.3141767e+001 2.2950000e+003 -2.3171468e+001 2.3400000e+003 -2.3201169e+001 2.3850000e+003 -2.3230871e+001 2.4300000e+003 -2.3260572e+001 2.4750000e+003 -2.3290273e+001 2.5200000e+003 -2.3320585e+001 2.5650000e+003 -2.3353671e+001 2.6100000e+003 -2.3386758e+001 2.6550000e+003 -2.3419845e+001 2.7000000e+003 -2.3452932e+001 2.7450000e+003 -2.3486018e+001 2.7900000e+003 -2.3519105e+001 2.8350000e+003 -2.3553279e+001 2.8800000e+003 -2.3589309e+001 2.9250000e+003 -2.3625339e+001 2.9700000e+003 -2.3661369e+001 3.0150000e+003 -2.3697399e+001 3.0600000e+003 -2.3733429e+001 3.1050000e+003 -2.3769459e+001 3.1500000e+003 -2.3805489e+001 3.1950000e+003 -2.3843708e+001 3.2400000e+003 -2.3882749e+001 3.2850000e+003 -2.3921789e+001 3.3300000e+003 -2.3960830e+001 3.3750000e+003 -2.3999870e+001 3.4200000e+003 -2.4038911e+001 3.4650000e+003 -2.4077951e+001 3.5100000e+003 -2.4116991e+001 3.5550000e+003 -2.4156405e+001 3.6000000e+003 -2.4197893e+001 3.6450000e+003 -2.4239381e+001 3.6900000e+003 -2.4280869e+001 3.7350000e+003 -2.4322357e+001 3.7800000e+003 -2.4363845e+001 3.8250000e+003 -2.4405333e+001 3.8700000e+003 -2.4446820e+001 3.9150000e+003 -2.4488308e+001 3.9600000e+003 -2.4529796e+001 4.0050000e+003 -2.4572444e+001 4.0500000e+003 -2.4616113e+001 4.0950000e+003 -2.4659781e+001 4.1400000e+003 -2.4703450e+001 4.1850000e+003 -2.4747119e+001 4.2300000e+003 -2.4790788e+001 4.2750000e+003 -2.4834457e+001 4.3200000e+003 -2.4878125e+001 4.3650000e+003 -2.4921794e+001 4.4100000e+003 -2.4965463e+001 4.4550000e+003 -2.5009132e+001 4.5000000e+003 -2.5054480e+001 4.5450000e+003 -2.5100427e+001 4.5900000e+003 -2.5146374e+001 4.6350000e+003 -2.5192321e+001 4.6800000e+003 -2.5238268e+001 4.7250000e+003 -2.5284215e+001 4.7700000e+003 -2.5330162e+001 4.8150000e+003 -2.5376109e+001 4.8600000e+003 -2.5422056e+001 4.9050000e+003 -2.5468003e+001 4.9500000e+003 -2.5513950e+001 4.9950000e+003 -2.5559897e+001 5.0400000e+003 -2.5606765e+001 5.0850000e+003 -2.5654187e+001 5.1300000e+003 -2.5701609e+001 5.1750000e+003 -2.5749030e+001 5.2200000e+003 -2.5796452e+001 5.2650000e+003 -2.5843874e+001 5.3100000e+003 -2.5891296e+001 5.3550000e+003 -2.5938717e+001 5.4000000e+003 -2.5986139e+001 5.4450000e+003 -2.6033561e+001 5.4900000e+003 -2.6080982e+001 5.5350000e+003 -2.6128404e+001 5.5800000e+003 -2.6175826e+001 5.6250000e+003 -2.6223297e+001 5.6700000e+003 -2.6272132e+001 5.7150000e+003 -2.6320968e+001 5.7600000e+003 -2.6369803e+001 5.8050000e+003 -2.6418638e+001 5.8500000e+003 -2.6467473e+001 5.8950000e+003 -2.6516308e+001 5.9400000e+003 -2.6565144e+001 5.9850000e+003 -2.6613979e+001 6.0300000e+003 -2.6662814e+001 6.0750000e+003 -2.6711649e+001 6.1200000e+003 -2.6760484e+001 6.1650000e+003 -2.6809320e+001 6.2100000e+003 -2.6858155e+001 6.2550000e+003 -2.6906990e+001 6.3000000e+003 -2.6955825e+001 6.3450000e+003 -2.7005056e+001 6.3900000e+003 -2.7054395e+001 6.4350000e+003 -2.7103733e+001 6.4800000e+003 -2.7153071e+001 6.5250000e+003 -2.7202409e+001 6.5700000e+003 -2.7251747e+001 6.6150000e+003 -2.7301086e+001 6.6600000e+003 -2.7350424e+001 6.7050000e+003 -2.7399762e+001 6.7500000e+003 -2.7449100e+001 6.7950000e+003 -2.7498438e+001 6.8400000e+003 -2.7547777e+001 6.8850000e+003 -2.7597115e+001 6.9300000e+003 -2.7646453e+001 6.9750000e+003 -2.7695791e+001 7.0200000e+003 -2.7745129e+001 7.0650000e+003 -2.7794468e+001 7.1100000e+003 -2.7844008e+001 7.1550000e+003 -2.7893643e+001 7.2000000e+003 -2.7943278e+001 7.2450000e+003 -2.7992914e+001 7.2900000e+003 -2.8042549e+001 7.3350000e+003 -2.8092184e+001 7.3800000e+003 -2.8141820e+001 7.4250000e+003 -2.8191455e+001 7.4700000e+003 -2.8241090e+001 7.5150000e+003 -2.8290726e+001 7.5600000e+003 -2.8340361e+001 7.6050000e+003 -2.8389996e+001 7.6500000e+003 -2.8439632e+001 7.6950000e+003 -2.8489267e+001 7.7400000e+003 -2.8538902e+001 7.7850000e+003 -2.8588538e+001 7.8300000e+003 -2.8638173e+001 7.8750000e+003 -2.8687808e+001 7.9200000e+003 -2.8737444e+001 7.9650000e+003 -2.8787054e+001 8.0100000e+003 -2.8836637e+001 8.0550000e+003 -2.8886221e+001 8.1000000e+003 -2.8935804e+001 8.1450000e+003 -2.8985388e+001 8.1900000e+003 -2.9034971e+001 8.2350000e+003 -2.9084555e+001 8.2800000e+003 -2.9134138e+001 8.3250000e+003 -2.9183721e+001 8.3700000e+003 -2.9233305e+001 8.4150000e+003 -2.9282888e+001 8.4600000e+003 -2.9332472e+001 8.5050000e+003 -2.9382055e+001 8.5500000e+003 -2.9431639e+001 8.5950000e+003 -2.9481222e+001 8.6400000e+003 -2.9530805e+001 8.6850000e+003 -2.9580389e+001 8.7300000e+003 -2.9629972e+001 8.7750000e+003 -2.9679556e+001 8.8200000e+003 -2.9729139e+001 8.8650000e+003 -2.9778723e+001 8.9100000e+003 -2.9828306e+001 8.9550000e+003 -2.9877661e+001 9.0000000e+003 -2.9927002e+001 9.0450000e+003 -2.9976343e+001 9.0900000e+003 -3.0025684e+001 9.1350000e+003 -3.0075025e+001 MIRXH.CAL: frequency [Hz] Gain[dBV] 0.0000000e+000 2.0300166e+001 4.5000000e+001 2.2971712e+001 9.0000000e+001 2.3474467e+001 1.3500000e+002 2.3616508e+001 1.8000000e+002 2.3690484e+001 2.2500000e+002 2.3730340e+001 2.7000000e+002 2.3733957e+001 3.1500000e+002 2.3773996e+001 3.6000000e+002 2.3766160e+001 4.0500000e+002 2.3783666e+001 4.5000000e+002 2.3782497e+001 4.9500000e+002 2.3796327e+001 5.4000000e+002 2.3803052e+001 5.8500000e+002 2.3799983e+001 6.3000000e+002 2.3788375e+001 6.7500000e+002 2.3793019e+001 7.2000000e+002 2.3794139e+001 7.6500000e+002 2.3784658e+001 8.1000000e+002 2.3768380e+001 8.5500000e+002 2.3739386e+001 9.0000000e+002 2.3713297e+001 9.4500000e+002 2.3699249e+001 9.9000000e+002 2.3685200e+001 1.0350000e+003 2.3669113e+001 1.0800000e+003 2.3652444e+001 1.1250000e+003 2.3634825e+001 1.1700000e+003 2.3603813e+001 1.2150000e+003 2.3572802e+001 1.2600000e+003 2.3542072e+001 1.3050000e+003 2.3522899e+001 1.3500000e+003 2.3503725e+001 1.3950000e+003 2.3484552e+001 1.4400000e+003 2.3451618e+001 1.4850000e+003 2.3409895e+001 1.5300000e+003 2.3368171e+001 1.5750000e+003 2.3326448e+001 1.6200000e+003 2.3293423e+001 1.6650000e+003 2.3262847e+001 1.7100000e+003 2.3232272e+001 1.7550000e+003 2.3201696e+001 1.8000000e+003 2.3162570e+001 1.8450000e+003 2.3114278e+001 1.8900000e+003 2.3065987e+001 1.9350000e+003 2.3017696e+001 1.9800000e+003 2.2969404e+001 2.0250000e+003 2.2920059e+001 2.0700000e+003 2.2870172e+001 2.1150000e+003 2.2820284e+001 2.1600000e+003 2.2770397e+001 2.2050000e+003 2.2720510e+001 2.2500000e+003 2.2668211e+001 2.2950000e+003 2.2608702e+001 2.3400000e+003 2.2549192e+001 2.3850000e+003 2.2489682e+001 2.4300000e+003 2.2430173e+001 2.4750000e+003 2.2370663e+001 2.5200000e+003 2.2311809e+001 2.5650000e+003 2.2255935e+001 2.6100000e+003 2.2200061e+001 2.6550000e+003 2.2144187e+001 2.7000000e+003 2.2088314e+001 2.7450000e+003 2.2032440e+001 2.7900000e+003 2.1976566e+001 2.8350000e+003 2.1916932e+001 2.8800000e+003 2.1850878e+001 2.9250000e+003 2.1784824e+001 2.9700000e+003 2.1718770e+001 3.0150000e+003 2.1652716e+001 3.0600000e+003 2.1586662e+001 3.1050000e+003 2.1520608e+001 3.1500000e+003 2.1454554e+001 3.1950000e+003 2.1387400e+001 3.2400000e+003 2.1319833e+001 3.2850000e+003 2.1252265e+001 3.3300000e+003 2.1184698e+001 3.3750000e+003 2.1117131e+001 3.4200000e+003 2.1049564e+001 3.4650000e+003 2.0981997e+001 3.5100000e+003 2.0914430e+001 3.5550000e+003 2.0846390e+001 3.6000000e+003 2.0775720e+001 3.6450000e+003 2.0705051e+001 3.6900000e+003 2.0634382e+001 3.7350000e+003 2.0563713e+001 3.7800000e+003 2.0493044e+001 3.8250000e+003 2.0422375e+001 3.8700000e+003 2.0351705e+001 3.9150000e+003 2.0281036e+001 3.9600000e+003 2.0210367e+001 4.0050000e+003 2.0132241e+001 4.0500000e+003 2.0047548e+001 4.0950000e+003 1.9962855e+001 4.1400000e+003 1.9878162e+001 4.1850000e+003 1.9793469e+001 4.2300000e+003 1.9708776e+001 4.2750000e+003 1.9624083e+001 4.3200000e+003 1.9539391e+001 4.3650000e+003 1.9454698e+001 4.4100000e+003 1.9370005e+001 4.4550000e+003 1.9285312e+001 4.5000000e+003 1.9207067e+001 4.5450000e+003 1.9131124e+001 4.5900000e+003 1.9055182e+001 4.6350000e+003 1.8979239e+001 4.6800000e+003 1.8903297e+001 4.7250000e+003 1.8827354e+001 4.7700000e+003 1.8751411e+001 4.8150000e+003 1.8675469e+001 4.8600000e+003 1.8599526e+001 4.9050000e+003 1.8523584e+001 4.9500000e+003 1.8447641e+001 4.9950000e+003 1.8371698e+001 5.0400000e+003 1.8289948e+001 5.0850000e+003 1.8204715e+001 5.1300000e+003 1.8119482e+001 5.1750000e+003 1.8034249e+001 5.2200000e+003 1.7949015e+001 5.2650000e+003 1.7863782e+001 5.3100000e+003 1.7778549e+001 5.3550000e+003 1.7693316e+001 5.4000000e+003 1.7608083e+001 5.4450000e+003 1.7522849e+001 5.4900000e+003 1.7437616e+001 5.5350000e+003 1.7352383e+001 5.5800000e+003 1.7267150e+001 5.6250000e+003 1.7181948e+001 5.6700000e+003 1.7097601e+001 5.7150000e+003 1.7013253e+001 5.7600000e+003 1.6928905e+001 5.8050000e+003 1.6844558e+001 5.8500000e+003 1.6760210e+001 5.8950000e+003 1.6675863e+001 5.9400000e+003 1.6591515e+001 5.9850000e+003 1.6507168e+001 6.0300000e+003 1.6422820e+001 6.0750000e+003 1.6338473e+001 6.1200000e+003 1.6254125e+001 6.1650000e+003 1.6169778e+001 6.2100000e+003 1.6085430e+001 6.2550000e+003 1.6001083e+001 6.3000000e+003 1.5916735e+001 6.3450000e+003 1.5832300e+001 6.3900000e+003 1.5747842e+001 6.4350000e+003 1.5663384e+001 6.4800000e+003 1.5578925e+001 6.5250000e+003 1.5494467e+001 6.5700000e+003 1.5410009e+001 6.6150000e+003 1.5325551e+001 6.6600000e+003 1.5241092e+001 6.7050000e+003 1.5156634e+001 6.7500000e+003 1.5072176e+001 6.7950000e+003 1.4987717e+001 6.8400000e+003 1.4903259e+001 6.8850000e+003 1.4818801e+001 6.9300000e+003 1.4734342e+001 6.9750000e+003 1.4649884e+001 7.0200000e+003 1.4565426e+001 7.0650000e+003 1.4480968e+001 7.1100000e+003 1.4396501e+001 7.1550000e+003 1.4312030e+001 7.2000000e+003 1.4227559e+001 7.2450000e+003 1.4143089e+001 7.2900000e+003 1.4058618e+001 7.3350000e+003 1.3974147e+001 7.3800000e+003 1.3889677e+001 7.4250000e+003 1.3805206e+001 7.4700000e+003 1.3720735e+001 7.5150000e+003 1.3636264e+001 7.5600000e+003 1.3551794e+001 7.6050000e+003 1.3467323e+001 7.6500000e+003 1.3382852e+001 7.6950000e+003 1.3298381e+001 7.7400000e+003 1.3213911e+001 7.7850000e+003 1.3129440e+001 7.8300000e+003 1.3044969e+001 7.8750000e+003 1.2960499e+001 7.9200000e+003 1.2876028e+001 7.9650000e+003 1.2792399e+001 8.0100000e+003 1.2709673e+001 8.0550000e+003 1.2626946e+001 8.1000000e+003 1.2544220e+001 8.1450000e+003 1.2461493e+001 8.1900000e+003 1.2378767e+001 8.2350000e+003 1.2296040e+001 8.2800000e+003 1.2213314e+001 8.3250000e+003 1.2130587e+001 8.3700000e+003 1.2047861e+001 8.4150000e+003 1.1965134e+001 8.4600000e+003 1.1882408e+001 8.5050000e+003 1.1799681e+001 8.5500000e+003 1.1716955e+001 8.5950000e+003 1.1634228e+001 8.6400000e+003 1.1551502e+001 8.6850000e+003 1.1468775e+001 8.7300000e+003 1.1386049e+001 8.7750000e+003 1.1303322e+001 8.8200000e+003 1.1220596e+001 8.8650000e+003 1.1137869e+001 8.9100000e+003 1.1055143e+001 8.9550000e+003 1.0975142e+001 9.0000000e+003 1.0895302e+001 9.0450000e+003 1.0815462e+001 9.0900000e+003 1.0735621e+001 9.1350000e+003 1.0655781e+001 8.6Radar Calibration Tables RM52.CAL: frequency[Hz] gain[dBV] 3.6000000e+002 -9.3704217e+000 7.2000000e+002 -9.3704217e+000 1.0800000e+003 -9.3704217e+000 1.4400000e+003 -9.3704217e+000 1.8000000e+003 -9.3704217e+000 2.1600000e+003 -9.3704217e+000 2.5200000e+003 -9.3704217e+000 2.8800000e+003 -9.3704217e+000 3.2400000e+003 -9.3704217e+000 3.6000000e+003 -9.3704217e+000 3.9600000e+003 -9.3704217e+000 4.3200000e+003 -9.3704217e+000 4.6800000e+003 -9.3704217e+000 5.0400000e+003 -9.3704217e+000 5.4000000e+003 -9.3704217e+000 5.7600000e+003 -9.3704217e+000 6.1200000e+003 -9.3704217e+000 6.4800000e+003 -9.3704217e+000 6.8400000e+003 -9.3704217e+000 7.2000000e+003 -9.3704217e+000 7.5600000e+003 -9.3704217e+000 7.9200000e+003 -9.3704217e+000 8.2800000e+003 -9.3704217e+000 8.6400000e+003 -9.3704217e+000 9.0000000e+003 -9.3704217e+000 9.3600000e+003 -9.3704217e+000 9.7200000e+003 -9.3704217e+000 1.0080000e+004 -9.3704217e+000 1.0440000e+004 -9.3704217e+000 1.0800000e+004 -9.3704217e+000 1.1160000e+004 -9.3704217e+000 1.1520000e+004 -9.3704217e+000 1.1880000e+004 -9.3704217e+000 1.2240000e+004 -9.3704217e+000 1.2600000e+004 -9.3704217e+000 1.2960000e+004 -9.3704217e+000 1.3320000e+004 -9.3704217e+000 1.3680000e+004 -9.3704217e+000 1.4040000e+004 -9.3704217e+000 1.4400000e+004 -9.3704217e+000 1.4760000e+004 -9.3704217e+000 1.5120000e+004 -9.3704217e+000 1.5480000e+004 -9.3704217e+000 1.5840000e+004 -9.3704217e+000 1.6200000e+004 -9.3704217e+000 1.6560000e+004 -9.3704217e+000 1.6920000e+004 -9.3704217e+000 1.7280000e+004 -9.3704217e+000 1.7640000e+004 -9.3704217e+000 1.8000000e+004 -9.3704217e+000 1.8360000e+004 -9.3704217e+000 1.8720000e+004 -9.3704217e+000 RM26.CAL: frequency[Hz] gain[dBV] 7.2000000e+002 -9.3704217e+000 1.4400000e+003 -9.3704217e+000 2.1600000e+003 -9.3704217e+000 2.8800000e+003 -9.3704217e+000 3.6000000e+003 -9.3704217e+000 4.3200000e+003 -9.3704217e+000 5.0400000e+003 -9.3704217e+000 5.7600000e+003 -9.3704217e+000 6.4800000e+003 -9.3704217e+000 7.2000000e+003 -9.3704217e+000 7.9200000e+003 -9.3704217e+000 8.6400000e+003 -9.3704217e+000 9.3600000e+003 -9.3704217e+000 1.0080000e+004 -9.3704217e+000 1.0800000e+004 -9.3704217e+000 1.1520000e+004 -9.3704217e+000 1.2240000e+004 -9.3704217e+000 1.2960000e+004 -9.3704217e+000 1.3680000e+004 -9.3704217e+000 1.4400000e+004 -9.3704217e+000 1.5120000e+004 -9.3704217e+000 1.5840000e+004 -9.3704217e+000 1.6560000e+004 -9.3704217e+000 1.7280000e+004 -9.3704217e+000 1.8000000e+004 -9.3704217e+000 1.8720000e+004 -9.3704217e+000 RM13.CAL: frequency[Hz] gain[dBV] 1.4400000e+003 -9.3704217e+000 2.8800000e+003 -9.3704217e+000 4.3200000e+003 -9.3704217e+000 5.7600000e+003 -9.3704217e+000 7.2000000e+003 -9.3704217e+000 8.6400000e+003 -9.3704217e+000 1.0080000e+004 -9.3704217e+000 1.1520000e+004 -9.3704217e+000 1.2960000e+004 -9.3704217e+000 1.4400000e+004 -9.3704217e+000 1.5840000e+004 -9.3704217e+000 1.7280000e+004 -9.3704217e+000 1.8720000e+004 -9.3704217e+000 RM0.CAL: time[s] 0.0000000e+000 2.1701389e-005 4.3402778e-005 6.5104167e-005 8.6805556e-005 1.0850694e-004 1.3020833e-004 1.5190972e-004 1.7361111e-004 1.9531250e-004 2.1701389e-004 2.3871528e-004 2.6041667e-004 2.8211806e-004 3.0381944e-004 3.2552083e-004 3.4722222e-004 3.6892361e-004 3.9062500e-004 4.1232639e-004 4.3402778e-004 4.5572917e-004 4.7743056e-004 4.9913194e-004 5.2083333e-004 5.4253472e-004 5.6423611e-004 5.8593750e-004 6.0763889e-004 6.2934028e-004 6.5104167e-004 6.7274306e-004 6.9444444e-004 7.1614583e-004 7.3784722e-004 7.5954861e-004 7.8125000e-004 8.0295139e-004 8.2465278e-004 8.4635417e-004 8.6805556e-004 8.8975694e-004 9.1145833e-004 9.3315972e-004 9.5486111e-004 9.7656250e-004 9.9826389e-004 1.0199653e-003 1.0416667e-003 1.0633681e-003 1.0850694e-003 1.1067708e-003 1.1284722e-003 1.1501736e-003 1.1718750e-003 1.1935764e-003 1.2152778e-003 1.2369792e-003 1.2586806e-003 1.2803819e-003 1.3020833e-003 1.3237847e-003 1.3454861e-003 1.3671875e-003 1.3888889e-003 1.4105903e-003 1.4322917e-003 1.4539931e-003 1.4756944e-003 1.4973958e-003 1.5190972e-003 1.5407986e-003 1.5625000e-003 1.5842014e-003 1.6059028e-003 1.6276042e-003 1.6493056e-003 1.6710069e-003 1.6927083e-003 1.7144097e-003 1.7361111e-003 1.7578125e-003 1.7795139e-003 1.8012153e-003 1.8229167e-003 1.8446181e-003 1.8663194e-003 1.8880208e-003 1.9097222e-003 1.9314236e-003 1.9531250e-003 1.9748264e-003 1.9965278e-003 2.0182292e-003 2.0399306e-003 2.0616319e-003 2.0833333e-003 2.1050347e-003 2.1267361e-003 2.1484375e-003 2.1701389e-003 2.1918403e-003 2.2135417e-003 2.2352431e-003 8.7Relaxation Probe Calibration Tables RP_time.asc: RP1,RP2 timeaxis, absolute terms T0:= switch relays on T0 + 0.5s: voltage on rp1 and rp2 read T0 + 1.0s: relays switched off Sample t-RP1 t-RP2 nr. [T0+ x sec.] [T0+ x sec.] 0 0.5 0.5 1 1.05 1.06 2 1.07 1.08 3 1.09 1.10 4 1.11 1.12 5 1.13 1.14 6 1.15 1.16 7 1.17 1.18 8 1.19 1.20 9 1.21 1.22 10 1.23 1.24 11 1.25 1.26 12 1.27 1.28 13 1.29 1.30 14 1.31 1.32 15 1.33 1.34 16 1.35 1.36 17 1.37 1.38 18 1.39 1.40 19 1.41 1.42 20 1.43 1.44 21 1.45 1.46 22 1.47 1.48 23 1.49 1.50 24 1.51 1.52 25 1.53 1.54 26 1.55 1.56 27 1.57 1.58 28 1.59 1.60 29 1.61 1.62 30 1.63 1.64 31 1.65 1.66 32 1.67 1.68 33 1.69 1.70 34 1.71 1.72 35 1.73 1.74 36 1.75 1.76 37 1.77 1.78 38 1.79 1.80 39 1.81 1.82 40 1.83 1.84 41 2.00011 2.00033 42 2.00022 2.00044 43 4.00011 4.00033 44 4.00022 4.00044 45 6.00011 6.00033 46 6.00022 6.00044 47 8.00011 8.00033 48 8.00022 8.00044 49 10.00011 10.00033 50 10.00022 10.00044 51 12.00011 12.00033 52 12.00022 12.00044 53 14.00011 14.00033 54 14.00022 14.00044 55 16.00011 16.00033 56 16.00022 16.00044 57 18.00011 18.00033 58 18.00022 18.00044 59 20.00011 20.00033 60 20.00022 20.00044 61 22.00011 22.00033 62 22.00022 22.00044 63 24.00011 24.00033 64 24.00022 24.00044 65 26.00011 26.00033 66 26.00022 26.00044 67 28.00011 28.00033 68 28.00022 28.00044 69 30.00011 30.00033 70 30.00022 30.00044 71 32.00011 32.00033 72 32.00022 32.00044 73 34.00011 34.00033 74 34.00022 34.00044 75 36.00011 36.00033 76 36.00022 36.00044 77 38.00011 38.00033 78 38.00022 38.00044 79 40.00011 40.00033 80 40.00022 40.00044 81 42.00011 42.00033 82 42.00022 42.00044 83 44.00011 44.00033 84 44.00022 44.00044 85 46.00011 46.00033 86 46.00022 46.00044 87 48.00011 48.00033 88 48.00022 48.00044 89 50.00011 50.00033 90 50.00022 50.00044 91 52.00011 52.00033 92 52.00022 52.00044 93 54.00011 54.00033 94 54.00022 54.00044 95 56.00011 56.00033 96 56.00022 56.00044 next T0 = T0old + 64s