CASA User Reference & Cookbook

Release 4.7.2

Common Astronomy
Software Applications

Version: March 10, 2017

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice
and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for ver-
batim copying, provided that the entire resulting derived work is distributed under the terms of a permission
notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the
above conditions for modified versions, except that this permission notice may be stated in a translation
approved by AUIL

e CASA homepage: http://casa.nrao.edu

e For help, comments, or corrections, please visit the NRAO helpdesk: http://help.nrao.edu
or http://help.almascience.org for ALMA related questions.

e Data reduction guides are available at http://casaguides.nrao.edu

e For news, updates, critical bugs, subscribe to our CASA mailing lists: http://casa.nrao.
edu/mail_list.shtml

e Join the NRAO Users community on http://science.nrao.edu/forums

http://casa.nrao.edu
http://help.nrao.edu
http://help.almascience.org
http://casaguides.nrao.edu
http://casa.nrao.edu/mail_list.shtml
http://casa.nrao.edu/mail_list.shtml
http://science.nrao.edu/forums

CASA Synthesis & Single Dish Reduction
Reference Manual & Cookbook

Editor: Jirgen Ott — CASA Project Scientist

Jeff Kern — CASA Project Manager

http://casa.nrao.edu

CASA SYNTHESIS & SINGLE DISH REDUCTION
REFERENCE MANUAL & COOKBOOK,
Version March 10, 2017,

(©2017 National Radio Astronomy Observatory

The National Radio Astronomy Observatory is a facility of the National Science Foundation
operated under cooperative agreement by Associated Universities, Inc.

http://casa.nrao.edu

Contents

28

[1.0.1 Reference for Publications| 0. 30
(1.1 About This Releasel. 30
1.2 Obtaining CASA] 31
[1.2.1 What’s New in Release 4.7.20 31
[1.2.1.1 CASA 4.72bugfixes|, 31
1.2.1.2 CASA 471 bugtfixes 32
L.2.1.3 Valid for CASA Release 4.7.0 and later: 32

CAS — -Time Userd 34
[1.3.1 Before Starting CASA| 34
[1.3.1.1 FEnvironment Variables 35
1.3.1.2 Whereis CASAZ. e 36

[1.3.2 Starting CASA| o e 36
[1.3.3 Ending CASA] e 37
[1.3.4 What happens if something goes wrong?|. 37
[1.3.5 Aborting CASA execution|. 37
[1.3.6 What happens if CASA crashes?|, 38
[1.3.7 Python Basics for CASA| 38
371 Variablesl 38
[1.3.7.2 Listsand Ranges|., 39
1373 Indexed 39
[1.3.°74 Indentation|. 40
[1.3.7.5 System shell access| 0. 40
[1.3.7.6 Executing Python scripts| 40

[1.3.8 Getting Help in CASA|. o o 41
[1.3.8.1 TABKkey| e 41
[T.3.8.2 help <taskname>| 41
[1.3.8.3 help and PAGER|. 44
[I.3.8.4 help par.<parameter>| 44
[1.3.8.5 Pythonhelp|o 45

(1.4 Tasks and Tools in CASA[. 45
[1.4.1 What Tasks are Available?l oL 46
[1.4.2 Running Tasks and Tools| ol
[1.4.2.1 Aborting Synchronous Tasks| 52

[1.4.3 Getting Return Values| oo 52

[1.4.4 Running Tasks Asynchronously| 54
[1.4.5 Setting Parameters and Invoking Tasks| 54
[1.4.5.1 The scope of parameters in CASA| 56
[[.452 Thedefault Command 56
(1.4.5.3 The go Command| 58
(1.4.5.4 The inp Command| 58
[1.4.5.5 The saveinputs Command|. 60
(1.4.5.6 The tget Command|. 63
(1.4.5.7 The tput Command|. 63
1458 The .Jastfilel 64

.46 Toolsin CASAl o 64
1.5 Getting the most out of CASA| o 66
[1.5.1 Your command line history| oo 66
[1.5.2 Logging your session| e 66
[1.5.2.1 Startup options for the logger|. 69
[1.5.2.2 Setting priority levels in the logger| 70

[1.5.3 Where are my data in CASAY| 71
[1.5.3.1 How do I get rid of my data in CASAY| 71

[1.5.4 What’s in my data?l 72
[1.5.5 Data Selection in CASAl 72
1.6 From Loading Data to Images|. 0. 73
[1.6.1 Loading Data into CASA| 74
[1.6.1.1 VLA: Filling data from VLA archive format| 74
[1.6.1.2 Filling data from UVFTTS tormat| 74
[1.6.1.3 Loading FITS images| 74
[1.6.1.4 Concatenation of multiple MS| 75

[1.6.2 Data Examination, Editing, and Flaggingl 75
[1.6.2.1 Interactive X-Y Plotting and Flagging|. 75
[1.6.2.2 Flag the Data Non-interactively| 76
[1.6.2.3 Viewing and Flagging the MS| 76

[1.6.3 Calibration| 76
[1.6.3.1 Prior Calibrationl. 0. 7
[1.6.3.2 Bandpass Calibration| 77
[1.6.3.3 Gain Calibration| 78
[1.6.3.4 Polarization Calibration|. 78
[1.6.3.5 Examining Calibration Solutions| 78
[1.6.3.6 Bootstrapping Flux Calibration| 78
[1.6.3.7 Correcting the Datal 79
[1.6.3.8 Splitting the Datal 79
[1.6.3.9 UV Continuum subtractionl 79
[1.6.3.10 Transforming the Data to a new frame| 79

[1.6.4 Synthesis Imaging|o 79
[1.6.4.1 Cleaning a single-field image or a mosaic| 80

[1.6.4.2 Feathering in a Single-Dish image] 80

[1.6.6 Data and Image Analysis| Lo 80
[1.6.6.1 What’sin an image?|.o 81

[1.6.6.2 Image statistics] L o 81

[1.6.6.3 Image values| 81

[1.6.6.4 Moments of an image cube| oL 81

[1.6.6.5 Imagemath| 82

[1.6.6.6 Regridding an Image| 82

[1.6.6.7 Displaying Images| 82

[1.6.7 Getting data and images out of CASA[. 82
2 Visibility Data Import, Export, and Selection| 83
2.1 CASA Measurement Setsl 84
2.1.1 Under the Hood: Structure of the Measurement Setl 85
2.2 Data Import and Export|. 88
[2.2.1 ALMA: Filling of Science Data Model (ASDM) datal 88
2.2.1.1 Import of ASDM data with option lazy=Truq. 93

2.2.2 Janksy VLA: Filling of Science Data Model (ASDM) datal 94
2.2.3 VLA: Filling data from archive format (importvla)| 96
[2.2.3.1 Parameter applytsys| 97
2232 Parameter bandname |o 98
[2.2.3.3 Parameter frequencytol | 98
[2.2.3.4 Parameter project|. oo oo 99
[2.2.3.5 Parameters starttime and stoptime|. 99
2236 Parameter autocorr] 99
2237 Parameter antnamescheme|. 99
2.2.3.8 Parameter evlabands|, 99

2.2.4 Import ATCA and CARMA data). 100
2.2.5 Import MIRIAD visibilities (importmiriad). 100
2.2.6 Import ATCA RPFITS data (importatca)l 101
[2.2.7 UVFITS Import and Export| 102
[2.2.7.1 Import using importuvfits| 102
[2.2.7.2 Import using importfitsidi| 103
[2.2.7.3 Export using exportuvfits| 103

[2.2.8 Handling Measurement Set metadata and datal 105
2.2.9 Summarizing your MS (listobs) 105
2.2.10 MMS summary (listpartition)|. 107
2.2.11 Listing MS data (listvis) 108
2.2.12 Listing and manipulating MS metadata (vishead) 108
2.2.13 MS statistics (visstat)| 110
2.2.14 Concatenating multiple datasets (concat)[. 111
2.3 Data Selectionl 113
[2.3.1 General selection syntax| o 114
[2.3.1.1 String Matchingl o 0oL, 114

232 The field Parameted 115

[2.3.3 The spw Parameter|. o 116
[2.3.3.1 Channel selection in the spw parameter| 117

2.34 The selectdata Parameters| 118
2.3.4.1 The antenna Parameter|. 118
2.3.4.2 The scan Parameter|., 120
[2.3.4.3 The timerange Parameter| 120
[2.3.4.4 The uvrange Parameter|. 121
2.3.45 The correlation Parameter 122
2346 The intent Parameter] 122
2.3.4.7 The observation Parameter] 122
2348 The feed Parameter|. 123
2.3.4.9 Themsselect Parameter] 123

[3 Data Examination and Editing| 124
[3.1 Plotting and Flagging Visibility Data in CASA| 124
[3.2 Managing flag versions with flagmanager| 125
[3.3 X-Y Plotting and Editing of the Data] 126
[3.3.1 MS Plotting and Editing using plotms|. 126
[3.3.1.1 Loading and Selecting Datal. 128
[3.3.1.2 A Briet Note Regarding plotms Memory Usage|. 129
B.3.1.3 Plot Axesl 131
[3.3.1.4 Calibration Library] 133
B.3.1.5 Toolsl e 134
[3.3.1.6 Interactive Flagging in plotms| 135
8.3.1.7 Averaging Data] o o 136
[3.3.1.8 Plot Symbols| 138
13.3.1.9 Summarizing Datal 0o 0oL 138
[3.3.1.10 Defining Frequency and Velocity| 139
[3.3.1.11 Shifting the Phase Center{. 140
[3.3.1.12 Plot Ranges| 140
B.3.1.13 Plot Labelsl 140
B.3.1.14 Grid Lineslo 141
[3.3.1.15 Legend| 141
[3.3.1.16 The Options Tab|., 141
B.3.1.17 TIterationl 141
[3.3.1.18 Overplotting] 142
[3.3.1.19 Plotting Multiple Data Sets|. 142
[3.3.1.20 Saving your plot| o 144
[3.3.1.21 Exiting plotms|.o 144

[3.3.2 Plotting and Editing using plotxy| L. 145
B.32.1 GUIPlot Controll, 148
[3.3.2.2 The selectplot Parameters| 149
13.3.2.3 The iteration parameter| 150
13.3.2.4 The overplot parameter|. 150

13.3.2.5 The plotrange parameter| 150

13.3.2.6 The plotsymbol parameter| 151

13.3.2.7 The showflags parameter| 152

13.3.2.8 The subplot parameter|.00, 153

[3.3.2.9 Averaging in plotXy|.o 153

[3.3.2.10 Interactive Flagging in plotxy| 155

[3.3.2.11 Flag extension in plotxy|« . oo 155

[3.3.2.12 Setting rest frequencies in plotxyl 157

[3.3.2.13 Printing from plotxy| 158

[3.3.2.14 Exiting plotxy|. 159

[3.3.2.15 Example session using plotxy| 159

[3.3.3 Plotting antenna positions using plotants| 162
[3.3.4 Plotting uv-coverages plotuv| oo 162

[3.4 Data Flagging using flagdatal 163
[3.4.1 The action parameter|. L o 164
[3.4.2 Flagging Modes|. 165
[3.4.2.1 Manual Flag/Unflag| 165

BA22 Tisl 166
.................................... 167

8424 Shadowl 167

[3.4.2.5 Quackl. 168

B.4.2.6 Flevationl 169

[3.4.2.7 Tfcrop| 169

4 Rflagl 171

3429 Fxtend 174

[3.4.2.10 Unflagl. 176

[3.4.2. 11 Summary| e e e e e 177

[3.0 Command-based flagging using flagemd| 177
[3.5.1 Input modes inpmode 178
[3.5.1.1 Input mode “table| 178

[3.5.1.2 Input flag mode “list] L 179

13.5.1.3 Input flag mode “zml|o 179

[3.0.2 Operation types action]. 180
13.5.2.1 Apply flags — optype option ‘apply| 180

13.5.2.2 Unapply flags — action option “unapplyl 181

13.5.2.3 List flags — action="list| 181

[3.5.2.4 Plot flags — action="plot| 182

[3.5.2.5 Clear flags — action="clear{ 182

13.5.2.6 Extract Flag Commands— action="extract{. 182

[3.5.3 Flagging command syntax|. L 183

3.6 Browse the Datal 185
[4 Synthesis Calibration| 189
4.1 Calibration Tasksl 189
4.2 The Calibration Process — Outline and Philosophy|. 191

[4.2.1 The Philosophy ot Calibration in CASA| 194

[4.2.2 Keeping Track of Calibration Tables| 194

4.2.3 The Calibration of traditional VLA datain CASAI 195
[4.2.4 lLoading Jansky VLA data in CASA| 196
4.3 Preparing for Calibration| 196
4.3.1 Weight initialization and WEIGHT_SPECTRUM|. 197
[4.3.2 System Temperature and Switched-Power Corrections] 198
4.3.3 Antenna Gain-Flevation Curve Calibrationl 199
[4.3.4 Atmospheric Optical Depth Correction|. 199
4.3.4.1 Determining opacity corrections for modern VLA datal. 200
|4.3.4.2 Determining opacity corrections for VLA data] 201

[4.3.5 Setting the Flux Density Scale using (setjy)| 201
|4.3.5.1 Using Calibration Models for Resolved Sources| 206

[4.3.6 Correction for delay and antenna position offsets using gencal| 209
[4.3.7 Applying Jansky VLA switched power or ALMA T'sys using gencal| 212
[4.3.8 Generate a gain table based on Water Vapor Radiometer data wvrgcal| . . . 213
[4.3.8.1 Statistical parameters shown in the logger output of wvrgcal|. . . . 215
[4.3.8.2 Antenna position calculation|00 216
4.3.8.3 Spectral window selection| L. 216

[4.3.9 Ionospheric corrections|. o 217
[4.3.10 Other a prior: Calibrations and Corrections| 218
4.4 Solving for Calibration — Bandpass, Gain, Polarization| 218
441 Common Calibration Solver Parameters 219
4.4.1.1 Parameters for Specification : vis and caltable| 219
4.4.1.2 Selection: field, spw, selectdata, intent, and observation|. . . 219
4.4.1.3 Prior Calibration and Correction: parang | 220

[4.4.1.4 Previous Calibration: gaintable, gainfield, interp and spwmap | 220
[4.4.1.5 Solving: solint, combine, preavg, refant, minblperant, minsnr | 222

[4.4.1.6 Action: append and solnorm| 224

[4.4.2 Spectral Bandpass Calibration (bandpass)| 225
4.4.2.1 Bandpass Normalization| 226
4422 Bsolutiond 226
4423 BPOLY solutions], 228
4.4.2.4 What if the bandpass calibrator has a significant slope?| 229

4.4.3 Complex Gain Calibration (gaincal)| 229
4.4.3.1 Polarization-dependent Gain (G)[. 230
4.4.3.2 Polarization-independent Gain (T)]. 231
4433 GSPLINE solutions| oo oo 232
4.4.3.4 Antenna Delays — 'K’ solutions| 233
4.4.3.5 Cross-Hand Delays — '"KCROSS’ solutions| 233

[4.4.4 Establishing the Flux Density Scale (fluxscale)| 233
4.4.4.1 Using Resolved Calibrators| 235

[4.4.5 Instrumental Polarization Calibration (D,X)|. 237
[4.4.5.1 Heuristics and Strategies for Polarization Calibration|. 238

4.4.5.2 A Note on channelized polarization calibration| 239

[4.4.5.3 A Polarization Calibration Example - Circular Feed Basis (e.g., |

VLAv>1GHz)|. 240

[4.4.5.4 A Polarization Calibration Example - Linear Feed Basis (e.g., ALMA, |
VLAV <TGHz). 241

[4.4.6 Baseline-based Calibration (blcal)l. 244
4.5 Plotting and Manipulating Calibration Tables| 245
[4.5.1 Plotting Calibration Solutions (plotcal)| 245
[4.5.1.1 Examples for plotcal|. 247

4.5.2 Plotting the Bandpass with (plotbandpass) 251
4.5.3 Listing calibration solutions with (listcal)|. 252
4.5.4 Calibration table statistics (calstat)| 253
4.5.5 Calibration Smoothing (smoothcal){. 254
4.5.6 Calibration Interpolation and Accumulation (accum) 256
4.5.6.1 Interpolation using (accum)|. L. 257

4.5.6.2 Incremental Calibration using (accum)|. 259

4.6 Application of Calibration tothe Datal 261
[4.6.1 Application of Calibration (applycal)l 262
[4.6.2 Examine the Calibrated Datal 265
[4.6.3 Resetting the Calibration Models (delmod and clearcal)| 266
4.7 Other Calibration and UV-Plane Analysis Options| 266
[4.7.1 Splitting out Calibrated uv data (split) 266
[.7.1.1 Averaging in split| 267

4.7.2 Recalculation of uvw values (fixvis)| 268
4.7.3 Hanning smoothing of uv data (hanningsmooth) 269
4.7.4 MStransform (mstransform) 269
[4.7.4.1 Data selection and re-indexing| 270
4.7.4.2 Data partition| o 271
4.7.4.3 On-the-fly calibration| 272
[4.7.4.4 Time average|. e 272
4.7.4.5 Channel averagel 273
4.7.4.6 Hanning smooth| L. 274
4.7.4.7 Combination of spectral windows 274
4.7.4.8 Spectral regridding and reference frame transformation| 274
|4.7.4.9 Separation of spectral windows| o000 275

4.7.5 Model subtraction from uv data (uvsub)|. 275
4.7.6 UV-Plane Continuum Subtraction (uvcontsub) 275
4.7.7 Spectral regridding of the MS (cvel)[. 277
4.7.8 UV-Plane Model Fitting (uvmodelfit). 280
4.7.9 Reweighing visibilities based on their scatter (statwt) 282
4.7.10 Change the signs of visibility phases (conjugatevis)|. 284
[4.7.11 Manipulation of Ephemeris Objects| 284
4.7.11.1 Ephemeris tables|. oo oL 285
[4.7.11.2 Using fixplanets to attach ephemerides to a field of a Measure- |

ment Set] 285

|4.7.11.3 Use of the ephemeris after attachment|. 286

[4.7.11.4 Spectral frame transtormation to the rest frame of the ephemeris |

| object in task cvel| Lo o 286
4.7.11.5 Ephemerides in ALMA datasets| 287

4.8 Examples of Calibration| 287
[5 Synthesis Imaging] 288
b.1 Imaging Tasks Overview| 288
b.2 Common Imaging Task Parameters|. 289
(.21 Parameter cell] L 289
(.22 Parameter fieldl L Lo 290
[0.2.3 Parameter imagename |.o Lo 290
b24 Parameter imsizel.o oo o Lo 290
(.25 Parametermode] Lo 291
0251 Modemfs| 291

(252 Modechannell. 293

[p.2.5.3 Mode frequency|o 294

[5.2.5.4 Mode velocity | 295

[0.2.5.5 Sub-parameter interpolation| 296

(2.6 Parameter resmooth| 296
[5.2.7 Parameter phasecenter |o 296
[0.2.8 Parameter restfreq| L Lo 297
[0.2.9 Parameter spw|. 297
(210 Parameter stokes|. oo oo o Lo 298
[0.2.11 Parameter uvtaper | L 298
[0.2.12 Parameter weighting |. oL oo 299
[5.2.12.1 ’natural’ weighting| 299

[5.2.12.2 uniform’ weighting | 300

[5.2.12.3 ’superuniform’ weighting|. L. 300

[5.2.12.4 ’radial’ weighting |. 300

[5.2.12.5 ’briggs’ weighting |. 301

[0.2.12.6 ’briggsabs’ weighting|. 301

(213 Parameter visl. 302
[5.2.14 Primary beams in imaging | 302

[>.3 Deconvolution using CLEAN (clean)| 303
[5.3.1 Parameter psfmode| oo 306
5.3.1.1 The clark algorithm| 307

[5.3.1.2 The hogbom algorithm|. 307

5.3.1.3 The clarkstokes algorithm| 307

[5.3.2 The multiscale parameter| 307
[5.3.3 Parameter gain| 308
[5.3.4 Parameter imagermode |o o 308
[p.3.4.1 Sub-parameter cyclefactor|. 310

[5.3.4.2 Sub-parameter cyclespeedup| 311

[5.3.4.3 Sub-parameter ftmachine| oL 311

[p.3.4.4 Sub-parameter mosweight | 312

[5.3.4.5 Sub-parameter scaletype| 312

(346 The threshold revisited 313

(3.5 Parameter interactivel 313
B3.6 Parametermask] 314
5.3.6.1 Setting clean boxes| o oL 314

[5.3.6.2 Using clean mask images| 314

[5.3.7 Parameter minpb |o L 314
[5.3.8 Parameter modelimage | Lo 315
(3.9 Parametermiter] 315
[0.3.10 Parameter pbcor | L 315
[p.3.11 Parameter restoringbeam | Lo oL 315
(312 Parameter threshold]. 316
[5.3.13 Parameter gridmode | L o 316
[5.3.14 Interactive Cleaning — Example] 0000000 317
0.3.15 Mosaic Imaging] e e e 320
[5.3.16 Heterogeneous imaging|. e 323
[5.3.17 Polarization imaging| 323
15.3.18 Wide-field imaging and deconvolution in clean| 324
53181 Outlier fields 325

[5.3.18.2 Setting up w-projection|o 326

[5.3.18.3 Setting up faceting|. 326

15.3.18.4 Combination of w-projection and faceting| 326

B4 TRefactored clean: tclean o v v v i 327
[5.5 Primary Beam Correction (impbcor, widebandpbcor) 327
[5.6 Combined Single Dish and Interferometric Imaging (feather) 328
[5.6.1 Visual Interface for feather (casafeather)|. 330

5.7 Making Deconvolution Masks or Box Regions| 332
[5.7.1 Making Deconvolution Regions from an Image (boxit). 333

[p.8 Insert an Image Model (ft) L 333
[5.9 Pre-Gridding Visibilities (msuvbin)| 334
5.10 Image-plane deconvolution (deconvolve)l 335
BT Self-Calibrationl o . o 336
|5.12 Parallelized Cleaning| 336
[5.13 Examples of Imaging| 336
[6 Image Analysis| 337
[6.1 Common Image Analysis Task Parameters|. 339
6.1.1 Input Image (imagename)| 339

6.1.2 Region Selection (boX)| v v it 339

6.1.3 Plane Selection (chans, stokes)|, 340

6.1.4 Lattice Expressions (expr)| 341

6.1.5 Masks (mask)| 342

6.1.6 Regions (region)|. 342

[6.2 Image Header Manipulation (imhead)| 343

[6.2.1 Examples for imhead|. 344

6.3 Image History (imhistory)| 346
6.4 Extracting sub-images (imsubimage)| 347
6.5 Continuum Subtraction on an Image Cube (imcontsub)[. 347
[6.5.1 Examples for imcontsub)| oo Lo 348

[6.6 Image-plane Component Fitting (imfit)[. 349
[6.6.1 Examples for imfit| 350

[6.7 Mathematical Operations on an Image (immath)| 352
[6.7.1 Examples for immath|. 353
6.7.1.1 Simplemath| oo 353

[6.7.1.2 Polarization manipulationl.o o000 355

6.7.2 Using masks in immath| o 356

[6.8 Computing the Moments of an Image Cube (immoments)|. 358
6.8.1 Hints for using (immoments)|. 360

6.8.2 Examples using (immoments)| 360

6.9 Generating Position-Velocity Diagrams (impv)|. 361
6.10 Computing image statistics (imstat) L. 362
[6.10.1 Using the task return value|o oo oo 363
16.10.2 Examples for imstat|. 366

6.11 Extracting data from an image (imval)[. 366
6.12 Reordering the Axes of an Image Cube (imtrans) 369
6.13 Collapsing an Image Along an Axis (imcollapse)| 370
6.14 Regridding an Image (imregrid)| 371
6.15 Redefining the Velocity System of an Image (imreframe)l 372
6.16 Rebin an Image (imrebin)[. Lo o 372
6.17 1-dimensional Smoothing (specsmooth)| 373
6.18 2-dimensional Smoothing; Image Convolution (imsmooth) 374
[6.19 Spectral Line fitting with specfit| oo 376
[6.19.1 Polynomial Fits|. 378
[6.19.2 Lorentzian and Gaussian Fitslo o000 o oL 378
[6.19.2.1 One or more single Gaussian/Lorentzian| 378

6.19.2.2 Gaussian Multiplets| oo 0oL 380

[6.19.3 Pixel-by-pixel fits|. 380

6.20 Spatial Spectral Line Properties (specflux){. 380
6.21 Plot Spectra on a Map (plotprofilemap)| 381
6.22 Calculation of Rotation Measures (rmfit)| 382
6.23 Calculation of Spectral Indices and Higher Order Polynomials (spxfit)[. 383
[6.24 Image Mask Handling makemask| 386
6.25 Search for Spectral Line Rest Frequencies (slsearch) 386
6.26 Convert Exported Splatalogue Catalogs to CASA Tables (splattotable) 388
6.27 Tmage Import/Export to FITS| 389
6.27.1 FITS Image Export (exportfits) 389
6.27.2 FITS Image Import (importfits) 389

16.28 Using the CASA 'Toolkit for Image Analysis| 390
16.29 Examples of CASA Image Analysis| 0. 392

Vi ization With The CASA Vi | 393

[7.1 Starting the Viewer|. e 393
[7.1.1 Running the CASA Viewer outside casal. 394

(7.2 The Viewer Display Panel| 395
[r.2.1 The Main Toolbar| 397
(2.2 The Mouse Toolbarl 398
[7.2.3 The Display Areal. 399
(231 The Animator Panell. 401

[7.2.3.2 The Position Tracking Panel| 401

[7.2.3.3 The Region Manager Panell 402

[7.2.4 Saving and Restoring the Display Panel State] 402

7.3 The Data Manager Panel — Saving and Loading Data] 403
[7.3.1 Loading Datal 404
[7.3.2 Registered vs. Open Datasets| 404
[7.3.3 Image Manager| 405
[7.3.4 Saving Data or Regions| 405

[7.4 Viewing Images| L 407
[7.4.1 Viewing a Raster Map| o 407
[7.4.1.1 Data Display Options — display and hidden axes| 408

[7.4.1.2 Data Display Options — basic settings| 408

[7.4.1.3 Graphical Specification of the Intensity Scalef 411

[7.4.1.4 Data Display Options — other settings| 411

[7.4.1.5 Viewer Canvas Manager — Panels, Margins, and Backgrounds| . . . 411

[7.4.2 Viewing a Contour Map| o 411
[7.4.2.1 Overlay Contours on a Raster Map| 414

[7.4.3 Regions and the Region Manager| 414
[7.4.3.1 Region Creation, Selection, and Deletion| 416

[7.4.3.2 Region Positioning|. 0oL 417

[7.4.3.3 Region Statistics| L 418

[7.4.3.4 Saving and Loading Regions| 419

(7.4.3.5 The Region Fit|., 419

[7.4.3.6 The Region Histogram| 420

[7.4.4 The Spectral Profile Tooll 421
(7.4.4.1 Spectral Profile Toolbar| 422

[7.4.4.2 Main Spectral Profile Window| 424

[7.4.4.3 Spectral-Line Fitting] 426

[7.4.4.4 Line Overlays| 427

[7.4.5 The Brightness Profile Tool| 429
[7.4.6 The Collapse/Moments Tooll 429
[7.4.7 The Histogram Tool| 431
[7.4.8 The Two-D Fitting Tool 432
[7.4.9 Interactive Position-Velocity Diagram Creation| 433

7.5 Viewing Measurement Sets| oo 434
[7.5.1 Data Display Options Panel for Measurement Sets| 435

[7.5.1.1 M5 Options — Basic Settings| 435

[7.5.1.2 MS Options— MS and Visibility Selections| 436

[7.5.1.3 MS Options — Display Axes| 438
[7.5.1.4 MS Options — Flagging Options|. 439
[7.5.1.5 MS Options— Advanced| 441
[7.5.1.6 MS Options — Apply Button| 442
[7.6 Printing from the Viewer| 442
[7.7 Image Viewer (imview) 444
[7.8 Measurement Viewer (mSVIew)| v v v v i i 446
[8 Single-dish Data Processing| 448
8.1 CASA-5SD status, setup and current-issues| 449
[8.1.1 Transition from ASAP scantable formatl 449
[8.1.2 Correlator non-linearity: single dish data betore Cycle 3.|. 449
8.2 SD data-taking in brief|. oo o 450
B3 Overview of SD toolsand tasksl 451
8.4 Overview for Reducing ALMA Single-dish Datal 453
[8.4.1 Brief Description of SD reduction|. L. 453
[8.5 Brief Description of functionality for relevant SD tasks| 457
[8.5.1 Importing and flagging: |
| importnro, importasap, sdflag and sdflagmanager| 457
18.5.2 Calibration and baselining: |

| sdcal, sdcal2, tsdcal, tsdbaseline, sdbaseline, sdbaseline2 and sdgaincallb7
[8.5.3 Gridding and imaging: |
[sdimaging, sdgrid,sdimprocess| 459
[8.5.4 Dataset mathematics and manipulation: |
[sdcoadd ,sdaverage, tsdsmooth, sdmath, sdscale, sdcoadd 461
18.5.5 Fitting: |
[sdfit, tsdfit|. 463
18.5.6 Dataset output: |
[sdplot, sdlist, sdstat]. 463
18.5.7 Data input and output: |
[sdsavel e 463
8.6 Import of NRO data and scantabledatal 464
8.7 Using The ASAP Toolkit | o 464
[8.7.1 Configurable SD Environment Variables| 465
872 ASAP toold 465
[8.7.3 ASAP operation and function descriptions | L. 466
8731 Rasterutall. 466
8732 Data Selectionl L 467
8.7.3.3 State Informationl oo 468
8734 Masks. 469
[8.7.3.5 scantable Management| 0oL, 470
8.7.3.6 scantable Mathematics 470
[8.7.3.7 scantable Save and Export| oo oo 470

[8.7.3.8 Tggscaling|. oo oo 471

8.7.3.9 Flux and Temperature Unit Conversion|

0 Simulation

[9.1 Simulating ALMA observations with simobserve and simanalyze|

9.2 Simulating ALMA observations with simalmal

021

Implementation details|. o

(10 Parallel Processing in CASA|

[110.1 The CASA parallelization scheme|.

0.2 Multi-MS creationl

021 Partitionl

[(10.2.1.1 The createmms parameter|

[10.2.2 Tmportasdm|. e

110.3 Parallelization controll e

[10.3.1 Requirements| L

[10.3.2 Configuration and Start-Up|

[10.3.3 Examples of running CASA in parallel|

[A Appendix: Obtaining, Installing, and Customizing CASA|

ATT12 CASAatNRAOI.,

[A.1.2 Unsupported plattorms| o o

[A.1.3 Download & Unpack| oo

[A.2 Installation on Mac OSl
[A.2.0.1 Using more than one Mac version of CASA|

[A.4 Startup Customization|.

IA.5 Updating the data repository|

(B Appendix: Python and CASA|

[B.5.1 Saving and Reading Dictionaries|

[B.6 Control Flow: Conditionals, Loops, and Exceptions|.

IB.6.1 Conditionals] e

IB.7 System shell access|

[B.7.1 Using the os.system methods|

IB.7.2 Directory Navigation|. o

[B.7.3 Shell Command and Capture|

472
473
475
476

479
479
480
480
480
481
481
481
481
483

485
485
485
486
486
486
486
487
487
488
489
490

[B.9 History and Searchingl o 502

B.10 Macrosl. e 504
[B.11 On-line editing] 505
[B.12 Executing Python scripts| 505
B.13 How do T'exit from CASAZ 506
[C Appendix: Models, Conventions and Reference Frames| 507
|C.1 Flux Density Models for setjy| 507
|C.1.1 Long wavelength calibration|. 507
ICI1.1 Baard 508

[C.1.1.2 Perley 90[. 508

[C.1.1.3 Perley-Taylor 95 508

[C.1.1.4 Perley-Taylor 99, 508

[C.1.1.5 Perley-Butler 2010 oo o 509

[C.1.1.6 Perley-Butler 2013|. 509

[C.1.1.7 Scaite-Heald 20121 o o 509

[C.1.1.8 Stevens-Reynolds 2016] 509

|C.1.2 Short wavelength calibration| 509
IC12.1 Venusl o e e e e e 510

C.1.22 Mard 510

[C.1.2.3 Jupiter] 510

[CI24 Tranud o o e 510

[C.1.2.5 Neptune| 510

C. 126 Tol o 510

[C.1.2.7 Ruropal 510

[C.1.2.8 Ganymede| 510

[C.1.29 Callistol 511

[C 12710 Titanl 0 o o 511

|C.1.2.11 Asteroids Ceres, Pallas, Vesta, Juno| 511

ICI2T1.T Ceresl o o s 511

[C1211.2 Pallasl 511

[CI211.3 Vestal 511

[C12711.4 Junal e 511

[C.1.2.12 References 512

|C.2 Velocity Reference Frames|o oo 512
[C.2.1 Doppler Types| o 512

IC.3 Time Reference Frames o 512
[C4 Coordinate Frames 0 512
[C.5 Physical Units] 513
|C.6 Physical Constants| 513
(D Appendix: CASA Region File Format| 523
ID.1 Region definitions|. e 524
ID.2 Allowed shapes| e 524

D3 Annotation definitiond « o o ot e 525

ID.5 Allowed additional parameters| 0.
[D.6 Examples|
[D.7 Fonts and Symbols|

Appendix: The Measurement Equation and Calibration|

[E.1 The HBS Measurement Equation|
[E.2 General Calibrater Mechanicsl

[F'

Appendix: Data Weights|

[F.1 Introductionl.

[F.2.1 Weights in CASA 4.2.1 and Earlier|.
[F.2.2 Weights in CASA 4.2.2
IF.2.3 Weights in CASA 4.3]
[F.2.4 Weights in CASA 4.4 and later|

Appendix: Cal Library Syntax]|
[GI Tntroductionl.
|G.2 Basic Cal Library Usage|
|G.3 More Advanced Cal Library Usage| o oo o 0oL
G.4 General Rules (current, as of CASA 4.5)[.
G.5 Limitations (current, as of CASA 4.5)
|G.6 Conversion from Existing applycal Scripts|
...
[G71 MSselectionl
(G.7.2 Interpolation/application| L.

|G.7.3 Calibration Mapping|

Appendix: Annotated Example Scripts|

(L

Appendix: CASA Dictionaries|

[.L1 AIPS — CASA dictionary|
[[.2 MIRIAD — CASA dictionaryl
.3 CLIC — CASA dictionary| it s

J

Appendix: Writing Tasks in CASA|

L1 The XML filel 0 0 o
|[J.2 The task yourtask.py file]
[J.3 Example: The cleantaskl oo
I;!‘;i.l l ‘llg: glemll:illll |
[J.3.2 File task_clean.py |

532
532
536

537
937
537
538
539
539
539

540
540
540
542
542
543
943
544
545
545
545

546

547
047
547
047

List of Tables

2.1 Common MS Columns| 87
2.2 Commonly accessed MAIN Table columns|. 87

4.1 Recognized Flux Density Calibrators. Note that the VLA uses J2000 calibrator |
| names. CASA accepts all strings that contain the names below. E.g. "'PKS 1934- |
| 638" will be recognized |o Lo o 204

4.2 ’Butler-JPL-Horizons 2012’ recognized Solar System Objects for Flux Calibration | . 204

[>.1 Combinations of observing band (wavelength,) and antenna array configurations that |
| require w-projection. | L L L e e 324

|C.1 Recognized Flux Density Calibrators. Note that the VLA uses J2000 calibrator |
| names. CASA accepts all strings that contain the names below. E.g. "PKS 1934- |

| 638" will be recognized | L 508
[C.2 Velocity frames in CASA | 513
|C.3 Doppler types in CASA | e 513
IC.4 Time reference frames in CASA | 514

)) CASAL L 515
C.6 Prefixes|. e 516
C.7 STURItS o e 517
[C.7 SIUnits —continued| 518
IC.8 Custom Units| o e 519
[C.8 Custom Units —continued| 520
[C.8 Custom Units —continuedl o v v it 521
|C.9 Physical Constants| 522

| System Temperator and Bandpass, £ is the channel index. ALMA has channelized |

| Toys; EVLA doesmot. |o oo 538
.1 AIPS — CASA dictionaryl e 548
.2 MIRIAD — CASA dictionary] 549
.3 CLIC-CASA dictionary| e 549

20

List of Figures

1.1~ Screen shot of the default CASA inputs for task clean. 60
[I.2 The clean inputs after setting values away from their defaults (blue text). Note that
some of the boldface ones have opened up new dependent sub-parameters (indented

and green). |. . ..o 61

[1.3 The clean inputs where one parameter has been set to an invalid value. This is |

| drawn in red to draw attention to the problem. This hapless user probably contused |

| the “hogbom’ clean algorithm with Harry Potter. | 62

1.4 The CASA Logger GUI window under Linux. Note that under MacOSX a stripped |

| down logger will instead appear asa Console.f 66

[1.50 Using the Search facility in the casalogger. Here we have specified the string |

| >apply’ and it has highlighted all instances in green.|. 67

[1.6 Using the casalogger Filter tacility. The log output can be sorted by Priority, Time, |

| Origin, and Message. In this example we are filtering by Origin using ’clean’, and |

| 1t now shows all the log output from the cleantask,| 68

1.7 CASA Logger - Insert facility: The log output can be augmented by adding notes |

| or comments during the reduction. The file should then be saved to disk to retain |

| these changes.|. 69

[1.8 Flow chart of the data processing operations that a general user will carry out in an |

[end-to-end CASA reduction session. 73

2.1 The contents of a Measurement Set. These tables compose a Measurement Set named |

| ngcb921.demo.ms on disk. This display is obtained by using the File:Open menu |

| in browsetable and left double-clicking on the ngc5921.demo.ms directory,| 86

[3.1 A freshly-started plotms GUI window. Note that the Plots > Data tab is selected, |

| which is discussed in §(3.3.1.11|3.3.1.7 and |3.3.1.9 128

[3.2 The Plots > Axes tab in the plotms GUI window, used to make a plot of Amp |

[versus Channel| 130

[3.3 Plot of amplitude versus time, before (left) and after (right) flagging two marked |

| regions. Lo unflag these regions, mark the two same regions and click the Unflag |

[button 136

[3.4 Overplotting in plotms: T'wo different y-axes have been chosen for this plot, ampli- |

[tude and elevationl 143

21

B5

The plotxy plotter, showing the Jupiter data versus uv-distance. You can see bad

data in this plot. The bottom set of buttons on the lower left are: 1,2,3) Home,

Back, and Forward. Click to navigate between previously defined views (akin to

web navigation). 4) Pan. Click and drag to pan to a new position. 5) Zoom. Click

to define a rectangular region for zooming. 6) Subplot Configuration. Click to

configure the parameters of the subplot and spaces for the figures. 7) Save. Click

to launch a file save dialog box. The upper set of buttons in the lower left

are: 1) Mark Region. Press this to begin marking regions (rather than zooming or

panning). 2,3,4) Flag, Unflag, Locate. Click on these to flag, unflag, or list the

data within the marked regions. 5) Next. Click to move to the next in a series of

iterated plots. Finally, the cursor readout is on the bottom right|.

146

3.6

The plotxy iteration plot. The first set of plots from the example in §[3.3.2.3 with

iteration="antenna’. Each time you press the Next button, you get the next series

of plots.| L

B7

Multi-panel display of visibility versus channel (top), antenna array configuration

(bottom left) and the resulting uv coverage (bottom right). The commands to

make these three panels respectively are: 1) plotry('ngc5921.ms’, zaxis=channel,

datacolumn="data’, field="0’, subplot=211, plotcolor=", plotsymbol="go’) 2) plotzy(’ngc59L1.ms’,

zaxis="r’, field="0’", subplot=223, plotsymbol="r.”), 3) plotxy('ngc5921.ms’, xaxis="u’,

yaxis="v’, field="0", subplot=224, plotsymbol="b,’ figfile="ngc5921_multiplot.png’). | .

154

B3

Plot of amplitude versus uv distance, before (left) and after (right) flagging two

marked regions. The call was: plotzy(vis="ngc5921.ms’, xaxis="uvdist’, field="1445%).

13.9 This figure shows the geometry used to compute shadowed antennas.|. 168

B.10

This screenshot represents a run where ’ttcrop’” was run on a spw=’9" with mainly

narrow-band RFI. RIGHT : An example of protecting a spectral line (in this case,

demonstrated on an RFI spike) by setting the spw-selection to spw="0:0 45:53 63’.

In both figures, the top row indicates the data before flagging, and the bottom row

after lagging.| L

B.11

Example of rflag on narrow-band RFT},

172
174

B12

This screenshot represents a run where ’tfcrop’ was run only on ’"ABS_RR’ (top row)

and followed by an extension along time and correlations (bottom row). [.

[3.13

browsetable: The browser displays the main table within a frame. You can scroll

through the data (x=columns of the MAIN table, and y=the rows) or select a specific

page or row as desired. By default, 1000 rows of the table are loaded at a time, but

you can step through the M5 in batches.|.

186

[3.14 browsetable: You can use the tab for Table Keywords to look at other tables within
| ;!Il I&I:i. 1!!!1 S:z!ll llls:ll !1£2l1t!1§:_g:liszls !!Il ii !!‘!tzls: l!z !is:&& il:i !:!!11! g:Ill:i.l -----------

[3.15

browsetable: Viewing the SOURCE table of the MS.|

A1

Flow chart of synthesis calibration operations. Not shown are use of table manipu-

lation and plotting tasks accum, plotcal, and smoothcal (see Figure|4.2). |

A2

Chart of the table flow during calibration. T'he parameter names for input or output

of the tasks are shown on the connectors. Note that trom the output solver through

the accumulator only a single calibration type (e.g. ’B’, ’G’) can be smoothed,

interpolated or accumulated at a time. accum is optional (and not recommended as

of v4.0). The final set of cumulative calibration tables of all types (accumulated or

as a list of caltables) are then input to applycal as shown in Figure 4.1, |

A3
B4

The weather information for a MS as plotted by the task plotweather.|

Display of the amplitude (upper) and phase (lower) gain solutions for all antennas

5

and polarizations in the ngc5921 post-fluxscale table|

Display of the amplitude (upper), phase (middle), and signal-to-noise ratio (lower)

of the bandpass ’B’ solutions for antenna=’0’ and both polarizations for ngc5921.

Note the falloft of the SNR at the band edges in the lower panel|

A6

Display of the amplitude of the bandpass ’B’ solutions. Iteration over antennas was

turned on using iteration=’antenna’. The first page is shown. The user would

[usethe Next button to advance to the next set of antennas)

n7

The ’amp’ of gain solutions for NGC4826 before (top) and after (bottom) smoothing

with a 7200 sec smoothtime and smoothtype=’mean’. Note that the first solution

1s 1n a different spw and on a different source, and 1s not smoothed together with the

subsequent solutions.|. Lo

255

is

The ’phase’ of gain solutions for NGC4826 before (top) and after (bottom) ’linear’

interpolation onto a 20 sec accumtime grid. The first scan was 3C273 in spw=’0’

while the calibrator scans on 1331+305 were in spw=’1’. The use of spwmap was

necessary to transter the interpolation correctly onto the NGC4826 scans. |.

9

The final ’amp’ (top) and ’phase’ (bottom) of the self-calibration gain solutions for

Jupiter. An initial phase calibration on 10s solint was tollowed by an incremental

gain solution on each scan. These were accumulated into the cumulative solution

shown here. | e

.10

The final >amp’ versus ’uvdist’ plot of the self-calibrated Jupiter data, as shown

in plotxy. The *RR LL’ correlations are selected. No outliers that need flagging are

5V

i1

Use of plotxy to display corrected data (red and blue points) and uv model fit data

(green circles).|

b1

Close-up of the top of the interactive clean window. Note the boxes at the left (where

the iterations, cycles, and threshold can be changed), the buttons that control

add/erase, the application of mask to channels, and whether to stop, complete, or

continue cleaning, and the row ot Mouse-button tool assignment icons.|

309

52

Screen-shots of the interactive clean window during deconvolution of the VLA 6m

Jupiter dataset. We start from the calibrated data, but before any self-calibration.

In the initial stage (left), the window pops up and you can see it dominated by a

bright source in the center. Next (right), we zoom in and draw a box around this

emission. We have also at this stage dismissed the tape deck and Position Tracking

parts of the display (§[7.2]) as they are not used here. We have also changed the

[iterations to 30 for this boxed clean. We will now hit the Next Action Continue |

Cleaning button (the green clockwise arrow) to start cleaning. |

5.3

We continue in our interactive cleaning of Jupiter from where Figure 5.7 lett off. In

the first (left) panel, we have cleaned 30 iterations in the region previously marked,

and are zoomed in again ready to extend the mask to pick up the newly revealed

emission. Next (right), we have used the Polygon tool to redraw the mask around

the emission, and are ready to Continue Cleaning tor another 100 iterations. . . . 319

B4

We continue in our interactive cleaning of Jupiter from where Figure [5.3 lett off. In |

the first (left) panel, it has cleaned deeper, and we come back and zoom in to see |

that our current mask is good and we should clean further. We change npercycle

to 500 (from 100) in the box at upper right of the window. In the final panel (right),

[we see the results after this clean. T'he residuals are such that we should terminate |

the clean using the red X button and use our model for selt-calibration.| 320

55

Atter clean and self-calibration using the intensity image, we arrive at the final |

polarization 1mage of Jupiter. Shown in the viewer superimposed on the intensity |

raster is the linear polarization intensity (green contours) and linear polarization

B-vectors (vectors). The color of the contours and the sampling and rotation by 90

degrees of the vectors was set in the Display Options panel. A LEL expression was |

used in the Load Data panel to mask the vectors on the polarized intensity.| 321

[5.6

Screen-shot of the interactive clean window during deconvolution of the NGC5921

Plane rather than A1l Channels. We have just used the Polygon tool to draw a

|
spectral line dataset. Note where we have selected the mask to apply to the Displayed |
|
I

mask region around the emission in this channel, which will apply to this channel

5.8 The scatter plot in casateather.| L o000 332

¢ " windowl ... 332

6.1

NGC2403 VLA moment zero (left) and NGC4826 BIMA moment one (right) images |

as shown in the viewerlo 361

71

The Viewer Display Panel (left) and the Data Manager (right) panel for a |

regular image or data cube.| Lo Lo 393

72

The Viewer Display Panel (left) and Data Display Options (right) panels with |

a Measurement Set open.] L 395

73

The display panel’s Main Toolbar appears directly below the menus and contains |

‘shortcut’ buttons for most of the frequently-used menu items.| 397

74

The "Mouse Tool’ Bar allows you to assign how mouse buttons behave in the |

1mmage display area. Initially, zooming, color adjustment, and rectangular regions are |

assigned to the left, middle and right mouse buttons. Click on a tool with a mouse |

button to assign that tool to that mouse button.| 398

75

"Preterences” dialog to manually change the docking and size of the viewer panel.| . 400

76

The animator panel, which allows one to scroll along the z axis of a data cube (using

the Channels tape deck) or cycle among open Images. The panel can be undocked

from the main display panel.| o oo 401

77

The position tracking panel, which gives information about the open data cube at the

current location of the cursor. Freeze the position tracking panel using the SPACE

I Y 402
[7.8 The load tab of the Data Manager panel. This appears if you open the viewer |
| without any infile specified, if you use select Open from the Data drop down |
| menu, or click the Open (Folder) icon. You can access the save image or save |
| region tabs from this view or by selecting Save as... tfrom the Data drop down |
| menu. Lhe load tab shows all files in the current directory that can be loaded into |
| the viewer — 1mages, MS, CASA region files, and Display Panel State files.| 403
7.9 The Image Manager.| 406
[7.10 The Save Data panel that appears when selecting the "Save as...” (Figure[7.9)]. . . 406
[7.11 The basic settings category of the Data Display Options panel and the inter- |
| active tool for setting the mapping from intensity to color.. 408
[7.12 Example curves for scaling power cycles. 410
[7.13 A multi-panel display set up through the Viewer Canvas Manager.| 412
[7.14 The Viewer Display Panel (left) and Data Display Options panel (right) after |

choosing contour map from the Load Data panel. The image shown is for channel

11 of the NGC5H921 cube, selected using the Animator tape deck, and zoomed in

category of the Data Display Options panel (as compared to raster image in

using the tool bar icon. Note the different options in the open basic settings

Figure |7.1|i 413

[7.15

The Viewer Display Panel (left) and Data Display Options panel (right) after

overlaying a Contour Map of velocity on a Raster Image of intensity. The image

shown 1s for the moments of the NGC5921 cube, zoomed in using the tool bar icon.

The tab for the contour plot is open in the Data Display Options panel|

[7.16

The Region Manager Panel, which becomes active once at least one region is created.

Cycle through available regions using the slider bar at the bottom and use the various

tabs to adjust, analyze, load, and save regions.|

717

Selecting an image region (done with SHIFT+click). The region can be resized by

dragging the handles or deleted by hitting ESCAPE.|

416

718

The positioning tab in the Region Manager. Use 1t to manually adjust the location,

width, and display style of the selected region.|

[7.19

The statistics tab in the Region Manager.|

[7.20

The save/load tab in the Region Manager.|.

418
419

721

The histogram tab in the Region Manager. Right click to zoom. Hit SHIFT 4

Right Click to adjust the details of the histogram display,|

[7.22

The Spectral Profile panel (right) that appears when pressing the button Open

the Spectrum Profiler in the Main Toolbar and then use the tools to select a

region in the image, such as the rectangular region on the left panel. The Spectral

Profile tool shows the spectrum of the most recent region highlighted and updates

to track movements of the region if moved by dragging with the mouse.|

723

The toolbar for the Spectral Profile tool allows the user to save the spectrum, print or

save the tool as an image, edit preferences (general, tool, legend), spectral smoothing,

pan or zoom around the spectrum, select a range of interest, jump to a channel, or

add a labell

[7.24

Preferences options in the Spectral Profile Tool. From the toolbar, one can access

dialogs to set overall viewer preferences, colors for plotting, how the plot legend 1is

displayed, and spectral smoothing method and kernel width.|.

423

[7.25

The main panel for the Spectral Profile tool. Buttons along the bottom row allow

the axes to be set. Arrow keys pan and dragging out an area with the mouse zooms.

Holding CTRL and right clicking in the spectrum will jump the main Viewer Display

panel to display that frequency channel.| 0.

[7.26

The Spectral Line Fitting tab in the Spectral Profile Tool. The user can fit a combi-

nation of a polynomial and multiple Gaussian components, specifying the range to

be fit (gray region) manually or with a shift-+click+drag. Initial estimates for each

component may be entered by hand or specified via an initial estimates GUI. The

results are output to a dialog and text file with the fit overplotted (here in blue) on

the spectrum (with the possibility to save it to disk).|.

426

727

The lett panel shows the graphical specification of initial estimates for Gaussian

fitting. Slider bars specify the center, FWHM, and peak intensity for the initial

estimate. The right panel shows the verbose output of the fitting.|.

427

[7.28

Line Overlays in the Spectral Profile Tool. The Line Overlay tab, shown at the bot-

tom, allows users to query the CASA copy of the Spaltalogue spectral line database.

Enter the redshift of your source (right panel), select and Astronomical Filter from

the drop down menu, and use shift4click4+drag to select a frequency range (or do so

manually). The ”Search” button will bring up the dialog seen at the left top part

of the 1image, which can in turn be used to graph the candidate lines in the main

Spectral Profile window (here CO v=0).|

428

[7.29

1-dimensional slice of an image. The 1D slicer tool shows the brightness distribution

along line segments.| oo

[7.30

The Collapse/Moments tool, accessed from the Main Toolbar or the Tools drop

down menu. The mean spectrum from the region in the Main Display Panel appears

in the top part of the tool. After selecting a range, a moment to calculate, and

optionally data to exclude click collapse to calculate a new image.|

[7.31

The Histogram tool, accessed from the Main Toolbar or the Tools drop down

menu. Details of the display and included pixels can be manipulated via the menus

along the top of the window. The right hand panel allows one to attempt to fit a

distribution to the histogram.

431

[7.32

The interface to the two dimensional fitting tool (Tools:Fit... or the blue cir-

cles icon). The interface allows you to specify and automatically generate (Find

Sources) initial estimates, to specify the range of pixel values to be included in the

fit, and to specify the output (log file, residual image, and visualization). Click Fit

tostart the fit. e

733

Interactive creation of position-velocity cuts in the viewer. Use the P/V tool from

the Mouse Toolbar to define a cut, then use the pV tool from the Region Manager

Panel to adjust the cut (including the width). Click Generate P/V to build the

position velocity cut and open it in a new Viewer Display Panel (from which it can

be saved to disk).|.o

433

731

The Load Data - Viewer panel as it appears it you select an MS. The only option

available 1s to load this as a Raster Image. In this example, clicking on the Raster

Image button would bring up the dlsplays shown in Flgure |7 | P

the first of the spw in the Dlsplay Panel and have opened up MS and V1s1b111ty

Selections in the Data Display Options panel. The display panel raster is not

tull of visibilities because spw 0 1s continuum and was only observed for the first few

scans. This is a case where the different spectral windows have different numbers of

channels alsold s

[7.36

The MS for NGC4826 from Figure [7.35) now with the Display Axes open in the

Data Display Options panel. By detault, channels are on the Animation Axis

and thus in the tapedeck, while spectral window and polarization are on the

Display Axessliders. |.

737

The MS for NGC4826, continuing from Figure [7.36. We have now put spectral

window on the Animation Axis and used the tapedeck to step to spw 2, where we

see the data from the rest of the scans. Now channels is on a Display Axes slider,

which has been dragged to show Channel 33.|

439

[7.38

Printing the display to a hardcopy of a file. From the Viewer Print Manager,

located in top right here and accessed by the print icon or from the Data drop down

menu, you can use the Save button to save an image or Print directly to a printer.

To achieve the best results, it is often helpful to adjust the settings in the Data

Display Options and Viewer Canvas Manager, shown at right.|

B1

Observations modes for science observations A) Left where the OFF position is

distant from the target field, and calibrator observations B), Right where the OFF

positions are extracted from the edges of the scanned area.|

82

General steps for processing both calibrator and science data, and applying cali-

brations to science data. The right-most column describes the CASA 4.7 tasks called

(or keywords set =T, in the case of bdflags2MS) during each stagef.

454

Chapter 1

Introduction

This document describes how to calibrate and image interferometric and single-dish radio astro-
nomical data using the CASA (Common Astronomy Software Application) package. CASA is a
suite of astronomical data reduction tools and tasks that can be run via the IPython interface to
Python. CASA is being developed in order to fulfill the data post-processing requirements of the
ALMA and EVLA projects, but also provides basic and advanced capabilities useful for the analysis
of data from other radio, millimeter, and submillimeter telescopes.

You have in your hands the latest release of CASA. This package is under active development, and
thus there are a number of caveats and limitations for the use of this package. See the release notes
(8 below for more information, and pay heed to the numerous ALERTS placed throughout
this reference. You can expect regular updates and patches, as well as increasing functionality.

This user reference and cookbook is a task-based walk-

through of interferometric data reduction and analysis. In Inside the Toolkit:

CASA, tasks represent the more streamlined operations | Throughout this user reference, we
that a typical user would carry out. The idea for having |will occasionally intersperse boxed-
tasks is that they are simple to use, provide a more familiar | off pointers to parts of the toolkit
interface, and are easy to learn for most astronomers who |that power users might want to ex-
are familiar with radio interferometric data reduction (and plore.

hopefully for novice users as well). In CASA, the tools pro-
vide the full capability of the package, and are the atomic
functions that form the basis of data reduction. These tools augment the tasks, or fill in gaps left by
tasks that are under development but not yet available. See the CASA Toolkit Manual for more
details on the tools (available from casa.nrao.edu). Note that in most cases, the tasks are Python
interface scripts to the tools, but with specific, limited access to them and a standardized interface
for parameter setting. The tasks and tools can be used together to carry out more advanced data
reduction operations.

For the moment, the audience is assumed to have some basic grasp of the fundamentals of synthesis
imaging, so details of how a radio interferometer or telescope works and why the data needs to
undergo calibration in order to make synthesis images are left to other documentation — a good

28

CHAPTER 1. INTRODUCTION 29

place to start might be Synthesis Imaging in Radio Astronomy II (1999, ASP Conference Series
Vol. 180, eds. Taylor, Carilli & Perley).

This reference is broken down by the main phases of data analysis:

e data import, export, and selection (Chapter [2)),

e examination and flagging of data (Chapter (3),

e interferometric calibration (Chapter [4]),

e interferometric imaging (Chapter [5)),

e image analysis (Chapter @, and

e data and image visualization (Chapter [7)).

e single dish data analysis (Chapter , and

e simulation (Chapter [9).
These are included for users that will be doing EVLA and ALMA telescope commissioning and
software development.

The general appendices provide more details on what’s happening under the hood of CASA, as
well as supplementary material on tasks, scripts, and relating CASA to other packages. These
appendices include:

e obtaining and installing CASA (Appendix ,
e more details about Python and CASA (Appendix ,

a list of used models, conventions, and reference frames (Appendix |C]),

a description of the CASA region format (Appendix @,

e a discussion of the Hamaker-Bregman-Sault Measurement Equation (Appendix ,

annotated scripts for typical data reduction cases (Appendix , and

CASA dictionaries to AIPS, MIRIAD, and CLIC (Appendix .

Writing your own CASA Task (Appendix |J)).
The CASA User Documentation includes:

e CASA User Reference & Cookbook — this document, a task-based data analysis walk-
through and instructions;

e CASA in-line help — accessed using help in the casapy interface;

CHAPTER 1. INTRODUCTION 30

e The CASA Toolkit Reference Manual — details on a specific task or tool does and how
to use it.

e The CASA Task Reference Manual — the information from the inline help and task
documentation, available online in HTML.

The CASA home page can be found at:
http://casa.nrao.edu

From there you can find documentation and assistance for the use of the package, including the
User Documentation. You will also find information on how to obtain the latest release and receive
user support.

There is also a CASAGuides Wiki
http://casaguides.nrao.edu

that contains helpful information on CASA startup, AIPS-to-CASA cheat sheet, example scripts
of processing your data in CASA, along with hints and tricks to best use this package.

1.0.1 Reference for Publications

If you use CASA for any of your data reduction or analysis, you may use the following reference:

McMullin, J. P., Waters, B., Schiebel, D., Young, W., & Golap, K. 2007, Astronomical Data
Analysis Software and Systems XVI (ASP Conf. Ser. 376), ed. R. A. Shaw, F. Hill, & D. J. Bell
(San Francisco, CA: ASP), 127

1.1 About This Release

CASA 4.7.2 is a second patch for 4.7.0 that fixes a CASA

4.7.1 bug concerning the restoration of mosaics in tclean. ALERT

The primary beam correction was inadvertently applied |Boxes like this will bring to your
to the model image, which causes problems during clean- | attention some of the features (or
ing and causes the output restored image to have the pri- |]5ck thereof) in the current release
mary beam corrected model added to uncorrected residu- |of CASA. There are also ALERT
als, which is incorrect. This behavior is independent of the | otes in the text.

value of the pbcor parameter (for mosaics the pbcor="True
option is not yet implemented). The issue only occurred in CASA 4.7.1.; 4.7.0 is not affected.

CASA 4.7.1 includes the most recent official VLA data calibration pipeline (including a correction
for the online tropospheric delay bug, see below). It also contains the candidate ALMA Cycle 4
pipeline patch, although this has not yet been accepted for operations use.

http://casa.nrao.edu
http://casaguides.nrao.edu

CHAPTER 1. INTRODUCTION 31

Important bug fixes in CASA 4.7.1 and the featurs that were introduced in 4.7.0 are listed below.
We occasionally issue patches and 'pre-release’ versions of CASA. To get notified, please subscribe to
the 'casa-users’ mailing list. All CASA versions are available at http://casa.nrao.edul Releases
will be announced via the 'casa-announce’ mailing list. To subscribe, please visit http://casa.
nrao.edu. For feedback, and help please go to the NRAO helpdesk http://help.nrao.edu; for
ALMA questions please use the ALMA helpdesk http://help.almascience.org.

Note that in its current incarnation CASA is designed to support Karl G. Jansky VLA, ALMA,
and older VLA data, as well as single dish data from ALMA as well as Nobeyama. Data from other
telescopes, be it single dish or interferometers can be imported from uvfits, FITS-IDI , or sdfits
formats into Measurements Sets (MS) or scantables in CASA. Given the variety of non-standard
fits formats, we cannot guarantee that CASA will fully support data from all telescopes. However,
efforts are made to support data formats from other facilities.

1.2 Obtaining CASA
CASA is available for the following operating systems:

e Linux

— Red Hat 7
— Red Hat 6

e Mac OS

— Mac OS 10.11 (Yosemite)
— Mac OS 10.10 (Maverick)

The above OSs are the ones that we use to test the CASA package. Other flavors of Linux may
work, too. We now support Mac OS 10.11 but discontinued support for 10.9 (although the 10.10
dmg may work). RedHat 5 will be discontinued next release when we plan to support RedHat 7.

The latest and previous releases can be downloaded from our CASA home page: http://casa.

nrao . edu, following the ’Obtaining CASA’ link (direct link: http://casa.nrao.edu/casa_obtaining.

shtml.

1.2.1 What’s New in Release 4.7.2

1.2.1.1 CASA 4.7.2 bug fixes

e fixing a bug where a primary beam correction was applied to the model image in tclean

http://casa.nrao.edu
http://casa.nrao.edu
http://casa.nrao.edu
http://help.nrao.edu
http://help.almascience.org
http://casa.nrao.edu
http://casa.nrao.edu
http://casa.nrao.edu/casa_obtaining.shtml
http://casa.nrao.edu/casa_obtaining.shtml

CHAPTER 1. INTRODUCTION 32

1.2.1.2 CASA 4.7.1 bug fixes

In addition to delivering updated ALMA and VLA pipelines, we fixed the following bugs in CASA:

e Added a correction for the tropospheric delay bug that affects VLA data taken between
August 9, 2016, and November 14, 2016. The fix is included in gencal when used with
caltype="antpos’.

e A non-standard record of center versus reference frequencies in MTMFS images and FITS
files has been resolved.

e importasdm is not failing anymore in the case of mismatched and in particular missing BDF's
(this bug was most visible for bdfflags).

e Improved divergence checks in tclean based on peak residuals

e tclean pblimit can now be set as a negative number to omit the application of a Boolean
mask in images and residuals.

1.2.1.3 Valid for CASA Release 4.7.0 and later:

Major feature improvements over the previous version of CASA include:

e Imaging

— tclean is a new imaging task, eventually replacing clean. It has a new, more straightfor-
ward interface, allows more combinations of algorithms, include options for output files,
has a more flexible outlier approach, and includes algorithms for autoboxing. tclean
modes that have been commissioned include mfs with nterms=1€42 for both, the stan-
dard and mosaic gridders, and spectral line mode cube with the hogbom deconvolver in
the LSRK frame. We also tested the common option of restoringbeam and as well as
multi-scale clean. Commissioning of additional modes are currently underway, including
support for parallel computing. If you find any problems with tclean please send us a
note through the CASA helpdesk.

e Data examination/editing/import/export

plotms for calibration tables is now capable to display tsys, spgain, tec, and SNR axes
— polarization selection for calibration tables in plotms

— plotms has a new option to average across fields

plotms displays the reference frame for frequency axes

— plotms has now the ability to set font size for labels

height, width and dpi has been added to the plotms task export feature

plotms does now allow one to iterate over correlation

CHAPTER 1. INTRODUCTION 33

pre-averaging in flagdata

e Calibration

setjy is now performing linear interpolation of model values
new asteroid flux models are now available in setjy

new standard ”Stevens-Reynolds 2016” for an updated flux density polynomial of 1934-
638

new cb.createcaltable tool method to create empty calibration table

e Data and Image Manipulation

New task: plotprofilemap to show a ”profile map” of CASA image data, as spectra
binned up over user-defined boxsize, in RA/Dec.

msmd can retrieve spw ids from spw names

improved image processing histories are now recorded in CASA images
imsubimage has options to drop degenerate axes

imhead now also returns a python dictionary

immath allows specification of an image that is used to define the metadata of the output
image

imsmooth scales images with units Jy/beam and Jy/beam.km/s via the inverse of their
beams but leaves images with other units unscaled by default

e Data analysis

new task specflux reports spectral line characteristics when averaged over a region
ia.findsources does now accept Jy/beam.km/s images
masks will be stretched individually when they are used in immath LEL expressions

improved ASCII file output format for imfit

e Viewer

The precision of the spectral coordinate labeling can now be selected

contour thickness can be set in imview

e Single Dish

New task: sdgaincal: Uses mode=’doublecircle’ and interpolates time-dependet gain
variation for Fast-Mapped Double circle observations.

New task: importnro: Convert Nobeyama NOSTAR format to ASDM format.

New task/parameter in sdimaging: clipminmaz; rejects the maximum and minimum
values of the data ensemble used to compute pixel values during gridding.

Extended task: sdimaging accepts and rounds float values input to imsize and cellsize

CHAPTER 1. INTRODUCTION 34

— Extended task: sdimaging selects target intents by default

— New fitmode in tsdfit: fitmode=’auto’; auto-detect line emission and return gaussian
fit characteristics

— New function/parameter in sdbaseline: blfunc="’sinusoid’; enables removal of selected
(or dominant) fourier components from spectral data.

— New calmode in tsdcal: calmode="otf” Generation of sky calibration table assuming
integrations at a map edge as off source measurements. Map edge detection is operated
on the offset coordinate with respect to the source for known moving sources, e.g., Sun,
Moon, etc.”

e Performance
— Parallelization of tclean is still underway

e Other
— new Jansky VLA beams are now available
e Experimental tasks

— tclean testing of some modes is still underway, this includes parallelization of the imag-
ing processes
— new task: visstat2 (MS-format replacement for sdstat and visstat)

— mstransform has an experimental addition to perform continuum subtraction

For known issues with this release please visit the CASA webpages:
http://casa.nrao.edu/release_ki.shtml

1.3 CASA Basics — Information for First-Time Users

This section assumes that CASA has been installed on your LINUX or OSX system. See Appendix|[A]
for instructions on how to obtain and install CASA.

1.3.1 Before Starting CASA

First, you will most likely be starting CASA running from a working directory that has your data
in it, or at least where you want your output to go. It is easiest to start from there rather than
changing directories inside casa. ALERT: There is at least one task (plotxy) that fails if the
path to your working directory contains spaces in its name, e.g. /users/smyers/MyTest/ is fine,
but /users/smyers/My Test/ is not! Please use our new task plotms whenever possible and we
may work on a better handling of spaces in path names.

If you have done a default installation under Linux using rpms, or on the Mac with the CASA
application, then there should be a sh script called casa in the /usr/bin area which is in your

http://casa.nrao.edu/release_ki.shtml

CHAPTER 1. INTRODUCTION 35

path. This shell will set up its environment and run the version of casa that it points to. If this is
how you set up the system, then you need to nothing further and can run casa.

For internal NRAO users we keep different version of CASA, the latest “casa” release, the “casa-
stable” “Stable” version that is more developed than the Release but without the full documentation
(and no GUT testing). We also offer the “Test” version, “casa-test”, which is produced on a roughly
weekly basis with all the latest code but it underwent much less rigorous testing. Instructions how

to run the different versions at NRAO can be found on our http://casa.nrao.edu webpages under
the “CASA at NRAO?” link for the different NRAO sites.

1.3.1.1 Environment Variables

Before starting up casa, you should set or reset any environment variables needed, as CASA will
adopt these on startup. For example, the PAGER environment variable determines how help is
displayed in the CASA terminal window (see §[1.3.8.3). The choices are less, more, and cat.

In bash, pick one of

PAGER=1less
PAGER=more
PAGER=cat

followed by
export PAGER
In csh or tcsh, pick one of

setenv PAGER less
setenv PAGER more
setenv PAGER cat

The actions of these are as if you were using the equivalent Unix shell command to view the help
material. See §[1.3.8.3| for more information on these choices. We recommend using the cat option
for most users, as this works smoothly both interactively and in scripts.

Some CASA processes will work on a large number of temporary files. The OS, however, may have
a built-in limit on the number of such files. We recommend to increase the limit to > 1024. A
command like

ulimit -n 2048

should give CASA enough accessible files to run successfully.

CHAPTER 1. INTRODUCTION 36

1.3.1.2 Where is CASA?

Note that the path to the CASA installation, which contains the scripts and data repository, will
also depend upon the installation. With a default installation under Linux this will probably be in

/usr/1ib64/casa/

If the unpacked tarball is placed somewhere else, one may add the PATH variable to include, e.g.
export PATH=$PATH:/<path>/casa-<version>/bin

for bash and
set path = ($path /<path>/casa-<version>/bin)

in csh shell.
In a Mac OSX default install it will likely be an application in the Applications folder.

You can find the location after initialized by looking at the CASAPATH environment variable. You
can find it within casa by

pathname=os.environ.get (’CASAPATH’) .split () [0]
print pathname

1.3.2 Starting CASA

After having run the appropriate casainit script, CASA is started by typing
casa
on the UNIX command line, e.g.

casa

After startup information, you should get an IPython

CASA <1>:

command prompt in the xterm window where you started CASA. CASA will take approximately 10
seconds to initialize at startup in a new working directory; subsequent startups are faster. CASA
is active when you get a

CASA <1>

prompt in the command line interface. You will also see a logger GUI appear on your Desktop
(usually near the upper left).

You also have the option of starting CASA with various logger options (see §[1.5.2.1)). For example,
if you are running remotely in a terminal window without an X11 connection, or if you just do not
want to see the logger GUI, and want the logger messages to come to your terminal, do

casa --nologger --log2term

See § for information on the logger in general.

CHAPTER 1. INTRODUCTION 37

1.3.3 Ending CASA

You can exit CASA by typing quit. This will bring up the query
Do you really want to exit ([yl/n)?

to give you a chance in case you did not mean to exit. You can also quit using %exit or CTRL-D.

If you don’t want to see the question "Do you really want to exit [y]l/n?", then just type
Exit or exit and CASA will stop right then and there.

1.3.4 What happens if something goes wrong?

ALERT: Please check the CASA Home Page for Release Notes and FAQ information including
a list of known problems. If you think you have encountered an unknown problem, please consult
the CASA HelpDesk (contact information on the CASA Home Page). See also the caveats to this
Release (§ for pointers to our policy on User Support.

First, always check that your inputs are correct; use the

help <taskname>

(§[1.3.8.2) or

help par.<parameter name>

(§[1.3.8.4) to review the inputs/output.

1.3.5 Aborting CASA execution

If something has gone wrong and you want to stop what is executing, then typing CTRL-C (Control
and C keys simultaneously) will usually cleanly abort the application. This will work if you are
running a task synchronously. If this does not work on your system then try CTRL-Z to put the
task or shell in the background, and then follow up with a kill -9 <PID> where you have found
the relevant casa process ID (PID) using ps (see § [1.3.6] below).

If the problem causes CASA to crash, see the next sub-section.
See § for more information on running tasks.

Alert: CTRL-C while a tasks runs can corrupt your input data file, e.g. when a scratch column is
filled while aborting. If in doubt, wait until the task has finished, delete the new files produced,
and start again.

CHAPTER 1. INTRODUCTION 38

1.3.6 What happens if CASA crashes?

Usually, restarting casa is sufficient to get you going again after a crash takes you out of the Python
interface. Note that there may be spawned subprocesses still running, such as the casaviewer or
the logger. These can be dismissed manually in the usual manner. After a crash, there may also
be hidden processes. You can find these by listing processes, e.g. in linux:

ps —elf | grep casa
or on MacOSX (or other BSD Unix):
ps -—aux | grep casa

You can then kill these, for example using the Unix kill or killall commands. This may be
necessary if you are running remotely using ssh, as you cannot logout until all your background
processes are terminated. For example,

killall ipcontroller
or
killall Python

will terminate the most common post-crash zombies.

1.3.7 Python Basics for CASA

Within CASA, you use Python to interact with the system. This does not mean an extensive
Python course is necessary - basic interaction with the system (assigning parameters, running
tasks) is straightforward. At the same time, the full potential of Python is at the more experienced
user’s disposal. Some further details about Python, IPython, and the interaction between Python
and CASA can be found in Appendix [B]

The following are some examples of helpful hints and tricks on making Python work for you in
CASA.

1.3.7.1 Variables

Python variables are set using the <parameter> = <value> syntax. Python assigns the type
dynamically as you set the value, and thus you can easily give it a nonsensical value, e.g.

vis ’ngcb5921.ms’
vis =1

CHAPTER 1. INTRODUCTION 39

The CASA parameter system will check types when you run a task or tool, or more helpfully when
you set inputs using inp (see below). CASA will check and protect the assignments of the global
parameters in its namespace.

Note that Python variable names are case-sensitive:

CASA <109>: Foo
CASA <110>: foo
CASA <111>: foo
OQut[111]: ’Bar’
CASA <112>: Foo
Out[112]: ’bar’

’bar’
’Bar’

so be careful.

Also note that misspelling a variable assignment will not be noticed (as long as it is a valid Python
variable name) by the interface. For example, if you wish to set correlation=’RR’ but instead
type correlation=’RR’ you will find correlation unset and a new correlation variable set.

Command completion (see §[1.3.8.1)) should help you avoid this.

1.3.7.2 Lists and Ranges

Sometimes, you need to give a task a list of indices. If these are consecutive, you can use the
Python range function to generate this list:

CASA <1>: iflist=range(4,8)
CASA <2>: print iflist

(4, 5, 6, 7]

CASA <3>: iflist=range(4)
CASA <4>: print iflist

[0, 1, 2, 3]

See Appendix for more information.

1.3.7.3 Indexes

As in C, Python indices are 0-based. For example, the first element in a list antlist would be
antlist[0]:

CASA <113>: antlist=range(5)

CASA <114>: antlist
OQut([114]: [0, 1, 2, 3, 4]

CASA <115>: antlist[0]
Out[115]: O

CASA <116>: antlist[4]
Out[116]: 4

CHAPTER 1. INTRODUCTION 40

CASA also uses 0-based indexing internally for elements in the Measurement Set (MS — the basic
construct that contains visibility and/or single dish data; see Chapter . Thus, we will often talk
about Field or Antenna “ID”s which will be start at 0. For example, the first field in an MS would
have FIELD_ID==0 in the MSselect syntax, and can be addressed as be indexed as field=’0’ in
most tasks, as well as by name field=’0137+331’ (assuming that’s the name of the first field).
You will see these indices in the MS summary from the task 1istobs.

1.3.7.4 Indentation

Python pays attention to the indentation of lines, as it uses indentation to determine the level
of nesting in loops. Be careful when cutting and pasting: if you get the wrong indentation, then
unpredictable things can happen (usually it just gives an error).

See Appendix for more information.
1.3.7.5 System shell access

If you want to access system commands from a script, use the os.system command (Appendix|(B.7.1)).

In interactive mode, any input line beginning with a !’ character is passed verbatim (minus the

>17 . of course) to the underlying operating system. Also, several common commands (1s, pwd,
less) may be executed with or without the !’ although the cp command must use ’!’ and cd
must be executed without the ’!’. For example:

CASA <5>: !rm -r mydata.ms

Note that if you want to access a Unix environment variable, you will need to prefix with a double
$$ instead of a single $ — for example, to print the value of the $PAGER variable, you would use

CASA <6>: l!echo $$PAGER

See Appendix for more information.

1.3.7.6 Executing Python scripts

You can execute Python scripts (ASCII text files containing Python or casa commands) using the
execfile command. For example, to execute the script contained in the file myscript.py (in the
current directory), you would type

CASA <7>: execfile(’myscript.py’)
or

CASA <8>: execfile ’myscript.py’

CHAPTER 1. INTRODUCTION 41

which will invoke the IPython auto-parenthesis feature.

NOTE: in some cases, you can use the IPython run command instead, e.g.
CASA <9>: run myscript.py

In this case, you do not need the quotes around the filename. This is most useful for re-initializing
the task parameters, e.g.

CASA <10>: run clean.last

(see §]1.4.5.8).
See Appendix for more information.

1.3.8 Getting Help in CASA
1.3.8.1 TAB key

At any time, hitting the <TAB> key will complete any available commands or variable names and
show you a list of the possible completions if there’s no unambiguous result. It will also complete
filenames in the current directory if no CASA or Python names match.

For example, it can be used to list the available functionality using minimum match; once you have
typed enough characters to make the command unique, <TAB> will complete it.

CASA <15>: cle<TAB>
clean clean.last clear clearcal clearplot clearsta

1.3.8.2 help <taskname>

Basic information on an application, including the parameters used and their defaults, can be
obtained by typing pdoc task, help task, help ’task’ or task?. The pdoc task currently
gives the cleanest documentation format with the smallest amount of object-oriented (programmer)
output. This inline help provides a one line description of the task and then lists all parameters,
a brief description of the parameter, the parameter default, an example setting the parameter and
any options if there are limited allowed values for the parameter.

For example:

Imports an arbitrary number of VLA archive-format data sets into

a casa measurement set. If more than one band is present, they
will be put in the same measurement set but in a separate spectral
window. The task will handle old style and new style VLA (after
July 2007) archive data and apply the tsys to the data and to

the weights.

CHAPTER 1. INTRODUCTION 42

Keyword arguments:
archivefiles -- Name of input VLA archive file(s)
default: none. Must be supplied
example: archivefiles = ’AP314_A959519.xpl’
example: archivefiles=[’AP314_A950519.xpl’,’AP314_A950519.xp2’]
vis -- Name of output visibility file
default: none. Must be supplied.
example: vis=’NGC7538.ms’
Will not over-write existing ms of same name.
A backup flag-file version ’Original’ will be made in
vis.flagversions. See help flagmanager
bandname -- VLA Frequency band
default: => ’’ = all bands
example: bandname=’K’
Options: ’4’=48-96 MHz,’P’=298-345 MHz,’L’=1.15-1.75 GHz,
’C’=4.2-5.1 GHz,’X’=6.8-9.6 GHz,’U’=13.5-16.3 GHz,
’K’=20.8-25.8 GHz,’Q’=38-51 GHz
frequencytol -- Tolerance in frequency shift in making spectral windows
default: => 150000 (Hz). For Doppler shifted data, <10000 Hz may
may produce too many unnecessary spectral windows.
example: frequencytol = 1500000.0 (units = Hz)
project -- Project name to import from archive files:
default: ’’ => all projects in file
example: project=’AL519’
project = ’alb19’ or AL519 will work. Do not include
leading zeros; project = ’AL0519’ will not work.

starttime -- Time after which data will be considered for importing
default: ’’ => all: Date must be included.
syntax: starttime = ’2003/1/31/05:05:23’

stoptime -- Time before which data will be considered for importing
default: ’’ => all: Date must be included.

syntax: stoptime = ’2003/1/31/08:05:23’

applytsys -- Apply data scaling and weight scaling by nominal
sensitivity ("Tsys)
default: True. Strongly recommended

autocorr -- import autocorrelations to ms
default: => False (no autocorrelations)
antnamescheme -- ’0ld’ or ’new’ antenna names.

default => ’new’ gives antnenna names
’VAO4’ or ’EA13 for VLA telescopse 04 and 13 (EVLA)
’old’ gives names ’04’ or ’13’°
keepblanks -- Should sources with blank names be filled into the data base
default => false. Do not fill
These scans are tipping scans (as of June 1, 2009) and should not
be filled in the visibility data set.

You can also get the short help for a CASA tool method by typing ’help tool.method’.
CASA <46>: help ia.subimage

Summary

CHAPTER 1. INTRODUCTION 43

Create a (sub)image from a region of the image

Description

This function copies all or
part of the image to another on-the-fly Image tool. Both float and complex
valued images are supported.

If {\stfaf outfile} is given, the subimage is written to the specified
disk file. If {\stfaf outfile} is unset, the returned Image ool\ actually
references the input image file (i.e. that associated with the Image

00ol\ to which you are applying this function). So if you deleted the
input image disk file, it would render this 00l\ useless. When you
destroy this 001\ (with the done function)
the reference connection is broken.

Sometimes it is useful to drop axes of length one (degenerate axes).
Use the {\stfaf dropdeg} argument if you want to do this.

The output mask is the combination (logical OR) of the default input
\pixelmask\ (if any) and the OTF mask. Any other input \pixelmaskswill not be copied. Use function
need to copy other masks too.

If the mask has fewer dimensions than the image and if the shape
of the dimensions the mask and image have in common are the same,
the mask will automatically have the missing dimensions added so
it conforms to the image.

If stretch is true and if the number of mask dimensions is less than
or equal to the number of image dimensions and some axes in the

mask are degenerate while the corresponding axes in the image are not,
the mask will be stetched in the degenerate dimensions. For example,

if the input image has shape [100, 200, 10] and the input

mask has shape [100, 200, 1] and stretch is true, the mask will be
stretched along the third dimension to shape [100, 200, 10]. However if
the mask is shape [100, 200, 2], stretching is not possible and an
error will result.

Input Parameters:

outfile Output image file name. Default is unset.

region Region of interest. Default is whole image.

mask Mask to use. See help par.mask. Default is none.
dropdeg Drop degenerate axes false

overwrite Overwrite (unprompted) pre-existing output file? false
list List informative messages to the logger true

stretch Stretch the mask if necessary and possible? false

CHAPTER 1. INTRODUCTION 44

wantreturn Return an image analysis tool attached to the created subimage true
Example:
)2
#
print ’ ---- subimage Ex 1 ----’
ia.maketestimage(’myfile’,overwrite=true)
im2 = ia.subimage() # a complete copy

rl = rg.box([10,10],[30,40],[5,5]) # A strided pixel box region

im3 = ia.subimage(outfile=’/tmp/foo’, region=rl, overwrite=true)
Explicitly named subimage

im2.done ()

im3.done ()

ia.close()

#

)2

For a full list of keywords associated with the various tools, see the CASA User Reference
Manual.

1.3.8.3 help and PAGER

Your PAGER environment variable (§ determines how help is displayed in the terminal window
where you start CASA. If you set your bash environment variable PAGER=1ess (setenv PAGER less
in csh) then typing help <taskname> will show you the help but the text will vanish and return
you to the command line when you are done viewing it. Setting PAGER=more (setenv PAGER more)
will scroll the help onto your command window and then return you to your prompt (but leaving
it on display). Setting PAGER=cat (setenv PAGER cat) will give you the more equivalent without
some extra formatting baggage and is the recommended choice.

If you have set PAGER=more or PAGER=less, the help display will be fine, but the display of
‘taskname?’ will often have confusing formatting content at the beginning (lots of ESC surrounding
the text). This can be remedied by exiting casa and doing an 'unset PAGER’ (unsetenv PAGER in
[t]csh) at the Unix command line.

You can see the current value of the PAGER environment variable with CASA by typing:

lecho $$PAGER

(note the double $$). This will show what command paging is pointed to.

1.3.8.4 help par.<parameter>

Typing help par.<parameter> provides a brief description of a given parameter <parameter>.

CHAPTER 1. INTRODUCTION
CASA <46>: help par.robust
Help on function robust in module parameter_dictionary:

robust ()
Brigg’s robustness parameter.

Options: -2.0 (close to uniform) to 2.0 (close to natural)

1.3.8.5 Python help

45

Typing help at the casa prompt with no arguments will bring up the native Python help facility,
and give you the help> prompt for further information; hitting <RETURN> at the help prompt

returns you to the CASA prompt.

CASA <39>: help

Welcome to Python 2.7! This is the online help utility.

If this is your first time using Python, you should definitely check out
the tutorial on the Internet at http://docs.python.org/2.7/tutorial/.

Enter the name of any module, keyword, or topic to get help on writing
Python programs and using Python modules. To quit this help utility and
return to the interpreter, just type "quit".

To get a list of available modules, keywords, or topics, type "modules",

"keywords", or "topics". Each module also comes with a one-line summary

of what it does; to list the modules whose summaries contain a given word
such as "spam", type "modules spam".

help>

To exit Python’s help, just hit ENTER. Further help in working within the Python shell is given

in Appendix

1.4 Tasks and Tools in CASA

Originally, CASA consisted of a collection of tools, combined in the so-called toolkit. Since the
majority of prospective users is far more familiar with the concept of tasks, an effort is underway

to replace most - if not all - toolkit functionality by tasks.

While running CASA, you will have access to and be interacting with tasks, either indirectly
by providing parameters to a task, or directly by running a task. Each task has a well defined
purpose, and a number of associated parameters, the values of which are to be supplied by the
user. Technically speaking, tasks are built on top of tools - when you are running a task, you are

running tools in the toolkit, though this should be transparent.

CHAPTER 1. INTRODUCTION 46

As more tasks are being written, and the functionality of each task is enhanced, there will be less
and less reason to run tools in the toolkit. We are working toward a system in which direct access
to the underlying toolkit is unnecessary for all standard data processing.

1.4.1 What Tasks are Available?

As mentioned in the introduction, tasks in CASA are python interfaces to the more basic toolkit.
Tasks are executed to perform a single job, such as loading, plotting, flagging, calibrating, and
imaging the data.

Basic information on tasks, including the parameters used and their defaults, can be obtained by
typing help <taskname> or <taskname>? at the CASA prompt, where <taskname> is the name
of a given task. As described above in § help <taskname> provides a description of the
task and then lists all parameters, a brief description of the parameter, the parameter default, an
example setting the parameter and any options if there are limited allowed values for the parameter.

To see what tasks are available in CASA, use tasklist, e.g.

CASA <21>: tasklist

————————— > tasklist()

Available tasks, organized by category (experimental tasks in parenthesis ()
deprecated tasks in curly brackets {}).

Import/export Information Editing Manipulation
exportasdm imhead fixplanets concat
exportfits imreframe fixvis conjugatevis
exportuvfits imstat flagemd cvel
importasdm imval flagdata fixvis
importatca listcal flagmanager hanningsmooth
importfits listfits msview imhead
importfitsidi listhistory plotms mstransform
importmiriad listobs oldhanningsmooth
importuvfits listpartition oldsplit
importvla listvis partition
(importevla) plotms plotms
(importgmrt) plotuv split
vishead testconcat
visstat uvcontsub
visstat2 virtualconcat
(asdmsummary) vishead
(1istsdm) (cvel2)
(makemask) (statwt)
(uvcontsub3)
Calibration Modeling Imaging Analysis
accum predictcomp clean imcollapse

CHAPTER 1.

applycal
bandpass
blcal
calstat
clearcal
delmod
fixplanets
fluxscale
ft

gaincal
gencal
initweights
listcal
plotants
plotbandpass
plotcal
polcal
predictcomp
setjy
smoothcal
uvmodelfit
uvsub
wvrgcal

Visualization
clearplot
imview

msview
plotants
plotbandpass
plotcal
plotms
plotprofilemap
plotuv

viewer
(plotweather)

INTRODUCTION

setjy
uvcontsub
uvmodelfit
uvsub
(uvcontsub3)

Simulation
simanalyze
simobserve
(simalma)

deconvolve
feather

ft
imcontsub
(boxit)
(csvclean)
(tclean)
(tclean2)
(widebandpbcor)
{mosaic}
{widefield}

Single dish
asap_init
importasap
sdaverage
sdbaseline
sdbaseline?2
sdcal
sdcal?2
sdcoadd
sdfit
sdflag
sdflagmanager
sdgrid
sdimaging
sdimprocess
sdlist
sdmath
sdplot
sdreduce
sdsave
sdscale
sdstat
(sdgaincal)
(tsdbaseline)
(tsdcal)

47

imcontsub
imfit
imhead
imhistory
immath
immoments
impbcor
impv
imrebin
imreframe
imregrid
imsmooth
imstat
imsubimage
imtrans
imval
listvis
rmfit
slsearch
specflux
specsmooth
splattotable
(specfit)
(spxfit)

Utility
browsetable
caltabconvert
clearplot
clearstat
concat
conjugatevis
find

help par.parameter
help taskname
imview
msview

plotms
rmtables
startup
taskhelp
tasklist
testconcat
toolhelp
virtualconcat

CHAPTER 1.

User defined tasks

INTRODUCTION 48

(tsdfit)
(tsdsmooth)

The tasks with name in parentheses are experimental, those in curly brackets are deprecated and
will be removed in future releases. The functionality of deprecated tasks is usually available in
some other task (e.g., instead of mosaic one should use clean). In the above case, the user has
not defined any task him /herself.

Typing taskhelp provides a one line description of all available tasks.

CASA <22>: taskhelp
————————— > taskhelp()

Available tasks:

accum
applycal
asdmsummary
autoclean
bandpass
blcal

boxit
browsetable
calstat
caltabconvert
clean
clearcal
clearplot
clearstat
concat
conjugatevis
csvclean
cvel

cvel?2
deconvolve
delmod
exportasdm
exportfits
exportuvfits
feather

find
fixplanets

fixvis
flagcmd
flagdata
flagmanager

: Accumulate incremental calibration solutions into a calibration table
: Apply calibrations solutions(s) to data

: Summarized description of an ASDM dataset.

: CLEAN an image with automatically-chosen clean regions.

: Calculates a bandpass calibration solution

: Calculate a baseline-based calibration solution (gain or bandpass)

: Box regions in image above given threshold value.

: Browse a table (MS, calibration table, image)

: Displays statistical information on a calibration table

: Convert old-style caltables into new-style caltables.

Invert and deconvolve images with selected algorithm

: Re-initializes the calibration for a visibility data set

: Clear the matplotlib plotter and all layers

: Clear all autolock locks

: Concatenate several visibility data sets.

: Change the sign of the phases in all visibility columns.

: This task does an invert of the visibilities and deconvolve in the image plane.
: regrid an MS to a new spectral window / channel structure or frame

: Regrid an MS or MMS to a new spectral window, channel structure or frame

Image based deconvolver

: Deletes model representations in the MS

: Convert a CASA visibility file (MS) into an ALMA or EVLA Science Data Model
: Convert a CASA image to a FITS file

: Convert a CASA visibility data set to a UVFITS file:

: Combine two images using their Fourier transforms

: Find string in tasks, task names, parameter names:

: Changes FIELD and SOURCE table entries based on user-provided direction

or POINTING table, optionally fixes the UVW coordinates

: Recalculates (u, v, w) and/or changes Phase Center

: Flagging task based on batches of flag-commands

: All-purpose flagging task based on data-selections and flagging modes/algorithms.
: Enable list, save, restore, delete and rename flag version files.

CHAPTER 1.

fluxscale

ft

gaincal
gencal
hanningsmooth
imcollapse
imcontsub
imfit

imhead
imhistory
immath
immoments
impbcor
importasap
importasdm
importatca
importevla
importfits
importfitsidi
importgmrt
importmiriad
importnro
importuvfits
importvla
impv

imrebin
imreframe
imregrid
imsmooth
imstat
imsubimage
imtrans
imval

imview
initweights
listcal
listfits
listhistory
listobs
listpartition
listsdm
listvis
makemask
mosaic
mstransform
msuvbin

msview
oldhanningsmooth
oldsplit
partition

INTRODUCTION 49

: Bootstrap the flux density scale from standard calibrators

Insert a source model a visibility set:

: Determine temporal gains from calibrator observations

Specify Calibration Values of Various Types

: Hanning smooth frequency channel data to remove Gibbs ringing

Collapse image along one axis, aggregating pixel values along that axis.

: Estimates and subtracts continuum emission from an image cube

: Fit one or more elliptical Gaussian components on an image region(s)
: List, get and put image header parameters

: Retrieve and modify image history

: Perform math operations on images

Compute moments from an image

Construct a primary beam corrected image from an image and a primary beam pattern.
Convert ASAP Scantable data into a CASA visibility file (MS)

Convert an ALMA Science Data Model observation into a CASA visibility file (MS)
Import ATCA RPFITS file(s) to a measurement set

Convert an Science Data Model observation into a CASA Measurement Set

: Convert an image FITS file into a CASA image

Convert a FITS-IDI file to a CASA visibility data set

Convert a UVFITS file to a CASA visibility data set

Convert a Miriad visibility file into a CASA MeasurementSet

Convert NOSTAR data into a CASA visibility file (MS)

Convert a UVFITS file to a CASA visibility data set

Import VLA archive file(s) to a measurement set

Construct a position-velocity image by choosing two points in the direction plane.

: Rebin an image by the specified integer factors

Change the frame in which the image reports its spectral values

: regrid an image onto a template image

Smooth an image or portion of an image

: Displays statistical information from an image or image region

Create a (sub)image from a region of the image

: Reorder image axes

Get the data value(s) and/or mask value in an image.

: View an image

Initializes weight information in the MS

: List antenna gain solutions

: List the HDU and typical data rows of a fits file:

: List the processing history of a dataset:

: List the summary of a data set in the logger or in a file

: List the summary of a multi-MS data set in the logger or in a file
: Lists observation information present in an SDM directory.

: List measurement set visibilities.

: Makes and manipulates image masks

Create a multi-field deconvolved image with selected algorithm
Split the MS, combine/separate/regrid spws and do channel and time averaging

: grid the visibility data onto a defined uniform grid

(in the form of an ms); multiple MS’s can be done onto the same grid

: View a visibility data set
: Hanning smooth frequency channel data to remove Gibbs ringing

Create a visibility subset from an existing visibility set

: Task to produce Multi-MSs using parallelism

CHAPTER 1.

plotants
plotbandpass
plotcal
plotms
plotprofilemap
plotuv
plotweather
polcal
predictcomp
rmfit
rmtables
sdaverage
sdbaseline
sdbaseline2
sdcal
sdcal2
sdcoadd
sdfit
sdflag
sdflagmanager
sdgaincal
sdgrid
sdimaging
sdimprocess
sdlist
sdmath
sdplot
sdreduce
sdsave
sdscale
sdstat
setjy
simalma
simanalyze
simobserve
slsearch
smoothcal
specfit
specflux
specsmooth
splattotable
split
spxfit
ssoflux
statwt
tclean
tclean2
testconcat
tsdbaseline
tsdcal
tsdfit

INTRODUCTION 50

: Plot the antenna distribution in the local reference frame:
: Makes detailed plots of Tsys and bandpass solutions.
: An all-purpose plotter for calibration results
: A plotter/interactive flagger for visibility data.
: Makes profile map.
: Plot the baseline distribution
: Plot elements of the weather table; estimate opacity.
: Determine instrumental polarization calibrations
: Make a component list for a known calibrator
Calculate rotation measure.
: Remove tables cleanly, use this instead of rm -rf
: ASAP SD task: averaging and smoothing of spectra
: Fit/subtract a spectral baseline
: Fit/subtract a spectral baseline
: ASAP SD calibration task
: ASAP 8D calibration task
Coadd multiple scantables into one
: Fit a spectral line
: ASAP SD spectral spectral/row flagging task
: ASAP SD task to manipulate flag version files
MS SD gain calibration task
SD gridding task
SD task: imaging for total power and spectral data
: Task for single-dish image processing
list summary of single dish data
: ASAP SD task for simple arithmetic of spectra
: ASAP SD plotting task
: ASAP SD task: do sdcal, sdaverage, and sdbaseline in one task
Save the sd spectra in various format
Scale the sd spectra
list statistics of spectral
: Fills the model column with the visibilities of a calibrator
Simulation task for ALMA
image and analyze measurement sets created with simobserve
: visibility simulation task
Search a spectral line table.
Smooth calibration solution(s) derived from one or more sources:
: Fit 1-dimensional gaussians and/or polynomial models to an image or image region
: Report details of an image spectrum.
Smooth an image region in one dimension
Convert a downloaded Splatalogue spectral line list to a casa table.
Create a visibility subset from an existing visibility set
: Fit a 1-dimensional model(s) to an image(s) or region for determination of spectral ir
: Fills the model column with the visibilities of a calibrator
Reweight visibilities according to their scatter (Experimental)
: Radio Interferometric Image Reconstruction
: Radio Interferometric Image Reconstruction
Concatenate the subtables of several visibility data sets, not the MAIN bulk data.
: Fit/subtract a spectral baseline
MS SD calibration task
: Fit a spectral line

CHAPTER 1. INTRODUCTION ol

tsdsmooth : Smooth spectral data

uvcontsub : Continuum fitting and subtraction in the uv plane

uvcontsub3 : An experimental clone of uvcontsub

uvmodelfit : Fit a single component source model to the uv data

uvsub : Subtract/add model from/to the corrected visibility data.

viewer : View an image or visibility data set

virtualconcat : Concatenate several visibility data sets into a multi-MS

vishead : List, summary, get, and put metadata in a measurement set

visstat : Displays statistical information from a Measurement Set, or from a Multi-MS
visstat2 : Displays statistical information from a Measurement Set, or from a Multi-MS
widebandpbcor : Wideband PB-correction on the output of the MS-MFS algorithm

widefield : Wide-field imaging and deconvolution with selected algorithm

wvrgcal : Generate a gain table based on Water Vapour Radiometer data

Typing startup will provide the startup page displayed when entering CASA. The startup screen
lists the various options to obtain help within CASA.

CASA <26>: startup
_________ > startup()

For help use the following commands:

tasklist - Task list organized by category
taskhelp - One line summary of available tasks
help taskname - Full help for task

toolhelp - One line summary of available tools

help par.parametername - Full help for parameter name

1.4.2 Running Tasks and Tools

Tools are functions linked to the Python interface which must be called by name with arguments.
Tasks have higher-level capabilities than tools. Tasks require input parameters which maybe be
specified when you call the task as a function, or be set as parameters in the interface. A task, like
a tool, is a function under Python and may be written in Python, C, or C++ (the CASA toolkit
is made up of C++ functions).

There are two distinct ways to run tasks. You can either set the global CASA parameters relevant
to the task and tell the task to “go”, or you can call the task as a function with one or more
arguments specified. These two invocation methods differ in whether the global parameter values
are used or not.

For example,
default (’plotxy’)

vis=’ngc5921.ms’
xaxis=’channel’

CHAPTER 1. INTRODUCTION 92

yaxis=’amp’
datacolumn=’data’
go

will execute plotxy with the set values for the parameters (see § [1.4.5). Instead of using go
command (§[1.4.5.3)) to invoke the task, you can also call the task with no arguments, e.g.

default (’plotxy’)
vis=’ngc5921.ms’
xaxis=’channel’
yaxis=’amp’
datacolumn=’data’
plotxy)

which will also use the global parameter values.

Second, one may call tasks and tools by name with parameters set on the same line. Parameters
may be set either as explicit <parameter>=<value> arguments, or as a series of comma delimited
<value>s in the correct order for that task or tool. Note that missing parameters will use the
default values for that task. For example, the following are equivalent:

Specify parameter names for each keyword input:
plotxy(vis=’ngc5921.ms’ ,xaxis=’channel’,yaxis=’amp’,datacolumn=’data’)

when specifying the parameter name, order doesn’t matter, e.g.:
plotxy(xaxis=’channel’,vis=’ngc5921.ms’,datacolumn="data’,yaxis=’amp’)

use parameter order for invoking tasks
plotxy(°’ngc5921.ms’,’channel’,’amp’,’data’)

This non-use of globals when calling as a function is so that robust scripts can be written. One
need only cut-and-paste the calls and need not worry about the state of the global variables or
what has been run previously. It is also more like the standard behavior of function calls in Python
and other languages.

Tools can only be called in this second manner by name, with arguments (§|1.4.6|). Tools never use
the global parameters and the related mechanisms of inp and go.

1.4.2.1 Aborting Synchronous Tasks

If you are running CASA tasks synchronously, then you can usually use CTRL-C to abort execution
of the task. If this does not work, try CTRL-Z followed by a kill. See § for more on these
methods to abort CASA execution.

You may have to quit and restart CASA after an abort, as the internal state can get mixed up.

1.4.3 Getting Return Values

Some tasks and tools return a record (usually a Python dictionary) to the interface. For example,
the imstat task (§[6.10]) returns a dictionary with the image statistics in it. To catch these return
values into a Python variable, you MUST assign that variable to the task call, e.g.

CHAPTER 1. INTRODUCTION

xstat = imstat(’ngcb5921.clean.image’)
or

default(’imstat’)
imagename = ’ngcb5921.clean.image’
xstat = imstat()

Note that tools that return values work in the same way (§[1.4.6)).

You can print or use the return value in Python for controlling scripts. For example,

CASA <1>: xstat = imstat(’ngcb5921.clean.image’)
CASA <2>: xstat
Out [2]:
{’blc’: array([0, 0, O, 0]),
’blcf’: ’15:24:08.404, +04.31.59.181, I, 1.41281e+09Hz’,
’flux’: array([4.15292207]),
’max’: array([0.05240594]),
’maxpos’: array([134, 134, 0, 38]),
’maxposf’: ’15:21:53.976, +05.05.29.998, I, 1.41374e+09Hz’,
’mean’: array([1.62978083e-05]),
’medabsdevmed’: array([0.00127287]),
’median’: array([-1.10467618e-05]),
’min’: array([-0.0105249]),
’minpos’: array([160, 1, 0, 30]),
‘minposf’: ’15:21:27.899, +04.32.14.923, I, 1.41354e+09Hz’,
‘npts’: array([3014656.]),
’quartile’: array([0.00254587]),
’rms’: array([0.00201818]),
’sigma’: array([0.00201811]),
’sum’: array([49.1322855]),
’sumsq’: array([12.27880404]),
’trc’: array([255, 255, 0, 45]),
’trcf’: ’15:19:52.390, +05.35.44.246, I, 1.41391e+09Hz’}
CASA <3>: myrms = xstat[’rms’] [0]
CASA <4>: print 10.0*myrms
0.0201817648485

If you do not catch the return variable, it will be lost
imstat (’ngc5921.clean.image’)
or

default(’imstat’)
imagename = ’ngcb5921.clean.image’
imstat ()

93

CHAPTER 1. INTRODUCTION 54

and spewed to terminal. Note that go will trap and lose the return value, e.g.

default(’imstat’)
imagename = ’ngc5921.clean.image’

go

will not dump the return to the terminal either.

1.4.4 Running Tasks Asynchronously

By default, most tasks run synchronously in the foreground. Many tasks, particularly those that
can take a long time to execute, have the async parameter. This allows the user to send the task
to the background for execution.

1.4.5 Setting Parameters and Invoking Tasks

One can set parameters for tasks (but not for tools) by
performing the assignment within the CASA shell and then Inside the Toolkit:

inspecting them using the inp command: In the current version of CASA
Y
you cannot use the task parameter

setting features, such as the inp,
default, or go commands, for the

CASA <30>: default(bandpass)

CASA <31>: vis = ’ngcb5921.demo.ms’

CASA <32>: caltable = ’ngc5921.demo.bcal’
CASA <33>: field = ’0 tools.
CASA <34>: refant = ’15’

CASA <35>: inp(’bandpass’)

Dbandpass :: Calculates a bandpass calibration solution
vis = ’ngcb921.demo.ms’ # Name of input visibility file
caltable = ’ngc5921.demo.bcal’ # Name of output gain calibration
table
field = ’0° # Select field using field id(s) or
field name(s)
spw = > # Select spectral window/channels
intent = > # Select observing intent
selectdata = True # Other data selection parameters
timerange = 7 # Select data based on time range
uvrange = ?? # Select data within uvrange (default
units meters)
antenna = ?? # Select data based on antenna/baseline
scan = i # Scan number range
observation = 0 # Select by observation ID(s)
msselect = 7 # Optional complex data selection
(ignore for now)
solint = >inf’ # Solution interval in time[,freq]
combine = ’scan’ # Data axes which to combine for solve
(obs, scan, spw, and/or field)

CHAPTER 1. INTRODUCTION

refant
minblperant

minsnr
solnorm
bandtype

fillgaps

smodel

append

docallib
gaintable
gainfield
interp

spwmap

parang

J157

3.0

False

(]

False

False

(]

(]

(]

(]

False

H OH HF O HHHHEHHEHR

H OH H HH H HHHHHEHHER

+*+

Reference antenna name(s)

Minimum baselines _per antenna_
required for solve

Reject solutions below this SNR (only
applies for bandtype = B)

Normalize average solution amplitudes
to 1.0

Type of bandpass solution (B or
BPOLY)

Fill flagged solution channels by
interpolation

Point source Stokes parameters for
source model.

Append solutions to the (existing)
table

Use callib or traditional cal apply
parameters

Gain calibration table(s) to apply on
the fly

Select a subset of calibrators from
gaintable(s)

Interpolation mode (in time) to use
for each gaintable

Spectral windows combinations to form
for gaintables(s)

Apply parallactic angle correction

See §[1.4.5.4]below for more details on the use of the inputs

command.

All task parameters have global scope within CASA: the
parameter values are common to all tasks and also at the
CASA command line. This allows the convenience of not
changing parameters that are shared between tasks but does require care when chaining together
sequences of task invocations (to ensure proper values are provided).

95

If you want to reset the input keywords for a single task, use the default command (§|1.4.5.2).
For example, to set the defaults for the bandpass task, type:

CASA <30>: default(’bandpass’)

as we did above.

To inspect a single parameter value just type it at the command line. Continuing the above example:

CASA <36>: combine
Out[14]: ’scan’

CHAPTER 1. INTRODUCTION 56

CASA parameters are just Python variables.

Parameters for a given task can be saved by using the saveinputs command (see §[1.4.5.5) and
restored using the execfile ’<filename>’ command. Note that if the task is successfully exe-
cuted, then a <taskname>.last file is created in the working directory containing the parameter

values (see §[1.4.5.8]).

We now describe the individual CASA task parameter interface commands and features in more
detail.

1.4.5.1 The scope of parameters in CASA

All task parameters have global scope within CASA: the

parameter values are common to all tasks and also at the Advanced Tip

CASA command line. This allows the convenience of not |By default, the scope of CASA
changing parameters that are shared between tasks but |parameters is global, as stated
does require care when chaining together sequences of task |pere. However, if you call a
invocations (to ensure proper values are provided). Tasks |task as a function with one or
DO NOT change the values of the global parameters, nor |more arguments specified, e.g.
does the invocation of tasks using the functional call with | a5k (argi=vall,...), then

arguments change the globals. non-specified parameters will be

This does mean that unless you do an explicit default defaulted and no globals used.
of the task (§[1.4.5.2), previously set values may be unex- |This makes scripting more robust.
pectedly used if you do not inspect the inp carefully. For |Tasks DO NOT change the value of
example, good practice is: globals.

default(’imhead’)

imagename = ’ngc5921.demo.cleanimg.image’
mode = ’list’

imhead ()

If you supply the task call with arguments, then these will

be used for the values of those parameters (see above). However, if some but not all arguments
are supplied, then those parameters not given as arguments will default and NOT use the current
global values. Thus,

imhead (’ngcb5921.demo.cleanimg. image’ ,mode="1list’)

will reproduce the above.

1.4.5.2 The default Command

Each task has a special set of default parameters defined for its parameters. You can use the
default command to reset the parameters for a specified task (or the current task as defined by
the taskname variable) to their default.

CHAPTER 1. INTRODUCTION o7

Important Note: The default command resets the values of the task parameters to a set of
“defaults” as specified in the task code. Some defaults are blank strings ’’ or empty lists [],
others are specific numerical values, strings, or lists. It is important to understand that just setting
a string parameter to an empty string ’’ is not setting it to its default! Some parameters do not
have a blank as an allowed value. See the help for a particular task to find out its default. If >’
is the default or an allowed value, it will say so explicitly.

For example, suppose we have been running CASA on a particular dataset, e.g.

CASA <40>: inp clean
————————— > inp(’clean’)

clean :: Deconvolve an image with selected algorithm

vis = ’ngcb921.demo.src.split.ms.contsub’ # name of input visibility file

imagename = ’ngc5921.demo.cleanimg’ # Pre-name of output images

field = ’0’ # Field Name

spw = 22 # Spectral windows:channels: ’’ is all

selectdata = False # Other data selection parameters

mode = ’channel’ # Type of selection (mfs, channel, velocity, frequency)
nchan = 46 # Number of channels (planes) in output image
start = 5 # first input channel to use
width = 1 # Number of input channels to average
interpolation = ’nearest’ # Spectral interpolation (nearest, linear, cubic)

niter = 6000 # Maximum number of iteratioms

and now we wish to switch to a different one. We can reset the parameter values using default:

CASA <41>: default
————————— > default ()

CASA <42>: inp

————————— > inp()

clean :: Deconvolve an image with selected algorithm

vis = ?? # name of input visibility file

imagename = ?? # Pre-name of output images

field = ? # Field Name

spw = i # Spectral windows:channels: ’’ is all

selectdata = False # Other data selection parameters

mode = ‘mfs’ # Type of selection (mfs, channel, velocity, frequency)
niter = 500 # Maximum number of iterations

It is good practice to use default before running a task if you are unsure what state the CASA
global variables are in.

ALERT: You currently can only reset ALL of the parameters for a given task to their defaults. In
an upcoming update we will allow the default command to take a second argument with a specific
parameter to default its value.

CHAPTER 1. INTRODUCTION o8

1.4.5.3 The go Command
You can execute a task using the go command, either explicitly

CASA <44>: go listobs
--------- > go(listobs)
Executing: 1listobs()

or implicitly if taskname is defined (e.g. by previous use of default or inp)

CASA <45>: taskname = ’clean’
CASA <46>: go
--------- > go(O)

Executing: clean()

You can also execute a task simply by typing the taskname.

CASA <46>: clean

Executing: clean()

The go command can also be used to launch a different task without changing the current taskname,
without disrupting the inp process on the current task you are working on. For example

default ’gaincal’ # set current task to gaincal and default
vis = ’n5921.ms’ # set the working ms

e # set some more parameters

go listobs # launch listobs w/o changing current task
inp # see the inputs for gaincal (not listobs!)

ALERT: Doing go listobs(vis=’foo.ms’) will currently change the taskname, and will change
vis, which might not be what is desired.

1.4.5.4 The inp Command

You can set the values for the parameters for tasks (but currently not for tools) by performing the as-
signment within the CASA shell and then inspecting them using the inp command. This command
can be invoked in any of three ways: via function call inp(’<taskname>’) or inp(<taskname>),
without parentheses inp ’<taskname>’ or inp <taskname>, or using the current taskname vari-
able setting with inp. For example,

CASA <1>: inp(’clean’)

CASA <2>: inp ’clean’

CHAPTER 1. INTRODUCTION 99

—————————— > inp(’clean’)
CASA <3>: inp(clean)

CASA <4>: inp clean
__________ > inp(clean)

CASA <5>: taskname = ’clean’

CASA <6>: inp
—————————— > inp()

all do the same thing.

When you invoke the task inputs via inp, you see a list of the parameters, their current values, and
a short description of what that parameters does. For example, starting from the default values,

CASA <18>: inp(’clean’)

clean :: Deconvolve an image with selected algorithm

vis = 7 # name of input visibility file

imagename = 7 # Pre-name of output images

field = ?? # Field Name

spw = ?? # Spectral windows:channels: ’’ is all

selectdata = False # Other data selection parameters

mode = ‘mfs’ # Type of selection (mfs, channel, velocity, frequency)
niter = 500 # Maximum number of iterations

gain = 0.1 # Loop gain for cleaning

threshold = ’0.0mJy’ # Flux level to stop cleaning. Must include units
psfmode = ’clark’ # method of PSF calculation to use during minor cycles
imagermode = 22 # Use csclean or mosaic. If ’’, use psfmode
multiscale = 1 # multi-scale deconvolution scales (pixels)
interactive = False # wuse interactive clean (with GUI viewer)

mask =] # cleanbox(es), mask image(s), and/or region(s)
imsize = [256, 256] # x and y image size in pixels

cell = [’1.0arcsec’, ’1.0arcsec’] # x and y cell size. default unit arcsec
phasecenter = 7 # Image phase center: position or field index
restfreq = 0 # rest frequency to assign to image (see help)
stokes = 12 # Stokes params to image (eg I,IV, QU,IQUV)
weighting = ’natural’ # Weighting of uv (natural, uniform, briggs, ...)
uvtaper = False # Apply additional uv tapering of visibilities.
modelimage = 22 # Name of model image(s) to initialize cleaning
restoringbeam = [’°] # Output Gaussian restoring beam for CLEAN image
pbcor = False # Output primary beam-corrected image

minpb = 0.1 # Minimum PB level to use

Figure shows how this will look to you on your terminal. Note that some parameters are in
boldface with a gray background. This means that some values for this parameter will cause it to
expand, revealing new sub-parameters to be set.

CASA uses color and font to indicate different properties of parameters and their values:

CHAPTER 1. INTRODUCTION

‘1.0

EERARACRTABTLSASTATERTITRTR T TN

name of input visibility file

Pre-name of output images

Field Mame

Spectral windows:channels: ' is all

Other data selection parameters

Type of selection (mfs, channel, velocity, freguency)

Maximum number of iterations

Loop gain for cleaning

Flux lewel to stop cleaning. Must include units

method of PSF calculation to use during minor cycles

Use csclean or mosaic. IFf '', use psfmode

set deconwvolution scales (pixels), default: multiscale=[] (standard CLEAN)

use interactive clean (with GUI viewer)

cleanbox(es), mask image(s), and/or region{s) used in cleaning

x and y image size in pixels, symmetric for single wvalue
rosec'] # x and y cell size. default unit arcsec

Image phase center: position or field index

rest frequency to assign to image (see help)

Stokes params to image (eg I,IY, QU,IQUY

Weighting of uv (natural, uniform, briggs, ...)

Apply additional uv tapering of wvisibilities.

MName of model image(s) to initialize cleaning

Output Gaussian restoring beam for CLEAN image

Output primary beam-corrected image

Minimum FPE level to use

If true the taskname must be started using clean(...]

CASA <3>: inp('clean’)
clean :: Deconwolwe an image with selected algorithm
vis =)
imagename =
field =
Spw =
selectdata = False
mode = ‘mfs’
niter = 500
gain = Q.1
threshold = '0.0mJy’
psfmode = ‘clark’
imagermode E v
multiscale =]
interactive = False
mask = []
imsize = [256, 256]
cell = ['1.0arcsec’,
phasecenter = v
restfreg = v
stokes = ‘I
weighting = 'natural’
uvtaper = False
modelimage = v
restoringbean = [
phcor = False
minph = 0.1
async = False

lmg(CAsh <4>:

=

Figure 1.1: Screen shot of the default CASA inputs for task clean.

60

Parameter and Values in CASA inp

Text Font ‘ Text Color ‘ Highlight ‘ Indentation ‘ Meaning
Parameters:
plain black none none standard parameter
bold black grey none expandable parameter
plain green none yes sub-parameter
Values:
plain black none none default value
plain blue none none non-default value
plain red none none invalid value

Figure shows what happens when you set some of the clean parameters to non-default values.
Some have opened up sub-parameters, which can now be seen and set. Figure [1.3] shows what

happens when you set a parameter, in this case vis and mode, to an invalid value.

Its value

now appears in red. Reasons for invalidation include incorrect type, an invalid menu choice, or a
filename that does not exist. For example, since vis expects a filename, it will be invalidated (red)
if it is set to a non-string value, or a string that is not the name of a file that can be found. The
mode="happy’ is invalid because it’s not a supported choice (’mfs’, ’channel’, ’velocity’, or

’frequency’).

1.4.5.5 The saveinputs Command

The saveinputs command will save the current values of a given task parameters to a Python
(plain ascii) file. It can take up to two arguments, e.g.

saveinputs (taskname, outfile)

CHAPTER 1. INTRODUCTION

CASA <4»: tget('clean’)
Restored parameters from file clean.last
CASA <5%: inp('clean')
clean :: Deconvolve an image with selected algorithm
vis = 'nec5971.demo.src.eplit.ms.contsub’ B name of input visibility file
imagename = 'ngcS921.demo.cleanimz . # Pre-name of output images
field = ‘o # Field Mame
spw = # Spectral windows:channels: '' is all
selectdata E False # Other data selection parameters
mode = ‘channel’ # Type of selection (mfs, channel, velocity, freguency)
nchan = 45 # MNumber of channels (planes) in output image
start = a} # first input channel to use
width = 1 % Humber of input channels to average
interpolation = 'nearest’ # Type of spectral interpolation of visibilities (nearest, linear, cubic)
niter = 6000 # Maximum number of iterations
gain = 0.1 # Loop gain for cleaning
threshold = &.0 # Flux lewvel to stop cleaning. Must include units
psfmode = 'hogbom' # method of PSF calculation to use during minor cycles
imagermode E v # Use csclean or mosaic. IF "', use psfmode
multiscale = [1 # set deconvolution scales (pixels), default: multiscale=[] (standard CLEAN)
interactive = False # use interactive clean (with GUI viewer)
mask = [108, 108, 148, 148] # cleanbox(es), mask image(s), and/or regioni(s) used in cleaning
imsize = [256, Zz56] # x and y image size in pixels, symmetric for single wvalue
cell = [15.0, 15.0] # ¢ and y cell size. default unit arcsec
phasecenter = v # Image phase center: position or field index
restfreg = v # rest frequency to assign to image (see help)
stokes = T % Stokes params to image (eg T,1¥, QU,T0UW)
weighting = ‘briggs” # Weighting of uv (natural, uniform, briggs, ...)
robust = 0.5 # Briggs robustness parameter
npixels = Q # pnumber of pixels to determine uv-cell size O=> field of view
uvtaper = False # Apply additional uv tapering of wvisibilities.
modelimage = v # MName of model image(s) to initialize cleaning
restoringbeam = [# Output Gaussian restoring beam for CLEAM image
phcor = False # Output primary beam-corrected image
mingh = 0.1 # Minimum PB level to use
async = False # If true the taskname must be started using clean(...)
lzcasa <6>:

61

Figure 1.2: The clean inputs after setting values away from their defaults (blue text). Note that
some of the boldface ones have opened up new dependent sub-parameters (indented and green).

The first is the usual taskname parameter. The second is the name for the output Python file. If
there is no second argument, for example,

saveinputs(’clean’)

a file with name <taskname>.saved (in this case ’clean.saved’ will be created or overwritten if
extant. If invoked with no arguments, e.g.

saveinputs

it will use the current values of the taskname variable (as set using inp <taskname> or default
<taskname>). You can also use the taskname global parameter explicitly,

saveinputs (taskname, taskname+’_1.save’)

For example, starting from default values

CASA <1>: default(’listobs’)

CASA <2>: vis=’ngc5921.demo.ms’

CASA <3>: saveinputs

CASA <4>: 'more
taskname
vis

’listobs.saved’

= "listobs"

"ngc5921.demo.ms"

CHAPTER 1. INTRODUCTION

CASA <6: hogwarts
CASA <7>: inp('clean’)
clean :: Deconwolwe an image with selected algorithm
vis = 'ngcS221.demo.src.split.ms.contsub’ # name of input wvisibility file
imagename = 'nac5971.cdemo.cleanimg’ # Pre-name of output images
field = ‘o # Field Mame
Spw = v # Spectral windows:channels: "' is all
selectdata E False # Other data selection parameters
mode = ‘'channel’ # Type of selection (mfs, channel, velocity, freguency)
nchan = 46 # Number of channels (planes) in output image
start = =} # first input channel to use
width = 1 # Mumber of input channels to average
interpolation = 'nearest' # Type of spectral interpolation of wvisibilities (nearest, linear, cuhic)
niter = 6000 # Maximum number of iterations
gain = Q.1 # Loop gain for cleaning
threshold = g.0 # Flux level to stop cleaning. Must include units
psfmode = ‘hoguarts’ # method of PSF calculation to use during minor cycles
imagermode E v # Use csclean or mosaic. If "', use psfmode
multiscale =] # set deconvolution scales (pixels), default: multiscale=[] (standard CLEAN)
interactive = False # use interactive clean (with GUI viewer)
mask = [108, 108, 145, 1481 # cleanbox{es), mask image(s), and or region(s) wused in cleaning
imsize = [256, Z56] # x and y image size in pixels, symmetric for single wvalue
cell = [15.0, 15.0] # x and y cell size. default unit arcsec
phasecenter = v # Image phase center: position or field index
restfreg = v # rest frequency to assign to image (see help)
stokes = ‘I # GStokes params to image (eg I,IV, QU,IQUV)
weighting = ‘briggs’ # lWeighting of uv (natural, uniform, briggs, ...)
robust = 0.5 % Bripgs robustness parameter
npixels = Q # pnumber of pixels to determine uv-cell size O=> field of view
uvtaper E False # Apply additional uv tapering of wvislbilities.
modelimage = v # Name of model image(s] to initialize cleaning
restoringbeam = [] # Output Gaussian restoring beam for CLEAN image
phcor = False # Output primary beam-corrected image
mingh = 0.1 # Minimum PE lewvel to use
async = False # If true the taskname must be started using cleani...)
lzgCrsA <8r:

62

Figure 1.3: The clean inputs where one parameter has been set to an invalid value. This is drawn
in red to draw attention to the problem. This hapless user probably confused the *hogbom’ clean

algorithm with Harry Potter.

selectdata = True
spw =
field =

antenna =
nn

uvrange =
timerange =
correlation =

scan = "n

intent = "t
feed = nn
array = "
observation =
verbose = True

listfile = "
#listobs(vis="ngc5921.demo.ms",selectdata=True,spw="",field="",
antenna="",uvrange="",timerange="",correlation="",scan="",intent="",

feed="",array="",observation="",verbose=True,listfile="")

To read these back in, use the Python execfile command. For example,

CASA <5>: execfile(’listobs.saved’)

and we are back.

CHAPTER 1. INTRODUCTION 63

An example save to a custom named file:
CASA <6>: saveinputs(’listobs’,’ngc5921_listobs.par’)

You can also use the CASA tget command (see §[1.4.5.6 below) instead of the Python execfile
to restore your inputs.

1.4.5.6 The tget Command

The tget command will recover saved values of the inputs of tasks. This is a convenient alternative
to using the Python execfile command (see above).

Typing tget without a taskname will recover the saved values of the inputs for the current task as
given in the current value of the taskname parameter.

Adding a task name, e.g. tget <taskname> will recover values for the specified task. This is done
by searching for 1) a <taskname>.last file (see §[1.4.5.8| below), then for 2) a <taskname>.saved
file (see §[1.4.5.5| above), and then executing the Python in these files.

For example,

default(’gaincal’) # set current task to gaincal and default

tget # read saved inputs from gaincal.last (or gaincal.saved)
inp # see these inputs!

tget bandpass # now get from bandpass.last (or bandpass.saved)

inp # task is now bandpass, with recovered inputs

1.4.5.7 The tput Command

The tput command will save the current parameter values of a task to its <taskname>.last file.
This is a shorthand to saveinputs and is a counterpart to tget.

Typing tput without a taskname will save the values of the inputs for the current task as given in
the current value of the taskname parameter.

Adding a task name, e.g. tget <taskname> will save the values for the specified task.

For example,

default(’gaincal’) # set current task to gaincal and default

tget # read saved inputs from gaincal.last (or gaincal.saved)
inp # see these inputs!

vis = ’new.ms’ #

tput #

change the vis parameter
save back to the gaincal.last file for later use

CHAPTER 1. INTRODUCTION 64

1.4.5.8 The .last file

Whenever you successfully execute a CASA task, a Python script file called <taskname>.last will
be written (or over-written) into the current working directory. For example, if you ran the listobs
task as detailed above, then

CASA <14>: vis = ’ngcb921.ms’
CASA <15>: verbose = True
CASA <16>: listobs()

CASA <17>: !more ’listobs.last’
IPython system call: more listobs.last

taskname = "listobs"

vis = '"ngcb921.ms"
verbose = True
listfile = "t

#listobs(vis="ngcb5921.ms" ,verbose=False,listfile="")
You can restore the parameter values from the save file using
CASA <18>: execfile(’listobs.last’)

or

CASA <19>: run listobs.last

Note that the .last file in generally not created until the task actually finished (successfully), so
it is often best to manually create a save file beforehand using the saveinputs command if you are
running a critical task that you strongly desire to have the inputs saved for.

1.4.6 Tools in CASA

The CASA toolkit is the foundation of the functionality in the package, and consists of a suite of
functions that are callable from Python. The tools are used by the tasks, and can be used by
advanced users to perform operations that are not available through the tasks.

It is beyond the scope of this reference to describe the toolkit in detail. Occasionally, examples will
be given that utilize the tools (e.g. §[6.28). In short, tools are always called as functions, with any
parameters that are not to be defaulted given as arguments. For example:

ia.open(’ngcb5921.chan2l.clean.cleanbox.mask’)
ia.calcmask(’"ngc5921.chan21.clean.cleanbox.mask">0.5’, *mymask’)
ia.summary ()

ia.close()

CHAPTER 1. INTRODUCTION

uses the image tool (ia) to turn a clean mask image into an image mask.

CASA global parameters.

To find what tools are available, use the toolhelp command:

CASA <23>: toolhelp
————————— > toolhelp()

Available tools:

af
at

ca :
cb :

cl

fi

1m:

me :
ms :
msmd :

mt

tb

vp

pl

: Agent flagger utilities

Juan Pardo ATM library
Calibration analysis utilities
Calibration utilities

: Component list utilities
cp
cs
cu :
dc :

Cal solution plotting utilities
Coordinate system utilities
Class utilities

Deconvolver utilities

: Fitting utilities
fn :
ia :
im :

Functional utilities

Image analysis utilities
Imaging utilities
linear mosaic

Measures utilities
MeasurementSet (MS) utilities
MS metadata accessors

: MS transformer utilities
qa :
pm :
po :
rg :
sl :
sm :

Quanta utilities

PlotMS utilities

Imagepol utilities

Region manipulation utilities
Spectral line import and search
Simulation utilities

: Table utilities (selection, extraction, etc)

tp :
: Voltage pattern/primary beam utilities

Table plotting utilities

: pylab functions (e.g., pl.title, etc)
sd :

Single dish utilities

65

Tools never use the

You can find much more information about the toolkit in the CASA User Reference Manual:

http://casa.nrao.edu/docs/casaref/CasaRef.html

http://casa.nrao.edu/docs/casaref/CasaRef.html

CHAPTER 1. INTRODUCTION 66

1.5 Getting the most out of CASA

There are some other general things you should know about using CASA in order to make things
go smoothly during your data reduction.

1.5.1 Your command line history

Your command line history is automatically maintained and stored as ipython.log in your local di-
rectory . This file can be edited and re-executed as appropriate using the execfile ’<filename>’
feature.

You can also use the “up-arrow” and “down-arrow” keys for command line recall in the casa
interface. If you start typing text, and then use “up-arrow”, you will navigate back through
commands matching what you typed.

1.5.2 Logging your session

The output from CASA commands is sent to the file casapy-YYYYMMDD-HHMMSS. log in your local
directory, where YYYYMMDD-HHMMSS are the UT date and time when CASA was started up.
New starts of CASA create new log files.

hd Log Messages (sandrock:/home/sandrock3/smyers/Testing3/Patch4/N5921/casapy.log)
Eile Edit View

L H % EI /5 Search Message: []“ Filter. [T‘”"E \'l[] - e
]

Time |Fr|ur\ty
2009-05-27 04:42:45 INFO
2009-05-27 04:42:45 INFO
2009-05-27 04:42:45 INFO
2009-05-27 04:42:45 INFO
2009-05-27 04:42:45 INFO
2009-05-27 04:42:45 INFO
2009-05-27 04:42:45 INFO
2009-05-27 04:42:45 INFO
2009-05-27 04:42:45 INFO
2009-05-27 04:42:45 INFO
2009-05-27 04:42:45 INFO

|MEssEge

##H#H Begin Task: listobs HHH D

Measurementset Name: /home/sandrock3/smyers/Testing3/Patchd/N5921/ngc5921.demo.ms us version 2

Gbserver: TEST Project:
:ms:.. observation: vIa
pata records: 22653 Total integration time = 5280 seconds

Observed from 13-2pr-1355/03:19:00.0 to 13-Apr-1935/10:47:00.0 (TAT)

2009-05-27 04:42:45 INFO CbeervationID = 0 ArrayID = 0

2009-05-27 04:42:45 INFO listobs::ms:.. Date Timerange (TAI) Scan rldrd FieldName nvis Int(s) Spwlds

2009-05-27 04:42:45 INFO listobs::ms:.. 13-Apr-1995/09:19:00.0 - 09:24:30.0 1 0 1331+305000+ 4509 30 to1

2009-05-27 04:42:45 INFO listobs::ma:.. 09:27:30.0 - 09:29:30.0 2 1 1445+093000% 1830 30 (o1

2009-05-27 04:42:45 INFO listobs::ma:.. 09:33:00.0 - 09:48:00.0 3 2 w5921 2 6048 30 (o1

2009-05-27 04:42:45 INFO listobs::mat.. 09:50:30.0 - 09:51:00.0 4 1 14454033000+ 756 30 to1

2009-05-27 04:42:45 INFO listobs: 10:22:00.0 - 10:23:00.0 5 1 1445+095000+ 1134 30 to1

2009-05-27 04:42:45 INFO listobs::ms:. 10:26:00.0 - 10:43:00.0 & 2 w5921_2 €804 30 to1 g
4]
{\HSER Message H[]l"#lm/ l"le‘mD Lock scroll |

Figure 1.4: The CASA Logger GUI window under Linux. Note that under MacOSX a stripped
down logger will instead appear as a Console.

The output contained in casapy-YYYYMMDD-HHMMSS.log is also displayed in a separate window
using the casalogger. Generally, the logger window will be brought up when casa is started. If you
do not want the logger GUI to appear, then start casa using the --nologger option,

casa —-nologger

CHAPTER 1. INTRODUCTION 67

hd Log Messages (sandrock:/home/sandrock3/smyers/Testing3/Patch4/N5921/casapy.log)

Fle Edit View

% H g g J.\ D Search Message: lapp\y]“ Filter: [T\me ‘v][] '_‘ e

Time |Fr|nr\ty |0rlgm |Msssage el
2009-05-27 04:47:11 INFO plotoal:::icn

2009-05-27 04:47:13 INFO applycalss:z.
2009-05-27 04:47:13 INFO applycalssi:

2009-05-27 04:47:13 INFO applycal
2009-05-27 04:47:13 INFO applycaliica. Opening MS: ngeS592l.demo.ms for calibration. [l
2009-05-27 04:47:13 INFO applycal::ca. Initializing nominal selection to the whole HS.

2009-05-27 04:47:13 INFO applycal::ca. Beginning selectvis-- (MSSelection version)-------

2009-05-27 04:47:13 INFO applycal::ca. Performing selection on MeasurementSet
2009-05-27 04:47:13 INFO applycal::ca. By selection 22653 rows are reduced to 18144
2009-05-27 04:47:13 INFO applycal::ca. Frequency selection: Selecting all channels in all spws.

2009-05-27 04:47:13 INFO applycal::Ca. Arranging te APPLY:
2009-05-27 04:47:13 INFO applycal::Ca. . G Jones: table=ngc5921.demo.fluxscale select=(FIELD ID IN [1]1) interp=linear spwmnap=[0] calWt=true

2009-05-27 04:47:13 INFO applycal::Ca. Arranging to AFPLY:
2009-05-27 04:47:13 INFO applycali:ca. . B Jonss: table=ngcS5921.dsmo.beal sslect=(FIELD ID IN [0, 1, 2]) interp=nearsst spwmap=[0] calWt=true

A]

Insert Message: H[l"lillumﬂ Lock scroll

g

Figure 1.5: Using the Search facility in the casalogger. Here we have specified the string ’apply’
and it has highlighted all instances in green.

which will run CASA in the terminal window. See §[I.5.2.1] for more startup options.

ALERT: Due to problems with Qt under MacOSX, we had to replace the GUI qtcasalogger with
a special stripped down one that uses the Mac Console. This still has the important capabilities
such as showing the messages and cut/paste. The following description is for the Linux version
and thus should mostly be disregarded on OSX. On the Mac, you treat this as just another console
window and use the usual mouse and hot-key actions to do what is needed.

The CASA logger window for Linux is shown in Figure [I.4] The main feature is the display area
for the log text, which is divided into columns. The columns are:
e Time — the time that the message was generated. Note that this will be in local computer time

(usually UT) for casa generated messages, and may be different for user generated messages;

e Priority — the Priority Level (see below) of the message;

e Origin — where within CASA the message came from. This is in the format Task: : Tool: :Method

(one or more of the fields may be missing depending upon the message);

e Message — the actual text.
The casalogger GUI has a range of features, which include:

e Search — search messages by entering text in the Search window and clicking the search
icon. The search currently just matches the exact text you type anywhere in the message.
See Figure [L.5] for an example.

e Filter — a filter to sort by message priority, time, task/tool of origin, and message contents.
Enter text in the Filter window and click the filter icon to the right of the window. Use the

CHAPTER 1. INTRODUCTION 68

fd Log Messages (sandrock:/home/sandrock3/smyers/Testing3/Patch4/N5921/casapy.log)

Fle Edit View

- - H = 4 L search Message]“ Filter: | Origin ‘v][:\san

1T €
|Msssage el
=a

#i#H4H8 Begin Task: clean HHH

Opening MeasurementSet /home/sandrock3/smyers/Testing3/Patch4/N5921/nge5921.denc. sre.split.ns. contaub
Adding MODEL_DATA, CORRECTED DATA and IMAGING WEIGHT columns
izing MODEL DATA (to unity) and CORRECTED DATA (to DATA)

ies:nx=256 ny=256 cellx='lSarcsec' celly='lSarcsec' stokes=I' mode=CHANNEL nchan=46 start=5S step=1 spwids=[-1] fieldid=0 facets=l distamece=10'
: [0, 0, 1]' mStart='Radialvelocity: 0' gStep='0 !' mFregStart='Fraquency: 0

ction did not drop any rows
€. Weighting MS: IMAGING WEIGHT column will be changed
€. Brigge weighting: sidelobes will be suppressed over full image
: using 256 pixels in the uv plane
stness, robust = 0.5
an::image. sum of weights = 191380

{\nsert Message H[""illuwﬂ Lock scroll

fEeecEcErE
P b b E B D b b bbb ohob

10}

Figure 1.6: Using the casalogger Filter facility. The log output can be sorted by Priority, Time,
Origin, and Message. In this example we are filtering by Origin using ’clean’, and it now shows
all the log output from the clean task.

pull-down at the left of the Filter window to choose what to filter. The matching is for the
exact text currently (no regular expressions). See Figure for an example.

e View — show and hide columns (Time, Priority, Origin, Message) by checking boxes under
the View menu pull-down. You can also change the font here.

e Insert Message — insert additional comments as “notes” in the log. Enter the text into
the “Insert Message” box at the bottom of the logger, and click on the Add (+) button, or
choose to enter a longer message. The entered message will appear with a priority of “NOTE”
with the Origin as your username. See Figure for an example. ALERT: This message
currently will not be inserted into the correct (or user controllable) order into the log.

e Copy — left-click on a row, or click-drag a range of rows, or click at the start and shift click at
the end to select. Use the Copy button or Edit menu Copy to put the selected rows into the
clipboard. You can then (usually) paste this where you wish. ALERT: this does not work
routinely in the current version. You are best off going to the casapy-YYYYMMDD-HHMMSS. log
file if you want to grab text.

e Open — There is an Open function in the File menu, and an Open button, that will allow
you to load old casalogger files.

Other operations are also possible from the menu or buttons. Mouse “flyover” will reveal the
operation of buttons, for example.

It is possible to change the file that the logging is directed to. Per default it is ’casapy-YYY YMMDD-
HHMMSS.log’. But starting CASA with the option —-logfile

casa --logfile otherfile.log

CHAPTER 1. INTRODUCTION 69

hd Log Messages (sandrock:/home/sandrock3/smyers/Testing3/Patch4/N5921/casapy.log
File Edit View

= H E B 7% L '] search Message I]“ Filter [T\me ‘v][] ':' e
Time |Fr|nr\ty Origin |Msssage []

2009-05-27 04:48:05 INFO imstatiz::

2009-05-27 04:48:05 INFO imstal statistics ---

2009-05-27 04:48:05 INFO imstas -- Mean of the pixel values [mean]: 1484.1

2009-05-27 04:48:05 INFO -- vVariance of the pixel values : 3003.86

2009-05-27 04:48:05 INFO -- Standard deviation of the Mean [sigmal: 54.8075

2009-05-27 04:48:05 INFO -- Root mean square [rmsl: 1485.1

2009-05-27 04:48:05 INFO -- Median of the pixel values [median]: 1479.53

2009-05-27 04:48:05 INFO
2009-05-27 04:48:05 INFO
2009-05-27 04:48:05 INFO
2009-05-27 04:48:05 INFO
2009-05-27 04:48:05 INFO
2009-05-27 04:48:05 INFO
2009-05-27 04:48:05 INFO
2009-05-27 04:48:05 INFO
2009-05-27 04:48:05 INFO
2009-05-27 04:48:05 INFO
2009-05-27 04:48:05 INFO

-- Median of the dsviations [medabsdevmed]: 53.7114
-- guarrile [quartile]: 107.913

#H###H End Task: imstat HHHHE

H#H#H Begin Task: viewer HHHE

T

<] : —— EK103]
{\nsert Message H[l"l:llu@lﬂ Lock scroll

. H#HHH Bnd Task: viewer HHEEH B

Figure 1.7: CASA Logger - Insert facility: The log output can be augmented by adding notes or
comments during the reduction. The file should then be saved to disk to retain these changes.

will redirect the output of the logger to the file ’otherfile.log’ (see also Sect.|[1.5.2.1)). The log file
can also be changed during a CASA session. Type

CASA <15>: casalog.setlogfile(’otherfile.log’)

and you will redirect the output to the ’otherfile.log’ file. However, the logger GUI will still be
monitoring the previous ’casapy-YYYYMMDD-HHMMSS.log’ file. To change it to the new file, go
on File - Open and select the new log file, in our case 'otherfile.log’.

1.5.2.1 Startup options for the logger
One can specify logger options at the startup of casa on the command line:
casa <logger option>

The options are described in Appendix [A73] For example, to not bring up a GUI but send the
message to your terminal, do

casa ——nologger --log2term
while

casa —-logfile mynewlogfile.log

will start casa with logger messages going to the file mynewlogfile.log.

CHAPTER 1. INTRODUCTION

1.5.2.2 Setting priority levels in the logger

70

Logger messages are assigned a Priority Level when generated within CASA. The current levels of

Priority are:

1. SEVERE — errors;

2. WARN — warnings;

3. INFO — basic information every user should be aware of or has requested;

4. INFO1 — information possibly helpful to the user;

5. INFO2 — details the power user might want to see;

6. INFO3 — even more details;

7. INFO4 — lowest level of non-debugging information;

8. DEBUGGING — most “important” debugging messages;

9. DEBUG1 — more details;

10. DEBUG2 — lowest level of debugging messages.

The “debugging” levels are intended for the developers use.

There is a threshold for which these messages are writ-
ten to the casapy-YYYYMMDD-HHMMSS . log file and are thus
visible in the logger. By default, only messages at level
INFO and above are logged. The user can change the
threshold using the casalog.filter method. This takes
a single string argument of the level for the threshold.
The level sets the lowest priority that will be generated,
and all messages of this level or higher will go into the
casapy-YYYYMMDD-HHMMSS. log file.

Some examples:

casalog.filter (’INF0’)
casalog.filter (’INF02’)
casalog.filter (’INF04’)
casalog.filter (’DEBUG2’)

the default

H H HH®

Inside the Toolkit:
The casalog tool can be used to con-
trol the logging. In particular, the
casalog.filter method sets the
priority threshold. This tool can also
be used to change the output log file,
and to post messages into the logger.

should satisfy even advanced users
all INFOx messages
all messages including debugging

WARNING: Setting the threshold to DEBUG2 will put lots of messages in the log!

CHAPTER 1. INTRODUCTION 71

1.5.3 Where are my data in CASA?

Interferometric data are filled into a so-called Measurement Set (or MS). In its logical structure,
the MS looks like a generalized description of data from any interferometric or single dish telescope.
Physically, the MS consists of several tables in a directory on disk.

Tables in CASA are actually directories containing files that are the sub-tables. For example, when
you create a MS called AM675 .ms, then the name of the directory where all the tables are stored will
be called AM675.ms/. See Chapter [2 for more information on Measurement Set and Data Handling
in CASA.

The data that you originally get from a telescope can be put in any directory that is convenient to
you. Once you ”fill” the data into a Measurement Set that can be accessed by CASA, it is generally
best to keep that MS in the same directory where you started CASA so you can get access to it
easily (rather than constantly having to specify a full path name).

When you generate calibration solutions or images (again these are in table format), these will also
be written to disk. It is a good idea to keep them in the directory in which you started CASA.

1.5.3.1 How do I get rid of my data in CASA?

Note that when you delete a Measurement Set, calibration table, or image, which are in fact
directories, you must delete this and all underlying directories and files. If you are not running casa,
this is most simply done by using the file delete method of the operating system you started CASA
from. For example, when running CASA on a Linux system, in order to delete the Measurement
Set named AM675.ms type:

CASA <5>: !rm -r AM675.ms

from within CASA. The ! tells CASA that a system command follows (see §[1.3.7.5)), and the -r
makes sure that all subdirectories are deleted recursively.

It is convenient to prefix all MS, calibration tables, and output files produced in a run with a
common string. For example, one might prefix all files from VLA project AM675 with AM675, e.g.
AM675.ms, AM675.cal, AM675.clean. Then,

CASA <6>: !rm -r AM675%

will clean up all of these.

In scripts, the ! escape to the OS will not work. Instead, use the os.system() function (Ap-
pendix [B.7.1)) to do the same thing:

os.system(’rm -r AM675%’)

If you are within casa, then the CASA system is keeping a cache of tables that you have been
using and using the OS to delete them will confuse things. For example, running a script that
contains rm commands multiple times will often not run or crash the second time as the cache gets
confused. The clean way of removing CASA tables (MS, caltables, images) inside casa is to use
the rmtables task:

CHAPTER 1. INTRODUCTION 72

rmtables (’AM675.ms’)
and this can also be wildcarded

rmtables (’AM675%)

(though you may get warnings if it tries to delete files or directories that fit the name wildcard that
are not CASA tables).

ALERT: Some CASA processes lock the file and forget to give it up when they are done (plotxy
is usually the culprit). You will get WARNING messages from rmtables and your script will
probably crash second time around as the file isn’t removed. The safest thing is still to exit casa
and start a new session for multiple runs.

1.5.4 What’s in my data?

The actual data is in a large MAIN table that is organized in such a way that you can access
different parts of the data easily. This table contains a number of “rows”, which are effectively a
single timestamp for a single spectral window (like an IF from the VLA) and a single baseline (for
an interferometer).

There are a number of “columns” in the MS, the most important of which for our purposes is
the DATA column — this contains the original visibility data from when the MS was created or
filled. There are other helpful “scratch” columns which hold useful versions of the data or weights
for further processing: the CORRECTED_DATA column, which is used to hold calibrated data and an
optional MODEL _DATA column, which may hold the Fourier inversion of a particular model image.
The creation and use of the scratch columns is generally done behind the scenes, but you should
be aware that they are there (and when they are used). We will occasionally refer to the rows and
columns in the MS.

More on the contents of the MS can be found in §

1.5.5 Data Selection in CASA

We have tried to make the CASA task interface as uniform as possible. If a given parameter appears
in multiple tasks, it should, as far as is possible, mean the same thing and be used in the same way
in each. There are groups of parameters that appear in a number of tasks to do the same thing,
such as for data selection.

The parameters field, spw, and selectdata (which if True expands to a number of sub-parameters)
are commonly used in tasks to select data on which to work. These common data selection param-
eters are described in §

CHAPTER 1. INTRODUCTION 73

1.6 From Loading Data to Images

The subsections below provide a brief overview of the steps you will need to load data into CASA
and obtain a final, calibrated image. Each subject is covered in more detail in Chapters [2| through

6l

An end-to-end workflow diagram for CASA data reduction for interferometry data is shown in
Figure [1.8l This might help you chart your course through the package. In the following sub-
sections, we will chart a rough course through this process, with the later chapters filling in the
individual boxes.

Input Data Process Output Data

[Mput dataset —{ Data Import]
Data Examination
[and Flagging J_> Tlagging Table

I Calibrator Model —{ Calibration

Calibrated UV Data
Calibration Table

1 —
Salf-Cal T e,

I Model Image
Imaging Restored Image
I Eeaidual Image

Image Analysis

Figure 1.8: Flow chart of the data processing operations that a general user will carry out in an
end-to-end CASA reduction session.

Note that single-dish data reduction (for example with the ALMA single-dish system) follows a
similar course. This is detailed in Chapter

CHAPTER 1. INTRODUCTION 74

1.6.1 Loading Data into CASA

The key data and image import tasks are:

e importuvfits — import visibility data in UVFITS format (§ ;

e importvla — import data from VLA that is in export format (§ ;

e importasdm — import ALMA data in ASDM format (§ ;

e importevla — import JVLA/EVLA data in SDM format (§ [2.2.2);

e importfits — import a FITS image into a CASA image format table (§ [6.27).

These are used to bring in your interferometer data, to be stored as a CASA Measurement Set
(MS), and any previously made images or models (to be stored as CASA image tables).

The data import tasks will create a MS with a path and name specified by the vis parameter. See
§ for more information on MS in CASA. The Measurement Set is the internal data format
used by CASA, and conversion from any other native format is necessary for most of the data
reduction tasks.

Once data is imported, there are other operations you can use to manipulate the datasets:
e concat — concatenate multiple MSs into a given or a new MS (§ [2.2.14])

Data import, export, concatenation, and selection detailed in Chapter

1.6.1.1 VLA: Filling data from VLA archive format

VLA data in “archive” format are read into CASA from disk using the importvla task (see §[2.2.3)).
This filler supports the new naming conventions of EVLA antennas when incorporated into the old
VLA system.

Note that future data from the EVLA in ASDM format will use a different filler. This will be made
available in a later release.

1.6.1.2 Filling data from UVFITS format

For UVFITS format, use the importuvfits task. A subset of popular flavors of UVFITS (in
particular UVFITS as written by AIPS) is supported by the CASA filler. See § for details.

1.6.1.3 Loading FITS images

For FITS format images, such as those to be used as calibration models, use the importfits task.
Most, though not all, types of FITS images written by astronomical software packages can be read
in.

See § for more information.

CHAPTER 1. INTRODUCTION 75

1.6.1.4 Concatenation of multiple MS

Once you have loaded data into Measurement Sets on disk, you can use the tasks concat or
virtualconcat to combine them.

See § [2.2.14] for details.

1.6.2 Data Examination, Editing, and Flagging

The main data examination and flagging tasks are:

e listobs — summarize the contents of a MS (§[2.2.9));

e flagmanager — save and manage versions of the flagging entries in the Measurement Set

(5B.2);
e plotms — interactive X-Y plotting and flagging of visibility data (§ ;

e (plotxy — interactive X-Y plotting and flagging of visibility data (§ , note: plotxy is
slower than plotms and will eventually be phased out, plotxy is still useful to create scripted
hardcopy output, this functionality will likely be available in plotms in the next release);

e flagdata — flagging (and unflagging) of specified data (§ ;
e viewer — the CASA viewer can display (as a raster image) MS data, with some editing
capabilities (§ ;
These tasks allow you to list, plot, and/or flag data in a CASA MS.

There will eventually be tasks for “automatic” flagging to data based upon statistical criteria. Stay
tuned.

Examination and editing of synthesis data is described in Chapter

Visualization and editing of an MS using the casaviewer is described in Chapter [7]

1.6.2.1 Interactive X-Y Plotting and Flagging

The principal tool for making X-Y plots of visibility data is plotms (see §|3.3.1). Amplitudes and
phases (among other things) can be plotted against several x-axis options.

Interactive flagging (i.e., “see it — flag it”) is possible on the plotms X-Y displays of the data
(8 . Since flags are inserted into the Measurement Set, it is useful to backup (or make a
copy) of the current flags before further flagging is done, using flagmanager (§ . Copies of the
flag table can also be restored to the MS in this way.

CHAPTER 1. INTRODUCTION 76

1.6.2.2 Flag the Data Non-interactively

The flagdata task (§

will flag the visibility data set based on the specified data selections. The

listobs task (§[2.2.9) may be run (e.g. with verbose=True) to provide some of the information

needed to specify the

flagging scope. flagdata also contains autoflagging routines.

1.6.2.3 Viewing and Flagging the MS

The CASA viewer can be used to display the data in the MS as a (grayscale or color) raster image.
The MS can also be edited. Use of the viewer on an MS is detailed in §

1.6.3 Calibration

The major calibration tasks are:

e setjy — Computes the model visibilities for a specified source given a flux density or model
image, knows about standard calibrator sources (§ ;

e initweights — if necessary, supports (re-)initialization of the data weights, including an

option for enabl

ing spectral weight accounting (§ [4.3.1))

e gencal — Creates a calibration table for known delay and antenna position offsets (§ ;

e bandpass — Solves for frequency-dependent (bandpass) complex gains (§ ;

e gaincal — Solves for time-dependent (frequency-independent) complex gains (§ ;

e fluxscale — Bootstraps the flux density scale from standard calibrators (§ ;

e polcal — polarization calibration (§ ;

e applycal — Applies calculated calibration solutions (§ [4.6.1));

e clearcal — Re-initializes calibrated visibility data in a given Measurement Set (§|4.6.3));

e listcal — Lists calibration solutions (§ ;

e plotcal — Plots (and optionally flags) calibration solutions (§ |4.5.1));

e uvcontsub — carry out uv-plane continuum subtraction for spectral-line data (§ |4.7.6]);

e split — write out a new (calibrated) MS for specified sources (§ ;

e cvel — Regrid

a spectral MS onto a new frequency channel system (§[4.7.7)).

CHAPTER 1. INTRODUCTION 7

During the course of calibration, the user will specify a set of calibrations to pre-apply before
solving for a particular type of effect, for example gain or bandpass or polarization. The solutions
are stored in a calibration table (subdirectory) which is specified by the user, not by the task: care
must be taken in naming the table for future use. The user then has the option, as the calibration
process proceeds, to accumulate the current state of calibration in a new cumulative table. Finally,
the calibration can be applied to the dataset.

Synthesis data calibration is described in detail in Chapter

1.6.3.1 Prior Calibration

The setjy task calculates absolute fluxes for Measurement Set base on known calibrator sources.
This can then be used in later calibration tasks. Currently, setjy knows the flux density as a
function of frequency for several standard EVLA flux calibrators and solar system objects, and
the value of the flux density can be manually inserted for any other source. If the source is not
well-modeled as a point source, then a model image of that source structure can be used (with the
total flux density scaled by the values given or calculated above for the flux density). Models are
provided for the standard VLA calibrators.

Antenna gain-elevation curves (e.g. for the EVLA antennas) and atmospheric optical depth cor-
rections (applied as an elevation-dependent function) may be pre-applied before solving for the
bandpass and gains. CASA v4.1 was the last version where these specialized calibration were sup-
ported by explicit parameters in the calibration tasks (gaincurve and opacity). As of v4.2, these
parameters have been removed, and gain curves and opacity are supported via gencal, which will
generate standard calibration tables describing these effects, much as other a priori effects (Tsys,
switched power, etc.) are supported.

See § [4.3] for more details.

1.6.3.2 Bandpass Calibration

The bandpass task calculates a bandpass calibration solution: that is, it solves for gain variations
in frequency as well as in time. Since the bandpass (relative gain as a function of frequency)
generally varies much more slowly than the changes in overall (mean) gain solved for by gaincal,
one generally uses a long time scale when solving for the bandpass. The default B’ solution mode
solves for the gains in frequency slots consisting of channels or averages of channels.

A polynomial fit for the solution (solution type *BPOLY’) may be carried out instead of the default
frequency-slot based ’B’ solutions. This single solution will span (combine) multiple spectral
windows.

Bandpass calibration is discussed in detail in §

If the gains of the system are changing over the time that the bandpass calibrator is observed, then
you may need to do an initial gain calibration (see next step).

CHAPTER 1. INTRODUCTION 78

1.6.3.3 Gain Calibration

The gaincal task determines solutions for the time-based complex antenna gains, for each spectral
window, from the specified calibration sources. A solution interval may be specified. The default
’G’ solution mode solves for antenna-based gains in each polarization in specified time solution
intervals. The ’T’ solution mode is the same as ’G’ except that it solves for a single solution
shared by both polarizations.

A spline fit for the solution (solution type ’GSPLINE’) may be carried out instead of the default
time-slot based ’G’ solutions.

See § for more on gain calibration.

1.6.3.4 Polarization Calibration

The polcal task will solve for any unknown polarization leakage and cross-hand phase terms (°D’
and ’X’ solutions). The ’D’ leakage solutions will work on sources with no polarization and
sources with known (and supplied, e.g., using smodel) polarization. For sources with unknown
polarization tracked through a range in parallactic angle on the sky, using poltype ’D+QU’, which
will first estimate the calibrator polarization for you.

The solution for the unknown cross-hand polarization phase difference >X’ term requires a polarized
source with known linear polarization (Q,U).

Frequency-dependent (i.e., per channel) versions of all of these modes are also supported (poltypes
'Df’>, ’Df+QU’, and *Xf’.

See § for more on polarization calibration.

1.6.3.5 Examining Calibration Solutions

The plotcal task (§4.5.1) will plot the solutions in a calibration table. The xaxis choices include
time (for gaincal solutions) and channel (e.g. for bandpass calibration). The plotcal interface
and plotting surface is similar to that in plotxy. Eventually, plotcal will allow you to flag and
unflag calibration solutions in the same way that data can be edited in plotxy.

The listcal task (§[4.5.3) will print out the calibration solutions in a specified table.

1.6.3.6 Bootstrapping Flux Calibration

The fluxscale task bootstraps the flux density scale from “primary” standard calibrators to
the “secondary” calibration sources. Note that the flux density scale must have been previously
established on the “primary” calibrator(s), typically using setjy, and of course a calibration table
containing valid solutions for all calibrators must be available.

See § for more.

CHAPTER 1. INTRODUCTION 79

1.6.3.7 Correcting the Data

The final step in the calibration process, applycal may be used to apply several calibration tables
(e.g., from gaincal or bandpass, along with prior calibration tables). The corrections are applied
to the DATA column of the visibility, writing the CORRECTED _DATA column which can then be plotted
(e.g. in plotxy), split out as the DATA column of a new MS, or imaged (e.g. using clean). Any
existing corrected data are overwritten.

See § for details.

1.6.3.8 Splitting the Data
After a suitable calibration is achieved, it may be desirable to create one or more new Measurement
Sets containing the data for selected sources. This can be done using the split task (§4.7.1)).

Further imaging and calibration (e.g. self-calibration) can be carried out on these split Measurement
Sets.

1.6.3.9 UV Continuum subtraction

For spectral line data, continuum subtraction can be performed in the image domain (imcontsub)
or in the uv domain. For the latter, there are two tasks available: uvcontsub subtracts polynomial
of desired order from each baseline, defined by line-free channels.

1.6.3.10 Transforming the Data to a new frame

If you want to transform your dataset to a different frequency and velocity frame than the one it
was observed in, then you can use the cvel task (§4.7.7). Alternatively, you can do the regridding
during the imaging process in clean without running cvel before.

1.6.4 Synthesis Imaging
The key synthesis imaging tasks are:

e clean — Calculates a deconvolved image based on the visibility data, using one of several

clean algorithms (§ [5.3));
e feather — Combines a single dish and synthesis image in the Fourier plane (§[5.6]).
Most of these tasks are used to take calibrated interferometer data, with the possible addition of a
single-dish image, and reconstruct a model image of the sky. Alert: The clean task is now even

more powerful and incorporates the functionality of previous specialized tasks such as mosaic and
widefield.

See Chapter |p| for more on synthesis imaging.

CHAPTER 1. INTRODUCTION 80

1.6.4.1 Cleaning a single-field image or a mosaic

The CLEAN algorithm is the most popular and widely-studied method for reconstructing a model
image based on interferometer data. It iteratively removes at each step a fraction of the flux in the
brightest pixel in a defined region of the current “dirty” image, and places this in the model image.
The clean task implements the CLEAN algorithm for single-field data. The user can choose from
a number of options for the particular flavor of CLEAN to use.

Often, the first step in imaging is to make a simple gridded Fourier inversion of the calibrated data
to make a “dirty” image. This can then be examined to look for the presence of noticeable emission
above the noise, and to assess the quality of the calibration by searching for artifacts in the image.
This is done using clean with niter=0.

The clean task can jointly deconvolve mosaics as well as single fields, and also has options to do
wide-field and wide-band multi-frequency synthesis imaging.

See §[5.3| for an in-depth discussion of the clean task.

1.6.4.2 Feathering in a Single-Dish image

If you have a single-dish image of the large-scale emission in the field, this can be “feathered” in
to the image obtained from the interferometer data. This is carried out using the feather tasks
as the weighted sum in the uv-plane of the gridded transforms of these two images. While not as
accurate as a true joint reconstruction of an image from the synthesis and single-dish data together,
it is sufficient for most purposes.

See § [5.6] for details on the use of the feather task.

1.6.5 Self Calibration

Once a calibrated dataset is obtained, and a first deconvolved model image is computed, a “self-
calibration” loop can be performed. Effectively, the model (not restored) image is passed back to
another calibration process (on the target data). This refines the calibration of the target source,
which up to this point has had (usually) only external calibration applied. This process follows the
regular calibration procedure outlined above.

Any number of self-calibration loops can be performed. As long as the images are improving, it is
usually prudent to continue the self-calibration iterations.

This process is described in §

1.6.6 Data and Image Analysis
The key data and image analysis tasks are:

e imhead — summarize and manipulate the “header” information in a CASA image (§[6.2));

CHAPTER 1. INTRODUCTION 81

e imcontsub — perform continuum subtraction on a spectral-line image cube (§ ;

e immath — perform mathematical operations on or between images (§ ;

e immoments — compute the moments of an image cube (§ ;

e imstat — calculate statistics on an image or part of an image (§ ;

e imval — extract values of one or more pixels, as a spectrum for cubes, from an image (§ ;
e imfit — simple 2D Gaussian fitting of single components to a region of an image (§ ;

e imregrid — regrid an image onto the coordinate system of another image (§ ;

e viewer — there are useful region statistics and image cube plotting capabilities in the viewer

(8-

1.6.6.1 What’s in an image?

The imhead task will print out a summary of image “header” keywords and values. This task can
also be used to retrieve and change the header values.

See § for more.

1.6.6.2 Image statistics

The imstat task will print image statistics. There are options to restrict this to a box region,
and to specified channels and Stokes of the cube. This task will return the statistics in a Python
dictionary return variable.

See § for more.

1.6.6.3 Image values

The imval task will values from an image. There are options to restrict this to a box region, and to
return specified channels and Stokes of the cube as a spectrum. This task will return these values
in a Python dictionary return variable which can then be operated on in the casa environment.

See § for more.

1.6.6.4 Moments of an image cube

The immoments task will compute a “moments” image of an input image cube. A number of options
are available, from the traditional true moments (zero, first, second) and variations thereof, to other
images such as median, minimum, or maximum along the moment axis.

See §[6.8] for details.

CHAPTER 1. INTRODUCTION 82

1.6.6.5 Image math

The immath task will allow you to form a new image by mathematical combinations of other images
(or parts of images). This is a powerful, but tricky, task to use.

See § [6.7] for more.

1.6.6.6 Regridding an Image

It is occasionally necessary to regrid an image onto a new coordinate system. The imregrid task
can be used to regrid an input image onto the coordinate system of an existing template image,
creating a new output image.

See § for a description of this task.

1.6.6.7 Displaying Images

To display an image use the viewer task. The viewer will display images in raster, contour, or
vector form. Blinking and movies are available for spectral-line image cubes. To start the viewer,

type:

viewer

Executing the viewer task will bring up two windows: a viewer screen showing the data or image,
and a file catalog list. Click on an image or ms from the file catalog list, choose the proper display,
and the image should pop up on the screen. Clicking on the wrench tool (second from left on upper
left) will obtain the data display options. Most functions are self-documenting.

The viewer can be run outside of casa by typing casaviewer.

See § [7] for more on viewing images.

1.6.7 Getting data and images out of CASA

The key data and image export tasks are:

e exportuvfits — export a CASA MS in UVFITS format (§ ;
e exportfits — export a CASA image table as FITS (§6.27).

These tasks can be used to export a CASA MS or image to UVFITS or FITS respectively. See the
individual sections referred to above for more on each.

Chapter 2

Visibility Data Import, Export, and
Selection

To use CASA to process your data, you first will need to get it into a form that is understood
by the package. These are “Measurement Sets” for synthesis (and single dish) data, and “image
tables” for images.

There are a number of tasks used to fill telescope-specific data, to import/export standard formats,
to list data contents, and to concatenate multiple datasets. These are:

e asdmsummary — list the contents of a archive file in ASDM format (§

e importasdm — import of ALMA data in ASDM format (§ [2.2.1])

e importevla — import of Jansky VLA data and flags in ASDM format (§

e importuvfits — import visibility data in UVFITS format (§

e importfitsidi — import visibility data in the FITS-IDI format (§

e importvla — import data from VLA that is in export format (§[2.2.3)

e importmiriad — import data from MIRIAD visibilities (§

e importatca — import ATCA data that is in the RPFITS (archive) format (§ [2.2.6))
e exportuvfits — export a CASA MS in UVFITS format (§

e listobs — summarize the contents of a MS (§[2.2.9))

e listpartition — List the summary of a Multi-MS data set in the logger or in a file (§[2.2.10)

e listvis — list the data in a MS (§[2.2.11)

e vishead — list and change the metadata contents of a MS (§[2.2.12])

83

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 84

e visstat — statistics on data in a MS (§[2.2.13))
e concat — concatenate two or more MS into a new MS (§[2.2.14))

e virtualconcat — concatenate two or more MS or multi-MS into a new multi-MS (§ [2.2.14
and chapter

In CASA, there is a standard syntax for selection of data that is employed by multiple tasks. This
is described in §

There are also tasks for the import and export of image data using FITS:

e listfits — show the header content of any FITS file (§
e importfits — import a FITS image into a CASA image format table (§[6.27))
e exportfits — export a CASA image table as FITS (§[6.27))

2.1 CASA Measurement Sets

Data is handled in CASA via the table system. In particular, visibility data are stored in a CASA
table known as a Measurement Set (MS). Details of the physical and logical MS structure are given
below, but for our purposes here an MS is just a construct that contains the data. An MS can also
store single dish data (essentially a set of auto-correlations of a 1-element interferometer), though
there are also data formats more suitable for single-dish spectra (see §.

A full description of the Measurement Set can be found at http://casa.nrao.edu/Memos/229.
html.

Note that images are handled through special image tables,
although standard FITS I/O is also supported. Images and Inside the Toolkit:
image data are described in a separate chapter. Measurement sets are handled in

The headers of any FITS files can be displayed in the logger |the ms tool. Import and export

with the listfits task: methods include ms.fromfits and
ms.tofits.

listfits :: List the HDU and typical data rows of a fits file:
fitsfile = ?? # Name of input fits file

Unless your data was previously processed by CASA or

software based upon its predecessor aips++, you will need to import it into CASA as an MS.
Supported formats include some “standard” flavors of UVFITS, the VLA “Export” archive format,
and most recently, the ALMA Science Data Model (ASDM) format. These are described below in

on

Once in Measurement Set form, your data can be accessed through various tools and tasks with a
common interface. The most important of these is the data selection interface (§[2.3) which allows
you to specify the subset of the data on which the tasks and tools will operate.

http://casa.nrao.edu/Memos/229.html
http://casa.nrao.edu/Memos/229.html

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 85

2.1.1 Under the Hood: Structure of the Measurement Set

It is not necessary that a casual CASA user know the spe-

cific details on how the data in the MS is stored and the Inside the Toolkit:
contents of all the sub-tables. However, we will occasion- | Generic CASA tables are handled in
ally refer to specific “columns” of the MS when describing |the tb tool. You have direct access
the actions of various tasks, and thus we provide the fol- |, keywords, rows and columns of the
lowing synopsis to familiarize the user with the necessary |tables with the methods of this tool.
nomenclature. You may skip ahead to subsequent sections
if you like!

All CASA data files, including Measurement Sets, are written into the current working directory by
default, with each CASA table represented as a separate sub-directory. MS names therefore need
only comply with UNIX file or directory naming conventions, and can be referred to from within
CASA directly, or via full path names.

An MS consists of a MAIN table containing the visibility data. and associated sub-tables containing
auxiliary or secondary information. The tables are logical constructs, with contents located in the
physical table. * files on disk. The MAIN table consists of the table. * files in the main directory of
the ms-file itself, and the other tables are in the respective subdirectories. The various MS tables
and sub-tables can be seen by listing the contents of the MS directory itself (e.g. using Unix 1s),
or via the browsetable task (§[3.6).

See Fig for an example of the contents of a MS directory. Or, from the casa prompt,

CASA <1>: 1s ngcb921.ms
IPython system call: 1ls -F ngc5921.ms

ANTENNA POLARIZATION table.f1 table.f3_TSM1 table.f8
DATA_DESCRIPTION PROCESSOR table.f10 table.f4 table.£8_TSM1
FEED SORTED_TABLE table.f10_TSM1 table.f5 table.f9
FIELD SOURCE table.f11 table.f5_TSM1 table.f9_TSM1
FLAG_CMD SPECTRAL_WINDOW table.f11_TSM1 table.f6 table.info
HISTORY STATE table.f2 table.f6_TSMO table.lock
OBSERVATION table.dat table.f2_TSM1 table.f7

POINTING table.f0 table.f3 table.f7_TSM1

Note that the MAIN table information is contained in the table.x* files in this directory. Each of
the sub-table sub-directories contain their own table.dat and other files, e.g.

CASA <2>: 1s ngc5921.ms/SOURCE
IPython system call: 1s -F ngc5921.ms/SOURCE
table.dat table.fO table.fOi table.info table.lock

Each “row” in a table contains entries for a number of specified “columns”. For example, in the
MAIN table of the MS, the original visibility data is contained in the DATA column — each “cell”
contains a matrix of observed complex visibilities for that row at a single time stamp, for a single
baseline in a single spectral window. The shape of the data matrix is given by the number of
channels and the number of correlations (voltage-products) formed by the correlator for an array.

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 86

i Find Data EE:

Look in: [;'1'10me,{5andrnck,fsmyers,ﬂ'l’esrinngatcthNS921,anc592]|vl Q O Q B =

[ANTENMNA i
DATA_DESCRIPTION
FEED

FIELD

FLAG_CMD

HISTORY
OBSERVATION
POINTING
POLARIZATION
FROCESS0R
SORTED_TABLE
SOURCE
SPECTRAL_WINDOW
STATE

E Computer

1’_':-5 SMYyEers

(O O e O O O O [y O [

Directory: [l Choose
Files of type: [DiI'EEtDI'iES |vl Cancel

Figure 2.1: The contents of a Measurement Set. These tables compose a Measurement Set named
ngc5921.demo.ms on disk. This display is obtained by using the File:Open menu in browsetable

and left double-clicking on the ngc5921.demo.ms directory.

Table lists the non-data columns of the MAIN table that are most important during a typical
data reduction session. Table lists the key data columns of the MAIN table of an interferome-
ter MS. The MS produced by fillers for specific instruments may insert special columns, such as
ALMA _PHASE_CORR, ALMA _NO_PHAS_CORR and ALMA_PHAS_CORR_FLAG_ROW for ALMA data filled using

the importasdm filler (§[2.2.1]). These columns are visible in browsetable and are accessible from
the toolkit in the ms tool (e.g. the ms.getdata method) and from the tb “table” tool (e.g. using

tb.getcol).
Note that when you examine table entries for IDs such as FIELD_ID or DATA DESC_ID, you will see

0-based numbers.

The MS can contain a number of “scratch” columns, which are used to hold useful versions of other
columns such as the data or weights for further processing. The most common scratch columns

are:

e CORRECTED_DATA — used to hold calibrated data for imaging or display;

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 87

Table 2.1: Common columns in the MAIN table of the MS.
’ Parameter Contents
ANTENNA1 First antenna in baseline
ANTENNA2 Second antenna in baseline
FIELD_ID Field (source no.) identification
DATA_DESC_ID Spectral window number, polarization identifier pair (IF no.)
ARRAY_ID Subarray number
OBSERVATION_ID Observation identification
POLARIZATION_D Polarization identification
SCAN_NUMBER Scan number
TIME Integration midpoint time
UVW UVW coordinates
e MODEL DATA — holds the Fourier inversion of a particular model image for calibration or

imaging. This column is optional.

The creation and use of the scratch columns is generally done behind the scenes, but you should
be aware that they are there (and when they are used).

Table 2.2:

Commonly accessed MAIN Table data-related columns.

Note that the columns

ALMA_PHASE_CORR, ALMA NO_PHAS_CORR and ALMA_PHAS_CORR_FLAG_ROW are specific to ALMA data

filled using the importasdm filler.

Column
DATA

FLAG

WEIGHT

WEIGHT_SPECTRUM
ALMA_PHASE_CORR
ALMA_NO_PHAS_CORR
ALMA_PHAS_CORR_FLAG_ROW
MODEL_DATA

CORRECTED_DATA

Format
Complex(N, Ny)

Bool(N, Ny)
Float(N,)
Float(N¢, Ny)
Complex(N¢, Ny)
Bool(N¢, Ny)
Bool(N¢, Ny)
Complex(N, Ny)

Complex(N¢, Ny)

Contents

complex visibility data matrix (=
ALMA PHASE _CORR by default)
cumulative data flags

weight for a row

individual weights for a data matrix
on-line phase corrected data (Not in
VLA data)

data that has not been phase corrected
(Not in VLA data)

flag to use phase-corrected data or not
(not in VLA data)

Scratch: created by calibrater or im-
ager tools

Scratch: created by calibrater or im-
ager tools

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 88

Data flags can be set in the MS, too. Whenever a flag is set, the data will be ignored in all
processing steps but not physically deleted from the MS. The flags are channel-based and stored in
the MS FLAG subtable. Backups can be stored in the '"MS.flagversions’ file that can be accessed

via the flagmanager (§[3.2).

The most recent specification for the MS is Aips++ Measurement Set definition version 2.0
(http://casa.nrao.edu/Memos/229.html)).

2.2 Data Import and Export

There are a number of tasks available to bring data in various forms into CASA as a Measurement
Set:

ALMA Science Data Model format data can be imported into CASA (importasdm)

e JVLA Science Data Model format data, including online flags, can imported into CASA
(importevla)

e VLA Archive format data can be imported into CASA (importvla)

UVFITS format can be imported into and exported from CASA (importuvfits, importfitsidi,
and exportuvfits)

2.2.1 ALMA: Filling of Science Data Model (ASDM) data

The ALMA and JVLA projects have agreed upon a com-
mon archival science data model (ASDM) format, and have Under the Hood:

jointly developed the software to fill this data into CASA. | The importasdm task is just an inter-
In the ASDM format, the bulk of the data is contained in | face to the stand-alone asdm2MS ap-
large binary data format (BDF) tables, with the meta-data | plication. To find out the command-
and ancillary information in XML tables. This is struc- |line arguments to this application,
tured as a directory, like the MS, and was designed to be | asdm2MS --help .

similar to the MS to facilitate conversion.

The content of an ASDM can be listed with the task

asdmsummary:
asdmsummary :: Summarized description of an ASDM dataset.
asdm = 7 # Name of input ASDM directory

with an output that contains the list and positions of the antennas, followed by the parameters of
each scan like observation time, source name, frequency and polarization setup:

http://casa.nrao.edu/Memos/229.html

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION

Input ASDM dataset : TDEM0008.sb3373760.eb3580330.55661.22790537037

ASDM dataset :TDEM0008.sb3373760.eb3580330.55661.22790537037

Exec Block : ExecBlock_0

Telescope : JVLA

Configuration name : B

Observer name : Dr. Juergen 0Ott

The exec block started on 2011-04-10T05:28:13.200000000 and ended on 2011-04-10T10:

27 antennas have been used in this exec block.

Id Name Make Station Diameter X Y
Antenna_0 eaO1 UNDEFINED w36 25 -1606841.96 -5042279.689
Antenna_1 ea02 UNDEFINED E20 25 -1599340.8 -5043150.965
Antenna_2 eal3 UNDEFINED E36 25 -1596127.728 -5045193.751
Antenna_3 eal04 UNDEFINED w28 25 -1604865.649 -5042190.04
Antenna_4 ea05 UNDEFINED w08 25 -1601614.091 -5042001.653
Antenna_5 eal6 UNDEFINED N24 25 -1600930.06 -5040316.397
Antenna_6 eal7 UNDEFINED E32 25 -1597053.116 -5044604.687
Antenna_7 ea08 UNDEFINED N28 25 -1600863.684 -5039885.318
Antenna_8 eal9 UNDEFINED E24 25 -1598663.09 -5043581.392
Antenna_9 eall UNDEFINED N32 25 -1600781.039 -5039347.456
Antenna_10 eall UNDEFINED E04 25 -1601068.79 -5042051.91
Antenna_11 eal2 UNDEFINED EO08 25 -1600801.926 -5042219.366
Antenna_12 eal4d UNDEFINED wi2 25 -1602044.903 -5042025.824
Antenna_13 ealb UNDEFINED w24 25 -1604008.742 -5042135.828
Antenna_14 eal6 UNDEFINED N12 25 -1601110.052 -5041488.079
Antenna_15 eal7 UNDEFINED w32 25 -1605808.656 -5042230.082
Antenna_16 eal8 UNDEFINED N16 25 -1601061.961 -5041175.88
Antenna_17 eal9 UNDEFINED wo4 25 -1601315.893 -5041985.32
Antenna_18 ea20 UNDEFINED N36 25 -1600690.606 -5038758.734
Antenna_19 ea21 UNDEFINED E12 25 -1600416.51 -5042462.45
Antenna_20 ea22 UNDEFINED NO4 25 -1601173.979 -5041902.658
Antenna_21 ea23 UNDEFINED E16 25 -1599926.104 -5042772.967
Antenna_22 ea24 UNDEFINED wié 25 -1602592.854 -5042054.997
Antenna_23 ea2b UNDEFINED N20 25 -1601004.709 -5040802.809
Antenna_24 ea26 UNDEFINED w20 25 -1603249.685 -5042091.404
Antenna_25 ea27 UNDEFINED E28 25 -1597899.903 -5044068.676
Antenna_26 ea28 UNDEFINED NO8 25 -1601147.94 -5041733.837

Number of scans in this exec Block : 234

scan #1 from 2011-04-10T05:28:13.200000000 to 2011-04-10T05:33:35.500000256
Intents : OBSERVE_TARGET
Sources : 1331+305=3C286

89

27:12.300000256

3551913.
3554065.
3552652.
3552962.
3554652.
3557330.
3553058.
3557965.
3553767 .
3558761 .

3554824.
3554706 .
3554427 .
3553403.
3555597 .
3552459.
3556058.
3554808.
3559632.
3554536.
3554987 .
3554319.

35541
3556610
3553797
3553432
3555235

Subscan #1 from 2011-04-10T05:28:13.200000000 to 2011-04-10T05:33:35.500000256

Intent : UNSPECIFIED
Number of integrations : 322

Binary data in uid:///evla/bdf/1302413292901
Number of integrations : 322

Time sampling : INTEGRATION

Correlation Mode : CROSS_AND_AUTO

Spectral resolution type : FULL_RESOLUTION

017
219
421
365
509
397
987
319
029
542
835
448
832
707
439
202
022
305
061
041
518
789
40.7
.133
.803
.445
.956

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 90

Atmospheric phase correction : AP_UNCORRECTED
SpectralWindow_O : numChan = 256, frame = TOPO,
firstChan = 8484000000, chandWidth = 125000 x Polarization_O : corr = RR,LL

scan #2 from 2011-04-10T05:33:35.500000256 to 2011-04-10T05:35:35.200000000
Intents : OBSERVE_TARGET
Sources : 1331+305=3C286
Subscan #1 from 2011-04-10T05:33:35.500000256 to 2011-04-10T05:35:35.200000000
Intent : UNSPECIFIED
Number of integrations : 119

Binary data in uid:///evla/bdf/1302413293280

Number of integrations : 119

Time sampling : INTEGRATION

Correlation Mode : CROSS_AND_AUTO

Spectral resolution type : FULL_RESOLUTION

Atmospheric phase correction : AP_UNCORRECTED

SpectralWindow_O : numChan = 256, frame = TOPO,

firstChan = 8484000000, chandWidth = 125000 x Polarization_O : corr = RR,LL

scan #3 from 2011-04-10T05:35:35.200000000 to 2011-04-10T05:36:34.999999488
Intents : OBSERVE_TARGET
Sources : 1331+305=3C286
Subscan #1 from 2011-04-10T05:35:35.200000000 to 2011-04-10T05:36:34.999999488

The importasdm task will fill SDM1.2 and SDM1.3 format data into a CASA visibility data set
(MS). ALMA data was recorded in SDM1.2 format from October 2009 until May 2011. Since May
2011, ALMA is using the SDM 1.3 format. In particular all science data from cycle 0 will be in
SDM1.3. The JVLA also started using SDM1.2 in October 2009 and continues to use this format as
of October 2011. importasdm can read all of the above formats. The parameter useversion can
be used to enable the options process_syspower, process_caldevice, and process_pointing.

The default inputs of importasdm are:

importasdm :: Convert an ALMA Science Data Model observation into a

CASA visibility file (MS) or single-dish data format (Scantable)

asdm = 72 # Name of input asdm directory (on
disk)

vis = 7 # Root name of the ms to be created.
Note the .ms is NOT added

createmms = False # Create a multi-MS output

singledish = False # Set true to output single-dish data
format

corr_mode = ’all’ # specifies the correlation mode to be
considered on input. A quoted string
containing a sequence of ao, co,
ac,or all separated by whitespaces
is expected

srt = ’all’ # specifies the spectral resolution
type to be considered on input. A
quoted string containing a sequence

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION

time_sampling

ocorr_mode

compression
lazy

asis

wvr_corrected_data

scans

’all’

’Ca’

False
False

Jno)

H oH H OH H H HHEHHHHHHEHHFHHHEHHEHHHEHEHHEHHHEHHEHHHHEHHEHHEHEHHEHHEHHHEHH

of fr, ca, bw, or all separated by
whitespaces is expected

specifies the time sampling
(INTEGRATION and/or SUBINTEGRATION)
to be considered on input. A quoted
string containing a sequence of i,
si, or all separated by whitespaces
is expected

output data for correlation mode
AUTO_ONLY (ao) or CROSS_ONLY (co) or
CROSS_AND_AUTO (ca)

Flag for turning on data compression

Make the MS DATA column read the ASDM
Binary data directly (faster import,
smaller MS)

Creates verbatim copies of the
ASDMtables in the ouput measurement
set. Value given must be a string
of table names separated by spaces;
A * wildcard is allowed.

Specifies which values are considerd
in the SDM binary data to fill the
DATA column in the MAIN table of the
MS. Expected values for this option
are: no, for uncorrected data
(default), yes, for the corrected
data, and both, for for corrected
and uncorrected data. Note if both
is selected two measurement sets are
created, one with uncorrected data
and the other with corrected data.

processes only the specified scans.
This value is a semicolon separated
list of scan specifications. A scan
specification consists in an exec
bock index followed by the
character; followed by a comma
separated list of scan indexes or
scan index ranges. A scan index is
relative to the exec block it
belongs to. Scan indexes are l-based
while exec blocks are O-based. "O:1"
or "2:276" or
"0:1,1:276,8;2:,3:24730" "1,2" are
valid values for the option. "3:"
alone will be interpreted as, all
the scans of the exec block#3. An
scan index or a scan index range not
preceded by an exec block index will
be interpreted as, all the scans
with such indexes in all the exec

91

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 92

ignore_time

process_syspower

process_caldevice

process_pointing

process_flags
tbuff
applyflags
savecmds
outfile

flagbackup

verbose

overwrite
showversion

useversion

bdfflags

with_pointing_correction

remove_ref_undef

convert_ephem2geo

False

True

True

True

True

0.0
False

False
)

True

False

False
False

False

False

True

HoH H OH H HHHFHHHEHHEHHEHHHEHHEHHHEHHE

H O H H HHFEHHHEHHEHHHEHHEHHEHHH

blocks. By default all the scans
are considered.

All the rows of the tables Feed,
History, Pointing, Source, SysCal,
CalDevice, SysPower, and Weather are
processed independently of the time
range of the selected exec block /
scan.

The SysPower table is processed if
and only if this parameter is set to
true.

The CalDevice table is processed if
and only if this parameter is set to
true.

The Pointing table is processed if
and only if this parameter is set to
true. If set to False, the POINTING
table is empty in the resulting MS

Create online flags in the FLAG_CMD
sub-table.

Time padding buffer (seconds)

Apply the flags to the MS.

Save flag commands to an ASCII file

Name of ASCII file to save flag
commands

Back up flag column before applying
flags.

Output lots of information while the
filler is working

Over write an existing MS(s)

Report the version of asdm2MS being
used

Version of asdm2MS to be used (’v3’
(default, should work for all data))

Set the MS FLAG column according to
the ASDM _binary_ flags

add (ASDM::Pointing::encoder -
ASDM: :Pointing: :pointingDirection)
to the value to be written in
MS::Pointing::direction

if set to True then apply
fixspwbackport on the resulting
MS(es) .

if True, convert any attached
ephemerides to the GEO reference
frame (time-spacing not changed)

If scans is set, then importasdm processes only the scans specified in the option’s value. This value

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 93

is a semicolon separated list of scan specifications. A scan specification consists in an exec bock
index followed by the character ’:’ followed by a comma separated list of scan indexes or scan
index ranges. A scan index is relative to the exec block it belongs to. Scan indexes are 1-based
while exec blocks are 0-based. The expressions

IIO:1||

"2:276"
"0:1,1:276,8;2:,3:24730"
ll1,2||

"3: n

are all valid values for the selection. The "3:" selector will be interpreted as ’all the scans of the
exec block 3. An scan index or a scan index range not preceded by an exec block index will be
interpreted as ’all the scans with such indexes in all the exec blocks’. By default all the scans are
considered.

When process_flags=True the task will create online flags based on the Flag.xml, Antenna.xml
and SpectralWindow.xml files and copy them to the FLAG_CMD sub-table of the MS. The flags will
NOT be applied unless the parameter applyflags is set to True. Optionally, the flags can also be
saved to an external ASCII file if savecmds is set to True. The flags can later be applied to the
MS using task flagdata in list mode. See §[3.4]

When bdfflags=True the task will apply online flags contained in the ASDM BDF data by calling
the executable bdflags2MS which the user can also do from the OS prompt. This is recommended
for ALMA data.

If singledish=True, output data format is scantable (single-dish data format, see[)) instead of MS.
In that case, you must specify name or id of the antenna that you want to obtain data. This can be
done by using antenna parameter that is defined as a subparameter of singledish. For single-dish
mode, only auto-correlation data are filled, i.e. ocorr_mode is forcibly set to ’ao’.

The option creatermms prepares the output file for parallel processing and creates a multi-MS (see

Sect. and .

2.2.1.1 Import of ASDM data with option lazy=True

With release 4.3, the parameter ‘lazy’ (default = False) is fully tested and operational. If the
default value False is chosen, importasdm will (as in previous versions) fill the visibilities into a
newly created DATA column of the MS converting them from their binary format in the ASDM to
the CASA Table format.

If, however, lazy is set to True, the task will create the DATA column with an ALMA data-specific
storage manager, the (asdmstman), which enables CASA to directly read the binary data from the
ASDM with on-the-fly conversion. No redundant copy of the raw data is created.

This procedure has the advantage that it saves more than 60% disk space and at least in some cases
makes the access to the DATA column > 10% faster because the data I/O volume is decreased.

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 94

For the same reason, it also accelerates the import itself by ca. a factor 2. The acceleration is
particularly large in the applycal task and here particularly on standard SATA disks.

E.g., if your ASDM has a size of 36 GB, the import with default parameters will turn this into an
MS of 73 GB size (total disk space consumption = 36 GB + 73 GB = 109 GB). With lazy=True,
the imported MS has a size of only 2 GB (total disk space consumption = 36 GB + 2 GB = 38 GB).
Le. your total disk space savings are ca. 65%. Even when you compare to the case where you
delete the ASDM after normal import, the solution with lazy import and keeping the ASDM will
save you ca. 48% disk space (in the example above 38 GB compared to 73 GB).

The only caveats are the following:

1. You must not delete your ASDM. You can, however, move it but you have to update the
reference stored in the MS. Symbolic links will work. See below on how to use the tool
method ms.asdmref () to manipulate the ASDM reference.

2. The lazily imported DATA column is read-only. But in any normal data reduction, the DATA
column (as opposed to CORRECTED_DATA) is treated as read-only anyway.

The lazily imported MS is numerically identical with the traditionally imported MS and so are all
results derived from the MSs. The setting lazy=True might be made the default setting in future
CASA releases.

An important additional tool to manipulate lazily imported MSs is the new method ms.asdmref ()
in the ms tool. If the MS is imported from an ASDM with option lazy=True, the DATA column
of the MS is virtual and directly reads the visibilities from the ASDM. A reference to the original
ASDM is stored with the MS. If the ASDM needs to be moved to a different path, the reference to
it in the MS needs to be updated. This can be achieved with ms.asdmref ().

The method takes one argument: abspath. When called with abspath equal to an empty string
(default), the method just reports the currently set ASDM path or an empty string if the ASDM
path was not set, i.e. the MS was not lazily imported.

If you want to move the referenced ASDM to a different path, you can set the new absolute path
by providing it as the value of abspath to the method.

ms.open(’uid___A12345_X678_X910.ms’ ,False)
ms.asdmref (’ /home/alma/myanalysis/uid___A12345_X678_X910’)
ms.close()

will set the new location of the referenced ASDM to /home/alma/myanalysis/uid___A12345_X678_X910.

Note that the lazily imported MS can be moved without any restrictions independently from the
referenced ASDM as long as the absolute path to the ASDM remains accessible, even across file
systems.

2.2.2 Janksy VLA: Filling of Science Data Model (ASDM) data

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 95

The importevla task will fill SDM data from the Jansky Under the Hood:
VLA (or ALMA) into a MS, along with online flagging
data contained in the Flag.xml SDM table. Otherwise, it
behaves as importasdm but with a streamlined parameter
set.

The importevla task is a modi-
fied version of the importasdm task,
that includes import of online flags
from the Flag.xml table into the
The default inputs are: FLAG_CMD MS table, and a stream-
lined set of parameters.

importevla :: Convert an Science Data Model observation into a CASA Measurement Set
asdm = 0 # Name of input asdm directory (on disk)
vis = ?? # Root name of the ms to be created. Note the .ms
1is NOT added
ocorr_mode = ’co’ # Fill correlation mode AUTO_ONLY (ao),
CROSS_ONLY (co) or CROSS_AND_AUTO (ca)
compression = False # Flag for turning on data compression
asis = »? # Create verbatim copies of these SDM tables in
the MS.
scans = ’? # List of scans to fill (default is all scamns).
verbose = False # Output lots of information while the filler is
working
overwrite = False # Over write an existing MS
online = True # Create online flags
tbuff = 0.0 # Time padding buffer (in seconds)
flagzero = True # Create flag commands for zero points
flagpol = True # Create flag commands for cross-hand
correlations
shadow = True # Create flag commands for shadowed data
tolerance = 0.0 # Amount of shadow allowed (in meters)
addantenna = i # File name or dictionary with additional antenna
names, positions and diameters
applyflags = False # Apply flag commands to MS
savecmds = False # Save flag commands to an ASCII file
flagbackup = True # Back up flag column before applying flags

ALERT: If you want to use your JVLA online flags then you must use importevla rather than
importasdm. The flagcemd task will process these flags. Also, if you have run importevla in CASA
3.3 or earlier, the flag syntax will be processed by the task oldflagemd.

The default action of importevla is to construct the FLAG_CMD MS table based on the settings of
online, flagzero, and shadow (and sub-parameters). If applyflags=True then these flags will be
applied after filling. We recommend you use the flagcmd task after filling to examine these flags
and then apply.

See importasdm (§[2.2.1) for a description of the common parameters. Some differences:

Note that importevia automatically loads in VLA switched power information (unlike in previous
versions).

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 96

The online parameter controls creation of online flags from the Flag.xml SDM table. The tbuff
parameter adds a time “buffer” padding for these flags in both directions to deal with timing mis-
matches. ALERT: For JVLA data taken before April 2011, you should set tbuff to a value (in
seconds) equal to 1.5x the integration time.

The flagzero parameter controls creation of clipping commands to flag visibilities with amplitudes
that are exact zeros. If flagpol=True then it will flag the cross-hands (e.g. RL and LR) as well,
which might result in low but correct values of these correlations being thrown out (but can catch
erroneous zeros also). ALERT: This facility is provided as the JVLA correlator, particularly in
2010, occasionally produces visibilities with zero or very small values that need to get flagged out.

The shadow parameter turns on creation of flag commands to remove antenna time ranges where
they are shadowed by other antennas in the array. By default it will flag based on the an-
tenna diameter, but if you want more lenient or conservative flagging then set the tolerance
sub-parameter, where the shadowed antennas are flagged for all baselines that are shorter than
radius; + radiusg — tolerance (the radii are those for the antennas as listed in the ANTENNA sub-
table). addantenna can be a file that defines the positions of antennas that are on the ground but
do not appear in the MS. They can still shadow antennas in the array.

savecmds will save all flagging commands in the flagdata and flagcmd syntax (§ and to
a file to be applied later or for bookkeeping.

A flag backup can be performed using the flagbackup parameter. It saves all current flags to the
* flagversions’ file of the MS, before all new flags are applied.

2.2.3 VLA: Filling data from archive format (importvla)

VLA data in archive format (i.e., as downloaded from the VLA data archive) are read into CASA
from disk using the importvla task. The inputs are:

dimportvla :: import VLA archive file(s) to a measurement set:

archivefiles = ’> # Name of input VLA archive file(s)

vis = 2 # Name of output visibility file

bandname = ? # VLA frequency band name:’’=>obtain all bands in archive files
frequencytol = 150000.0 # Frequency shift to define a unique spectral window (Hz)
project = ?? # Project name: ’’ => all projects in file

starttime = ?? # start time to search for data

stoptime = 2 # end time to search for data

applytsys = True # apply nominal sensitivity scaling to data & weights
autocorr = False # import autocorrelations to ms, if set to True
antnamescheme = ‘new’ # ’0ld’ or ’new’; ’VAO4’ or ’4’ for ant 4

keepblanks = False # Fill scans with empty source names (e.g. tipping scans)?
evlabands = False # Use updated eVLA frequencies and bandwidths

The main parameters are archivefiles to specify the input VLA Archive format file names, and
vis to specify the output MS name.

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 97

ALERT: The scaling of VLA data both before and after the June 2007 Modcomp-turnoff is fully
supported, based on the value of applytsys.

The NRAO Archive is located at:
e https://archive.nrao.edu

Note that archivefiles takes a string or list of strings, as there are often multiple files for a
project in the archive.

For example:

archivefiles = [’AP314_A950519.xp1’,’AP314_A950519.xp2’]
vis = ’NGC7538.ms’

The importvla task allows selection on the frequency band. Suppose that you have 1.3 cm line
observations in K-band and you have copied the archive data files AP314_A95019.xp* to your
working directory and started casa. Then,

default (’importvla’)

archivefiles = [’AP314_A950519.xp1’,’AP314_A950519.xp2’,’AP314_A950519.xp3"]
vis = ’ngc7538.ms’

bandname = ’K’

frequencytol = 10e6

importvla()

If the data is located in a different directory on disk, then use the full path name to specify each
archive file, e.g.:

archivefiles=[’/home/rohir2/jmcmulli/ALMATST1/Data/N7538/AP314_A950519.xp1’,\
’/home/rohir2/jmcmulli/ALMATST1/Data/N7538/AP314_A950519.xp2°,\
> /home/rohir2/jmcmulli/ALMATST1/Data/N7538/AP314_A950519.xp3°]

Important Note: importvla will import the on-line flags (from the VLA system) along with the
data. Shadowed antennas will also be flagged. The flags will be put in the MAIN table and thus
available to subsequent tasks and tools. If you wish to revert to unflagged data, use flagmanager
(8 to save the flags (if you wish), and then use flagdata (§ with mode="manualflag’ and
unflag=True to toggle off the flags.

The other parameters are:

2.2.3.1 Parameter applytsys

The applytsys parameter controls whether the nominal sensitivity scaling (based on the measured
TSYS, with the weights scaled accordingly using the integration time) is applied to the visibility
amplitudes or not. If True, then it will be scaled so as to be the same as AIPS FILLM (i.e.
approximately in deciJanskys). Note that post-Modcomp data is in raw correlation coefficient and

https://archive.nrao.edu

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 98

will be scaled using the TSYS values, while Modcomp-era data had this applied online. In all cases
importvla will do the correct thing to data and weights based on an internal flag in the VLA
Archive file, either scaling it or unscaling based on your choice for applytsys.

If applytsys=True and you see strange behavior in data amplitudes, it may be due to erroneous
TSYS values from the online system. You might want to then fill with applytsys=False and look
at the correlation coefficients to see if the behavior is as expected.

2.2.3.2 Parameter bandname

The bandname indicates the VLA Frequency band(s) to load, using the traditional bandname codes.
These are:

e ’4’ = 48-96 MHz

e P’ = 298-345 MHz

e 'L’ = 1.15-1.75 GHz

e ’C’ =4.2-5.1 GHz

e ’X’ = 6.8-9.6 GHz

e ’U’ = 13.5-16.3 GHz

e 'K’ = 20.8-25.8 GHz

e '’ = 38-51 GHz

e ’’ = all bands (default)

Note that as the transition from the VLA to JVLA progresses, the actual frequency ranges covered
by the bands will expand, and additional bands will be added (namely ’S’ from 1-2 GHz and ’A’
from 26.4-40 GHz).

2.2.3.3 Parameter frequencytol

The frequencytol parameter specifies the frequency separation tolerated when assigning data to
spectral windows. The default is frequencytol=150000 (Hz). For Doppler tracked data, where the
sky frequency changes with time, a frequencytol < 10000 Hz may produce too many unnecessary
spectral windows.

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 99

2.2.3.4 Parameter project

You can specify a specific project name to import from archive files. The default >’ will import
data from all projects in file(s) archivefiles.

For example for VLA Project AL519:

’AL519° # this will work
’alb19’ # this will also work

project
project

while project="AL0519’ will NOT work (even though that is what queries to the VLA Archive
will print it as - sorry!).

2.2.3.5 Parameters starttime and stoptime

You can specify start and stop times for the data, e.g.:

starttime = ’1970/1/31/00:00:00°
stoptime = ’2199/1/31/23:59:59°

Note that the blank defaults will load all data fitting other criteria.

2.2.3.6 Parameter autocorr

Note that autocorrelations are filled into the data set if autocorr=True. Generally for the VLA,
autocorrelation data is not useful, and furthermore the imaging routine will try to image the
autocorrelation data (it assumes it is single dish data) which will swamp any real signal. Thus, if
you do fill the autocorrelations, you will have to flag them before imaging.

2.2.3.7 Parameter antnamescheme

The antnamescheme parameter controls whether importvla will try to use a naming scheme where
JVLA antennas are prefixed with EA (e.g. ’EA16’) and old VLA antennas have names prefixed
with VA (e.g. ’VA11’). Our method to detect whether an antenna is JVLA is not yet perfected,
and thus unless you require this feature, simply use antnamescheme=’01d’.

2.2.3.8 Parameter evlabands

The evlabands=True option is provided to allow users to access JVLA frequencies outside the
standard VLA tunings (e.g. the extended C-band above 6 GHz). ALERT: use of this option for
standard VLA data will cause unexpected associations, such as X-band data below 8 GHz being
extracted to C-band (as the JVLA C-band is 4-8 GHz). Use with care.

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 100

2.2.4 Import ATCA and CARMA data

There are several ways to import data from ATCA and CARMA into CASA. The data from these
arrays has historically been processed in MIRIAD. For simple cases (single source and frequency)
exporting from MIRIAD to UVFITS format and importing using importuvfits (see § often
works ok, although some fixes to the resulting MeasurementSet may be needed.

The importmiriad task (§[2.2.5) reads MIRIAD visibility data and can handle multiple frequencies
and sources in the input. Since it does not apply any calibration, make sure to apply it beforehand
in MIRIAD.

The importatca task (§ [2.2.6) reads the ATCA archive format (RPFITS) directly, avoiding the
need to go through MIRIAD to load the data. It can handle ATCA data from both the old and
new (CABB) correlator.

2.2.5 Import MIRIAD visibilities (importmiriad)

The task importmiriad allows one to import visibilities in the MIRIAD data format to be converted
to a MS. The task has mainly be tested on data from the ATCA and CARMA telescopes and the
imputs are:

importmiriad :: Convert a Miriad visibility file into a CASA MeasurementSet

mirfile = 7 # Name of input Miriad visibility file

vis = 7 # Name of output MeasurementSet

tsys = False # Use the Tsys to set the visibility weights
spw = ’all’ # Select spectral windows

vel = 9 # Select velocity reference (TOPO,LSRK,LSRD)
linecal = False # (CARMA) Apply line calibration

wide = ’all’ # (CARMA) Select wide window averages

debug = 0 # Display increasingly verbose debug messages

The mirfile parameter specifies a single MIRIAD visibility file which should have any calibration
done in MIRIAD already applied to it.

Set the tsys parameter to True to change the visibility weights from the MIRIAD default (usually
the integration time) to the inverse of the noise variance using the recorded system temperature.

The spw parameter can be used to select all or some of the simultaneous spectral windows from
the input file. Use the default of ‘all’ for all the data or use e.g., spw="0,2" to select the first and
third window.

The vel parameter can be used to set the output velocity frame reference. For ATCA this defaults
to "TOPO’ and for CARMA it defaults to 'LSRK’. Only change this if your data comes out with
the incorrect velocity.

The linecal parameter is only useful for CARMA data and can apply the line calibration if it is
stored with the MIRIAD data.

The wide parameter is only useful for CARMA data and can select which of the wide-band channels
should be loaded.

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 101

2.2.6 Import ATCA RPFITS data (importatca)

The data from the ATCA is available from the archive in files in the RPFITS format. These files
can be imported into CASA with the importatca task.

importatca :: Import ATCA RPFITS file(s) to a measurement set

files =[’%.C1234"] # Name of input ATCA RPFits file(s)

vis = ’cl1234.ms’ # Name of output visibility file
(MeasurementSet)

options = ?? # Processing options: birdie, reweight,
noxycorr, fastmosaic, hires, noac
(comma separated list)

spw = [-1] # Specify the spectral windows to use,
default=all

nscans = [0, 0] # Number of scans to skip followed by
number of scans to read

lowfreq = ’0.1GHz’ # Lowest reference frequency to select

highfreq = ?999GHz’ # Highest reference frequency to select

fields = [’°] # List of field names to select

edge = 8 # Percentage of edge channels to flag.
For combined zooms, this specifies
the percentage for a single zoom
window

The files parameter can take a string or a list of strings as input and also allows the use of wildcards
as shown in the example above.

For older ATCA continuum data (before the CABB correlator, April 2009) use options="birdie,reweight’
to suppress internally generated RFI.

The options parameter:

e birdie - (pre-CABB data only) Discard edge channels and channels affected by internal RFI.

e reweight - (pre-CABB data only) Suppress ringing of RFI spikes by reweighting of the lag
spectrum

e noxycorr- do not apply the xy phase correction as derived from the switched noise calibration,
by default this is applied during loading of the data.

e fastmosaic - use this option if you are loading mosaic data with many pointings and only one
or two integrations per pointing. This option changes the tiling of the data to avoid excessive

1/0.

e hires - use this option if you have data in time binning mode (as used for pulsars) but you
want to make it look like data with very short integration time (no bins).

e noac - discard the auto-correlation data

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 102

The spw parameter takes a list of integers and can be used to select one or more of the simultaneous
frequencies. With CABB there can be up to 34 spectra. The order of the frequency bands in the
RPFITS file is: the two continuum bands (0 and 1), followed by the zoom bands for the first
frequency and then the zoom bands for the second frequency. Note that this spw parameter does
not take a string with wildcards. Use spw=-1 to get all the data.

The nscans parameter can be used to select part of a file, e.g., to retrieve a few test scans for a
quick look.

The lowfreq and highfreq parameters select data based on the reference frequency.
The fields parameter selects data based on the field /source name.

The edge parameter specifies how many edge channels to discard as a percentage of the number
of channels in each band. E.g., the default value of 8 will discard 82 channels from the top and
bottom of a 2048 channel spectrum.

2.2.7 UVFITS Import and Export

The UVFITS format is not exactly a standard, but is a popular archive and transport format
nonetheless. CASA supports UVFITS files written by the AIPS FITTP task, and others.

UVFITS is supported for both import and export.

2.2.7.1 Import using importuvfits

To import UVFITS format data into CASA, use the importuvfits task:

CASA <1>: inp(importuvfits)

fitsfile = ’? # Name of input UVFITS file
vis = ’? # Name of output visibility file (MS)
antnamescheme = ’old’ # For VLA only; ’new’ or ’old’; ’VA0O4’ or ’04’ for VLA ant 4

This is straightforward, since all it does is read in a UVFITS file and convert it as best it can into
a MS.

For example:

importuvfits(fitsfile="NGC5921.fits’,vis=’ngc5921.ms’)

ALERT: CARMA data can be loaded into CASA. However,

tb.open("c0104I/ANTENNA" ,nomodify=False)
namelist=tb.getcol ("NAME") .tolist ()

for i in range(len(namelist)):

name = ’CA’+namelist[i]

print ’ Changing ’+namelist[il+’ to ’+name

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION

namelist[i]=name

tb.putcol ("NAME" ,namelist)

tb.close()

2.2.7.2 Import using importfitsidi

103

Some uvfits data is written in the FITS-IDI standard. Those files can be imported into CASA with
the importfitsidi task:

importfitsidi ::

fitsidifile
vis
constobsid

scanreindexgap_s

Convert a FITS-IDI file to a CASA visibility data set

[’]
’ngc5921.demo.ms’
False

0.0

#

#
#
#
#
#
#
#

Name(s) of input FITS-IDI file(s)
Name of output visibility file (MS)
If True, give constant obs ID==0 to
the data from all input fitsidi
files (False = separate obs id for
each file)

min time gap (seconds) between
integrations to start a new scan

The constobs parameter can be used to give all visibilities the same observation id of 0. scanrein-
dexgap_s controls the gap that defines different scans.

Example:

importuvfits(fitsidifile="NGC1300.fits’,vis=’NGC1300.ms’)

2.2.7.3 Export using exportuvfits

The exportuvfits task will take a MS and write it out in UVFITS format. The defaults are:

exportuvfits ::

vis
fitsfile
datacolumn
field
spw
antenna
timerange
avgchan
writesyscal
multisource
combinespw
padwithflags

writestation
overwrite

Convert a CASA visibility data set to a UVFITS file:

)
)0
’corrected’
)0
20
10

)

1
False
True
True
True

True
False

#

H OH H OH H O H R HR

HH*

Name of input visibility file

Name of output UV FITS file

Visibility file data column

Select field using field id(s) or field name(s)
Select spectral window/channels

Select data based on antenna/baseline

Select data based on time range

Channel averaging width (value > 1 indicates averaging)
Write GC and TY tables, (Not yet available)
Write in multi-source format

Export the spectral windows as IFs

Fill in missing data with flags to fit IFs

Write station name instead of antenna name
Overwrite output file if it exists?

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 104

For example:

exportuvfits(vis=’ngc5921.split.ms’,
fitsfile="NGC5921.split.fits’,
multisource=False)

The MS selection parameters field, spw, antenna, and timerange follow the standard selection
syntax described in §

ALERT: The nchan, start, and width parameters will be superseded by channel selection in spw.
Currently, there is a time parameter rather than timerange.

The datacolumn parameter chooses which data-containing column of the MS (see §[2.1.1)) is to be
written out to the UV FITS file. Choices are: >data’, ’corrected’, and ’model’.

There are a number of special parameters that control what is written out. These are mostly here
for compatibility with AIPS.

The writesyscal parameter toggles whether GC and TY extension tables are written. These are
important for VLBA data, and for JVLA data. ALERT: Not yet available.

The multisource parameter determines whether the UV FITS file is a multi-source file or a single-
source file, if you have a single-source MS or choose only a single source. Note: the difference
between a single-source and multi-source UVFITS file here is whether it has a source (SU) table
and the source ID in the random parameters. Some programs (i.e. difmap) only accept single-
source files. If you select more than one source in fields, then the multisource parameter will be
overridden to be True regardless.

The combinespw parameter allows, if some conditions are met, exporting all of spectral windows
(SpW) as a set of "IF”s in a single "FREQID” setup instead of giving each SpW its own FREQID in
the FITS file. In this context an IF (Intermediate Frequency) is a specialization of an SpW, where
each IF in a UV FITS file must have the same number of channels and polarizations, each channel
must have the same width, and each IF must be present (even if flagged) throughout the entire
observation. If these conditions are not met the data must be exported using multiple FREQIDs,
the UV FITS equivalent of a general SpW. This matters since many (sub)programs will work with
multiple IFs, but not multiple FREQIDs. For example, a UV FITS file with multiple FREQIDs can
be read by AIPS, but you may find that you have to separate the FREQIDs with SPLIT before you
can do very much with them. Therefore combinespw=True should be True if possible. Typically
MSes where each band was observed simultaneously can be exported with combinespw=True. MSes
where the tuning changed with time, e.g. 10 minutes at 4.8 GHz followed by 15 minutes at 8.4 GHz,
should be exported to multiple UV FITS files using spw to select one tuning (set of simultaneous
SpWs) per file.

The multisource parameter determines whether the UV FITS file is a multi-source file or a single-
source file, if you have a single-source MS or choose only a single source. Note: the difference
between a single-source and multi-source UVFITS file here is whether it has a source (SU) table
and the source ID in the random parameters. If you select more than one source in fields, then
the multisource parameter will be overridden to be True regardless.

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 105

The combinespw parameter allows combination of all spectral windows at one time. If True, then
all spectral windows must have the same shape. For AIPS to read an exported file, then set
combinespw=True.

The writestation parameter toggles the writing of the station name instead of antenna name.
2.2.8 Handling Measurement Set metadata and data

There are tasks provided for basic listing and manipulation of Measurement Set data and metadata.
These include:

e listobs — summarize the contents of a MS (§[2.2.9)

vishead — list and change the metadata contents of a MS (§[2.2.12))

visstat — statistics on data in a MS (§[2.2.13))
e concat — concatenate two or more MS into a new MS (§[2.2.14))

2.2.9 Summarizing your MS (1listobs)

Once you import your data into a CASA Measurement Set, you can get a summary of the MS
contents with the listobs task.

The inputs are:

listobs :: List the summary of a data set in the logger or in a file
vis = ’day2_TDEMO003_10s_norx’ # Name of input visibility file (MS)
selectdata = True # Data selection parameters
field = ?? # Field names or field index
numbers: ’’ ==>all, field=’072,3C286’
spw = 0 # spectral-window/frequency/channel
antenna =) # antenna/baselines: ’’==>all, antenna =’3,VA04’
timerange = ? # time range: ’’==>all,timerange=’09:14:0709:54:0’
correlation = ?? # Select data based on correlation
scan = ?? # scan numbers: ’’==>all
intent = 2 # Select data based on observation intent: ’’==>all
feed = 22 # multi-feed numbers: Not yet implemented
array = ’? # (sub)array numbers: ’’==>all
uvrange = ?? # uv range: ’’==>all; uvrange
=’07100klambda’, default units=meters
observation = ?? # Select data based on observation ID: ’’==>all
verbose = True
listfile = 7 # Name of disk file to write output: ’’==>to terminal
listunfl = False # List unflagged row counts?

If true, it can have significant negative performance impact.

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 106

The summary (of the selected data) will be written to the logger, to the casapy-YYYYMMDD-HHMMSS . log
file, and optionally to a file specified in the listfile parameter. For example,

listobs(’n5921.ms’)
results in the logger messages:

listobs(vis="day2_TDEM0003_10s_norx",selectdata=True,spw="",field="",
antenna="",uvrange="",timerange="",correlation="",scan="",
intent="",feed="",array="",observation="",verbose=True,
listfile="",listunfl=False)

MeasurementSet Name: /Users/jott/casa/casatest/casa4.0/irc/day2_TDEMO003_10s_norx MS Version 2

Observer: Mark J. Mark Claussen Project: T.B.D.
Observation: EVLA
Data records: 290218 Total integration time = 10016 seconds
Observed from 26-Apr-2010/03:21:56.0 to 26-Apr-2010/06:08:52.0 (UTC)

ObservationID = 0O ArrayID = 0
Date Timerange (UTC) Scan F1dId FieldName nRows Spwlds Average Interval(s) S
26-Apr-2010/03:21:51.0 - 03:23:21.0 5 2 J0954+1743 2720 [0, 1] [10, 10]
03:23:39.0 - 03:28:25.0 6 3 IRC+10216 9918 [0, 1] [10, 10]
03:28:38.0 - 03:29:54.0 7 2 J0954+1743 2700 [0, 11 [10, 10]
03:30:08.0 - 03:34:53.5 8 3 IRC+10216 9918 [0, 1] [10, 10]

(nRows = Total number of rows per scan)

Fields: 4
ID Code Name RA Decl Epoch SrcId nRows
2 D J0954+1743 09:54:56.823626 +17.43.31.22243 J2000 2 65326
3 NONE IRC+10216 09:47:57.382000 +13.16.40.65999 J2000 3 208242
5 F J1229+0203 12:29:06.699729 +02.03.08.59820 J2000 5 10836
7 E J1331+3030 13:31:08.287984 +30.30.32.95886 J2000 7 5814
Spectral Windows: (2 unique spectral windows and 1 unique polarization setups)
SpwID Name #Chans Frame Ch1(MHz) ChanWid(kHz) TotBW(kHz) Corrs
0 Subband:0 64 TOPO 36387.229 125.000 8000.0 RR RL LR LL
1 Subband:0 64 TOPO 36304.542 125.000 8000.0 RR RL LR LL
Sources: 10
ID Name SpwId RestFreq(MHz) SysVel(km/s)
0 J1008+0730 0 0.03639232 -0.026
0 J1008+0730 1 0.03639232 -0.026
2 J0954+1743 0 0.03639232 -0.026
2 J0954+1743 1 0.03639232 -0.026
3 IRC+10216 0 0.03639232 -0.026
3 IRC+10216 1 0.03639232 -0.026
5 J1229+0203 0 0.03639232 -0.026
5 J1229+0203 1 0.03639232 -0.026
7 J1331+3030 0 0.03639232 -0.026
7 J1331+3030 1 0.03639232 -0.026
Antennas: 19:
ID Name Station Diam. Long. Lat. Offset from array center (m) ITRF G
East North Elevation :
0 ea0l WO09 25.0m -107.37.25.2 +33.53.51.0 -521.9407 -332.7782 -1.1977 -1601710.01700

1 eal02 EO2 25.0 m -107.37.04.4 +33.54.01.1 9.8247 -20.4292 -2.7808 -1601150.05950

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION

2 eal3
3 eal4
4 eal0b
5 eal07
6 eal08
7 ea09
8 eal2
9 ealb
10 eal9
11 ea20
12 ea2l
13 ea2?2
14 ea23
15 ea24
16 ea2b
17 ea27
18 ea28

EO9
wo1
wos8
NO6
NO1
EO6
EO8
w06
Wo4
NO5
EO1
NO4
EO7
w05
NO2
EO3
NO8

25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.

[elelNelNeolNeNeNeolNeoNeoNo o Ne NoNeoNeo Neo e}
8B BB B E BB BBBBB BB B B B

-107.36.
-107.37.
-107.37.
-107.37.
-107.37.
-107.36.
-107.36.
-107.37.
-107.37.
-107.37.
-107.37.
-107.37.
-107.36.
-107.37.
-107.37.
-107.37.
-107.37.

45.
05.
21.
06.
06.
55.
48.
15.
10.
06.
05.
06.
52.
13.
06.
02.
07.

GO NO P T NN OO OO O~

+33.
+33.
+33.
+33.
+33.
+33.
+33.
+33.
+33.
+33.
+33.
+33.
+33.
+33.
+33.
+33.
+33.

53.
54.
53.
54.
54.
53.
53.
53.
53.
54.
53.
54.
53.
53.
54.
54.
54.

53.
00.
53.
10.
01.
57.
55.
56.
59.
08.
59.
06.
56.
57.
03.
00.
15.

0 Ul U1 00T NORFR P EFEN0WWWO U O

506.
-27.
-432.
-54.
-30.
236.
407.
-275.
-152.
-47.
-23.
-42.
318.
-210.
-35.
50.
-68.

0591
3562
1158
0667
8810
9058
8394
8288
8599
8454
8638
5986
0523
0944
6245
6647
9057

-251.

-272.
263.

-126.
-206.
-166.
-83.
192.
-81.
132.
-164.
-122.
53.
-39.
433.

8666

.3030

1493
8720

.4664

3369
0057
7451
8054
6015
1510
8623
1848
3885
1806
4832
1889

107

.5832
. 7418
.5032
.2292
.8597
.4443
.2252
.0590
.4614
.8723
.5851
.5431
.6960
.2681
.1345
. 7249
.0602

using the (default) verbose=True option. The most useful extra information that verbose=True
gives is the list of the scans in the dataset.

2.2.10 MMS summary (listpartition)

Similar to listobs, listpartition shows the summary of a Multi-Measurement Set (MMS).

The inputs a

listpartition

vis
createdict

listfile

For example,

re:

List the summary of a multi-MS data set in the logger or in a file
Name of multi-MS or normal MS.
Create and return a dictionary with

1)

False

listpartition(’n5921.mms’)

results in the logger messages:

#

#
#
#
#

sub-MS information

Name of ASCII file to save output:
’?’==>to terminal

This is a multi-MS with separation axis = scan,spw
Scan Spw

Sub-MS

ngc5921 . mms.0000.ms

ngc5921 .mms.0001.ms

2
4
5
6
1
3
7

(o]
(o]
(o]
(o]
(o]
(o]
(o]

Nchan Nrows

[63]
[63]
[63]
[63]
[63]
[63]
[63]

1890
756

1134
6804
4509
6048
1512

Size
27M

28M

-1600715.
-1601189.
-1601614.
-1601162.
-1601185.
-1600951.
.91600
-1601447.
-1601315.
-1601168.
-1601192.
-1601173.
-1600880.
-1601377.
-1601180.
-1601114.
-1601147.

-1600801

94800
03014
09100
59320
63494
58800

19800
89300
78610
46780
95370
57000
00800
86148
36550
94040(

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION

2.2.11 Listing MS data (listvis)

108

The listvis task will print to the terminal (or file) listing of the data in your MS. The inputs are:

listvis
vis
options
datacolumn

field

spw
selectdata
observation
average
showflags
pagerows
listfile

For example:

Units of columns are:

1)

#

H O HF OHH O H R HR

:: List measurement set visibilities.

Name of input visibility file

List options: ap only

Column to list: data, float_data, corrected, model,
residual

Field names or index to be listed: ’’==>all
Spectral window:channels: ’*’==>all, spw=’1:5757’
Other data selection parameters

Select by observation ID(s)

Averaging mode: ==>none (Not yet implemented)

Show flagged data (Not yet implemented)

Rows per page

Output file

Date/Time (YYMMDD/HH:MM:SS UT), UVDist(wavelength), Phase(deg), UVW(m)

WEIGHT: 7

FIELD: 2

SPW: 0O

Date/Time: RR: RL: LR: LL:

2010/04/26/ Intrf UVDist Chn Amp Phs Wt F Amp Phs Wt F Amp Phs Wt F Amp Phs Wt F

------------ i Attt Bttt - - | | - -
03:21:56.0 eal0l-eal2 72363 0: 0.005 -124.5 7 0.005 26.7 7 0.001 104.6 7 0.000 23.4 7
03:21:56.0 eall-eal2 72363 1: 0.001 -4.7 7 0.001 -135.1 7 0.004 -14.6 7 0.001 19.9 7
03:21:56.0 eall-eal2 72363 2: 0.002 17.8 7 0.002 34.3 7 0.005 -114.3 7 0.005 -149.7 7
03:21:56.0 eal0l-eal2 72363 3: 0.004 -19.4 7 0.003 -79.2 7 0.002 -89.0 7 0.004 31.3 7
03:21:56.0 eall-eal2 72363 4: 0.001 -16.8 7 0.004 -141.5 7 0.005 114.9 7 0.006 105.2 7
03:21:56.0 eall-eal2 72363 5: 0.001 -29.8 7 0.009 -96.4 7 0.002 -125.0 7 0.002 -64.5 7

Type Q to quit, A to toggle long/short list, or RETURN to continue [continue]:

ALERT: We are working on improving the format of the listvis output.

2.2.12 Listing and manipulating MS metadata (vishead)

The vishead task is provided to access keyword information in the Measurement Set. The default
inputs are:

vishead :: List, get, and put metadata in a measurement set

vis = ? # Name of input visibility file

mode ’list’ # options: list, summary, get, put
listitems = [# items to list ([] for all)

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 109

The mode = ’summary’ option just gives the same output as listobs.

Formode = ’1ist’ the options are: *telescope’, ’observer’, ’project’, field’, *freq_group_name’,
’spw_name’, ’schedule’, ’schedule_type’, ’release_date’.

CASA <29>: vishead(’ngcb5921.demo.ms’ ,mode=’1list’,listitems=[])
Out [29] :
{’cal_grp’: (array([-1, -1, -1], dtype=int32), {}),
’field’: (array([’1331+30500002_0’, ’1445+09900002_0°, ’N5921_2°],
dtype=’15816"),
O,
’fld_code’: (array([’C’, ’A’, °’],
dtype=’182), {}),
’freq_group_name’: (array([’none’],
dtype=’185"), {}),
’log’: ({’r1’: False}, {}),
’observer’: (array([’TEST’],
dtype=’185"), {}),
’project’: (array([’’],
dtype=’181"), {}),
‘ptes’: ({’r1’: array([[[-2.74392758]],

[[0.53248521111),
’r2’: array([[[-2.42044692]],

[[0.17412604]111),
’r3’: array([[[-2.26020138]],

[[0.08843002]111)},
{’MEASINFO’: {’Ref’: ’J2000°, ’type’: ’direction’},
’QuantumUnits’: array([’rad’, ’rad’],
dtype=’184")}),
’release_date’: (array([4.30444800e+09]),
{’MEASINFO’: {’Ref’: °TAI’, ’type’: ’epoch’},
’QuantumUnits’: array([’s’],
dtype="182")}),
’schedule’: ({’r1’: False}, {}),
’schedule_type’: (array([’’],
dtype=’181"), {}),
’source_name’: (array([’1331+30500002_0’, ’1445+09900002_0’, °N5921_2°’],
dtype=’1S16"),
B,
’spw_name’: (array([’none’],
dtype=’185"), {}),
’telescope’: (array([’VLA’],
dtype=’184"), {1}

You can use mode=’get’ to retrieve the values of specific keywords, and likewise mode=’put’ to
change them. The inputs are:

mode = ‘get’ # options: list, summary, get, put

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 110

hdkey = 0 # keyword to get/put
hdindex = 2 # keyword index to get/put, counting from zero. ==>all
and
vishead :: List, summary, get, and put metadata in a measurement set
mode = ’put’ # options: list, summary, get, put
hdkey = 0 # keyword to get/put
hdindex = ?? # keyword index to get/put, counting from zero. ==>all
hdvalue = 2 # value of hdkey

For example, a common operation is to change the Telescope name (e.g. if it is unrecognized), e.g.

CASA <36>: vishead(’ngcb5921.demo.ms’ ,mode=’get’ ,hdkey=’telescope’)
Out [36] :
(array([’VLA’],
dtype="184"), {1

CASA <37>: vishead(’ngc5921.demo.ms’ ,mode=’put’ ,hdkey=’telescope’,hdvalue=’JVLA’)

CASA <38>: vishead(’ngcb5921.demo.ms’,mode=’get’ ,hdkey=’telescope’)
Out [38]:
(array([’JVLA’],
dtype=’185), {})

2.2.13 MS statistics (visstat)

ALERT: This is still a prototype task.

The visstat task is provided to obtain simple statistics for a Measurement Set, useful in regression
tests.

The inputs are:

visstat :: Displays statistical information from a measurement set
vis = 7 # Name of input visibility file
axis = ’amp’ # Which values to use
datacolumn = ’data’ # Which data column to use (data, corrected, model)
useflags = True # Take flagging into account?
spw = 2 # spectral-window/frequency/channel
field = 0 # Field names or field index numbers: ’’==>all, field=’072,3C286°
selectdata = True # More data selection parameters (antenna, timerange etc)
antenna = ? # antenna/baselines: ’’==>all, antenna = ’3,VA04’
timerange = ?? # time range: ’’==>all, timerange=’09:14:0709:54:0’
correlation = » # Select data based on correlation
scan = ?? # scan numbers: ’’==>all
array = >7 # (sub)array numbers: ’’==>all
uvrange = 2 # uv range: ’’==>all; uvrange = ’07100klambda’, default units=meters

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 111

Running this task returns a record (Python dictionary) with the statistics, which can be captured
in a Python variable. For example,

CASA <42>: mystat = visstat(’ngcb5921.demo.ms’,axis=’amp’,datacolumn=’corrected’,field=’0")

CASA <43>: mystat
Out [43] :

{’>CORRECTED’: {’max’: 51.938671112060547,
‘mean’: 14.796444141750133,
’medabsdevmed’: 0.28020858764648438,
’median’: 14.764373779296875,
‘min’: 0.81362706422805786,
‘npts’: 514916.0,

’quartile’: 0.56053066253662109,
‘rms’: 14.829294204711914,
’stddev’: 0.98650836609147285,
’sum’: 7618925.8316934109,
’sumsq’: 113234125.12642419,
’var’: 0.97319875636846753}}

CASA <44>: print mystat[’CORRECTED’] [’stddev’]
0.986508366091

The options for axis are:

axis=’amplitude’ # or (’amp’)
axis=’phase’

axis=’imag’

axis=’scan_number’

axis=’flag’

The phase of a complex number is in radians with range (—m, 7).

2.2.14 Concatenating multiple datasets (concat)

Once you have your data in the form of CASA Measurement Sets, you can go ahead and process
your data using the editing, calibration, and imaging tasks. In some cases, you will most efficiently
operate on single MS for a particular session (such as calibration). Other tasks will (eventually)
take multiple Measurement Sets as input. For others, it is easiest to combine your multiple data
files into one.

If you need to combine multiple datasets, you can use the concat task. The default inputs are:

concat :: Concatenate several visibility data sets.
vis = » # Name of input visibility files to be
concatenated
concatvis = 7 # Name of output visibility file
freqtol = ?? # Frequency shift tolerance for considering data

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 112

as the same spwid
dirtol = 22 # Direction shift tolerance for considering data
as the same field
respectname = False # If true, fields with a different name are not
merged even if their direction agrees
timesort = False # If true, sort by TIME in ascending order
copypointing = True # Copy all rows of the POINTING table.
visweightscale = (] # List of the weight scaling factors to be
applied to the individual MSs

The vis parameter will take a list of one or more MS. Usually, this will contain all the MS to
combine. concat will presort the visibilities in time.

With visweightscale, a list of weights can be manually specified for the respective input data
sets. They will be applied at the time of the combination. To determine the appropriate weights for
this procedure, one can inspect the weights (Wt and WtSp axis parameters) of the input datasets
in plotms.

The concatvis parameter contains the name of the output MS. If this points to an existing file
on disk, then the MS in vis will appended to it, otherwise a new MS file is created to contain the
concatenated data. Be careful here!

The timesort parameter can be used to make sure the output MS is in time order (e.g. if your input
MS have concurrent times). This can possibly speed up some subsequent calibration operations.

Furthermore, the parameter copypointing can be used to control whether the POINTING table
will be carried along in the concatenation process or if the output MS should not contain a POINT-
ING table. This table is quite large for some data (e.g. ALMA) and is mainly needed for mosaic
imaging. If you are certain that you will not need it, you can save time and diskspace by setting
copypointing to False.

importasdm will fill the correct coordinates from ephemerides data into the SOURCE table. And,
as stated in the ephemeris handling section [4.7.11.3] concat will correctly merge fields which use
the same ephemeris.

The parameters freqtol and dirtol control how close together in frequency and angle on the sky
spectral windows or field locations need to be before calling them the same.

ALERT: Note that if multiple frequencies or pointings are combined using freqtol or dirtol,
then the data are not changed (i.e. not rephased to the single phase center). Use of these parameters
is intended to be tolerant of small offsets (e.g. planets tracked which move slightly in J2000 over
the course of observations, or combining epochs observed with slightly different positions).

For example:

default(’concat’)

vis = [’'n4826_16apr.split.ms’, ’n4826_22apr.split.ms’]
concatvis = ’n4826_tboth.ms’

freqtol = ’50MHz’

visweightscale=[’1’,2"]

concat ()

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 113

combines the two days in ’n4826_16apr.split.ms’ and ’n4826_22apr.split.ms’ into a new
output MS called ’n4826_tboth.ms’, and the second MS is weighted twice the first one.

ALERT: Note that if you are concatenating MSs which use antennas which were moved between
observations, the MS definition does only foresee a unique antenna ID, but not a unique name(!).
The moved antenna will appear twice in the antenna list under the same name but on different
stations and with two different IDs. The pair (NAMEQSTATION’) will be the unique identifier.

If you would like to only concatenate the subtables of several MSs, not the bulk visibility data, you
can use the task testconcat instead of concat to save time and diskspace. testconcat has the
same parameters as concat. It produces an output MS with the concatenated subtables and an
empty Main table.

Furthermore, the task virtualconcat permits to concatenate MSs into a multi-MS (MMS, see
chapter which is much faster as the data is moved into the MMS rather than copied and only
some reindexing is done. The bulk data is not rewritten. If you want to keep a copy of the
original MSs, set the parameter keepcopy of virtualconcat to True. The creation of that copy
will of course consume some of the time you saved by doing a virtual concatenation. Otherwise
virtualconcat offers the same functionality as concat.

2.3 Data Selection

Once in MS form, subsets of the data can be operated on using the tasks and tools. In CASA,
there are three common data selection parameters used in the various tasks: field, spw, and
selectdata. In addition, the selectdata parameter, if set to True, will open up a number of
other sub-parameters for selection. The selection operation is unified across all the tasks. The
available selectdata parameters may not be the same in all tasks. But if present, the same
parameters mean the same thing and behave in the same manner when used in any task.

For example:

field = 7 # field names or index of calibrators ’’==>all
spw = 7 # spectral window:channels: ’’==>all
selectdata = False # Other data selection parameters
versus
field = ?? # field names or index of calibrators ’’==>all
spw = ?? # spectral window:channels: ’’==>all
selectdata = True # Other data selection parameters

timerange = »? # time range: ’’==>all

uvrange = ?? # uv range’’=all

antenna = i # antenna/baselines: ’’==>all

scan = ?? # scan numbers: Not yet implemented

msselect = 2 # Optional data selection (Specialized. but see help)

The following are the general syntax rules and descriptions of the individual selection parameters
of particular interest for the tasks:

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 114

2.3.1 General selection syntax

Most of the selections are effected through the use of selection strings. This sub-section describes
the general rules used in constructing and parsing these strings. Note that some selections are
done through the use of numbers or lists. There are also parameter-specific rules that are described
under each parameter.

All lists of basic selection specification-units are comma separated lists and can be of any length.
White-spaces before and after the commas (e.g. ’3C286, 3C48, 3C84’) are ignored, while white-
space within sub-strings is treated as part of the sub-string (e.g. >3C286, VIRGO A, 3C84’). In
some cases, spaces need to be quoted, e.g. ”’spw 1”7 (note the double quote around the single

quotes).

All integers can be of any length (in terms of characters) composed of the characters 0-9. Floating
point numbers can be in the standard format (DIGIT.DIGIT, DIGIT., or .DIGIT) or in the mantissa-
exponent format (e.g. 1.4e9). Places where only integers make sense (e.g. IDs), if a floating point
number is given, only the integer part is used (it is truncated).

Range of numbers (integers or real numbers) can be given in the format NO~N1’. For integer
ranges, it is expanded into a list of integers starting from NO (inclusive) to N1 (inclusive). For real
numbers, it is used to select all values present for the appropriate parameter in the Measurement
Set between NO and N1 (including the boundaries). Note that the ’>~’ character is used rather than
the more obvious ’-’ in order to accommodate hyphens in strings and minus signs in numbers.

Wherever appropriate, units can be specified. The units are used to convert the values given to
the units used in the Measurement Set. For ranges, the unit is specified only once (at the end) and
applies to both the range boundaries.

2.3.1.1 String Matching

String matching can be done in three ways. Any component of a comma separated list that cannot
be parsed as a number, a number range, or a physical quantity is treated as a regular expression
or a literal string. If the string does not contain the characters **’, >{’, >}’ or 7’ it is treated
as a literal string and used for exact matching. If any of the above mentioned characters are part
of the string, they are used as a regular expression. As a result, for most cases, the user does not
need to supply any special delimiters for literal strings and/or regular expressions. For example:

field = ’3’ # match field ID 3 and not select field named "3C286".

field ? 3%

used as a pattern and matched against field names. If
names like "3C84", "3C286", "3020+2207" are found,

all will match. Field ID 3 will not be selected

(unless of course one of the above mentioned field

names also correspond to field ID 3!).

field

>30%”’ # will match only with "3020+2207" in above set.

However if it is required that the string be matched exclusively as a regular expression, it can be
supplied within a pair of >/’ as delimiters (e.g. ’/.+BAND.+/’). A string enclosed within double

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 115

quotes (*"?) is used exclusively for pattern matching (patterns are a simplified form of regular
expressions - used in most UNIX commands for string matching). Patterns are internally converted
to equivalent regular expressions before matching. See the Unix command "info regex", or visit
http://www.regular-expressions.info, for details of regular expressions and patterns.

Strings can include any character except the following:

)’));7 rn)/) NEwLINE

(since these are part of the selection syntax). Strings that do not contain any of the characters
used to construct regular expressions or patterns are used for exact matches. Although it is highly
discouraged to have name in the MS containing the above mentioned reserved characters, if one
does choose to include the reserved characters as parts of names etc., those names can only be
matched against quoted strings (since regular expression and patterns are a super-set of literal
strings — i.e., a literal string is also a valid regular expression).

This leaves *">, >x>, >{’ >}’ or *?’ as the list of printable character that cannot be part of a
name (i.e., a name containing this character can never be matched in a MSSelection expression).
These will be treated as pattern-matching even inside double double quotes (°" "?). There is
currently no escape mechanism (e.g. via a backslash).

Some examples of strings, regular expressions, and patterns:

e The string >LBAND’ will be used as a literal string for exact match. It will match only the
exact string LBAND.

e The wildcarded string ’>*BAND*’ will be used as a string pattern for matching. This will
match any string which has the sub-string BAND in it.

e The string ’"*BAND*"’ will also be used as a string pattern, matching any string which has
the sub-string BAND in it.

e The string ’/.+BAND.+/’ will be used as a regular expression. This will also match any string
which as the sub-string BAND in it. (the .+ regex operator has the same meaning as the *
wildcard operator of patterns).

2.3.2 The field Parameter

The field parameter is a string that specifies which field names or ids will be processed in the
task or tool. The field selection expression consists of comma separated list of field specifications
inside the string.

Field specifications can be literal field names, regular expressions or patterns (see §. Those
fields for which the entry in the NAME column of the FIELD MS sub-table match the literal field
name/regular expression/pattern are selected. If a field name/regular expression/pattern fails to
match any field name, the given name/regular expression/pattern are matched against the field
code. If still no field is selected, an exception is thrown.

http://www.regular-expressions.info

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 116

Field specifications can also be given by their integer IDs. IDs can be a single or a range of IDs.
Field ID selection can also be done as a boolean expression. For a field specification of the form
’>ID’, all field IDs greater than ID are selected. Similarly for ><ID’ all field IDs less than the ID
are selected.

For example, if the MS has the following observations:

FIELDID SPWID NChan Pol NRows Source Name
0 0 127 RR 10260 0530+135
1 0 127 RR 779139 05582+16320
2 0 127 RR 296190 05309+13319
3 0 127 RR 58266 0319+415
4 0 127 RR 32994 1331+305
5 1 1 RR,RL,LL,RR 23166 KTIP

one might select

field = ’072,KTIP’ # FIELDID 0,1,2 and field name KTIP
field = ’0530+135° # field 0530+135
field = ’05%’ # fields 0530+135,05582+16320,05309+13319

2.3.3 The spw Parameter

The spw parameter is a string that indicates the specific spectral windows and the channels within
them to be used in subsequent processing. Spectral window selection (?SPWSEL’) can be given as
a spectral window integer ID, a list of integer IDs, a spectral window name specified as a literal
string (for exact match) or a regular expression or pattern.

The specification can be via frequency ranges or by indexes. A range of frequencies are used to
select all spectral windows which contain channels within the given range. Frequencies can be
specified with an optional unit — the default unit being Hz. Other common choices for radio and
mm/sub-mm data are kHz, MHz, and GHz. You will get the entire spectral windows, not just the
channels in the specified range. You will need to do channel selection (see below) to do that.

The spw can also be selected via comparison for integer IDs. For example, ’>>ID’ will select all
spectral windows with ID greater than the specified value, while ><ID’ will select those with ID
lesser than the specified value.

Spectral window selection using strings follows the standard rules:

spw = 1’ # SPWID 1

spw = ’1,3,5’ # SPWID 1,3,5

spw = ’073’ # SPWID 0,1,2,3

spw = ’073,5’ # SPWID 0,1,2,3 and 5

spw = ’<3,5’° # SPWID 0,1,2,3 and 5

spw = %’ # All spectral windows

spw = *141271415MHz’ # Spectral windows containing 1412-1415MHz

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 117

In some cases, the spectral windows may allow specification by name. For example,

spw = ’3mmUSB, 3mmLSB’ # choose by names (if available)

might be meaningful for the dataset in question.

Note that the order in which multiple spws are given may be important for other parameters. For
example, the mode = ’channel’ in clean uses the first spw as the origin for the channelization of
the resulting image cube.

2.3.3.1 Channel selection in the spw parameter

Channel selection can be included in the spw string in the form ’SPWSEL:CHANSEL’ where CHANSEL
is the channel selector. In the end, the spectral selection within a given spectral window comes
down to the selection of specific channels. We provide a number of shorthand selection options for
this. These CHANSEL options include:

e Channel ranges: >START~STOP’
o Frequency ranges: >FSTART FSTOP’

e Channel striding/stepping: >START~STOP~STEP’ or ’FSTART FSTOP FSTEP’

The most common selection is via channel ranges > START”STOP’ or frequency ranges *FSTART "FSTOP’:

spw
spw

’0:13753” # spw O, channels 13-53, inclusive
’0:141371414MHz’ # spw O, 1413-1414MHz section only

All ranges are inclusive, with the channel given by, or containing the frequency given by, START and
STOP plus all channels between included in the selection. You can also select the spectral window
via frequency ranges *FSTART"FSTOP’, as described above:

spw = ’141371414MHz:141371414MHz’ # channels falling within 141371414MHz
spw = ’*:141371414MHz’ # does the same thing

You can also specify multiple spectral window or channel ranges, e.g.

spw = ’2:16, 3:32734°
spw = ’2:173;57763°
spw = ’173:10720°

spw = ’*:4756’

spw 2, channel 16 plus spw 3 channels 32-34
spw 2, channels 1-3 and 57-63

spw 1-3, channels 10-20

all spw, channels 4-56

Note the use of the wildcard in the last example.

A step can be also be included using ’ “STEP’ as a postfix:

spw = ’0:10710072° # chans 10,12,14,...,100 of spw O
spw = ’:74’ # chans 0,4,8,... of all spw
spw = ’:1007150GHz"~10GHz’ # closest chans to 100,110,...,150GHz

A step in frequency will pick the channel in which that frequency falls, or the nearest channel.

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 118

2.3.4 The selectdata Parameters

The selectdata parameter, if set to True (default), will expand the inputs to include a number of
sub-parameters, given below and in the individual task descriptions (if different). If selectdata =
False, then the sub-parameters are treated as blank for selection by the task.

The common selectdata expanded sub-parameters are:

2.3.4.1 The antenna Parameter

The antenna selection string is a semi-colon (’;’) separated list of baseline specifications. A
baseline specification is of the form:

e ’ANT1’> — Select all baselines including the antenna(s) specified by the selector ANT1.
e ’ANT1&’> — Select only baselines between the antennas specified by the selector ANT1.

e ’ANT1&ANT2’ — Select only the cross-correlation baselines between the antennas specified by
selector ANT1 and antennas specified by selector ANT2. Thus >ANT1&’ is an abbreviation for
>ANT1&ANT1.

e ’ANT1&&ANT2’ — Select only auto-correlation and cross-correlation baselines between anten-
nas specified by the selectors ANT1 and ANT2. Note that this is what the default antenna=""
gives you.

e ’ANT1&&&’> — Select only autocorrelations specified by the selector ANT1.

The selectors ANT1 and ANT2 are comma-separated lists of antenna integer-IDs or literal antenna
names, patterns, or regular expressions. The ANT strings are parsed and converted to a list of
antenna integer-IDs or IDs of antennas whose name match the given names/pattern/regular ex-
pression. Baselines corresponding to all combinations of the elements in lists on either side of
ampersand are selected.

Integer IDs can be specified as single values or a range of integers. When items of the list are parsed
as literal strings or regular expressions or patterns (see § for more details on strings). All
antenna names that match the given string (exact match)/regular expression/pattern are selected.

ALERT: Just for antenna selection, a user supplied integer (or integer list) is converted to a string
and matched against the antenna name. If that fails, the normal logic of using an integer as an
integer and matching it with antenna index is done. Note that currently there is no method for
specifying a pure index (e.g. a number that will not first be checked against the name).

The comma is used only as a separator for the list of antenna specifications. The list of baselines
specifications is a semi-colon separated list, e.g.

antenna = ’173 & 476 ; 10&11’°

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 119

will select baselines between antennas 1,2,3 and 4,5,6 (>1&4’, *1&5°, ..., ’3&67) plus baseline
’10&11°.

The wildcard operator (>*’) will be the most often used pattern. To make it easy to use, the
wildcard (and only this operator) can be used without enclosing it in quotes. For example, the
selection

antenna = ’VAx*’
will match all antenna names which have *VA’ as the first 2 characters in the name (irrespective
of what follows after these characters).

There is also a negation operator “!” that can be used to de-select antennas or baselines.

Some examples:

antenna=’"’ # shows blank autocorr pages
antenna=’*&x*’ # does not show the autocorrs
antenna=’*&&x*’ # show both auto and cross-cor (default)
antenna=’*&&&’ # shows only autocorrs

antenna=’5&*’ # shows non-auto baselines with AN 5

antenna=’5,6&&&’ # AN 5 and 6 autocor
antenna=’5&&&;6&*’ # AN 5 autocor plus cross-cors to AN 6

antenna=’1!5’ # baselines not involving AN 5

Antenna numbers as names: Needless to say, naming antennas such that the names can also
be parsed as a valid token of the syntax is a bad idea. Nevertheless, antenna names that contain
any of the reserved characters and/or can be parsed as integers or integer ranges can still be used
by enclosing the antenna names in double quotes (> "ANT" ’). E.g. the string

antenna = ’10715,21,VA22°

will expand into an antenna ID list 10,11,12,13,14,15,21,22 (assuming the index of the antenna
named ’VA22’ is 22). If, however, the antenna with ID index 50 is named ’21°, then the string

antenna = ’10715,21,VA22°

will expand into an antenna ID list of 10,11,12,13,14,15,50,22. Keep in mind that numbers are
FIRST matched against names, and only against indices if that matching fails. There is currently
no way to force a selection to use the index, and if there an antenna with that name it will select
that.

Read elsewhere (e.g. info regex under Unix) for details of regular expression and patterns.

Antenna stations Instead of antenna names, the antenna station names are also accepted by the
selection syntax., e.g. 'N15’ for the JVLA.

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 120

ANTQ@STATION sections syntax Sometimes, data from multiple array configurations are
stored in a single MS. But some antennas may have been moved during reconfiguration and the
>ANT@STATION’ syntax can distinguish between them. ’ANT’ is the antenna name or index and
>STATION’ is the antenna station name, e.g., 'EA12QWO03’ selects antenna EA012 but only at
times when it is positioned on station W03. Wildcards are accepted, e.g. 'EA12@* selects all
visibilities from antenna EA12, and QW03 would select all antennas that are located on station
"W03’ during any observations included in the MS.

2.3.4.2 The scan Parameter

The scan parameter selects the scan ID numbers of the data. There is currently no naming
convention for scans. The scan ID is filled into the MS depending on how the data was obtained,
so use this with care.

Examples:
scan = ’3’ # scan number 3.
scan = ’178’ # scan numbers 1 through 8, inclusive
scan = ’1,2,4,6’ # scans 1,2,4,6
scan = ’<9’ # scans <9 (1-8)

NOTE: ALMA and VLA/JVLA number scans starting with 1 and not 0. You can see what the
numbering is in your MS using the listobs task with verbose=True (see §[2.2.9).

2.3.4.3 The timerange Parameter

The time strings in the following (TO, T1 and dT) can be specified as YYYY/MM/DD/HH:MM:SS.FF.
The time fields (i.e., YYYY, MM, DD, HH, MM, SS and FF), starting from left to right, may be omitted
and they will be replaced by context sensitive defaults as explained below.

Some examples:
1. timerange="TO0"T1’: Select all time stamps from TO to T1. For example:
timerange = ’2007/10/09/00:40:00 ~ 2007/10/09/03:30:00°

Note that fields missing in TO are replaced by the fields in the time stamp of the first valid
row in the MS. For example,

timerange = ’09/00:40:00 ~ 09/03:30:00°

where the YY/MM/ part of the selection has been defaulted to the start of the MS.

Fields missing in T1, such as the date part of the string, are replaced by the corresponding
fields of TO (after its defaults are set). For example:

timerange = ’2007/10/09/22:40:00 ~ 03:30:00’

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 121

does the same thing as above.

2. timerange=’T0’: Select all time stamps that are within an integration time of TO. For
example,

timerange = ’2007/10/09/23:41:00°
Integration time is determined from the first valid row (more rigorously, an average integration
time should be computed). Default settings for the missing fields of TO are as in (1).

3. timerange=’TO0+dT’: Select all time stamps starting from TO and ending with time stamp
TO+dT. For example,

timerange = ’23:41:00+01:00:00’

picks an hour-long chunk of time.

Defaults of TO are set as usual. Defaults for dT are set from the time corresponding to MJD=0.
Thus, dT is a specification of length of time from the assumed nominal ”start of time”.

4. timerange=’>TO0’: Select all times greater than TO. For example,

?>2007/10/09/23:41:00°
’>23:41:00° # Same thing without day specification

timerange
timerange

Default settings for TO are as above.

5. timerange=’<T1’: Select all times less than T1. For example,

timerange = ’<2007/10/09/23:41:00’
Default settings for T1 are as above.
An ultra-conservative selection might be:

timerange = ’1960/01/01/00:00:0072020/12/31/23:59:59°

which would choose all possible data!

2.3.4.4 The uvrange Parameter

Rows in the MS can also be selected based on the uv-distance or physical baseline length that the
visibilities in each row correspond to. This uvrange can be specified in various formats.

The basic building block of uv-distance specification is a valid number with optional units in the
format N[UNIT] (the unit in square brackets is optional). We refer to this basic building block
as UVDIST. The default unit is meter. Units of length (such as ’m’ and ’km’) select physical

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 122

baseline distances (independent of wavelength). The other allowed units are in wavelengths (such
as ’lambda’, ’klambda’ and ’Mlambda’ and are true uv-plane radii

raw = Va2 F 2. (2.1)

If only a single UVDIST is specified, all rows, the uv-distance of which exactly matches the given
UVDIST, are selected.

UVDIST can be specified as a range in the format *NO~N1[UNIT]’ (where NO and N1 are valid
numbers). All rows corresponding to uv-distance between NO and N1 (inclusive) when converted
the specified units are selected.

UVDIST can also be selected via comparison operators. When specified in the format > >UVDIST’, all
visibilities with uv-distances greater than the given UVDIST are selected. Likewise, when specified
in the format ’><UVDIST’, all rows with uv-distances less than the given UVDIST are selected.

Any number of above mentioned uv-distance specifications can be given as a comma-separated list.

Examples:

uvrange = ’100km’
uvrange = ’100klambda’

baselines of length 100km
uv-radius 100 kilolambda

uvrange = ’>1007200km’ # an annulus in physical baseline length
uvrange = ’2473b5Mlambda, 40745Mlambda’ # two annuli in units of mega-wavelengths
uvrange = ’< 45klambda’ # less than 45 kilolambda
uvrange = ’> Olambda’ # greater than zero length (no auto-corrs)
#
#

2.3.4.5 The correlation Parameter

The correlation parameter will select between different correlation products. They can be either
the correlation ID or values such as "XX’, ’YY’, '’XY’, 'YX’, 'RR’, ’LL’, 'RL’, 'LR’.

2.3.4.6 The intent Parameter

intent is the scan intent that was specified when the observations were set up. They typically
describe what was intended with a specific scan, i.e. a flux or phase calibration, a bandpass, a
pointing, an observation of your target, or something else or a combination. The format for the
scan intents of your observations are listed in the logger when you run listobs. Minimum matching
with wildcards will work, like *BANDPASS*’. This is especially useful when multiple intents are
attached to scans.

2.3.4.7 The observation Parameter

The observation parameter can select between different observation IDs. They will be assigned to
parts of a combined data set during a run of concat. Each input MS will receive its own observation
id in the process.

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 123

2.3.4.8 The feed Parameter

The feed parameter can select between different feeds, e.g. for different feeds in a single dish
multibeam array.

2.3.4.9 The msselect Parameter

More complicated selections within the MS structure are possible using the Table Query Language
(TaQL). This is accessed through the msselect parameter.

Note that the TaQL syntax does not follow the rules given in §[2.3.1] for our other selection strings.
TaQL is explained in more detail in Aips++ NOTE 199 — Table Query Language (http:
//aips2.nrao.edu/docs/notes/199/199.html). This will eventually become a CASA document.
The specific columns of the MS are given in the most recent MS specification document: Aips++
NOTE 229 — Measurement‘ Set definition version 2.0 (http://aips2.nrao.edu/docs/
notes/229/229.html). This documentation will eventually be updated to the CASA document
System.

Most selection can be carried out using the other selection parameters. However, these are merely
shortcuts to the underlying TaQL selection. For example, field and spectral window selection can
be done using msselect rather than through field or spw:

msselect="FIELD_ID == 0’ # Field id O omly
msselect="FIELD_ID <= 1’ # Field id 0 and 1
msselect="FIELD_ID IN [1,2]° # Field id 1 and 2

msselect="FIELD_ID==0 && DATA_DESC_ID==3’ # Field id O in spw id 3 only

ALERT: The msselect style parameters will be phased out of the tasks. TaQL selection will still
be available in the Toolkit.

http://aips2.nrao.edu/docs/notes/199/199.html
http://aips2.nrao.edu/docs/notes/199/199.html
http://aips2.nrao.edu/docs/notes/229/229.html
http://aips2.nrao.edu/docs/notes/229/229.html

Chapter 3

Data Examination and Editing

3.1 Plotting and Flagging Visibility Data in CASA

The tasks available for plotting and flagging of data are:

e flagmanager — manage versions of data flags (§
e plotms — create X-Y plots of data in MS and calibration tables, flag data (§ [3.3.1])

e plotxy — older X-Y plotter with some functionalities not yet implemented in plotms (§ [3.3.2)

e flagdata --- Data Flagging (§ [3.4)

e flagcmd —-- manipulate and apply flags using FLAG_CMD table (§ [3.5]
e browsetable --- browse data in any CASA table (including a MS) (§ [3.6)
e plotants --- create simple plots of antenna positions (§ [3.3.3)

e plotuv --- plotting of uv-coverages (§ [3.3.4)

The following sections describe the use of these tasks.

Information on other related operations can be found in:

e listobs — list summary of a MS (§[2.2.9)
e listvis — list data in a MS (§[2.2.11)
e selectdata — general data selection syntax (§

e viewer — use the casaviewer to display the MS as a raster image, and flag it (§ [7))

124

CHAPTER 3. DATA EXAMINATION AND EDITING 125

3.2 Managing flag versions with flagmanager

The flagmanager task will allow you to manage different versions of flags in your data. These are
stored inside a CASA flagversions table, under the name of the MS <msname>.flagversions. For
example, for the MS jupiter6cm.usecase.ms, there will need to be jupiter6cm.usecase.ms.flagversions
on disk. This is created on import (by importvla or importuvfits) or when flagging is first done
on an MS without a .flagversions (e.g. with plotxy).

By default, when the .flagversions is created, this directory will contain a flags.Original in it
containing a copy of the original flags in the MAIN table of the MS so that you have a backup. It
will also contain a file called FLAG_VERSION_LIST that has the information on the various flag
versions there. The flagversions are cumulative, i.e. a specific version number contains all the flags
from the lower version numbers, too.

The inputs for flagmanager are:

vis = 0 # Name of input visibility file (MS)
mode ’list’ # Flag management operation (list,save,restore,delete)

The mode="list’ option will list the available flagversions from the jmsname;.flagversions file. For
example:

CASA <102>: default(’flagmanager’)

CASA <103>: vis = ’jupiter6cm.usecase.ms’

CASA <104>: mode = ’list’

CASA <105>: flagmanager ()

MS : /home/imager-b/smyers/0ct07/jupiterbcm.usecase.ms

main : working copy in main table

Original : Original flags at import into CASA
flagautocorr : flagged autocorr

xyflags : Plotxy flags

The mode parameter expands the options. For example, if you wish to save the current flagging
state of vis=jmsnames,

mode = ’save’ # Flag management operation (list,save,restore,delete)
versionname = 22 # Name of flag version (no spaces)
comment = 2 # Short description of flag version
merge = ’replace’ # Merge option (replace, and, or)

with the output version name specified by versionname. For example, the above zyflags version
was written using:

default (’flagmanager’)

vis = ’jupiter6cm.usecase.ms’
mode = ’save’
versionname = ’xyflags’

comment = ’Plotxy flags’
flagmanager ()

CHAPTER 3. DATA EXAMINATION AND EDITING 126

and you can see that there is now a sub-table in the flagversions directory

CASA <106>: 1ls jupiter6cm.usecase.ms.flagversions/
IPython system call: ls -F jupiter6cm.usecase.ms.flagversions/
flags.flagautocorr flags.Original flags.xyflags FLAG_VERSION_LIST

It is recommended that you use this facility regularly to save versions during flagging.

Note that if a flagversion already exists under a name, the task will give a warning and add a suffix
".old.timestamp’ tp the previous version.

You can restore a previously saved set of flags using the mode="restore” option:

mode = ’restore’ # Flag management operation (list,save,restore,delete)
versionname = 2 # Name of flag version (no spaces)
merge = ’replace’ # Merge option (replace, and, or)

The merge sub-parameter will control how the flags are restored. For merge="replace’, the flags
in versionname will replace those in the MAIN table of the MS. For merge="and’, only data that
is flagged in BOTH the current MAIN table and in versionname will be flagged. For merge="or’,
data flagged in EITHER the MAIN or in versionname will be flagged.

The mode="delete’ option can be used to remove versionname from the flagversions:

mode = ’delete’ # Flag management operation (list,save,restore,delete)
versionname = ?? # Name of flag version (no spaces)

3.3 X-Y Plotting and Editing of the Data

There are three main X-Y plotting tasks in CASA:

e plotms — create X-Y plots of data in MS, flag data (§[3.3.1)
e plotxy — older X-Y plotter with some functionalities not yet implemented in plotms (§|3.3.2)

e plotants — create simple plots of antenna positions (§ [3.3.3)

3.3.1 MS Plotting and Editing using plotms

The principal way to get X-Y plots of visibility data and calibration tables is the plotms task. This
task also provides editing capability. Plotms is a GUI-style plotter, based on Qt. It can either be
started as a task within CASA (plotms) or from outside CASA (type casaplotms on the command
line).

The current inputs to the plotms task are:

CHAPTER 3. DATA EXAMINATION AND EDITING 127

plotms :: A plotter/interactive flagger for visibility data.

vis

gridrows

gridcols

rowindex

colindex

plotindex

xaxis

yaxis

selectdata

averagedata
avgchannel
avgtime
avgscan
avgfield
avgbaseline
avgantenna
avgspw
scalar

transform
extendflag
iteraxis
customsymbol
coloraxis

customflaggedsymbol

plotrange

title

xlabel

ylabel

showmajorgrid

showminorgrid

showlegend

plotfile

showgui
clearplots

callib

1)

False
False
False
)0
True
True

[’’]

#

H O H H H HHHHHHHHEHH R

H O H HH HHHHHHEHHHHR

+*+

input MS (or CalTable) (blank for none)

Number of subplot rows (default 1).

Number of subplot columns (default 1).

Row location of the plot (O-based, default 0)

Column location of the plot (O-based, default 0)

Index to address a subplot (O-based, default 0)

plot x-axis (blank for default/current)

plot y-axis (blank for default/current)

data selection parameters

data averaging parameters

average over channel? (blank = False, otherwise value in char
average over time? (blank = False, other value in seconds)
only valid if time averaging is turned on. average over scans
only valid if time averaging is turned on. average over fielc
average over all baselines? (mutually exclusive with avganter
average by per-antenna? (mutually exclusive with avgbaseline)
average over all spectral windows?

Do scalar averaging?

transform data in various ways?

have flagging extend to other data points?
the axis over which to iterate

set a custom symbol(s) for unflagged points
selects which data to use for colorizing
set a custom plot symbol for flagged points
plot axes ranges: [xmin,xmax,ymin,ymax]
Title written along top of plot

Text for horizontal axis. Blank for default.
Text for vertical axis. Blank for default.
Show major grid lines (horiz and vert.)

Show minor grid lines (horiz and vert.)

Show a legend on the plot.

Name of plot file to save automatically.
Show GUI

Remove any existing plots so new ones can replace them.

Calibration library string or filename for on-the-fly calibrat

Almost all of these parameters can also be set or modified from inside the plotms window. Note
that, if the vis parameter is set to the name of a measurement or calibration table set here, when
you start up plotms, the entire measurement set will be plotted, which can be time consuming. It
is probably best to leave all parameters blank for now, setting them as needed inside the plotms

GUL

CHAPTER 3. DATA EXAMINATION AND EDITING 128

[] [] PlotMS
m Flag Tools Annotate Options
File
Browse...
] Selection
e
o .
b= field
a8
= spw
O .
timerange
8 uvrange
< antenna
@ scan
o
[}
o corr
arra
E Y
<] observation
@
E intent
IS
feed
E msselect
a
@
a o
Averaging
E
- Channel 0 channels
a
o Time 0 seconds
Scan Field
All Baselines Per Antenna
All Spectral Windows
Scalar
Add Plot Reload Plot
©

]
Y

" J_ié:' .< E/.\g_\ ’- 5_-#: 5_--: 5_'@: P’ @ n\ « 4 b » Hold Drawing

wx

4

Figure 3.1: A freshly-started plotms GUI window. Note that the Plots > Data tab is selected,
which is discussed in §[3.3.1.1 [3.3.1.7 and [3.3.1.9]

3.3.1.1 Loading and Selecting Data

When plotms is first started, a window will appear as in Figure It will, by default, display the
Plots tab (as chosen from the tabs at the top of the plotms window—e.g., Plots, Flag, Tools...)
and the Plots > Data tab (as chosen from the tabs on the far left side of the plotms window—e.g.,
Data, Calibration, Axes, Pages, Transform...). First, a measurement set should be loaded
by clicking on Browse near the top of the Plots > Data tab, and selecting a .ms directory (just
select the directory itself; do not descend into the .ms directory). A plot can now be made of the
measurement set by clicking on Plot—but beware, this would plot the entire measurement set, and
could take quite some time! It is probably better to select a subset of the measurement set using
the Selection windows in the Plots > Data tab before clicking Plot.

CHAPTER 3. DATA EXAMINATION AND EDITING 129

The options for data selection are:

o field

® SpW

e timerange
e uvrange

e antenna

e scan

e corr

e array

e observation
e intent

o feed

e msselect

These are described in § Note that, unlike when setting data selection parameters from the
CASA command line, no quotation marks are needed around strings.

Once you have selected the desired subset of data, if you click Plot, plotms will by default plot
amplitude versus time. See the next section for information about other possible axes.

For a given data selection, plotms will only load the data once. This speeds up plotting considerably
when changing plot parameters such as different axes, colors etc. Sometimes, however, the data
changes on disk, e.g., when other data processing tasks were applied. To force plotms to reload
the data, checkmark the little force reload box left to the Plot’ button or press the SHIFT key
while clicking the Plot button.

3.3.1.2 A Brief Note Regarding plotms Memory Usage

In order to provide a wide range of flexible interactive plotting options while minimizing the 1/O
burden, plotms caches the data values for the plot (along with a subset of relevant meta-info) in as
efficient a manner as possible. For plots of large numbers of points, the total memory requirement
can be quite large. plotms attempts to predict the memory it will require (typically 5 or 6 bytes
per plotted point when only one axis is a data axis, depending upon the data shapes involved), and
will complain if it believes there is insufficient memory to support the requested plot. For most
practical interactive purposes (plots that load and draw in less than a few or a few 10s of minutes),
there is usually not a problem on typical modern workstations (attempts to plot large datasets on
small laptops might be more likely to encounter problems here).

CHAPTER 3. DATA EXAMINATION AND EDITING 130

The absolute upper limit on the number of simultaneously plotted points is currently set by the
ability to index the points in the cache. For modern 64 bit machines, this is about 4.29 billion
points (requiring around 25GB of memory). (Such plots are not especially useful interactively, since
the I/O and draw become prohibitive.)

In general, it is usually most efficient to plot data in modest chunks of not more than a few hundred
million points or less, either using selection or averaging. Note that all iterations are (currently)
cached simultaneously for iterated plots, so iteration is not a way to manage memory use. A few
hundred million points tends to be the practical limit of interactive plotms use w.r.t. information
content and utility in the resulting plots, especially when you consider the number of available
pixels on your screen.

In scripts, or for very large data sets, it can be desirable to use plotms in a non-interactive mode.
This can be done by setting showgui=Fulse and to directly plot into a png image specified by

plotfile.

8 00 \ PlotMs
File Export Summary View Help
Plot | Flag | Tools | Annotate | Options | Amp vs. Channel
= 0.22 -
z . = -
& XAxis|Channel =] S-.......n... .
Cached: ¥ in-. L o) .
8 Attach: & Bottom Top 0.2+ .
£ Range: - -
:‘é, + Automatic 0.18 -
o | T 1
L ("I T
E 0.16 | -
o
B] .
il
=
[0.14
o J
) E - .
7 < J
-
& | Data:[Amp -] 012 -
1 DalaCo\umn.Idala vl 1
" i
E Cached: @ J
I Aftach: ¢ Left ¢ Right |
—| Range: i - -
* Automatic 1
| . 0.08 -
("I 7
0.06 — -
Add Y Axis Data | amad
e o e e e LA B ey s s e e e
-10 0 10 20 30 40 50 60 70
Add Pit | I Reload Plot | Channel
| EFiL - |-a g8 »e|LJ 1L = ® ”\HJ d 4P »p “J Hold Drawing

Figure 3.2: The Plots > Axes tab in the plotms GUI window, used to make a plot of Amp
versus Channel.

CHAPTER 3. DATA EXAMINATION AND EDITING 131

3.3.1.3 Plot Axes

The X and Y axes of a plot are selected by clicking on the Plots > Axes tab on the left side of

the plotms window, and choosing an entry from the drop-down menus below X Axis and Y Axis
(see Figure . Possible axes are:

e Scan — The scan number, as listed by listobs (§[2.2.9) or the data summary in plotms
(§[B.3.1.9).

e Field — The field number, as listed by listobs (§ [2.2.9) or the plotms data summary
(5 B-3.1.9).

e Time — The time at which the visibility was observed, given in terms of calendar year
(yyyy/mm/dd/hh:mm:ss.ss).

e Interval — The integration time in seconds.

e Spw — The spectral window number. The characteristics of each spectral window are listed

in listobs (§[2.2.9) or the plotms data summary (§|3.3.1.9)).

e Channel — The spectral channel number.

e Frequency — Frequency in units of GHz. The frame for the frequency (e.g., topocentric,
barycentric, LSRK) can be set in the Plots > Trans tab (§3.3.1.10).

e Velocity — Velocity in units of km s71, as defined by the Frame, Velocity Defn, and
Rest Freq parameters in the Plots > Transform tab (§(3.3.1.10).

e Corr — Correlations which have been assigned integer IDs: 5 = RR; 6 = RL; 7 = LR, and
8 = LL.

e Antennal — The first antenna in a baseline pair; for example, for baseline 2-4, Antennal
= 2. Antennae are numbered according to the antenna IDs listed in 1istobs (§[2.2.9)) or the

plotms data summary (§[3.3.1.9)).

e Antenna2 — The second antenna in a baseline pair; for baseline 2-4, Antenna2 = 4. An-
tennae are numbered according to the antenna IDs listed in 1istobs (§[2.2.9) or the plotms

data summary (§[3.3.1.9)).

e Antenna — Antenna ID for plotting antenna-based quantities. Antennae are numbered ac-
cording to the antenna IDs listed in 1istobs (§[2.2.9) or the plotms data summary (§(3.3.1.9).

e Baseline — The baseline number.

e Row — The MS data row number.

e Observation — The Observation number when combining multiple observations.

e Intent — The Observation Intent. The numbering follows their occurrence in the MS.

e Feedl — Feed ID for the first antenna in a baseline.

CHAPTER 3. DATA EXAMINATION AND EDITING 132

e Feed2 — Feed ID for the second antenna in a baseline.

e Amp — Data amplitudes in units which are proportional to Jansky (for data which are fully
calibrated, the units should be in Jy).

e Phase — Data phases in units of degrees.

¢ Real and Imag — The real and imaginary parts of the visibility in units which are propor-
tional to Jansky (for data which are fully calibrated, the units should be Jy).

e Wt and Wt*Amp — the weight of the visibility (see Appendix[F) and the product of the
weight and the amplitude

e WtSp — WEIGHT_SPECTRUM column, i.e. a weight per channel
e Sigma — the SIGMA column of the visibilities (see Appendix
e SigmaSp — SIGMA_SPECTRUM column, i.e. a SIGMA per channel

e Flag and FlagRow — Data which are flagged have Flag = 1, whereas unflagged data are set
to Flag = 0, FlagRow is teh MS row number. Note that, to display flagged data, you will
have to click on the Plots > Display tab and choose a Flagged Points Symbol (§(3.3.1.8)).

e UVDist — Projected baseline separations in units of meters. Note that UVDist is not a
function of frequency.

e UVwave — Projected baseline separations in units of the observing wavelength (lambda, not
kilolambda). UVDist_L is a function of frequency, and therefore, there will be a different
data point for each frequency channel.

e U, V, and W — 4, v, and w in units of meters.
e Uwave, Vwave, and Wwave — u, v, and w in units of wavelengths lambda.

e Azimuth and Ant-Azimuth — Azimuth in units of degrees. Azimuth plots a fiducial
value for the entire array, while Ant-Azimuth plots the azimuth for each individual antenna
(their azimuths will differ by small amounts, because each antenna is located at a slightly
different longitude, latitude, and elevation).

e Elevation and Ant-Elevation — Elevation in units of degrees. Elevation is a represen-
tative value for the entire array, while Ant-Elevation is the elevation for each individual
antenna (their elevations will differ by small amounts, because each antenna is located at a
slightly different longitude, latitude, and elevation).

e HourAngle — Hour angle in units of hours. This is a fiducial value for the entire array.

e ParAngle and Ant-ParAng — Parallactic angle in units of degrees. ParAngle is the
fiducial parallactic angle for all antennae in the array, while Ant-Par Ang plots the parallactic
angle for each individual antenna (their parallactic angles will differ by small amounts, because
each antenna is located at a slightly different longitude, latitude, and elevation).

CHAPTER 3. DATA EXAMINATION AND EDITING 133

¢ Row — Data row number. A row number corresponds to a unique time, baseline, and
spectral window in the measurement set.

e FlagRow — In some tasks, if a whole data row is flagged, then FlagRow will be set to 1 for
that row. Unflagged rows have FlagRow = 0. However, note that some tasks (like plotms)
may flag a row, but not set FlagRow = 1. It is probably better to plot Flag than FlagRow
for most applications.

e GainAmp, GainPhase, GainReal, Gainlmag — are the amplitude, phase, real and imag-
inary part of the calibration tables for regular complex gain tables.

e Delay — The delay of a delay calibration table

e SwPower — Switched Power values for VLA switched power calibration tables

e Tsys — Tsys for ALMA system temperature calibration tables

e Opac — Opacity values of a Opacity calibration table

e SNR — The Signal to Noise Ratio from calibration tables

e TEC — Total Electron Content (aplicable to the related calibration table)

e Radial Velocity [km/s| — Taken from the FIELD table when an ephemeris is specified
e Distance (rho) [km] — Taken from the FIELD table when an ephemeris is specified

If the data axis selected from the drop-down menu is already stored in the cache (therefore implying
that plotting will proceed relatively quickly), an “X” will appear in the checkbox next to In Cache?.
If the data shall be reloaded from disk, the “force reload” checkmark should be set at the bottom
of this display.

For relevant data axes like Amp and Phase, the user will be presented with the option to plot
raw data or calibrated data. This can be selected via a drop-down menu called Data Column,
located directly under the drop-down menu for X or Y Axis selection (see the Y axis in Figure .
To plot raw data, select “data”; to plot calibrated data, select “corrected”. Note that this choice
will only have an impact on a plot if a calibration table has been applied to the measurement set

(see applycal, Sect.[4.6.1)).

If a data model has been applied to the measurement set (e.g., with setjy, Sect.|4.3.5) it can
be plotted by selecting “model” from the Data Column menu. Residuals can be plotted via
“corrected-model”, “data-model”, “data/model”, and “corrected/model”.

3.3.1.4 Calibration Library

The keyword ’callib’ in the plotms task parameters can be used to provide a calibration library
file (see Appendix. This file allows one to apply calibration tables to the uncalibrated data on
the fly, i.e. without a run of applycal beforehand. The tab Calibration on the right hand side
contains a field to specify the calibration library or to specify the calibration library commands
directly. There’s also a switch to either apply the calibration library to produce the “corrected”
data (“Calibration On”) or to show an existing “corrected” data column (“Calibration Off”).

CHAPTER 3. DATA EXAMINATION AND EDITING 134

3.3.1.5 Tools

Various tools—selectable as icon buttons at the bottom of the plotms window—can be used to
zoom, edit, and locate data. The icon buttons can be seen at the bottom of Figures and
and are, from left to right:

e Zoom — The “magnifying glass” button (1st on left) lets you draw a box around a region
of the plot (left-click on one corner of the box, and drag the mouse to the opposite corner of
the desired box), and then zooms in on this box.

e Pan — The “four-arrow” button (2nd from left) lets you pan around a zoomed plot.

e Annotate — The 3rd button from the left is chosen from a drop-down menu to either
Annotate Text (“T with a green diamond” button) or Annotate Rectangle (“pencil”
button). In the Annotate Text environment, click on a location in the plot where text
is desired; a window will pop up, allowing you to type text in it. When you click the OK
button, this text will appear on the plot. Annotate Rectangle simply lets you draw a box
on the plot by left-clicking and dragging the mouse. By clicking on the Annotator tab near
the top of the plotms window, different fonts, colors, line styles, etc. can be selected for
annotations.

e Home — The “house” button (5th from left) returns to the original zoom level.

e Stack Back and Stack Forward — The left and right arrow buttons (4th and 6th from
left) step through the zoom settings you've visited.

e Mark Regions — The “box with a green diamond” button (7th from left) lets you mark a
region for flagging, unflagging, or locating. Left-click on one corner of the desired region, and
then drag the mouse to set the opposite corner of the region. You can mark multiple boxes
before performing an operation on them.

e Clear Regions — Clicking on the “box with a red circle” button (8th from left) will clear
all regions which have been marked using Mark Regions.

e Flag — Click on the “flag” button (9th from left) to flag all points in the marked regions.

e Unflag — Click on the “crossed-out flag” button (10th from left) to unflag any flagged points
that would be in the marked regions (even if invisible).

e Locate — The “magnifying glass on a sheet of paper” button (11th from left) will print out
information to the command line about points in the marked regions.

e Hold Drawing — If the “hold drawing” button (rightmost, or 12th from left) is depressed,
and if new plot axes are selected from the Plots > Axes tab, these new data will be cached
but not plotted. When the button is clicked on again and un-depressed, it will automatically
plot the data that was last requested. This can be particularly useful when changing the size
of the plotms window.

CHAPTER 3. DATA EXAMINATION AND EDITING 135

Under the Options tab near the top of the plotms window one can select the layout of the page.
For multiple plots per page, one can select the grid layout, ie the number of rows and columns
that determine the number of sub-plots. The when changing plot axes, clear any existing
regions or annotations checkbox determines when regions and annotation are deleted from the
plot. The Tool Button Style drop-drop down menu determines if icons and /or text represent the
buttons at the bottom of the plotms window.

It is possible to hide these icons by going to the View > Toolbars menu at the top of the plotms
window and un-depressing the Tools option (except for Hide Drawing, which is hidden by clicking
on View > Toolbars > Display). In addition, the above tools can also be accessed by clicking
on the Tools tab near the top of the plotms window (just below the View menu).

The Tools tab also enables one additional tool, the Tracker. To use Tracker, click on the Hover
and/or

Display checkbox, and place your mouse over the plot. Tracker will output the X and Y position
of your mouse, either as text superimposed on the plot near your mouse (if Hover is selected) or in
the blank window in the Tools tab (if Display is selected). Pressing the SPACE bar will copy the
lines into the larger white box below to the right. This can be repeated many times and a log of
positions and values will be created. The content in the box can then be easily copied and pasted
into any other application that is used for data analysis. The Clear button wipes out the content
of the box for a fresh start into new scientific adventures.

3.3.1.6 Interactive Flagging in plotms

Interactive flagging, on the principle of “see it — flag it”, is possible on the X-Y display of the data
plotted by plotms. The user can use the cursor to mark one or more regions, and then flag, unflag,
or list the data that falls in these zones of the display.

Using the row of icons buttons at the bottom of the plotms window (§ , click on the Mark
Regions button (which will appear to depress), then mark a region by left-clicking and dragging
the mouse (each click and drag will mark an additional region). You can get rid of all your regions
by clicking on the Clear Regions. Once regions are marked, you can then click on one of the
other buttons to take action:

1. Flag — flag the points in the region(s),
2. Unflag — unflag flagged points in the region(s),
3. Locate — spew out a list of the points in the region(s) to the command line (Warning: this

could be a long list!).

Figure[3.3] shows an example of marking regions and then clicking the Flag button. Whenever you
click on a button, that action occurs without requiring an explicit disk-write. If you quit plotms
and re-enter, you will see your previous edits.

plotms does not automatically create flag backups in the jmsname;.flagversions file. It is thus
recommended to save the initial flags with the flagmanager task (§[3.2)) before starting plotms

CHAPTER 3. DATA EXAMINATION AND EDITING 136

600 A\ PlotMs 800 \| PlotMs.

Fle_Epm_sunmay view Fie_Dgm_sunmay view iop

Biot | Flag | Tools | Annotate | Opions | Amp vs. Time Bici | Flag | Tools | Amnotate | Opions | Amp vs. Time

g & 00124 g m 00124

g g

2 e 2

g s] 1

2 € None & Default 2

= cuson =

H (e = C I = e |

S [

E e R N\ € Defaul E tine: @ € Defaul

L Faeeramssymn L Framesmn

= @ None € Default = @ None € Default

= cuson R cusam 2

L o | 7 < §
G o T | I T | 1 .
2 OIS tone € pean Pl

2 g 0004 -

g H ?

| | ﬁ I

032520 | osda | Osabo | Goasan | oaseav | oacsed 032320 | 033t | Osaba " Gadaan | oassap | ososeo

Add Plot I Reload _Plot Time (from 2010/04126) (s) Add Plot I R lot Time (from 2010/04/26) (s)
o gin -« @ » [Tidig = ® AU« 4 b W] rasomn o diii-l-a @ »w[FiEig I ® AU« 4 b W] oo

Figure 3.3: Plot of amplitude versus time, before (left) and after (right) flagging two marked
regions. To unflag these regions, mark the two same regions and click the Unflag button.

interactive flagging. Surely, important intermediate flagging stages may also be saved during plotms
flagging in the same fashion.

Flags can also be extended with options in the Flagging tab, found near the top of the plotms
window. Flag extension enables the user to plot a subset of the data and extend the flagging to a
wider set. In this release, the only functional extensions are over channel and correlation.

By checking the boxes next to Extend Flags and Channel, flagging will be extended to other
channels in the same spw as the displayed point. For example, if spw="0:0" and channel 0 is
displayed, then flagging will extend to all channels in spw 0.

By checking the boxes next to Extend Flags and Correlation, flags will be extended beyond the
correlations displayed. Currently the only option is to extend to All correlations, implying that all
correlations will be flagged, e.g. with RR displayed, the correlations RR, RL, LR, and LL will all
be flagged.

WARNING: use of flag extensions may lead to deletion of much more data than desired. Be
careful!

3.3.1.7 Averaging Data

The Plots > Data tab enables averaging of the data in order to increase signal-to-noise of the
plotted points or to increase plotting speed. The options for Averaging are:

e channel
e time

e all baselines or per antenna

CHAPTER 3. DATA EXAMINATION AND EDITING 137

e all spectral windows

e scalar

The box next to a given Averaging mode needs to be checked for that averaging to take effect.

For example, to average n channels together, the user would click on the box next to Channels
so that an “X” appears in it, and then type the number n in the empty box. When the user next
clicks on Plot, every n channels will then be averaged together and plotted against the average
channel numbers. The total number of channels plotted will be decreased by a factor of n.

Time averaging is a little trickier, as it is controlled by three fields. If the checkbox next to Time
under Averaging is clicked on, a blank box with units of seconds will become active, along with
two additional checkboxes: Scan and Field. If averaging is desired over a relatively short interval
(say, 30 seconds, shorter than the scan length), a number can simply be entered into the blank box
and, when the data are replotted, the data will be time averaged. Clicking on the Scan or Field
checkbox in this case will have no impact on the time averaging.

These checkboxes become relevant if averaging over a relatively long time—say the entire observa-
tion, which consists of multiple scans—is desired. Regardless of how large a number is typed into
the Time averaging blank box, only data within individual scans will be averaged together. In
order to average data across scan boundaries, the Scan checkbox must be clicked on and the data
replotted. Finally, clicking on the Field checkbox enables the averaging of multiple fields together
in time.

Clicking on the All Baselines checkbox will average all baselines in the array together. Alterna-
tively, the Per Antenna box may be checked, which will average all baselines for a given antenna
together. In this case, all baselines are represented twice; baseline 3-24 will contribute to the aver-
ages for both antenna 3 and antenna 24. This can produce some rather strange-looking plots if the
user also selects on antenna—say, if the user requests to plot only antenna 0 and then averages Per
Antenna, In this case, an average of all baselines including antenna 0 will be plotted, but each
individual baseline including antenna 0 will also be plotted (because the presence of baselines 0-1,
0-2, 0-3, etc. trigger Per Antenna averaging to try and compute averages for antennae 1, 2, 3, etc.
Therefore, baseline 0-1 will contribute to the average for antenna 0, but it will also singlehandedly
be the average for antenna 1.)

Spectral windows can be averaged together by checking the box next to All Spectral Windows.
This will result in, for a given channel 7, all channels n from the individual spectral windows being
averaged together.

Finally, the default mode is vector averaging, where the complex average is formed by averaging
the real and imaginary parts of the relevant visibilities. If Scalar is chosen, then the amplitude of
the average is formed by a scalar average of the individual visibility amplitudes.

When averaging, plotms will prefer unflagged data. IL.e., if an averaging bin contains any unflagged
data at all, only the average of the unflagged will be shown. For averaging bins that contain only
unflagged data, the average of that unflagged data will be shown. When flagging on a plot of
averaged data, the flags will be applied to the unaveraged data in the MS.

CHAPTER 3. DATA EXAMINATION AND EDITING 138

3.3.1.8 Plot Symbols

Plot symbols are selected in the Plots > Display tab. Most fundamentally, the user can choose to
plot unflagged data and/or flagged data. By default, unflagged data is plotted (the circle next to
Default is checked under Unflagged Points Symbol), and flagged data is not plotted (the circle
next to None is checked under Flagged Points Symbol. We note here that plotting flagged
data on an averaged plot is undertaken at the user’s own risk, as the distinction between flagged
points and unflagged points becomes blurred if data are averaged over a dimension that is partially
flagged. Take, for example, a plot of amplitude versus. time where all channels are averaged
together, but some channels have been flagged due to RFI spikes. In creating the average, plotms
will skip over the flagged channels and only use the unflagged ones. The averaged points will be
considered unflagged, and the flagged data will not appear on the plot at all.

A selection of None produces no data points, Default results in data points which are small circles
(blue for unflagged data and red for flagged data), and Custom allows the user to define a plot
symbol. If Custom plot symbols are chosen, the user can determine the symbol size by typing a
number in the blank box next to px or by clicking on the adjacent up or down arrows. Symbol
shape can be chosen from the drop-down menu to be either “circle”, “square”, “diamond”, or
“pixel” (note than “pixel” only has one possible size). “autoscaling” attempts to adjust the size of
the points from dots to circles of different sizes, depending on how many points are plotted. Symbol
color can be chosen by typing a hex color code in the blank box next to Fill: (e.g., “ff00ff”), or
by clicking on the ... button and selecting a color from the pop-up GUI. The adjacent drop-down
menu provides options for how heavily the plot symbol is shaded with this color, from heaviest to
lightest: “fill”, “mesh1”, “mesh2”, “mesh3”, and “no fill”. Finally, the plot symbol can be outlined
in black (if Outline: Default is checked) or not (if Outline: None is checked). Note that if “no
fill” and Outline: None are selected, the plot symbols will be invisible.

Finally, unflagged data points can be given informative symbol colors using the Colorize parameter.
By checking the box next to Colorize and selecting a data dimension from the drop-down menu,
the data will be plotted with colors that vary along that dimension. For example, if “corr” is chosen
from the Colorize menu, “RR”, “LL”, “RL”, and “LR” data will each be plotted with a different
color. Note that, currently, colorize and plotting flagged data appear to be incompatible; a plot
can only include one of these special features at a time.

3.3.1.9 Summarizing Data

Information about the measurement set can be obtained from within plotms by clicking on the
Summary button, found at the top menu bar. If “All” is chosen from the pull-down menu
next to Summary, listobs-style output about scans, correlator configurations, and antennae will
be written to the command line from which plotms was started. For more detail, click on the
Verbose checkbox. For a specific subset of the data, choose a selection from the pull-down menu
like “Antenna” or “Field”.

CHAPTER 3. DATA EXAMINATION AND EDITING 139

3.3.1.10 Defining Frequency and Velocity

If the user plans to plot Frequency, the reference frame must be defined. By default, the plotted
frequency is simply that observed at the telescope. However, transformations can be made by
choosing a Frame from the drop-down menu in the Plots > Transform tab. Frequency reference
frames can be chosen to be:

e LSRK — local standard of rest (kinematic)
e LSRD — local standard of rest (dynamic)
¢ BARY — barycentric

e GEO — geocentric

e TOPO — topocentric

e GALACTO — galactocentric

e LGROUP — Local Group

e CMB — cosmic microwave background dipole

Velocity is affected by the user’s choice of Frame, but it is also impacted by the choice of velocity
definition and spectral line rest frequency. The velocity definition is chosen from the Velocity
Defn drop-down menu in the Plots > Trans tab, offering selections of Radio, True, or Optical.

For more information on frequency frames and spectral coordinate systems, see the paper by Greisen
et al. (A&A, 446, 747, 2006) [1]

Finally, the spectral line’s rest frequency in units of MHz should be typed into the blank box next
to Rest Freq in the Plots > Trans tab. You can use the me.spectralline tool method to turn
transition names into frequencies

CASA <16>: me.spectralline(’HI’)
Out [17]:

{’m0’: {’unit’: ’Hz’, ’value’: 1420405751.786},
’refer’: ’REST’,
’type’: ’frequency’}

For a list of known lines in the CASA measures system, use the toolkit command me.linelist(). For
example:

CASA <21>: me.linelist()
Out[21]: ’HI H186A H185A H184A H183A H182A H181A H180A H179A H178A H177A H176A H175A

H174A H173A H172A H171A H170A H169A H168A H167A H166A H165A H164A H163A H162A H161A H160A...

He182A Hel181A HelB80A Hel79A Hel78A Hel77A Hel76A Hel75A Hel74A Hel73A Hel72A Hel71A Hel70A

Hel69A Hel68A Hel67A Hel66A Hel65A Hel64A Hel63A Hel62A Hel61A Hel60A HelS59A Helb58A HelbT7A. ..

! Also at http://www.aoc.nrao.edu/"egreisen/scs.ps

http://www.aoc.nrao.edu/~egreisen/scs.ps

CHAPTER 3. DATA EXAMINATION AND EDITING 140

C186A C185A C184A C183A C182A C181A C180A C179A C178A C177A C176A C175A C174A C173A C172A
C171A C170A C169A C168A C167A C166A C165A C164A C163A C162A C161A C160A C159A C158A C157A...
NH3_11 NH3_22 NH3_33 NH3_44 NH3_55 NH3_66 NH3_77 NH3_88 NH3_99 NH3_1010 NH3_1111 NH3_1212
0OH1612 0H1665 0OH1667 0H1720 OH4660 0H4750 0OH4765 0H5523 0H6016 OH6030 OH6035 0H6049 0H13433
OH13434 0H13441 0H13442 0H23817 0H23826 CH30H6.7 CH30H44 H2022 H2C04.8 C0_1_0 C0_2_1 C0_3_2
C0_4_3 C0_5_4 C0_6_5 CO_7_6 CO_8_7 13C0_1_0 13C0_2_1 13C0_3_2 13C0_4_3 13C0_5_4 13C0O_6_5
13C0_7_6 13C0_8_7 13C0_9_8 C180_1_0 C180_2_1 C180_3_2 C180_4_3 C180_5_4 C180_6_5 C180_7_6
€180_8_7 C180_9.8 CS_1_0 CS_2_1 CS_3_2 CS_4_3 C3_5_4 CS_6_5 CS_7_6 CS_8_7 CS_9_8 CS_10_9
CS_11_10 CS_12_11 CS_13_12 CS_14_13 CS_15_14 CS_16_15 CS_17_16 CS_18_17 CS_19_18 CS_12_19
Si0_1_0 Si0_2_1 Si0_3_2 Si0_4_3 Si0_5_4 Si0_6_5 Si0_7_6 Si0_8_7 Si0_9_8 Si0_10_9 Si0_11_10
Si0_12_11 Si0_13_12 Si0_14_13 Si0_15_14 Si0_16_15 Si0_17_16 Si0_18_17 Si0_19_18 Si0_20_19
Si0_21_20 Si0_22_21 8i0_23_22’

3.3.1.11 Shifting the Phase Center

The plot’s phase center can be shifted in the Plots > Trans tab. Enter the X and Y shifts in
units of arcseconds in the blank boxes under Phase center shift.

3.3.1.12 Plot Ranges

The X and Y ranges of the plot can be set in the Plots > Axes tab. By default, the circle next
to Automatic will be checked, and the ranges will be auto-scaled. To define the range, click on
the circle below Automatic and enter a minimum and maximum value in the blank boxes (as for
the X Axis in Figure Note that if identical values are placed in the blank boxes (zmin=xmaz
and/or ymin=ymaz), then the values will be ignored and a best guess will be made to auto-range
that axis.

3.3.1.13 Plot Labels

The plot and axes labels which are displayed in the plot window are set in the Plots > Canvas
tab. To change the plot title, under Canvas Title, click on the circle next to the blank box and
enter the desired text. To change the X- and Y-axis labels, similarly click on the circles next to the
blank boxes under Show X Axis and Show Y Axis and type the desired text in the blank box.
To display these new labels, simply click the Plot button.

The user can determine the locations of axis labels in the Plots > Axes tab. The X-axis label
switches from the bottom to the top of the plot depending on what is selected for Attach to:.
Similarly for the Y-Axis, the user can choose to attach axis labels and tick marks to the Top or
Bottom (note that the axis labels have been attached to the Bottom and Right in Figure

Finally, axis labels can be removed all together by unchecking the boxes next to Show X Axis
and Show Y Axis on the Plots > Canvas tab.

CHAPTER 3. DATA EXAMINATION AND EDITING 141

3.3.1.14 Grid Lines

A grid of lines can be superimposed on the plot using Grid Lines in the Plots > Canvas tab.
“Major” grid lines are drawn at the locations of major tick marks, while “minor” grid lines are
drawn at minor tick marks.

Grid line colors, thicknesses, and styles are selected independently for the “major” and “minor”
grid lines. Desired line thickness should be typed into the blank boxes just to the right of the
Major and Minor labels. Colors are set by clicking on the ... buttons. The blank boxes to the
left of the ... buttons will then contain the hex codes for the selected colors (e.g., “808080”). Line
styles can also be selected from the drop-down menus to the right of ... buttons.

3.3.1.15 Legend

A plot symbol legend can be added to the plot by clicking on the checkbox next to Legend in the
Plots > Canvas tab. However, given the current functionalities of plotms, a symbol legend is of
very limited use. This option is usefule when overplotting data.

3.3.1.16 The Options Tab

A few miscellaneous options are available in the Options tab, the last tab at the top of the plotms
window. The Tool Button Style drop-drop down menu determines if icons and/or text represent
the buttons in the toolbar near the bottom of the plotms window.

The Log Events drop down menu determines how verbose plotms is in documenting its actions
on the command line.

There is a checkbox that determines the persistence of regions and annotations on new plots,
labelled When changing plot axes, clear any existing regions and annotations.

A useful option is the fixed size for cached image checkbox. It determines how large the dots in
the panel are with respect to the screen resolution. The values influence how the data is redrawn
on the panel. When the Screen resolution is selected, the plotms window can be resized without
redrawing on the canvas — a considerable speedup for large data sets. The penalty is that the dots
of the data points are the size of a pixel on the screen, which may be very small for high resolution
monitors.

Finally, the File chooser history limit determines the number of remembered directories in the
file loading pop-up of the Browse selection of the Data tab.

3.3.1.17 Iteration

In many cases, it is desirable to iterate through the data that were selected in the Data tab. A
typical example is to display a single baseline in a time vs. amplitude plot and then proceed to the
next baselines step by step. This can be done via the Page tab on the left hand side of plotms.

CHAPTER 3. DATA EXAMINATION AND EDITING 142

A drop-down menu allows you to select the parameter to be iterated on, such as baseline or spw
(press plot after changing your selection). The plot titles in the main panel in plotms show which
data slice is currently displayed. To proceed to the next plot use the green buttons below the main
panel. The different button symbols let you to proceed panel by panel or to jump to the first or
last panel directly. The number of plots per page can be selected under Options-; Grid, the last of
the top row of tabs (corresponding to the gridrows and gridcols in the command line interface).

There are two scaling options for the axes: Global and Self. Global will use a common axis range
based on data loaded with the selection criteria specified in the Data tab. Self readjusts the axes
scaling to the data for each individual panel of the iteration.

Below, one can invoke multiple panels per display by selecting the number of rows and columns to
be displayed on the canvas.

3.3.1.18 Overplotting

Different values of the same dataset can be shown at the same time. E.g. to add a second y-axis,
press the “Add Y Axis Data” button under the “Axes” tab. Then select the parameters for the
newly created axis by selecting from the now available “Y Axis Data” drop-down menu. If the two
y-axes have the same units, they can be displayed both on the same axis. If they are different,
e.g. Amplitude and Elevation (both versus time; see Fig., one axis should be attached to the
left and the other to the right hand side of the plot. Using more than a single y-axis data is also
reflected in the “Display” tab where a drop-down menu appears in order to select multiple y-axis
options.

In the plotms input interface, you can overplot by invoking plotms more than once with clearplot=F.
Fach run of plotms corresponds to a plot to go on top of previous ones.

3.3.1.19 Plotting Multiple Data Sets

plotms can also plot more than a single dataset in separate panels. To do so, press “Add Plot”
next to the “Plot” button. This will bring up a new data window where the plot parameters are
defined. Right-click options are used to “Minimize”, “Maximize”, or “Close” these panels which
helps to keep a better overview on the individual datasets. If Options-; Grid is selected to have
more than a single panel, the different datasets will be shown side by side.

When plotms is run from the command line, the location of the plots can be defined as follows.
gridcols and gridrows define the number of plots on the screen. To define the location where a
subplot is to appear on this grid, use colindexr and rowindex. If one uses a plotindez, this will be
used as a label to address the plot. Each call of plotms with the same plotindex will overplot on the
subplot where plotindex was defined the first time. Here is an example on multiple plotms calls:

#Plot in the second column, first row of a 2x2 grid and define this plot as plotindex=0
plotms(vis=’visl.ms’, gridrows=2, gridcols=2, colindex=1, rowindex=0)

#0verplot in the same panel using a different axis and symbol for the second plot.

CHAPTER 3. DATA EXAMINATION AND EDITING

File Export Summary View Help

X| PlotMS

143

Plot i - -
I Flag | Tools | Annotate | Optloﬂsl Amp, Elevatlon VS. TlmE
- 0.04 90
I Xduis|Time |] L
Cached: [@ d = L
B Attach: ¢ Bottom Top 0035 A L §
2 Range: 1 by
o & Automatic] < I 80
g (_‘| 1858/11/17/00:00:00.000 0.03 7] L
; | 1858/11/17/00:00.00.000 1 L
5] g L
jal 0.025
g] - H
5] S o m
L d -~ -70@®
| Y Axis Data:l Elevation x El ~ =
N 0.02 - ~ F2
= Amp] ~— ~ 5
& | patafElevatior EEETE -1 E-] """\\ ~ . r 3
] Cached: 7 < 1 ~ ~ . 3 §
w
2 Aftach: € Left & Right 0.015 ~ * . t;r L @
% | Range:] ~ L]
3] 1 \\ . : - 60®
+ Automatic g ~, L : P
0.01 ~ ~ —
al] N . - i
| i ' ~ . L
4 ~ - -E-?
| ~ g L
0.005 o ~ . we
E ~ . “i - 50
| -,
. _ : N e _
Add Y Ais Data | Delete Y Axis Data 0 Etnetaiaiietianll Sosdentuodieiiadiiod dasimd i‘\i 2 b on 3
4 N B
0.005 — T 1 =el
03:06:40 03:40:00 04:13:20 04:46:40 05:20:00 05:53:20 06:26:40
Add Plot | ¥ Reload Plot Time (from 2010/04/26) (s)

[OEiiii-| @ v |iditig = ® 0

H« 4 p W “J Hold Drawing

Figure 3.4: Overplotting in plotms: Two different y-axes have been chosen for this plot, amplitude
and elevation.

plotms(vis=’vis2.ms’, clearplots=False, plotindex=1, rowindex=0,
colindex=1, gridrows=2, gridcols=2, yaxislocation=’right’, symbolshape=’circle’)

#Define a second plot and give it a label plotindex=2, in the lower right corner of the grid.
plotms(vis=’visl.ms’, clearplots=False, plotindex=2, rowindex=1,colindex=1, gridrows=2, gridcols=2)

#Move the plot with the overplot one panel to the left. This requires clearing
#the plots and rerunning the script specifications with the new plot locations.
plotms(vis=’visl.ms, gridrows=2, gridcols=2, colindex=0, rowindex=0, symbolshape=’diamond’)
plotms(vis=’vis2.ms’, clearplots=False, plotindex=1, rowindex=0, colindex=0,

gridrows=2, gridcols=2,yaxislocation=’right’,

symbolshape=’circle’)
plotms(vis=self.ms, clearplots=False, plotindex=2, rowindex=1,colindex=1,gridrows=2, gridcols=2)

CHAPTER 3. DATA EXAMINATION AND EDITING 144

3.3.1.20 Saving your plot

You can save a copy of a plot to file in the Plots > Export tab. Click the Browse button for a
GUI-based selection of the directory and file name to which the plot will be saved. The file format
can also be determined in this GUI by the suffix given to the filename: .png (PNG), .jpg (JPG), .ps
(PS), .pdf (PDF), and tzt (TEXT). Alternatively, the file format can be selected from the Format
drop-down menu located just below the Browse button. In this case, plotms will add a suffix to
the file name depending on the format chosen.

ALERT: The plot files produced by the PS and PDF options can be large and time-consuming to
export. The JPG is the smallest.

The exported plot resolution can be manipulated using the High Resolution, DPI, and Size
options. The size can be specified using height and/or width within or outside the GUI. The default
(unset) value is -1 and the maximum allowed value is 65500 for height /width.

Click on Export to create the file, you may select to either plot only the current page or all pages
(filenames will be automatically incremented).

The TEXT format will not save an image but the data points themselves. This allows one to dump
the current plot into a file that is used in other programs for further processing. The reported data
is the same as when using the locate button in plotms and the format looks like:

x y chan scan field antl ant2 antlname ant2name time freq spw corr offset currchunk irel
Real Imag None None None None None None None MJD(seconds) GHz None None None None None
0.282938 0.0387583 31 5 2 1 12 ea02@E02 ea21QE01 4778968956.000 36.308479452 1 RR 26 0 26
0.263241 -0.00806698 31 7 2 1 12 ea020@E02 ea2l1@E01 4778969356.000 36.308479452 1 RR 29 1 28
0.258207 0.0301206 31 9 2 1 12 ea020@E02 ea21QE01 4778969745.000 36.308479452 1 RR 30 2 28
0.311155 -0.0180511 31 11 2 1 12 ea02@E02 ea21Q@EO01 4778970133.250 36.308479452 1 RR 31 3 28
0.284589 -0.0628808 31 13 2 1 12 eaO020E02 ea2l1@E01 4778970522.250 36.308479452 1 RR 32 4 28

where x and y are the two plotted axes and the other columns contain additional information such
as the baselines or frequencies. The three last columns offset, corrchunk, and irel are internal data
management items for plotms and you most likely will never use them.

3.3.1.21 Exiting plotms

To exit the plotms GUI, select Quit from the File menu at the top of the plotms window. You
can also dismiss the window by killing it with the “X” on the frame.

Alternatively, you can just leave it alone, and plotms will keep running in the background. If the
data file changes in the background, you can force reloading the data via the 'force reload’ checkbox
next to the 'Plot’” button. Alternatively, press SHIFT while clicking on 'Plot’ for the same purpose.

CHAPTER 3. DATA EXAMINATION AND EDITING 145

3.3.2 Plotting and Editing using plotxy

Inside the Toolkit: Access to matplotlib is also provided through the pl tool. See below for a
description of the pl tool functions.

ALERT: The plotxy code is fragile and slow, and is being replaced by the plotms (§[3.3.1)). We
retain plotxy in this release as not all functionality is available yet in plotms.

Plotxy is a tool for visualizing and editing visibility data. Unlike plotms, it is useful in scripting, as

it can non-interactively produce a hardcopy plot (see §|3.3.2.13)). It also has multi-plot (§[3.3.2.8)),

iteration (§[3.3.2.3)), and overplotting (§[3.3.2.4]) functionality—unlike plotms in the current release.
Plotxy uses the matplotlib plotting library to display its plots. You can find information on

matplotlib at http://matplotlib.sourceforge.net/.

To bring up this plotter use the plotxy task. The inputs are:

plotxy :: X-Y plotter/interactive flagger for visibility data

vis = » # Name of input visibility
xaxis = ’time’ # X-axis: def = ’time’: see help for options
yaxis = >amp’ # Y-axis: def = ’amp’: see help for options
datacolumn = ’data’ # data (raw), corrected, model, residual (corrected - model)
selectdata = False # Other data selection parameters
spw = » # spectral window:channels: ’’==>all, spw=’1:5757’
field = 22 # field names or index of calibrators: ’’==>all
averagemode = ? # Select averaging type: ’vector’, ’scalar’
restfreq = ?? # a frequency quanta or transition name. see help for options
extendflag = False # Have flagging extend to other data points?
subplot = 111 # Panel number on display screen (yxn)
plotsymbol = > # Options include . : , 0o "v><s +xDd234hnhH]| _
plotcolor = ’darkcyn’ # Plot color
plotrange = [-1, -1, -1, -1] # The range of data to be plotted (see help)
multicolor = ’corr’ # Plot in different colors: Options: none, both, chan, corr
selectplot = False # Select additional plotting options (e.g, fontsize, title,etc)
overplot = False # OQOverplot on current plot (if possible)
showflags = False # Show flagged data?
interactive = True # Show plot on gui?
figfile = 2 # ’’= no plot hardcopy, otherwise supply name

ALERT: The plotxy task expects all of the scratch columns to be present in the MS, even if it
is not asked to plot the contents. If you get an error to the effect ”Invalid Table operation: Table:
cannot add a column” then use clearcal() to force these columns to be made in the MS. Note
that this will clear anything in all scratch columns (in case some were actually there and being
used).

Setting selectdata=True opens up the selection sub-parameters:

selectdata = True # Other data selection parameters
antenna ’0 # antenna/baselines: ’’==>all, antenna = ’3,VA04’

http://matplotlib.sourceforge.net/

CHAPTER 3. DATA EXAMINATION AND EDITING 146

il CASA Plotter

Jupiter 6cm uncalibrated

05|
8 04
a
G o3f
Q
=]
5
£
= 02
&

ol |

[
0o
L] 5 10 15
UV Distance (klambda }
Mark Region | Flag | Unflag | Locate | | quit |

2/0/0)+ <] 8lm)

Figure 3.5: The plotxy plotter, showing the Jupiter data versus uv-distance. You can see bad
data in this plot. The bottom set of buttons on the lower left are: 1,2,3) Home, Back, and
Forward. Click to navigate between previously defined views (akin to web navigation). 4) Pan.
Click and drag to pan to a new position. 5) Zoom. Click to define a rectangular region for zooming.
6) Subplot Configuration. Click to configure the parameters of the subplot and spaces for the
figures. 7) Save. Click to launch a file save dialog box. The upper set of buttons in the lower
left are: 1) Mark Region. Press this to begin marking regions (rather than zooming or panning).
2,3,4) Flag, Unflag, Locate. Click on these to flag, unflag, or list the data within the marked
regions. 5) Next. Click to move to the next in a series of iterated plots. Finally, the cursor
readout is on the bottom right.

timerange = » # time range: ’’==>all

correlation = » # correlations: default = ’’

scan = i # scan numbers: Not yet implemented

feed = » # multi-feed numbers: Not yet implemented

array = » # array numbers: Not yet implemented

uvrange = ’> # uv range’’==>all; uvrange = ’07100kl’ (default unit=meters)

CHAPTER 3. DATA EXAMINATION AND EDITING 147

These are described in § 2.3

Averaging is controlled with the set of parameters

averagemode = ’vector’ # Select averaging type: vector, scalar
timebin = ’0’ # Length of time-interval in seconds to average
crossscans = False # Have time averaging cross scan boundaries?
crossbls = False # have averaging cross over baselines?
crossarrays = False # have averaging cross over arrays?
stackspw = False # stack multiple spw on top of each other?
width = ’1’ # Number of channels to average

See §[3.3.2.9| below for more on averaging.
You can extend the flagging beyond the data cell plotted:

extendflag = True # Have flagging extend to other data points?
extendcorr = 22 # flagging correlation extension type
extendchan = 2 # flagging channel extension type
extendspw = ?? # flagging spectral window extension type
extendant = 0 # flagging antenna extension type
extendtime = 7 # flagging time extension type

See §[3.3.2.11] below for more on flag extension.

The restfreq parameter can be set to a transition or frequency:

restfreq = ’HI’ # a frequency quanta or transition name. see help for options
frame = ’LSRK’ # frequency frame for spectral axis. see help for options
doppler = ’RADIO’ # doppler mode. see help for options

See §13.3.2.12 below for more on setting rest frequencies and frames.

Setting selectplot="True will open up a set of plotting control sub-parameters. These are described

in §[3.3.2.2 below.

The interactive and figfile parameters allow non-interactive production of hardcopy plots. See
§[3.3.2.13] for more details on saving plots to disk.

The iteration, overplot, plotrange, plotsymbol, showflags and subplot parameters deserve extra ex-
planation, and are described below.

For example:

plotxy(vis=’jupiter6cm.ms’,
xaxis=’uvdist’,

jupiter 6cm dataset
plot uv-distance on x-axis
yaxis=’amp’, # plot amplitude on y-axis
field=’JUPITER’, # plot only JUPITER

selectdata=True, # open data selection
correlation=’RR,LL’, # plot RR and LL correlations
selectplot=True, # open plot controls
title = ’Jupiter 6cm uncalibrated’) # give it a title

CHAPTER 3. DATA EXAMINATION AND EDITING 148

The plotter resulting from these settings is shown in figure [3.5

ALERT: The plotxy task still has a number of issues. The averaging has been greatly speeded up
in this release, but there are cases where the plots will be made incorrectly. In particular, there are
problems plotting multiple spw at the same time. There are sometimes also cases where data that
you have flagged in plotxy from averaged data is done so incorrectly. This task is under active
development for the next cycle to fix these remaining problems, so users should be aware of this.

ALERT: Another know problem with (plotxy) is that it fails if the path to your working directory
contains spaces in its name, e.g. /users/smyers/MyTest/ is fine, but Susers/smyers/My Test/ is
not!

3.3.2.1 GUI Plot Control

You can use the various buttons on the plotxy GUI to control its operation — in particular, to
determine flagging and unflagging behaviors.

There is a standard row of buttons at the bottom. These include (left to right):

e Home — The “house” button (1st on left) returns to the original zoom level.

e Step — The left and right arrow buttons (2nd and 3rd from left) step through the zoom
settings you've visited.

e Pan — The “four-arrow button” (4th from left) lets you pan in zoomed plot.

e Zoom — The most useful is the “magnifying glass” (5th from the left) which lets you draw
a box and zoom in on the plot.

e Panels — The “window-thingy” button (second from right) brings up a menu to adjust the
panel placement in the plot.

e Save — The “disk” button (last on right) saves a .png copy of the plot to a generically named
file on disk.

In a row above these, there are a set of other buttons (left to right):

e Mark Region — If depressed lets you draw rectangles to mark points in the panels. This
is done by left-clicking and dragging the mouse. You can Mark multiple boxes before doing
something. Clicking the button again will un-depress it and forget the regions. ESC will
remove the last region marked.

e Flag — Click this to Flag the points in a marked region.

e Unflag — Click this to Unflag any flagged point that would be in that region (even if
invisible).

e Locate — Print out some information to the logger on points in the marked regions.

CHAPTER 3. DATA EXAMINATION AND EDITING 149

e Next — Step to the next plot in an iteration.

e Quit — Exit plotcal, clear the window and detach from the MS.

These buttons are shared with the plotcal tool.

3.3.2.2 The selectplot Parameters

These parameters work in concert with the native matplotlib functionality to enable flexible repre-
sentations of data displays.

Setting selectplot="True will open up a set of plotting control sub-parameters:

selectplot = True # Select additional plotting options (e.g, fontsize, title,etc)
markersize = 5.0 # Size of plotted marks
linewidth = 1.0 # Width of plotted lines
skipnrows = 1 # Plot every nth point
newplot = False # Replace the last plot or not when overplotting
clearpanel = ’Auto’ # Specify if old plots are cleared or not
title = >> # Plot title (above plot)
xlabels = » # Label for x-axis
ylabels = » # Label for y-axis
fontsize = 10.0 # Font size for labels
windowsize = 5.0 # Window size: not yet implemented

The markersize parameter will change the size of the plot

symbols. Increasing it will help legibility when doing screen Inside the Toolkit:
shots. Decreasing it can help in congested plots. The |For even more functionality, you can
linewidth parameter will do similar things to the lines. access the pl tool directly using Py-

lab functions that allow one to an-
notate, alter, or add to any plot
displayed in the matplotlib plotter

The skipnrows parameter, if set to an integer n greater than
1, will allow only every nth point to be plotted. It does this,
as the name suggests, by skipping over whole rows of the
MS, so beware (channels are all within the same row for (e.g. plotxy).
a given spw). Be careful flagging on data where you have
skipped points! Note that you can also reduce the number

of points plotted via averaging (§[3.3.2.9) or channel striding in the spw specification (§ [2.3.3).

The newplot toggle lets you choose whether or not the last layer plotted is replaced when owver-
plot=True, or whether a new layer is added.

The clearpanel parameter turns on/off the clearing of plot panels that lie under the current panel
layer being plotted. The options are: mone’ (clear nothing), ‘auto’ (automatically clear the plotting
area), ’‘current’ (clear the current plot area only), and ’all” (clear the whole plot panel).

The title, xlabels, and ylabels parameters can be used to change the plot title and axes labels.

The fontsize parameter is useful in order to enlarge the label fonts so as to be visible when making
plots for screen capture, or just to improve legibility. Shrinking can help if you have lots of panels
on the plot also.

CHAPTER 3. DATA EXAMINATION AND EDITING 150

The windowsize parameter is supposed to allow adjustments on the window size. ALERT: This
currently does nothing, unless you set it below 1.0, in which case it will produce an error.

3.3.2.3 The iteration parameter

Under Page one can select plot iterations parameters. There are currently four iteration options
available: ’field’, ’antenna’, and ’baseline’. If one of these options is chosen, the data will be split
into separate plot displays for each value of the iteration axis (e.g., for the VLA, the ’antenna’
option will get you 27 displays, one for each antenna). An example use of iteration:

choose channel averaging, every 5 channels
plotxy(’n5921.ms’,’channel’,subplot=221,iteration=’antenna’,width="5’)

The results of this are shown in Figure Note that this example combines the use of width,
iteration and subplot.

NOTE: If you use iteration="antenna’ or ’baseline’, be aware if you have set antenna selection.
You can also control whether you see auto-correlations or not using the appropriate syntax, e.g.

antenna="*6E* or antenna="*E6€" (§/2.3.4.1]).

3.3.2.4 The overplot parameter

The overplot parameter toggles whether the current plot will be overlaid on the previous plot or
subpanel (via the subplot setting, § section:edit.plot.plotxy.subplot) or will overwrite it. The default
is False and the new plot will replace the old.

The overplot parameter interacts with the newplot sub-parameter (see §|3.3.2.2)).
See §13.3.2.7| for an example using overplot.

3.3.2.5 The plotrange parameter

The plotrange parameter can be used to specify the size of the plot. The format is [zmin, xmaxz,
ymin, ymaz/. The units are those on the plot. For example,

plotrange = [-20,100,15,30]

Note that if zmin=zmax and/or ymin=ymaz, then the values will be ignored and a best guess will
be made to auto-range that axis.

Unfortunately, the units for the time axis must be in Julian seconds. This is somewhat inconvenient
as the usual time parameter is given in Julian days. To calculate the Julian seconds the me.epoch
tool can be used. An example: For 02:00 UT on 2012/05/22, the value of MJD seconds can be
calculated via

86400* (me.epoch(’utc’,’2012/05/22°) [’m0°] [’value’]+2/24.)

which results in 4844368800.0.

CHAPTER 3. DATA EXAMINATION AND EDITING 151

R () e (T Il I
20[0|+| =]

Figure 3.6: The plotxy iteration plot. The first set of plots from the example in §|3.3.2.3| with
iteration="antenna’. Each time you press the Next button, you get the next series of plots.

3.3.2.6 The plotsymbol parameter

The plotsymbol parameter defines both the line or symbol for the data being drawn as well as the color; from
the matplotlib online documentation (e.g., type pl.plot? for help):

The following line styles are supported:
- : solid line
- : dashed line
-. : dash-dot line
: dotted line
: points

CHAPTER 3. DATA EXAMINATION AND EDITING 152

: pixels

: circle symbols

: triangle up symbols

: triangle down symbols

: triangle left symbols

: triangle right symbols

: square symbols

: plus symbols

: cross symbols

: diamond symbols

: thin diamond symbols

: tripod down symbols

: tripod up symbols

: tripod left symbols

: tripod right symbols

: hexagon symbols

: rotated hexagon symbols

: pentagon symbols

: vertical line symbols
_ : horizontal line symbols
steps : use gnuplot style ’steps’ # kwarg only

The following color abbreviations are supported

: blue

: green

: red

: cyan

: magenta

: yellow

: black

-

[e]

)

—o DB D WONERE,QAONX +0n VACS

< B o R0 T

w : white
In addition, you can specify colors in many weird and
wonderful ways, including full names ’green’, hex strings
’#008000°, RGB or RGBA tuples (0,1,0,1) or grayscale
intensities as a string ’0.8°.
Line styles and colors are combined in a single format string, as in
’bo’ for blue circles.

3.3.2.7 The showflags parameter

The showflags parameter determines whether only unflagged data (showflags=False) or flagged
(showflags=True) data is plotted by this execution. The default is False and will show only un-
flagged “good” data.

Note that if you want to plot both unflagged and flagged data, in different colors, then you need
to run plotxy twice using overplot (see §[3.3.2.4)) the second time, e.g.

> plotxy(vis="myfile", xaxis=’uvdist’, yaxis=’amp’)
> plotxy(vis="myfile", xaxis=’uvdist’, yaxis=’amp’, overplot=True, showflags=True)

CHAPTER 3. DATA EXAMINATION AND EDITING 153

3.3.2.8

The subplot parameter

The subplot parameter takes three numbers. The first is the number of y panels (stacking vertically),
the second is the number of xpanels (stacking horizontally) and the third is the number of the panel
you want to draw into. For example, subplot=212 would draw into the lower of two panels stacked
vertically in the figure.

An example use of subplot capability is shown in Fig These were drawn with the commands
(for the top, bottom left, and bottom right panels respectively):

plotxy(’n5921.ms’,’channel’,

field=’0",
datacolumn=’corrected’,
plotcolor=’",
plotsymbol=’go’,
subplot=211)

plotxy(’°n5921.ms’,’x’,

field=’0",
datacolumn=’corrected’,
subplot=223,
plotcolor="",
plotsymbol=’r.’)

plotxy(’n5921.ms’,’u’,’v’,

field=’0’,
datacolumn=’corrected’,
subplot=224,
plotcolor=’",
plotsymbol="b,’)

plot channels for the nb921.ms data set
plot only first field
plot corrected data
over-ride default plot color
use green circles
plot to the top of two panels

plot antennas for nb5921.ms data set
plot only first field
plot corrected data
plot to 3rd panel (lower left) in 2x2 grid
over-ride default plot color
red dots

plot uv-coverage for nb5921.ms data set
plot only first field

plot corrected data

plot to the lower right in a 2x2 grid
over-ride default plot color

blue, somewhat larger dots

NOTE: You can change the gridding

and panel size by manipulating

the ny x nx grid.

H O H H H R H

See also §[3.3.2.3] above, and Figure for an example of channel averaging using iteration and

subplot.

3.3.2.9

Averaging in plotxy

The averaging parameters and sub-parameters are:

averagemode = ’vector’ #
timebin = 0’ #
crossscans = False #
crossbls = False #
crossarrays = False #
stackspw = False #
width = 1 #

Select averaging type: vector, scalar

length of time in seconds to average, default=’0’, or: ’all’
have time averaging cross over scans?

have averaging cross over baselines?

have averaging cross over arrays?

stack multiple spw on top of each other?

number of channels to average, default: ’1’, or: ’all’, ’allspw’

CHAPTER 3. DATA EXAMINATION AND EDITING 154

. T
: 20 \ 20088 EEE §§§E§§ 2,008 20 %o 00
<
gl E
S 1of E
5
: 8
=
ool 8 , , , , , ,55
o 10 20 30 40 50 60
Channels
oo L T T 76 T T] 1000 F
27
400 1 s
25 500 .
P ol 5 ‘5 >
22 N
21121"} Y sool
=200 ﬁ 28 l? ﬁ_
400 | 20 = 11000 k -
400 200 0 200 400 500 0 500
X (m) U {m)

Figure 3.7: Multi-panel display of visibility versus channel (top), antenna array configuration
(bottom left) and the resulting uv coverage (bottom right). The commands to make these three
panels respectively are: 1) plotzy(’ngc5921.ms’, raris=’channel’, datacolumn="data’, field="0’, sub-
plot=211, plotcolor=", plotsymbol="go’) 2) plotzy('ngc5921.ms’, vazis="r’, field="0", subplot=223,
plotsymbol="r."), 3) plotry(’ngc5921.ms’, zaxis="u’, yaxis="v’, field="0", subplot=224, plotsym-
bol="b,’, figfile="ngc5921_multiplot.png’).

The choice of averagemode controls how the amplitudes are calculated in the average. The default
mode is "vector’, where the complex average is formed by averaging the real and imaginary parts
of the relevant visibilities. If ’scalar’is chosen, then the amplitude of the average is formed by a
scalar average of the individual visibility amplitudes.

Time averaging is effected by setting the timebin parameter to a value larger than the integration
time. Currently, timebin takes a string containing the averaging time in seconds, e.g.

timebin = ’60.0°

CHAPTER 3. DATA EXAMINATION AND EDITING 155

to plot one-minute averages.

Channel averaging is invoked by setting width to a value greater than 1. Currently, the averaging
width is given as a number of channels.

By default, the averaging will not cross scan boundaries (as set in the import process). However,
if crossscans=True, then averaging will cross scans.

Note that data taken in different sub-arrays are never averaged together. Likewise, there is no way
to plot data averaged over field.

3.3.2.10 Interactive Flagging in plotxy

Interactive flagging, on the principle of “see it — flag it”, is

possible on the X-Y display of the data plotted by plotxy. Hint!

The user can use the cursor to mark one or more regions, |Ip the plotting environments such as
and then flag, unflag, or list the data that falls in these |p1otxy, the ESC key can be used to

zones of the display. remove the last region box drawn.

There is a row of buttons below the plot in the window. You

can punch the Mark Region button (which will appear

to depress), then mark a region by left-clicking and dragging the mouse (each click and drag will
mark an additional region). You can get rid of all your regions by clicking again on the Mark
Region button (which will appear to un-depress), or you can use the ESC key to remove the last
box you drew. Once regions are marked, you can then click on one of the other buttons to take
action:

1. Flag — flag the points in the region(s),
2. Unflag — unflag flagged points in the region(s),

3. Locate — spew out a list of the points in the region(s) to the logger (Warning: this could
be a long list!).

Whenever you click on a button, that action occurs without forcing a disk-write (unlike previous
versions). If you quit plotxy and re-enter, you will see your previous edits.

A table with the name jmsnames.flagversions (where vis=jmsnames) will be created in the same
directory if it does not exist already.

It is recommended that you save important flagging stages using the flagmanager task (§|3.2)).

3.3.2.11 Flag extension in plotxy

Flag extension is controlled using extendflag=T and its sub-parameters:

CHAPTER 3. DATA EXAMINATION AND EDITING 156

[casa piotter BEER casa Plotter BEE

Amplitude of Observed Data
Amplitude of Observed Data

2 3 T 2 3
UV Distance (klambda) UV Distance (klambda)

ek Region P Unfiy | Locate 111 | aut | [Mark Region Fiaa| unfeg| Locata| 11 | aut |
oo+ = H vark rogenmone | | | @ ©| 4| | B bk Region mote

Figure 3.8: Plot of amplitude versus uv distance, before (left) and after (right) flagging two marked
regions. The call was: plotzy(vis="ngc5921.ms’, razis="uvdist’, field="1445%).

extendflag = True # Have flagging extend to other data points?
extendcorr = ?? # flagging correlation extension type
extendchan = 7 # flagging channel extension type
extendspw = ?? # flagging spectral window extension type
extendant = 2 # flagging antenna extension type
extendtime = ?? # flagging time extension type

The use of extendflag enables the user to plot a subset of the data and extend the flagging to a
wider set.

ALERT: Using the extendflag options will greatly slow down the flagging in plotxy. You will see
a long delay after hitting the Flag button, with lots of logger messages as it goes through each flag.
Fixing this requires a refactoring of plotxy which is underway starting in Patch 4 development.

Setting extendchan="all’ will extend the flagging to other channels in the same spw as the displayed
point. For example, if spw="0:0"and channel 0 is displayed, then flagging will extend to all channels
in spw 0.

The extendcorr sub-parameter will extend the flagging beyond the correlations displayed. If ez-
tendcorr="all’; then all correlations will be flagged, e.g. with RR displayed RR,RL,LR,LL will be
flagged. If extendcorr="half’, then the extension will be to those correlations in common with that
show, e.g. with RR displayed then RR,RL,LR will be flagged.

Setting extendspw="all’ will extend the flagging to all other spw for the selection. Using the same
example as above, with spw="0:0" displayed, then channel 0 in ALL spw will be flagged. Note that
use of extendspw could result in unintended behavior if the spw have different numbers of channels,
or if it is used in conjunction with extendchan.

CHAPTER 3. DATA EXAMINATION AND EDITING 157

WARNING: use of the following options, particularly in conjunction with other flag extensions,
may lead to deletion of much more data than desired. Be careful!

Setting extendant=’all’ will extend the flagging to all baselines that have antennas in common
with those displayed and marked. For example, if antenna="1692"is shown, then ALL baselines to
BOTH antennas 1 and 2 will be flagged. Currently, there is no option to extend the flag to ONLY
baselines to the first (or second) antenna in a displayed pair.

Setting extendtime="all’ will extend the flagging to all times matching the other selection or ex-
tension for the data in the marked region.

3.3.2.12 Setting rest frequencies in plotxy

The restfreq parameter can be set to a transition or frequency and expands to allow setting of frame
information. For example,

restfreq = ’HI? # a frequency quanta or transition name. see help for options
frame = ’LSRK’ # frequency frame for spectral axis. see help for options
doppler = ’RADIO’ # doppler mode. see help for options

Examples of transitions include:

restfreq=’1420405751.786Hz’ # 21cm HI frequency
restfreq="HI’ 21cm HI transition name
restfreq="115.2712GHz’ # CO 1-0 line frequency

+H+

For a list of known lines in the CASA measures system, use the toolkit command me.linelist(). For
example:

CASA <14>: me.linelist()
Out[14]: ’C109A CI CII166A DI H107A H110A H138B H166A H240A H272A
H2CO0 HE110A HE138B HI 0OH1612 0H1665 0OH1667 0H1720°

ALERT: The list of known lines in CASA is currently very restricted, and will be increased in
upcoming releases (to include lines in ALMA bands for example).

You can use the me.spectralline tool method to turn transition names into frequencies

CASA <16>: me.spectralline(’HI’)
Out [17]:

{’m0’: {’unit’: ’Hz’, ’value’: 1420405751.786},
‘refer’: ’REST’,
’type’: ’frequency’}

(not necessary for this task, but possibly useful).

The frame sub-parameter sets the frequency frame. The allowed options can be listed using the
me.listcodes method on the me.frequency() method, e.g.

CHAPTER 3. DATA EXAMINATION AND EDITING 158

CASA <17>: me.listcodes(me.frequency())
Out [17]:
{’extra’: array([],
dtype=’[S17),
’normal’: array([’REST’, ’LSRK’, °LSRD’, ’BARY’, ’GE0’, ’TOPO’, ’>GALACTO’, ’LGROUP’,
'CMB’],
dtype=’158’)}

The doppler sub-parameter likewise sets the Doppler system. The allowed codes can be listed using
the me.listcodes method on the me.doppler() method,

CASA <18>: me.listcodes(me.doppler())

Out [18]:
{’extra’: array([],
dtype=’181"),

‘normal’: array([’RADIO’, ’Z’, ’RATIO’, ’BETA’, ’GAMMA’, ’OPTICAL’, ’TRUE’,
’RELATIVISTIC’],
dtype=’1813’)%}

For most cases the 'RADIO” Doppler system is appropriate, but be aware of differences.

For more information on frequency frames and spectral coordinate systems, see the paper by Greisen
et al. (A&A, 446, 747, 2006) |

3.3.2.13 Printing from plotxy

There are two ways to get hardcopy plots in plotxy.

The first is to use the “disk save” icon from the interactive plot GUI to print the current plot. This
will bring up a sub-menu GUI that will allow you to choose the filename and format. The allowed
formats are .png (PNG), .eps (EPS), and svg (SVG). If you give the filename with a suffix (.png,
.eps, or svg) it will make a plot of that type. Otherwise it will put a suffix on depending on the
format chosen from the menu.

ALERT: The plot files produced by the EPS option can be large, and the SVG files can be very
large. The PNG is the smallest.

The second is to specify a figfile. You probably want to disable the GUI using interactive=False
in this case. The type of plot file that is made will depend upon the filename suffix. The allowed
choices are .png (PNG), .eps (EPS), and svg (SVG).

This latter option is most useful from scripts. For example,

default(’plotxy’)
vis = ’ngcb5921.ms’
field = 2’

spw = 7’

2Also at http://wuw.aoc.nrao.edu/ egreisen/scs.ps

http://www.aoc.nrao.edu/~egreisen/scs.ps

CHAPTER 3. DATA EXAMINATION AND EDITING 159

xaxis = ’uvdist’

yaxis = ’amp’

interactive=False

figfile = ’ngcb5921.uvplot.amp.png’
plotxy ()

will plot amplitude versus uv-distance in PNG format. No plotxy GUI will appear.

ALERT: if you use this option to print to figfile with an iteration set, you will only get the first
plot.

3.3.2.14 Exiting plotxy
You can use the Quit button to clear the plot from the window and detach from the MS. You can
also dismiss the window by killing it with the X on the frame, which will also detach the MS.

You can also just leave it alone. The plotter pretty much keeps running in the background even
when it looks like it’s done! You can keep doing stuff in the plotter window, which is where the
overplot parameter comes in. Note that the plotcal task (§ will use the same window, and
can also overplot on the same panel.

If you leave plotry running, beware of (for instance) deleting or writing over the MS without
stopping. It may work from a memory version of the MS or crash.

3.3.2.15 Example session using plotxy

The following is an example of interactive plotting and flagging using plotxy on the Jupiter 6cm
continuum VLA dataset. This is extracted from the script jupiter6cm_usecase.py available in the
script area.

This assumes that the MS jupiter6cm.usecase.ms is on disk with flagautocorr already run.

default (’plotxy’)
vis = ’jupiter6cm.usecase.ms’

The fields we are interested in: 1331+305,JUPITER,0137+331
selectdata = True

First we do the primary calibrator
field = ’1331+305’

Plot only the RR and LL for now
correlation = ’RR LL’

Plot amplitude vs. uvdist
xaxis = ’uvdist’
yaxis = ’amp’

CHAPTER 3. DATA EXAMINATION AND EDITING

multicolor = ’both’

The easiest thing is to iterate over antennas
iteration = ’antenna’

plotxy O

You’ll see lots of low points as you step through RR LL RL LR
A basic clip at 0.75 for RR LL and 0.055 for RL LR will work
If you want to do this interactively, set

iteration = 7’

plotxy O

You can also use flagdata to do this non-interactively
(see below)

Now look at the cross-polar products
correlation = ’RL LR’

plotxy ()

Now do calibrator 0137+331
field = ’0137+331°
correlation = ’RR LL’

xaxis = ’uvdist’

SPW =)

iteration = ’’

antenna = 7’

plotxy ()
You’ll see a bunch of bad data along the bottom near zero amp

Draw a box around some of it and use Locate
Looks like much of it is Antenna 9 (ID=8) in spw=1

xaxis = ’time’
spw = 1’
correlation = 7’

Note that the strings like antenna=’9’ first try to match the
NAME which we see in listobs was the number ’9’ for ID=8.

So be careful here (why naming antennas as numbers is bad).
antenna = ’9’

plotxy()

YES! the last 4 scans are bad. Box ’em and flag.

Go back and clean up

160

CHAPTER 3. DATA EXAMINATION AND EDITING

xaxis = ’uvdist’

spw = 7’

antenna = 7’
correlation = ’RR LL’

plotxy O
Box up the bad low points (basically a clip below 0.52) and flag

Note that RL,LR are too weak to clip on.

Finally, do JUPITER
field = ’JUPITER’
correlation = ’’
iteration = ’’

xaxis = ’time’

plotxy O

Here you will see that the final scan at 22:00:00 UT is bad
Draw a box around it and flag it!

Now look at what’s left
correlation = ’RR LL’
xaxis = ’uvdist’

spw = 1’

antenna = 7’

iteration = ’antenna’

plotxy()

As you step through, you will see that Antenna 9 (ID=8) is often
bad in this spw. If you box and do Locate (or remember from
0137+331) it’s probably a bad time.

The easiest way to kill it:

antenna = ’9’
iteration = ?’
xaxis = ’time’
correlation = ’’

plotxy ()

Draw a box around all points in the last bad scans and flag ’em!
Now clean up the rest

xaxis = ’uvdist’

correlation = ’RR LL’
antenna = 7’

161

CHAPTER 3. DATA EXAMINATION AND EDITING 162

spw = 7’

You will be drawing many tiny boxes, so remember you can
use the ESC key to get rid of the most recent box if you
make a mistake.

plotxy ()

Note that the end result is we’ve flagged lots of points
in RR and LL. We will rely upon imager to ignore the
RL LR for points with RR LL flagged!

3.3.3 Plotting antenna positions using plotants

This task is a simple plotting interface (to the plotxy functionality) to produce plots of the antenna
positions (taken from the ANTENNA sub-table of the MS).

The inputs to plotants are:

plotants :: Plot the antenna distribution in the local reference frame:
vis = ’> # Name of input visibility file (MS)
figfile = 22 # Save the plotted figure to this file

3.3.4 Plotting uv-coverages plotuv

A simple way to plot uv-coverages is offered by the task plotuv:

plotuv :: Plot the baseline distribution
vis = 0 # Name of input visibility file (MS)

field = ?? # Select field using ID(s) or name(s)
antenna = i # Select data based on antenna/baseline
spw = 7 # Select spectral window/channels
observation = 0 # Select by observation ID(s)

array = 0 # Select (sub)array(s) by array ID number
maxnpts = 100000 # Maximum number of points per plot.

colors = [’r’, ’y’, ’g’, ’b’] # a list of matplotlib color codes

symb = 7,7 # A matplotlib plot symbol code

ncycles = 1 # How many times to cycle through colors per
plot.

figfile = 0 # Save the plotted figure(s) using this name

plotuv provides basic selection of data as well as plotting style options. The difference to plotms is
that plotuv is also plotting the Hermitian conjugates of the visibilities which produces the familiar
symmetric plots. This is a remedy to the restriction in plotms to allow flagging of data. This is
achieved via a unambiguous link from a displayed data point to a visibility. Plotting Hermitian
conjugates would break this rule in plotms and plotuv is used instead to plot Hermitian conjugates.

CHAPTER 3. DATA EXAMINATION AND EDITING 163

3.4 Data Flagging using flagdata

flagdata can flag measurement sets and calibration tables with an elaborate selection syntax. It
also contains auto-flagging routines.

For a full description of flagdata please visit:
http://www.aoc.nrao.edu/ rurvashi/FlaggerDocs/FlaggerDocs.html

The inputs to flagdata are:

flagdata :: All-purpose flagging task based on data-selections and flagging modes/algorithms.

vis = ?? # Name of MS file or calibration table to flag
mode = ’manual’ # Flagging mode
field = ?? # Field names or field index
numbers: ’’ ==> all, field=’072,3C286’
spw = 22 # Spectral-window/frequency/channel: ’’ ==> all, spw=’0:17719’
antenna = ?0 # Antenna/baselines: ’’ ==> all, antenna =’3,VA04’
timerange = »? # Time range: ’’ ==> all,timerange=’09:14:0709:54:0’°
correlation = e # Correlation: ’’ ==> all, correlation=’XX,YY’
scan = ?? # Scan numbers: ’’ ==> all
intent = 0 # Observation intent: ’’ ==> all, intent=’CAL*POINTx*’
array = 0 # (Sub)array numbers: ’’ ==> all
uvrange = ?? # UV range: ’’ ==> all;
wuvrange =’07100klambda’, default units=meters
observation = ?? # Observation ID: ’’ ==> all
feed = » # Multi-feed numbers: Not yet implemented
autocorr = False # Flag auto-correlations
action = ’apply’ # Action to perform in MS
and/or in inpfile (none/apply/calculate)
display = 2 # Display data and/or
end-of-MS reports at runtime (data/report/both).
flagbackup = True # Back up the state of flags before the run
savepars = False # Save the current parameters

to the FLAG_CMD table or to a file

vis can take a measurement set or calibration table. Data selection for calibration tables is limited to
field, scan, time, antenna, spw, and observation. Since calibration tables do not have a FLAG_CMD
table, parameter settings, if requested, can only be saved in external files.

The mode parameter (§3.4.2) selects the flagging algorithm and the following are available:

list = list of flagging commands to apply to MS

manual = flagging based on specific selection parameters

clip = clip data according to values

quack = remove/keep specific time range at scan beginning/end

shadow = remove antenna-shadowed data

http://www.aoc.nrao.edu/~rurvashi/FlaggerDocs/FlaggerDocs.html

CHAPTER 3. DATA EXAMINATION AND EDITING 164

elevation = remove data below/above given elevations

tfcrop = automatic identification of outliers on the time-freq plane

rflag = automatic detection of outliers based on sliding-window RMS filters
extend = extend and/or grow flags beyond what the basic algorithms detect
summary = report the amount of flagged data

unflag = unflag the specified data

Flagging will only be applied to the data selection that is performed with the usual selection
parameters (§ 2.3). The dataset is iterated-through in chunks (small pieces of data) consisting
of one field, one spw, and a user-defined timerange (default is one scan). In addition to the
typical antenna, spw, timerange, etc. selections, we would like to point out some addition of the
correlation syntax for modes clip, tfcrop, and rflag. One can combine correlation products with
simple mathematical expressions

’ABS’, ’ARG’, ’RE’, ’IM’, ’NORM’
followed by the polarization products (using an underscore in between “_”)
’ALL’, ’I’, °XX’, ’YY’, ’RR’, °LL’, ’WVR’

"W VR’ refers to the water vapour radiometer of ALMA data. Note that the operators ABS,ARG,RE,
etc. are written only once as the first value. if more than one correlation is given, the operator will
be applied to all of them. An example would be

correlation="RE_XX,XY’

which would select all real XX and XY polarization for flagging.

3.4.1 The action parameter

The keyword action controls whether the actual flagging commands will be applied or not and the
options are the empty string 7, ’apply’ and ’‘calculate’.

apply is likely the most popular one as it applies the flags to the MS:

action = ’apply’ # Action to perform in MS and/or in inpfile
(none/apply/calculate)
display = 22 # Display data and/or end-of-MS reports at runtime
(data/report/both).
flagbackup = True # Back up the state of flags before the run

flagbackup specifies if a backup of the current flags should be saved in the “* flagversions” file.
display can be 7, “data’, ‘report’, ’both’ where the empty string ” will report no individual flagging
statistics, whereas ’data’ launches an interactive GUI to display data and flags for each chunk to

CHAPTER 3. DATA EXAMINATION AND EDITING 165

browse through. The plots are time-frequency planes and both old and new flags are being overlaid
for all correlations per baseline. In the GUI, one can step though all chunks for inspection and if
the flagging is unsatisfactory, one can exit without applying the flags. If the flagging is acceptable,
it is also possible to continue flagging without viewing all chunks (the number of chunks can be
very large for typical JVLA and ALMA data sets. display="report’ lists the flagging statistics at
the end of the procedure on the screen and both starts the GUI and reports all statistics at the end.

action="calculate’ calculates the flags but does not write them to the MS or calibration table. This
is useful if one would like to inspect the computed flags in the GUI without a straight application:

action = ’calculate’ # Action to perform in MS and/or in inpfile
(none/apply/calculate)
display = »? # Display data and/or end-of-MS reports at runtime
(data/report/both).

The empty string action=" will do nothing and is useful when the commands themselves shall only
be written to the FLAG_CMD sub-table or to an external file using the savepars parameter to
specify the filename.

savepars will save the flagging commands to a file that can be later used for input in flagdata via
mode="list’. It also shares the flagcmd syntax and can be used there. The file name is specified by
outfile and, if empty, the FLAG_CMD table in the MS will be populated. A REASON can be given
by the reason keyword which may be useful for bookkeeping as well as for unflagging data that
are marked by specific REASON keywords. The overwrite parameter will control overwriting an
existing file when saving the flag commands.

3.4.2 Flagging Modes

3.4.2.1 Manual Flag/Unflag

mode = ’manual’ # Flagging mode (list/manual/clip/shadow/quack/el

evation/tfcrop/rflag/extend/unflag/summary)

field = 72 # Field names or field index numbers: ’’ ==> all,
field=’072,3C286°

spw = 7 # Spectral-window/frequency/channel: ’’ ==> all,
spw=’0:17719°

antenna = e # Antenna/baselines: ’’ ==> all, antenna
=’3,VA04’

timerange = 2 # Time range: ’’ ==
all,timerange=’09:14:0709:54:0’

correlation = 0 # Correlation: ’’ ==> all, correlation="XX,YY’

scan = ?? # Scan numbers: ’’ ==> all

intent = ?2 # Observation intent: ’’ ==> all,
intent=’CAL*POINTx*’

array = 0 # (Sub)array numbers: ’’ ==> all

uvrange = ?? # UV range: ’’ ==> all; uvrange =’07100klambda’,
default units=meters

CHAPTER 3. DATA EXAMINATION AND EDITING 166

observation = ?? # Observation ID: ’’ ==> all
feed = ? # Multi-feed numbers: Not yet implemented
autocorr = False # Flag auto-correlations

The 'manual’ mode is the most straight-forward of all modes. All visibilities that are selected by the
various data selection parameters will be flagged or unflagged, depending on the action parameter.
autocorr is a shorthand for antenna="*€9€9€4’ to flag all auto correlations in the data.

3.4.2.2 List
mode = ’list’ # Flagging mode (list/manual/clip/shadow/quack/el
evation/tfcrop/rflag/extend/unflag/summary)
inpfile = ?? # Input ASCII file, list of
files or Python list of strings with
flag commands.
reason = ’any’ # Select by REASON types

A list of flag commands can be provided through a file or a list of files, specified by the inpfile
parameter. Each input line may contain a flagging mode with data selection parameters as well as
parameters that are specific to that mode. All parameters that are not set will be reset to their
default values (default mode is 'manual’). Each line of this file or list of strings will be taken
as a command to the flagdata task. This mode="list’ is similar to the task flagcmd with the
mpmode="list’ option.

An example for such a file would be:

mode=’shadow’

mode=’clip’ clipminmax=[0,5] correlation=’ABS_ALL’
mode=’quack’ quackmode=’end’ quackinterval=1.0
antenna=’eall1’ timerange=’00:00:00701:00:00’
antenna=’eall’ timerange=’00:00:00703:00:00’ spw=’074’

Alternatively, this can be issued in the task directly like:

flagdata(vis=’vis’,mode=’1list’,

inpfile=["mode=’shadow’",
"mode=’clip’ clipminmax=[0,5] correlation=’ABS_ALL’",
"mode=’quack’ quackmode=’end’ quackinterval=1.0""’
"antenna=’eall1’ timerange=’00:00:00701:00:00"",
"antenna=’eall’ timerange=’00:00:00703:00:00’ spw=’0"4’"])

or via a variable

CHAPTER 3. DATA EXAMINATION AND EDITING 167

cmds=["mode=’shadow’,
"mode=’clip’ clipminmax=[0,5] correlation=’ABS_ALL’",
"mode=’quack’ quackmode=’end’ quackinterval=1.0",
"antenna=’eall1’ timerange=’00:00:00701:00:00"",
"antenna=’eall’ timerange=’00:00:00703:00:00’ spw=’0"4’"]

flagdata(vis=’vis’,mode=’1list’, inpfile=cmds)

The syntax needs to be written with quotes e.g. mode="manual’ antenna=’ea10’. There should be
no space between key=value. Spaces are used to separate pairs of parameters, not commas.

3.4.2.3 Clip
mode = ’clip’ # Flagging mode (list/manual/clip/shadow/quack/
elevation/tfcrop/rflag/extend/unflag/summary)
datacolumn = ’DATA’ # Data column on which to operate
(data,corrected,model,residual)
clipminmax = (] # Range to use for clipping
clipoutside = True # Clip outside the range, or within it
channelavg = False # Average over channels (scalar average)
timeavg = False # Average over time ranges
timebin = 7 # Bin width for time averaging.
clipzeros = False # Clip zero-value data

in addition to the regular selection parameters, mode="clip’ also has an option to select between
a number of scratch columns in datacolumn. This includes the usual DATA, CORRECTED, etc.,
and also clipping based on data weights WEIGHT, WEIGHT_SPECTRUM as well as other MS
columns. clipminmaz selects the range of values to be clipped — usually this is combined with
clipoutside=True to clip everything but the values covered in clipminmaz. The data can also be
averaged over the selected spw channel ranges by setting channelavg=True, or time averages via
timeavg="True and setting of timebin. clip will also flag 'NaN’, ’'inf’, and ’-inf’ values by default
and can flag exact zero values (these are sometimes produced by the JVLA correlator) using the
clipzeros parameter.

Note : For modes clip, tfcrop and rflag, channel-ranges can be excluded from flagging by selecting
ranges such as spw="0:05;1063". This is a way to protect known spectral-lines from being flagged
by the autoflag algorithms.

3.4.2.4 Shadow

mode ’shadow’ # Flagging mode (list/manual/clip/shadow/quack/

elevation/tfcrop/rflag/extend/unflag/summary)

tolerance = 0.0 # Amount of shadow allowed (in meters)

CHAPTER 3. DATA EXAMINATION AND EDITING 168

addantenna = e # File name or dictionary with additional antenna names,
positions and diameters

This option flags shadowed antennas, i.e. when one antenna blocks part of the aperture of a second
antenna that is behind the first one. Shadowing can be gradual and the criterion for a shadow flag
is when a baseline is shorter than radius; + radiuss — tolerance (where the radii of the antennae
are taken from the MS antenna subtable); see Fig. addantenna may be used to account for
shadowing when antennas are not listed in the MS but are physically present. Please read the
flagdata inline help for the syntax of this option.

X

Figure 3.9: This figure shows the geometry used to compute shadowed antennas.

3.4.2.5 Quack

mode = ’quack’ # Flagging mode (list/manual/clip/shadow/quack/
elevation/tfcrop/rflag/extend/unflag/summary)
quackinterval = 0.0 # Quack n seconds from scan beginning or end
quackmode = ’beg’ # flag an interval at the beginning of scan
’endb’ # flag an interval at the end of scan
’tail’ # flag all but an interval at the beginning of
scan
’end’ # flag all but an interval at end of scan
quackincrement = False # Flag incrementally in time?

quack is used to remove data at scan boundaries. quackinterval specifies the time in seconds to
be flagged, and quackmode can be ’beg’ to flag the quackinterval at the beginning of each selected
scan, ’endb’ at the end of scan. ’tail’ flags all but the beginning of scan and ’end’ all but the end of
scan. The quackincrement is either True or False, depending if one wishes to flag the quackinterval
from the first unflagged data in the scan, or from the scan boundaries independent of data being
already flagged or not.

CHAPTER 3. DATA EXAMINATION AND EDITING 169

Visual representation of quack mode when flagging a scan
with 1s duration. The following diagram shows what is flagged
for each quack mode when quackinterval is set to 0.25s.

The flagged part is represented by crosses (+++++++++)

scan with 1s duration

beg
B a2 e ittt
endb
————————————————————————————————— +++++++++++
tail
——————————— B o I o e o B B
end

B B ettt

3.4.2.6 Elevation

mode = ’elevation’ # Flagging mode (list/manual/clip/shadow/quack/
elevation/tfcrop/rflag/extend/unflag/summary)
lowerlimit = 0.0 # Lower limiting elevation (in degrees)
upperlimit = 90.0 # Upper limiting elevation (in degrees)

Flagging based on the elevation of the antennae. This may be useful to avoid data taken at very
low elevations or close to transit and the lowerlimit and upperlimit parameters specify the range of
good elevations.

3.4.2.7 Tfcrop

mode = ’tfcrop’ # Flagging mode (list/manual/clip/shadow/quack/

elevation/tfcrop/rflag/extend/unflag/summary
)

ntime = ’scan’ # Time-range to use for each chunk (in seconds
or minutes)

combinescans = False # Accumulate data across scans.

datacolumn = ’DATA’ # Data column on which to operate
(data,corrected,model,residual)

timecutoff = 4.0 # Flagging thresholds in units of deviation
from the fit

freqcutoff = 3.0 # Flagging thresholds in units of deviation
from the fit

timefit = ’line’ # Fitting function for the time direction

CHAPTER 3. DATA EXAMINATION AND EDITING 170

(poly/line)
freqfit = ’poly’ # Fitting function for the frequency direction
(poly/line)
maxnpieces = 7 # Number of pieces in the polynomial-fits (for
’freqfit’ or ’timefit’ = ’poly’)
flagdimension = ’freqtime’ # Dimensions along which to calculate fits
(freq/time/freqtime/timefreq)
usewindowstats = ’none’ # Calculate additional flags using sliding
window statistics (none,sum,std,both)
halfwin = 1 # Half-width of sliding window to use with
’usewindowstats’ (1,2,3).
extendflags = True # Extend flags along time,
frequency and correlation.
channelavg = False # Pre-average data across channels before
analyzing visibilities for flagging.
chanbin = False # Bin width for channel average in
number of input channels.
timeavg = False # Pre-average data across time before
analyzing visibilities for flagging
timebin = False # Bin width for time average in seconds

TFCrop is an autoflag algorithm that detects outliers on the 2D time-frequency plane, and can oper-
ate on un-calibrated data (non bandpass-corrected). The original implementation of this algorithm
is described in NCRA Technical Report 202 (Oct 2003).

The algorithm iterates through the data in chunks of time. For each chunk, the result of user-
specified visibility-expressions are organized as 2D time-frequency planes, one for each baseline and
correlation-expression result, and the following steps are performed.

As of CASA 4.6 the data can also be pre-averaged over the selected spw channel ranges by setting
channelavg=True and chanbin to the desired bin (in number of channels), or time averaged over the
selected time ranges by setting timeavg="True and timebin to the desired time range (in seconds).
This averaging is independent from the tfcrop time/channel average, and allows to specify custom
time/channel average bins, instead of averaging all data across time and/or channel direction.

1. Calculate a bandshape template : Average the data across time, to construct an average
bandpass. Construct an estimate of a clean bandpass (without RFI) via a robust piece-wise
polynomial fit to the average bandpass shape.

Note : A robust fit is computed in up to 5 iterations. It begins with a straight line fit
across the full range, and gradually increases to 'maxnpieces’ number of pieces with third-
order polynomials in each piece. At each iteration, the stddev between the data and the fit
is computed, values beyond N-stddev are flagged, and the fit and stddev are re-calculated
with the remaining points. This stddev calculation is adaptive, and converges to a value that
reflects only the data and no RFI. At each iteration, the same relative threshold is applied to
detect flags, and this results in a varying set of flagging thresholds, that allows deep flagging
only when the fit represents the true data best. Iterations stop when the stddev changes by
less than 10%, or when 5 iterations are completed.

CHAPTER 3. DATA EXAMINATION AND EDITING 171

The resulting clean bandpass is a fit across the base of RFI spikes.

2. Divide out this clean bandpass function from all timesteps in the current chunk. Now, any
data points that deviate from a mean of 1 can be considered RFI. This step helps to separate
narrow-band RFI spikes from a smooth but varying bandpass, in situations where a simple
range-based clipping will flag good sections of the bandpass.

3. Perform iterative flagging (robust flagging) of points deviating from a value of 1.

Flagging is done in up to 5 iterations. In each iteration, for every timestep, calculate the
stddev of the bandpass-flattened data, flag all points further than N times stddev from the
fit, and recalculate the stddev. At each iteration, the same relative threshold is applied to
detect flags. Optionally, use sliding-window based statistics to calculate additional flags.

4. Repeat steps 1 and 3, but in the other direction (i.e. average the data across frequency, calcu-
late a piece-wise polynomial fit to the average time-series, and find flags based on deviations
w.r.to this fit.)

The default parameters of the tfcrop implementation are optimized for strong narrow-band RFI
(see, e.g. Fig.. With broad-band RFI, the piece-wise polynomial can sometimes model it as
part of the band-shape, and therefore not detect it as RFI. In this case, reducing the maximum
number of pieces in the polynomial can help. This algorithm usually has trouble with noisy RFI
that is also extended in time of frequency, and additional statistics-based flagging is recommended
(via the 'usewindowstats’ parameter). It is often required to set up parameters separately for each
spectral-window.

If frequency ranges of known astronomical spectral lines are known a-priori , they can be pro-
tected from automatic flagging by de-selecting those frequency-ranges via the ’spw’ data-selection
parameter.

The eztendflag parameter will clean up small portions of data between flagged data points along
time and/or frequency when more than 50% of all timeranges or 80% of all channels are already
flagged. It will also extend the flags to the other polarizations. Alternatively, mode="extend’ can

be used (Fig.|3.12)).

3.4.2.8 Rflag

mode ‘rflag’ # Flagging mode (list/manual/clip/shadow/quack/
elevation/tfcrop/rflag/extend/unflag/summary

)

H #*

ntime = ’scan’ Time-range to use for each chunk (in seconds
or minutes)

Accumulate data across scans.

Data column on which to operate
(data,corrected,model,residual)

Number of timesteps in the sliding time

False
’DATA’

combinescans
datacolumn

H O H O H H

winsize = 3

CHAPTER 3. DATA EXAMINATION AND EDITING 172

(1) 3¢286 A [scan30]
spw9] ea0T&seall (RR)

@

lag:4.5% (pre lag:0.0%)

Figure 3.10: This screenshot represents a run where ’tfcrop’ was run on a spw='9" with mainly
narrow-band RFI. RIGHT : An example of protecting a spectral line (in this case, demonstrated
on an RFI spike) by setting the spw-selection to spw='0:0 45;53 63’. In both figures, the top row
indicates the data before flagging, and the bottom row after flagging.

window [aips:fparm(1)]
timedev = 7 # Time-series noise estimate [aips:noise]
freqdev 0 # Spectral noise estimate [aips:scutoff]
timedevscale 5.0 # Threshold scaling for timedev [aips:fparm(9)]
freqdevscale = 5.0 # Threshold scaling for freqdev
[aips:fparm(10)]
spectralmax = 1000000.0 # Flag whole spectrum if freqdev is greater
than spectralmax [aips:fparm(6)]
spectralmin = 0.0 # Flag whole spectrum if freqdev is less than
spectralmin [aips:fparm(5)]
extendflags = True # Extend flags along time, frequency and correlation.
channelavg = False # Pre-average data across channels before
analyzing visibilities for flagging.
chanbin = False # Bin width for channel average in
number of input channels.
timeavg = False # Pre-average data across time before
analyzing visibilities for flagging
timebin = False # Bin width for time average in seconds

RFlag is an autoflag algorithm based on a sliding window statistical filter. The RFlag algorithm
was originally developed by Eric Greisen in AIPS (31DEC11). AIPS documentation : Subsection
E.5 of the AIPS cookbook (Appendix E : Special Considerations for JVLA data calibration and
imaging in AIPSED

3http://www.aips.nrao.edu/cook. html#CEE

http://www.aips.nrao.edu/cook.html#CEE

CHAPTER 3. DATA EXAMINATION AND EDITING 173

In RFlag, the data is iterated-through in chunks of time, statistics are accumulated across time-
chunks, thresholds are calculated at the end, and applied during a second pass through the dataset.

The CASA implementation also optionally allows a single-pass operation where statistics and
thresholds are computed and also used for flagging, within each time-chunk (defined by ’'ntime’
and 'combinescans’).

For each chunk, calculate local statistics, and apply flags based on user supplied (or auto-calculated)
thresholds.

As of CASA 4.6 the data can also be pre-averaged over the selected spw channel ranges by setting
channelavg="True and chanbin to the desired bin (in number of channels), or time averaged over the
selected time ranges by setting timeavg="True and timebin to the desired time range (in seconds).
This averaging is independent from the rflag time/channel sliding window, as it performs not only
an average but also a binning operation (so there is no data overlap between adjacent bins), and
allows to specify independent time/channel bins.

1. Time analysis (for each channel)

(a) Calculate local rms of real and imag visibilities, within a sliding time window

(b) Calculate the median rms across time windows, deviations of local rms from this median,
and the median deviation

(c) Flag if local rms is larger than timedevscale x (medianRMS + medianDev)
2. Spectral analysis (for each time)

(a) Calculate avg of real and imag visibilities and their rms across channels
(b) Calculate the deviation of each channel from this avg, and the median-deviation

(c) Flag if deviation is larger than freqdevscale x medianDev

The extendflag parameter will clean up small portions of data between flagged data points along
time and/or frequency when more than 50% of all timeranges or 80% of all channels are already
flagged. It will also extend the flags to the other polarizations. Alternatively, mode=’extend’ can
be used.

Some examples (also see Fig.[3.11]):

1. Calculate thresholds automatically per scan, and use them to find flags. Specify scale-factor
for time-analysis thresholds, use default for frequency.

flagdata(’my.ms’, mode=’rflag’,spw=’9’,timedevscale=4.0,writeflags=True)
2. Supply noise-estimates to be used with default scale-factors.

flagdata(vis=’my.ms’, mode=’rflag’, spw=’9’, timedev=0.1, freqdev=0.5, writeflags=True);

CHAPTER 3. DATA EXAMINATION AND EDITING 174

Two-passes. This replicates the usage pattern in AIPS.

e The first pass saves commands in an output text files, with auto-calculated thresholds.
Thresholds are returned from rflag only when writeflags=False (calc-only mode). The
user can edit this file before doing the second pass, but the python-dictionary structure
must be preserved.

e The second pass applies these commands (writeflags=True).
flagdata(vis=’my.ms’, mode=’rflag’, spw=’9,10’,

flagdata(vis=’my.ms’, mode=’rflag’, spw=’9,10’,
timedev=’tdevfile.txt’, freqdev="fdevfile.txt’, writeflags=True);

(1) 3C286_A [scan:30]
[spw:9] ea0l&&eall (RR)

100

80

60

Time

40

20

flag:8.4% (pre-flag:0.0%)
100

80

60

Time

40

20

Frequency

Figure 3.11: Example of rflag on narrow-band RFI

3.4.2.9 Extend

mode

= ’extend’ # Flagging mode (list/manual/clip/shadow/quack/el

evation/tfcrop/rflag/extend/unflag/summary)

field = 0 # Field names or field index numbers: ’’ ==> all,
field=’072,3C286’

spw = 0 # Spectral-window/frequency/channel: ’’ ==> all,
spw=’0:17719°

antenna = e # Antenna/baselines: ’’ ==> all, antenna
=’3,VA04’

timerange = 7 # Time range: ’’ ==>
all,timerange=’09:14:0709:54:0’

correlation = R # Correlation: ’’ ==> all, correlation=’XX,YY’

scan = 2 # Scan numbers: ’’ ==> all

CHAPTER 3. DATA EXAMINATION AND EDITING 175

intent = ?2 # Observation intent: ’’ ==> all,
intent=’CAL*POINT*’

array = 0 # (Sub)array numbers: ’’ ==> all

uvrange = ?? # UV range: ’’ ==> all; uvrange =’07100klambda’,
default units=meters

observation = ?? # Observation ID: ’’ ==> all

feed = » # Multi-feed numbers: Not yet implemented

ntime = ’scan’ # Time-range to use for each chunk (in seconds or
minutes)

combinescans = False # Accumulate data across scans.

extendpols = True # If any correlation is flagged, flag all
correlations

growtime = 50.0 # Flag all ’ntime’ integrations if more than XY
of the timerange is flagged (0-100)

growfreq = 50.0 # Flag all selected channels if more than X% of
the frequency range is flagged(0-100)

growaround = False # Flag data based on surrounding flags

flagneartime = False # Flag one timestep before and after a flagged
one (True/False)

flagnearfreq = False # Flag one channel before and after a flagged one
(True/False)

Although the modes tfcrop and rflag already have extendflag parameters, some autoflagging algo-
rithms may still leave small islands of unflagged data behind, data that are surrounded by flagged
visibilities in the time-frequency space. Although the algorithm may deem these visibilities as good
ones, they are frequently affected by low-level RFI that spills from the adjacent, flagged points and
one may wish to clean those up.

ntime specifies the time ranges over which to clean up, e.g. ’1.5min’ or ’scan’ which checks on all
data within a scan. To span time ranges larger than scans, one can set combinescans to True.

extendpols=True would extend all flags to all polarization products when at least one of them is
flagged.

growtime flags the entire time range for a flagged channel, when a certain fraction of flagged time
intervals is exceeded.

growfreq is similar but extends the flags in frequency when a given fraction of channels is already
flagged.

growaround checks for flagged data points in the time-frequency domain that neighbor a datum.
The threshold is four data points. If more surrounding points are flagged, the central datum will
be flagged, too.

flagneartime flags adjacent data points along the time axis, around a flagged datum

flagnearfreq flags neighboring channels.

For an example, see Fig.[3.12]

CHAPTER 3. DATA EXAMINATION AND EDITING 176

(1) 3C286_A [scan:30]
[spw:9] eaOl&&eall (RR)

(1) 3C286_A [scan:30]
[spw:9] ea0l&&eall (LL)

100

80

60

Time

40

20

flag:9.0% (pre-flag:5.9%)

100

80

60

Time

40

20

0

T T T
0 10 20 30 40 50 60 70O

[T T
0 10 20 30 40 50 60 70

flag:9.0% (pre-flag:0.0%)

RAaasnazarnaieseansnunsnnsannsnaniat
0 10 20 30 40 S0 60 70
Frequency

[T
0 10 20 30 40 50 60 70
Frequency

Figure 3.12: This screenshot represents a run where ’tfcrop’ was run only on "ABS_RR’ (top row)
and followed by an extension along time and correlations (bottom row).

3.4.2.10

mode

field

spw
antenna

timerange
correlation
scan

intent

feed

array

uvrange

observation

Unflag

’unflag’

H O H H H HFHHHHHEHHHHHEHHER

The selection data will be unflagged.

Flagging mode (list/manual/clip/shadow/quack/
elevation/tfcrop/rflag/extend/unflag/summary
)

Field names or field index numbers:
field=’072,3C286’

spectral-window/frequency/channel

antenna/baselines: ’’==>all, antenna
=’3,VA04°

time range:
’?==>all,timerange=’09:14:0709:54:0’

Select data based on correlation

scan numbers: ’’==>all

Select data based on observation intent:
?2==>all

multi-feed numbers: Not yet implemented
(sub)array numbers: ’’==>all

uv range: ’’==>all; uvrange =’07100klambda’,
default units=meters

Select data based on observation ID:

==>all,

1r==>all

CHAPTER 3. DATA EXAMINATION AND EDITING 177

3.4.2.11 Summary

mode = ’summary’ # Flagging mode (list/manual/clip/shadow/quack/

elevation/tfcrop/rflag/extend/unflag/summary
)

minrel = 0.0 # minimum number of flags (relative)

maxrel = 1.0 # maximum number of flags (relative)

minabs = 0 # minimum number of flags (absolute)

maxabs = -1 # maximum number of flags (absolute). Use a
negative value to indicate infinity.

spwchan = False # Print summary of channels per spw

spwcorr = False # Print summary of correlation per spw

basecnt = False # Print summary counts per baseline

This mode reports the number of rows and data points that are flagged. The selection of reported
points can be restricted (see inline help for details).

mode="summary’ can also report back a dictionary if the task is run as
s = flagdata(..., mode=’summary’)

with a variable assigned, here ’s’.

3.5 Command-based flagging using flagcmd

The task flagemd will flag the visibility data set or calibration table based on a specified set of
flagging commands using a flagging syntax (see § [3.5.3). These commands can be input from the
FLAG_CMD MS table, from a Flag.zml SDM table, from an ascii file, or from input python strings.
Facilities for manipulation, listing, or plotting of these flags are also provided.

The inputs to flagemd are:

flagemd :: Flagging task based on batches of flag-commands
vis = 7 # Name of MS file or calibration table to flag

inpmode = ’table’ # Input mode for flag commands(table/list/xml)
inpfile = ?? # Source of flag commands
tablerows = [] # Rows of inpfile to read
reason = ’any’ # Select by REASON types
useapplied = False # Select commands whose rows
have APPLIED column set to True
action = ’apply’ # Action to perform in MS and/or in inpfile
(apply/unapply/list/plot/clear/extract)
flagbackup = True # Automatically backup the
FLAG column before execution

savepars = False # Save flag commands to the MS or to a file

CHAPTER 3. DATA EXAMINATION AND EDITING 178

The default input mode is inpmode="table’ which directs the task to input flag commands from the
FLAG_CMD internal MS table. See § [3.5.1] for more options.

The default operation mode is action="apply’ directing the task to apply relevant flagging com-
mands to the MS data main table. See § for more options.

See § for a description of the flagging command syntax.

It is possible to flag calibration tables using flagcmd, although we recommend using the flagdata
task for this.

When using flagemd to flag calibration tables, only the apply and list actions are supported.
Because calibration tables do not have a FLAG_CMD sub-table, the default inpmode="table’ can
only be used if an MS is given in the inpfile parameter so that flags from the MS are applied to
the calibration table directly. Otherwise, the flag commands must be given using inpmode="list’,
either from a file or from a list of strings.

3.5.1 Input modes inpmode

The inpmode parameter selects options for the input mode for the flagging commands.

Available inpmode options are:

e ’table’ — input from MS table (§[3.5.1.1))
e ’list’— input from ASCII file or from a list of strings (§/3.5.1.2))

e ‘rml’— input from XML table (§3.5.1.3)

3.5.1.1 Input mode ’table’

The default input mode is inpmode="table’ which directs the task to input flag commands from a
FLAG_CMD MS table. This has the sub-parameters:

inpmode = ’table’ # Input mode for flag commands(table/list/xml)
inpfile = ?? # Source of flag commands
tablerows = [] # Rows of inpfile to read
reason = ’any’ # Select by REASON types
useapplied = False # Select commands whose rows
have APPLIED column set to
True

If inpfile = ” then it will look for the FLAG_CMD table in the MS given by wvis. You can use this
sub-parameter to direct the task to look directly at another table.

The tablerows sub-parameter is a simple Python list of the row numbers of the table to consider in
processing flags. The default is all rows.

CHAPTER 3. DATA EXAMINATION AND EDITING 179

The useapplied sub-parameter toggles whether only flag commands marked as not having been
applied are considered (the default), or to allow (re)processing using all commands.

The reason sub-parameter selects the REASON type to process. The default ’any’ means all
commands, note that reason=" would only select flags who have a blank REASON column entry.

One use case is to read the flag commands from the FLAG_CMD of an MS and apply them to a
calibration table given in the parameter vis. Example:

flagemd (vis=’cal-X54.B1’, inpmode=’table’,
inpfile=’uid___A002_X2a5c2f_X54.ms’, action=’apply’)

3.5.1.2 Input flag mode ’list’

This mode allows one to insert a list of strings with flagging commands, the name of a file or a
list of filenames that contains these commands equivalent to the mode="list’ in flagdata (§3.4.2.2)).
E.g. a file flags.txt that contains

scan="173’ mode=’manual’

mode=’clip’ clipminmax=[0,2] correlation=’ABS_XX’ clipoutside=False
spw=’9’ mode=’tfcrop’ correlation=’ABS_YY’ ntime=51.0

mode=’extend’ extendpols=True

can be called via
flagemd (vis,inpmode=’1ist’,inpfile=’flags.txt’)
Alternatively, the individual flagging commands can be directly provided in the call itself like

inpfile=["scan=’1"3’ mode=’manual’",
"mode=’clip’ clipminmax=[0,2] correlation=’ABS_XX’ clipoutside=False",
"spw=’9’ mode=’tfcrop’ correlation=’ABS_YY’ ntime=51.0",
"mode=’extend’ extendpols=True"]

3.5.1.3 Input flag mode ‘zml’

The input mode inpmode="rml’ directs the task to input flag commands from a XML SDM online
flagging Flag.xml file. When set this opens the sub-parameters:

inpmode = ’xml’ # Input mode for flag commands(table/list/xml)
tbuff = 0.0 # Time buffer (sec) to pad flags
ants = » # Allowed flag antenna names to select by
reason = ’any’ # Select by REASON types

CHAPTER 3. DATA EXAMINATION AND EDITING 180

This mode will look for a file called Flag.zml inside the MS directory specified under vis. Note that
if the data was filled from the SDM using importevla (§ [2.2.2)) then the relevant XML file will
have been copied to the MS already.

The tbuff sub-parameter sets a padding buffer (in seconds) to the begin and end times of the online
flags in the XML file. As in importevla, the online flag time buffer tbuff is specified in seconds,
but in fact should be keyed to the intrinsic online integration time to allow for events (like slewing)
that occur within an integration period. This is particularly true for JVLA data, where a tbuff
value of 0.5x to 1.5x the integration time is needed. For example, if data were taken with 1-second
integrations, then at least tbuff=0.5 should be used, likewise tbuff=5 for 10-second integrations.
Note: For JVLA data you should use 1.5x (e.g. thuff=15 for 10-second integrations) for data
taken in early 2011 or before due to a timing error. We do not yet know what ALMA data will
need for padding (if any).

The ants sub-parameter selects the antennas from which online flags will be selected (default is all
antennas). For example, ants=’ea01’is a valid choice for JVLA data.

The reason sub-parameter selects by the REASON field in the Flag.xzml file. The default ’any’
means all commands. Note that reason=" would only select flags who have a blank REASON field
entry.

3.5.2 Operation types action

The action selects options for operating on the selected flags and possibly the data.

Available action options are:
e ’apply’ — apply flag commands to data (§[3.5.2.1)
e ‘unapply’ — unapply flags in data (§|3.5.2.2)
e ’list’ — list and/or save flag commands (§[3.5.2.3)

e ’plot’ — plot flag commands (§[3.5.2.4)
e ’clear’ — clear rows from FLAG_CMD table (§|3.5.2.5))

e ’extract’ — extract internal flag dictionary (§[3.5.2.6]

3.5.2.1 Apply flags — optype option ’apply’

The default operation mode is action="apply’ directing the task to apply relevant flagging com-
mands to the vis data main table.

action = ’apply’ # Action to perform in MS and/or in inpfile
(apply/unapply/list/plot/clear/extract)
flagbackup = True # Automatically backup the
FLAG column before execution

CHAPTER 3. DATA EXAMINATION AND EDITING 181

The flagbackup toggle sets whether a new copy of the MS main table FLAG column is written to
the .flagversions backup directory for that MS before the requested flagging operation.

3.5.2.2 Unapply flags — action option ‘unapply’

The unapply option allows unflagging of data based on the selected flag commands. This choice
opens the sub-parameters:

action = ’unapply’ # Action to perform in MS and/or in inpfile
(apply/unapply/list/plot/clear/extract)
flagbackup = True # Automatically backup the
FLAG column before execution

As in action="apply’, it is possible to make a backup to the * flagversions file by using flag-
backup="True.

In order to guarantee that only the data selected in the command is unapplied, the framework will
first unapply the selected rows and then re-apply the overlapping data that got unapplied in the
first pass. This is a true unapply action, but it will take longer to process because it will re-apply
all the remaining commands that have APPLIED = True!

3.5.2.3 List flags — action="list’

The ’list’ option will give a listing of the flagging commands. This choice opens the sub-parameters:

action = ’list’ # Action to perform in MS and/or in inpfile
(apply/unapply/list/plot/clear/extract)
savepars = True # Save flag commands to the MS or to a file
outfile = 7 # Name of output file to save commands

This action lists the commands on the screen without applying them. One can save the flagging
script to an file specified in the outfile parameter when savepars=True. If outfile is empty, it will
save the commands to the MS given in wvis.

The format of the listing output depends on the source of the flagging commands. A set of flag-
ging commands specified through inpmode="list’ will be listed directly. The flagging commands
extracted through inpmode="table’ will reflect the columns in the table:

’Row’, ’Timerange’, ’Reason’, ’Type’, ’Applied’, ’Lev’, ’Sev’, ’Command’
while commands from inpmode="xml’ will be shown with the SDM XML table fields:

’Key’, ’FlagID’, ’Antenna’, ’Reason’, ’Timerange’

CHAPTER 3. DATA EXAMINATION AND EDITING 182

3.5.2.4 Plot flags — action="plot’

The ’plot’ option will produce a graphical plot of flags of time versus antenna. This choice opens
the sub-parameters:

action = ’plot’ # Action to perform in MS and/or in inpfile
(apply/unapply/list/plot/clear/extract)
plotfile = » # Name of output file to save plot

This is only useful for online flags or general flag commands that are specified by antenna plus
timerange using the standard REASON codes that are known SDM Flag.zml enumerations.

If the plotfile sub-parameter is non-blank, then a plotfile will be made with that name instead of
appearing in a matplotlib plotter window on the users workstation. There are additional parameters
that control the shape of the output file, such as dimensions, and resolution.

ALERT: The plotted enumerations are currently only those known to be allowed JVLA online
flags as of 15 April 2011, and include:

’FOCUS’, °’SUBREFLECTOR’, ’OFF SOURCE’, ’NOT IN SUBARRAY’

with all others being plotted as ’Other’.

3.5.2.5 Clear flags — action="clear’

The ’clear’ action will delete selected rows from the FLAG_CMD MS table. This choice opens the
sub-parameters:

action = ’clear’ # Action to perform in MS and/or in inpfile
(apply/unapply/list/plot/clear/extract)
clearall = False # Delete all rows from FLAG_CMD
rowlist =] # FLAG_CMD rows to clear

The rowlist sub-parameter is a simple Python list of the row numbers of the table to consider in
processing flags. The default is a blank list which indicates the desire to clear all rows.

In either case, if clearall=False then nothing will happen by default as a safeguard. If clearall="True,
then a blank list will direct the deletion of the selected rows from the table.

ALERT: Use this option with care. You can easily mess up the FLAG_CMD table.

3.5.2.6 Extract Flag Commands— action="extract’
The ’extract’ option will return the internal flagging dictionary to python:

action = ’extract’ # Action to perform in MS and/or in inpfile
(apply/unapply/list/plot/clear/extract)

CHAPTER 3. DATA EXAMINATION AND EDITING 183

The value can be returned to a variable like:

myflagd = flagcmd(vis=msfile,useapplied=True,action=’extract’)

3.5.3 Flagging command syntax

A flagging command syntax has been devised to populate the COMMAND column of the FLAG_-CMD
table and to direct the operation of the flagcmd task.

The syntax is similar to flagdata, so please check help flagdata for more info.
You can also use help flagemd inside casapy for this syntax guide also.

Commands are a string (which may contain internal ”strings”) consisting of KEY=VALUE pairs
separated by whitespace (see examples below).

NOTE: There should be no whitespace between KEY=VALUE or within each KEY or VALUE,

since the simple parser first breaks command lines on whitespace, then on ”7=".

Each key should only appear once on a given command line/string
There is an implicit ”mode” for each command, with the default being ‘manual’ if not given.

Comment lines can start with '#’ and will be ignored.

1. Data selection parameters (used by all flagging modes, see also §

timerange=""’
antenna=’"’
SPW= 10
correlation="’"’
field=’"
scan=’"
feed=""’
array=’"’
uvrange=’"’
intent=’"’
observation=’"

Note: a command consisting only of selection key-value pairs is a basic "manual” operation,
i.e. flag the data meeting the selection

2. Modes specific parameters with default values (for further details, refer to the task flagdata,
§B12).
(a) Mode manual

autocorr=False

(b) Mode clip

CHAPTER 3. DATA EXAMINATION AND EDITING

(¢) Mode manual

(d) Mode shadow

(e) Mode quack

(f) Mode elevation

(g) Mode tfcrop

(h) Mode eztend

(i) Mode rflag

datacolumn=’DATA’
clipminmax=[]
clipoutside=True
channelavg=False
clipzeros=False
timeavg=False
timebin=""’

tolerance=0.0
addantenna=’"’

quackinterval=0.0
quackmode=’"beg’
quackincrement=False

lowerlimit=0.0
upperlimit=90.0

ntime=’scan’
combinescans=False
datacolumn=’DATA’
timecutoff=4.0
freqcutoff=3.0
timefit=’1line’
freqfit=’poly’
maxnpieces=7
flagdimension=’freqtime’
usewindowstats=’none’
halfwin=1

ntime=’scan’
combinescans=False
extendpols=True
growtime=50.0
growfreq=50.0
growaround=False
flagneartime=False
flagnearfreq=False

ntime=’scan’
combinescans=False
datacolumn=’DATA’

184

CHAPTER 3. DATA EXAMINATION AND EDITING 185

winsize=3

timedev=""

freqdev=""
timedevscale=5.0
freqdevscale=5.0
spectralmax=1000000.0
spectralmin=0.0

(j) Mode unflag

3. Basic elaboration options for online and interface use

id="> # flag ID tag (not necessary)
reason=’"’ # reason string for flag
flagtime=’"’ # a timestamp for when this flag was generated (for

user history use)

NOTE: there is no flagtime column in FLAG_CMD at this time, but we will propose to add
this as an optional column

NOTE: These are currently ignored and not used

4. Extended elaboration options for online and interface use Note: these are FLAG_CMD
columns, but their use is not clear but included here for compatibility and future expan-

sion
level=N # flagging "level" for flags with same reason
severity=N # Severity code for the flag, on a scale of 0-10 in order

of increasing severity; user specified

3.6 Browse the Data

The browsetable task is available for viewing data directly (and handles all CASA tables, including
Measurement Sets, calibration tables, and images). This task brings up the CASA Qt casabrowser,
which is a separate program. You can launch this from outside casapy.

The default inputs are:

browsetable :: Browse a table (MS, calibration table, image)

tablename = >? # Name of input table
Currently, its single input is the tablename, so an example would be:

browsetable(’ngc5921.ms’)

CHAPTER 3. DATA EXAMINATION AND EDITING 186

hd Table Browser EE »

File Edit View Tools Export Help

WX 20 @@ T H %
e X
E uvw | FLAG |'LAG_CATEGDR'| WEIGHT | SIGMA ANTENMNAL ANTENNAZ ARRAY_ID | DATLS
% 0 |[0,00 [2,63] Boolean [0, 0, 0] Boolean [23814,23814] [[0.0514344,0.... 1 1 0 0o L
T 1_ [0, 0, 0] [2, 63] Boolean [0, 0, 0] Boolean |[23814,23814] | [0.0514344,0.... 27 27 0 0

Té 2_ [0,0,0] [2, 63] Boolean ([0, 0, 0] Boolean [23814,23814] [0.0514344,0... 7 7 0 0

% 3_[0,0, 0] [2,63] Boolean [0, 0, 0] Boolean |[23814,23814] |[0.0514344,0.... 2 2 0 0

B || f—

i 4 [0,0,0 [2,63] Boolean |[0, 0, 0] Boolean |[23814,23814] [0.0514344,0... 11 11 0 1]

s 5_[0,0, 0] [2, 63] Boolean [0, 0, 0] Boolean |[23814,23814] |[0.0514344,0.... 17 17 0 0

= | || —

E‘ (] [0,0,0 [2, 63]1 Boolean |[0, 0, 0] Boolean [23814,23814] |[0.0514344,0... 9 9 0 1]

E 7_[0,0, 0] [2, 63] Boolean [0, 0, 0] Boolean |[23814,23814] | [0.0514344,0.... 19 19 0 0

] s_ [0, 0, 0] [2, 63] Boolean [0, 0, 0] Boolean |[23814,23814] | [0.0514344,0.... 20 20 0 0

9_ [0,0,0] [2,63] Boolean [0, 0, 0] Boolean |[23814,23814] |[0.0514344,0.... 18 18 0 0 E
| | (]
Restore Columns H Resize Headersl
PAGE NAV\GATION [1/23] Last l l 1 H Go l Loading rcws.

Figure 3.13: browsetable: The browser displays the main table within a frame. You can scroll
through the data (x=columns of the MAIN table, and y=the rows) or select a specific page or row
as desired. By default, 1000 rows of the table are loaded at a time, but you can step through the
MS in batches.

For an MS such as this, it will come up with a browser of the MAIN table (see Fig . If you
want to look at sub-tables, use the tab table keywords along the left side to bring up a panel
with the sub-tables listed (Fig , then choose (left-click) a table and View:Details to bring it
up (Fig[3.15). You can left-click on a cell in a table to view the contents.

Note that one useful feature is that you can Edit the table and its contents. Use the Edit table
choice from the Edit menu, or click on the Edit button. Be careful with this, and make a backup
copy of the table before editing!

Use the Close Tables and Ezit option from the Files menu to quit the casabrowser.

There are a lot of features in the casabrowser that are not fully documented here. Feel free to
explore the capabilities such as plotting and sorting!

ALERT: You are likely to find that the casabrowser needs to get a table lock before proceeding.
Use the clearstat command to clear the lock status in this case.

CHAPTER 3. DATA EXAMINATION AND EDITING 187

hd Table Browser x

File Edit View Tools Export Help

GX oow @

o = & 5%

ngc5921.ms *x
E Keywaord | Type | Value Extra Information bl
E 1 {MS_VERSION {Float 2
Z_I;NTENNA Table /homefsandrock/smyers/Testing/2 008-03/ngc592 1_regression/ngc592 1.ms/ANTENNA | Subtable has 28 rows
ﬁ 3_ DATA_DESCRIPTION | Table fhomefsandrockfsmyers/Testing/2008-03/ngc5921_regression/ngcs921.ms/DATA_D... Subtable has 1 rows.
% 4_FEED Table fhomefsandrock/smyers/Testing/2 008-03 /ngc5 92 1_regression/ngcs92 1.ms/FEED Subtable has 28 rows
E 5_ FLAG_CMD Table fhomefsandrock/smyers/Testing/2008-03/ngcs92 1_regressionngcs92 L.ms/FLAG_C... Subtable has no rows
i s_FIELD Table fhomefsandrock/smyers/Testing/2 008-03/ngc592 1_regression/ngc592 1.ms/FIELD Subtable has 3 rows.
E 7_ HISTORY Table /homefsandrock/smyers/Testing/2 008-03 /ngc592 1_regression/ngc592 1.msHISTORY | Subtable has 379 rows
:Ef S_OESERVATION Table fhomefsandrock/smyers/Testing/2008-03/ngc592 1_regression/ngc592 1.ms/OBSER... | Subtable has 1 rows.
% S_POINTING Table fhomefsandrock/smyers/Testing/2 008-03/ngc5 92 1_regression/ngc592 L.ms/POINTING | Subtable has no rows
i EPOLARIZATION Table fhomefsandrock/smyers/Testing/2008-03/ngc592 1_regression/ngc592 L.ms/POLARL.. | Subtable has 1 rows.
IPROCESSOR Table fhomefsandrock/smyers/Testing/2 008-03/ngc592 1_regression/ngci921.ms/PROCE... | Subtable has no rows
; SPECTRAL_WINDOW |Table fhomefsandrock/smyers/Testing/2008-03 /ngc592 1_regression/ngc592 1.ms/SPECTR... Subtable has 1 rows. B
; STATE Table fhomefsandrock/smyers/Testing/2 008-03/ngc5921_regression/ngcs 92 L.ms/STATE Subtable has no rows
;SOURCE Table fhomefsandrock/smyers/Testing/2008-03/ngc592 1_regression/ngcs92L.ms/SOURCE | Subtable has 3 rows. E

Figure 3.14: browsetable: You can use the tab for Table Keywords to look at other tables within
an MS. You can then double-click on a table to view its contents.

CHAPTER 3. DATA EXAMINATION AND EDITING

File

hd Table Browser

Edit View Tools Export Help

WX 2O Q@ e H %

ngcs921.ms SOURCE

*

[ﬂeld keywords | table keywords |

DIRECTION |'ROPER_MOTIOI|_IBRATION_GR[| CODE | INTERVAL NAME NUM_LINES SOURCE_ID |CTRAL_W
0|[F2.74393,05... [0,0] -1 1.7976931348... 1331+305000... |1 0 1]
1([2.42045 0.1... [0,0] -1 1.7976931348... 1445+099000... |1 1 0
2|F2.2602,0.08... [0,0] -1 1.7976931348... N5921_2 1 2 1]
< A |]
Restore Columns || Resize Headers

=] 0 R —

PAGE NAVIGATION [1/1]

Figure 3.15: browsetable: Viewing the SOURCE table of the MS.

188

Chapter 4

Synthesis Calibration

This chapter explains how to calibrate interferometer data

within the CASA task system. Calibration is the process of Inside the Toolkit:
determining the net complex correction factors that must | The workhorse for synthesis calibra-
be applied to each visibility in order to make them as close |tion is the cb tool.

as possible to what an idealized interferometer would mea-

sure, such that when the data is imaged an accurate picture of the sky is obtained. This is not an
arbitrary process, and there is a philosophy behind the CASA calibration methodology (see §
for more on this). For the most part, calibration in CASA using the tasks is not too different
than calibration in other packages such as AIPS or Miriad, so the user should not be alarmed by
cosmetic differences such as task and parameter names!

4.1 Calibration Tasks

Alert: The calibration table format changed in CASA 3.4. CASA 4.2 is the last version that will
support the caltabconvert function that provides conversions from the pre-3.4 caltable format to
the modern format; it will be removed for CASA 4.3. In general, it is best to recalculate calibration
using CASA 3.4 or later.

Alert: In CASA 4.2 the gaincurve and opacity parameters have been removed from all calibration
tasks (as advertised in 4.1). These calibration types are supported via the gencal task.

Alert: As part of continuing development of a more flexible and improved interface for specifying
calibration for apply, a new parameter has been introduced in applycal and the solving tasks:
docallib. This parameter toggles between use of the traditional calibration apply parameters
(gaintable, gainfield, interp, spwmap, and calwt), and a new callib parameter which currently
provides access to the experimental Cal Library mechanism, wherein calibration instructions are
stored in a file. The default remains docallib=False in CASA 4.5, and this reveals the traditional
apply parameters which continue to work as always, and the remainder of this chapter is still written
using docallib=F. Users interested in the Cal Library mechanism’s flexibility are encouraged to
try it and report any problems; see Appendix [G| for information on how to use it, including how to

189

CHAPTER 4. SYNTHESIS CALIBRATION 190

convert traditional applycal to Cal Library format. Note also that plotms and mstransform now
support use of the Cal Library to enable on-the-fly calibration when plotting and generating new
MSs.

The standard set of calibration solving tasks (to produce calibration tables) are:

e bandpass — complex bandpass (B) calibration solving, including options for channel-binned

or polynomial solutions (§)

e gaincal — complex gain (G,T) and delay (K) calibration solving, including options for time-

binned or spline solutions. (§ ,
e polcal — polarization calibration including leakage and angle (§ ,

e blcal — baseline-based complex gain or bandpass calibration (§4.4.6)).
There are helper tasks to create, manipulate, and explore calibration tables:

e accum — Accumulate incremental calibration solutions into a cumulative cal table (§ |4.5.6)
(ALERT: The accum task is generally no longer recommended for most calibration scenarios.
Please write to the NRAO CASA helpdesk if you need support using accum.),

e applycal — Apply calculated calibration solutions (§ ,

e clearcal — Re-initialize the calibration for a visibility dataset (§ ,

e fluxscale — Bootstrap the flux density scale from standard calibration sources (§ ,
e listcal — List calibration solutions (§ ,

e plotcal — Plot calibration solutions (§[.5.1)),

e plotbandpass — Plot bandpass solutions (§ [£.5.2)),

e setjy — Compute model visibilities with the correct flux density for a specified source

(§[.3.9),

e smoothcal — Smooth calibration solutions derived from one or more sources (§ [4.5.5)),

e split — Write out new MS containing calibrated data from a subset of the original MS

(§E.7.1).

There are some development versions of calibration and utility tasks that are recently added to the
suite:

e calstat — Statistics of calibration solutions (§ [4.5.4)),

e cvel — Regrid a spectral MS onto a new frequency channel system (§4.7.7)),

CHAPTER 4. SYNTHESIS CALIBRATION 191

gencal — Create a calibration tables from metadata such as antenna position offsets, gain-

curves and opacities (§ ,

wvrgcal — Generate a gain table based on Water Vapor Radiometer data (for ALMA use -

§[4.3.9),

hanningsmooth — Apply a Hanning smoothing filter to spectral-line uv data (§ ,

mstransform — Task to combine cvel, hanningsmooth, split operations in a single step

7).

uvcontsub — Carry out uv-plane continuum fitting and subtraction (§ ,
uvmodelfit — Fit a component source model to the uv data (§ ,
uvsub — Subtract the transform of a model image from the uv data (§ ,
statwt — Recalcuate the data weights based on their scatter (§ ,

conjugatevis — Change the signs of visibility phases (§[4.7.10]).

These are not yet full-featured, and may have only rudimentary controls and options.

The following sections outline the use of these tasks in standard calibration processes.

Information on other useful tasks and parameter setting can be found in:

4.2

listobs — summary of a MS (§ ,

listvis — list data in a MS (§[2.2.11]),
plotms — prototype next-generation X-Y plotting and editing (§|3.3.1)),

plotxy — previous generation X-Y plotting and editing (§[3.3.2)),

plotweather — plot the weather information of an MS and calculate atmospheric opacities

(§[3.41),

flagdata — non-interactive data flagging (§ ,

data selection — general data selection syntax (§[2.3)).

The Calibration Process — Outline and Philosophy

A work-flow diagram for CASA calibration of interferometry data is shown in Figure This
should help you chart your course through the complex set of calibration steps. In the following
sections, we will detail the steps themselves and explain how to run the necessary tasks and tools.

This can be broken down into a number of discrete phases:

CHAPTER 4. SYNTHESIS CALIBRATION 192

Input Data, Tables & Information Process Output Data, Tables & Information

Input dataset

FE:E:;SE;; héf:f;{;} Prior Calibration Prior Calibration
Atmospheric Madels (e.q. setiy) Information
Bandpass Calibrator Bandpass

Model(s) * | bandpass ™ Calibration Table
Gain Calibrator . . N
Model(s) —{ gainecal]—D Gain Calibration Table
[fluxscale]—» Scaled Gain Table
poleal
(coming soon)
[applycal]—» Calibrated Data

Figure 4.1: Flow chart of synthesis calibration operations. Not shown are use of table manipulation
and plotting tasks accum, plotcal, and smoothcal (see Figure [4.2)).

CHAPTER 4. SYNTHESIS CALIBRATION 193

e Calibrator Model Visibility Specification — set model visibilities for calibrators, either
unit point source visibilities for calibrators with unknown flux density or structure (generally,
sources used for calibrators are approximately point-like), or visibilities derived from a priori
images and/or known or standard flux density values.

e Prior Calibration — set up previously known calibration quantities that need to be pre-
applied, such antenna gain-elevation curves, atmospheric models, delays, and antenna position
offsets. Use the setjy task (§ for calibrator flux densities and models, and use gencal
(§ for antenna position offsets, gaincurves, antenna efficiencies, and opacities;

¢ Bandpass Calibration — solve for the relative gain of the system over the frequency chan-
nels in the dataset (if needed), having pre-applied the prior calibration. Use the bandpass

task (§ E4.2);

e Gain Calibration — solve for the gain variations of the system as a function of time, having
pre-applied the bandpass (if needed) and prior calibration. Use the gaincal task (§ [4.4.3);

e Polarization Calibration — solve for polarization leakage terms and linear polarization

position angle (§[4.4.5));

e Establish Flux Density Scale — if only some of the calibrators have known flux densi-
ties, then rescale gain solutions and derive flux densities of secondary calibrators. Use the

fluxscale task (§ ;

e Manipulate, Accumulate, and Iterate — if necessary, accumulate different calibration
solutions (tables), smooth, and interpolate/extrapolate onto different sources, bands, and

times. Use the accum (§[4.5.6) and smoothcal (§4.5.5)) tasks;

e Examine Calibration — at any point, you can (and should) use plotcal (§4.5.1) and/or
listcal (§4.5.3) to look at the calibration tables that you have created;

e Apply Calibration to the Data — this can be forced explicitly by using the applycal

task (§ , and can be undone using clearcal (§/4.6.3));

e Post-Calibration Activities — this includes the determination and subtraction of contin-
uum signal from line data, the splitting of data-sets into subsets (usually single-source), and

other operations (such as model-fitting). Use the uvcontsub (§ , split (§ , and
uvmodelfit (§4.7.8) tasks.

The flow chart and the above list are in a suggested order. However, the actual order in which
you will carry out these operations is somewhat fluid, and will be determined by the specific
data-reduction use cases you are following. For example, you may need to do an initial Gain
Calibration on your bandpass calibrator before moving to the Bandpass Calibration stage. Or
perhaps the polarization leakage calibration will be known from prior service observations, and can
be applied as a constituent of Prior Calibration.

CHAPTER 4. SYNTHESIS CALIBRATION 194

4.2.1 The Philosophy of Calibration in CASA

Calibration is not an arbitrary process, and there is a methodology that has been developed to
carry out synthesis calibration and an algebra to describe the various corruptions that data might
be subject to: the Hamaker-Bregman-Sault Measurement Equation (ME), described in Appendix
The user need not worry about the details of this mathematics as the CASA software does that for
you. Anyway, it’s just matrix algebra, and your familiar scalar methods of calibration (such as in
AIPS) are encompassed in this more general approach.

There are a number of “physical” components to calibration in CASA:

e data — in the form of the Measurement Set (§[2.1). The MS includes a number of columns
that can hold calibrated data, model information, and weights;

e calibration tables — these are in the form of standard CASA tables, and hold the calibration
solutions (or parameterizations thereof);

e task parameters — sometimes the calibration information is in the form of CASA task
parameters that tell the calibration tasks to turn on or off various features, contain important
values (such as flux densities), or list what should be done to the data.

At its most basic level, Calibration in CASA is the process of taking “uncalibrated” data, setting
up the operation of calibration tasks using parameters, solving for new calibration tables, and
then applying the calibration tables to form “calibrated” data. Iteration can occur as necessary,
with the insertion of other non-calibration steps (e.g. imaging to generate improved source models
for “self-calibration”).

4.2.2 Keeping Track of Calibration Tables

The calibration tables are the currency that is exchanged between the calibration tasks. The
“solver” tasks (gaincal, bandpass, blcal, polcal) take in the MS (which may have a calibration
model attached) and previous calibration tables, and will output an “incremental” calibration
table (it is incremental to the previous calibration, if any). This table can then be smoothed using
smoothcal if desired.

You can optionally accumulate the incremental calibration onto previous calibration tables with
accum, which will then output a cumulative calibration table. This task will also interpolate onto
a different time scale. See § for more on accumulation and interpolation.

Figure graphs the flow of these tables through the sequence

solve => smooth => accumulate

Note that this sequence applied to separate types of tables (e.g. ’B’, ’G’) although tables of other
types can be previous calibration input to the solver.

CHAPTER 4. SYNTHESIS CALIBRATION 195

Calibrator Model(s): Previous Calibration
- * Tables:
point sou‘rce fluxes —MODEL DATA— e Input dataset e.g. from
model images . 1
self-cal models gainca
bandpass
gaintabl
Y i
[| | Calibrati
Prior Calibration Calibration Solver: ncremer::bl; ibration
Information: |__gaincurve | e.g. _ e—'
Antenna Gain Curves cpacity bandpass o ms}'i"cal
Atmospheric Models gaincal <ms>.gcal
|- tablein |
|
I Y
|
| Smoothed Calibration
no smoothing Caltable Smoothing: Table:
. altabl
1 smoothcal > e.g.
1 <ms>.gcals
|
I N
e biinc:tahle—] t"h:JLEl“
Yy v
Caltable Cumulative Calibration
Accumulation: altable—pe T_:t:;e:
accum <ms>.gcalx

Figure 4.2: Chart of the table flow during calibration. The parameter names for input or output of
the tasks are shown on the connectors. Note that from the output solver through the accumulator
only a single calibration type (e.g. ’B’, ’G’) can be smoothed, interpolated or accumulated at a
time. accum is optional (and not recommended as of v4.0). The final set of cumulative calibration
tables of all types (accumulated or as a list of caltables) are then input to applycal as shown in

Figure

The final set of cumulative calibration tables is what is applied to the data using applycal. You
will have to keep track of which tables are the intermediate incremental tables, and which are
cumulative, and which were previous to certain steps so that they can also be previous to later
steps until accumulation. This can be a confusing business, and it will help if you adopt a consistent
table naming scheme (see Figure for an example naming scheme).

4.2.3 The Calibration of traditional VLA data in CASA

CASA supports the calibration of traditional VLA data that is imported from the Archive through
the importvla task. See § for more information.

CHAPTER 4. SYNTHESIS CALIBRATION 196

ALERT: Data taken both before and after the Modcomp turn-off in late June 2007 will be handled
automatically by importvla. You do not need to set special parameters to do so, and it will obey
the scaling specified by applytsys.

You can also import VLA data in UVFITS format with the importuvfits task (§2.2.7.1)). However,
in this case, you must be careful during calibration in that some prior or previous calibrations (see
below) may or may not have been done in AIPS and applied (or not) before export.

For example, the default settings of AIPS FILLM will apply VLA gaincurve and approximate
(weather-based) atmospheric optical depth corrections when it generates the extension table CL
1. If the data is exported immediately using FITTP, then this table is included in the UVFITS
file. However, CASA is not able to read or use the AIPS SN or CL tables, so that prior calibration
information is lost and must be applied during calibration here (i.e. using gaincurve=True and
setting the opacity parameter).

On the other hand, if you apply calibration in AIPS by using the SPLIT or SPLAT tasks to apply
the CL tables before exporting with FITTP, then this calibration will be in the data itself. In this
case, you do not want to re-apply these calibrations when processing in CASA.

4.2.4 Loading Jansky VLA data in CASA

Jansky VLA data can be loaded into CASA either via importevla or by using the task importasdm.
Both tasks will convert ASDM raw data files into Measurement Sets. importasdm will convert the
data itself and the majority of the metadata. importevla will run importasdm followed by Jansky
VLA-specific corrections, like the application of the on-line flags (e.g. times when the subreflector
was not in place or the an antenna was not on source), an option to clip values that are exactly
zero (as of 2010, such values still may appear in the VLA raw data), and flagging for shadowing.

4.3 Preparing for Calibration

There are a number of “a priori” calibration quantities that may need to be initialized or estimated
before further calibration solving is carried out. These include

e weight initialization — if desired, initialization of spectral weights (by default, unchannel-
ized weight accounting is used, and no special action is required)

e system temperature correction — turn correlation coefficient into correlated flux density
(necessary for some telescopes),

e gain curves — antenna gain-elevation dependence,

e atmospheric optical depth — attenuation of the signal by the atmosphere, including
correcting for its elevation dependence.

e flux density models — establish the flux density scale using “standard” calibrator sources,
with models for resolved calibrators,

CHAPTER 4. SYNTHESIS CALIBRATION 197

e delays — antenna-based delay offsets,
e antenna position errors — offsets in the positions of antennas assumed during correlation.

e ionosphere — dispersive delay and Faraday effects arising from signal transmission through
the magnetized plasma of the ionosphere.

These are pre-determined effects and should be applied (if known) as priors when solving for other
calibration terms, and included in the final application of all calibration. If unknown, then they
will be solved for or subsumed in other calibration such as bandpass or gains.

We now deal with these in turn.

4.3.1 Weight initialization and WEIGHT_SPECTRUM

See Appendix [F] for a more complete description of weight accounting in CASA.

CASA 4.3 introduced initial experimental support for spectral weights. At this time, this is mainly
relevant to ALMA processing for which spectral Ty, corrections, which faithfully reflect spectral
sensitivity, are available. In most other cases, sensitivity is, to a very good approximation, channel-
independent after bandpass calibration (and often also before), except perhaps at the very edges
of spectral windows (and for which analytic expressions of the sensitivity loss are generally un-
available). Averaging of data with channel-dependent flagging which varies on sufficiently short
timescales will also generate channel-dependent net weights (see split or mstransform for more
details).

By default, CASA’s weight accounting scheme maintains unchannelized weight information that is
appropriately updated when calibration is applied. In the case of spectral calibrations (Ts,s and
bandpass), an appropriate spectral average is used for the weight update. This spectral average
is formally correct for weight update by bandpass. For Ty, traditional treatments used a single
measurement per spectral window; ALMA has implemented spectral T, to better track sensitivity
as a function of channel, and so should benefit from spectral weight accounting as described here,
especially where atmospheric emmission lines occur. If spectral weight accounting is desired, users
must re-initialize the spectral weights using the initweights task:

initweight (vis=’mydata.ms’, wtmode=’nyq’, dowtsp=True)

In this task, the wtmode parameter controls the weight initialization convention. Usually, when ini-
tializing the weight information for a raw dataset, one should choose wtmode="nyq’ so that the chan-
nel bandwidth and integration time information are used to initialize the weight information. The
dowtsp parameter controls whether (T) or not (F) the spectral weights (WEIGHT_SPECTRUM
column) are initialized. The default is dowtsp=False, wherein only the non-spectral weights
(WEIGHT column) will be initialized. If the spectral weights have been initialized, then down-
stream processing that supports spectral weights will use/update them. In CASA 4.3 and later, this
includes applycal, clean, and split/mstransform; use of spectral weights in calibration solving
(e.g., gaincal and other solve tasks) is scheduled for the CASA 4.5 release.

CHAPTER 4. SYNTHESIS CALIBRATION 198

Note that importasdm and importevla currently initialize the non-spectral weights using channel
bandwidth and integration time information (equivalent to initweights(vis=’mydata.ms’ ,wtmode=’nyq’ ,dowtsp:
In general, it only makes sense to run initweights on a raw dataset which has not yet been cali-
brated, and it should only be necessary if the filled weights are inappropriate, or if spectral weight
accounting is desired in subsequent processing. It is usually not necessary to re-initialize the weight
information when redoing calibration from scratch (the raw weight information is preserved in the
SIGMA /SIGMA_SPECTRUM columns). (Re-)initializing the weight information for data that has
already been calibrated (with calwt=T, presumably) is formally incorrect and is not recommended.

When combining datasets from different epochs, it is generally preferable to have used the same
version of CASA (most recent is best), and with the same weight information conventions and calwt
settings. Doing so will minimize the likelihood of arbitrary weight imbalances that might lead to
net loss of sensitivity, and maximize the likelihood that real differences in per-epoch sensitivity
(e.g., due to different weather conditions and instrumental setups) will be properly accounted for.
Modern instruments support more variety in bandwidth and integration time settings, and so use
of these parameters in weight initialization is preferred (c.f. use of unit weight initialization, which
has often been the traditional practice).

Alert: Full and proper weight accounting for the EVLA formally depends on the veracity of the
switched power calibration scheme (§ . As of mid-2015, use of the EVLA switched power is not
yet recommended for general use, and otherwise uniform weights are carried through the calibration
process. As such, spectral weight accounting is not yet meaningful. Facilities for post-calibration
estimation of spectral weights are planned for a future release.

4.3.2 System Temperature and Switched-Power Corrections

Some telescopes, including the old VLA, ALMA, and the VLBA, record the visibilities in the
form of raw correlation coefficient with weights proportional to the number of bits correlated. The
correlation coefficient is the fraction of the total signal that is correlated, and thus multiplication by
the system temperature (T%,s) and the antenna gain (in Jy/K) will produce visibilities with units of
correlated flux density. ALMA records Tyys(K) information in the MS which can be extracted as a
caltable using gencal with calmode="tsys’, and applied to data to yield units of K. Calibration
to flux density in Jy is achieved via reference to sources of known power.

Alert: Note that the old VLA system did this initial calibration on-line. The modern VLA does
not record normalized visibilities. Instead, the correlations are delivered in raw engineering units
that are proportional to power. The actual total power received is continuously monitored during
the observation, with a calibration signal of known temperature (K) switched in at a rate of 10 Hz.
This is the so-called “switched-power” calibration system on the VLA. This enables a continuous
record of the Tyys(K'), as well as net electronic gain variation of each antenna’s receiving system.
The correlator requantizer gain is also monitored. These data are recorded in MS subtables and
appropriate calibration factors can be derived from them by gencal with caltype=’swpow’, and
stored in a caltable for application. This calibration is not a “I,,” calibration of the traditional
sort; the switched-power gain is used to correct the visibility amplitude, and the T, is used
to set the weights. This system is still being commissioned (as of early 2014). Observations
using 8-bit sampling are usually reasonably calibrated; 3-bit-sampled switched-power data are

CHAPTER 4. SYNTHESIS CALIBRATION 199

subject to compression effects that are not yet completely understood, and the switched power
calibration is not recommended (instead, correction only by the requantizer gain is recommended,
using caltype=’rq’).

See § for more information on use of gencal.

4.3.3 Antenna Gain-Elevation Curve Calibration

Large antennas (such as the 25-meter antennas used in the VLA and VLBA) have a forward gain
and efficiency that changes with elevation. Gain curve calibration involves compensating for the
effects of elevation on the amplitude of the received signals at each antenna. Antennas are not
absolutely rigid, and so their effective collecting area and net surface accuracy vary with elevation
as gravity deforms the surface. This calibration is especially important at higher frequencies where
the deformations represent a greater fraction of the observing wavelength. By design, this effect is
usually minimized (i.e., gain maximized) for elevations between 45 and 60 degrees, with the gain
decreasing at higher and lower elevations. Gain curves are most often described as 2nd- or 3rd-order
polynomials in zenith angle.

Gain curve calibration has been implemented in CASA for the modern VLA and old VLA (only),
with gain curve polynomial coefficients available directly from the CASA data repository. To make
gain curve and antenna efficiency corrections for VLA data, use gencal with caltable=’gceff’.
See § for more information on use of gencal.

ALERT: If you are not using VLA data, do not use gaincurve corrections. A general mechanism
for incorporating gaincurve information for other arrays will be made available in future releases.
The gain-curve information available for the VLA is time-dependent (on timescales of months to
years, at least for the higher frequencies), and CASA will automatically select the date-appropriate
gain curve information. Note, however, that the time-dependence was poorly sampled prior to
2001, and so gain curve corrections prior to this time should be considered with caution.

4.3.4 Atmospheric Optical Depth Correction

The troposphere is not completely transparent. At high radio frequencies (>15 GHz), water vapor
and molecular oxygen begin to have a substantial effect on radio observations. According to the
physics of radiative transmission, the effect is threefold. First, radio waves from astronomical
sources are absorbed (and therefore attenuated) before reaching the antenna. Second, since a good
absorber is also a good emitter, significant noise-like power will be added to the overall system noise.
Finally, the optical path length through the troposphere introduces a time-dependent phase error.
In all cases, the effects become worse at lower elevations due to the increased air mass through
which the antenna is looking. In CASA, the opacity correction described here compensates only
for the first of these effects, tropospheric attenuation, using a plane-parallel approximation for the
troposphere to estimate the elevation dependence.

To make opacity corrections in CASA, an estimate of the zenith opacity is required (see observatory-
specific chapters for how to measure zenith opacity). This is then supplied to the caltype=’opac’

CHAPTER 4. SYNTHESIS CALIBRATION 200

parameter in gencal which creates a calibration table with all the information. E.g. for data with
two spectral windows, the inputs are like:

gencal (vis=’dataset.ms’,
caltable=’opacity.cal’,
caltype=’opac’,
spw="0,1",
parameter=[0.0399,0.037])

If you do not have an externally supplied value for opacity, for example from a VLA tip procedure,
then you should either use an average value for the telescope, or leave it at zero and let your gain
calibration compensate as best it can (e.g. that your calibrator is at the same elevation as your
target at approximately the same time. As noted above, there are no facilities yet to estimate this
from the data (e.g. by plotting Tsys vs. elevation).

Below, we give instructions for determining opacity for Jansky VLA data from weather statistics
and VLA observations where tip-curve data is available. It is beyond the scope of this cookbook
to provide information for other telescopes.

4.3.4.1 Determining opacity corrections for modern VLA data

For the VLA site, weather statistics and/or seasonal models that average over many years of weather
statistics prove to be reasonable good ways to estimate the opacity at the time of the observations.
The task plotweather calculates the opacity as a mix of both actual weather data and seasonal
model. It has the following inputs:

plotweather :: Plot elements of the weather table; estimate opacity.

vis = ?? # MS name

seasonal_weight = 0.5 # weight of the seasonal model
doPlot = True # set this to True to create a plot

The task plots the weather statistics if doPlot=T, like shown in Figure[d.3] The bottom panel dis-
plays the calculated opacities for the run as well as a seasonal model. The parameter seasonal weight
can be adjusted to calculate the opacities as a function of the weather data alone seasonal _weight=0,
only the seasonal model seasonal weight=1, or a mix of the two (values between 0 and 1). Cal-
culated opacities are shown in the logger output, one for each spectral window. plotweather can
also assign a python variable to a list of calculated opacities (one entry for each spw) when run as:

myTau = plotweather(vis=’myvladata.ms’)

In this example, myTau will be returned with a list of per-spw opacities, e.g. myTau=[0.02,0.03]
and can later be used as input for gencal in caltype=’opac’ in the parameter setting, e.g.,

opac for spws 0,1 in myTau
gencal (vis=’myvladata.ms’,caltype=’opac’,spw="0,1’ ,parameter=myTau)

CHAPTER 4. SYNTHESIS CALIBRATION 201

Note that it is important to explicitly specify the spws that are covered by the opacity values stored
in myTau. For most modern VLA data there will be more than two spws, probably.

See § for more information on use of gencal.

4.3.4.2 Determining opacity corrections for VLA data

For VLA data, zenith opacity can be measured at the frequency and during the time observations
are made using a VLA tipping scan in the observe file. Historical tipping data are available at:

http://www.vla.nrao.edu/astro/calib/tipper

Choose a year, and click Go to get a list of all tipping scans that have been made for that year.

If a tipping scan was made for your observation, then select the appropriate file. Go to the bottom
of the page and click on the button that says Press here to continue.. The results of the tipping
scan will be displayed. Go to the section called ’Overall Fit Summary’ to find the fit quality and
the fitted zenith opacity in percent. If the zenith opacity is reported as 6%, then the actual zenith
optical depth value is opacity=0.060 for gaincal and other calibration tasks.

If there were no tipping scans made for your observation, then look for others made in the same
band around the same time and weather conditions. If nothing is available here, then at K and Q
bands you might consider using an average value (e.g. 6% in reasonable weather). See the VLA
memo

http://www.vla.nrao.edu/memos/test/232/232.pdf

for more on the atmospheric optical depth correction at the VLA, including plots of the seasonal
variations.

4.3.5 Setting the Flux Density Scale using (setjy)

When solving for visibility-plane calibration, CASA calibration applications compare the observed
DATA column with the Fourier transform of calibrator model when it is provided (if no model is
specified, a point source at the phase center is assumed).

The setjy task is used to set the proper flux density and attaches a model image (if specified) of the
calibrator to the MS. For sources that are recognized flux calibrators (listed in Tables and
see also §[C.1), setjy can calculate the flux densities as a function of frequency (and time, for Solar
System objects). Otherwise, the flux densities should be manually specified (standard=’manual’).
This mode has the following options:

standard = ’manual’ # Flux density standard
fluxdensity = [1, 0, 0, O] # Specified flux density [I,Q,U,V]; (-1 will lookup values)
spix = (] # Spectral index (including higher terms) of I fluxdensity
reffreq = >1GHz’ # Reference frequency for spix

http://www.vla.nrao.edu/astro/calib/tipper
http://www.vla.nrao.edu/memos/test/232/232.pdf

CHAPTER 4. SYNTHESIS CALIBRATION 202

Weather Summary for AS1039 sb1382796_2 000.55368.51883247685.ms

451 |
O_ﬂﬂ o oo o o O [e] o0 Qo [eXe] (o] o oo o o0 o o0 o [sXe] o (o] O_%
1))
—45} 1=
’ =7 1 :
i - 7 . |
12 L “7 5\ ”7 y ‘\‘\/7/ ——57) 7 ’7 << 4 . / §
09f v, Y 4N - v ‘ N
i1 N / \ <-- N ::,; —_
vyv ; Y . e, |3
0.6 v F S 2 L 1,/;’_ 3
0.3+ <-- e |
} ; P P }
12+ 4__’____’—’-_"’&—- p
8T |la
3
o
4 i 1<
1]
0r 1=
15} 15
=
12| 1=
3
o E]
2010/06/21/12:28:25 12:58:21 13:26:54
— weather station
20 seasonal model
_|
15 average | |g
N
10+ {3
5 B]
0 10 20 30 40 50

Frequency (GHz)

Figure 4.3: The weather information for a MS as plotted by the task plotweather.

CHAPTER 4. SYNTHESIS CALIBRATION 203

polindex =] # Coefficients of an expansion of frequency-dependent linear pol
polangle = (] # Coefficients of an expansion of frequency-dependent polarizati
rotmeas = 0.0 # Rotation measure (in

rad/m"~2)

In the simplest version, the flux for Stokes I can be set via the flurdensity subparameter as the
first entry in a list. In the above example [1,0,0,0] setjy sets the flux to 1Jy. Additional Stokes
specifications can be set in remaining list members. A spectral index can be provided via the
spiz and reffreq parameters. Finally it is also possible to provide coefficients for the polarization
fraction and angle as well as a rotation measure to define the model (polindez, polangle, rotmeas
parameters).

For the VLA, the default source models are customarily point sources defined by the 'Baars’, 'Perley
90’, "Perley-Taylor 99’, "Perley-Butler 2010’, time-variable 'Perley-Butler 2013’,’Scaife-Heald 2012,
or 'Stevens-Reynolds 2016’ flux density scales (§ "Perley-Butler 2013’ is the current standard
by default), or point sources of unit flux density if the flux density is unknown. In fact, the model
can be any image in Jy/pixel units (models typically generated by the clean task).

Optionally, the MODEL column can be filled with the Fourier transform of (option usescratch=T
is setjy, ft, and clean). But for most Measurement Sets, the performance and data storage
requirements are less demanding without the MODEL_DATA column.

The inputs for setjy are:

setjy :: Fills the model column with the visibilities of a calibrator
vis = 2 # Name of input visibility file
field = 0 # Field name(s)
spw = ’all’ # Spectral window identifier (list)
selectdata = True # Other data selection parameters
timerange = ?? # Time range to operate on (for usescratch=T)
scan = ?? # Scan number range (for usescaratch=T)
intent = ?? # Observation intent
observation = ?? # Observation ID range (for usescratch=T)
scalebychan = True # scale the flux density on a per channel basis or else on
a per spw basis
standard = ’Perley-Butler 2013’ # Flux density standard
model = ?? # File location for field model
listmodels = False # List the available modimages for VLA calibrators or Tb
models for Solar System objects
usescratch = False # Will create if necessary and use the MODEL_DATA

By default the setjy task will cycle through all fields spectral windows and channels, (one solution
per spw with scalebychan = False) , setting the flux density either to 1 Jy (unpolarized), or if
the source is recognized as one of the calibrators in the above table, to the flux density (assumed
unpolarized) appropriate to the observing frequency. For example, to run setjy on a Measurement
Set called data.ms:

CHAPTER 4. SYNTHESIS CALIBRATION 204

Table 4.1: Recognized Flux Density Calibrators. Note that the VLA uses J2000 calibrator names.
CASA accepts all strings that contain the names below. E.g. "PKS 1934-638’ will be recognized

3C Name B1950 Name J2000 Name Alt. J2000 Name Standards
3C48 0134+329 01374331 J0137+3309 1,3,4,5,6,7
3C123 04334295 04374296 J0437+42940 2
3C138 05184165 05214166 J0521+1638 1,3,4,5.6
3C147 05384498 05424498 J0542+4951 1,3,4,5,6,7
3C196 08094483 08134482 JO813+4-4813 1,2,7
3C286 1328+307 13314305 J1331+3030 1,2,3,4,5,6,7
3C295 1409+524 14114522 J1411+5212 1,2,3,4,5,6,7

— 1934-638 — J1939-6342 1,3,4,5,6,8

3C380 1828+487 1829-+487 J18294-4845 7

Standards are: (1) Perley-Butler 2010, (2) Perley-Butler 2013, (3) Perley-Taylor 99, (4) Perley-
Taylor 95, (5) Perley 90, (6) Baars (Baars, J. W. M., et al. 1977, A&A, 61, 99); (7) Scaife-Heald
2012, (8) Stevens-Reynolds 2016; see §|C.1.1] for details.

Table 4.2: ’Butler-JPL-Horizons 2012’ recognized Solar System Objects for Flux Calibration

Planets
Venus', Mars?, Jupiter®, Uranus?, Neptune®
Moons
Jupiter: To, Europa, Ganymede, Callisto
Saturn: Titan”

Asteroids
Ceres, Pallas®, Vesta®, Juno®

! Venus: model for ~ 300 MHz to 350 GHz, no atmospheric lines (CO,H20,HDO, etc.)

2 Mars: tabulated as a function of time and frequency (30 - 1000GHz) based on Rudy et al. (1988), no atmospheric
lines (CO, H20, H>O2, HDO, etc.)

3 Jupiter: model for 30-1020GHz, does not include synchrotron emission

4 Uranus: model for 60-1800GHz, contains no rings or synchrotron.

5 Neptune: model for 2-2000GHz, the broad CO absorption line is included, but contains no rings or synchrotron.

" Titan: model for 53.3-1024.1GHz, include many spectral lines

8 not recommended (The temperature is not yet adjusted for varying distance from the Sun. The model data can be
scaled after running setjy, but it is an involved process.)

Details are described in ALMA Memo 594 available on https://science.nrao.edu/facilities/alma/aboutALMA/
Technology/ALMA_Memo_Series/alma594/abs594.

setjy(vis=’data.ms’) # This will set all fields and spectral windows

Models of available calibrator sources can be listed by setting listmodels=True. setjy will then
come up with all images that are in the paths where calibrator models for known telescopes are
stored. It will also show all images in the working directory - any image there could potentially be

https://science.nrao.edu/facilities/alma/aboutALMA/Technology/ALMA_Memo_Series/alma594/abs594
https://science.nrao.edu/facilities/alma/aboutALMA/Technology/ALMA_Memo_Series/alma594/abs594

CHAPTER 4. SYNTHESIS CALIBRATION 205

a calibrator model. If the calibrator model is found by listmodels it can be used in the modimage
parameter without a path.

The fluxdensity parameter can be used to specify the flux of the calibrator in all Stokes pa-
rameters. It it thus a list of values [I[,Q,U,V], e.g. ['12Jy’,’13mJy’,’0Jy’,’0Jy’]. In addition,

a spectral index can be specified via spiz, a reference frequency reffreq (using the definition:

S = fluzdensity x re];"?geqspm

a rotation measure (rotmeas).

), as well as a polarization index (polindex), angle (polangle) and

Most calibrator sources are based on radio emission from quasars and jets. The spectral indices
of these sources are such that at (sub)mm wavelengths the majority of these sources become too
weak and variable to be reliable flux estimators. Alternatives are thermal objects such as planets,
moons, and asteroids. Those sources, however, are all Solar System objects, which implies that they
move and may be (strongly) resolved. The standard=’Butler-JPL-Horizons 2010’ and the rec-
ommended standard=’Butler-JPL-Horizons 2012’ (for more information on the implemented
models, see ALMA Memo 594 soon available on https://science.nrao.edu/facilities/alma/
aboutALMA/Technology/ALMA_Memo_Series/almab594/abs594.) option of setjy includes flux den-
sity calibration using Solar System objects. For 'Butler-JPL-Horizons 2012> CASA currently sup-
ports the objects listed in Table to be applied to ALMA data. These names are recognized
when they are used in the ’field’ parameter in setjy. In that case, setjy will obtain the geocentric
distance and angular diameter at the time of the observation from a (JPL-Horizons) ephemeris and
calculate model visibilities. Currently the objects are modeled as uniform temperature disks, but
effects like primary beam attenuation and limb darkening will be accounted for soon. Note that
this model may oversimplify the real structure, in particular asteroids.

An example, using data from the M99 tutorial in http://casaguides.nrao.edu/index.php?
title=CARMA_spectral_line_mosaic_M99:

setjy(vis=’c0104I’, field=’MARS’, spw=’0 2’, standard=’Butler-JPL-Horizons 2012°)

Tip: Running casalog.filter(INFO1’) before running setjy with a Solar System object may send
the logger a reference to the temperature measurement. Use casalog.filter('INFO’) to restore the
normal logging level.

The source model will be attached to the MS and applied to all calibration steps when usescratch=False.
usescratch=True fills the MODEL_DATA column with the Fourier transform of the model. As of
CASA 3.4. we found that under some circumstances, creation of the MODEL column may prevent
memory issues and if tasks fail, we recommend to set usescratch=True. Note that currently setjy

will not transform a full-Stokes model image such that all polarizations are applied correctly. You
need to use ft for this.

To limit this operation to certain fields and spectral windows, use the field and/or spw parameters,
which take the usual data selection strings (§[2.3]). For example, to set the flux density of the first
field (all spectral windows)

setjy(vis=’data.ms’,field="0")

or to set the flux density of the second field in spectral window 17

https://science.nrao.edu/facilities/alma/aboutALMA/Technology/ALMA_Memo_Series/alma594/abs594
https://science.nrao.edu/facilities/alma/aboutALMA/Technology/ALMA_Memo_Series/alma594/abs594
http://casaguides.nrao.edu/index.php?title=CARMA_spectral_line_mosaic_M99
http://casaguides.nrao.edu/index.php?title=CARMA_spectral_line_mosaic_M99

CHAPTER 4. SYNTHESIS CALIBRATION 206

setjy(vis=’data.ms’,field="1’,spw=17")
The full-polarization flux density (I,Q,U,V) may also be explicitly provided:

setjy(vis=’data.ms’,
field=’1’,spw="16", # Run setjy on field id 1, spw id 17
fluxdensity=[3.5,0.2,0.13,0.0]) # and set I,Q,U,V explicitly

ALERT: The apparent brightness of objects in the Solar System will vary with time because of
the Earth’s varying distance to them, if nothing else. If the field index of a flux calibrator spans
several days, you should run setjy more than once, limiting each run to a suitable timerange by
using the timerange, scan, and/or observation selection parameters. Note that it is the field index
that matters, not the name. Typically concat assigns moving objects a new field index for each
observation, so usually it is not necessary to select a time range in setjy. However, it is worth
checking with 1listobs, especially for planets.

4.3.5.1 Using Calibration Models for Resolved Sources

For observations of solar system objects using the 'Butler-JPL-Horizons 2010’ and ’Butler-JPL-
Horizons 2012’ models (§[4.3.5)) setjy will know and apply the flux distribution across the extended
structure of the calibrators.

For other sources, namely VLA calibrator sources, a flux density calibrator can be resolved at the
observing frequency and the point source model generated by setjy will not be appropriate. If
available, a model image of the resolved source at the observing frequency may be used to generate
the appropriate visibilities using the modimage parameter (or in older versions explicitly with the
ft task). To use this, provide modimage with the path to the model image. Remember, if you just
give the file name, it will assume that it is in the current working directory. Note also that setjy
using a model image will only operate on that single source, thus you would run it multiple times
(with different field settings) for different sources.

Otherwise, you may need to use the uvrange selection (§ in the calibration solving tasks to
exclude the baselines where the resolution effect is significant. There is not hard and fast rule for
this, though you should consider this if your calibrator is shows a drop of more than 10% on the
longest baselines (use plotxy, § to look at this). You may need to do antenna selection also,
if it is heavily resolved and there are few good baselines to the outer antennas. Note that uvrange
may also be needed to exclude the short baselines on some calibrators that have extended flux not
accounted for in the model. Note: the calibrator guides for the specific telescopes usually indicate
appropriate min and max for uvrange. For example, see the VLA Calibration Manual at:

https://science.nrao.edu/facilities/vla/observing/callist

for details on the use of standard calibrators for the VLA.

Model images for some flux density calibrators are provided with CASA (note that the exactl
location may change depending on your installation directory):

https://science.nrao.edu/facilities/vla/observing/callist

CHAPTER 4. SYNTHESIS CALIBRATION 207

Red Hat Linux RPMs 32bit (RHE4, Fedora 6): located in
/usr/lib/casapy/data/nrao/VLA /CalModels

Red Hat Linux RPMs 64bit (RHE4, Fedora 6): located in
Jusr/lib64/casapy/data/nrao/ VLA /CalModels

MAC OSX .dmg: located in
/Applications/CASA.app/Contents/Resources/casa-data/nrao/VLA /CalModels

NRAO-AOC casapy-test:
/home/casa/data/distro/nrao/VLA /CalModels/

e.g., these are found in the data/nrao/VLA/CalModels sub-directory of the CASA installation. For
example, just point to the repository copy, e.g.

modimage = ’/usr/lib/casapy/data/nrao/VLA/CalModels/3C48_C.im’

or if you like, you can copy the ones you wish to use to your working directory.

The models available are:

3C138_L.im 3C147_L.im 3C286_L.im 3C48_L.im
3C138_C.im 3C147_C.im 3C286_C.im 3C48_C.im
3C138_X.im 3C147_X.im 3C286_X.im 3C48_X.im
3C138_U.im 3C147_U.im 3C286_U.im 3C48_U.im
3C138_K.im 3C147_K.im 3C286_K.im 3C48_K.im
3C138_Q.im 3C147_Q.im 3C286_Q.im 3C48_Q.im

(more calibrator models for the VLA are available at
https://science.nrao.edu/facilities/vla/data-processing/models These are all un-reconvolved
images of AIPS CC lists. It is important that the model image not be one convolved with a finite
beam; it must have units of Jy/pixel (not Jy/beam).

Note that setjy will rescale the flux in the models for known sources (e.g. those in Table |4.1)) to
match those it would have calculated. It will thus extrapolated the flux out of the frequency band
of the model image to whatever spectral windows in the MS are specified (but will use the structure
of the source in the model image).

ALERT: The reference position in the modimage is currently used by setjy when it does the
Fourier transform, thus differences from the positions for the calibrator in the MS will show up
as phase gradients in the uv-plane. If your model image position is significantly different but you
don’t want this to affect your calibration, then you can doctor either the image header using imhead
(8 or in the MS (using the ms tool) as appropriate. In an upcoming release we will put in a
toggle to use or ignore the position of the modimage. Note that this will not affect the flux scaling
(only put in erroneous model phases); in any event small position differences, such as those arising
by changing epoch from B1950 to J2000 using regridimage (§ , will be inconsequential to the
calibration.

This illustrates the use of uvrange for a slightly resolved calibrator:

https://science.nrao.edu/facilities/vla/data-processing/models

CHAPTER 4. SYNTHESIS CALIBRATION 208

Import the data
importvla(archivefiles=’AS776_A031015.xp2’, vis=’ngc7538_XBAND.ms’,
freqtol=10000000.0, bandname=’X’)

Flag the ACs
flagautocorr(’ngc7538_XBAND.ms’)

METHOD 1: Use point source model for 3C48, plus uvrange in solve

Use point source model for 3C48
setjy(vis="ngc7538_XBAND.ms’,field=’0’);

Limit 3C48 (fieldid=0) solutions to uvrange = 0-40 klambda

gaincal (vis=’ngc7538_XBAND.ms’, caltable=’cal.G’, field=’0’,
s0lint=60.0, refant=’10’, selectdata=True, uvrange=’0740klambda’,
append=False)

Append phase-calibrator’s solutions (no uvrange) to the same table

gaincal (vis=’ngc7538_XBAND.ms’, caltable=’cal.G’, field=’2’,
so0lint=60.0, refant=’10’, selectdata=True, uvrange=’’,
append=True)

Fluxscale
fluxscale(vis="ngc7538_XBAND.ms’, caltable=’cal.G’, reference=[’0137+331’],
transfer=[’2230+697°], fluxtable=’cal.Gflx’, append=False)

while the following illustrates the use of a model:

METHOD 2: use a resolved model copied from the data repository
for 3C48, and no uvrange
(NB: detailed freq-dep flux scaling TBD)

Copy the model image 3C48_X.im to the working directory first!
setjy(vis="ngc7538_XBAND.ms’, field=’0’, modimage=’3C48_X.im’)

Solutions on both calibrators with no uvrange
gaincal(vis=’ngc7538_XBAND.ms’, caltable=’cal.G2’, field=’0,2’,
so0lint=60.0, refant=’10",
append=False)

Fluxscale
fluxscale(vis=’ngc7538_XBAND.ms’, caltable=’cal.G2’, reference=[’0137+331],
transfer=[’2230+697’], fluxtable=’cal.G2flx’, append=False)

Both methods give 2230 flux densities 70.7 Jy, in good agreement with
AIPS

CHAPTER 4. SYNTHESIS CALIBRATION 209

4.3.6 Correction for delay and antenna position offsets using gencal

The gencal task provides a means of specifying antenna-based calibration values manually. The
values are put in designated tables and can be applied to the data on-the-fly in solving tasks and
using applycal.

The gencal task has the inputs:

gencal :: Specify Calibration Values of Various Types
vis = 7 # Name of input visibility file

caltable = ?? # The new/existing calibration table

caltype = ’tecim’ # The calibration type: ’amp’,’ph’,’sbd’,’mbd’,’antpos’,’an
tposvla’,’tsys’,’evlagain’,’opac’,’gc’,’gceff’,’eff’,’te
cim’

infile = 7 # Input ancilliary file

spw = ’all’ # Calibration spw(s) selection

antenna = 71 # Calibration antenna(s) selection

pol = 0 # Calibration polarizations(s) selection

parameter =] # The calibration values

Current antenna-based gencal options (caltype) are:

e ’amp’ — amplitude correction

e ’ph’ — phase correction

e ’sbd’ — single-band delay (phase-frequency slope for each spw)
e ’mbd’ — multi-band delay (phase-frequency slope over all spw)

e ’antpos’ — ITRF antenna position corrections for the Jansky VLA (automatic parameter
lookup is supported)

e ’antposvla’ — old VLA-centric antenna position corrections

e ’tsys’ — Tsys from the SYSCAL table (ALMA)

e ’evlagain’ — VLA switched-power gains (experimental; equal to ’swpow’)

e ’swpow’ — VLA switched power (equal to ’evlagain’)

e ’rq’ — VLA requantizer gains only

e ’swp/rq’ — VLA switched-power gains divided by requantizer gain

e ’opac’ — Tropospheric opacity

e ’gc’ — Gain curve (zenith-angle-dependent gain) (VLA only) (auto-lookup only)

e ’eff’ — Antenna efficiency (sqrt(K/Jy)) (VLA only) (auto-lookup only)

CHAPTER 4. SYNTHESIS CALIBRATION 210

e ’gceff’ — Gain curve and efficiency (VLA only) (auto-lookup only)

e ’tecim’ — Total electron content to derive dispersive delays

The calibration parameter specifications cannot be time-variable in the present implementation
(though some of them will introduce implicit time-dependence upon evaluation in the apply). Cal-
ibration values can be assigned to each spw, antenna and pol selection, where applicable. The list
of calibration values specified in parameter must conform to the range of spectral windows, anten-
nas, and polarizations specified in spw, antenna and pol, with the values specified in order of the
specified polarizations (fastest), antennas, and spectral windows (slowest). If any of spw, antenna,
or pol are left unspecified (empty strings), the values specified in parameter will be assumed appli-
cable to all values of the unspecified data axes. The output caltable will otherwise assume nominal
calibration values for unspecified spectral windows, antennas, and polarizations. Note that an-
tenna position corrections formally do not have spectral-window or polarization dependence; such
specifications should not be used with ’antpos’.

The same caltable can be specified for multiple runs of gencal, in which case the specified param-
eters will be incorporated cumulatively. E.g., amplitude parameters (caltype=’amp’) multiply
and phase-like parameters (’ph’, ’sbd’,’mbd’,’antpos’) add. Parameters for ’>amp’ and ’ph’
corrections can be incorporated into the same caltable (in separate runs), but each of the other
types require their own unique caltable. A mechanism for specifying manual corrections via a text
file will be provided in the future.

Two kinds of delay corrections are supported. For caltype=’sbd’, the specified delays (in nanosec-
onds) will be applied locally to each spectral window, referring the derived phase corrections to
each spectral window’s reference frequency (where the phase correction will be zero). The phases in
each spectral window will nominally be flattened, but any phase offsets between spectral windows
will remain. (These can be corrected using caltype=’phase’, or via ordinary spectral-window-
dependent phase calibration.) For caltype=’mbd’, the evaluated phase corrections are referred
to zero frequency. This causes a correction that is coherent over many spectral windows. If the
data are already coherent over many spectral windows and share a common multi-band delay (e.g.,
VLA data, per baseband), caltype=’mbd’ corrections will maintain this coherence and flatten
the frequency-dependent phase. Using caltype=’sbd’ in this instance will introduce phase offsets
among spectral windows that reflect the multi-band delay.

For antenna position corrections (caltype=’antpos’), the antenna position offsets are specified in
the ITRF frame. If the antenna field is left empty, gencal will try to look up the appropriate
antenna position offsets at the time of the observation from the VLA baseline webpage http:
//www.vla.nrao.edu/astro/archive/baselines/.

For VLA position corrections in the VLA-centric frame, use caltype=’antposvla’, and gencal
will rotate them to ITRF before storing them in the output caltable.

The sign and scale convention for gencal corrections (indeed for all CASA caltables) is such that
the specified parameters (and as stored in caltables) are the factors that corrupt ideal data to yield
the observed data. Thus, when applied to correct the data, their effective inverse will automatically
be taken. I.e., amplitude factors will be divided into the data on correction. Phase-like parameters
adopt the convention that the complex factor for the second antenna in the baseline is conjugated,

http://www.vla.nrao.edu/astro/archive/baselines/
http://www.vla.nrao.edu/astro/archive/baselines/

CHAPTER 4. SYNTHESIS CALIBRATION 211

and then both antenna factors are divided into the data on correction. (These conventions differ
from AIPS in that multiplying correction factors are stored in AIPS calibration tables; however,
the phase convention ends up being the same since AIPS conjugates the complex factor for the first
antenna in the baseline.)

The following series of examples illustrate the use of gencal.

For the dataset *data.ms’, the following sequence of gencal runs introduces, into a single caltable
(*test.G’), (1) an antenna-based amplitude scale correction of 3.0 for all polarizations, antennas,
and spectral windows, (2) phase corrections for all spectral windows and polarizations of 45 and 120
degrees to antennas EA03 and EA04, respectively, (3) phase corrections for all spectral windows
of 63 and -34 in R (only) for antennas EA05 and EA06, respectively, and (4) phase corrections for
all spectral windows of 14, -23, -130, and 145 degrees for antenna/polarizations EA09/R, EA09/L,
EA10/R, and EA10/L, respectively:

gencal(vis=’data.ms’,caltable=’test.G’,caltype=’amp’, \
spw=’’,antenna=’’,pol=’’, \
parameter=[3])

gencal(vis=’data.ms’,caltable="test.G’,caltype=’ph’, \
spw=’’,antenna=’EA03,EA04’ ,pol="’, \
parameter=[45,120])

gencal (vis=’data.ms’,caltable=’"test.G’,caltype="ph’, \
spw=’’,antenna=’EA05,EA06’ ,pol="R’, \
parameter=[63,-34])

gencal (vis=’data.ms’,caltable=’test.G’,caltype="ph’, \
spw=’’,antenna=’EA09,EA10’ ,pol="R,L’, \
parameter=[14,-23,-130,145])

In the following example, delay corrections in both polarizations will be adjusted for antenna EA09
by 14 nsec in spw 2 and -130 nsec in spw 3, and for antenna EA10 by -23 nsec in spw 2 and 145
nsec in spw 3:

gencal (vis=’test.ms’,caltable=’test.sbd’,caltype=’sbd’, \
spw=’2,3’ ,antenna="EA09,EA10’° ,pol="", \
parameter=[14,-23,-130,145])

In the following example, antenna position corrections in meters (in ITRF) for antenna EA(09

(dBx=0.01, dBy=0.02, dBz=0.03) and for antenna EA10 (dBx=-0.03, dBy=-0.01, dBz=-0.02) are

introduced. Note that three parameters are required for each antenna. The antenna offsets can be

obtained for the ’Jansky VLA / old VLA Baseline Corrections’ web page: http://www.vla.nrao.edu/astro/archive/bas
The table given on this webpage has a format like:

; 2010 BASELINE CORRECTIONS IN METERS

h

CHAPTER 4. SYNTHESIS CALIBRATION 212

;ANT
;MOVED OBSDATE Put_In_ MC(IAT) ANT PAD Bx By Bz

JAN27 FEB12 FEB21 01:57 11 E04 0.0000 0.0000 0.0000
JAN27 FEB12 FEB21 01:57 26 W03 -0.0170 0.0204 0.0041
MAR24 MAR25 MAR26 18:28 17 W07 -0.0061 -0.0069 -0.0055
APR21 MAYO2 MAYO4 23:25 12 EO08 -0.0072 0.0045 -0.0017

If your observations fall in between the ’Antenna Moved’ and 'Put_In_’ dates of a given antenna,
you may choose to apply the offsets in that table; the 'Put_In_’ time stamp marks the date where
the more accurate solution was introduced in the data stream directly and no correction is required
anymore. In gencal the offsets will be inserted as:

gencal(vis=’test.ms’,caltable=’test.antpos’,caltype=’antpos’, \
antenna=’EAQ09,EA10’, \
parameter=[0.01,0.02,0.03, -0.03,-0.01,-0.02])

In the following example, antenna position corrections (in the traditional VLA-centric frame) will
be introduced in meters for antenna EA09 (dBx=0.01, dBy=0.02, dBz=0.03) and for antenna EA10
(dBx=-0.03, dBy=-0.01, dBz=-0.02) These offsets will be rotated to the ITRF frame before storing
them in the caltable.

gencal(vis=’test.ms’,caltable=’test.antposvla’,caltype=’antposvla’, \
antenna=’EA09,EA10’, \
parameter=[0.01,0.02,0.03, -0.03,-0.01,-0.02])

gencal is also the task to generate gaincurve, antenna efficiency, and opacity tables. The first two
items can be determined together with caltype=’gceff’ and the latter with caltype=’opac’.
These tables are treated just like any other calibration table and will be carried through the
calibration steps. This method replaces the older method where 'gaincurve’ and 'opacity’ keywords
were present in calibration tasks such as gaincal, bandpass, or applycal.

4.3.7 Applying Jansky VLA switched power or ALMA Tsys using gencal

Noise diodes in the Jansky VLA antennas can be used to pre-calibrate the data. The diodes follow
an ON-OFF cycle and the power for both states is measured and recorded. This is called the "VLA
switched power’ calibration. To apply the switched power data, one needs to create a calibration
table with gencal using caltype=’evlagain’, like

gencal(vis=’test.ms’,caltable=’VLAswitchedpower.cal’,caltype=’evlagain’)

For ALMA the calibration of system temperature is done via hot loads and the data recorded
similar to the VLA in the Measurement Set (ALMA will provide Measurement Sets where these
data are available. To derive the calibration table from it, use caltype=’tsys’:

CHAPTER 4. SYNTHESIS CALIBRATION 213

gencal(vis=’test.ms’,caltable=’ALMAtsys.cal’,caltype=’tsys’)

This calibration tables created for ALMA or VLA are then carried along all further calibration
steps in the gaintable parameter.

4.3.8 Generate a gain table based on Water Vapor Radiometer data wvrgcal

wvrgcal :: Generate a gain table based on Water Vapour Radiometer data
vis = ?? # Name of input visibility file
caltable = 7 # Name of output gain
calibration table
toffset = 0 # Time offset (sec) between
interferometric and WVR data
segsource = True # Do a new coefficient
calculation for each source

tie = [] # Prioritise tieing the phase

of these sources as well as possible (requires
segsource=True)
sourceflag = (] # Regard the WVR data for
these source(s) as bad and do not produce corrections for it
(requires segsource=True)

disperse = False # Apply correction for dispersion
wvrflag = [>°] # Regard the WVR data for these
antenna(s) as bad and replace its data with

interpolated values from
neighbouring antennas

statfield = 2 # Compute the statistics (Phase
RMS, Disc) on this field only

statsource = »? # Compute the statistics (Phase
RMS, Disc) on this source only

smooth = ?? # Smooth calibration solution
on the given timescale

scale = 1.0 # Scale the entire phase
correction by this factor

spw =] # List of the spectral window

IDs for which solutions should be saved into the
caltable

WVILSpW =] # List of the spectral window
IDs from which the WVR data should be taken
reversespw = 7 # Reverse the sign of the

correction for the listed SPWs (only needed for early ALMA
data before Cycle 0)

cont = False # Estimate the continuum (e.g.,
due to clouds) (experimental)

maxdistm = 500.0 # maximum distance (m) of an
antenna used for interpolation for a flagged antenna

minnumants = 2 # minimum number of near

antennas (up to 3) required for interpolation

CHAPTER 4. SYNTHESIS CALIBRATION 214

mingoodfrac = 0.8 # If the fraction of unflagged
data for an antenna is below this value (0. to 1.), the
antenna is flagged.

usefieldtab = False # derive the antenna AZ/EL
values from the FIELD rather than the POINTING table
refant = [°] # use the WVR data from this

antenna for calculating the dT/dL parameters (can give
ranked list)

The task wvrgcal generates a gain table based on Water Vapor Radiometer (WVR) data and is
used for ALMA data reduction. It is an interface to the executable ¢ ‘wvrgcal’’, which is part
of the CASA 4.6 distribution and can also be called from outside CASA. The wvrgcal software is
based on the libair and libbnmin libraries which were developed by Bojan Nikolic at the University
of Cambridge as part of EU FP6 ALMA Enhancement program.

CASA 4.6 contains version 2.1 of wvrgcal. The algorithmic core of wvrgcal is described in three
ALMA memos (number 587, 588, and 593) which describe the algorithms implemented in the
software. They can be found at at the ALMA Memo Serieﬂ Since wvrgcal version 2.0 (2013),
maintenance and extensions of this software are done by ESO (contact: D. Petry).

Briefly, wvrgcal follows a Bayesian approach to calculate the coefficients that convert the outputs
of the ALMA 183 GHz water-vapor radiometers (mounted on each antenna) into estimates of path
fluctuations which can then be used to correct the observed interferometric visibilities.

The CASA task interface to wvrgcal follows closely the interface of the shell executable at the same
time staying within the CASA task parameter conventions.

In ALMA data, the WVR measurements belonging to a given observation are contained in the
ASDM for that observation. After conversion to an MS using importasdm, the WVR information
can be found in separate spectral windows. As of April 2016, it is still one single spectral window for
all WVRs, however, the ID of the spectral window may vary between datasets. wvrgcal identifies
the SPW autonomously but it can also be specified via the parameter ”wvrspw” (see below). The
specified spectral window(s) must be present in the MS for wvrgcal to work.

The various features of wvrgcal are then controlled by a number of task parameters (see the list
above). They have default values which will work for ALMA data. An example for a typical
wvrgcal call can be found in the ALMA CASA guide for the NGC 3256 analysis:

wvrgcal (vis=’uid___A002_X1d54al_X5.ms’,
caltable=’cal-wvr-uid___A002_X1d54a1_X5.W’, toffset=-1,

segsource=True, tie=["Titan,1037-295,NGC3256"], statsource="1037-295",
spw=[17,19,21,23])

Here, vis is the name of input visibility file (which as mentioned above also contains the WVR
data in spectral window 0) and caltable is the name of the output gain calibration table.

"http://library.nrao.edu/alma.shtml

CHAPTER 4. SYNTHESIS CALIBRATION 215

toffset is the known time offset in seconds between the WVR measurements and the visibility
integrations they are valid for. For ALMA, this offset is presently -1 s (which is also the default
value).

The parameter segsource (segregate source) controls whether separate coefficients are calculated
for each source. The default value True is the recommended one for ALMA. When segsource is
True, the subparameter tie is available. It permits to form groups of sources for which common
coefficients are calculated as well as possible. The tie parameter ensures best possible phase
transfer between a group of sources. In general it is recommended to tie together all of the sources in
a single Science Goal (in ALMA speak) and their phase calibrator(s). The recommended maximum
angular distance up to which two sources can be tied is 15°.

The parameter statsource controls for which sources statistics are calculated and displayed in the
logger. This has no influence on the generated calibration table.

Via the parameter spw, one can control for which of the input spectral windows wvrgcal will
calculate phase corrections and store them in the output calibration table. By default, solutions
for all spectral windows are written except for the ones containing WVR data.

wvrgcal respects the flags in the Main and ANTENNA table of the MS. The parameter mingood-
frac lets the user set a requirement on the minimum fraction of good measurements for accepting
the WVR data from an antenna. If antennas are flagged, their WVR solution is interpolated from
the three nearest neighboring antennas. This process can be controlled with the new parameters
mazxdistm and minnumants. The former sets the maximum distance an antenna used for interpo-
lation may have from the flagged one. And minnumants sets how many near antennas there have
to be for interpolation to take place.

For more details on the WVR Phase correction, see also the the ALMA Memo “Quality Control of
WVR Phase Correction Based on Differences Between WVR, Channels” by B. Nikolic, R. C. Bolton
& J. S. Richeif?] see also ALMA memo #5937

4.3.8.1 Statistical parameters shown in the logger output of wvrgcal

wvrgcal writes out a variety of information to the logger; including various statistical measures
of the performance. This allows the user to judge whether WVR correction is appropriate for the
ms, to check whether any antennas have problematic WVR values, and to examine the predicted
performance of the WVR correction when applied.

For each set of correction coefficients which are calculated (the number of coefficient sets are
controlled by the parameters nsol, segsource and tie), the wvrgcal output to the logger first of
all shows the time sample, the individual temperatures of each of the four WVR channels and the
elevation of the source in question at that time. For each of these coefficient sets, it then gives the
evidence of the bayesian parameter estimation, the calculated precipitable water vapor (PWV) and
its error in mm, and the correction coefficients found for each WVR channel (dTdL).

http://casa.nrao.edu/Memos/memogachannels. pdf
3http://library.nrao.edu/public/memos/alma/memo593.pdf

CHAPTER 4. SYNTHESIS CALIBRATION 216

The output then shows the statistical information about the observation. First of all it gives the
start and end times for the parts of the observation used to calculate these statistics (controlled
by segsource). It then shows a break down for each of the antennas in the data set. This gives
the antenna name and number; whether or not it has a WVR (column WVR); whether or not it has
been flagged (column FLAG); the RMS of the path length variation with time towards that antenna
(column RMS); and the discrepancy between the RMS path length calculated separately for different
WYVR channels (column Disc.). These values allow the user to see if an individual WVR appears to
have been suffering from problems during the observation, and to flag that antenna using wvrflag
if necessary.

This discrepancy value, Disc., can in addition be used as a simple diagnostic tool to evaluate
whether or not the WVR correction caltable created by wvrgcal should be applied. In the event
of the WVR observations being contaminated by strong cloud emission in the atmosphere, the
attempt by wvrgcal to fit the water vapor line may not be successful, and applying the produced
calibration table can in extreme cases reduce the quality of the data. However, these weather
conditions should identified by a high value in the discrepancy column produced when running
wvrgcal.

Discrepancy values of greater than a 1000 microns usually indicate strong cloud contamination of
the WVR data, and the output calibration table should probably not be applied. If the values are
between 100 and 1000 microns, then the user should manually examine the phases before and after
applying the caltable to decide if WVR correction is appropriate. Work is underway at ALMA to
provide additional routines to at least partially remove the cloud component from the WVR data
before calculating phase corrections. CASA 4.7 will contain a first tested version of such a tool.

After the antenna-by-antenna statistics, the output then displays some estimates of the performance
of the wvrgcal correction. These are the thermal contribution from the water vapor to the path
fluctuations per antenna (in microns), the largest path fluctuation found on a baseline (in microns),
and the expected error on the path length calculated for each baseline due to the error in the
coefficients (in microns).

4.3.8.2 Antenna position calculation

The information about antenna pointing direction is by default taken from the POINTING table.
Should this table not be present for some reason, the user can instead switch to determining the
antenna positions from the phase directions in the FIELD table (under the assumption that all
antennas were pointing ideally). The switch is performed by setting the parameter usefieldtab
to True.

4.3.8.3 Spectral window selection

By default wvrgcal puts solutions for all spectral windows of the MS into the output calibration
table. Since usually only the spectral windows are of interest in which the science target and the
calibrators were observed, it is not necessary to store solutions for other spectral windows.

CHAPTER 4. SYNTHESIS CALIBRATION 217

The spectral windows for which solutions are stored can be selected with the parameter spw, e.g.
spw = [17,19,21,23] will make wvrgcal write only solutions for spectral windows 17, 19, 21, and
23.

W.r.t to the input WVR spectral windows, wvrgcal will by default regard all windows with 4
channels as WVR data. In typical ALMA data there is only one such spectral window in each
ASDM. This may change in the future. In any case, the input WVR spectral window(s) can be
selected with the optional parameter wvrspw. The syntax is the same as for the parameter spw
above.

4.3.9 Ionospheric corrections

CASA 4.3 introduces initial support for on-axis ionospheric corrections, using time- and direction-
dependent total electron content (TEC) information obtained from the internet. The correction
includes the dispersive delay (o< v~1) delay and Faraday rotation (o< v~2) terms. These corrections
are most relevant at observing frequencies less than ~5 GHz. When relevant, the ionosphere correc-
tion table should be generated at the beginning of a reduction along with other calibration priors
(antenna position errors, gain curve, opacity, etc.), and carried through all subsequent calibration
steps. Formally, the idea is that the ionospheric effects (as a function of time and on-axis direction)
will be nominally accounted for by this calibration table, and thus not spuriously leak into gain
and bandpass solves, etc. In practice, the quality of the ionospheric correction is limited by the
relatively sparse sampling (in time and direction) of the available TEC information. Especially
active ionospheric conditions may not be corrected very well. Also, direction-dependent ionosphere
corrections are not yet supported. (Various improvements are under study for future releases.)

To generate the ionosphere correction table, first import a helper function from the casapy recipes
repository:

from recipes import tec_maps
Then, generate a TEC surface image:
tec_maps.create(vis=’mydata.ms’,doplot=T,imname=’iono’)

This function goes to the web to obtain TEC information for the observing date and location,
and generates a time-dependent CASA image containing this information. The string specified
for imname is used as a prefix for two output images, with suffixes .IGS_TEC.im (the actual TEC
image) and .JGS_RMS_TEC.im (a TEC error image). If imname is unspecified, the MS name (from
vis) will be used as the prefix.

The quality of the retrieved TEC information improves with time after the observing date, becoming
optimal 1-2 weeks later. Both images can be viewed as a movie in the CASA viewer. If doplot=T,
the function will also produce a plot of the TEC as a function of time in a vertical direction over
the observatory.

CHAPTER 4. SYNTHESIS CALIBRATION 218

Finally, to generate the ionosphere correction caltable, pass the .IGS_TFEC.im image into gencal,
using caltype=’tecim’:

gencal (vis=’mydata.ms’,caltable=’tec.cal’,caltype="tecim’,infile="iono.IGS_TEC.im’)

This iterates through the dataset and samples the zenith angle-dependent projected line-of-sight
TEC for all times in the observation, storing the result in a standard CASA caltable. Plotting this
caltable will show how the TEC varies between observing directions for different fields and times,
in particular how it changes as zenith angle changes, and including the nominal difference between
science targets and calibrators.

This caltable should then be used as a prior in all subsequent calibration solves, and included in
the final applycal.

A few warnings:

e The TEC information obtained from the web is relatively poorly sampled in time and di-
rection, and so will not always describe the details of the ionospheric corruption, especially
during active periods.

e For instrumental polarization calibration, it is recommended that an unpolarized calibrator
be used; polarized calibrators may not yield as accurate a solution since the ionospheric
corrections are not yet used properly in the source polarization portion of the solve.

Special thanks are due to Jason Kooi (Ulowa) for his contributions to ionospheric corrections in
CASA.

4.3.10 Other a priori Calibrations and Corrections

Other a priori calibrations will be added to the calibrater (cb) tool in the near future. These
will include instrumental line-length corrections, etc. Where appropriate, solving capabilities for
these effects will also be added.

4.4 Solving for Calibration — Bandpass, Gain, Polarization

The gaincal, bandpass, polcal, and blcal tasks actually solve for the unknown calibration pa-
rameters from the visibility data obtained on calibrator sources, placing the results in a calibration
table. They take as input an MS, and a number of parameters that specify any prior calibration
or previous calibration tables to pre-apply before computing the solution. These are placed in the
proper sequence of the Measurement Equation automatically.

We first discuss the parameters that are in common between many of the calibration tasks. Then
we describe each solver in turn.

CHAPTER 4. SYNTHESIS CALIBRATION 219

4.4.1 Common Calibration Solver Parameters

There are a number of parameters that are in common between the calibration “solver” tasks.
These also appear in some of the other calibration manipulation and application tasks.

4.4.1.1 Parameters for Specification : vis and caltable

The input Measurement Set and output table are controlled by the following parameters:

vis = » # Name of input visibility file
caltable » # Name of output calibration table

The MS name is input in vis. If it is highlighted red in the inputs (§[1.4.5.4]) then it does not exist,
and the task will not execute. Check the name and path in this case.

The output table name is placed in caltable. Be sure to give a unique name to the output table,
or be careful. If the table exists, then what happens next will depend on the task and the values of
other parameters (e.g. §. The task may not execute giving a warning that the table already
exists, or will go ahead and overwrite the solutions in that table, or append them. Be careful.

4.4.1.2 Selection: field, spw, selectdata, intent, and observation

Selection is controlled by the parameters:

field = ?? # field names or index of calibrators: ’’==>all
spw = »? # spectral window:channels: ’’==>all

intent = ?? # Select observing intent

selectdata = False # Other data selection parameters

Field and spectral window selection are so often used, that we have made these standard parameters
field and spw respectively. intent is the scan intent that was specified when the observations
were set up. They typically describe what was intended with a specific scan, i.e. a flux or phase cal-
ibration, a bandpass, a pointing, an observation of your target, or something else or a combination.
The format for the scan intents of your observations are listed in the logger when you run listobs.
Minimum matching with wildcards will work, like *BANDPASS*’. This is especially useful when
multiple intents are attached to scans. Finally, observation is an identifier to distinguish between
different observing runs, mainly used for ALMA.

The selectdata parameter expands as usual, uncovering other selection sub-parameters:

selectdata = True # data selection parameters
field = 2 # field names or field index
numbers (blank for all)
spw = 0 # spectral windows:channels (blank for all)
timerange = 0 # time range (blank for all)
uvrange = 0 # uv range (blank for all)

CHAPTER 4. SYNTHESIS CALIBRATION 220

antenna = 7 # antenna/baselines (blank for all)
scan = » # scan numbers (blank for all)
correlation =) # correlations (blank for all)
array = 0 # (sub)array numbers (blank for all)
observation = 0 # Select by observation ID(s)
msselect = » # MS selection (blank for all)

Note that if selectdata=False these parameters are not used when the task is executed, even if
set underneath.

The most common selectdata parameter to use is uvrange, which can be used to exclude longer
baselines if the calibrator is resolved, or short baselines of the calibrator contains extended flux not

accounted for in the model (e.g. §[4.3.5.1]).

See § [2.3] for more on the selection parameters.

4.4.1.3 Prior Calibration and Correction: parang

These parameters control the on-the-fly application of various calibration or effect-based corrections
prior to the solving process.

The parang parameter turns on the application of the antenna-based parallactic angle correction
(’P?) in the measurement equation. This is necessary for polarization calibration and imaging, or for
cases where the parallactic angles are different for geographically spaced antennas and it is desired
that the ordinary gain calibration not absorb the inter-antenna parallactic angle phase. When
dealing with only the parallel-hand data (e.g. RR, LL, XX, YY), and an unpolarized calibrator
model for a co-located array (e.g. the VLA or ALMA), you can set parang=False and save some
computational effort. Otherwise, set parang=True to apply this correction.

See § [4.3] for more on Prior Calibration, including how to invoke gaincurve and opacity cor-
rection using gencal.

4.4.1.4 Previous Calibration: gaintable, gainfield, interp and spwmap

Calibration tables that have already been determined can also be applied before solving for the
new table:

docallib = False # Use traditional cal apply parameters
gaintable =] # Gain calibration table(s) to apply on the fly
gainfield = (] # Select a subset of calibrators from gaintable(s)
interp = 0 # Interpolation mode (in time) to use for each gaintable
spwmap =] # Spectral windows combinations to form for gaintable(s)

This is controlled by the gaintable parameter, which takes a string or list of strings giving one or
more calibration tables to pre-apply. For example,

gaintable = [’ngcb5921.bcal’,’ngcb921.gcal’]

CHAPTER 4. SYNTHESIS CALIBRATION 221

specifies two tables, in this case bandpass and gain calibration tables respectively.

The other parameters key off gaintable, taking single values or lists, with an entry for each table
in gaintable. The order is given by that in gaintable.

The gainfield parameter specifies which fields from the respective gaintable to select for apply.
This is a list, with each entry a string or list of strings. The default >’ for an entry means to use
all in that table. For example,

gaintable = [’ngcb5921.bcal’,’ngcb921.gcal’]
gainfield = [’1331+305’, [’1331+305’,°1445+099°]]

or using indices
gainfield = [’0°, [’0°,°1°] 1]

to specify the field > 1331+305° from the table *ngc5921.bcal’ and fields >1331+305° and ’1445+099°
from the second table 'ngc5921.gcal’. We could also have wildcarded the selection, e.g.

gainfield = [’0’, 7%’]

taking all fields from the second table. And of course we could have used the default

gainfield = [’0’, *’]
or even
gainfield = [’0°]

which is to take all for the second table in gaintable. In addition, gainfield can be specified by
gainfield = [’nearest’]

which selects the calibrator that is the spatially closest (in sky coordinates) to each of the selected
MS fields specified in the field parameter. This is particularly useful for running applycal with
a number of different sources to be calibrated in a single run.

The interp parameter chooses the interpolation scheme to be used when pre-applying the solu-
tion in the tables. Interpolation in both time and frequency (for channel-dependent calibrations)
are supported. The choices are currently ’nearest’ and ’linear’, and ’nearest’, ’linear’,
cubic, and spline for frequency-dependent interpolation. Frequency-dependent interpolation is
only relevant for channel-dependent calibration tables (like bandpasses) that are undersampled in
frequency relative to the data.

e ’nearest’ just picks the entry nearest in time or freq to the visibility in question;

CHAPTER 4. SYNTHESIS CALIBRATION 222

e ’linear’ interpolation calibrates each datum with calibration phases and amplitudes linearly
interpolated from neighboring values. In the case of phase, this mode will assume that phase
never jumps more than 180° between neighboring points, and so undersampled cycle-slips
will not be corrected for. Solutions will not be extrapolated arbitrarily in time or frequency
for data before the first solution or after the last solution; such data will be calibrated using
’nearest’ to avoid unreasonable extrapolations.

e ’cubic’ interpolation forms a 3rd-order polynomial that passes through the nearest 4 cali-
bration samples (separately in phase and amplitude

e ’spline’ interpolation forms a cubic spline that passes through the nearest 4 calibration

samples (separately in phase and amplitude

For each gaintable, specify the interpolation style in quotes, with the frequency-dependent inter-
polation style specified after a comma, if relevant.

If the uncalibrated phase is changing rapidly, a nearest’ interpolation is not desirable. Usually,
interp=’1linear’ is the best choice. For example,

gaintable=[’gain’, ’bandpass’]
interp = [’nearest’, ’linear,spline’]

uses nearest “interpolation” on the first table, and linear (in time) and spline (in freq) on the
second.

The spwmap parameter sets the spectral window combinations to form for the gaintable(s). This
is a list, or a list of lists, of integers giving the spw IDs to map. There is one list for each table in
gaintable, with an entry for each ID in the MS. For example,

spwmap=[0,0,1,1] # apply from spw=0 to 0,1 and 1 to 2,3
for an MS with spw=0,1,2,3. For multiple gaintable, use lists of lists, e.g.

spwmap=[[0,0,1,1], [0,1,0,1]] # 2nd table spw=0 to 0,2 and 1 to 1,3

4.4.1.5 Solving: solint, combine, preavg, refant, minblperant, minsnr

The parameters controlling common aspects of the solution are:

solint = >inf’ # Solution interval: egs. ’inf’, ’60s’ (see help)
combine = ’scan’ # Data axes which to combine for solve (obs, scan,

spw, and/or field)
preavg = -1.0 # Pre-averaging interval (sec) (rarely needed)
refant = 2 # Reference antenna name(s)
minblperant = 4 # Minimum baselines _per antenna_ required for solve
minsnr = 3.0 # Reject solutions below this SNR

CHAPTER 4. SYNTHESIS CALIBRATION 223

The time and frequency (if relevant) solution interval is given by solint. Optionally a frequency
interval for each solution can be added after a comma, e.g. solint=’60s,300Hz’. Time units
are in seconds unless specified differently. Frequency units can be either channels or Hz and only
make sense for bandpass of frequency dependent polarization calibration. The special values ’inf’
and -1 specify an “infinite” solution interval encompassing the entire dataset, while >int’ or zero
specify a solution every integration. You can use time quanta in the string, e.g. solint=’1min’
and solint=’60s’ both specify solution intervals of one minute. Note that 'm’ is a unit of distance
(meters); 'min’ must be used to specify minutes. The solint parameter interacts with combine to
determine whether the solutions cross scan or field boundaries.

The parameter controlling the scope of the solution is combine. For the default combine=’’ solu-
tions will break at obsld, scan, field, and spw boundaries. Specification of any of these in combine
will extend the solutions over the boundaries (up to the solint). For example, combine=’spw’
will combine spectral windows together for solving, while combine=’scan’ will cross scans, and
combine=’obs,scan’ will use data across different observation IDs and scans (usually, obslds con-
sist of many scans, so it is not meaningful to combine obslds without also combining scans). Thus,
to do scan-based solutions (single solution for each scan), set

solint = ’inf’

combine = 7’
while

solint = ’inf’

combine = ’scan’

will make a single solution for the entire dataset (for a given field and spw).
solint = ’inf,30ch’

will calculate a bandpass solution for each scan, averaging over 30 channels.

You can specify multiple choices for combination:
combine = ’scan,spw’

for example.

Alert: Care should be exercised when using combine=’spw’ in cases where multiple groups of
concurrent spectral windows are observed as a function of time. Currently, only one aggregate
spectral window can be generated in a single calibration solve execution, and the meta-information
for this spectral window is calculated from all selected MS spectral windows. To avoid incorrect
calibration meta-information, each spectral window group should be calibrated independently (also
without using append=True. Additional flexibility in this area will be supported in a future version.

The reference antenna is specified by the refant parameter. A list of antennas can be provided to
this parameter and if the first antenna is not present in the data, the next antenna in the list will
be used, etc. It is useful to “lock” the solutions with time, effectively rotating (after solving) the

CHAPTER 4. SYNTHESIS CALIBRATION 224

phase of the gain solutions for all antennas such that the reference antenna’s phase is constant at
zero. If the selected antenna drops out, another antenna will be selected for ongoing consistency
in time (at its “current” value) until the refant returns, usually at a new value (not zero), which
will be kept fixed thenceforth. You can also run without a reference antenna, but in this case the
solutions will formally float with time; in practice, the first antenna will be approximately constant
near zero phase. It is usually prudent to select an antenna in the center of the array that is known
to be particularly stable, as any gain jumps or wanders in the refant will be transferred to the
other antenna solutions. Also, it is best to choose a reference antenna that never drops out.

Setting a preavg time (only needed in polcal) will let you average data over periods shorter than
the solution interval first before solving on longer timescales.

The minimum signal-to-noise ratio allowed for an acceptable solution is specified in the minsnr pa-
rameter. Default is minsnr=3. The minblperant parameter sets the minimum number of baselines
to other antennas that must be preset for each antenna to be included in a solution. This enables
control of the constraints that a solution will require for each antenna.

4.4.1.6 Action: append and solnorm

The following parameters control some things that happen after solutions are obtained:

solnorm
append

False # Normalize solution amplitudes post-solve.
False # Append solutions to (existing) table.
False will overwrite.

The solnorm parameter toggles on the option to normalize the solution after the solutions are
obtained. The exact effect of this depends upon the type of solution. Not all tasks use this
parameter.

One should be aware when using solnorm that if this is done in the last stage of a chain of
calibration, then the part of the calibration that is “normalized” away will be lost. It is best to
use this in early stages (for example in a first bandpass calibration) so that later stages (such as
final gain calibration) can absorb the lost normalization scaling. It is not strictly necessary to
use solnorm=True at all, but is sometimes helpful if you want to have a normalized bandpass for
example.

The append parameter, if set to True, will append the solutions from this run to existing solutions in
caltable. Of course, this only matters if the table already exists. If append=False and caltable
exists, it will overwrite.

The append parameter should be used with care, especially when also using combine in non-trivial
ways. E.g., calibration solves will currently (CASA 4.5) refuse to append incongruent aggregate
spectral windows (e.g., observations with more than one group of concurrent spectral windows).
This limitation arises from difficulty determining the appropriate spectral window fan-out on apply,
and will be relaxed in a future version.

CHAPTER 4. SYNTHESIS CALIBRATION 225

4.4.2 Spectral Bandpass Calibration (bandpass)

For channelized data, it is usually desirable to solve for the gain variations in frequency as well as in
time. Variation in frequency arises as a result of non-uniform filter passbands or other frequency-
dependent effects in signal transmission. It is usually the case that these frequency-dependent
effects vary on timescales much longer than the time-dependent effects handled by the gain types
'G’ and ’T". Thus, it makes sense to solve for them as a separate term: ’B’, using the bandpass
task.

The inputs to bandpass are:

Dbandpass :: Calculates a bandpass calibration solution
vis = > # Name of input visibility file
caltable = 22 # Name of output gain calibration table
field = 0 # Select field using field id(s) or field name(s)
spw = 7 # Select spectral window/channels
intent = »? # Select observing intent
selectdata = True # Other data selection parameters
timerange = ?? # Select data based on time range
uvrange = ?? # Select data within uvrange (default units meters)
antenna = ?? # Select data based on antenna/baseline
scan = 2 # Scan number range
observation = 0 # Select by observation ID(s)
msselect = 2 # Optional complex data selection (ignore for now)
solint = >inf’ # Solution interval in time[,freq]
combine = ’scan’ # Data axes which to combine
for solve (obs, scan, spw, and/or field)
refant = ?? # Reference antenna name(s)
minblperant = 4 # Minimum baselines _per
antenna_ required for solve
minsnr = 3.0 # Reject solutions below this
SNR (only applies for bandtype = B)
solnorm = False # Normalize average solution amplitudes to 1.0
bandtype = B’ # Type of bandpass solution (B or BPOLY)
fillgaps = 0 # Fill flagged solution channels by interpolation
smodel = (] # Point source Stokes parameters for source model.
append = False # Append solutions to the (existing) table
docallib = False # Use callib or traditional cal apply parameters
gaintable =] # Gain calibration table(s) to apply on the fly
gainfield = (] # Select a subset of calibrators from gaintable(s)
interp = (] # Interpolation mode (in
time) to use for each gaintable
spwmap = (] # Spectral windows
combinations to form for gaintable(s)
parang = False # Apply parallactic angle correction

Many of these parameters are in common with the other calibration tasks and are described above

CHAPTER 4. SYNTHESIS CALIBRATION 226

in § L2

The bandtype parameter selects the type of solution used for the bandpass. The choices are ’B’
and *BPOLY’. The former solves for a complex gain in each channel in the selected part of the
MS. See § for more on ’B’. The latter uses a polynomial as a function of channel to fit
the bandpass, and expands further to reveal a number of sub-parameters See § for more on
’BPOLY”.

It is usually best to solve for the bandpass in channel data before solving for the gain as a function
of time. However, if the gains of the bandpass calibrator observations are fluctuating over the
timerange of those observations, then it can be helpful to first solve for the gains of that source
with gaincal , and input these to bandpass via gaintable. See more below on this strategy.

We now describe the issue of bandpass normalization, followed by a description of the options
bandtype=’B’ and bandtype=’BPOLY’.

4.4.2.1 Bandpass Normalization

The solnorm parameter (§ deserves more explanation in the context of the bandpass. Most
users are used to seeing a normalized bandpass, where the mean amplitude is unity and fiducial
phase is zero. The toggle solnorm=True allows this. However, the parts of the bandpass solution
normalized away will be still left in the data, and thus you should not use solnorm=True if the
bandpass calibration is the end of your calibration sequence (e.g. you have already done all the
gain calibration you want to). Note that setting solnorm=True will NOT rescale any previous
calibration tables that the user may have supplied in gaintable.

You can safely use solnorm=True if you do the bandpass first (perhaps after a throw-away initial
gain calibration) as we suggest above in § as later gain calibration stages will deal with this
remaining calibration term. This does have the benefit of isolating the overall (channel independent)
gains to the following gaincal stage. It is also recommended for the case where you have multiple
scans on possibly different bandpass calibrators. It may also be preferred when applying the
bandpass before doing gaincal and then fluxscale (§ , as significant variation of bandpass
among antennas could otherwise enter the gain solution and make (probably subtle) adjustments
to the flux scale.

We finally note that solnorm=False at the bandpass step in the calibration chain will still in the
end produce the correct results. It only means that there will be a part of what we usually think of
the gain calibration inside the bandpass solution, particularly if bandpass is run as the first step.

4.4.2.2 B solutions

Calibration type ’B’ differs from *G’ only in that it is determined for each channel in each spectral
window. It is possible to solve for it as a function of time, but it is most efficient to keep the ’B’
solving timescale as long as possible, and use *G’ or *T’ for frequency-independent rapid time-scale
variations.

CHAPTER 4. SYNTHESIS CALIBRATION 227

The ’B’ solutions are limited by the signal-to-noise ratio available per channel, which may be quite
small. It is therefore important that the data be coherent over the time-range of the B’ solutions.
As a result, *B’ solutions are almost always preceded by an initial *G’ or T’ solve using gaincal
(8 . In turn, if the B’ solution improves the frequency domain coherence significantly, a ’G’
or ’T’ solution following it will be better than the original.

For example, to solve for a B’ bandpass using a single short scan on the calibrator, then

default(’bandpass’)

vis = ’n5921.ms’

caltable = ’n5921.bcal’

gaintable = 7’ # No gain tables yet

gainfield = °

interp = ’

field = °0° # Calibrator 1331+305 = 3C286 (FIELD_ID 0)
spw = 7’ # all channels

selectdata = False # No other selection

bandtype = ’B’ # standard time-binned B (rather than BPOLY)
solint = ’inf’ # set solution interval arbitrarily long
refant = ’15’ # ref antenna 15 (=VLA:N2) (ID 14)
bandpass ()

On the other hand, we might have a number of scans on the bandpass calibrator spread over time,
but we want a single bandpass solution. In this case, we could solve for and then pre-apply an
initial gain calibration, and let the bandpass solution cross scans:

gaintable = ’nb921.init.gcal’ # Our previously determined G table
gainfield = ’0’°

interp = ’linear’ # Do linear interpolation

solint = ’inf’ # One interval over dataset

combine = ’scan’ # Solution crosses scans

Note that we obtained a bandpass solution for all channels in the MS. If explicit channel selection
is desired, for example some channels are useless and can be avoided entirely (e.g. edge channels
or those dominated by Gibbs ringing), then spw can be set to select only these channels, e.g.

spw = ’0:4759’ # channels 4-59 of spw O

This is not so critical for B’ solutions as for ’BPOLY’, as each channel is solved for independently,
and poor solutions at edges can be ignored.

If you have multiple time solutions, then these will be applied using whatever time interpolation
scheme is specified in later tasks.

The combine parameter (§[4.4.1.5) can be used to combine data across spectral windows, scans,
and fields.

CHAPTER 4. SYNTHESIS CALIBRATION 228

4.4.2.3 BPOLY solutions

For some observations, it may be the case that the SNR per channel is insufficient to obtain a
usable per-channel ’B’ solution. In this case it is desirable to solve instead for a best-fit functional
form for each antenna using the bandtype=’BPOLY’ solver. The ’BPOLY’ solver naturally enough
fits (Chebychev) polynomials to the amplitude and phase of the calibrator visibilities as a function
of frequency. Unlike ordinary ’B’, a single common ’BPOLY’ solution will be determined for all
spectral windows specified (or implicit) in the selection. As such, it is usually most meaningful to
select individual spectral windows for >BPOLY’ solves, unless groups of adjacent spectral windows
are known a priori to share a single continuous bandpass response over their combined frequency
range (e.g., PdBI data).

The >BPOLY’ solver requires a number of unique sub-parameters:

bandtype = ’BPOLY’ # Type of bandpass solution (B or BPOLY)
degamp = 3 # Polynomial degree for BPOLY amplitude solution
degphase = 3 # Polynomial degree for BPOLY phase solution
visnorm = False # Normalize data prior to BPOLY solution
maskcenter = 0 # Number of channels in BPOLY to avoid in center of band
maskedge = 0 # Percent of channels in BPOLY to avoid at each band edge

The degamp and degphase parameters indicate the polynomial degree desired for the amplitude
and phase solutions. The maskcenter parameter is used to indicate the number of channels in the
center of the band to avoid passing to the solution (e.g., to avoid Gibbs ringing in central channels
for PABI data). The maskedge drops beginning and end channels. The visnorm parameter turns
on normalization before the solution is obtained (rather than after for solnorm).

The combine parameter (§|4.4.1.5) can be used to combine data across spectral windows, scans,
and fields.

Note that bandpass will allow you to use multiple fields, and can determine a single solution for
all specified fields using combine=’field’. If you want to use more than one field in the solution
it is prudent to use an initial gaincal using proper flux densities for all sources (not just 1Jy) and
use this table as an input to bandpass because in general the phase towards two (widely separated)
sources will not be sufficiently similar to combine them, and you want the same amplitude scale.
If you do not include amplitude in the initial gaincal, you probably want to set visnorm=True
also to take out the amplitude normalization change. Note also in the case of multiple fields,
that the BPOLY’ solution will be labeled with the field ID of the first field used in the >BPOLY’
solution, so if for example you point plotcal at the name or ID of one of the other fields used in
the solution, plotcal does not plot.

For example, to solve for a ’BPOLY’ (5th order in amplitude, 7th order in phase), using data from
field 2, with G corrections pre-applied:

bandpass(vis=’data.ms’, # input data set
caltable=’cal.BPOLY’, #
spw="0:2756", # Use channels 3-57 (avoid end channels)

field=’0", # Select bandpass calibrator (field 0)

CHAPTER 4. SYNTHESIS CALIBRATION 229

bandtype=’BPOLY’, # Select bandpass polynomials

degamp=5, # 5th order amp

degphase=7, # 7th order phase
gaintable=’cal.G’, # Pre-apply gain solutions derived previously
refant="14’) #

4.4.2.4 What if the bandpass calibrator has a significant slope?

The bandpass calibrator can have a spectral slope that will change the spectral properties of the
solutions. If the slope is significant, the best way is to model the slope and store that model in the
bandpass calibrator MS. To do so, go through the normal steps of bandpass and the gaincal runs
on the bandpass and flux calibrators, followed by setjy of the flux calibrator. The next step would
be to use fluxscale on the bandpass calibrator to derive the slope of it. fluxscale can store
this information in a python dictionary which is subsequently fed into a second setjy run, this
time using the bandpass calibrator as the source and the derived slope (the python dictionary) as
input. This step will create a source model with the correct overall spectral slope for the bandpass.
Finally, rerun bandpass and all other calibration steps again, making use of the newly created
internal bandpass model.

4.4.3 Complex Gain Calibration (gaincal)

The fundamental calibration to be done on your interferometer data is to calibrate the antenna-
based gains as a function of time. Some of these calibrations are known beforehand (“a priori”)
and others must be determined from observations of calibrators, or from observations of the target
itself (“self-calibration”).

It is best to have determined a (constant or slowly-varying) “bandpass” from the frequency channels
by solving for the bandpass (see above). Thus, the bandpass calibration table would be input to
gaincal via the gaintable parameter (see below).

The gaincal task has the following inputs:

@gaincal :: Determine temporal gains from calibrator observations
vis = ? # Name of input visibility file
caltable = »? # Name of output gain calibration table
field = 0 # Select field using field id(s) or field name(s)
spw = 2 # Select spectral window/channels
intent = ?? # Select observing intent
selectdata = True # Other data selection parameters
timerange = 7 # Select data based on time range
uvrange = 0 # Select data within uvrange (default units meters)
antenna = ?? # Select data based on antenna/baseline
scan = ?? # Scan number range
observation =) # Select by observation ID(s)
msselect = i # Optional complex data selection (ignore for now)
solint = ?inf’ # Solution interval: egs. ’inf’, ’60s’ (see help)

CHAPTER 4. SYNTHESIS CALIBRATION 230

combine = ?? # Data axes which to combine
for solve (obs, scan, spw, and/or field)
preavg = -1.0 # Pre-averaging interval (sec) (rarely needed)
refant = ”? # Reference antenna name(s)
minblperant = 4 # Minimum baselines _per antenna_ required for solve
minsnr = 3.0 # Reject solutions below this SNR
solnorm = False # Normalize average solution
amplitudes to 1.0 (G, T only)
gaintype = G’ # Type of gain solution (G,T,GSPLINE,K,KCROSS)
smodel = (] # Point source Stokes parameters for source model.
calmode = ’ap’ # Type of solution: (’ap’, ’p’, ’a’)
append = False # Append solutions to the (existing) table
docallib = False # Use callib or traditional cal apply parameters
gaintable =] # Gain calibration table(s) to apply on the fly
gainfield = (] # Select a subset of calibrators from gaintable(s)
interp = (] # Temporal interpolation for
each gaintable (=linear)
spwmap = (] # Spectral windows
combinations to form for gaintable(s)
parang = False # Apply parallactic angle correction on the fly

Data selection is done through the standard field, spw, intent, and selectdata expandable sub-
parameters (see § [2.3). The bulk of the other parameters are the standard solver parameters. See
g above for a description of these.

The gaintype parameter selects the type of gain solution to compute. The choices are *T’, ’G’,
and ’GSPLINE’. The G’ and ’T’ options solve for independent complex gains in each solution
interval (classic AIPS style), with *T’ enforcing a single polarization-independent gain for each
co-polar correlation (e.g. RR and LL, or XX and YY) and ’G’ having independent gains for these.
See § [4.4.3.1] for a more detailed description of G’ solutions, and § for more on ’T’. The
’GSPLINE’ fits cubic splines to the gain as a function of time. See §[4.4.3.3| for more on this option.

4.4.3.1 Polarization-dependent Gain (G)

Systematic time-dependent complex gain errors are almost always the dominant calibration effect,
and a solution for them is almost always necessary before proceeding with any other calibration.
Traditionally, this calibration type has been a catch-all for a variety of similar effects, including: the
relative amplitude and phase gain for each antenna, phase and amplitude drifts in the electronics
of each antenna, amplitude response as a function of elevation (gain curve), and tropospheric
amplitude and phase effects. In CASA, it is possible to handle many of these effects separately, as
available information and circumstances warrant, but it is still possible to solve for the net effect
using calibration type G.

Generally speaking, type G can represent any per-spectral window multiplicative polarization-
and time-dependent complex gain effect downstream of the polarizers. (Polarization- and time-
independent effects upstream of the polarizers may also be treated implicitly with G.) Multi-channel

CHAPTER 4. SYNTHESIS CALIBRATION 231

data (per spectral window) will be averaged in frequency before solving (use calibration type B to
solve for frequency-dependent effects within each spectral window).

To solve for G on, say, fields 1 & 2, on a 90s timescale, and do so relative to gaincurve corrections:

gaincal(’data.ms’,

caltable=’cal.G’, # Write solutions to disk file ’cal.G’
field=’0,1’, # Restrict field selection
s01int=90.0, # Solve for phase and amp on a 90s timescale
gaintable=[’cal.gc’] # a gain curve table from gencal
refant=’3") #

plotcal(’cal.G’,’amp’) # Inspect solutions

These G solution will be referenced to antenna 4. Choose a well-behaved antenna that is located
near the center of the array and is ever-present for the reference antenna. For non-polarization
datasets, reference antennas need not be specified although you can if you want. If no reference
antenna is specified, an effective phase reference that is an average over the data will be calculated
and used. For data that requires polarization calibration, you must choose a reference antenna that
has a constant phase difference between the right and left polarizations (e.g. no phase jumps or
drifts). If no reference antenna (or a poor one) is specified, the phase reference may have jumps
in the R-L phase, and the resulting polarization angle response will vary during the observation,
thus corrupting the polarization imaging.

To apply this solution, along with the gain curve correction, to the calibrators (fields 0,1) and the
target source (field 2):

applycal(’data.ms’,
field=’0,1,2’, # Restrict field selection (cals + src)
gaintable=[’cal.gc’,’cal.G’]) # Apply gc and G solutions to correct data

The calibrated data is written to the CORRECTED_DATA column, with calwt=True by default. This
parameter can also be a list of Boolean values for which each entry then controls the calculation of
weights based on each individual input calibration table. calwt=False will recompute the weights
form the SIGMA column, thus resetting the weights to their original value.

Alert: Current (as of February 2014) Jansky VLA data has no calibrated weights (unless they
are computed from switched power calibration). To avoid trouble, calwt=False should be set for
those data sets. Older, pre-upgrade VLA data should still be calibrated with calwt=True.

4.4.3.2 Polarization-independent Gain (T)

At high frequencies, it is often the case that the most rapid time-dependent gain errors are intro-
duced by the troposphere, and are polarization-independent. It is therefore unnecessary to solve for
separate time-dependent solutions for both polarizations, as is the case for ’G’. Calibration type
’T’ is available to calibrate such tropospheric effects, differing from ’G’ only in that a single com-
mon solution for both polarizations is determined. In cases where only one polarization is observed,
type *T’ is adequate to describe the time-dependent complex multiplicative gain calibration.

CHAPTER 4. SYNTHESIS CALIBRATION 232

In the following example, we assume we have a ’G’ solution obtained on a longish timescale (longer
than a few minutes, say), and we want a residual T’ solution to track the polarization-independent
variations on a very short timescale:

gaincal(’data.ms’, # Visibility dataset
caltable=’cal.T’, # Specify output table name
gaintype=’"T’, # Solve for T
field=’0,1", # Restrict data selection to calibrators
solint=3.0, # Obtain solutions on a 3s timescale
#

gaintable=’call120.G’) Pre-apply prior G solution

For dual-polarization observations, it will always be necessary to obtain a G’ solution to account for
differences and drifts between the polarizations (which traverse different electronics), but solutions
for rapidly varying polarization-independent effects such as those introduced by the troposphere
will be optimized by using ’T’. Note that T’ can be used in this way for self-calibration purposes,
too.

4.4.3.3 GSPLINE solutions

At high radio frequencies, where tropospheric phase fluctuates rapidly, it is often the case that
there is insufficient signal-to-noise ratio to obtain robust G’ or T’ solutions on timescales short
enough to track the variation. In this case it is desirable to solve for a best-fit functional form for
each antenna using the ’>GSPLINE’ solver. This fits a time-series of cubic B-splines to the phase
and/or amplitude of the calibrator visibilities.

The combine parameter (§ can be used to combine data across spectral windows, scans, and
fields. Note that if you want to use combine="field’, then all fields used to obtain a ’>GSPLINE’
amplitude solution must have models with accurate relative flux densities. Use of incorrect relative
flux densities will introduce spurious variations in the >GSPLINE’ amplitude solution.

The ’GSPLINE’ solver requires a number of unique additional parameters, compared to ordinary
’G’> and T’ solving. The sub-parameters are:

gaintype = ’GSPLINE’ # Type of solution (G, T, or GSPLINE)
splinetime = 3600.0 # Spline (smooth) timescale (sec), default=1 hours
npointaver = 3 # Points to average for phase wrap (okay)
phasewrap = 180 # Wrap phase when greater than this (okay)

The duration of each spline segment is controlled by splinetime. The actual splinetime will be
adjusted such that an integral number of equal-length spline segments will fit within the overall
range of data.

Phase splines require that cycle ambiguities be resolved prior to the fit; this operation is controlled
by npointaver and phasewrap. The npointaver parameter controls how many contiguous points
in the time-series are used to predict the cycle ambiguity of the next point in the time-series, and
phasewrap sets the threshold phase jump (in degrees) that would indicate a cycle slip. Large values

CHAPTER 4. SYNTHESIS CALIBRATION 233

of npointaver improve the SNR of the cycle estimate, but tend to frustrate ambiguity detection if
the phase rates are large. The phasewrap parameter may be adjusted to influence when cycles are
detected. Generally speaking, large values (> 180°) are useful when SNR is high and phase rates
are low. Smaller values for phasewrap can force cycle slip detection when low SNR conspires to
obscure the jump, but the algorithm becomes significantly less robust. More robust algorithms for
phase-tracking are under development (including fringe-fitting).

For example, to solve for *GSPLINE’ phase and amplitudes, with splines of duration 600 seconds,

gaincal(’data.ms’,
caltable=’cal.spline.ap’,
gaintype=’GSPLINE’
calmode=’ap’
field=’0,1’,
splinetime=600.)

Solve for GSPLINE

Solve for amp & phase

Restrict data selection to calibrators
Set spline timescale to 10min

H H H

ALERT"’: The ’GSPLINE’ solutions cannot yet be used in fluxscale. You should do at least some
’G’ amplitude solutions to establish the flux scale, then do >GSPLINE’ in phase before or after to
fix up the short timescale variations. Note that the “phase tracking” algorithm in >GSPLINE’ needs
some improvement.

4.4.3.4 Antenna Delays — K’ solutions

gaintype=’K’ solves for simple antenna-based delays via Fourier transforms of the spectra on
baselines to the reference antenna. This is not a global fringe fit but will be useful for deriving
delays from data of reasonable snr. If combine includes ’spw’, multi-band delays solved jointly
from all selected spectral windows will be determined, and will be identified with the first spectral
window id in the output caltable. When applying a multi-band delay table, spwmap is required to
distribute the solutions to all spectral windows.

After solving for delays, a subsequent bandpass is recommended to describe higher-order channel-
dependent variation in the phase (and amplitude).

4.4.3.5 Cross-Hand Delays — "KCROSS’ solutions

gaintype="KCROSS’ solves for a global cross-hand delay. Use parang=T and apply prior gain and
bandpass solutions. Alert: Multi-band delays are not yet supported for KCROSS solutions.

4.4.4 Establishing the Flux Density Scale (fluxscale)

The G’ or *T’ solutions obtained from calibrators for which the flux density was unknown and
assumed to be 1 Jansky are correct in a time- and antenna- relative sense, but are mis-scaled by a
factor equal to the inverse of the square root of the true flux density. This scaling can be corrected
by enforcing the constraint that mean gain amplitudes determined from calibrators of unknown flux

CHAPTER 4. SYNTHESIS CALIBRATION 234

density should be the same as determined from those with known flux densities. The fluxscale
task exists for this purpose.

The inputs for fluxscale are:

fluxscale :: Bootstrap the flux density scale from standard calibrators

vis = ’? # Name of input visibility file (MS)

caltable = 7 # Name of input calibration table

fluxtable = 7 # Name of output, flux-scaled calibration table

reference = [’°] # Reference field name(s) (transfer flux scale FROM)

transfer = [>°] # Transfer field name(s) (transfer flux scale T0), ’°
all

listfile = 0 # Name of listfile that contains the fit information.
Default is (no file).

append = False # Append solutions?

refspwmap = [-1] # Scale across spectral window boundaries. See help
fluxscale

gainthreshold = -1.0 # Threshold (% deviation from the median) on gain
amplitudes to be used in the flux scale calculation

antenna = 7 # antennas to include/exclude

incremental = False # incremental caltable

fitorder = 1 # order of spectral fitting

display = False # display some statistics of flux scaling

Before running fluxscale, one must have first run setjy for the reference sources and run
a gaincal that includes reference and transfer fields. After running fluxscale the output
fluxtable caltable will have been scaled such that the correct scaling will be applied to the
transfer sources.

For example, given a ’G’ table, e.g. >cal.G’, containing solutions for a flux density calibrator (in
this case >3C286°) and for one or more gain calibrator sources with unknown flux densities (in this
example *0234+285° and ’0323+022°):

fluxscale(vis=’data.ms’,

caltable=’cal.G’, # Select input table

fluxtable= ’cal.Gflx’, # Write scaled solutions to cal.Gflx
reference=’3C286", # 3C286 = flux calibrator
transfer=’0234+258, 0323+0227) # Select calibrators to scale

The output table, >cal.Gf1lx’, contains either the scaling factors alone (incremental=T) to be used
alongside with the input gain table >cal.G’, or a scaled version of the gain table (incremental=F),
that replaces it for the execution of applycal.

Note that the assertion that the gain solutions are independent of the calibrator includes the
assumption that the gain amplitudes are strictly not systematically time-dependent in any way.
While synthesis antennas are designed as much as possible to achieve this goal, in practice, a
number of effects conspire to frustrate it. When relevant, it is advisable to pre-apply gaincurve
and opacity corrections when solving for the ’G’ solutions that will be flux-scaled (see §
and § . When the G’ solutions are essentially constant for each calibrator separately, the
fluxscale operation is likely to be robust.

->

CHAPTER 4. SYNTHESIS CALIBRATION 235

fluxscale will report the fluxes of each spw for each source. In addition, it will attempt a fit across
the spws of each source and report a spectral index and curvature (S oc (v/vp)*H#108(/%0))), This
information can be subsequently used to build up a model for the spectral slope of a calibrator
with the setjy task if required.

The fluxscale task can be executed on either G’ or ’T’ solutions, but it should only be used on
one of these types if solutions exist for both and one was solved relative to the other (use fluxscale
only on the first of the two).

ALERT: The *GSPLINE’ option is not yet supported in fluxscale (see §4.4.3.3).

If the reference and transfer fields were observed in different spectral windows, the refspwmap
parameter may be used to achieve the scaling calculation across spectral window boundaries.

The refspwmap parameter functions similarly to the standard spwmap parameter (§ , and
takes a list of indices indicating the spectral window mapping for the reference fields, such that
refspwmap[i]=j means that reference field amplitudes from spectral window j will be used for
spectral window i.

Note: You should be careful when you have a dataset with spectral windows with different band-
widths, and you have observed the calibrators differently in the different spw. The flux-scaling will
probably be different in windows with different bandwidths.

For example,

fluxscale(vis=’data.ms’,

caltable=’cal.G’, # Select input table
fluxtable= ’cal.Gflx’, # Write scaled solutions to cal.Gflx
reference=’3C286", # 3C286 = flux calibrator
transfer=’0234+258,0323+022’ # Select calibrators to scale
refspwmap=[0,0,0]) # Use spwid O scaling for spwids 1 & 2
will use spw=0 to scale the others, while in
fluxscale(vis=’data.ms’,
caltable=’cal.G’, # Select input table
fluxtable=’cal.Gflx’, # Write scaled solutions to cal.Gflx
reference=’3C286", # 3C286 = flux calibrator,
transfer=’0234+285, 0323+0227, # select calibrators to scale,
refspwmap=[0,0,1,1]) # select spwids for scaling,

the reference amplitudes from spectral window 0 will be used for spectral windows 0 and 1 and
reference amplitudes from spectral window 2 will be used for spectral windows 2 and 3.

4.4.4.1 Using Resolved Calibrators

If the flux density calibrator is resolved, the assumption that it is a point source will cause solutions
on outlying antennas to be biased in amplitude. In turn, the fluxscale step will be biased on

CHAPTER 4. SYNTHESIS CALIBRATION 236

these antennas as well. In general, it is best to use model for the calibrator, but if such a model is
not available, it is important to limit the solution on the flux density calibrator to only the subset
of antennas that have baselines short enough that the point-source assumption is valid. This can
be done by using antenna and uvrange selection when solving for the flux density calibrator. For
example, if antennas 1 through 8 are the antennas among which the baselines are short enough
that the point-source assumption is valid, and we want to be sure to limit the solutions to the use
of baselines shorter than 15000 wavelengths, then we can assemble properly scaled solutions for the
other calibrator as follows (note: specifying both an antenna and a uvrange constraint prevents
inclusion of antennas with only a small number of baselines within the specified uvrange from being
included in the solution; such antennas will have poorly constrained solutions):

As an example, we first solve for gain solutions for the flux density calibrator (3C286 observed in
field 0) using a subset of antennas

gaincal(vis=’data.ms’,
caltable=’cal.G’,
field=’0’
selectdata=True,
antenna=’0"7"’,
uvrange=’0~15klambda’,
s0lint=90)

write solutions to cal.G

Select the flux density calibrator
Expand other selectors

antennas 0-7,

limit uvrange to O-15klambda

on 90s timescales, write solutions
to table called cal.G

H OH H H H HH

Now solve for other calibrator (0234+285 in field 1) using all antennas (implicitly) and append
these solutions to the same table

gaincal(vis=’data.ms’,

caltable=’cal.G’, # write solutions to cal.G
field=’1’,

solint=90,

append=T) # Set up to write to the same table

Finally, run fluxscale to adjust scaling

fluxscale(vis=’data.ms’,

caltable=’cal.G’, # Input table with unscaled cal solutions
fluxtable=’cal.Gflx’, # Write scaled solutions to cal.Gflx
reference=’3C286", # Use 3c286 as ref with limited uvrange

transfer=’0234+285") # Transfer scaling to 0234+285

The fluxscale calculation will be performed using only the antennas common to both fields, but
the result will be applied to all antennas on the transfer field. Note that one can nominally get by
only with the uvrange selection, but you may find that you get strange effects from some antennas
only having visibilities to a subset of the baselines and thus causing problems in the solving.

CHAPTER 4. SYNTHESIS CALIBRATION

237

4.4.5 Instrumental Polarization Calibration (D,X)

Full support for instrumental polarization calibration for the circular feed basis (e.g., VLA) is
provided in CASA. Support for the linear feed basis (e.g., ALMA) is now practical (as of v4.0)
and is also described below. The linear feed basis treatment will continue to be expanded and
streamlined for the v4.3 release.

The inputs to polcal are:

polcal ::

vis

caltable

field

spw

intent

selectdata
timerange
uvrange
antenna
scan
observation
msselect

solint
combine

preavg
refant
minblperant
minsnr

poltype

smodel

append

docallib
gaintable
gainfield
interp

spwmap

1)
1)
1)
1)
)

True
EAp)

’inf’
’obs,scan’

300.0
)

4

3.0
’D+QU?

(1
False
False

(]

(]

(1

(

#

H OH H H H HHHHHH

H O H OHH HHHEHHHHHHEHHHEHH

Determine instrumental polarization calibrations

Name of input visibility file

Name of output gain calibration table

Select field using field id(s) or field name(s)
Select spectral window/channels

Select observing intent

Other data selection parameters

Select data based on time range

Select data within uvrange (default units meters)
Select data based on antenna/baseline

Scan number range

Select by observation ID(s)

Optional complex data selection (ignore for now)

Solution interval
Data axes which to combine

for solve (obs, scan, spw, and/or field)
Pre-averaging interval (sec)
Reference antenna name(s)
Minimum baselines _per antenna_ required for solve
Reject solutions below this SNR
Type of instrumental

polarization solution (see help)
Point source Stokes parameters for source model.
Append solutions to the (existing) table
Use callib or traditional cal apply parameters
Gain calibration table(s) to apply

Select a subset of calibrators from gaintable(s)
Interpolation mode (in

time) to use for each gaintable

Spectral windows

combinations to form for gaintable(s)

The polcal task uses many of the standard calibration parameters as described above in § {.4.1]

The key parameter controlling polcal is poltype. The choices are:

’D’> — Solve for instrumental polarization (leakage D-terms), using the transform of an IQU
model; requires no parallactic angle coverage, but if the source polarization is non-zero, the
gain calibration must have the correct R-L phase registration. (Note: this is unlikely, so just

CHAPTER 4. SYNTHESIS CALIBRATION 238

use ’D+X’ to let the position angle registration float.) This will produce a calibration table
of type D.

’D+X’ — Solve for instrumental polarization D-terms and the polarization position angle correc-
tion, using the transform of an IQU model; this mode requires at least 2 distinct parallactic
angles to separate the net instrumental polarization and the PA. This will produce a calibra-
tion table of type ’D’. ALERT: no table of type ’X’ will be produced, so you must follow
this by a run of polcal with polmode=’X’ (see below).

’D+QU’ — Solve for instrumental polarization and source @) + iU; requires at least 3 distinct
parallactic angles to separate the net instrumental polarization from the source Q and U.
Effectively sets the polarization PA to the value if the R-L phase difference were 0°. This will
produce a calibration table of type ’D’.

’X? — Solve only for the position angle correction; best to use this after getting the D-terms from
one of the above modes. Requires the observation of a calibrator with known @ + iU (or at
least known U/Q). This will produce a calibration table of type *X’.

’Df11s’ — A specialized mode for instrumental polarization solving for the linear feed basis. This
will probably be consolidated with other options in a future release.

There are channelized solution modes for the above options. For example, substitute *Df’ for D’
in the *D*’ modes described above to get a channelized D-term solution; substitute *Xf°’ for ’X’
to get channelized position angle correction.

ALERT: polcal will obtain a separate D-term solution for each field supplied to it. This
limitation will be relaxed in the future, enabling more sensitive solutions.

4.4.5.1 Heuristics and Strategies for Polarization Calibration

ALERT: This section concentrates on polarization calibration for the circular feed basis. It will
be generalized to include the linear feed basis for the v4.3 release. See § [4.4.5.4] for the currently
supported processing steps for the linear feed basis.

Fundamentally, with good ordinary gain (and bandpass, if relevant) calibration already in hand,
good polarization calibration must deliver both the instrumental polarization and position angle
calibration. An unpolarized source can deliver only the first of these, but does not require paral-
lactic angle coverage. A polarized source can only deliver the position angle calibration also if its
polarization is known a priori. Sources that are polarized, but with unknown polarization, must
always be observed with sufficient parallactic angle coverage, where ”sufficient” is determined by
SNR and the details of the solving mode.

These principles are stated assuming the instrumental polarization solution is solved using the
"linear approximation” where cross-terms in more than a single product of the instrumental or
source polarizations are ignored in the Measurement Equation (see § . A more general non-
linearized solution, with sufficient SNR, may enable some relaxation of the requirements indicated
here, and modes supporting such an approach are currently under development.

CHAPTER 4. SYNTHESIS CALIBRATION 239

For instrumental polarization calibration, there are 3 types of calibrator choice:

CASA Polarization Calibration Modes

Cal Polarization | Parallactic Angles | model polmode Result

unpolarized any set @Q=U=0| ’D’ or *Df’ D-terms only
known non-zero | 24 scans set Q,U ’D+X’ or ’Df+X’ D-terms and PA
unknown 2+ scans ignored ’D+QU’ or ’Df+QU’ | D-terms and source

Note that the parallactic angle ranges spanned by the scans in the modes that require this should
be large enough to give good separation between the components of the solution. In practice, 60°
is a good target.

Each of these solutions should be followed with a >X’ solution on a source with known polarization
position angle (and correct @ +¢U in the model). ALERT: polmode=’D+X’ will soon be enhanced
to deliver this automatically.

The polcal task will solve for the D’ or X’ terms using the model visibilities that are in the model
attached to the MS. Calibration of the parallel hands must have already been carried out using
gaincal and/or bandpass in order to align the phases over time and frequency. This calibration
must be supplied through the gaintable parameters, but any cal-tables to be used in polcal must
agree (e.g. have been derived from) the data in the DATA column and the FT of the model. Thus,
for example, one would not use the cal-table produced by fluxscale as the rescaled amplitudes
would no longer agree with the contents of the model.

Be careful when using resolved calibrators for polarization calibration. A particular problem is if
the structure in Q and U is offset from that in I. Use of a point model, or a resolved model for 1
but point models for Q and U, can lead to errors in the X’ calibration. Use of a uvrange will
help here. The use of a full-Stokes model with the correct polarization is the only way to ensure a
correct calibration if these offsets are large.

4.4.5.2 A Note on channelized polarization calibration

When your data has more than one channel per spectral window, it is important to note that
the calibrator polarization estimate currently assumes the source polarization signal is coherent
across each spectral window. In this case, it is important to be sure there is no large cross-hand
delay still present in your data. Unless the online system has accounted for cross-hand delays
(typically intended, but not always achieved), the gain and bandpass calibration will only correct
for parallel-hand delay residuals since the two polarizations are referenced independently. Good
gain and bandpass calibration will typically leave a single cross-hand delay (and phase) residual
from the reference antenna. Plots of cross-hand phases as a function of frequency for a strongly
polarized source (i.e., that dominates the instrumental polarization) will show the cross-hand delay
as a phase slope with frequency. This slope will be the same magnitude on all baselines, but with
different sign in the two cross-hand correlations. This cross-hand delay can be estimated using the
gaintype=’KCROSS’ mode of gaincal (in this case, using the strongly polarized source 3C286):

CHAPTER 4. SYNTHESIS CALIBRATION 240

default(’gaincal’)

vis = ’polcal_20080224.cband.all.ms’
caltable = ’polcal.xdelcal’

field = ’3C286°

Spw =)

solint = ’inf’

combine = ’scan’

refant = ’VA15’

smodel = [1.0,0.11,0.0,0.0]

gaintype = ’KCROSS’

gaintable = [’polcal.gcal’,’polcal.bcal’]

gaincal ()

Note that smodel is used to specify that 3C286 is polarized; it is not important to specify this
polarization stokes parameters correctly, as only the delay will be solved for (not any absolute
position angle or amplitude scaling). The resulting solution should be carried forward and applied
along with the gain (.gcal) and bandpass (.bcal) solutions in subsequent polarization calibration
steps.

4.4.5.3 A Polarization Calibration Example - Circular Feed Basis (e.g., VLA v > 1
GHz)

In the following example, we do a standard >D+QU’ solution on the bright source BLLac (2202+422)
which has been tracked through a range in parallactic angle:

default(’polcal’)

vis = ’polcal_20080224.cband.all.ms’
caltable = ’polcal.pcal’

field = 72202+422°

SpW =)

solint = ’inf’

combine = ’scan’

preavg = 300.0

refant = ’VA15’

minsnr = 3

poltype = ’D+QU’

gaintable = [’polcal.gcal’,’polcal.bcal’,’polcal.xdelcall
gainfield = [’°]

polcal()

This assumes setjy and gaincal have already been run. Note that the original gain-calibration
table is used in gaintable so that what is in the model is in agreement with what is in the
gaintable, rather than using the table resulting from fluxscale.

Now, we need to set the R-L phase using a scan on 3C48 (0137+331):

default(’polcal’)
vis = ’polcal_20080224.cband.all.ms’

CHAPTER 4. SYNTHESIS CALIBRATION 241

caltable = ’polcal.polx’

field = ’0137+331°

refant = ’VA15’

minsnr = 3

poltype = ’X?

smodel = [1.0,-0.0348,-0.0217,0.0] # the fractional Stokes for 3C48
gaintable = [’polcal.gcal’,’polcal.bcal’,’polcal.xdelcal’,’polcal.pcal’]
polcal()

Note that the fractional polarization of 3C48 has been properly specified in smodel here.

If, on the other hand, we had a scan on an unpolarized bright source, for example 3C84 (0319+415),
we could use this to calibrate the leakages:

default(’polcal’)

vis = ’polcal_20080224.cband.all.ms’

caltable = ’polcal.pcal’

field = ’0319+415°

refant = ’VA15’

poltype = ’D’

gaintable = [’polcal.gcal’,’polcal.bcal’,’polcal.xdelcall
polcal()

We would then do the *X’ calibration as before (but using this D-table in gaintable).

4.4.5.4 A Polarization Calibration Example - Linear Feed Basis (e.g., ALMA, VLA
v <1 GHz)

CASA v4.0.0 introduces supports for instrumental polarization calibration for the linear feed basis
at a level that is now practical for the general user. Some details remain to be implemented with
full flexibility, and much of what follows will be streamlined for the v4.1 release.

Calibrating the instrumental polarization for the linear feed basis is somewhat more complicated
than the circular feed basis because the polarization effects (source and instrument) appear in all
four correlations at first or zeroth order (whereas for circular feeds, the polarization information
only enters the parallel hand correlations at second order). As a result, e.g., the time-dependent
gain calibration will be distorted by any non-zero source polarization, and some degree of iteration
will be required to isolate the gain calibration if the source polarization is not initially known.
These complications can actually be used to advantage in solving for the instrumental calibration;
in can be shown, for example, that a significantly linearly polarized calibrator enables a better
instrumental polarization solution than an unpolarized calibrator.

In the following example, we show the processing steps for calibrating the instrumental polarization
using a strongly (> 5%) polarized point-source calibrator (which is also the time-dependent gain
calibrator) that has been observed over a range of parallactic angle (a single scan is not sufficient).
We assume that we have calibrated the gain, bandpass, and cross-hand delay as described above,
and that the gain calibration (polcal.gcal) was obtained assuming the calibrator was unpolarized.

First, we import some utility functions from the CASA recipes area:

CHAPTER 4. SYNTHESIS CALIBRATION 242

from recipes.almapolhelpers import *

Since the gain calibrator was assumed unpolarized, the time-dependent gain solutions contain
information about the source polarization. This can be seen by plotting the amp vs. time for this
table using poln="/’. The antenna-based polarization amplitude ratios will reveal the sinusoidal
(in parallactic angle) of the source polarization. Run a utility method (qufromgain()) to extract
the apparent source polarization estimates for each spw:

qu=qufromgain(’polcal.gcal’)

The source polarization reported for all spws should be reasonably consistent. This estimate is not
as good as can be obtained from the cross-hands (see below) since it relies on the gain amplitude
polarization ratio being stable which may not be precisely true. However, this estimate will be
useful in resolving an ambiguity that occurs in the cross-hand estimates.

Next we estimate both the XY-phase offset and source polarization from the cross-hands. The
XY-phase offset is a spectral phase-only bandpass relating the X and Y systems of the reference
antenna. The cross-hand delay solved for above represents a systematic component (linear phase in
frequency). If the XY-phase is solved for in a channel-dependent manner (as below), it is strictly not
necessary to have solved for the cross-hand delay above, but it does not hurt (at it allows reasonably
coherent channel averages for data examination). The source polarization occurs in the cross-hands
as a sinusoidal function of parallactic angle that is common to both cross-hands on all baselines (for
a point-source). If the XY-phase bandpass is uniformly zero, then the source linear polarization
function will occur entirely in the real part of the cross-hand visibilities. Non-zero XY-phase has the
effect of rotating the source linear polarization signature partially into the imaginary part, where
circular (and instrumental) polarization occur (cf. the circular feed basis where the cross-hand
phase merely rotates the position angle of linear polarization). The following solve averages all
baselines together and first solves for a channelized XY-phase (the slope of the source polarization
function in the complex plane), then corrects the slope and solves for a channel-averaged source
polarization. This calibration is obtained using gaintype=’XYf+QU’ in gaincal:

default(’gaincal’)

vis = ’polcal_linfeed.ms’

caltable = ’polcal.xyOamb’ # possibly with 180deg ambiguity
field =1 # the calibrator

solint = ’inf’

combine = ’scan’

preavg = 200.0 # minimal parang change

smodel = [1,0,1,0] # non-zero U assumed

gaintype = ’XY£+QU’

gaintable = [’polcal.gcal’,’polcal.bcal’,’polcal.xdelcall
gaincal()

Note that we imply non-zero Stokes U in smodel; this is to enforce the assumption of non-zero
source polarization signature in the cross-hands in the ratio of data and model. This solve will

CHAPTER 4. SYNTHESIS CALIBRATION 243

report the center-channel XY-phase and apparent Q,U for each spw. The Q,U results should be
recognizable in comparison to that reported by qufromgain() above. However, since the XY-phase
has a 180 degree ambiguity (you can rotate the source polarization signature to lie entirely in the
visibility real part by rotating clockwise or counter-clockwise), some or all spw QU estimates may
have the wrong sign. We correct this using the xyamb () utility method, using the qu obtained from
qufromgain() above (which is not ambiguous):

S=xyamb (xy="polcal.xyOamb’,qu=qu,xyout=’polcal.xy0’)

The python variable S now contains the mean source model (Stokes I = 1; fractional Q,U; V=0)
that can be used in a revision of the gain calibration and instrumental polarization calibration.

Next we revise the gain calibration using the full polarization source model:

default(’gaincal’)

vis = ’polcal_linfeed.ms’

caltable = ’polcal.gcall’

field =1

solint = ’int’ # or whatever was used previously
smodel =39S # obtained from xyamb

gaintype = ’G’

gaintable = [’polcal.bcal’]

parang =T # so source poln properly rotated
gaincal ()

Note that parang=T so that the supplied source linear polarization is properly rotated in the
parallel-hand visibility model. This new gain solution can be plotted with poln=’/’ as above to
show that the source polarization is no longer distorting it. Also, if qufromgain is run on this new
gain table, the reported source polarization should be statistically indistinguishable from zero.

Finally, we can now solve for the instrumental polarization:

default(’polcal’)

vis = ’polcal_linfeed.ms’

caltable = ’polcal.dcal’

field =1

solint = ’inf’

combine = ’scan’

preavg = 200

poltype = ’Dflls’ # freq-dep LLS solver
refant =77 # no reference antenna
smodel =38

gaintable = [’polcal.gcall’,’polcal.bcal’,’polcal.xdelcal’,’polcal.xy0’]
polcal()

Note that no reference antenna is used since this solve will produce an absolute instrumental po-
larization solution that is registered to the assumed source polarization (S) and prior calibrations.

CHAPTER 4. SYNTHESIS CALIBRATION 244

Applying a refant (referring all instrumental polarization terms to a reference antenna’s X feed,
which would then be assumed perfect) would, in fact, discard valid information about the imperfec-
tions in the reference antenna’s X feed. (Had we used an unpolarized calibrator, we would not have
a valid xy-phase solution, nor would we have had access to the absolute instrumental polarization
solution demonstrated here.)

A few points:

e Since the gain, bandpass, and XY-phase calibrations were obtained prior to the instrumental
polarization solution and maybe distorted by it, it is generally desirable to resolve for them
using the instrumental polarization solution. In effect, this means iterating the sequence of
calibration steps using all of the best of the available information at each stage, including the
source polarization (and parang=T). This is a generalization of traditional self-calibration.
For the CASA v4.1 release, we expect to provide utility methods for iteration.

e If the source linear polarization fraction and position angle is known a priori, the processing
steps outlined above can be amended to use that source polarization assertion in the gain and
instrumental calibration solves. The qufromgain() method is not needed (but can be used
to verify assumptions), the gaincal(...,gaintype="XYf+QU’,...) should not be altered
(parallactic angle coverage is still required!), and the xyamb() run should use the a priori
polarization for qu. If there is likely to be a large systematic offset in the mean feed position
angle, iteration of the gain, bandpass, and instrumental polarization terms is required to
properly isolate the calibration effects.

e Note that the above process does not explicitly include a position angle calibration. In effect,
the estimated source polarization sets the mean feed position angle as the reference position
angle, and this is usually within a degree or so of optimal. If your mean X feed position angle
is not ~ 0 degrees, and your MS does not account for the offset in its FEED subtable, be
careful in your interpretation of the final position angle. Currently, the circular feed-specific
position angle calibration modes of polcal (poltype=’X’ or ’Xf’) will not properly handle
the linear feed basis; this will be fixed in the CASA v4.1 release.

A full processing example for linear feed basis polarimetry is under development and will be dis-
tributed with an upcoming CASA release.

4.4.6 Baseline-based Calibration (blcal)

You can use the blcal task to solve for baseline-dependent (non-closing) errors. WARNING:
this is in general a very dangerous thing to do, since baseline-dependent errors once introduced are
difficult to remove. You must be sure you have an excellent model for the source (better than the
magnitude of the baseline-dependent errors).

The inputs are (note that blcal does not yet use the docallib parameter:

blcal :: Calculate a baseline-based calibration solution (gain or bandpass)
vis = 2 # Name of input visibility file

CHAPTER 4. SYNTHESIS CALIBRATION 245

caltable = ?? # Name of output gain calibration table
field =) # Select field using field id(s) or field name(s)
spw = 7 # Select spectral window/channels
intent 7 # Select observing intent
selectdata = False # Other data selection parameters
solint = ’inf’ # Solution interval
combine = ’scan’ # Data axes which to combine for solve (scan, spw,
and/or field)
freqdep = False # Solve for frequency dependent solutions
calmode = ’ap’ # Type of solution" (’ap’, ’p’, ’a’)
solnorm = False # Normalize average solution amplitudes to 1.0
gaintable = [°] # Gain calibration table(s) to apply on the fly
gainfield = [°] # Select a subset of
calibrators from gaintable(s)
interp = [’°] # Interpolation mode (in
time) to use for each gaintable
spwmap = (] # Spectral windows combinations to form for
gaintable(s)
gaincurve = False # Apply internal VLA antenna
gain curve correction
opacity = (] # Opacity correction to apply (nepers), per spw
parang = False # Apply parallactic angle correction

The freqdep parameter controls whether blcal solves for “gain” (freqdep=False) or “bandpass”
(freqdep=True) style non-closing calibration.

Other parameters are the same as in other calibration tasks. These common calibration parameters

are described in §

4.5 Plotting and Manipulating Calibration Tables

At some point, the user should examine (plotting or listing) the calibration solutions. Calibra-
tion tables can also be manipulated in various ways, such as by interpolating between times (and
sources), smoothing of solutions, and accumulating various separate calibrations into a single table.

4.5.1 Plotting Calibration Solutions (plotcal)

The plotcal task is available for examining solutions of all of the basic solvable types (G, T, B,
D, M, MF, K). The inputs are:

plotcal :: An all-purpose plotter for calibration results:

caltable = ?? # Name of input calibration table

xaxis =) # Value to plot along x axis (time,chan,amp,phase,real,imag,snr)
yaxis = i # Value to plot along y axis (amp,phase,real,imag,snr)

poln = » # Polarization to plot (RL,R,L,XY,X,Y,/)

field = ?? # Field names or index: ’’=all, ’3C286,P1321%x’, 073’

CHAPTER 4. SYNTHESIS CALIBRATION 246

antenna = 0 # Antenna selection. E.g., antenna=’3"5’

spw = ?? # Spectral window: ’’=all, ’0,1’ means spw O and 1
timerange = » # Time selection ’’=all

subplot = 111 # Panel number on display screen (yxn)
overplot = False # Overplot solutions on existing display
clearpanel = ’Auto’ # Specify if old plots are cleared or not
iteration = 70 # Iterate on antenna,time,spw,field

plotrange = [T # plot axes ranges: [xmin,xmax,ymin,ymax]
showflags = False # 1If true, show flags

plotsymbol = > # pylab plot symbol

plotcolor = ’blue’ # initial plotting color

markersize = 5.0 # size of plot symbols

fontsize = 10.0 # size of label font

showgui = True # Show plot on gui

figfile = » # ’’= no plot hardcopy, otherwise supply name

ALERT: Currently, plotcal needs to know the MS from which caltable was derived to get
indexing information. It does this using the name stored inside the table, which does not include
the full path, but assumes the MS is in the cwd. Thus if you are using a MS in a directory other
than the current one, it will not find it. You need to change directories using cd in IPython (or
os.chdir () inside a script) to the MS location.

The controls for the plotcal window are the same as for plotxy (see §(3.3.2.1).

The xaxis and yaxis plot options available are:

e ’amp’ — amplitude,
e ’phase’ — phase,
e ’real’ — the real part,
e ’imag’ — the imaginary part,
e ’snr’ — the signal-to-noise ratio,
of the calibration solutions that are in the caltable. The xaxis choices also include ’time’ and

’channel’ which will be used as the sensible defaults (if xaxis=’") for gain and bandpass solutions
respectively.

The poln parameter determines what polarization or combination of polarization is being plotted.
The poln="RL’ plots both R and L polarizations on the same plot. The respective XY options
do equivalent things. The poln=’/’ option plots amplitude ratios or phase differences between
whatever polarizations are in the MS (R and L. or X and Y).

The field, spw, and antenna selection parameters are available to obtain plots of subsets of
solutions. The syntax for selection is given in §

The subplot parameter is particularly helpful in making multi-panel plots. The format is subplot=yxn
where yxn is an integer with digit y representing the number of plots in the y-axis, digit x the num-
ber of panels along the x-axis, and digit n giving the location of the plot in the panel array (where

CHAPTER 4. SYNTHESIS CALIBRATION 247

n=1, ..., xy, in order upper left to right, then down). See § [3.3.2.8| for more details on this
option.

The iteration parameter allows you to select an identifier to iterate over when producing multi-
panel plots. The choices for iteration are: ’antenna’, *time’, >spw’, >field’. For example, if
per-antenna solution plots are desired, use iteration=’antenna’. You can then use subplot to
specify the number of plots to appear on each page. In this case, set the n to 1 for subplot=yxn.
Use the Next button on the plotcal window to advance to the next set of plots. Note that if
there is more than one timestamp in a ’B’ table, the user will be queried to interactively advance
the plot to each timestamp, or if multiplot=True, the antennas plots will be cycled through for
each timestamp in turn. Note that iteration can take more than one iteration choice (as a single
string containing a comma-separated list of the options). ALERT: the iteration order is fixed
(independent of the order specified in the iteration string), for example:

iteration = ’antenna, time, field’
iteration = ’time, antenna, field’

will both iterate over each field (fastest) then time (next) and antenna (slowest). The order is:
iteration = ’antenna, time, field, spw’

from the slowest (outer loop) to fastest (inner loop).

The markersize and fontsize parameters are especially helpful in making the dot and label sizes
appropriate for the plot being made. The screen shots in this section used this feature to make the
plots more readable in the cookbook. Adjusting the fontsize can be tricky on multi-panel plots,
as the labels can run together if too large. You can also help yourself by manually resizing the
Plotter window to get better aspect ratios on the plots.

ALERT: Unfortunately, plotcal has many of the same problems that plotxy does, as they use
similar code underneath. An overhaul is underway, so stay tuned.

4.5.1.1 Examples for plotcal

For example, to plot amplitude or phase as a function of time for >G’ solutions (after rescaling by
fluxscale can look like

default(’plotcal’)
fontsize = 14.0 # Make labels larger
markersize = 10.0 # Make dots bigger

caltable = ’ngcb921.usecase.fluxscale’
yaxis = ’amp’

subplot = 211

plotcal()

yaxis = ’phase’
subplot = 212
plotcal()

CHAPTER 4. SYNTHESIS CALIBRATION 248

The results are shown in Figure [1.4] This makes use of the subplot option to make multi-panel
displays.

Ed/casA Plotter

ek on] o] e Lot | aun |
2/0/0f+~ B8

Zoom to rect mode

Figure 4.4: Display of the amplitude (upper) and phase (lower) gain solutions for all antennas and
polarizations in the ngc5921 post-fluxscale table.

Similarly, to plot amplitude or phase as a function of channel for B’ solutions for NGC5921:

default(’plotcal’)
fontsize = 14.0 # Make labels larger
markersize = 10.0 # Make dots bigger

caltable = ’ngc5921.usecase.bcal’
antenna = ’1’

yaxis = ’amp’

subplot = 311

plotcal()

yaxis = ’phase’

CHAPTER 4. SYNTHESIS CALIBRATION 249

subplot = 312
plotcal()

yaxis = ’snr’
subplot = 313
plotcal()

The results are shown in Figure This stacks three panels with amplitude, phase, and signal-
to-noise ratio. We have picked antenna=’1’ to show.

ozt [e [y o L e |
ﬂglﬂi"%glll Zoom to rect mode : x=26.126, y=23.651

Figure 4.5: Display of the amplitude (upper), phase (middle), and signal-to-noise ratio (lower) of
the bandpass ’B’ solutions for antenna=’0’ and both polarizations for ngc5921. Note the falloff

of the SNR at the band edges in the lower panel.

For example, to show 6 plots per page of B’ amplitudes on a 3 x 2 grid:

default(’plotcal’)
fontsize = 12.0 # Make labels just large enough

CHAPTER 4. SYNTHESIS CALIBRATION 250

markersize = 10.0 # Make dots bigger
caltable = ’ngc5921.usecase.bcal’
yaxis = ’amp’

subplot = 231

iteration = ’antenna’

plotcal ()

See Figure [4.6] for this example. This uses the iteration parameter.

& casA Plotter

v agon]]] at] et | o |
200+~ B8]

Zoom to rect mode

Figure 4.6: Display of the amplitude of the bandpass ’B’ solutions. Iteration over antennas was

turned on using iteration=’antenna’. The first page is shown. The user would use the Next
button to advance to the next set of antennas.

CHAPTER 4. SYNTHESIS CALIBRATION 251

4.5.2 Plotting the Bandpass with (plotbandpass)

Developed at the NAASC, this is a generic task to display CASA Tsys and bandpass solution tables
with options to overlay them in various combinations, and/or with an atmospheric transmission
or sky temperature model. It works with both the new’ (CASA 3.4) and ’old’ calibration table
formats, and allows for mixed mode spws (e.g. TDM and FDM for ALMA). It uses the new msmd
tool to access the information about an MS. This task is still being developed as new ALMA
observing modes are commissioned. So if you encounter problems, please report them.

The parameters of plotbandpass are as follows:

plotbandpass :: Makes detailed plots of Tsys and bandpass solutions.

caltable = 7 # Input table name, either a bandpass solution or a Tsys
solution
antenna = 2 # A comma-delimited string list of antennas (either names
or integer indices) for which to display solutions.
Default = all antennas.
field = ?? # A comma-delimited string list of fields (either names
or integer indices) for which to display solutions.
Default = all fields.
spw = 7 # A comma-delimited string list of spws for which to
display solutions. Default = all spws.
yaxis = >amp’ # The quantity to plot on the y-axis ("amp", "phase",
"both", "tsys", append "db" for dB).
xaxis = ’chan’ # The quantity to plot on the x-axis ("chan" or "freq").
figfile = » # The name of the plot file to produce.
plotrange = [0, 0, 0, O] # The axes limits to use [x0,x1,y0,y1].
caltable2 = 7 # A second cal table, of type BPOLY or B, to overlay on a
B table
overlay = > # Show multiple solutions in same frame in different
colors (time, antenna, spw, baseband, or time,antenna)
showflagged = False # Show the values of the solution, even if flagged
timeranges = 7 # Show only these timeranges, the first timerange being O
markersize = 3 # Size of points
interactive = True # if False, then run to completion automatically without
pause
showpoints = ’auto’ # Draw points for the data (default=F for amp, T for
phase)
showlines = ’auto’ # Draw lines connecting the data (default=T for amp, F
for phase)
subplot = 7227 # 11..81,22,32 or 42 for RowsxColumns (default=22), any
3rd digit is ignored
poln = 2 # Polarizations to plot: "" = all, or
"RR","RL","LR","LL","XX","XY","YX","YY","RR,LL","XX,YY
n
showatm = False # Compute and overlay the atmospheric transmission curve
solutionTimeThresholdSeconds = 30.0 # Consider 2 solutions simultaneous if within this
interval in seconds
debug = False # Print verbose messages for debugging purposes
vis = R # mname of the ms for this table, in case it does not

CHAPTER 4. SYNTHESIS CALIBRATION

showtsky =
channeldiff =

basebands =

showBasebandNumber

scans =

figfileSequential

False

False

False

False

H o H H H H HHHHHHHEHR

252

match the string in the caltable
Compute and overlay the sky temperature curve instead
of transmission
Set to a value > O (sigma) to plot derivatives of the
solutions
A baseband number or list of baseband numbers for which
to display solutions. Default = all.
Put the baseband converter number (BBC_NO) in the title
of each plot
A scan or list of scans for which to display solutions.
Default = all. Does not work with overlay="time".
naming scheme for pngs: False: name by spw/antenna
(default), True: figfile.000.png, figfile.001.png,
etc.

4.5.3 Listing calibration solutions with (listcal)

The listcal task will list the solutions in a specified calibration table.

The inputs are:

1listcal :: List data set

vis = i
caltable = 2
field = 2
antenna = 2
SpW = 10
listfile =)
pagerows = 50

H O H O HHEH

An example listing is:

summary in the logger:

Name of input visibility file (MS)

Input calibration table to list

Select data based on field name or index
Select data based on antenna name or index
Spectral window, channel to list

Disk file to write, else to terminal

Rows listed per page

Listing CalTable: jupiterfcm.usecase.split.ms.smoothcal2 (G Jones)

1999/04/16/14:10:43.5 °JUPI

TER’

Amp Phase Amp Phase
1.016 -11.5 1.016 -9.2
1.013 -5.3 0.993 -3.1
0.993 -0.8 0.990 -5.1
0.997 -10.7 0.999 -8.3
0.985 2.7 0.988 -4.0
1.005 -8.4 1.009 -5.3
0.894 -8.7 0.897 -6.8
1.001 -0.1 0.992 -0.7
0.989 -12.4 0.992 -13.5

CHAPTER 4. SYNTHESIS CALIBRATION

J10)
J117
712)
713)
714)
)15)
J16)
717)
718)
)19)
)20)
J21)
7227
J23)
724)
725)
J26)
J277
728)

OCOOR KPR EPRLPRPLPOOORRELELORL, OO

4.5.4 Calibration table statistics (calstat)

The calstat task will print the statistics of solutions in a

The inputs are:

.000F
.896
.996
.009
.993
.002
.010
.014
.998
.997
.984
.000F
.003
.007
.000F
.000F
.992
.994
.993

253

-4.2F 1.000F -3.2F
-0.0 0.890 -0.0
-10.6 0.996 -4.2
-8.4 1.011 -6.1
-17.6 0.994 -16.1
-0.8 1.002 -1.1
-9.9 1.012 -8.6
-8.0 1.017 -7.1
-3.0 1.005 -1.0
-39.1 0.994 -38.9
-5.7 0.986 3.0
-4.2F 1.000F -3.2F
-11.8 1.004 -10.4
-13.8 1.009 -11.7
-4.2F 1.000F -3.2F
-4.2F 1.000F -3.2F

3.7 1.000 -0.2
-5.6 0.991 -4.3
-10.7 0.997 -3.8

specified calibration table.

calstat :: Displays statistical information on a calibration table
caltable = 7 # Name of input calibration table
axis = >amp’ # Which values to use
datacolumn = ’gain’ # Which data column to use
useflags = True # Take flagging into account?
(not implemented)

For example:

CASA <3>: calstat(’ngcb921.demo.gcal’,axis=’amp’,datacolumn=’gain’)

Out [3]:

{’GAIN’: {’max’:

1.6031942367553711,

‘mean’: 1.4448433067117419,
’medabsdevmed’: 0.0086394548416137695,
’median’: 1.5732669830322266,

’min’: 0.99916577339172363,

’npts’: 280.0,

’quartile’: 0.020265340805053711,
’rms’: 1.4650156497955322,

’stddev’: 0.24271160321065546,

’sum’: 404.55612587928772,

CHAPTER 4. SYNTHESIS CALIBRATION 254

’sumsq’: 600.95579999685287,
’var’: 0.058908922333086665}}

CASA <4>: calstat(’ngcb921.demo.gcal’,axis=’phase’,datacolumn=’gain’)
Out [4]:

{’GAIN’: {’max’: 0.091214209794998169,
‘mean’: -0.015221830284565011,
’medabsdevmed’: 0.012778861448168755,
’median’: -0.012778861448168755,
’min’: -0.15903720259666443,
’npts’: 280.0,
’quartile’: 0.02537553571164608,
’rms’: 0.031241731718182564,
’stddev’: 0.027331476552707856,
’sum’: -4.2621124796782031,
’sumsq’: 0.27329283416317834,
’var’: 0.00074700961055121926}%

The statistics can be captured as return variables from the task:

CASA <7>: mystat = calstat(’ngc5921.demo.gcal’,axis=’amp’,datacolumn=’gain’)

CASA <8>: print ’Gain Amp = ’,mystat[’GAIN’][’mean’],’+/-’,mystat[’GAIN’] [’stddev’]
Gain Amp = 1.44484330671 +/- 0.242711603211

ALERT: This task is still under development and currently offers no selection (e.g. by antenna)
for the statistics.

4.5.5 Calibration Smoothing (smoothcal)

The smoothcal task will smooth calibration solutions (most usefully G or T') over a longer time
interval to reduce noise and outliers. The inputs are:

smoothcal :: Smooth calibration solution(s) derived from one or more sources:
vis = » # Name of input visibility file

tablein = » # Input calibration table

caltable = ?? # Output calibration table

field = ?? # Field name list

smoothtype = ’median’ # Smoothing filter to use

smoothtime = 60.0 # Smoothing time (sec)

Note that if no caltable is specified as output, smoothcal will overwrite the input tablein
calibration table.

The smoothing will use the smoothtime and smoothtype parameters to determine the new data
points which will replace the previous points on the same time sampling grid as for the tablein
solutions. The currently supported smoothtype options:

CHAPTER 4. SYNTHESIS CALIBRATION 255

e ’mean’ — use the mean of the points within the window defined by smoothtime (a “boxcar”

average),

e ’median’ — use the median of the points within the window defined by smoothtime (most
useful when many points lie in the interval).
Note that smoothtime defines the width of the time window that is used for the smoothing.

ALERT: Note that smoothcal currently smooths by field and spw, and thus you cannot smooth
solutions from different sources or bands together into one solution.

[Ed/cASA Piotter

e ragon]] g acte] | oun |
2010+~ 8| e

Figure 4.7: The ’amp’ of gain solutions for NGC4826 before (top) and after (bottom) smoothing
with a 7200 sec smoothtime and smoothtype=’mean’. Note that the first solution is in a different
spw and on a different source, and is not smoothed together with the subsequent solutions.

An example using the smoothcal task to smooth an existing table:

smoothcal (’n4826_16apr.ms’,

CHAPTER 4. SYNTHESIS CALIBRATION 256

tablein=’n4826_16apr.gcal’,
caltable=’n4826_16apr.smoothcal’,
smoothtime=7200.,
smoothtype=’mean’)

Plot up before and after tables
plotcal(’n4826_16apr.gcal’,’’,’amp’,antenna=’1’,subplot=211)
plotcal (’n4826_16apr.smoothcal’,’’,’amp’,antenna=’1’,subplot=212)

This example uses 2 hours (7200 sec) for the smoothing time and smoothtype=’mean’. The plotcal
results are shown in Figure

4.5.6 Calibration Interpolation and Accumulation (accum)

ALERT: The accum task is generally no longer recommended for most calibration scenarios. Please
write to the NRAO CASA helpdesk if you need support using accum.

The accum task is used to interpolate calibration solutions onto a different time grid, and to
accumulate incremental calibrations into a cumulative calibration table. The manual accumulation
of calibration is rarely required and can usually be achieved implicitly simply by running applycal
with all the calibration tables given as a list in the gaintable parameter (and using gainfield,
spwmap, and interp appropriately. However, sometimes it is desirable to see the interpolated
calibration prior to application, and this section describes how this can be done.

Its inputs are:

accum :: Accumulate incremental calibration solutions

vis = 7 # Name of input visibility file

tablein =) # Input (cumulative) calibration table; use ’’ on first run
accumtime = 1.0 # Timescale on which to create cumulative table

incrtable = i # Input incremental calibration table to add

caltable = ’> # QOutput (cumulative) calibration table

field = 0 # List of field names to process from tablein.

calfield = ?? # List of field names to use from incrtable.

interp = ’linear’ # Interpolation mode to use for resampling incrtable solutions

spwmap = [-1] # Spectral window combinations to apply

The mapping implied here is
tablein + incrtable => caltable
(mathematically the cal solutions are multiplied as complex numbers as per the Measurement

Equation). The tablein is optional (see below). You must specify an incrtable and a caltable.

The tablein parameter is used to specify the existing cumulative calibration table to which an
incremental table is to be applied. Initially, no such table exists, and if tablein=’’ then accu-
mulate will generate one from scratch (on-the-fly), using the timescale (in seconds) specified by

CHAPTER 4. SYNTHESIS CALIBRATION 257

the sub-parameter accumtime. These nominal solutions will be unit-amplitude, zero-phase calibra-
tion, ready to be adjusted by accumulation according to the settings of other parameters. When
accumtime is negative (the default), the table name specified in tablein must exist and will be
used. If tablein is specified, then the entries in that table will be used.

The incrtable parameter is used to specify the incremental table that should be applied to
tablein. The calibration type of incrtable sets the type assumed in the operation, so tablein
(if specified) must be of the same type. If it is not, accum will exit with an error message. (Certain
combinations of types and subtypes will be supported by accum in the future.)

The caltable parameter is used to specify the name of the output table to write. If un-specified
(>?), then tablein will be overwritten. Use this feature with care, since an error here will require
building up the cumulative table from the most recent distinct version (if any).

The field parameter specifies those field names in tablein to which the incremental solution
should be applied. The solutions for other fields will be passed to caltable unaltered. If the
cumulative table was created from scratch in this run of accumulate, then the solutions for these
other fields will be unit-amplitude, zero-phase, as described above.

The calfield parameter is used to specify the fields to select from incrtable to use when applying
to tablein. Together, use of field and calfield permit completely flexible combinations of
calibration accumulation with respect to fields. Multiple runs of accum can be used to generate a
single table with many combinations. In future, a ’>self’ mode will be enabled that will simplify
the accumulation of field-specific solutions.

The spwmap parameter gives the mapping of the spectral windows in the incrtable onto those in
tablein and caltable. The syntax is described in §4.4.1.4

The interp parameter controls the method used for interpolation. The options are (currently):
’nearest’ and ’linear’ for time-dependent interpolation, and ’nearest’, ’linear’, cubic, and
spline for (optional) frequency-dependent interpolation. These are described in § For
most purposes, the >linear’ option should suffice.

We now describe the two uses of accum.

4.5.6.1 Interpolation using (accum)

ALERT: The accum task is generally no longer recommended for most calibration scenarios. Please
write to the NRAO CASA helpdesk if you need support using accum.

Calibration solutions (most notably G or T') can be interpolated onto the timestamps of the science
target observations using accum.

The following example uses accum to interpolate an existing table onto a new time grid:

accum(vis=’n4826_16apr.ms’,
tablein=’",
accumtime=20.0,
incrtable=’n4826_16apr.gcal’,

CHAPTER 4. SYNTHESIS CALIBRATION 258

caltable="n4826_16apr.20s.gcal’,
interp=’linear’,
spwmap=[0,1,1,1,1,1])

plotcal(’n4826_16apr.gcal’,’’,’phase’,antenna=’1’,subplot=211)
plotcal(’n4826_16apr.20s.gcal’,’’,’phase’,antenna=’1’,subplot=212)

See Figure for the plotcal results. The data used in this example is BIMA data (single polar-
ization YY) where the calibrators were observed in single continuum spectral windows (spw=’0,17)
and the target NGC4826 was observed in 64-channel line windows (spw=’2,3,4,5’). Thus, it is
necessary to use spwmap=[0,1,1,1,1,1] to map the bandpass calibrator in spw=’0’ onto itself,
and the phase calibrator in spw=’1’ onto the target source in spw=’2,3,4,5".

hal CASA Plotter

I ([el I
ﬁlglgli"%glll Zoom to rect mode

Figure 4.8: The ’phase’ of gain solutions for NGC4826 before (top) and after (bottom) ’linear’
interpolation onto a 20 sec accumtime grid. The first scan was 3C273 in spw=’0’ while the calibrator
scans on 13314305 were in spw=’1’. The use of spwmap was necessary to transfer the interpolation
correctly onto the NGC4826 scans.

CHAPTER 4. SYNTHESIS CALIBRATION 259

4.5.6.2 Incremental Calibration using (accum)

It is occasionally desirable to solve for and apply calibration incrementally. This is the case when
a calibration table of a certain type already exists (from a previous solve), a solution of the same
type and incremental relative to the first is required, and it is not possible or convenient to recover
the cumulative solution by a single solve.

Much of the time, it is, in fact, possible to recover the cumulative solution. This is because the
equation describing the solution for the incremental solution (using the original solution), and that
describing the solution for their product are fundamentally the same equation—the cumulative
solution, if unique, must always be the same no matter what initial solution is. One circumstance
where an incremental solution is necessary is the case of phase-only self-calibration relative to a full
amplitude and phase calibration already obtained (from a different field).

For example, a phase-only ’G’ self-calibration on a target source may be desired to tweak the full
amplitude and phase ’G’ calibration already obtained from a calibrator. The initial calibration
(from the calibrator) contains amplitude information, and so must be carried forward, yet the
phase-only solution itself cannot (by definition) recover this information, as a full amplitude and
phase self-calibration would. In this case, the initial solution must be applied while solving for the
phase-only solution, then the two solutions combined to form a cumulative calibration embodying
the net effect of both. In terms of the Measurement Equation, the net calibration is the product
of the initial and incremental solutions.

Cumulative calibration tables also provide a means of generating carefully interpolated calibration,
on variable user-defined timescales, that can be examined prior to application to the data with
applycal. The solutions for different fields and/or spectral windows can be interpolated in different
ways, with all solutions stored in the same table.

The only difference between incremental and cumulative

calibration tables is that incremental tables are gener- Other Packages:

ated directly from the calibration solving tasks (gaincal, |The analog of accum in classic AIPS
bandpass, etc.), and cumulative tables are generated from |ig the use of CLCAL to combine a se-
other cumulative and incremental tables via accum. In all |rjes of (incremental) SN calibration
other respects (internal format, application to data with |{ables to form successive (cumula-
applycal, plotting with plotcal, etc.), they are the same, tive) CL calibration tables. AIPS
and therefore interchangeable. Thus, accumulate and cu- | gN/CL tables are the analog of ’G’
mulative calibration tables need only be used when circum- |iaples in CASA.

stances require it.

The accum task represents a generalization on the classic AIPS CLCAL (see sidebox) model of
cumulative calibration in that its application is not limited to accumulation of ’G’ solutions. In
principle, any basic calibration type can be accumulated (onto itself), as long as the result of the
accumulation (matrix product) is of the same type. This is true of all the basic types, except
’D’. Accumulation is currently supported for *B’, *G’, and ’T’, and, in future, ’F’ (ionospheric
Faraday rotation), delay-rate, and perhaps others. Accumulation of certain specialized types (e.g.,
’GSPLINE’, *TOPAC’, etc.) onto the basic types will be supported in the near future. The treatment
of various calibration from ancillary data (e.g., system temperatures, weather data, WVR, etc.), as
they become available, will also make use of accumulate to achieve the net calibration.

CHAPTER 4. SYNTHESIS CALIBRATION 260

Note that accumulation only makes sense if treatment of a uniquely incremental solution is required
(as described above), or if a careful interpolation or sampling of a solution is desired. In all other
cases, re-solving for the type in question will suffice to form the net calibration of that type. For
example, the product of an existing ’G’ solution and an amplitude and phase G’ self-cal (solved
with the existing solution applied), is equivalent to full amplitude and phase *G’ self-cal (with no
prior solution applied), as long as the timescale of this solution is at least as short as that of the
existing solution.

One obvious application is to calibrate the amplitudes and phases on different timescales during
self-calibration. Here is an example:

Add clean model
ft(vis=’jupiter6cm.usecase.split.ms’,
model=’jupiter6cm.usecase.cleanl.model’)

Phase only self-cal on 10s timescales

gaincal (vis=’jupiter6cm.usecase.split.ms’,
caltable=’jupiter6cm.usecase.phasecall’,
gaintype='G’,
calmode=’p’,
refant=’6",
solint=10.0,
minsnr=1.0)

Plot up solution phase and SNR
plotcal(’ jupiter6cm.usecase.phasecall’,’’,’phase’,antenna=’1’,subplot=211)
plotcal(’jupiter6cm.usecase.phasecall’,’’,’snr’,antenna=’1’,subplot=212)

Amplitude and phase self-cal on scans

gaincal (vis=’jupiter6cm.usecase.split.ms’,
caltable=’jupiter6cm.usecase.scancall’,
gaintable=’ jupiter6cm.usecase.phasecall’,

gaintype=’G’,
calmode=’ap’,
refant=’6",

solint=’inf’,
minsnr=1.0)

Plot up solution amp and SNR
plotcal(’ jupiter6cm.usecase.scancall’,’’,’amp’,antenna=’1’,subplot=211)
plotcal(’jupiter6cm.usecase.scancall’,’’,’snr’,antenna=’1’,subplot=212)

Now accumulate these - they will be on the 10s grid

accum(vis=’jupiter6cm.usecase.split.ms’,
tablein=’jupiter6cm.usecase.phasecall’,
incrtable=’jupiter6cm.usecase.scancall’,
caltable=’jupiter6cm.usecase.selfcall’,
interp=’linear’)

Plot this up
plotcal(’jupiter6cm.usecase.selfcall’,’’,’amp’,antenna=’1’,subplot=211)

CHAPTER 4. SYNTHESIS CALIBRATION 261

plotcal(’jupiter6cm.usecase.selfcall’,’’,’phase’,antenna=’1’,subplot=212)

The final plot is shown in Figure

[Ed/cASA Piotter

e ragon]] g acte] | oun |
2010+~ 8|

Zoom to rect mode

Figure 4.9: The final *amp’ (top) and ’phase’ (bottom) of the self-calibration gain solutions for
Jupiter. An initial phase calibration on 10s solint was followed by an incremental gain solution
on each scan. These were accumulated into the cumulative solution shown here.

ALERT: Only interpolation is offered in accum, no smoothing (as in smoothcal).

4.6 Application of Calibration to the Data

After the calibration solutions are computed and written to one or more calibration tables, one
then needs to apply them to the data.

CHAPTER 4. SYNTHESIS CALIBRATION 262

4.6.1 Application of Calibration (applycal)

Alert: This section is written using the traditional applycal parameters. Users are encouraged
to consult Appendix [G] for information on how to use the “Cal Library” to manage and apply
calibration, which will ultimately provide more flexibility in calibration application, including in a
wider variety of applications.

After all relevant calibration types have been determined, they must be applied to the target
source(s) before splitting off to a new MS or before imaging. This is currently done by explicitly
taking the data in the DATA column in the MAIN table of the MS, applying the relevant calibration
tables, and creating the CORRECTED_DATA scratch column. The original DATA column is untouched.

The applycal task does this. The inputs are:

applycal :: Apply calibrations solutions(s) to data
vis = ? # Name of input visibility file

field = 0 # Select field using field id(s) or field name(s)
spw = 2 # Select spectral window/channels
intent = 7 # Select observing intent
selectdata = True # Other data selection parameters
timerange = 7 # Select data based on time range
uvrange = 0 # Select data within uvrange (default units meters)
antenna = ?? # Select data based on antenna/baseline
scan = ?? # Scan number range
observation = 0 # Select by observation ID(s)
msselect = 7 # Optional complex data selection (ignore for now)
docallib = False # Use callib or traditional cal apply parameters
gaintable = (] # Gain calibration table(s) to apply on the fly
gainfield = (] # Select a subset of calibrators from gaintable(s)
interp =] # Interp type in time[,freq],
per gaintable. default=linear,linear
spwmap = (] # Spectral windows
combinations to form for gaintable(s)
calwt = [True] # Calibrate data weights per gaintable.
parang = False # Apply parallactic angle correction
applymode = ?? # Calibration mode:
""="calflag","trial","flagonly", or "calonly"
flagbackup = True # Automatically back up the
state of flags before the run?

As in other tasks, setting selectdata=True will open up the other selection sub-parameters (see
§ . In addition, you can also select data based on the scan intents that were set during the ob-
servations (find them through listobs). Many of the other parameters are the common calibration
parameters that are described in §

The single non-standard parameter is the calwt option to toggle the ability to scale the visibility
weights by the inverse of the products of the scale factors applied to the amplitude of the antenna
gains (for the pair of antennas of a given visibility). This should in almost all cases be set to its

CHAPTER 4. SYNTHESIS CALIBRATION 263

default (True). The weights should reflect the inverse noise variance of the visibility, and errors in
amplitude are usually also in the weights.

Alert: Current (as of February 2014) Jansky VLA data has no calibrated weights to the data
(unless they are created from switched power). To avoid trouble, calwt=False should be set for
those data sets. Older, pre-Jansky VLA data should still be calibrated with calwt=True.

For applycal, the list of final cumulative tables is given in gaintable. In this case you will have
run accum if you have done incremental calibration for any of the types, such as >G’. You can also
feed gaintable the full sets and rely on use of gainfield, interp and spwmap to do the correct
interpolation and transfer. In particular, for frequency interpolation, the interpolation methods
ending in ’PD’, nearestPD and linearPD also scale the phase by the frequency ratio between
the measured and interpolated values. It is often more convenient to go through accumulation of
each type with accum as described above (see § , as this makes it easier to keep track of
the sequence of incremental calibration as it is solved and applied. You can also do any required
smoothing of tables using smoothcal (§ , as this is not yet available in accum or applycal.

applycal has different applymodes: ’calflag’ will apply all flags from a calibration table to the
data and apply the calibration itself to the remaining visibilities. ’trial’ will only report on
the calibration table flags but not manipulate the data, >flagonly’ applies the flags but not the
calibration itself, and ’calonly’ will apply the calibration and but not the solution table flags.
Data that would ’calflag’ would flag are thus passed through uncalibrated. This option can be
useful when applycal is executed in consecutive steps, one calibration table at a time. Portions
of the data that were not calibrated in the first run can then be calibrated in a second run with
a different calibration table. This option should be used with care such that no uncalibrated data
remains in the final data product.

applycal will flag all data that have no calibration solution. Flags will distribute into all of your
scratch columns, i.e. it will affect your uncalibrated visibilities, too. To be able to restore the flags
to the state before applycal is starting its duty, the task will make a backup of your current flags
by default (flagbackup=True). Restore them with flagmanager, if you are not happy with the
applycal results.

If you are not doing polarization calibration or imaging, then you can set parang=False to make
the calculations faster. If you are applying polarization calibration, or wish to make polarization
images, then set parang=True so that the parallactic angle rotation is applied to the appropriate
correlations. Currently, you must do this in applycal as this cannot be done on-the-fly in clean

or mosaic. See §4.4.1.3|for more on parang.

For example, to apply the final bandpass and flux-scaled gain calibration tables solutions to the
NGC5921 data:

default(’applycal’)
vis=’ngc5921.usecase.ms’

We want to correct the calibrators using themselves
and transfer from 1445+099 to itself and the target N5921

CHAPTER 4. SYNTHESIS CALIBRATION 264

Start with the fluxscale/gain and bandpass tables
gaintable=[’ngc5921.usecase.fluxscale’, ’ngc5921.usecase.bcal’]

pick the 1445+099 (field 1) out of the gain table for transfer
use all of the bandpass table
gainfield = [’1’,7%’]

interpolation using linear for gain, nearest for bandpass
interp = [’linear’,’nearest’]

only one spw, do not need mapping
spwmap = []

all channels, no other selection
spw = 7’
selectdata = False

no prior calibration
gaincurve = False
opacity = 0.0

select the fields for 1445+099 and N5921 (fields 1 and 2)
field = ’1,2°

applycal()
Now for completeness apply 1331+305 (field 0) to itself

field = ’0°
gainfield = [’0’,7%’]

applycal()

The CORRECTED_DATA column now contains the calibrated visibilities

In another example, we apply the final cumulative self-calibration of the Jupiter continuum data

obtained in the example of §[4.5.6.2

applycal(vis=’jupiter6cm.usecase.split.ms’,
gaintable=’ jupiter6cm.usecase.selfcall’,
selectdata=False)

Again, it is important to remember the relative nature of each calibration term. A term solved for
in the presence of others is, in effect, residual to the others, and so must be used in combination
with them (or new versions of them) in subsequent processing. At the same time, it is important
to avoid isolating the same calibration effects in more than one term, e.g., by solving for both ’G’
and ’T’ separately (without applying the other), and then using them together.

It is always a good idea to examine the corrected data after calibration (using plotxy to compare
the raw (’data’) and corrected (’corrected’) visibilities), as we describe next.

CHAPTER 4. SYNTHESIS CALIBRATION 265

4.6.2 Examine the Calibrated Data

Once the source data is calibrated using applycal, you should examine the uv data and flag
anything that looks bad. If you find source data that has not been flanked by calibration scans,
delete it (it will not be calibrated).

For example, to look at the calibrated Jupiter data in the last example given in the previous section:

plotxy(’ jupiter6cm.usecase.split.ms’,’uvdist’,’amp’,’corrected’,
selectdata=True,correlation="RR LL’,fontsize = 14.0)

will show the CORRECTED_DATA column. See Figure [£.10]

hdl CASA Plotter

ozt [e [y o L e |
mggﬂ%ﬂﬂ Zoom to rect mode : x=6.115, y=-0.185

Figure 4.10: The final >amp’ versus ’uvdist’ plot of the self-calibrated Jupiter data, as shown in
plotxy. The *RR LL’ correlations are selected. No outliers that need flagging are seen.

See § for a description of how to display and edit data using plotms or plotxy, and § for
use of the viewer to visualize and edit a Measurement Set.

CHAPTER 4. SYNTHESIS CALIBRATION 266

4.6.3 Resetting the Calibration Models (delmod and clearcal)

Whenever calibration tasks are run, the models associated with the MS will be overwritten. Some-
times, however, one would like to completely remove the model and the task delmod can perform
this functionality:

delmod :: Deletes model representations in the MS

vis = ’? # Name of input visibility file (MS)

otf = True # Delete the on-the-fly model data keywords
field = 0 # Select field using field id(s) or field name(s)

scr = False # Delete the MODEL_DATA scr col (if it exists)

To do so, the parameter otf should be set to True. delmod can also be used if for any reason a MODEL_column
was created and should be removed to avoid confusion between the on-the-fly model and the MODEL column
(the MODEL_DATA column was required in CASA 3.3 and earlier). This can be achieved with scr=T.

delmod generally replaces the functionality of the older clearcal task. If one still decides to use the
MODEL_DATA columns, however, clearcal is still useful and will reset both the MODEL_DATA and
CORRECTED _DATA columns to DATA:

CASA <11>: inp clearcal

clearcal :: Re-initializes the calibration for a visibility data set

vis = ?? # Name of input visibility file (MS)

field = 7 # Select field using field id(s) or field name(s)
spw = 7 # Select spectral window/channel.

intent = 7 # Select observing intent

addmodel = False # Add MODEL_DATA scratch column

with field, spw, and intent being data selection parameters. addmodel can be used to opt in/out
of formation of the MODEL_DATA column.

With the introduction of the on-the-fly calculation of the MODEL visibilities, and the fact that
applycal overwrites any previously existing CORRECTED_DATA column, clearcal is not re-
quired anymore unless usescratch=True is chosen in calibration tasks, and it is also not recom-
mended to use clearcal to create the scratch columns at the beginning of data calibration; all
benefits from the on-the-fly model would be made obsolete.

4.7 Other Calibration and UV-Plane Analysis Options

4.7.1 Splitting out Calibrated uv data (split)

Starting in CASA 4.6.0, split2 has been renamed to split and became the default in CASA.
The old implementation of split is still available under the name oldsplit. The interface of both

implementations is the same, but the new split uses the MSTransform framework underneath. See
g for detailed information on mstransform.

CHAPTER 4. SYNTHESIS CALIBRATION 267

The split task will apply calibration and output a new MS containing a specified list of sources
(usually a single source). The inputs are:

split :: Create a visibility subset from an existing visibility set

vis = » # Name of input Measurement set or Multi-MS

outputvis = » # Name of output Measurement set or Multi-MS

keepmms = True # If the input is a Multi-MS the output will also be a Multi-MS
field = >? # Select field using ID(s) or name(s)

spw = ’> # Select spectral window/channels

scan = ? # Select data by scan numbers

antenna = ?? # Select data based on antenna/baseline

correlation =) # Correlation: ’’ ==> all, correlation=’XX,YY’

timerange = ?? # Select data by time range

intent = » # Select data by scan intent.

array = ’> # Select (sub)array by array ID number(s)

uvrange = ?? # Select data bt baseline length

observation = »? # Select data by observation ID(s).

feed =) # Multi-feed numbers: Not yet implemented.

datacolumn = ’corrected’ # Which data column(s) to process

keepflags = True # Keep *completely flagged rows* instead of dropping them
width = 1 # Number of channels to average to form one output channel
timebin = ’0s’ # Bin width for time averaging

Usually you will run split with datacolumn=’corrected’ as previous operations (e.g. applycal)
will have placed the calibrated data in the CORRECTED_DATA column of the MS. This will produce
a new MS with this corrected data in its DATA column. The modes available in datacolumn are:

corrected

data

model
data,model,corrected
float_data

lag_data
float_data,data
lag_data,data

all

float_data is used for single dish processing.

For example, to split out 46 channels (5-50) from spw 1 of our NGC5921 calibrated dataset:

split(vis=’ngc5921.usecase.ms’,
outputvis=’ngc5921.split.ms’,

field=’2", # Output NGC5921 data (field 2)
spw=’"0:5750", # Select 46 chans from spw O
datacolumn=’corrected’) # Take the calibrated data column

4.7.1.1 Averaging in split

Time and channel averaging are available using the timebin and width parameters.

CHAPTER 4. SYNTHESIS CALIBRATION 268

The timebin parameter gives the averaging interval. It takes a quantity, e.g.

>30s’

))

timebin

combine

and by default will combine scans and states during averaging. For more details on the time average
implementation and how it handles the weights, see § [4.7.4.4]

The width parameter defines the number of channels to average to form a given output channel.
This can be specified globally for all spw, e.g.

width = 5
or specified per spw, e.g.
width = [2,3]

to average 2 channels of 1st spectral window selected and 3 in the second one. See further details

in § 745

ALERT: When averaging channels split will produce negative channel widths (as reported by
listobs) if frequency goes down with increasing channel number, whether or not the input channel
widths are negative. The bandwidths and channel resolutions will still be positive.”

4.7.2 Recalculation of uvw values (fixvis)

Sometimes the u,v,w coordinates of a Measurement Set are not recorded correctly by the correlator.
In those cases, it may be necessary to recalculate them based on the antenna positions. fixvis
will perform this task.

fixvis :: Recalculates (u, v, w) and/or changes Phase Center

vis = 0 # Name of the input visibility set.

outputvis = 7 # Name of the output visibility set. (Can be the same
as vis.)

field = ?? # Fields to operate on. = all.

refcode = 0 # reference frame to convert UVW coordinates to

reuse = True # base UVW calculation on the old values?

phasecenter = 7 # wuse this direction as phase center

A useful feature of fixvis is that it can also change the phase center of a Measurement Set. This
can be done with absolute coordinates or using offsets. An example is:

fixvis(vis=’Moon.ms’,outpuvis=’Moon-fixed.ms’,field=’Moon’, phasedir=’J2000 9h25m00s 05d12m00s’)

that will recalculate the u,v,w coordinates relative to the new phase center for the field 'Moon’.

CHAPTER 4. SYNTHESIS CALIBRATION 269

4.7.3 Hanning smoothing of uv data (hanningsmooth)

For strong spectral line sources (like RFI sources), the Gibbs phenomenon may cause ringing across
the frequency channels of an observation. This is called the Gibbs phenomenon and a proven remedy
is the Hanning smoothing algorithm. Hanning smoothing is a running mean across the spectral axis
with a triangle as a smoothing kernel. The central channel is weighted by 0.5 and the two adjacent
channels by 0.25 to preserve the flux. Hanning smoothing significantly reduces Gibbs ringing but
there’s no gain without a penalty and here it is the loss of a factor of two in spectral resolution.

The new hanningsmooth task (based on mstransform) has slightly changed in CASA 4.6. The
main difference with oldhanningsmooth, the previous hanningsmooth implementation, is that the
new task no longer writes to the input MS, but it always creates an output MS. The new task
can also handle a Multi-MS and process it in parallel (see more information in the parallelization

chapter (§[10).

In CASA, the hanningsmooth task will apply Hanning smoothing to a spectral line uv data Mea-
surement Set. The inputs are:

hanningsmooth :: Hanning smooth frequency channel data to remove Gibbs ringing

vis = 2 # Name of input Measurement set or Multi-MS.
outputvis = i # Name of output Measurement set or Multi-MS.
keepmms = True # If the input is a Multi-MS the output will also

be a Multi-MS.

field = 0 # Select field using ID(s) or name(s).

spw = 7 # Select spectral window/channels.

scan = ?? # Select data by scan numbers.

antenna = ?? # Select data based on antenna/baseline.
correlation = ?0 # Correlation: ’’ ==> all, correlation="XX,YY’.
timerange = 7 # Select data by time range.

intent = ?? # Select data by scan intent.

array = 2 # Select (sub)array(s) by array ID number.
uvrange = 2 # Select data by baseline length.
observation = 0 # Select by observation ID(s).

feed = ?? # Multi-feed numbers: Not yet implemented.
datacolumn = ’all’ # Input data column(s) to process.

The datacolumn parameter determines which of the data columns is to be Hanning smoothed:
’all’, ’model’, ’corrected’, ’data’, ’float_data’ or ’lag data’. ’all’ will use whichever
of the visibility data columns that are present in the input MS. If >corrected’ is specified, the
task will smooth the input CORRECTED_DATA column and save the smoothed data in DATA of the
output MS.

4.7.4 MStransform (mstransform)

mstransform is a multipurpose task that provides all the functionality of split, partition, cvel,
hanningsmooth and applycal with the possibility of applying each of these transformations sep-
arately or together in an in-memory pipeline, thus avoiding unnecessary 1/O steps. The list of
transformations that mstransform can apply is as follows:

CHAPTER 4. SYNTHESIS CALIBRATION 270

1. Data selection and re-indexing

2. Data partition (create output Multi-MS)

3. On-the-fly calibration (via “Cal Library”)

4. Time average (weighted and baseline dependent)

5. Channel average (weighted)

6. Hanning smooth

7. Combination of spectral windows

8. Spectral regridding and reference frame transformation

9. Separation of spectral windows

Notice that the order in the above list is not arbitrary. When various transformations are applied
on the data using mstransform the order in which the transformations are pipe one after the other
is the one shown in the above list.

Besides mstransform in itself, there are a series of tasks that mimic the old interfaces and are
based on the mstransform framework: split, hanningsmooth and cvel2. Notice that as of CASA
4.6 the mstransform based versions of split and hanningsmooth are the default ones, whereas
cvel still is based on the old implementation by default, and the cvel2 interface points to the
mstransform implementation. For backwards compatibility safety the old implementation of split
and hanningsmooth are available under the names of oldsplit and oldhanningsmooth.

A complete functionality description is available at the following web site:

http://www.eso.org/ scastro/ALMA/casa/MST/MSTransformDocs/MSTransformDocs.html

4.7.4.1 Data selection and re-indexing

mstransform / split are able to create a new MS with a specific data selection, for instance
splitting a science target. The new MS contains only the selected data and also the subtables are
re-generated to contain only the metadata matching the data selection. The details about pure
split operation are described in section (§

vis = 7 # Name of input Measurement set or Multi-MS.
outputvis = ?? # Name of output Measurement Set or Multi-MS.
tileshape = [0] # List with 1 or 3 elements giving the

tile shape of the disk data columns.
field = ’? # Select field using ID(s) or name(s).
spw = 22 # Select spectral window/channels.
scan = ?? # Select data by scan numbers.
antenna = ?? # Select data based on antenna/baseline.
correlation =) # Correlation: ’’ ==> all, correlation="XX,YY’.

http://www.eso.org/~scastro/ALMA/casa/MST/MSTransformDocs/MSTransformDocs.html

CHAPTER 4. SYNTHESIS CALIBRATION 271

timerange = 22 # Select data by time range.
intent = ?? # Select data by scan intent.
array = 0 # Select (sub)array(s) by array ID number.
uvrange 7 # Select data by baseline length.
observation = 0 # Select by observation ID(s).
feed = 2 # Multi-feed numbers: Not yet implemented.
datacolumn = ’corrected’ # Which data column(s) to process.
keepflags = True # Keep *completely flagged rows* or
drop them from the output.
usewtspectrum = False # Create a WEIGHT_SPECTRUM column in the output MS.

The new features related with data election and re-indexing contained in mstransform / split
but not in oldsplit are the following:

e Spectral weight initialization: mstransform can initialize the output WEIGHT/SIGMA_SPECTRUM
columns by specifying usewtspectrum = True. The details about spectral weights initializa-

tion are described in section (§ [4.3.1])

e Tile shape specification for the data columns: mstransform also allows to specify a custom
default tile shape for the output data columns, namely a list of 3 elements specifying the
number of correlations, channels and rows to be contained in each tile, for instance tileshape
= [4,128,351] would specify a tile with shape (4 correlations)x(128 channels)x(351 rows).
This can be used to optimize the access pattern of subsequent tasks, for instance imaging
tasks.

e Support for SPWs with different sets of correlation products: mstransform / split are both
able to work when a given SPW is associated with several correlation products (like in some
EVLA correlation setups). This is transparent for the user and simply works by using the
spw data selection parameter normally. It also works in conjunction with the polarization
parameter, so for instance if a given MS has separated RR and LL data associated with spw
0 the following data selection would work flawlessly: spw = ’0’ polarization = ’LL’

e Support for multiple channel selection: Both mstransform / split are also capable of work-
ing with multiple channel selection. This support also goes transparently for the user, by sim-
ply following the SPW syntax specified by the MSSelection section (§ . For example
spw = ’4 7:4 59,8:4 13;18 594’

4.7.4.2 Data partition

MSTransform is the framework used by the partition task, and even though it can be used directly
to produce an MMS by specifying createmms = True it is highly recommended to use directly the
partition task as explained in chapter (§ . Nevertheless, for the sake of completeness this is the
list of expandable parameters shown when createmms = True

createmms = True # Create a multi-MS output
from an input MS.

CHAPTER 4. SYNTHESIS CALIBRATION 272

separationaxis = >auto’ # Axis to do parallelization across
(scan, spw,baseline,auto)
numsubms = 9 # The number of Sub-MSs to create

(auto or any number)

e separationaxis: Specifies the partition axis, across scan, spw, baseline, or auto. The default
mode is auto, which parts the data across both scan and spw distributing the data of each
scan and spw across all sub-MS in the most balanced way possible.

e numsubms: When this parameter is assigned to an integer it refers to the number of sub-MSs
that the output MMS would have. The default is auto which means producing as many
sub-MSs as processing engine/servers (in cluster mode).

4.7.4.3 On-the-fly calibration

As of CASA 4.5 mstransform incorporates the possibility of applying on the-the-fly (OTF) calibra-
tion by specifying docallib = True, which in turns allows to specify the “Cal Library” filename
(callib parameter) whose format is described in Appendix |G} This transformation is the first one
applied to the data, producing effectively a corrected data column on-the-fly, which can be further
transformed.

docallib True # Enable OTF calibration
callib = > # Cal Library filename

e callib: Filename pointing to the calibration specification file whose format is described in
Appendix [G| where conventions and current limitations are also described.

4.7.4.4 Time average

mstransform / split are both able to perform a regular (weighted) time average like oldsplit
(in mstransform by specifying timeaverage = True and in split by default). However, there are
some differences listed below. Additionally, mstransform it is able to perform a baseline dependent
timeaverage as described in the paper Effects of Baseline Dependent Time Averaging of UV Data
by W.D. Cotton (OBIT No. 13, 2008).

timeaverage = True # Average data in time.
timebin = ’0s’ # Bin width for time averaging.
timespan = > # Span the timebin across scan, state or both.
maxuvwdistance = 0.0 # Maximum separation of start-to-end baselines

that can be included in an average(meters)

CHAPTER 4. SYNTHESIS CALIBRATION 273

e Whereas split uses exclusively the WEIGHT column to perform the weighted average, mstransform
/ split use both FLAG and spectral weights (when present). To be specific WEIGHT_SPECTRUM
is used when averaring CORRECTED_DATA, and SIGMA_SPECTRUM is used when averaging the
DATA column.

e Also mstransform / split are able to transform the input WEIGHT/SIGMA_SPECTRUM ac-
cording to the rules of error propagation that apply to a weighted average, which result in

an output weight equals to the sum of the input weights. For a detailed reference see, Data
Reduction and Error Analysis by Bevington & Robinson (3rd Ed., McGraw Hill, 2003).

e When mstransform / split process an ALMA MS, and timebin is greater than 30s,
timespan is automatically set to state, to overcome a limitation of the ALMA ASDM binary
dumps.

e As of 4.5 mstransform / split both allow timespan field in addition to scan and state.

e maxuvdistance: In the case of mstransform, when maxuvdistance is greater than 0 this
parameter controls the maximum uv distance allowed when averaging data from the same
baseline. It works in conjunction with the timebin parameter in the sense that the averaging
process is finalized when either timebin is completed or maxuvdistance is reached. The
details of the baseline dependent averaging algorithm are available here:

ftp://ftp.cv.nrao.edu/NRAO-staff/bcotton/0Obit/BLAverage.pdf

4.7.4.5 Channel average

Bothmstransform / split are able to perform a regular (weighted) channel average (in mstransform
by specifying chanaverage =T rue and in split by default). The differences w.r.t. the channel
average algorithm of oldsplit listed in the list below.

chanaverage = True # Average data in channels.
chanbin = 1 # Width (bin) of input channels
to average to form an output channel.

e o0ldsplit performs a flat average taking into account only the FLAG column, whereas mstransform
/ split use both FLAG and spectral weights (when present), resulting in a weighted average.
To be specific WEIGHT _SPECTRUM is used when averaging CORRECTED_DATA, and SIGMA_SPECTRUM
is used when averaging the DATA column.

e Also mstransform / split are able to transform the input WEIGHT/SIGMA_SPECTRUM ac-
cording to the rules of error propagation that apply to a weighted average, which result in
an output weight equals to the sum of the input weights. For a detailed reference see, Data
Reduction and Error Analysis by Bevington & Robinson (3rd Ed., McGraw Hill, 2003).

e Both mstransform / split drop the last output channel bin when there are not enough
contributors to fully populate it. For instance, if the input SPW has 128 channels and
chanbin is 10, the resulting averaged SPW would have 12 channels and not 13 channels.

ftp://ftp.cv.nrao.edu/NRAO-staff/bcotton/Obit/BLAverage.pdf

CHAPTER 4. SYNTHESIS CALIBRATION 274

4.7.4.6 Hanning smooth

Both mstransform / hanningsmooth are able to perform hannining smooth (in mstransform
by specifying hanning = True and in hanningsmooth by default). The only difference w.r.t.
oldhanningsmooth is that a new MS is created.

4.7.4.7 Combination of spectral windows

Both mstransform / cvel2 are able combine SPWs (in mstransform by specifying combinespws
= True and in cvel2 by default). The algorithm is in general the same as the old cvel, however,
there are two significant differences in the new framework:

e mstransform Is able to only combine SPWs, only regrid each SPW separately or to combine
all SPWs and regrid them together. The details about independent regridding operation are
explained in the following sections.

e mstransform / cvel2 Automatically detect combination of SPWs with different exposure,
and use the WEIGHT column (or WEIGHT_SPECTRUM if available) in addition of the geometrical
factors to calculate the combined visibility in the overlapping regions.

4.7.4.8 Spectral regridding and reference frame transformation

Both mstransform / cvel2 are able to perform spectral regridding / reference frame transfor-
mation (in mstransform by specifying regridms = True and in cvel2 by default). However
mstransform is able to perform spectral regridding / reference frame transformation on each se-
lected SPW separately, that is w/o combining the selected SPWs. As of CASA 4.5 both algorithms
are fully aligned including the latest developments to take into account ephemerides and radial
velocity correction.

regridms = True # Regrid the MS to a new spw,
channel structure or frame.
mode = ’channel’ # Regridding mode
(channel/velocity/frequency/channel_b).
nchan = -1 # Number of channels in the output spw (-1=all).
start = 0 # First channel to use in the output spw
(mode-dependant)
width = 1 # Number of input channels that are
used to create an output channel.
nspw = 1 # Number of output spws to create in output MS.
interpolation = ’linear’ # Spectral interpolation method.
phasecenter = 7 # Image phase center: position or field index.
restfreq = ? # Rest frequency to use for output.
outframe = ? # Output reference frame (’’=keep input frame).
veltype = ’radio’ # Velocity definition.

CHAPTER 4. SYNTHESIS CALIBRATION 275

4.7.4.9 Separation of spectral windows

A completely new feature in mstransform is the ability to separate an input SPW into several ones,
or to combine various input SPWs into a single one with a uniform grid (resolving overlaps/gaps)
to then separate it in several output SPWs. This option is activated under the regridding section
(therefore by specifying regridms = True), together with the nspw) parameter which when bigger
than 1 implies that the input SPW / combination of input SPWs should be separated:

regridms
nspw = 1 # Number of output spws to create in output MS.

True # Regrid the MS to a new spw,

4.7.5 Model subtraction from uv data (uvsub)

The uvsub task will subtract the Fourier transform of the associated model of the MS (added to
the MS with the tasks ft or setjy) from that in the CORRECTED_DATA column in the input MS and
store the result in that same CORRECTED_DATA column.

The reverse operation is achieved by specifying reverse = True: in that case uvsub will add the
value of the Fourier transform of the associated model to that in the CORRECTED_DATA column in
the input MS and store the result in that same CORRECTED _DATA column.

The inputs are:

uvsub :: Subtract/add model from/to the corrected visibility data.

vis = >? # Name of input visibility file (MS)
reverse False # reverse the operation (add rather than subtract)

For example:

uvsub(’ngc5921.split.ms’)

ALERT: Currently, uvsub operates on the CORRECTED DATA column in the MS vis. Eventually
we will provide the option to write out a new MS.

4.7.6 UV-Plane Continuum Subtraction (uvcontsub)

At this point, consider whether you are likely to need continuum subtraction. If there is significant
continuum emission present in what is intended as a spectral line observation, continuum subtrac-
tion may be desirable. You can estimate and subtract continuum emission in the uwv-plane prior
to imaging or wait and subtract an estimate of it in the image-plane. Note that neither method is
ideal, and the choice depends primarily upon the distribution and strength of the continuum emis-
sion. Subtraction in the uv-plane is desirable if continuum emission dominates the source, since
deconvolution of the line emission will be more robust if it not subject to the deconvolution errors

CHAPTER 4. SYNTHESIS CALIBRATION 276

of the brighter continuum. There is also a performance benefit since the continuum is nearly the
same in each channel of the observation, and it is desirable to avoid repeating its deconvolution in
each channel. However, doing the continuum estimation in the uv-plane has the serious drawback
that interpolating visibilities between channels is only a good approximation for emission from
near the phase center. Thus, uvcontsub will do an increasingly poor job for emission distributed
further from the phase center. If the continuum emission is relatively weak, it is usually adequate
to subtract it in the image plane; this is described in the Image Analysis section of this cookbook.
Here, we describe how to do continuum subtraction in the uv-plane.

The uv-plane continuum subtraction is performed by the uvcontsub task. First, determine which
channels in your data cube do not have line emission, perhaps by forming a preliminary image as
described in the next chapter. This image will also help you decide whether or not you need to
come back and do uwv-plane continuum subtraction at all.

The inputs to uvcontsub are:

wuvcontsub :: Continuum fitting and subtraction in the uv plane

vis = 7 # Name of input MS. Output goes to vis + ".contsub"
(will be overwritten if already exists)

field = ’? # Select field(s) using id(s) or name(s)

fitspw = 0 # Spectral window:channel selection for fitting the
continuum

combine = ?? # Data axes to combine for the continuum estimation
(none, or spw and/or scan)

solint = ’int’ # Continuum fit timescale (int recommended!)

fitorder = 0 # Polynomial order for the fits

spw = »? # Spectral window selection for output

want_cont = False # Create vis + ".cont" to hold the continuum estimate.

For each baseline, and over the timescale specified in solint, uvcontsub will provide a polynomial
fit to the real and imaginary parts of the (continuum-only) channels specified in fitspw (using
the standard spw selection syntax), and then subtract this model from all channels specified in
spw, or from all channels in spectral windows of fitspw if spw=’’. By setting the subparameter
excludechannels=True, the channel selection in fitspw will be inverted. In that case one can
select the line channels themselves and/or corrupted channels that are not used in the continuum
fit to the data. fitspw can also take frequency ranges, e.g.

fitspw=’%:113.7677114.528GHz;114.7447115.447GHz"

where "*’ indicates to go across all spws.

Typically, low orders for the polynomial work best, like 0" (a constant), or 1°* order (a linear fit).
Use higher orders with caution and check your results carefully.

Usually, one should set solint="int’ which does no averaging and fits each integration. However,
if the continuum emission comes from a small region around the phase center and fitorder =
0, then you can set solint larger (as long as it is shorter than the timescale for changes in the
visibility function of the continuum). If your scans are short enough you can also use scan averaging

CHAPTER 4. SYNTHESIS CALIBRATION 277

with combine=’scan’ and solint="inf’. Be warned, setting solint too large will introduce “time
smearing” in the estimated continuum and thus not properly subtract emission not at the phase
center. Increasing solint speeds up the calculation but it does not improve the overall result quality
of uvcontsub - although the continuum estimates of each baseline may be noisy (just like each
visibility in a continuum MS may be noisy), it is better to use the ensemble of individual fits than
to average the ensemble before fitting. Note that plotms can do time and baseline averaging on
the fly to help you examine noisy data.

So, the recommended procedure is as follows:

e Finish calibration as described in the previous chapter.

e Use the invert or clean task on the split result to form an exploratory image that is useful for
determining the line-free channels.

e Use uvcontsub with as low fit orders as possible to estimate and subtract the continuum
from wis, and write the continuum-subtracted dataset to vis + ’.contsub’.

e Use clean with vis + ’.contsub’ to make an image cube of the line emission.

e [f a continuum image is desired, clean the line-free channels of the original MS with mode="mfs’
and spw=fitspw. Note that using the line free channels directly is preferred over the imaging
the ’continuum’ model fitted by uvcontsub. The fitting procedure will also fit noise and
artifacts which produce a nice line cube when subtracted, but the model may not represent
the true underlying continuum.

For example, we perform uwv-plane continuum subtraction on our NGC5921 dataset:

Want to use channels 4-6 and 50-59 for continuum
uvcontsub(vis=’ngc5921.usecase.ms’,
field="N59217,

spw="", # all spw (only O in this data)
fitspw=’0:477;50759’ # channels 4-6 and 50-59
solint=’int’, # leave it at the default
fitorder=0) # mean only

You will see it made a new MS:
ngc5921.usecase.ms.contsub"

4.7.7 Spectral regridding of the MS (cvel)

Although not strictly a calibration operation, spectral regridding of a MS is available to aid in
calibration operations (e.g. continuum subtraction) and preparation for imaging. For this purpose,
the cvel task has been developed.

The inputs are:

CHAPTER 4. SYNTHESIS CALIBRATION 278

cvel :: regrid an MS to a new spectral window / channel structure or frame
vis = 7 # Name of input measurement set
outputvis = 7 # Name of output measurement set
passall = False # Pass through (write to output MS) non-selected data with
no change
field = 0 # Select field using field id(s) or field name(s)
spw 2 # Select spectral window/channels
selectdata = True # Other data selection parameters
timerange ?? # Range of time to select from data
array = 0 # (sub)array indices
antenna = ?? # Select data based on antenna/baseline
scan = 22 # scan number range
mode = ’channel’ # Regridding mode
nchan = -1 # Number of channels in output spw (-1=all)
start = 0 # first input channel to use
width 1 # Number of input channels to average
interpolation = ’linear’ # Spectral interpolation method
phasecenter = 7 # Image phase center: position or field index
restfreq = 0 # rest frequency (see help)
outframe 2 # Output frame (not case-sensitive, ’’=keep input frame)
veltype ’radio’ # velocity definition
hanning = False # If true, Hanning smooth data before regridding to remove
Gibbs ringing.

The key parameters for the operation of cvel are the regridding mode, the output reference
outframe, veltype, restfreq (which may be a list of rest frequencies to match the different
spws) and the standard selection parameters (in particular spw and field).

The syntax for mode options (’channel’,’velocity’,’frequency’,’channel b’) has been made
compatible with the respective modes of clean (§|5.2.5). The combination of selected spw and
mode will determine the output channels and spw(s):

spw = ’0,1’; mode = ’channel’
will produce a single spw containing all channels in spw O and 1
spw="0:5728"2’; mode = ’channel’
will produce a single spw made with channels (5,7,9,...,25,27)
spw = ’0’; mode = ’channel’: nchan=3; start=5; width=4
will produce an spw with 3 output channels
new channel 1 contains data from channels (5+6+7+8)
new channel 2 contains data from channels (9+10+11+12)
new channel 3 contains data from channels (13+14+15+16)
spw = ’0:076373’; mode=’channel’; nchan=21; start = 0; width =1
will produce an spw with 21 channels
new channel 1 contains data from channel O
new channel 2 contains data from channel 2
new channel 21 contains data from channel 61
spw = ’0:074072’; mode = ’channel’; nchan = 3; start = 5; width = 4
will produce an spw with three output channels
new channel 1 contains channels (5,7)

H H H®

CHAPTER 4. SYNTHESIS CALIBRATION 279

new channel 2 contains channels (13,15)
new channel 3 contains channels (21,23)

The simplest use of cvel is to shift a single spectral window into an output frame without regridding.
This is done with mode=’channel’. For example:

cvel(vis=’test_w3oh_nohann.ms’,
outputvis =’test_w3oh_nohann_chanbary.ms’,
mode=’channel’ ,nchan=-1,start=0,width=1,
interpolation=’linear’,
phasecenter=’",
spw="",
restfreq=’1665.4018MHz’ ,
outframe=’BARY’)

does this for an observation of the OH line.

There is also a special mode=’channel b’ that does not force a linear output frequency grid, e.g. for
irregularly spaced/overlapping spectral windows), but is nominally faster. This is not equivalent
to a clean output gridding mode, although clean will work on this spectral lattice.

Mode channel is intended to not interpolate between channels. It will perform binning if needed.
For most scientific applications we recommend using the mode=’velocity’’ and mode=’frequency’
options, as it is easiest to determine what the resulting channelization will be. For example:

cvel (vis=’test_w3oh_nohann.ms’,
outputvis =’test_w3oh_nohann_cvellsrk.ms’,
mode=’velocity’,nchan=45,start=’-35.0km/s’ ,width="-0.55km/s’,
interpolation=’linear’,
phasecenter=’",
spw=”,
restfreq=’1665.4018MHz"’,
outframe=’LSRK’)

cvel(vis=’test_w3oh_nohann.ms’,
outputvis =’test_w3oh_nohann_cvelbary.ms’,
mode=’velocity’,nchan=45,start=’-35.0km/s’ ,width="-0.55km/s’,
interpolation=’linear’,
phasecenter=’",
spw="",
restfreq=’1665.4018MHz"’,
outframe=’BARY’)

will transform a MS into the LSRK and BARYcenter frames respectively.

The sign of the width parameter determines whether the channels run along increasing or decreasing
values of frequency or velocity (i.e. if the cube is reversed or not).

The intent of cvel regridding is to transform channel labels and the visibilities to a spectral reference
frame which is appropriate for the science analysis, e.g. from TOPO to LSRK, e.g. to correct for

CHAPTER 4. SYNTHESIS CALIBRATION 280

Doppler shifts throughout the time of the observation. Naturally, this will change the shape of
the spectral features to some extent. According to the Nyquist theorem you should oversample a
spectrum with twice the numbers of channels to retain the shape. Based on some tests, however, we
recommend to observe with at least 3-4 times the number of channels for each significant spectral
feature (like 3-4 channels per linewidth). This will minimize regridding artifacts in cvel.

If cvel has already established the grid that is desired for the imaging, clean should be run with
the default channel mode (> width=1) or with exactly the same frequency/velocity parameters as
was used in cvel. This will avoid additional regridding in clean. Hanning smoothing is optionally
offered in cvel, but tests have shown that already the regridding process itself, if it involved a
transformation from TOPO to a non-terrestrial reference frame, implies some smoothing (due to
channel interpolation) such that Hanning smoothing may not be necessary.

The interpolation method fftshift calculates the transformed visibilities by applying a FFT, then
a phase ramp, and then an inverse FFT. It will also perform pre-averaging, if necessary (this will
increas the S/N). Note that if you want to use this interpolation method, your frequency grid needs
to be equidistant, i.e. it only works in mode velocity with veltype=radio, in mode frequency,
and in mode channel (in the latter only if the input grid is itself equidistant in frequency). Note also
that, as opposed to all other interpolation methods, this method will apply a constant (frequency-
independent) shift in frequency which is not fully correct in the case of large fractional bandwidth
of the given spectral window.

4.7.8 UV-Plane Model Fitting (uvmodelfit)

It is often desirable to fit simple analytic source component models directly to visibility data. Such
fitting has its origins in early interferometry, especially VLBI, where arrays consisted of only a few
antennas and the calibration and deconvolution problems were poorly constrained. These methods
overcame the calibration uncertainties by fitting the models to calibration-independent closure
quantities and the deconvolution problem by drastically limiting the number of free parameters
required to describe the visibilities. Today, even with larger and better calibrated arrays, it is still
desirable to use visibility model fitting in order to extract geometric properties such as the positions
and sizes of discrete components in radio sources. Fits for physically meaningful component shapes
such as disks, rings, and optically thin spheres, though idealized, enable connecting source geometry
directly to the physics of the emission regions.

Visibility model fitting is carried out by the uvmodelfit task. The inputs are:

wuvmodelfit :: Fit a single component source model to the uv data:

vis = 0 # Name of input visibility file

field = » # field name or index

spw = » # spectral window

selectdata = False # Activate data selection details

niter = 5 # Number of fitting iterations to execute

comptype = ’p’ # Component type (P=pt source,G=ell. gauss,D=ell. disk)
sourcepar = [1, 0, 0] # Starting guess (flux,xoff,yoff,bmajaxrat,bpa)

varypar = [# Which parameters can vary in fit

outfile = » # Optional output component list table

CHAPTER 4. SYNTHESIS CALIBRATION 281

ALERT: This task currently only fits a single component.

The user specifies the number of non-linear solution iterations (niter), the component type (comptype),
an initial guess for the component parameters (sourcepar), and optionally, a vector of Booleans
selecting which component parameters should be allowed to vary (varypar), and a filename in
which to store a CASA componentlist for use in other applications (file). Allowed comptypes are
currently point P’ or Gaussian *G’.

The function returns a vector containing the resulting parameter list. This vector can be edited at
the command line, and specified as input (sourcepar) for another round of fitting.

The sourcepar parameter is currently the only way to specify the starting parameters for the fit.
For points, there are three parameters: I (total flux density), and relative direction (RA, Dec)
offsets (in arcsec) from the observation’s phase center. For Gaussians, there are three additional
parameters: the Gaussian’s semi-major axis width (arcsec), the aspect ratio, and position angle
(degrees). It should be understood that the quality of the result is very sensitive to the starting
parameters provided by the user. If this first guess is not sufficiently close to the global x? mini-
mum, the algorithm will happily converge to an incorrect local minimum. In fact, the y? surface,
as a function of the component’s relative direction parameters, has a shape very much like the
inverse of the absolute value of the dirty image of the field. Any peak in this image (positive or
negative) corresponds to a local x? minimum that could conceivable capture the fit. It is the user’s
responsibility to ensure that the correct minimum does the capturing.

Currently, uvmodelfit relies on the likelihood that the source is very near the phase center (within
a beamwidth) and/or the user’s savvy in specifying the starting parameters. This fairly serious
constraint will soon be relieved somewhat by enabling a rudimentary form of uv-plane weighting
to increase the likelihood that the starting guess is on a slope in the correct x? valley.

Improvements in the works for visibility model fitting include:

e User-specifiable uv-plane weighting
e Additional component shapes, including elliptical disks, rings, and optically thin spheroids.
e Optional calibration pre-application

e Multiple components. The handling of more than one component depends mostly on efficient
means of managing the list itself (not easy in command line options), which are currently
under development.

e Combined component and calibration fitting.

Example (see Figure 4.11)):

#

Note: It’s best to channel average the data if many channels
before running a modelfit

#

split(’ngc5921.ms’, ’1445+099_avg.ms’,

CHAPTER 4. SYNTHESIS CALIBRATION 282

datacolumn=’corrected’,field=’1445%’ ,width="63")

Initial guess is that it’s close to the phase center
and has a flux of 2.0 (a priori we know it’s 2.47)

uvmodelfit(’1445+099_avg.ms’, # use averaged data
niter=5, # Do 5 iterations
comptype=’P’, # P=Point source, G=Gaussian, D=Disk
sourcepar=[2.0,.1,.1], # Source parameters for a point source
spw="0", #
outfile=’gcal.cl’) # Output component list file

Output looks like:
There are 19656 - 3 = 19653 degrees of freedom.
iter=0: reduced chi2=0.0418509: I=2, dir=[0.1, 0.1] arcsec
iter=1: reduced chi2=0.003382: 1I=2.48562, dir=[-0.020069, -0.0268826] arcsec
iter=2: reduced chi2=0.00338012: I=2.48614, dir=[0.00323428, -0.00232235] arcsec
iter=3: reduced chi2=0.00338012: I=2.48614, dir=[0.00325324, -0.00228963] arcsec
iter=4: reduced chi2=0.00338012: 1I=2.48614, dir=[0.00325324, -0.00228963] arcsec
iter=5: reduced chi2=0.00338012: I=2.48614, dir=[0.00325324, -0.00228963] arcsec
If data weights are arbitrarily scaled, the following formal errors
will be underestimated by at least a factor sqrt(reduced chi2). If
the fit is systematically poor, the errors are much worse.

I = 2.48614 +/- 0.0176859
x = 0.00325324 +/- 0.163019 arcsec
y = -0.00228963 +/- 0.174458 arcsec

Writing componentlist to file: /home/sandrock/smyers/Testing/Patch2/N5921/gcal.cl

Fourier transform the component list to a model of the MS
ft(’1445+099_avg.ms’, complist=’gcal.cl’)

Plot data versus uv distance
plotxy(’1445+099_avg.ms’, xaxis=’uvdist’, datacolumn=’corrected’)

Specify green circles for model data (overplotted)
plotxy(’1445+099_avg.ms’, xaxis=’uvdist’, datacolumn=’model’,
overplot=True, plotsymbol=’go’)

4.7.9 Reweighing visibilities based on their scatter (statwt)

Alert: statwt is still an experimental task. Please check the results carefully and report any
problems to the NRAO CASA helpdesk.

In most cases, the data that comes from the telescopes have the correct absolute or relative weights
associated (absolute weights will be supplied once the VLA switched power application becomes
standard; for ALMA the Tsys application is already in place). However, there are data sets where
one would like to adjust the weights based on the scatter of the visibilities (typically as a function
of time, antenna, and/or baseline). This calculation is performed by the task statwt that updates
the WEIGHT and SIGMA columns of the Measurement Set. statwt inputs are:

CHAPTER 4. SYNTHESIS CALIBRATION

Amplitude of Model Data

283

30

28

26

24

20

2 3 4
UV Distance (klambda)

Figure 4.11: Use of plotxy to display corrected data (red and blue points) and uv model fit data
(green circles).

statwt
vis

dorms
byantenna
fitspw
fitcorr

combine

timebin
minsamp

field
spw
antenna

Reweight

visibilities according to their scatter

1)

False
False

JOS)

Name of measurement set

Use rms instead of stddev?

Estimate the noise per antenna -not
implemented (vs. per baseline)

The signal-free spectral window:channels
to estimate the scatter from

The signal-free correlation(s) to estimate
the scatter from (not implemented)

Let estimates span changes in spw, corr,
scan and/or state

Bin length for estimates (not implemented)

Minimum number of unflagged visibilities
for estimating the scatter

Select field using ID(s) or name(s)

Select spectral window/channels

Select data based on antenna/baseline

H O H H H HHHHHHEHHHH

CHAPTER 4. SYNTHESIS CALIBRATION 284

timerange = 22 # Select data by time range
scan = ?? # Select data by scan numbers
intent = 7 # Select data by scan intents
array = 0 # Select (sub)array(s) by array ID number
correlation = 2 # Select correlations to reweight (DEPRECATED in CASA v4.5)
observation = 0 # Select by observation ID(s)
datacolumn = ’corrected’ # Which data column to calculate the scatter
from

statwt should only be run after all calibration steps have been performed. The parameter dorms switches
from a scatter standard deviation to a root mean square scatter estimator. datacolumn specifies the column
on which the task operates and the usual data selection parameters apply. Channels with strong RFI or a
spectral line should be avoided for the calculation and good channel range should be specified via fitspw.
In its current implementation, statwt uses data samples of an integration time interval but eventually wider
sample intervals can be specified by the timebin parameter. Those samples are contained within a scan,
spw, and polarization product but using the combine can relax this restriction. minsamp sets the minimum
number of unflagged visibilities used for the calculation.

Alert: As of CASA 4.5, selection using correlation has been deprecated in statwt; in prior versions, this
was not working correctly, and it is unlikely setting weights in a correlation-dependent manner is advisable.

4.7.10 Change the signs of visibility phases (conjugatevis)

conjugatevis is an easy task to flip the signs of the phases of visibilities, thus creating the complex conjugate
numbers. The inputs are like:

conjugatevis :: Change the sign of the phases in all visibility columns.

vis = ?? # Name of input visibility file.
spwlist = 7 # Spectral window selection

outputvis = ?? # Name of output visibility file
overwrite = False # Overwrite the outputvis if it exists.

The task works on all scratch columns.

(This task was added early in JVLA commissioning, when some data suffered from a phase sign
error.)

4.7.11 Manipulation of Ephemeris Objects

When an astronomical object has a proper motion, in particular objects in our solar system, a static
(RA,Dec) position in the FIELD table of the MeasurementSet will not accurately describe the time-
dependent position. Prior to CASA 4.2, there was no support for ephemeris objects other than the
built-in reference frames for the Sun, the Moon, and the planets out to PLUTO. With CASA 4.2,
several new features were introduced which help the user to attach an arbitrary ephemeris to a
given field and work with the object from calibration to imaging.

CHAPTER 4. SYNTHESIS CALIBRATION 285

4.7.11.1 Ephemeris tables

The CASA format for ephemeris tables has been defined was introduced in the early development
stages of CASA in connection with the Measures module. The me tool permits position calculations
based on ephemerides in this format. Two examples for such tables can be found in the distribution
directory in subdirectory data/ephemerides: VGEO is an ephemeris of Venus in the geocentric
reference frame while VTOP is an ephemeris for the same object in the TOPO reference fame for the
observatory location of the VLA. With the introduction of solar system source models (Butler) in
the setjy task, a nearly complete set of ephemerides for the larger bodies in our solar system had
to be made available. These are stored in nearly the same format as the above examples VGEO
and VTOP (but with a few enhancements) in directory data/ephemerides/JPL-Horizons. If your
object’s ephemeris is among those stored in data/ephemerides/JPL-Horizons, you can simply
copy the ephemeris from there. Otherwise, you can request the ephemeris from the JPL-Horizons
using the CASA commands (for example)

import recipes.ephemerides.request as jplreq
jplreq.request_from_JPL(objnam=’Mars’,startdate=’2012-01-01’,enddate=’2013-12-31",
date_incr=’0.1 d’, get_axis_orientation=False,

get_axis_ang_orientation=True,

get_sub_long=True, use_apparent=False, get_sep=False,
return_address=’YOUR_EMAIL_ADDESS’,

mailserver=’YOUR_MAIL_SERVER_ADDRESS’)

where you need to fill in the parameters objnam, startdate, enddate,date_incr (the time interval
between individual ephemeris table entries), return_address (your email address where you want
to receive the ephemeris), and mailserver (th