FLUXGATE MAGNETOMETER CALIBRATION FOR

BEPICOLOMBO

BC-MAG-TR-0085

Issue: 1 Revision: 3

May 06, 2013

Protocol and Analysis of the

BepiColombo MPO Calibration for

Sensor BS_10 & BS_11

connected to the FM_1 Electronics

Dr. Ingo Richter

Institut für Geophysik und extraterrestrische Physik Technische Universität Braunschweig Mendelssohnstraße 3, 38106 Braunschweig Germany

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
IODD Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
ТССГ Technische Universität Braunschweig	Page:	Ι

Contents

1	Inti	roduction	1
2	Me	asurements on April 2, 2013	7
3	Me	asurements on April 3, 2013	7
	3.1	Coilsystem Residual Field Check	7
	3.2	Calibration Initialisation	9
	3.3	Data	9
	3.4	DC-Analysis at Room Temperature - OB Sensor, Science mode 0	10
		3.4.1 Calibration on 3 Linear Axes	10
		3.4.2 OFFSET Calculation	17
	3.5	DC-Analysis at very low Temperature - OB Sensor	19
	3.6	AC-Analysis at very low Temperature - OB Sensor, Science mode 0	20
		3.6.1 Frequency Measurements	20
	3.7	AC-Analysis at very low Temperature - OB Sensor, Cal mode 4, open loop	25
		3.7.1 Frequency Measurements	25
4	Me	asurements on April 4, 2013	30
	4.1	Data	30
	4.2	DC-Analysis at Low Temperature - OB Sensor	31
	4.3	DC-Analysis at moderate Temperature - OB Sensor	31
	4.4	DC-Analysis at high Temperature - OB Sensor	31
	4.5	AC-Analysis at high Temperature - OB Sensor	31
5	Me	asurements on April 5, 2013	32
	5.1	Data	32
6	Me	asurements on April 6, 2013	32
	6.1	Data	32
7	Me	asurements on April 7, 2013	32
	7.1	Data	32
8	Me	asurements on April 8, 2013	33
	8.1	Data	33
	8.2	DC-Analysis at very high Temperature - OB Sensor	34
	8.3	AC-Analysis at very high Temperature - OB Sensor	34
	8.4	DC-Analysis at highest Temperature - OB Sensor	34
	8.5	AC-Analysis at highest Temperature - OB Sensor	34
9	Me	asurements on April 9, 2013	35
	9.1	Data	35
	9.2	DC-Analysis at Low Temperature - IB Sensor, cal mode 0	36

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGCF Technische Universität Braunschweig	Page:	II

		9.2.1	Calibration on 3 Linear Axes	36
		9.2.2	OFFSET Calculation	43
	9.3	DC-Ar	alysis at Low Temperature - IB Sensor, cal mode 4	45
		9.3.1	Calibration on 3 Linear Axes	45
		9.3.2	OFFSET Calculation	52
	9.4	DC-Ar	nalysis at very low Temperature - IB Sensor	53
	9.5	AC-Ar	nalysis at very low Temperature - IB Sensor, cal mode 0	54
		9.5.1	Frequency Measurements	54
	9.6	AC-Ar	nalysis at very low Temperature - IB Sensor, cal mode 4	59
		9.6.1	Frequency Measurements	59
10	Mea	asurem	ents on April 10, 2013	64
	10.1	Data .	- last at an element of the manufacture in the Company	04 65
	10.2	DC-Ar	alysis at moderate remperature - IB Sensor	00 65
	10.3	DC-Ar	alysis at high Temperature - IB Sensor	00 65
	10.4	AC-AI	allysis at high Temperature - IB Sensor	60
11	Mea	asurem	ents on April 11, 2013	66
	11.1	Data .		66
	11.2	DC-Ar	halysis at very high Temperature - IB Sensor	66
	11.3	AC-Ar	nalysis at very high Temperature - IB Sensor	67
	11.4	DC-Ar	nalysis at highest Temperature - IB Sensor	67
	11.5	AC-Ar	nalysis at highest Temperature - IB Sensor	67
12	Con	nbined	Measurements from April 3 – 9, 2013	68
	12.1	Therm	al-Analysis - OB Sensor, cal mode 0	68
		12.1.1	Temperature Calibration on Linear Axes	68
		12.1.2	Temperature Calibration of the Sensor Offset	76
		12.1.3	Temperature Calibration of the AC Transfer Function	81
	12.2	Therm	al-Analysis - OB Sensor, cal mode 4	86
		12.2.1	Temperature Calibration on Linear Axes	86
		12.2.2	Temperature Calibration of the Sensor Offset	94
		12.2.3	Temperature Calibration of the AC Transfer Function	99
13	Con	nbined	Measurements from April 09 – 11, 2013	104
	13.1	Therm	al-Analysis - IB Sensor, cal mode 0	104
		13.1.1	Temperature Calibration on Linear Axes	104
		13.1.2	Temperature Calibration of the Sensor Offset	112
		13.1.3	Temperature Calibration of the AC Transfer Function	117
	13.2	Therm	al-Analysis - IB Sensor, cal mode 4	122
		13.2.1	Temperature Calibration on Linear Axes	122
		13.2.2	Temperature Calibration of the Sensor Offset	130
		13.2.3	Temperature Calibration of the AC Transfer Function	135
14	Con	nplete	Temperature Profile	140

	Document:	BC–MAG–TR–0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICTD Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
ТССГ Technische Universität Braunschweig	Page:	III

15 Mathematical Description of the Calibration	141
15.1 Basic Principle	141
16 Nomenclature	145

REDICOLOMBO	Document:	BC-MAG-TR-0085
	Issue:	1
	Revision:	3
ICFD Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
TCLI Technische Universität Braunschweig	Page:	1

1 Introduction

This document describes the ground calibration of the BepiColombo MPO-FM1 magnetometer using the Sensors BS_10 & BS_11. The calibration was conducted at the Magnetsrode Calibration facility operated by the Institute for Geophysics and extraterrestrial Physics, TU Braunschweig. The tests were executed from April 02 - April 11, 2013.

Part Identification:

Sensor:	BS_10 (connected to J02, IB)
	BS_{-11} (connected to J01, OB)
Electronics	MPO FM1

Key Personnel:

Karl-Heinz Fornaçon:	operating FGM
Ingo Richter:	operating MRode Facility

General Setup

- Sensor mounted in thermal box. CoC. Box vertical.
- Sensor is operated with thick MPO hat installed
- FM1 Electronics placed in House 2 / Mainroom.
- The EGSE Laptop placed in House 2 / Anteroom.
- The Spacewire Brick placed in House 2 / Anteroom.
- The FM1 Electronics was powered by the Thurlby Power Supply in House 1. Voltage: +28V / Current: +0.163A
- DUT parameters Sensor BS_10: Phase: 146
 K1X: 24927
 K1Y: 14331
 K1Z: 56105
 KF: 102
 Relais: on , Excitation: on

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
ΙGΓ Γ Technische Universität Braunschweig	Page:	2

- DUT parameters Sensor BS_11: Phase: 146
 K1X: 40402
 K1Y: 22671
 K1Z: 55926
 KF: 102
 Relais: on , Excitation: on
- Position 1: Standard Alignment $X_m = X_c, Y_m = Y_c, Z_m = Z_c$ Elevation= 0°. Azimuth= 180°.
- Position 2: Turned Position for XY Offset Measurements $X_m = -X_c, Y_m = -Y_c, Z_m = Z_c$ Elevation= 0°. Azimuth= 0°.
- Position 3: Normal Position for Z Offset Measurements $X_m = -Z_c, Y_m = -Y_c, Z_m = -X_c$ Elevation=90°. Azimuth= 0°.
- Position 4: Turned Position for Z Offset Measurements $X_m = -Z_c, Y_m = Y_c, Z_m = X_c$ Elevation=90°. Azimuth= 180°.
- The sensor pictures were taken before rotating the box to the vertical orientation.
- TEMPCTRL-Parameters for Heating: Field-Active-Time: 25s SOL controlled, Delay after SOL: 8s Max. Heating Time: 20s Heating-Profile: manual Heater-Select: automatic Smart_heat: off
- TEMPCTRL-Parameters for Cooling: Field-Active-Time: 25s SOL controlled, Delay after SOL: 8s Max. Heating Time: 25s Max. Cooling Time: 7s Heating-Profile: manual Heater-Select: automatic Smart_heat: on
- IP-Adressses:
 FM1-EGSE: 192.168.124.37
 MRode-Terminal: 192.168.124.50

REMARKS:

- \bullet The Analysis has been performed using a nominal conversion factor of 1 nT/V (nT/ADCcounts).
- The magnetometer was operated always in 2048 nT range with a sampling rate of 128 vectors per second if not stated different.
- All values (e.g Offsets) given in engineering nanotesla (enT) have to be multiplied with the calculated sensitivities to obtain real nanotesla values.
- The X-sensor shows non-linearities at fields of ± 2000 nT. Therefore, only values up to ± 1900 nT were used for the analysis.
- In open loop mode the X-sensor shows non-linearities at fields of $\pm 1300 \,\mathrm{nT}$. Therefore, only values up to $\pm 1300 \,\mathrm{nT}$ were used for the analysis.
- In open loop mode the Y-sensor shows non-linearities at fields of $\pm 1100 \,\mathrm{nT}$. Therefore, only values up to $\pm 1100 \,\mathrm{nT}$ were used for the analysis.
- In open loop mode the Z-sensor shows non-linearities at fields of $\pm 1700 \,\mathrm{nT}$. Therefore, only values up to $\pm 1700 \,\mathrm{nT}$ were used for the analysis.
- All TEMB frames contain the MPO temperatures in the first three channels:

TEMB-CH0: $T_{\text{ELEC-IB}}$ TEMB-CH1: $T_{\text{IB-1}}$ – Sensor Temperature TEMB-CH2: $T_{\text{IB-2}}$ – Sensor Temperature TEMB-CH3: $T_{\text{ELEC-OB}}$ TEMB-CH4: $T_{\text{OB-1}}$ – Sensor Temperature TEMB-CH5: $T_{\text{OB-2}}$ – Sensor Temperature

• MRode-Terminal software: TERMINAL_16.vi using MPO/EXTRACT_MPO_HK_PACKETS.vi

BEPICOLOMBO		Document: Issue:	BC-MAG-TR-0085
IGEP T	itut für Geophysik u. extraterr. Physik Technische Universität Braunschweig	Revision: Date: Page:	$\begin{array}{c} 3\\ \mathrm{May}\ 06,\ 2013\\ 4\end{array}$

Figure 1: FM1 Electronics in H2, Mainroom

Figure 2: Sensor in Standard Position, POSITION 1, View from South

		Document:	BC-MAG-TR-0085
DEFI	JOLOMDO	Issue:	1
		Revision:	3
ICLD	Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGEF	Technische Universität Braunschweig	Page:	5

Figure 3: Sensor in Standard Position, POSITION 1, View from Top

BEPICOLOMBO	Document: Issue:	BC-MAG-TR-0085
IGEP Institut für Geophysik u. extraterr. Physik Technische Universität Braunschweig	Revision: Date: Page:	$\begin{array}{c} 3\\ \mathrm{May}\ 06,\ 2013\\ 6\end{array}$

Figure 4: EGSE Laptop in H2, Anteroom

Figure 5: FM1 Brick in H2, Anteroom

DEDICOLOM		Document:	BC-MAG-TR-0085
DEFICULUM	DU	Issue:	1
		Revision:	3
ICTD Institut für Geop	hysik u. extraterr. Physik	Date:	May 06, 2013
IGEF Technische Un	iversität Braunschweig	Page:	7

2 Measurements on April 2, 2013

The FM1 Magnetometer was installed in House 2. Sensor BS_11 was placed at CoC in the thermal box. Sensor BS_10 was placed south of the coilsystem inside a small μ -Metal can.

Due to lack of time and a needed quick setup the sensor was operated by EGSE control only. No data were stored at the MRode CDRS. The magnetometer was operated in dynamical compensated zerofield conditions.

Over night the sensor measured in normal science mode, 4 Hz sampling rate, 2048 nT range, room temperature, measurements started at about 12:30.

3 Measurements on April 3, 2013

The measurement over night was performed without any problem.

3.1 Coilsystem Residual Field Check

Figure 6: Overhauser Magnetometer Sensor in Diagonal in Space Orientation, CoC, View from South-West

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
Ι΄΄΄ Γ΄ Technische Universität Braunschweig	Page:	8

Prior to the real MPO calibration the residual field of the MCF has been checked using the Overhauser magnetometer. The OVH was placed diagonal in space at CoC. Fields of $\pm 49000 \,\mathrm{nT}$ were applied sequentially to each axis in order to determine the actual residual field:

Component	Applied Field	Measured Modulus	Calc. Residual
$X_{\rm c}$	+49000 nT	49002 nT	
	-49000 nT	49007 nT	-2.5 nT
$Y_{\rm c}$	+49000 nT	49002 nT	
	-49000 nT	49004 nT	-1 nT
$Z_{\rm c}$	+49000 nT	48960 nT	
	-49000 nT	49040 nT	-40 nT

After these initial measurements the residual field was nulled with the offset potentiometers at the Power Amplifiers.

Component	Applied Field	Measured Modulus	Calc. Residual
$X_{ m c}$	+49000 nT	$49005~\mathrm{nT}$	
	-49000 nT	$49005~\mathrm{nT}$	0 nT
$Y_{ m c}$	+49000 nT	$49003~\mathrm{nT}$	
	-49000 nT	$49003~\mathrm{nT}$	0 nT
$Z_{ m c}$	+49000 nT	$48993~\mathrm{nT}$	
	-49000 nT	$49007~\mathrm{nT}$	-7 nT

The z-component could not be nulled exactly, as the offset controlling potentiometer of the Zc-PA reached the limit of its rotation range.

After the removal of the Overhauser magnetometer and shifting the thermal box, with sensor BS_11 installed, to the default CoC position, the setup was finished.

DEDIC		Document:	BC-MAG-TR-0085
DEFIC	OLOMDO	Issue:	1
		Revision:	3
ICTD In	stitut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGEP	Technische Universität Braunschweig	Page:	9

3.2 Calibration Initialisation

Initial reading of the thermistors:

T_{59}	=	$17.3^{\circ}\mathrm{C}$
$T_{\rm ELEC-IB}$	=	$26.5^{\circ}\mathrm{C}$
$T_{\rm IB-1}$	=	$15.7^{\circ}\mathrm{C}$
$T_{\rm IB-2}$	=	$16.7^{\circ}\mathrm{C}$
$T_{\rm ELEC-OB}$	=	$27.35^{\circ}\mathrm{C}$
$T_{\rm OB-1}$	=	$19.9^{\circ}\mathrm{C}$
$T_{\rm OB-2}$	=	$20.1^{\circ}\mathrm{C}$

A first test of the BS_11 Sensor revealed the correct soldering of the components.

Application of 1000 nT fields in all main axes in Standard orientation yielded (in the default position 1):

$X_{\rm m}$	=	$X_{\rm c}$
$Y_{\rm m}$	=	$Y_{\rm c}$
$Z_{\rm m}$	=	$Z_{\rm c}$

3.3 Data

CCD	Configuration	Remark
File	File	
13-04-03\09-22-38.CCR	LIN2000XYZE.MAG	
13-04-03\09-53-35.CCR	OFFSET_200.MAG	
13-04-03\10-07-54.CCR	LIN2000XYZE.MAG	
13-04-03\10-15-00.CCR	LIN2000XYZE.MAG	
13-04-03\10-45-19.CCR	LIN2000XYZE.MAG	
13-04-03\11-15-38.CCR	LIN2000XYZE.MAG	
13-04-03\11-45-56.CCR	LIN2000XYZE.MAG	
13-04-03\12-16-15.CCR	LIN2000XYZE.MAG	
13-04-03\12-47-57.CCR	OFFSET_200.MAG	
13-04-03\12-59-48.CCR	FREQ2000.MAG	
13-04-03\13-45-53.CCR	FREQ2000.MAG	
13-04-03\14-41-31.CCR	FREQ2000.MAG	
13-04-03\15-24-42.CCR	LIN2000XYZE.MAG	
13-04-03\15-55-48.CCR	OFFSET_200.MAG	
13-04-03\16-08-54.CCR	NULL_LANG.MAG	

		Document:	BC-MAG-TR-0085
DEFI	JULUMDU	Issue:	1
		Revision:	3
ICLD	Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGEL	Technische Universität Braunschweig	Page:	10
IGEP	Institut für Geophysik u. extraterr. Physik Technische Universität Braunschweig	Revision: Date: Page:	3 May 06, 2013 10

3.4 DC-Analysis at Room Temperature - OB Sensor, Science mode 0

A standard linearity and offset measurement was performed at $17.3^{\circ}\mathrm{C}.$

3.4.1 Calibration on 3 Linear Axes

Used Files:

CCD	Configuration	Remark
File	File	
13-04-03\09-22-38.CCR	LIN2000XYZE.MAG	

Parameter File: PARAMETER_LIN__13-04-03_09-22-38.CPF

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICDD Institut für Geophysik u. er	xtraterr. Physik Date:	May 06, 2013
IGLГ Technische Universität I	Braunschweig Page:	11

Facility Parameter:

Nominal Sensor Setup $\underline{B}_{\text{DUT}} = \underline{\underline{R}}_{\text{nom}} \underline{\underline{B}}_{\text{C}}$

$$\underline{\underline{R}}_{nom} = \begin{pmatrix} +1.000000 & +0.000000 & +0.000000 \\ +0.000000 & +1.000000 & +0.000000 \\ +0.000000 & +0.000000 & +1.000000 \end{pmatrix}$$

Calculated Sensor Rotation:

$$\underline{\rho} = \left(\begin{array}{ccc} +0.999800 & +0.018895 & +0.006519 \\ -0.018810 & +0.999740 & -0.012858 \\ -0.006760 & +0.012733 & +0.999896 \end{array}\right)$$

Rotation Angles:

Angle
$$(X_c, X_m)$$
: $\lambda_x = +1^{\circ} 8' 43''$
Angle (Y_c, Y_m) : $\mu_y = +1^{\circ} 18' 20''$
Angle (Z_c, Z_m) : $\nu_z = +0^{\circ} 49' 34''$

Determinant of Rotation Matrix: 1.00000 Nominal Field Source: FLDS Fields applied for 24.0 s Mean Sensor Temperature: 17.2°C Automatic Coil Correction: used

Earthfield Compensation: X = DYNAMIC Y = DYNAMIC Z = DYNAMIC

Offset Treatment:

A polynomial offset trend of order 2 has been fitted and subtracted from the raw data before creating the sensor model.

Mean Coil System Residual + Sensor Offset: $\underline{B}^{or} = (-0.208 \ , -0.272 \ , -10.561)$ nT

	Document:	BC–MAG–TR–0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGLГ Technische Universität Braunschweig	Page:	12

Raw Data Quality:

Standard Deviation of used Raw Data Blocks:

[Values in eng nT]	s_x	$ s_y$	s_z
Minimum	0.000	0.342	0.316
Mean	2.383	0.407	0.676
Maximum	3.318	1.087	0.892
	1	1	

Calibration Parameter:

Sensor Misalignment Angles:

$$\begin{aligned} \xi_{x,y} &= +89^{\circ} \ 47'17'' \\ \xi_{x,z} &= +90^{\circ} \ 3'16'' \\ \xi_{y,z} &= +90^{\circ} \ 0'42'' \end{aligned}$$

Model Quality:

Standard Deviation, Maximum and Minimum Error of Calculated Model:

[Values in nT]	X	Y	Z
Standard Deviation	0.051	0.068	0.067
Maximum Error	0.121	0.120	0.176
Minimum Error	-0.124	-0.183	-0.147

		Document:	BC-MAG-TR-0085
DEEN		Issue:	1
		Revision:	3
ICED	Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGEF	Technische Universität Braunschweig	Page:	13

Figure 7: Applied Fields

Figure 8: Measured Data

BEPICOLOMBO	Document: Issue:	BC-MAG-TR-0085
IGEP Institut für Geophysik u. extraterr. Physik Technische Universität Braunschweig	Revision: Date: Page:	3 May 06, 2013 14

Figure 9: Model Quality - Differences of applied field and modelled measurement data

DEDI		Document:	BC-MAG-TR-0085
DEFI	JOLOMDO	Issue:	1
		Revision:	3
ICLD	Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGEF	Technische Universität Braunschweig	Page:	15

Figure 12: RESIDUALS vs FLD Z

REDI	$2 \cup I \cup MB \cup$	Document:	BC-MAG-TR-0085
		Issue:	1
		Revision:	3
IULD	Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGEF	Technische Universität Braunschweig	Page:	16

Figure 13: Coil System Temperature

Figure 14: Sensor Temperature

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGLΓ Technische Universität Braunschweig	Page:	17

3.4.2 OFFSET Calculation

In this section the instrument offsets and the residual field of the Coil System will be evaluated. Measurements at two orientations for each component act as input for the offset calculation. From the "normal" (0-degrees) and "turned" (180-degrees) orientations the offsets and residual fields can be derived:

$$B_{\text{off}} = \frac{B_{\text{normal}} + B_{\text{turned}}}{2}$$
$$B_{\text{res}} = \frac{B_{\text{normal}} - B_{\text{turned}}}{2}$$

Used Offset Measurements:

CCD	Configuration	Remark	
File	File		
13-04-03\09-53-35.CCR	OFFSET_200.MAG		

Parameter File: OFF_PARAMETER__13-04-03-09-53-35.OPF

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
ТСГ Technische Universität Braunschweig	Page:	18

Calibration Parameter:

	Component	Offset [enT]	Standard deviation [enT]
	X	0.10	0.097
Sensor Offsets:	Y	-0.14	0.091
		0.65	0.081

	Component	$B_{\rm res}$ [enT]
Pagidual Field of the Coil System.	X	-0.44
Residual Field of the Con System:	Y	0.17
		0.66

Remark: Residual field is given in actual DUT coordinates, not in coil-coordinates!

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICDD Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
ТСГГ Technische Universität Braunschweig	Page:	19

Afterwards the thermal system was started and the box was cooled down to -70° C starting at 10:15. The initial pressure of the N₂-bottle was 85 bar, 35 kg of LN₂ were available.

3.5 DC-Analysis at very low Temperature - OB Sensor

Linearity and offset measurements were performed at $T_{59} = -71^{\circ}$ C in cal mode 4 and cal mode 0.

Thermal Analysis: refer to section 12.

DEDICOLOMBO	Document:	BC-MAG-TR-0085
DEFICOLOMDO	Issue:	1
	- Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
$\Pi \Box \Box \Gamma$ Technische Universität Braunschweig	Page:	20

3.6 AC-Analysis at very low Temperature - OB Sensor, Science mode 0

A frequency measurement was performed at -70° C.

Setup:

- Sensor mounted in thermal box. CoC. Box vertical.
- Sensor rotated to: Elevation= 45° Azimuth= 126°
- Field applied on Y_c .
- No attenuator

3.6.1 Frequency Measurements

This section is dedicated to the frequency behavior of the instrument. The analysis of the performed AC measurements allows to calculate the actual sampling frequency f_s of the instrument and the frequency response (amplitude vs. frequency). The measurements have been performed with the sensor placed at CoC in a diagonal in space orientation. The AC-fields have been applied on the Y_c axis only. Using this setup it can be guaranteed that only one frequency is applied at a time and no beat effects occur.

Used Frequency Measurements:

CCD File	Configuration File	Remark	
13-04-03\12-59-48.CCR	FREQ2000.MAG		

Parameter File: FREQ_PARAMETER__13-04-03-12-59-48.FPF

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
ΙGΓ Γ Technische Universität Braunschweig	Page:	21

Calibration Parameter:

	Component	f_s [Hz]	Standard deviation [Hz]
	X	127.9989	0.000066
	Y	127.9988	0.000058
Sampling Frequency:	Z	127.9990	0.000056
	Mean		
	Sampling Frequency	127.9989	0.000138

3 dB Corner Frequency:	Component	$f_{\rm 3dB}$ [Hz]
	X	64.59
	Y	64.02
		55.45

Applied Frequencies and Measured Amplitudes

Figure 15: Applied Frequencies for AC Analysis

BEPI	COLOMBO	Document:	BC–MAG–TR–0085
IGEP	Institut für Geophysik u. extraterr. Physik Technische Universität Braunschweig	Revision: Date: Page:	3 May 06, 2013 22

Applied Frequency [Hz]	Bx [enT]	By [enT]	Bz [enT]
1000.000	1.93	1.77	0.69
794.000	10.30	9.61	4.11
631.000	15.74	14.81	6.97
501.000	23.35	22.14	11.64
398.000	18.89	18.03	10.37
316.000	37.04	35.01	21.00
251.000	46.26	44.23	29.94
199.000	105.65	100.40	71.59
158.000	54.24	52.31	43.02
126.000	61.87	59.36	49.76
100.000	148.72	144.04	133.77
79.400	340.65	326.34	298.36
63.100	442.44	422.76	387.03
50.100	514.93	494.05	471.04
39.800	561.95	541.63	541.95
31.600	589.20	569.67	588.78
25.100	603.14	583.57	610.07
19.900	609.00	588.76	613.88
15.800	609.33	588.29	608.45
12.600	610.46	588.61	603.77
10.000	608.93	586.51	597.48
7.900	607.11	584.29	592.19
6.310	608.06	584.89	590.83
5.010	606.56	583.25	587.84
3.980	606.81	583.34	587.07
3.160	607.81	584.21	587.37
2.510	606.75	583.14	585.94
1.990	606.46	582.83	585.40
1.580	608.15	584.44	586.87
1.260	607.69	583.97	586.31
1.000	608.11	584.37	586.64
0.790	607.53	583.80	586.04
0.631	608.56	584.78	587.01
0.501	608.41	584.63	586.85
0.398	608.01	584.25	586.42
0.316	608.20	584.43	586.58
0.251	608.72	584.93	587.11
0.199	608.78	584.98	587.16
0.158	609.30	585.49	587.62
0.126	608.88	585.04	587.21
0.100	609.90	586.07	588.19

DEDI		Document:	BC-MAG-TR-0085
DEFI	JOLOMBO	Issue:	1
		Revision:	3
	Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGEL	Technische Universität Braunschweig	Page:	23

Figure 16: Used packets of Measured data for the Frequency analysis

Figure 17: Calculated Frequency Response

BEPICOLOMBO	Document: Issue:	BC-MAG-TR-0085
IGEP Institut für Geophysik u. extraterr. Physik Technische Universität Braunschweig	Revision: Date: Page:	3 May 06, 2013 24

Figure 18: Coil System Temperature

Figure 19: Sensor Temperature

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
Ι GΓΓ Technische Universität Braunschweig	Page:	25

3.7 AC-Analysis at very low Temperature - OB Sensor, Cal mode 4, open loop

A frequency measurement was performed at $-70^{\circ}\mathrm{C}.$

Setup:

- Sensor mounted in thermal box. CoC. Box vertical.
- Sensor rotated to: Elevation= 45° Azimuth= 126°
- Field applied on Y_c .
- No attenuator

3.7.1 Frequency Measurements

This section is dedicated to the frequency behavior of the instrument. The analysis of the performed AC measurements allows to calculate the actual sampling frequency f_s of the instrument and the frequency response (amplitude vs. frequency). The measurements have been performed with the sensor placed at CoC in a diagonal in space orientation. The AC-fields have been applied on the Y_c axis only. Using this setup it can be guaranteed that only one frequency is applied at a time and no beat effects occur.

Used Frequency Measurements:

CCD File	Configuration File	Remark	
13-04-03\14-41-31.CCR	FREQ2000.MAG		

Parameter File: FREQ_PARAMETER__13-04-03-14-41-31.FPF

	Document: BC–MAG–TR–0085
DEFICULUMDU	Issue: 1
	Revision: 3
ICTD Institut für Geophysik u. extraterr.	Physik Date: May 06, 2013
ТGLГ Technische Universität Braunschv	veig Page: 26

Calibration Parameter:

	Component	f_s [Hz]	Standard deviation [Hz]
	X	127.9989	0.000019
	Y	127.9990	0.001444
Sampling Frequency:	Z	127.9988	0.000024
	Mean		
	Sampling Frequency	127.9989	0.000103

2 dD Corner Frequency	Component	$f_{\rm 3dB}$ [Hz]
	X	58.34
5 dD Corner Frequency.	Y	58.29
		54.47

Applied Frequencies and Measured Amplitudes

Figure 20: Applied Frequencies for AC Analysis

BEPICOLOMBO	Document:	BC–MAG–TR–0085
IGEP Institut für Geophysik u. extraterr. Physik Technische Universität Braunschweig	- Revision: Date: Page:	$\begin{array}{c} & & 1 \\ & & 3 \\ May \ 06, \ 2013 \\ & & 27 \end{array}$

Applied Frequency [Hz]	Bx [enT]	By [enT]	Bz [enT]
1000.000	1.94	1.77	0.66
794.000	10.33	9.59	4.04
631.000	16.53	15.50	7.29
501.000	24.24	22.84	11.94
398.000	19.51	18.53	10.63
316.000	36.05	34.35	21.58
251.000	46.83	44.84	30.68
199.000	102.85	98.44	73.06
158.000	50.73	48.85	39.72
126.000	65.18	62.56	53.23
100.000	152.32	146.33	131.15
79.400	110.79	106.08	99.16
63.100	430.62	414.14	397.73
50.100	501.72	482.62	472.95
39.800	478.17	461.86	481.30
31.600	363.37	349.57	350.24
25.100	604.13	581.36	585.98
19.900	563.38	542.37	548.66
15.800	624.38	600.89	609.36
12.600	632.59	608.80	618.30
10.000	634.45	610.58	620.71
7.900	636.31	612.41	622.95
6.310	549.54	528.85	538.13
5.010	640.68	616.61	627.58
3.980	640.26	616.19	627.24
3.160	641.32	617.21	628.33
2.510	640.31	616.25	627.39
1.990	616.40	593.22	603.95
1.580	640.80	616.73	627.90
1.260	641.36	617.26	628.44
1.000	613.35	590.29	601.07
0.790	642.64	618.49	629.71
0.631	641.81	617.70	628.91
0.501	641.86	617.75	628.94
0.398	467.42	449.82	457.86
0.316	642.21	618.07	629.29
0.251	489.19	470.72	479.17
0.199	344.90	332.03	338.07
0.158	567.47	545.98	555.76
0.126	549.68	528.87	538.26
0.100	643.28	619.12	630.30

REDI	$2 \cup I \cup MB \cup$	Document:	BC–MAG–TR–0085
		Issue:	1
		Revision:	3
ICED	Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGEF	Technische Universität Braunschweig	Page:	28

Figure 21: Used packets of Measured data for the Frequency analysis

Figure 22: Calculated Frequency Response

BEPICOLOMBO	Document: Issue:	BC-MAG-TR-0085
IGEP Institut für Geophysik u. extraterr. Physik Technische Universität Braunschweig	Revision: Date: Page:	3 May 06, 2013 29

Figure 23: Coil System Temperature

Figure 24: Sensor Temperature

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
Ι GΓΓ Technische Universität Braunschweig	Page:	30

Afterwards the thermal system was switched off for smooth heating up to -20°C.

Zerofield measurements (open loop, cal mode 4) in dynamically compensated earthfield conditions were conducted during the night. Measurements started at 16:08.

4 Measurements on April 4, 2013

The measurements over night were conducted without any problem. At 06:37 the temperature indicated by T_{59} was -21° . The MPO-sensor temperatures sensors showed the same temperature.

4.1 Data

CCD	Configuration	Remark
File	File	
13-04-04\06-41-24.CCR	LIN2000XYZE.MAG	
13-04-04\07-18-40.CCR	LIN2000XYZE.MAG	
13-04-04\07-54-10.CCR	OFFSET_200.MAG	
13-04-04\08-08-11.CCR	LIN2000XYZE.MAG	
13-04-04\08-39-48.CCR	OFFSET_200.MAG	
13-04-04\08-50-42.CCR	LIN2000XYZE.MAG	
13-04-04\09-21-00.CCR	LIN2000XYZE.MAG	
13-04-04\09-51-19.CCR	LIN2000XYZE.MAG	
13-04-04\10-21-37.CCR	LIN2000XYZE.MAG	
13-04-04\10-26-52.CCR	OFFSET_200.MAG	
13-04-04\10-51-43.CCR	LIN2000XYZE.MAG	
13-04-04\11-22-26.CCR	OFFSET_200.MAG	
13-04-04\11-33-17.CCR	LIN2000XYZE.MAG	
13-04-04\12-03-52.CCR	LIN2000XYZE.MAG	
13-04-04\12-34-10.CCR	LIN2000XYZE.MAG	
13-04-04\13-05-27.CCR	OFFSET_200.MAG	
13-04-04\13-14-59.CCR	FREQ2000.MAG	
13-04-04\14-11-50.CCR	FREQ2000.MAG	
13-04-04\14-55-20.CCR	LIN2000XYZE.MAG	
13-04-04\15-26-56.CCR	OFFSET_200.MAG	
13-04-04\15-40-25.CCR	NULL LANG.MAG	

BEPICOLOMBO	Document: Issue:	BC–MAG–TR–0085
IGEP Institut für Geophysik u. extraterr. Physik Technische Universität Braunschweig	Revision: Date: Page:	3 May 06, 2013 31

4.2 DC-Analysis at Low Temperature - OB Sensor

Linearity and offset measurements were performed at $T_{59} = -21^{\circ}$ C in cal mode 4 and cal mode 0.

Thermal Analysis: refer to section 12.

Afterwards the system was heated up to $T_{59} = +30^{\circ}$.

4.3 DC-Analysis at moderate Temperature - OB Sensor

Linearity and offset measurements were performed at $T_{59} = +30^{\circ}$ C in cal mode 4 and cal mode 0.

Thermal Analysis: refer to section 12.

Afterwards the system was heated up to $T_{59} = +80^{\circ}$.

4.4 DC-Analysis at high Temperature - OB Sensor

Linearity and offset measurements were performed at $T_{59} = +80^{\circ}$ C in cal mode 4 and cal mode 0.

Thermal Analysis: refer to section 12.

4.5 AC-Analysis at high Temperature - OB Sensor

The sensor was rotated to the diagonal in space orientation and the usual AC measurements were conducted at at $T_{59} = +80^{\circ}$ C in cal mode 4 and cal mode 0. Thermal Analysis: refer to section 12.

Afterward the sensor was rotated back to the standard orientation (POS1). The thermal system was switched off for smooth cooling during the night. Measurements in dynamically compensated zerofield conditions, starting at 15:40, were conducted during the night and the weekend in cal mode 0.

5 Measurements on April 5, 2013

No personnel around today. Zerofield measurements continued.

5.1 Data

CCD	Configuration	Remark
File	File	
13-04-05\15-40-58.CCR	NULL_LANG.MAG	

6 Measurements on April 6, 2013

No personnel around today. Zerofield measurements continued.

6.1 Data

CCD	Configuration	Remark	
File	File		
13-04-06\15-41-30.CCR	NULL_LANG.MAG		

7 Measurements on April 7, 2013

No personnel around today. Zerofield measurements continued.

7.1 Data

CCD	Configuration	Remark	
File	File		
13-04-07\15-42-17.CCR	NULL_LANG.MAG		
DFDI		Document:	BC-MAG-TR-0085
-------	---	-----------	----------------
DEFIC	JOLOMDU	Issue:	1
		Revision:	3
	Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGEL	Technische Universität Braunschweig	Page:	33

8 Measurements on April 8, 2013

The zerofield measurements were stopped at 06:20. T_{59} showed 18.1°C. It showed up that MPO stopped sending data on April 7. Reason unknown. After reboot, the instrument worked properly again.

Additionally the Opto-Isolator of the MRode GPIB bus did not work anymore. Therefore, it was decided to couple all GPIB devices directly to the MRode-Controller, although a higher noise level was a expected this way. But there was no change to do it in a different way, as the GPIB Bus is essential for controlling the field generation devices.

During the GPIB analysis the thermal system was already activated. The goal temperature was set to $T_{59} = +130^{\circ}$.

8.1 Data

CCD	Configuration	Remark
File	File	
13-04-08\06-43-09.CCR	NULL_LANG.MAG	
13-04-08\08-29-20.CCR	LIN2000XYZE.MAG	
13-04-08\08-59-25.CCR	LIN2000XYZE.MAG	
13-04-08\09-30-44.CCR	OFFSET_200.MAG	
13-04-08\09-40-37.CCR	FREQ2000.MAG	
13-04-08\10-31-48.CCR	FREQ2000.MAG	
13-04-08\11-15-40.CCR	LIN2000XYZE.MAG	
13-04-08\11-46-06.CCR	OFFSET_200.MAG	
13-04-08\11-55-12.CCR	LIN2000XYZE.MAG	
13-04-08\12-25-15.CCR	LIN2000XYZE.MAG	
13-04-08\12-55-19.CCR	LIN2000XYZE.MAG	
13-04-08\13-25-22.CCR	LIN2000XYZE.MAG	
13-04-08\13-56-15.CCR	OFFSET_200.MAG	
13-04-08\14-06-16.CCR	FREQ2000.MAG	
13-04-08\15-02-45.CCR	LIN2000XYZE.MAG	
13-04-08\15-06-16.CCR	LIN2000XYZE.MAG	
13-04-08\15-36-36.CCR	OFFSET_200.MAG	
13-04-08\15-46-19.CCR	FREQ2000.MAG	
13-04-08\16-34-53.CCR	NULL.MAG	
13-04-08\22-35-12.CCR	NULL.MAG	

REPICOLOMBO	Document:	BC-MAG-TR-0085
	Issue:	1
	Revision:	3
ICFD Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
Ι G Γ Γ Technische Universität Braunschweig	Page:	34

8.2 DC-Analysis at very high Temperature - OB Sensor

Linearity and offset measurements were performed at $T_{59} = +130^{\circ}$ C in cal mode 4 and cal mode 0 starting at 08:30.

Thermal Analysis: refer to section 12.

8.3 AC-Analysis at very high Temperature - OB Sensor

The sensor was rotated to the diagonal in space orientation and the usual AC measurements were conducted at $T_{59} = +130^{\circ}$ C in cal mode 4 and cal mode 0.

Thermal Analysis: refer to section 12.

Afterwards the thermal box was heated up to the final temperature of $+180^{\circ}$ C.

8.4 DC-Analysis at highest Temperature - OB Sensor

Linearity and offset measurements were performed at $T_{59} = +180^{\circ}$ C in cal mode 4 and cal mode 0 starting at 08:30.

Thermal Analysis: refer to section 12.

8.5 AC-Analysis at highest Temperature - OB Sensor

The sensor was rotated to the diagonal in space orientation and the usual AC measurements were conducted at at $T_{59} = +180^{\circ}$ C in cal mode 4 and cal mode 0.

Thermal Analysis: refer to section 12.

Afterwards the thermal system was switched off to let the temperature fall smoothly. Over night zerofield measurements in dynamically compensated earthfield conditions were conducted in cal mode 0. The measurements started at 16:34. Sensor alignment: Standard, Azimuth $=180^{\circ}$, Elevation $=0^{\circ}$.

9 Measurements on April 9, 2013

The measurements overnight were conducted smoothly. At 06:32 the box temperature was about $T_{59} = +71^{\circ}$ C.

The box was opened and the OB sensor was removed.

The BS_11 = OB calibration finished at 06:45.

9.1 Data

CCD	Configuration	Remark
File	File	
13-04-09\04-35-30.CCR	NULL.MAG	
13-04-09\06-32-42.CCR	NULL.MAG	
		Change to IB Sensor
13-04-09\07-22-11.CCR	LIN2000XYZE.MAG	
13-04-09\07-52-14.CCR	LIN2000XYZE.MAG	
13-04-09\08-22-17.CCR	LIN2000XYZE.MAG	
13-04-09\08-52-20.CCR	LIN2000XYZE.MAG	
13-04-09\09-22-23.CCR	LIN2000XYZE.MAG	
13-04-09\09-52-27.CCR	LIN2000XYZE.MAG	
13-04-09\10-23-29.CCR	OFFSET_200.MAG	
13-04-09\10-34-40.CCR	LIN2000XYZE.MAG	
13-04-09\11-05-13.CCR	OFFSET_200.MAG	
13-04-09\11-14-46.CCR	OFFSET_200.MAG	
13-04-09\11-24-12.CCR	LIN2000XYZE.MAG	
13-04-09\11-54-15.CCR	LIN2000XYZE.MAG	
13-04-09\12-26-36.CCR	FREQ2000.MAG	
13-04-09\13-08-27.CCR	OFFSET_200.MAG	
13-04-09\13-18-15.CCR	OFFSET_200.MAG	
13-04-09\13-27-51.CCR	FREQ2000.MAG	
13-04-09\14-12-36.CCR	LIN2000XYZE.MAG	
13-04-09\14-53-47.CCR	NULL.MAG	
13-04-09\20-54-03.CCR	NULL.MAG	

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
Ι GΓΓ Technische Universität Braunschweig	Page:	36

The IB sensor BS_10 was installed in the thermal box. The box was erected to the vertical orientation and shifted to CoC.

Cooling of the system down to -20° C started at 07:22.

9.2 DC-Analysis at Low Temperature - IB Sensor, cal mode 0

Linearity and offset measurements were performed at $T_{59} = -20^{\circ}$ C in cal mode 0.

9.2.1 Calibration on 3 Linear Axes

Used Files:

CCD	Configuration	Remark
File	File	

13-04-09\09-52-27.CCR LIN2000XYZE.MAG

Parameter File: PARAMETER_LIN__13-04-09_09-52-27.CPF

DFDIC		Document:	BC–MAG–TR–0085
BELICOTOMBO		Issue:	1
		Revision:	3
ICDD I	nstitut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGLL	Technische Universität Braunschweig	Page:	37

Facility Parameter:

Nominal Sensor Setup $\underline{B}_{\text{DUT}} = \underline{\underline{R}}_{\text{nom}} \underline{\underline{B}}_{\text{C}}$

$$\underline{\underline{R}}_{nom} = \begin{pmatrix} +1.000000 & +0.000000 & +0.000000 \\ +0.000000 & +1.000000 & +0.000000 \\ +0.000000 & +0.000000 & +1.000000 \end{pmatrix}$$

Calculated Sensor Rotation:

$$\underline{\rho} = \left(\begin{array}{ccc} +0.999974 & +0.003127 & +0.006434 \\ -0.003132 & +0.999995 & +0.000706 \\ -0.006432 & -0.000726 & +0.999979 \end{array}\right)$$

Rotation Angles:

Angle
$$(X_c, X_m)$$
: $\lambda_x = +0^\circ 24'36''$
Angle (Y_c, Y_m) : $\mu_y = +0^\circ 11'2''$
Angle (Z_c, Z_m) : $\nu_z = +0^\circ 22'15''$

Determinant of Rotation Matrix: 1.00000 Nominal Field Source: SOLARTRON Fields applied for 24.0 s Mean Sensor Temperature: -30.6°C Automatic Coil Correction: used

Earthfield Compensation: X = DYNAMICY = DYNAMICZ = DYNAMIC

Offset Treatment:

A polynomial offset trend of order 2 has been fitted and subtracted from the raw data before creating the sensor model.

Mean Coil System Residual + Sensor Offset: $\underline{B}^{or} = (-3.954 \ , -0.950 \ , -11.069) \ \mathrm{nT}$

	Document:	BC–MAG–TR–0085
DEFICULUMDU	Issue:	1
	– Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGLI Technische Universität Braunschweig	Page:	38

Raw Data Quality:

Standard Deviation of used Raw Data Blocks:

[Values in eng nT]	s_x	$ s_y $	s_z
Minimum	0.000	0.376	0.242
Mean	2.315	0.449	0.452
Maximum	2.860	1.274	1.210

Calibration Parameter:

Sensor Misalignment Angles:

$$\begin{aligned} \xi_{\rm x,y} &= +89^{\circ} \ 34'13'' \\ \xi_{\rm x,z} &= +89^{\circ} \ 56'22'' \\ \xi_{\rm y,z} &= +90^{\circ} \ 20'48'' \end{aligned}$$

Model Quality:

Standard Deviation, Maximum and Minimum Error of Calculated Model:

[Values in nT]	X	Y	Z
Standard Deviation	0.130	0.170	0.163
Maximum Error	0.280	0.460	0.445
Minimum Error	-0.225	-0.244	-0.287

DEDI		Document:	BC-MAG-TR-0085
DEFI	JOLOMBO	Issue:	1
		Revision:	3
ICLD	Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGEF	Technische Universität Braunschweig	Page:	39

Figure 25: Applied Fields

Figure 26: Measured Data

BEPICOLOMBO	Document: Issue:	$\begin{array}{c} \text{BC-MAG-TR-0085} \\ 1 \end{array}$
IGEP Institut für Geophysik u. extraterr. Physik Technische Universität Braunschweig	Revision: Date: Page:	3 May 06, 2013 40

Figure 27: Model Quality - Differences of applied field and modelled measurement data

BEPICOLOMBO	Document: Issue:	BC-MAG-TR-0085 1
IGEP Institut für Geophysik u. extraterr. Physik Technische Universität Braunschweig	Revision: Date: Page:	3 May 06, 2013 41

Figure 30: RESIDUALS vs FLD Z

REDI	$^{\circ}$ OLOMBO	Document:	BC-MAG-TR-0085
		Issue:	1
		Revision:	ن د ده م
ICED	Institut für Geophysik u. extraterr. Physik	Date:	May $06, 2013$
IGEI	Technische Universität Braunschweig	Page:	42

Figure 31: Coil System Temperature

Figure 32: Sensor Temperature

		Document:	BC-MAG-TR-0085
DEFICU	JLUMDU	Issue:	1
		Revision:	3
ICDD Ins	titut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGEP	Technische Universität Braunschweig	Page:	43

9.2.2 OFFSET Calculation

In this section the instrument offsets and the residual field of the Coil System will be evaluated. Measurements at two orientations for each component act as input for the offset calculation. From the "normal" (0-degrees) and "turned" (180-degrees) orientations the offsets and residual fields can be derived:

$$B_{\text{off}} = \frac{B_{\text{normal}} + B_{\text{turned}}}{2}$$
$$B_{\text{res}} = \frac{B_{\text{normal}} - B_{\text{turned}}}{2}$$

Used Offset Measurements:

CCD	Configuration	Remark	
File	File		
13-04-09\11-14-46.CCR	OFFSET_200.MAG		

Parameter File: OFF_PARAMETER__13-04-09-11-14-46.0PF

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	- Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
ТСГГ Technische Universität Braunschweig	Page:	44

Calibration Parameter:

	Component	Offset [enT]	Standard deviation [enT]
	X	-0.64	0.111
Sensor Offsets:	Y	-0.78	0.104
		-0.38	0.100

	Component	$B_{\rm res}$ [enT]
Pagidual Field of the Coil System.	X	-2.07
Residual Field of the Con System:	Y	-0.46
		2.01

Remark: Residual field is given in actual DUT coordinates, not in coil-coordinates!

Thermal Analysis: refer to section 13.

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
Ι GLΓ Technische Universität Braunschweig	Page:	45

9.3 DC-Analysis at Low Temperature - IB Sensor, cal mode 4

Linearity and offset measurements were performed at $T_{59} = -20^{\circ}$ C in cal mode 4.

9.3.1 Calibration on 3 Linear Axes

Used Files:

CCD	Configuration	Remark
File	File	
13-04-09\10-34-40.CCR	LIN2000XYZE.MAG	

Parameter File: PARAMETER_LIN__13-04-09_10-34-40.CPF

DEDI		Document:	BC-MAG-TR-0085
DEFI	JOLOMDU	Issue:	1
		Revision:	3
ICED	Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGEL	Technische Universität Braunschweig	Page:	46

Facility Parameter:

Nominal Sensor Setup $\underline{B}_{\text{DUT}} = \underline{\underline{R}}_{\text{nom}} \underline{\underline{B}}_{\text{C}}$

$$\underline{\underline{R}}_{nom} = \begin{pmatrix} +1.000000 & +0.000000 & +0.000000 \\ +0.000000 & +1.000000 & +0.000000 \\ +0.000000 & +0.000000 & +1.000000 \end{pmatrix}$$

Calculated Sensor Rotation:

$$\underline{\rho} = \left(\begin{array}{ccc} +0.999707 & +0.023539 & +0.005617 \\ -0.023561 & +0.999715 & +0.003876 \\ -0.005524 & -0.004007 & +0.999977 \end{array}\right)$$

Rotation Angles:

Angle
$$(X_c, X_m)$$
: $\lambda_x = +1^{\circ} 23' 12''$
Angle (Y_c, Y_m) : $\mu_y = +1^{\circ} 22' 6''$
Angle (Z_c, Z_m) : $\nu_z = +0^{\circ} 23' 28''$

Determinant of Rotation Matrix: 1.00000 Nominal Field Source: FLDS Fields applied for 25.0 s Mean Sensor Temperature: -32.9°C Automatic Coil Correction: used

Earthfield Compensation: X = DYNAMIC Y = DYNAMIC Z = DYNAMIC

Offset Treatment:

A polynomial offset trend of order 2 has been fitted and subtracted from the raw data before creating the sensor model.

Mean Coil System Residual + Sensor Offset: $\underline{B}^{or} = (-2.786 \ , -1.095 \ , -10.723) \ \mathrm{nT}$

	Document:	BC–MAG–TR–0085
DEFICULUMIDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
ТССГ Technische Universität Braunschweig	Page:	47

Raw Data Quality:

Standard Deviation of used Raw Data Blocks:

[Values in eng nT]	s_x	s_y	s_z
Minimum	1.638	0.191	0.000
Mean	2.299	0.391	0.478
Maximum	2.952	2.520	1.822

Calibration Parameter:

Sensor Misalignment Angles:

$$\begin{aligned} \xi_{\rm x,y} &= +90^{\circ} \ 9'51'' \\ \xi_{\rm x,z} &= +89^{\circ} \ 32'8'' \\ \xi_{\rm y,z} &= +90^{\circ} \ 36'27'' \end{aligned}$$

Model Quality:

Standard Deviation, Maximum and Minimum Error of Calculated Model:

[Values in nT]	X	Y	
Standard Deviation	0.124	0.222	0.129
Maximum Error	0.325	0.249	0.309
Minimum Error	-0.320	-0.800	-0.357

DLDI	$2 \cup I \cup M \cup D$	Document:	BC–MAG–TR–0085
DEFI		Issue:	1
		Revision:	3
ICLD	Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGEL	Technische Universität Braunschweig	Page:	48

Figure 33: Applied Fields

Figure 34: Measured Data

BEPICOLOMBO	Document: Issue:	BC-MAG-TR-0085
IGEP Institut für Geophysik u. extraterr. Physik Technische Universität Braunschweig	Revision: Date: Page:	3 May 06, 2013 49

Figure 35: Model Quality - Differences of applied field and modelled measurement data

BEPICOLO	MBO	Document: Issue:	BC-MAG-TR-0085
IGEP Institut für G Technisch	Geophysik u. extraterr. Physik e Universität Braunschweig	Revision: Date: Page:	3 May 06, 2013 50

Figure 38: RESIDUALS vs FLD Z

BEPIC	COLOMBO	Document: Issue:	BC-MAG-TR-0085
IGEP	Institut für Geophysik u. extraterr. Physik Technische Universität Braunschweig	Revision: Date: Page:	$\begin{array}{c} & 3 \\ \mathrm{May} \ 06, \ 2013 \\ 51 \end{array}$

Figure 39: Coil System Temperature

Figure 40: Sensor Temperature

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	– Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGLP Technische Universität Braunschweig	Page:	52

9.3.2 OFFSET Calculation

In this section the instrument offsets and the residual field of the Coil System will be evaluated. Measurements at two orientations for each component act as input for the offset calculation. From the "normal" (0-degrees) and "turned" (180-degrees) orientations the offsets and residual fields can be derived:

$$B_{\text{off}} = \frac{B_{\text{normal}} + B_{\text{turned}}}{2}$$
$$B_{\text{res}} = \frac{B_{\text{normal}} - B_{\text{turned}}}{2}$$

Used Offset Measurements:

CCD	Configuration	Remark	
File	File		
13-04-09\11-05-13.CCR	OFFSET_200.MAG		

Parameter File: OFF_PARAMETER__13-04-09-11-05-13.0PF

DEDIC		Document:	BC-MAG-TR-0085
DEFIC	ULUMBU	Issue:	1
		Revision:	3
ICTD I	nstitut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGEP	Technische Universität Braunschweig	Page:	53

Calibration Parameter:

	Component	Offset [enT]	Standard deviation [enT]
	X	-0.70	0.088
Sensor Offsets:	Y	-0.79	0.101
	Z	-0.29	0.097

Residual Field of the Coil System:	Component	$B_{\rm res}$ [enT]
	X	-2.06
	Y	-0.60
	Z	2.09

Remark: Residual field is given in actual DUT coordinates, not in coil-coordinates!

Thermal Analysis: refer to section 13.

Afterwards the system was cooled down up to $T_{59} = -70^{\circ}$.

9.4 DC-Analysis at very low Temperature - IB Sensor

Linearity and offset measurements were performed at $T_{59} = -70^{\circ}$ C in cal mode 4 and cal mode 0.

Thermal Analysis: refer to section 13.

BEPICOLOMBO	Document: Issue:	BC–MAG–TR–0085 1
IGEP Institut für Geophysik u. extraterr. Physik Technische Universität Braunschweig	Revision: Date: Page:	$\begin{array}{c} & 3 \\ \text{May 06, 2013} \\ & 54 \end{array}$

9.5 AC-Analysis at very low Temperature - IB Sensor, cal mode 0

A frequency measurement was performed at -70° C.

Setup:

- Sensor mounted in thermal box. CoC. Box vertical.
- Sensor rotated to: Elevation= 45° Azimuth= 126°
- Field applied on Y_c .
- No attenuator

9.5.1 Frequency Measurements

This section is dedicated to the frequency behavior of the instrument. The analysis of the performed AC measurements allows to calculate the actual sampling frequency f_s of the instrument and the frequency response (amplitude vs. frequency). The measurements have been performed with the sensor placed at CoC in a diagonal in space orientation. The AC-fields have been applied on the Y_c axis only. Using this setup it can be guaranteed that only one frequency is applied at a time and no beat effects occur.

Used Frequency Measurements:

CCD File	Configuration File	Remark	
13-04-09\12-26-36.CCR	FREQ2000.MAG		

Parameter File: FREQ_PARAMETER__13-04-09-12-26-36.FPF

		Document:	BC-MAG-TR-0085
DEFIC	JOLOMDO	Issue:	1
		Revision:	3
	Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGEL	Technische Universität Braunschweig	Page:	55

Calibration Parameter:

	Component	f_s [Hz]	Standard deviation [Hz]
	X	127.9995	0.000100
	Y	127.9979	0.000104
Sampling Frequency:	Z	127.9998	0.000768
	Mean		
	Sampling Frequency	127.9991	0.001029

	Component	$f_{\rm 3dB}$ [Hz]
3 dB Corner Frequency:	X	66.93
<u>3 dB Corner Frequency.</u>	Y	65.62
	Z	55.63

Applied Frequencies and Measured Amplitudes

Figure 41: Applied Frequencies for AC Analysis

REDICOLOMBO	Document:	BC-MAG-TR-0085
	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGEΓ Technische Universität Braunschweig	Page:	56

Applied Frequency [Hz]	Bx [enT]	By [enT]	Bz [enT]
1000.000	1.75	1.73	0.65
794.000	9.77	9.75	3.94
631.000	14.97	15.01	6.11
501.000	22.69	22.82	11.39
398.000	18.64	18.76	10.21
316.000	38.87	37.93	20.91
251.000	45.98	46.00	29.75
199.000	111.79	108.81	71.31
158.000	56.12	55.59	42.55
126.000	61.36	61.02	48.96
100.000	160.41	158.02	137.96
79.400	359.88	349.71	294.00
63.100	469.32	453.74	380.80
50.100	546.55	529.59	464.21
39.800	592.13	578.12	533.62
31.600	613.77	603.51	578.31
25.100	623.00	615.22	600.10
19.900	622.22	615.62	602.77
15.800	619.18	613.02	598.53
12.600	612.13	604.57	589.20
10.000	611.92	605.81	586.46
7.900	606.86	600.69	579.65
6.310	607.76	601.50	579.19
5.010	603.74	597.45	574.43
3.980	606.09	599.75	576.08
3.160	601.83	595.50	571.64
2.510	606.75	600.34	576.06
1.990	605.51	599.12	574.73
1.580	605.52	599.09	574.61
1.260	605.68	599.24	574.69
1.000	607.14	600.70	576.05
0.790	605.42	598.98	574.38
0.631	605.63	599.21	574.58
0.501	604.94	598.52	573.91
0.398	606.96	600.54	575.84
0.316	602.16	595.79	571.27
0.251	608.72	602.26	577.45
0.199	608.18	601.74	576.95
0.158	609.52	603.10	578.20
0.126	606.59	600.19	575.44
0.100	606.65	600.26	575.47

REPI	$^{\circ}$ OLOMBO	Document:	BC-MAG-TR-0085
		Issue:	1
IOPD	Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGEP	Technische Universität Braunschweig	Page:	57
		•	

Figure 42: Used packets of Measured data for the Frequency analysis

Figure 43: Calculated Frequency Response

BEDI	$2 \cup I \cup MB \cup$	Document:	BC–MAG–TR–0085
DLIN		Issue:	1
		Revision:	3
ICED	Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGEI	Technische Universität Braunschweig	Page:	58

Figure 44: Coil System Temperature

Figure 45: Sensor Temperature

BEPICOLOMBO	Document: Issue:	BC-MAG-TR-0085 1
IGEP Institut für Geophysik u. extraterr. Physik Technische Universität Braunschweig	Revision: Date: Page:	$\begin{array}{c} & 3 \\ \mathrm{May} \ 06, \ 2013 \\ & 59 \end{array}$

9.6 AC-Analysis at very low Temperature - IB Sensor, cal mode 4

A frequency measurement was performed at -70° C.

Setup:

- Sensor mounted in thermal box. CoC. Box vertical.
- Sensor rotated to: Elevation= 45° Azimuth= 126°
- Field applied on Y_c .
- No attenuator

9.6.1 Frequency Measurements

This section is dedicated to the frequency behavior of the instrument. The analysis of the performed AC measurements allows to calculate the actual sampling frequency f_s of the instrument and the frequency response (amplitude vs. frequency). The measurements have been performed with the sensor placed at CoC in a diagonal in space orientation. The AC-fields have been applied on the Y_c axis only. Using this setup it can be guaranteed that only one frequency is applied at a time and no beat effects occur.

Used Frequency Measurements:

CCD File	Configuration File	Remark	
13-04-09\13-27-51.CCR	FREQ2000.MAG		

Parameter File: FREQ_PARAMETER__13-04-09-13-27-51.FPF

	Document:	BC–MAG–TR–0085
DEFICULUMDU	Issue:	1
	– Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
Ι΄΄Γ Technische Universität Braunschweig	Page:	60

Calibration Parameter:

	Component	f_s [Hz]	Standard deviation [Hz]
	X	127.9989	0.000082
	Y	127.9985	0.000084
Sampling Frequency:	Z	127.9989	0.000075
	Mean		
	Sampling Frequency	127.9988	0.000263

	Component	$f_{\rm 3dB}$ [Hz]
3 dB Corner Frequency:	X	58.25
<u>5 dB Corner Frequency.</u>	Y	58.38
		54.46

Applied Frequencies and Measured Amplitudes

Figure 46: Applied Frequencies for AC Analysis

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICTD Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
Ι GΓΓ Technische Universität Braunschweig	Page:	61

Applied Frequency [Hz]	Bx [enT]	By [enT]	Bz [enT]
1000.000	1.81	1.87	0.67
794.000	9.91	10.20	4.04
631.000	16.17	16.60	7.32
501.000	24.15	24.69	12.07
398.000	19.53	19.89	10.72
316.000	36.29	36.82	21.76
251.000	49.52	50.07	32.29
199.000	104.41	105.27	73.73
158.000	54.73	55.04	41.53
126.000	66.51	66.77	53.69
100.000	152.14	152.01	129.35
79.400	339.62	340.05	300.02
63.100	440.17	440.43	399.99
50.100	513.53	513.25	475.90
39.800	563.29	563.11	529.00
31.600	596.19	595.86	564.80
25.100	618.32	617.90	589.09
19.900	633.19	632.69	605.47
15.800	641.46	640.91	614.80
12.600	646.25	645.68	620.31
10.000	646.92	646.33	621.55
7.900	651.80	651.18	626.62
6.310	650.84	650.22	625.95
5.010	652.41	651.77	627.62
3.980	654.41	651.36	629.71
3.160	653.65	653.00	629.01
2.510	653.75	653.09	629.16
1.990	654.21	653.54	629.65
1.580	656.19	655.53	631.58
1.260	652.68	651.99	628.23
1.000	653.78	653.08	629.30
0.790	656.51	655.82	631.99
0.631	655.29	654.60	630.85
0.501	657.59	656.91	633.03
0.398	657.66	656.97	633.08
0.316	654.58	653.90	630.12
0.251	656.20	655.49	631.65
0.199	656.72	655.98	632.18
0.158	656.96	655.70	632.46
0.126	657.43	656.68	632.95
0.100	658.19	657.42	633.70

DEDI		Document:	BC-MAG-TR-0085
DEFI	JOLOMBO	Issue:	1
		Revision:	3
	Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGEF	Technische Universität Braunschweig	Page:	62

Figure 47: Used packets of Measured data for the Frequency analysis

Figure 48: Calculated Frequency Response

BEPICOLOMBO	Document: Issue:	BC-MAG-TR-0085
IGEP Institut für Geophysik u. extraterr. Physik Technische Universität Braunschweig	Revision: Date: Page:	3 May 06, 2013 63

Figure 49: Coil System Temperature

Figure 50: Sensor Temperature

After finishing these measurements the sensor was rotated back to normal orientation and the thermal system was switched off. The temperature will increase smoothly over night.

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
ТСГГ Technische Universität Braunschweig	Page:	64

Over night zerofield measurements in dynamically compensated earthfield conditions were conducted. The IB sensor (at CoC) was operated in the fixed 64 nT range, the OB sensor (in the μ -metal shield outside the coilsystem) was set to the 512 nT range.

Measurements started at 14:53.

10 Measurements on April 10, 2013

At 06:28 the system was inspected. The measurements have been performing flawlessly during the night. The box temperature has reached a level of -14° C.

The measurements were stopped and the thermal system was reactivated. Temperature goal: $T_{59} = +30^{\circ}$ C.

The operating range of the magnetometer has been set back to 2048 nT.

10.1 Data

CCD	Configuration	Remark
File	File	
13-04-10\02-54-22.CCR	NULL.MAG	
13-04-10\06-27-43.CCR	NULL.MAG	
13-04-10\06-28-37.CCR	LIN2000XYZE.MAG	
13-04-10\06-58-41.CCR	LIN2000XYZE.MAG	
13-04-10\07-28-44.CCR	LIN2000XYZE.MAG	
13-04-10\07-59-38.CCR	OFFSET_200.MAG	
13-04-10\08-09-57.CCR	OFFSET_200.MAG	
13-04-10\08-18-43.CCR	LIN2000XYZE.MAG	
13-04-10\10-16-52.CCR	LIN2000XYZE.MAG	
13-04-10\10-46-56.CCR	LIN2000XYZE.MAG	
13-04-10\11-17-00.CCR	LIN2000XYZE.MAG	
13-04-10\11-47-03.CCR	LIN2000XYZE.MAG	
13-04-10\12-16-47.CCR	LIN2000XYZE.MAG	
13-04-10\12-17-18.CCR	OFFSET_200.MAG	
13-04-10\12-26-40.CCR	FREQ2000.MAG	
13-04-10\13-11-42.CCR	LIN2000XYZE.MAG	
13-04-10\13-47-06.CCR	OFFSET_200.MAG	
13-04-10\13-56-47.CCR	FREQ2000.MAG	
13-04-10\14-44-30.CCR	NULL_STATISCH.MAG	3

BEPICOLOMBO	Document: Issue:	BC-MAG-TR-0085
IGEP Institut für Geophysik u. extraterr. Physik Technische Universität Braunschweig	Revision: Date: Page:	$\begin{array}{c} & 3 \\ \mathrm{May} \ 06, \ 2013 \\ & 65 \end{array}$

10.2 DC-Analysis at moderate Temperature - IB Sensor

Linearity and offset measurements were performed at $T_{59} = +30^{\circ}$ C in cal mode 4 and cal mode 0.

Thermal Analysis: refer to section 13.

It turned out that the magnetometer thermistor T_SENS_2 shows temperatures being a few degrees to high. Furthermore the value is not stable and jumps by a few degrees. While T_SENS_1 showed stable 22° C, T_SENS_2 showed values between 39 and 48 °C.

The instrument was switched off, connectors were swapped, and electronics was rebooted. It showed up that the suspicious value belongs physically to the thermistor T_SENS_2 and does not be influenced by the electronics. The sensors were toggled to the nominal connection state. Probably there is a connection problem in the test cable leading from the sensor to the electronics. As this does not really hamper the calibration we decided to proceed with the measurements and to investigate the cable in the institute later.

Afterwards the system was heated up to $T_{59} = +80^{\circ}$ starting at 10:16.

10.3 DC-Analysis at high Temperature - IB Sensor

Linearity and offset measurements were performed at $T_{59} = +80^{\circ}$ C in cal mode 4 and cal mode 0.

Thermal Analysis: refer to section 13.

10.4 AC-Analysis at high Temperature - IB Sensor

The sensor was rotated to the diagonal in space orientation and the usual AC measurements were conducted at at $T_{59} = +80^{\circ}$ C in cal mode 4 and cal mode 0. Thermal Analysis: refer to section 13.

Afterward the sensor was rotated back to the standard orientation (POS1).

The thermal system was switched off for smooth cooling during the night. Measurements in fixed compensated zerofield conditions, starting at 14:44, were conducted during the night in cal mode 0. Data were sampled with 128 Hz.

11 Measurements on April 11, 2013

At 06:30 the system was inspected. The measurements have been performing flawlessly during the night. The box temperature has dropped to $T_{59} = +39.4^{\circ}$ C.

The measurements were stopped and the thermal system was reactivated. Temperature goal $T_{59} = +130^{\circ}$ C.

11.1 Data

CCD	Configuration	Remark
File	File	
13-04-11\06-36-24 CCB	LINCOONTE MAG	
13-04-11\07-06-27 CCB	LIN2000XIZE MAG	
13-04-11\07-36-30 CCB	LIN2000XIZE MAG	
13-04-11\08-06-33 CCB	LIN2000XYZE MAG	
13-04-11\08-37-21 CCR	OFFSET 200 MAG	
13-04-11\08-46-10 CCB	FRED2000 MAG	
13-04-11\09-31-53 CCB	LIN2000XYZE MAG	
13-04-11\10-11-50. CCB	OFFSET 200, MAG	
13-04-11\10-20-53 CCB	FRED2000 MAG	
13-04-11\11-05-33. CCB	LIN2000XYZE, MAG	
13-04-11\11-35-36.CCB	LIN2000XYZE MAG	
13-04-11\12-05-40. CCB	LIN2000XYZE MAG	
13-04-11\12-35-43.CCB	LIN2000XYZE. MAG	
13-04-11\13-06-41.CCB	LIN2000XYZE MAG	
13-04-11\13-37-03. CCB	OFFSET 200.MAG	
13-04-11\13-45-45.CCR	FREQ2000.MAG	
13-04-11\14-42-54.CCB	LIN2000XYZE MAG	
13-04-11\14-47-36.CCR	LIN2000XYZE.MAG	
13-04-11\15-18-03.CCR	OFFSET 200.MAG	
13-04-11\15-26-22.CCR	FREQ2000.MAG	

11.2 DC-Analysis at very high Temperature - IB Sensor

Linearity and offset measurements were performed at $T_{59} = +130^{\circ}$ C in cal mode 4 and cal mode 0 starting at 08:06.

Thermal Analysis: refer to section 13.

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
Ι GΓΓ Technische Universität Braunschweig	Page:	67

11.3 AC-Analysis at very high Temperature - IB Sensor

The sensor was rotated to the diagonal in space orientation and the usual AC measurements were conducted at $T_{59} = +130^{\circ}$ C in cal mode 4 and cal mode 0.

Thermal Analysis: refer to section 13.

Afterwards the thermal box was heated up to the final temperature of $+180^{\circ}$ C.

11.4 DC-Analysis at highest Temperature - IB Sensor

Linearity and offset measurements were performed at $T_{59} = +180^{\circ}$ C in cal mode 4 and cal mode 0 starting at 13:06.

Thermal Analysis: refer to section 13.

11.5 AC-Analysis at highest Temperature - IB Sensor

The sensor was rotated to the diagonal in space orientation and the usual AC measurements were conducted at at $T_{59} = +180^{\circ}$ C in cal mode 4 and cal mode 0.

Thermal Analysis: refer to section 13.

Afterwards the thermal system was switched off to let the temperature fall smoothly. Over night and for thee next days zerofield measurements in fixed compensated earthfield conditions were conducted in science mode. Sensor alignment: Standard, Azimuth $=180^{\circ}$, Elevation $=0^{\circ}$. Data collection by EGSE only. The measurements started at 16:16.

From the calibration point of view the campaign for the IB sensor is finished now.

	Document:	BC-MAG-TR-0085
DEFICULUMBU	Issue:	1
	Revision:	3
ICDD Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
$\Pi G \Box \Gamma$ Technische Universität Braunschweig	Page:	68

12 Combined Measurements from April 3 – 9, 2013

12.1 Thermal-Analysis - OB Sensor, cal mode 0

12.1.1 Temperature Calibration on Linear Axes

Used Temperature Measurements:

Calibration Parameter File	Remark
----------------------------	--------

PARAMETER_TEMPLIN__13-04-03_09-22-38.CPF PARAMETER_TEMPLIN__13-04-03_12-16-15.CPF PARAMETER_TEMPLIN__13-04-04_08-08-11.CPF PARAMETER_TEMPLIN__13-04-04_09-51-19.CPF PARAMETER_TEMPLIN__13-04-04_14-55-20.CPF PARAMETER_TEMPLIN__13-04-08_08-29-20.CPF PARAMETER_TEMPLIN__13-04-08_15-06-16.CPF

Thermal Parameter File: THERMAL_PARAMETER__13-04-03-09-22-38.TPF
		Document:	BC-MAG-TR-0085
DEFI	JOLOMDU	Issue:	1
		Revision:	3
ICED	Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGEL	Technische Universität Braunschweig	Page:	69

Facility Parameter:

Nominal Sensor Setup $\underline{B}_{DUT} = \underline{\underline{R}}_{nom} \underline{\underline{B}}_{C}$

$$\underline{\underline{R}}_{nom} = \begin{pmatrix} +1.000000 & +0.000000 & +0.000000 \\ +0.000000 & +1.000000 & +0.000000 \\ +0.000000 & +0.000000 & +1.000000 \end{pmatrix}$$

Calculated Initial Sensor Rotation:

$$\underline{\underline{R}} = \left(\begin{array}{ccc} +0.999800 & +0.018895 & +0.006519 \\ -0.018810 & +0.999740 & -0.012858 \\ -0.006760 & +0.012733 & +0.999896 \end{array}\right)$$

Initial Rotation Angles:

Rotation @ X:
$$\lambda_x = +1^{\circ} 8'43''$$
Rotation @ Y: $\mu_y = +1^{\circ} 18'20''$ Rotation @ Z: $\nu_z = +0^{\circ} 49'34''$

Determinant of Rotation Matrix: 1.0000

Nominal Field Source: FLDS

Automatic Coil correction: used

Used Sensor-Temperature-Channel: T_{59}

DEDIC		Document:	BC-MAG-TR-0085
DEFIC	OLOMDO	Issue:	1
		Revision:	3
ICTD In	stitut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGLL	Technische Universität Braunschweig	Page:	70

Temperature Profile

Figure 51: Temperature Profile

		Document:	BC-MAG-TR-0085
DEFIC	JOLOMBO	Issue:	1
		Revision:	3
ICED	Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGEL	Technische Universität Braunschweig	Page:	71

Calibration Parameter:

Sensitivity σ_i vs. Temperature:

$$\sigma_i(T) = \sum_{k=0}^n \sigma_{k,i} T^k \qquad [1, \ ^\circ C], \ i = \{x, y, z\}$$

	$\sigma_{0,i}$	$\sigma_{1,i}$	$\sigma_{2,i}$	$\sigma_{3,i}$	$\sigma_{4,i}$	$\sigma_{5,i}$
σ_x	9.72692E-1	-1.80180E-5				
σ_y	9.96420E-1	-1.56674E-5				
σ_z	9.89066E-1	-1.96816E-5				

Figure 52: Temperature dependence of Sensitivities

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
ΙGΓ Γ Technische Universität Braunschweig	Page:	72

Misalignment Angles ξ_{ij} vs. Temperature:

$$\xi_{ij}(T) = \sum_{k=0}^{n} \xi_{k,ij} T^k \qquad [\text{deg, }^{\circ}\text{C}], \text{ ij} = \{\text{xy,xz,yz}\}$$

$$\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline \xi_{0,ij} & \xi_{1,ij} & \xi_{2,ij} & \xi_{3,ij} & \xi_{4,ij} & \xi_{5,ij} \\ \hline \xi_{xy} & 8.9789E+1 & -1.7948E-5 \\ \xi_{xz} & 9.0056E+1 & 4.5473E-5 \\ \xi_{yz} & 9.0013E+1 & -1.1504E-4 \\ \end{array}$$

Figure 53: Temperature dependence of Misalignment Angles

	Document:	BC–MAG–TR–0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
ТСГГ Technische Universität Braunschweig	Page:	73

Offset & Residual MCF Field $\underline{B}^{or} = \underline{B}^{off} + \underline{B}^{res}$ vs. Temperature:

$$\underline{B}^{or}(T) = \sum_{k=0}^{n} \underline{B}_{k}^{or} T^{k} \qquad [\text{enT, }^{\circ}\text{C}]$$

	\underline{B}_{0}^{or}	\underline{B}_1^{or}	\underline{B}_2^{or}	\underline{B}_3^{or}	\underline{B}_4^{or}	\underline{B}_5^{or}
B_x^{or}	-1.038E+0	5.086E-3	1.028E-4	-8.062E-7		
B_y^{or}	4.990E-1	4.459E-4	2.056E-4	-9.631E-7		
B_z^{or}	-9.215E+0	-4.711E-3	-1.042E-4	8.416E-7		

	Documen	t: BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICTD Institut für Geophysik u	. extraterr. Physik Date:	May 06, 2013
IGLI Technische Universitä	t Braunschweig Page:	74

Model Quality:

Minimum and maximum errors of the calculated Model vs. Temperature:

Figure 54: Residuals of Thermal Model

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
Ι GΓΓ Technische Universität Braunschweig	Page:	75

Sensor Rotation during Test:

Figure 55: Rotation @ X-Axis

Figure 56: Rotation @ Y-Axis

Figure 57: Rotation @ Z-Axis

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	– Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
Ι GΕΓ Technische Universität Braunschweig	Page:	76

12.1.2 Temperature Calibration of the Sensor Offset

Used Temperature Measurements:

Calibration Parameter File	Remark

OFF_PARAMETER__13-04-03-09-53-35.0PF OFF_PARAMETER__13-04-03-12-47-57.0PF OFF_PARAMETER__13-04-04-08-39-48.0PF OFF_PARAMETER__13-04-04-10-26-52.0PF OFF_PARAMETER__13-04-04-15-26-56.0PF OFF_PARAMETER__13-04-08-09-30-44.0PF OFF_PARAMETER__13-04-08-15-36-36.0PF

Thermal Parameter File: THERMAL_OFF_PARAMETER__13-04-03-09-53-35.TOF

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGLΓ Technische Universität Braunschweig	Page:	77

Facility Parameter:

Nominal Sensor Setup $\underline{B}_{\text{DUT}} = \underline{\underline{R}}_{\text{nom}} \underline{\underline{B}}_{\text{C}}$

$$\underline{\underline{R}}_{nom} = \begin{pmatrix} +1.000000 & +0.000000 & +0.000000 \\ +0.000000 & +1.000000 & +0.000000 \\ +0.000000 & +0.000000 & +1.000000 \end{pmatrix}$$

Sensor Temperature Channel: T_{59}

Coil System Temperature Channel: T_{29}

Temperature Profile

Figure 58: Temperature Profile

		Document:	BC-MAG-TR-0085
DEFICULU.	MDU	Issue:	1
		Revision:	3
ICED Institut für C	Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGLF Technisch	e Universität Braunschweig	Page:	78

Calibration Parameter:

Sensor Offset $\underline{B}_{\rm off}$ vs. Temperature:

$$B_{\text{off},i}(T) = \sum_{k=0}^{n} B_{\text{off},k,i} T^{k} \qquad [\text{enT}, \ ^{\circ}\text{C}], \ i = \{\text{x}, \text{y}, \text{z}\}$$

	$B_{ m off,0,i}$	$B_{ m off,1,i}$	$B_{ m off,2,i}$	$B_{ m off,3,i}$	$B_{\rm off,4,i}$	$B_{\rm off,5,i}$
$B_{\rm off,x}$	-1.81567E-1	2.66715E-3	6.76985 E-5	-4.57147E-7		
$B_{\rm off,y}$	1.12886E + 0	-2.66713E-3	8.93650E-5	-2.48924E-7		
$B_{\rm off,z}$	$1.32950E{+}0$	1.18837 E-3	-1.17584E-5	1.39437E-7		

Figure 59: Temperature dependence of Sensor Offsets

DEDICOLOMPO Document: BC-MA	AG-TR-0085
DEFICULUMDU Issue:	1
Revision:	3
ICTD Institut für Geophysik u. extraterr. Physik Date:	May 06, 2013
ΙGΓ <i>Γ</i> Technische Universität Braunschweig Page:	79

Coil System Temperature

The following graph shows the mean Coil System temperature during the complete thermal cycle for the offset measurements.

Figure 60: Coil System Temperature during Thermal Measurements

PEDICOLOMPO	Document:	BC–MAG–TR–0085
	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
Ι GΓΓ Technische Universität Braunschweig	Page:	80

Coil System Residual Field:

The following graph shows the three components of the Coil System Residual field during the whole measurement. Axes designators are related to the actual DUT coordinate system and NOT to Coil System coordinates.

Figure 61: Coil System Residual Fields during Thermal Measurements

Remark:

The axes designation for this graph is given as follows (rf. to setup defined in chapter 1):

X_m	=	X_c
Y_m	=	Y_c
Z_m	=	$-X_c$

	Document: BC–MAG–TR–0085
DEFICOLOMDO	Issue: 1
	Revision: 3
ICTD Institut für Geophysik u. extraterr	. Physik Date: May 06, 2013
IGLI Technische Universität Braunsc	nweig Page: 81

12.1.3 Temperature Calibration of the AC Transfer Function

Used Temperature Measurements:

Calibration Parameter File Remark

FREQ_PARAMETER__13-04-03-12-59-48.FPF FREQ_PARAMETER__13-04-04-14-11-50.FPF FREQ_PARAMETER__13-04-08-09-40-37.FPF FREQ_PARAMETER__13-04-08-15-46-19.FPF

Thermal Parameter File: THERMAL_AC_PARAMETER__13-04-03-12-59-48.TAF

	Document:	BC–MAG–TR–0085
DEFICOLOMDO	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGLI Technische Universität Braunschweig	Page:	82

Facility Parameter:

Nominal Sensor Setup: Diagonal in Space inside Thermal Box.

Sensor Temperature Channel: T_{59}

Coil System Temperature Channel: T_{29}

Temperature Profile

Figure 62: Temperature Profile

	Document:	BC–MAG–TR–0085
DEFICOLOMDO	Issue:	1
	Revision:	3
ICDD Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
Ι G Γ Γ Technische Universität Braunschweig	Page:	83

Coil System Temperature

The following graph shows the mean Coil System temperature during the complete thermal cycle for the AC measurements.

Figure 63: Coil System Temperature during Thermal AC Measurements

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGLΓ Technische Universität Braunschweig	Page:	84

Calibration Parameter:

-3dB Corner Frequency f_{3dB} vs. Temperature:

$$f_{\rm 3dB,i}(T) = \sum_{k=0}^{n} f_{\rm 3dB,k,i} T^k \qquad [{\rm Hz, \ ^\circ C}], \ i{=}\{{\rm x,y,z}\}$$

	$f_{ m 3dB,0,i}$	$f_{ m 3dB,1,i}$	$f_{\rm 3dB,2,i}$	$f_{\rm 3dB,3,i}$	$f_{\rm 3dB,4,i}$	$f_{\rm 3dB,5,i}$
$f_{\rm 3dB,x}$	5.82762E + 1	-7.55338E-2				
$f_{\rm 3dB,y}$	$5.67012E{+1}$	-9.12999E-2				
$f_{\rm 3dB,z}$	$5.37114E{+1}$	-2.50266E-2				

Figure 64: Temperature dependence of 3dB Corner Frequency

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
Ι GΓΓ Technische Universität Braunschweig	Page:	85

Instrument Sampling Frequency:

The following graph shows the calculated sampling frequencies vs. the actual sensor temperature.

Figure 65: Instrument Sampling Frequency versus Sensor Temperature

Mean Samplerate: 127.999039 Hz. Mean Standard Deviation of Samplerate: 0.000122 Hz.

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICDD Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
Ι GΓΓ Technische Universität Braunschweig	Page:	86

12.2 Thermal-Analysis - OB Sensor, cal mode 4

12.2.1 Temperature Calibration on Linear Axes

Used Temperature Measurements:

Calibration Parameter File

Remark

PARAMETER_TEMPLIN__13-04-03_15-24-42.CPF PARAMETER_TEMPLIN__13-04-04_07-18-40.CPF PARAMETER_TEMPLIN__13-04-04_10-51-43.CPF PARAMETER_TEMPLIN__13-04-04_12-34-10.CPF PARAMETER_TEMPLIN__13-04-08_11-15-40.CPF PARAMETER_TEMPLIN__13-04-08_13-25-22.CPF

Thermal Parameter File: THERMAL_PARAMETER__13-04-03-15-24-42.TPF

DEDIC		Document:	BC-MAG-TR-0085
DEFIC	JOLOMBO	Issue:	1
		Revision:	3
	nstitut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGLL	Technische Universität Braunschweig	Page:	87

Facility Parameter:

Nominal Sensor Setup $\underline{B}_{DUT} = \underline{\underline{R}}_{nom} \underline{\underline{B}}_{C}$

$$\underline{\underline{R}}_{nom} = \begin{pmatrix} +1.000000 & +0.000000 & +0.000000 \\ +0.000000 & +1.000000 & +0.000000 \\ +0.000000 & +0.000000 & +1.000000 \end{pmatrix}$$

Calculated Initial Sensor Rotation:

$$\underline{\underline{R}} = \left(\begin{array}{rrrr} +0.999400 & +0.033623 & +0.008371 \\ -0.033527 & +0.999374 & -0.011332 \\ -0.008747 & +0.011044 & +0.999901 \end{array}\right)$$

Initial Rotation Angles:

Rotation @ X:
$$\lambda_{x} = +1^{\circ} 59'8''$$

Rotation @ Y: $\mu_{y} = +2^{\circ} 1'41''$
Rotation @ Z: $\nu_{z} = +0^{\circ} 48'26''$

Determinant of Rotation Matrix: 1.0000

Nominal Field Source: SOLARTRON

Automatic Coil correction: used

Used Sensor-Temperature-Channel: T_{59}

DEDI		Document:	BC-MAG-TR-0085
DEFIC	JOLOMDO	Issue:	1
		Revision:	3
$I \cap F D$	Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGLL	Technische Universität Braunschweig	Page:	88

Temperature Profile

Figure 66: Temperature Profile

DEDI		Document:	BC-MAG-TR-0085
DEFI	JOLOMDU	Issue:	1
		Revision:	3
ICED	Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGEL	Technische Universität Braunschweig	Page:	89

Calibration Parameter:

Sensitivity σ_i vs. Temperature:

$$\sigma_i(T) = \sum_{k=0}^n \sigma_{k,i} T^k \qquad [1, \ ^\circ C], \ i = \{x, y, z\}$$

	$\sigma_{0,i}$	$\sigma_{1,i}$	$\sigma_{2,i}$	$\sigma_{3,i}$	$\sigma_{4,i}$	$\sigma_{5,i}$
σ_x	9.97312E-1	8.41537E-4	-2.34026E-6			
σ_y	1.01904E + 0	9.92588E-4	-2.21768E-6			
σ_z	9.81879E-1	6.63730E-4	-1.40862E-6			

Figure 67: Temperature dependence of Sensitivities

	D	Document:	BC–MAG–TR–0085
DEFICULUMDU	Is	ssue:	1
	R	Revision:	3
ICDD Institut für Geophysik	ı. extraterr. Physik D	Date:	May 06, 2013
IGLI Technische Universit	ät Braunschweig P	Page:	90

Misalignment Angles ξ_{ij} vs. Temperature:

$$\xi_{ij}(T) = \sum_{k=0}^{n} \xi_{k,ij} T^k \qquad [\text{deg, }^{\circ}\text{C}], \text{ ij} = \{\text{xy,xz,yz}\}$$

	$\xi_{0,ij}$	$\xi_{1,ij}$	$\xi_{2,ij}$	$\xi_{3,ij}$	$\xi_{4,ij}$	$\xi_{5,ij}$
ξ_{xy}	$9.0578E{+1}$	1.4757E-3	-5.1834E-6			
ξ_{xz}	$8.9782E{+1}$	-4.0098E-4	2.5339E-6			
ξ_{yz}	$9.0109E{+1}$	-4.8477E-4	5.5736E-7			

Figure 68: Temperature dependence of Misalignment Angles

		Document:	BC-MAG-TR-0085
DEFIC	JOLOMDO	Issue:	1
		Revision:	3
	Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGEL	Technische Universität Braunschweig	Page:	91

Offset & Residual MCF Field $\underline{B}^{or} = \underline{B}^{off} + \underline{B}^{res}$ vs. Temperature:

$$\underline{B}^{or}(T) = \sum_{k=0}^{n} \underline{B}_{k}^{or} T^{k} \qquad [\text{enT, }^{\circ}\text{C}]$$

		\underline{B}_{0}^{or}	\underline{B}_1^{or}	\underline{B}_2^{or}	\underline{B}_3^{or}	\underline{B}_4^{or}	\underline{B}_5^{or}
B_x^o	r	-1.154E+0	4.076E-3	5.321E-5	-5.044E-7		
B_y^o	r	9.191E-1	-4.584E-3	1.387E-4	-5.106E-7		
B_z^{o}	r	-9.347E+0	9.076E-3	-7.507E-5	3.609E-7		

	\cap	Document:	BC–MAG–TR–0085
DEFICOLOMD	\cup	Issue:	1
		Revision:	3
ICDD Institut für Geophys	ik u. extraterr. Physik	Date:	May 06, 2013
ΙΥΓ Technische Unive	rsität Braunschweig	Page:	92

Model Quality:

Minimum and maximum errors of the calculated Model vs. Temperature:

Figure 69: Residuals of Thermal Model

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICDD Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
$\Pi \Box \Gamma \Gamma$ Technische Universität Braunschweig	Page:	93

Sensor Rotation during Test:

Figure 70: Rotation @ X-Axis

Figure 72: Rotation @ Z-Axis

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICDD Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
$\Pi \bigcirc \Box \Gamma$ Technische Universität Braunschweig	Page:	94

12.2.2 Temperature Calibration of the Sensor Offset

Used Temperature Measurements:

Calibration Parameter File	Remark
----------------------------	--------

OFF_PARAMETER__13-04-03-15-55-48.0PF OFF_PARAMETER__13-04-04-07-54-10.0PF OFF_PARAMETER__13-04-04-11-22-26.0PF OFF_PARAMETER__13-04-04-13-05-27.0PF OFF_PARAMETER__13-04-08-11-46-06.0PF OFF_PARAMETER__13-04-08-13-56-15.0PF

Thermal Parameter File: THERMAL_OFF_PARAMETER__13-04-03-15-55-48.TOF

		Document:	BC–MAG–TR–0085
DEFI	JULUMDU	Issue:	1
		Revision:	3
ICED	Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
$IGE\Gamma$	Technische Universität Braunschweig	Page:	95

Facility Parameter:

Nominal Sensor Setup $\underline{B}_{\text{DUT}} = \underline{\underline{R}}_{\text{nom}} \underline{\underline{B}}_{\text{C}}$

$$\underline{\underline{R}}_{nom} = \begin{pmatrix} +1.000000 & +0.000000 & +0.000000 \\ +0.000000 & +1.000000 & +0.000000 \\ +0.000000 & +0.000000 & +1.000000 \end{pmatrix}$$

Sensor Temperature Channel: T_{59}

Coil System Temperature Channel: T_{29}

Temperature Profile

Figure 73: Temperature Profile

DFDI		Document:	BC-MAG-TR-0085
DELL	JOLOMDO	Issue:	1
		Revision:	3
ICED	Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGEF	Technische Universität Braunschweig	Page:	96

Calibration Parameter:

Sensor Offset $\underline{B}_{\rm off}$ vs. Temperature:

$$B_{\text{off},i}(T) = \sum_{k=0}^{n} B_{\text{off},k,i} T^{k} \qquad [\text{enT}, \ ^{\circ}\text{C}], \ i = \{\text{x}, \text{y}, \text{z}\}$$

	$B_{ m off,0,i}$	$B_{ m off,1,i}$	$B_{ m off,2,i}$	$B_{ m off,3,i}$	$B_{\rm off,4,i}$	$B_{\rm off,5,i}$
$B_{\rm off,x}$	-2.11499E-1	3.43452E-3	3.65776E-5	-3.04488E-7		
$B_{\rm off,y}$	9.20378E-1	-4.22661E-3	1.35052E-4	-4.54142E-7		
$B_{\rm off,z}$	$1.60582E{+}0$	1.55047 E-3	$-5.85991 \text{E}{-5}$	3.47774E-7		

Figure 74: Temperature dependence of Sensor Offsets

DEDICOLOMPO Document	: BC–MAG–TR–0085
DEFICULUMDU Issue:	1
Revision:	3
ICTD Institut für Geophysik u. extraterr. Physik Date:	May 06, 2013
Ι GL/Γ Technische Universität Braunschweig Page:	97

Coil System Temperature

The following graph shows the mean Coil System temperature during the complete thermal cycle for the offset measurements.

Figure 75: Coil System Temperature during Thermal Measurements

	Document:	BC–MAG–TR–0085
DEFICOLOMDO	Issue:	1
	Revision:	3
ICTD Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
ΙGΓ <i>Γ</i> Technische Universität Braunschweig	Page:	98

Coil System Residual Field:

The following graph shows the three components of the Coil System Residual field during the whole measurement. Axes designators are related to the actual DUT coordinate system and NOT to Coil System coordinates.

Figure 76: Coil System Residual Fields during Thermal Measurements

Remark:

The axes designation for this graph is given as follows (rf. to setup defined in chapter 1):

X_m	=	X_c
Y_m	=	Y_c
Z_m	=	$-X_c$

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
Ι GLΓ Technische Universität Braunschweig	Page:	99

12.2.3 Temperature Calibration of the AC Transfer Function

Used Temperature Measurements:

Calibration Parameter File Remark

FREQ_PARAMETER__13-04-03-14-41-31.FPF FREQ_PARAMETER__13-04-04-13-14-59.FPF FREQ_PARAMETER__13-04-08-10-31-48.FPF FREQ_PARAMETER__13-04-08-14-06-16.FPF

Thermal Parameter File: THERMAL_AC_PARAMETER__13-04-03-14-41-31.TAF

DEDICOLOMBO	Document:	BC-MAG-TR-0085
DEFICOLOMDO	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGL <i>I</i> Technische Universität Braunschweig	Page:	100

Facility Parameter:

Nominal Sensor Setup: Diagonal in Space inside Thermal Box.

Sensor Temperature Channel: T_{59}

Coil System Temperature Channel: T_{29}

Temperature Profile

Figure 77: Temperature Profile

DEDICOLOMBO	Document:	BC-MAG-TR-0085
DEFICOLOMDO	Issue:	1
	Revision:	3
ICDD Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
Ι G Γ Γ Technische Universität Braunschweig	Page:	101

Coil System Temperature

The following graph shows the mean Coil System temperature during the complete thermal cycle for the AC measurements.

Figure 78: Coil System Temperature during Thermal AC Measurements

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICDD Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
Ι GΓΓ Technische Universität Braunschweig	Page:	102

Calibration Parameter:

-3dB Corner Frequency f_{3dB} vs. Temperature:

$$f_{\rm 3dB,i}(T) = \sum_{k=0}^{n} f_{\rm 3dB,k,i} T^k \qquad [{\rm Hz, \ ^\circ C}], \ i{=}\{{\rm x,y,z}\}$$

	$f_{ m 3dB,0,i}$	$f_{ m 3dB,1,i}$	$f_{\rm 3dB,2,i}$	$f_{ m 3dB,3,i}$	$f_{\rm 3dB,4,i}$	$f_{ m 3dB,5,i}$
$f_{\rm 3dB,x}$	5.91894E + 1	9.13759E-3				
$f_{\rm 3dB,y}$	$5.91557E{+1}$	1.06586E-2				
$f_{\rm 3dB,z}$	$5.61646E{+1}$	2.16322E-2				

Figure 79: Temperature dependence of 3dB Corner Frequency

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
Ι GΓΓ Technische Universität Braunschweig	Page:	103

Instrument Sampling Frequency:

The following graph shows the calculated sampling frequencies vs. the actual sensor temperature.

Figure 80: Instrument Sampling Frequency versus Sensor Temperature

Mean Samplerate: 127.998821 Hz. Mean Standard Deviation of Samplerate: 0.000109 Hz.

DEDIC		Document:	BC-MAG-TR-0085
DEFICULUMBU		Issue:	1
		Revision:	3
ICDD I	nstitut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGEL	Technische Universität Braunschweig	Page:	104

13 Combined Measurements from April 09 – 11, 2013

13.1 Thermal-Analysis - IB Sensor, cal mode 0

13.1.1 Temperature Calibration on Linear Axes

Used Temperature Measurements:

Calibration Parameter File	Remark
----------------------------	--------

PARAMETER_TEMPLIN__13-04-09_09-52-27.CPF PARAMETER_TEMPLIN__13-04-09_11-54-15.CPF PARAMETER_TEMPLIN__13-04-10_08-18-43.CPF PARAMETER_TEMPLIN__13-04-10_11-47-03.CPF PARAMETER_TEMPLIN__13-04-11_08-06-33.CPF PARAMETER_TEMPLIN__13-04-11_14-47-36.CPF

Thermal Parameter File: THERMAL_PARAMETER__13-04-09-09-52-27.TPF
DEDICOLOMD	\cap	Document:	BC-MAG-TR-0085
DEFICULUMD	\mathbf{O}	Issue:	1
		Revision:	3
ICTD Institut für Geophys	ik u. extraterr. Physik	Date:	May 06, 2013
IGLI Technische Unive	rsität Braunschweig	Page:	105

Facility Parameter:

Nominal Sensor Setup $\underline{B}_{DUT} = \underline{\underline{R}}_{nom} \underline{\underline{B}}_{C}$

$$\underline{\underline{R}}_{nom} = \begin{pmatrix} +1.000000 & +0.000000 & +0.000000 \\ +0.000000 & +1.000000 & +0.000000 \\ +0.000000 & +0.000000 & +1.000000 \end{pmatrix}$$

Calculated Initial Sensor Rotation:

$$\underline{\underline{R}} = \left(\begin{array}{rrrr} +0.999974 & +0.003127 & +0.006434 \\ -0.003132 & +0.999995 & +0.000706 \\ -0.006432 & -0.000726 & +0.999979 \end{array}\right)$$

Initial Rotation Angles:

Rotation @ X:
$$\lambda_x = +0^{\circ} 24'36''$$
Rotation @ Y: $\mu_y = +0^{\circ} 11'2''$ Rotation @ Z: $\nu_z = +0^{\circ} 22'15''$

Determinant of Rotation Matrix: 1.0000

Nominal Field Source: SOLARTRON

Automatic Coil correction: used

Used Sensor-Temperature-Channel: T_{59}

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
ΙΟΓ Γ Technische Universität Braunschweig	Page:	106

Temperature Profile

Figure 81: Temperature Profile

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
Ι΄΄΄ Γ Technische Universität Braunschweig	Page:	107

Calibration Parameter:

Sensitivity σ_i vs. Temperature:

$$\sigma_i(T) = \sum_{k=0}^n \sigma_{k,i} T^k \qquad [1, \ ^\circ C], \ \mathbf{i} = \{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$$

	$\sigma_{0,i}$	$\sigma_{1,i}$	$\sigma_{2,i}$	$\sigma_{3,i}$	$\sigma_{4,i}$	$\sigma_{5,i}$
σ_x	9.75788E-1	-1.59695E-5				
σ_y	9.88057 E-1	-1.44024E-5				
σ_z	9.85916E-1	-1.77112E-5				

Figure 82: Temperature dependence of Sensitivities

	Document:	BC–MAG–TR–0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
ΙGΓ Γ Technische Universität Braunschweig	Page:	108

Misalignment Angles ξ_{ij} vs. Temperature:

$$\xi_{ij}(T) = \sum_{k=0}^{n} \xi_{k,ij} T^k \qquad [\text{deg, }^{\circ}\text{C}], \text{ ij} = \{\text{xy,xz,yz}\}$$

$$\begin{array}{|c|c|c|c|c|c|c|c|c|} & \xi_{0,ij} & \xi_{1,ij} & \xi_{2,ij} & \xi_{3,ij} & \xi_{4,ij} & \xi_{5,ij} \\ \hline \xi_{xy} & 8.9575 \pm 1 & 5.8946 \pm 5 \\ \xi_{xz} & 8.9942 \pm 1 & 4.1061 \pm 5 \\ \xi_{yz} & 9.0345 \pm 1 & -1.6514 \pm 5 \end{array}$$

Figure 83: Temperature dependence of Misalignment Angles

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	- Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
ТСГГ Technische Universität Braunschweig	Page:	109

Offset & Residual MCF Field $\underline{B}^{or} = \underline{B}^{off} + \underline{B}^{res}$ vs. Temperature:

$$\underline{B}^{or}(T) = \sum_{k=0}^{n} \underline{B}_{k}^{or} T^{k} \qquad [\text{enT, }^{\circ}\text{C}]$$

	\underline{B}_{0}^{or}	\underline{B}_1^{or}	\underline{B}_2^{or}	\underline{B}_3^{or}	\underline{B}_4^{or}	\underline{B}_5^{or}
B_x^{or}	-3.543E+0	1.981E-3	1.637 E-4	-7.621E-7		
B_y^{or}	-1.315E+0	-5.537E-3	-1.109E-4	6.784 E-7		
B_z^{or}	-1.075E+1	6.562E-3	9.510E-6	-6.083E-8		

	Document: BC–MAG–TR–0085
DEFICULUMDU	Issue: 1
	Revision: 3
ICDD Institut für Geophysik u. extrater	Physik Date: May 06, 2013
IGEF Technische Universität Braunso	hweig Page: 110

Model Quality:

Minimum and maximum errors of the calculated Model vs. Temperature:

Figure 84: Residuals of Thermal Model

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
Ι GΓΓ Technische Universität Braunschweig	Page:	111

Sensor Rotation during Test:

Figure 85: Rotation @ X-Axis

Figure 86: Rotation @ Y-Axis

Figure 87: Rotation @ Z-Axis

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICDD Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
Ι G Γ Γ Technische Universität Braunschweig	Page:	112

13.1.2 Temperature Calibration of the Sensor Offset

Used Temperature Measurements:

Calibration Parameter File	Remark
----------------------------	--------

OFF_PARAMETER__13-04-09-11-14-46.0PF OFF_PARAMETER__13-04-09-13-08-27.0PF OFF_PARAMETER__13-04-10-08-09-57.0PF OFF_PARAMETER__13-04-10-12-17-18.0PF OFF_PARAMETER__13-04-11-08-37-21.0PF OFF_PARAMETER__13-04-11-15-18-03.0PF

Thermal Parameter File: THERMAL_OFF_PARAMETER__13-04-09-11-14-46.TOF

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
Ι΄΄΄ Γ Technische Universität Braunschweig	Page:	113

Facility Parameter:

Nominal Sensor Setup $\underline{B}_{\text{DUT}} = \underline{\underline{R}}_{\text{nom}} \underline{\underline{B}}_{\text{C}}$

$$\underline{\underline{R}}_{nom} = \begin{pmatrix} +1.000000 & +0.000000 & +0.000000 \\ +0.000000 & +1.000000 & +0.000000 \\ +0.000000 & +0.000000 & +1.000000 \end{pmatrix}$$

Sensor Temperature Channel: T_{59}

Coil System Temperature Channel: T_{29}

Temperature Profile

Figure 88: Temperature Profile

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
ΙGΓ Γ Technische Universität Braunschweig	Page:	114

Calibration Parameter:

Sensor Offset $\underline{B}_{\rm off}$ vs. Temperature:

$$B_{\text{off},i}(T) = \sum_{k=0}^{n} B_{\text{off},k,i} T^{k} \qquad [\text{enT}, \ ^{\circ}\text{C}], \ i = \{\text{x}, \text{y}, \text{z}\}$$

	$B_{ m off,0,i}$	$B_{ m off,1,i}$	$B_{ m off,2,i}$	$B_{\rm off,3,i}$	$B_{\rm off,4,i}$	$B_{\rm off,5,i}$
$B_{\rm off,x}$	-2.92971E-1	-3.69506E-3	4.77003E-5			
$B_{\rm off,y}$	-1.05443E+0	-1.72164E-3	1.51567E-5			
$B_{\rm off,z}$	1.46463E-1	3.34259E-3	-2.31102E-5			

Figure 89: Temperature dependence of Sensor Offsets

	Document:	BC-MAG-TR-0085
DEFICOLOMDO	Issue:	1
	Revision:	3
ICDD Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
ΙGΓ <i>Γ</i> Technische Universität Braunschweig	Page:	115

Coil System Temperature

The following graph shows the mean Coil System temperature during the complete thermal cycle for the offset measurements.

Figure 90: Coil System Temperature during Thermal Measurements

REDICOLOMBO	Document:	BC-MAG-TR-0085
	Issue:	1
	Revision:	3
ICFD Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
TGLI Technische Universität Braunschweig	Page:	116

Coil System Residual Field:

The following graph shows the three components of the Coil System Residual field during the whole measurement. Axes designators are related to the actual DUT coordinate system and NOT to Coil System coordinates.

Figure 91: Coil System Residual Fields during Thermal Measurements

Remark:

The axes designation for this graph is given as follows (rf. to setup defined in chapter 1):

X_m	=	X_c
Y_m	=	Y_c
Z_m	=	$-X_c$

		Document:	BC–MAG–TR–0085
DELL	JOLOMDO	Issue:	1
		Revision:	3
	Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGEL	Technische Universität Braunschweig	Page:	117

13.1.3 Temperature Calibration of the AC Transfer Function

Used Temperature Measurements:

Calibration Parameter File Remark

FREQ_PARAMETER__13-04-09-12-26-36.FPF FREQ_PARAMETER__13-04-10-12-26-40.FPF FREQ_PARAMETER__13-04-11-08-46-10.FPF FREQ_PARAMETER__13-04-11-15-26-22.FPF

Thermal Parameter File: THERMAL_AC_PARAMETER__13-04-09-12-26-36.TAF

$D \Box' D I () () () () () () () () () ($	
DEFICULUMDU Issue:	1
Revision:	3
ICDD Institut für Geophysik u. extraterr. Physik Date: May 06, 201	13
IGL Technische Universität Braunschweig Page: 11	18

Facility Parameter:

Nominal Sensor Setup: Diagonal in Space inside Thermal Box.

Sensor Temperature Channel: T_{59}

Coil System Temperature Channel: T_{29}

Temperature Profile

Figure 92: Temperature Profile

DEDICOLOMPO Document: BC	C-MAG-TR-0085
DEFICULUMDU Issue:	1
Revision:	3
ICED Institut für Geophysik u. extraterr. Physik Date:	May 06, 2013
IGL <i>I</i> Technische Universität Braunschweig Page:	119

Coil System Temperature

The following graph shows the mean Coil System temperature during the complete thermal cycle for the AC measurements.

Figure 93: Coil System Temperature during Thermal AC Measurements

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICDD Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
Ι GΓ/ Technische Universität Braunschweig	Page:	120

Calibration Parameter:

-3dB Corner Frequency f_{3dB} vs. Temperature:

$$f_{3dB,i}(T) = \sum_{k=0}^{n} f_{3dB,k,i}T^{k}$$
 [Hz, °C], i={x,y,z}

	$f_{ m 3dB,0,i}$	$f_{ m 3dB,1,i}$	$f_{ m 3dB,2,i}$	$f_{ m 3dB,3,i}$	$f_{\rm 3dB,4,i}$	$f_{ m 3dB,5,i}$
$f_{ m 3dB,x}$	5.23089E + 1	-1.76236E-1	4.32362E-4			
$f_{\rm 3dB,y}$	4.80020E + 1	-2.09909E-1	5.51143E-4			
$f_{\rm 3dB,z}$	5.28160E + 1	-3.41876E-2	8.18077 E-5			

Figure 94: Temperature dependence of 3dB Corner Frequency

REPICOLOMBO	Document:	BC-MAG-TR-0085
	Issue:	1
- Institut für Coorbusilen outnotom Dhusile	Revision:	
ICFD Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
TCTT Technische Universität Braunschweig	Page:	121

Instrument Sampling Frequency:

The following graph shows the calculated sampling frequencies vs. the actual sensor temperature.

Figure 95: Instrument Sampling Frequency versus Sensor Temperature

Mean Samplerate: 127.998929 Hz. Mean Standard Deviation of Samplerate: 0.000149 Hz.

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICDD Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
Ι GΓΓ Technische Universität Braunschweig	Page:	122

13.2 Thermal-Analysis - IB Sensor, cal mode 4

13.2.1 Temperature Calibration on Linear Axes

Used Temperature Measurements:

Calibration Parameter File

Remark

PARAMETER_TEMPLIN__13-04-09_10-34-40.CPF PARAMETER_TEMPLIN__13-04-09_14-12-36.CPF PARAMETER_TEMPLIN__13-04-10_07-28-44.CPF PARAMETER_TEMPLIN__13-04-10_13-11-42.CPF PARAMETER_TEMPLIN__13-04-11_09-31-53.CPF PARAMETER_TEMPLIN__13-04-11_12-35-43.CPF PARAMETER_TEMPLIN__13-04-11_13-06-41.CPF

Thermal Parameter File: THERMAL_PARAMETER__13-04-09-10-34-40.TPF

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
ΙGΓ <i>Γ</i> Technische Universität Braunschweig	Page:	123

Facility Parameter:

Nominal Sensor Setup $\underline{B}_{DUT} = \underline{\underline{R}}_{nom} \underline{\underline{B}}_{C}$

$$\underline{\underline{R}}_{nom} = \begin{pmatrix} +1.000000 & +0.000000 & +0.000000 \\ +0.000000 & +1.000000 & +0.000000 \\ +0.000000 & +0.000000 & +1.000000 \end{pmatrix}$$

Calculated Initial Sensor Rotation:

$$\underline{\underline{R}} = \left(\begin{array}{cccc} +0.999707 & +0.023539 & +0.005617 \\ -0.023561 & +0.999715 & +0.003876 \\ -0.005524 & -0.004007 & +0.999977 \end{array}\right)$$

Initial Rotation Angles:

Rotation @ X:
$$\lambda_x = +1^{\circ} 23'12''$$
Rotation @ Y: $\mu_y = +1^{\circ} 22'6''$ Rotation @ Z: $\nu_z = +0^{\circ} 23'28''$

Determinant of Rotation Matrix: 1.0000

Nominal Field Source: FLDS

Automatic Coil correction: used

Used Sensor-Temperature-Channel: T_{59}

	Document: BC–MAG–TR–0085
DEFICULUMDU	Issue: 1
	—— Revision: 3
ICTD Institut für Geophysik u. extraterr. Ph	ysik Date: May 06, 2013
IGEF Technische Universität Braunschweig	g Page: 124

Temperature Profile

Figure 96: Temperature Profile

	Document:	BC–MAG–TR–0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
ТСГГ Technische Universität Braunschweig	Page:	125

Calibration Parameter:

Sensitivity σ_i vs. Temperature:

$$\sigma_i(T) = \sum_{k=0}^n \sigma_{k,i} T^k \qquad [1, \ ^\circ C], \ \mathbf{i} = \{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$$

	$\sigma_{0,i}$	$\sigma_{1,i}$	$\sigma_{2,i}$	$\sigma_{3,i}$	$\sigma_{4,i}$	$\sigma_{5,i}$
σ_x	1.01127E + 0	1.13608E-3				
σ_y	1.02445E + 0	1.39015E-3				
σ_z	9.74889E-1	4.76147E-4				

Figure 97: Temperature dependence of Sensitivities

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICDD Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
ТСГГ Technische Universität Braunschweig	Page:	126

Misalignment Angles ξ_{ij} vs. Temperature:

$$\xi_{ij}(T) = \sum_{k=0}^{n} \xi_{k,ij} T^k \qquad [\text{deg, }^{\circ}\text{C}], \text{ ij} = \{\text{xy,xz,yz}\}$$

$$\begin{array}{|c|c|c|c|c|c|c|c|c|} & \xi_{0,ij} & \xi_{1,ij} & \xi_{2,ij} & \xi_{3,ij} & \xi_{4,ij} & \xi_{5,ij} \\ \hline \xi_{xy} & 9.0177\text{E}{+1} & 1.0107\text{E}{-3} & & & \\ \xi_{xz} & 8.9516\text{E}{+1} & -4.8192\text{E}{-4} & & & \\ \xi_{yz} & 9.0554\text{E}{+1} & -1.7089\text{E}{-3} & & & & \\ \end{array}$$

Figure 98: Temperature dependence of Misalignment Angles

	Document:	BC–MAG–TR–0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
ΙGΓ Γ Technische Universität Braunschweig	Page:	127

Offset & Residual MCF Field $\underline{B}^{or} = \underline{B}^{off} + \underline{B}^{res}$ vs. Temperature:

$$\underline{B}^{or}(T) = \sum_{k=0}^{n} \underline{B}_{k}^{or} T^{k} \qquad [\text{enT, }^{\circ}\text{C}]$$

	\underline{B}_{0}^{or}	\underline{B}_1^{or}	\underline{B}_2^{or}	\underline{B}_3^{or}	\underline{B}_4^{or}	\underline{B}_5^{or}
B_x^{or}	-2.626E+0	1.250E-2	-7.866E-5	2.016E-7		
B_y^{or}	-1.160E+0	-5.595E-3	-7.993E-5	5.415E-7		
B_z^{or}	-1.065E+1	7.654E-3	8.301E-5	-4.486E-7		

	Document: BC–MAG–TR–0085
DEFICULUMDU	Issue: 1
	Revision: 3
ICED Institut für Geophysik u. extrat	err. Physik Date: May 06, 2013
IGEF Technische Universität Brau	nschweig Page: 128

Model Quality:

Minimum and maximum errors of the calculated Model vs. Temperature:

Figure 99: Residuals of Thermal Model

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
ΙGΓ Γ Technische Universität Braunschweig	Page:	129

Sensor Rotation during Test:

Figure 100: Rotation @ X-Axis

Figure 102: Rotation @ Z-Axis

	Document: BC–MAG–TR–0085
DEFICULUMDU	Issue: 1
	———— Revision: 3
ICTD Institut für Geophysik u. extraterr. P	hysik Date: May 06, 2013
IGLΓ Technische Universität Braunschwe	ig Page: 130

13.2.2 Temperature Calibration of the Sensor Offset

Used Temperature Measurements:

Calibration Parameter File	Remark
----------------------------	--------

OFF_PARAMETER__13-04-09-11-05-13.0PF OFF_PARAMETER__13-04-09-13-18-15.0PF OFF_PARAMETER__13-04-10-07-59-38.0PF OFF_PARAMETER__13-04-10-13-47-06.0PF OFF_PARAMETER__13-04-11-10-11-50.0PF OFF_PARAMETER__13-04-11-13-37-03.0PF

Thermal Parameter File: THERMAL_OFF_PARAMETER__13-04-09-11-05-13.TOF

	Document:	BC–MAG–TR–0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGLГ Technische Universität Braunschweig	Page:	131

Facility Parameter:

Nominal Sensor Setup $\underline{B}_{\text{DUT}} = \underline{\underline{R}}_{\text{nom}} \underline{\underline{B}}_{\text{C}}$

$$\underline{\underline{R}}_{nom} = \begin{pmatrix} +1.000000 & +0.000000 & +0.000000 \\ +0.000000 & +1.000000 & +0.000000 \\ +0.000000 & +0.000000 & +1.000000 \end{pmatrix}$$

Sensor Temperature Channel: T_{59}

Coil System Temperature Channel: T_{29}

Temperature Profile

Figure 103: Temperature Profile

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
ΙGΓ Γ Technische Universität Braunschweig	Page:	132

Calibration Parameter:

Sensor Offset $\underline{B}_{\rm off}$ vs. Temperature:

$$B_{\text{off},i}(T) = \sum_{k=0}^{n} B_{\text{off},k,i} T^{k} \qquad [\text{enT}, \ ^{\circ}\text{C}], \ i = \{\text{x}, \text{y}, \text{z}\}$$

	$B_{ m off,0,i}$	$B_{ m off,1,i}$	$B_{ m off,2,i}$	$B_{ m off,3,i}$	$B_{\rm off,4,i}$	$B_{\rm off,5,i}$
$B_{\rm off,x}$	-5.68307E-1	4.08661E-3	6.45150E-5	-3.46324E-7		
$B_{\rm off,y}$	-5.22529E-1	-2.03202E-3	-6.13830E-5	3.69060E-7		
$B_{\rm off,z}$	-6.12748E-2	-3.29684E-6	8.06491 E-5	-4.46246E-7		

Figure 104: Temperature dependence of Sensor Offsets

	Document:	BC–MAG–TR–0085
DEFICOLOMDO	Issue:	1
	Revision:	3
ICTD Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
ТСГГ Technische Universität Braunschweig	Page:	133

Coil System Temperature

The following graph shows the mean Coil System temperature during the complete thermal cycle for the offset measurements.

Figure 105: Coil System Temperature during Thermal Measurements

REDICOLOMBO	Document:	BC-MAG-TR-0085
DEI ICOLOMDO	Issue:	1
	Revision:	3
ICFD Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
ΙGΓ Γ Technische Universität Braunschweig	Page:	134

Coil System Residual Field:

The following graph shows the three components of the Coil System Residual field during the whole measurement. Axes designators are related to the actual DUT coordinate system and NOT to Coil System coordinates.

Figure 106: Coil System Residual Fields during Thermal Measurements

Remark:

The axes designation for this graph is given as follows (rf. to setup defined in chapter 1):

X_m	=	X_c
Y_m	=	Y_c
Z_m	=	$-X_c$

BEDI		Document:	BC–MAG–TR–0085
DEIR		Issue:	1
		Revision:	3
	Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGLI	Technische Universität Braunschweig	Page:	135

13.2.3 Temperature Calibration of the AC Transfer Function

Used Temperature Measurements:

Calibration Parameter File Remark

FREQ_PARAMETER__13-04-09-13-27-51.FPF FREQ_PARAMETER__13-04-10-13-56-47.FPF FREQ_PARAMETER__13-04-11-10-20-53.FPF FREQ_PARAMETER__13-04-11-13-45-45.FPF

Thermal Parameter File: THERMAL_AC_PARAMETER__13-04-09-13-27-51.TAF

DEDICOLOMBO	Document:	BC-MAG-TR-0085
DEFICOLOMDO	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGL <i>I</i> Technische Universität Braunschweig	Page:	136

Facility Parameter:

Nominal Sensor Setup: Diagonal in Space inside Thermal Box.

Sensor Temperature Channel: T_{59}

Coil System Temperature Channel: T_{29}

Temperature Profile

Figure 107: Temperature Profile

	Document:	BC–MAG–TR–0085
DEFICOLOMDO	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
ТСГГ Technische Universität Braunschweig	Page:	137

Coil System Temperature

The following graph shows the mean Coil System temperature during the complete thermal cycle for the AC measurements.

Figure 108: Coil System Temperature during Thermal AC Measurements

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICDD Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
$\Pi \Box \Gamma \Gamma$ Technische Universität Braunschweig	Page:	138

Calibration Parameter:

-3dB Corner Frequency f_{3dB} vs. Temperature:

$$f_{\rm 3dB,i}(T) = \sum_{k=0}^{n} f_{\rm 3dB,k,i} T^k \qquad [{\rm Hz, \ ^\circ C}], \ i{=}\{{\rm x,y,z}\}$$

	$f_{ m 3dB,0,i}$	$f_{ m 3dB,1,i}$	$f_{\rm 3dB,2,i}$	$f_{ m 3dB,3,i}$	$f_{\rm 3dB,4,i}$	$f_{\rm 3dB,5,i}$
$f_{\rm 3dB,x}$	5.87823E + 1	7.50885E-3				
$f_{\rm 3dB,y}$	5.88830E + 1	7.81382E-3				
$f_{ m 3dB,z}$	$5.59134E{+1}$	2.01382E-2				

Figure 109: Temperature dependence of 3dB Corner Frequency

REDICOLOMBO	Document:	BC–MAG–TR–0085
	Issue:	1
	Revision:	3
ICFD Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
TGLI Technische Universität Braunschweig	Page:	139

Instrument Sampling Frequency:

The following graph shows the calculated sampling frequencies vs. the actual sensor temperature.

Figure 110: Instrument Sampling Frequency versus Sensor Temperature

Mean Samplerate: 127.998886 Hz. Mean Standard Deviation of Samplerate: 0.000095 Hz.

REPIO	COLOMBO	Document:	BC-MAG-TR-0085
		Issue:	1
IODD	Institut für Geophysik u. extraterr. Physik	Date:	3 May 06, 2013
IGEP	Technische Universität Braunschweig	Page:	140

14 Complete Temperature Profile

The following plot shows the complete thermal cycle of the sensor with all cooling and heating phases. The curves show the desired nominal temperatures in green and the actual measured temperatures in red.

Figure 111: Complete thermal cycle
		Document:	BC-MAG-TR-0085
DEFICU	LOMDO	Issue:	1
		Revision:	3
ICTD Insti	tut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGEF T	echnische Universität Braunschweig	Page:	141

15 Mathematical Description of the Calibration

15.1 Basic Principle

The Magnetsrode Coil Facility (MCF) generates an artificial magnetic field $\underline{B}^{\text{FLD}}$ that can be considered as a calibrated, orthogonal magnetic reference field¹ defined in coilsystem coordinates. For the calibration analysis this ideal coilsystem field is rotated to ideal orthogonal sensor coordinates using a nominal Rotation matrix $\underline{R}_{\text{nom}}$ at the first step. Nominal means that only rotations of $\pm 90^{\circ}$ or $\pm 180^{\circ}$ at any axis are considered here to get a coarse alignment of the applied field with the sensor-axes.

$$\underline{B}^{\mathrm{C}} = \underline{\underline{R}}_{\mathrm{nom}} \, \underline{\underline{B}}^{\mathrm{FLD}}$$

For a standard calibration the matrix $\underline{\underline{R}}_{nom}$ is just a $\underline{\underline{I}}$ - matrix - sensor coordinates and coilsystem coordinates have roughly the same direction. If the sensor coordinates are left-handed or the sensor is turned by about $\pm 90^{\circ}$ or $\pm 180^{\circ}$ at any axis $\underline{\underline{R}}_{nom}$ will contain ± 1 -elements or 0-elements at any place. The rotated coil system field $\underline{\underline{B}}^{c}$ is the used reference field for the following analysis.

The magnetometer under test at the center of the coil system (CoC) generates magnetic raw data $\underline{B}^{\rm r}$. These data include an eventually existing residual field of the coil system $\underline{B}^{\rm res}$ and the magnetometer offset $\underline{B}^{\rm off}$. Both entities are combined in the offset & residual field $\underline{B}^{\rm or}$:

$$\underline{B}^{\text{or}} = \underline{B}^{\text{off}} + \underline{B}^{\text{res}}$$

Therefore, the second step of the calibration is the generation of offset and residual field corrected measured field data \underline{B}^{m} :

$$\underline{B}^{\mathrm{m}} = \underline{B}^{\mathrm{r}} - \underline{B}^{\mathrm{or}}$$

The actual offset and residual field is automatically taken into account during the calibration analysis. Either a constant field or - if needed - a linear trend of $\underline{B}^{\text{or}}$ is subtracted from the raw data.

The relation between the calibration field and the magnetometer data is then defined by

$$\underline{B}^{\mathrm{C}} = \underline{\Phi} \, \underline{B}^{\mathrm{m}}$$

where $\underline{\Phi}$ is the complete calibration transfer matrix, defined by

$$\underline{\underline{\phi}} = \underline{\underline{R}}_{\text{nom}} \ \underline{\underline{\rho}} \underline{\underline{\omega}} \underline{\underline{\sigma}}.$$

 $^{^{1}}$ During the calibration the temperature dependent sensitivity of the coil system is calculated every 3 minutes and taken into account as well as the static misalignment of the coil system to produce orthogonal, known fields.

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
Ι΄΄΄ Γ΄ Technische Universität Braunschweig	Page:	142

 $\underline{\sigma}(T)$ represents the temperature dependent sensitivity.

 $\underline{\underline{\omega}}(T)$ describes the temperature dependent internal sensor misalignment (orthogonalisation matrix).

 $\underline{\rho}(T)$ describes the real rotation of the sensor against the coil axes.²

Thus the calibration algorithms have to solve the following problem:

$$\underline{\underline{B}}^{c} = \underline{\underline{\Phi}} \underline{\underline{B}}^{m}$$

$$= \underline{\underline{R}}_{nom} \underline{\underline{\rho}} \underline{\underline{\omega}} \underline{\underline{\sigma}} \underline{\underline{B}}^{m}$$

$$(1)$$

The separation into these submatrices and evaluation of their elements is done in subsequent steps:

• Calculation of the Sensitivity matrix $\underline{\sigma}$ The sensitivity matrix shall contain the on-axis sensitivity coefficients of the sensors. Therefore, $\underline{\sigma}$ has to be a diagonal matrix of the following kind:

$$\underline{\underline{\sigma}} = \left(\begin{array}{ccc} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{array} \right)$$

The separation of matrix $\underline{\underline{\sigma}}$ from the transfer function $\underline{\phi}$ yields

$$\underline{\phi} = \begin{pmatrix} \frac{\phi_{11}}{\sigma_1} & \frac{\phi_{12}}{\sigma_2} & \frac{\phi_{13}}{\sigma_3} \\ \frac{\phi_{21}}{\sigma_1} & \frac{\phi_{22}}{\sigma_2} & \frac{\phi_{23}}{\sigma_3} \\ \frac{\phi_{31}}{\sigma_1} & \frac{\phi_{32}}{\sigma_2} & \frac{\phi_{33}}{\sigma_3} \end{pmatrix} \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{pmatrix} \quad \stackrel{\wedge}{=} \underline{\phi} \underline{\phi}$$

For the computation of the sensitivity coefficients σ_i the transformation of the basevectors has to be considered. Equation (1) transform the components of the fields, whereas

$$\underline{e}^{c} = \left(\underline{\underline{\phi}}^{T}\right)^{-1} \underline{e}^{m} := \underline{\Psi} \underline{e}^{m}$$

has to be used for the contragredient base-vector transformation of the skew sensorsystem $\Sigma^{\rm m}$ into the orthonormal coilsystem $\Sigma^{\rm c}$. The length of the column vectors of $\underline{\psi}$ define the sensitivity coefficients σ_i :

$$\sigma_1 = \frac{1}{\sqrt{\psi_{11}^2 + \psi_{21}^2 + \psi_{31}^2}}$$

 $^{^{2}}$ Also the rotation matrix is regarded as temperature dependent being able to consider any thermal setup inadequacies causing fractional rotations.

		Document:	BC-MAG-TR-0085
DEFI	JOLOMBO	Issue:	1
		Revision:	3
ICLD	Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGEL	Technische Universität Braunschweig	Page:	143

$$\sigma_2 = \frac{1}{\sqrt{\psi_{12}^2 + \psi_{22}^2 + \psi_{32}^2}}$$
$$\sigma_3 = \frac{1}{\sqrt{\psi_{13}^2 + \psi_{23}^2 + \psi_{33}^2}}$$

• Calculation of the Misalignment matrix $\underline{\omega}$

After the separation of $\underline{\sigma}$ the reduced transfer function $\stackrel{\wedge}{\underline{\phi}}$ contains only the misalignment and the real sensor rotation. The misalignment angles $\xi_{xy}, \xi_{xz}, \xi_{yz}$, hence the angles between the base vectors of the affine sensorsystem Σ^{m} , can be evaluated from the scalar products of all these base vectors. The base unit vectors are defined by the inverse transposed matrix of the reduced transfer function:

$$\underline{e}_{\mathbf{X}}^{\mathbf{m}} := \begin{pmatrix} \wedge \mathbf{T} \\ \underline{\phi} \\ = \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
$$\underline{e}_{\mathbf{Y}}^{\mathbf{m}} := \begin{pmatrix} \wedge \mathbf{T} \\ \underline{\phi} \\ = \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
$$\underline{e}_{\mathbf{Z}}^{\mathbf{m}} := \begin{pmatrix} \wedge \mathbf{T} \\ \underline{\phi} \\ = \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

The misalignment angles can be derived from the scalar products:

$$\begin{aligned} \xi_{xy} &= \arccos\left(\underline{e}_x^m \cdot \underline{e}_y^m\right) \\ \xi_{xz} &= \arccos\left(\underline{e}_x^m \cdot \underline{e}_z^m\right) \\ \xi_{yz} &= \arccos\left(\underline{e}_y^m \cdot \underline{e}_z^m\right) \end{aligned}$$

Let's assume that the x-axis of the reference system \underline{e}_X^c is identical to the \underline{e}_X^m -axis of the sensor system. The angle between \underline{e}_Y^c and \underline{e}_Y^m is β (rotation angle around the \underline{e}_Z^c axis). And the sensor \underline{e}_Z^m axis can be constructed by a rotation of η in the \underline{e}_X^c , \underline{e}_Y^c -plane and a second rotation of γ out of this plane. Then this misalignment of the base vectors is given by

$$\underline{\underline{O}} = \begin{pmatrix} 1 & \sin\beta & \sin\gamma \\ 0 & \cos\beta & \cos\gamma\sin\eta \\ 0 & 0 & \cos\gamma\cos\eta \end{pmatrix}$$
(2)

By comparison of the angles β , η , γ with misalignment angles ξ_{xy} , ξ_{xz} , ξ_{yz} , the misalignment matrix (2) can be written in the following shape:

	Document:	BC-MAG-TR-0085
DEFICULUMDU	Issue:	1
	Revision:	3
ICED Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
Ι GΓΓ Technische Universität Braunschweig	Page:	144

$$\underline{\underline{O}} = \begin{pmatrix} 1 & \cos \xi_{xy} & \cos \xi_{xz} \\ 0 & \sin \xi_{xy} & \frac{\cos \xi_{yz} - \cos \xi_{xy} \cos \xi_{xz}}{\sin \xi_{xy}} \\ 0 & 0 & \sqrt{\sin^2 \xi_{xz} - \frac{(\cos \xi_{yz} - \cos \xi_{xy} \cos \xi_{xz})^2}{\sin^2 \xi_{xy}}} \end{pmatrix}$$

 \underline{O} transforms the base vectors. To achieve the transformation between the field components the transposed, inverse matrix of \underline{O} has to be calculated as the final misalignment matrix:

$$\underline{\underline{\omega}} = \left(\underline{\underline{O}}^{\mathrm{T}}\right)^{-}$$

• Calculation of the Rotation matrix $\underline{\underline{\rho}}$ With the knowledge of $\underline{\underline{\omega}}$ and the nominal Setup matrix $\underline{\underline{R}}_{nom}$ the rotation matrix $\underline{\underline{\rho}}$ can be evaluated:

$$\underline{\underline{\rho}} = (\underline{\underline{R}}_{\text{nom}})^{-1} \stackrel{\wedge}{\underline{\underline{\phi}}} (\underline{\underline{\omega}})^{-1}$$

From this rotation matrix the actual rotation angles of the sensor wrt. the coil system can be calculated using again the scalar product:

$$\begin{aligned} \lambda &:= \arccos\left(\left[\begin{matrix} \rho \\ = \end{matrix} \left[\begin{matrix} 1 \\ 0 \\ 0 \end{matrix} \right] \right] \cdot \left[\begin{matrix} 1 \\ 0 \\ 0 \end{matrix} \right] \right) \\ \mu &:= \arccos\left(\left[\begin{matrix} \rho \\ = \end{matrix} \left[\begin{matrix} 0 \\ 1 \\ 0 \end{matrix} \right] \right] \cdot \left[\begin{matrix} 0 \\ 1 \\ 0 \end{matrix} \right] \right) \\ \nu &:= \arccos\left(\left[\begin{matrix} \rho \\ = \end{matrix} \left[\begin{matrix} 0 \\ 0 \\ 1 \end{matrix} \right] \right] \cdot \left[\begin{matrix} 0 \\ 0 \\ 1 \end{matrix} \right] \right) \end{aligned} \end{aligned}$$

The rotation matrix $\underline{\rho}$ and the rotation angles λ, μ, ν are of interest just for the calibration to determine the right magnetometer parameters.

The transfer function for the normal use of the magnetometer is just given by

$$\underline{\phi} = \underline{\omega} \underline{\sigma}$$

		Document:	BC-MAG-TR-0085
DELL	JULUMDU	Issue:	1
		Revision:	3
	Institut für Geophysik u. extraterr. Physik	Date:	May 06, 2013
IGEL	Technische Universität Braunschweig	Page:	145
IGEP	Institut für Geophysik u. extraterr. Physik Technische Universität Braunschweig	Revision: Date: Page:	3 May 06, 2013 145

16 Nomenclature

Abbreviations in theoretical sections:

Item	Meaning
\underline{B}^{c}	Magnetic calibration field generated by coil system
\underline{B}^{off}	Offset of the magnetometer [nT]
\underline{B}_{k}^{off}	Polynomial Fit coefficients for the sensor offset vs. temperature
$\underline{B}^{\widetilde{m}}$	Measured magnetic field raw data, offset & residual field corrected [nT]
\underline{B}^{or}	$= \underline{B}^{off} + \underline{B}^{res}$, Offset + Residual field at CoC [enT]
\underline{B}^r	Magnetic field raw data
$B^r_{0^\circ}$	Magnetic raw data, measured in normal position $(0^{\circ})[enT]$
$B^r_{180^\circ}$	Magnetic raw data, measured in turned position (180°)[enT]
\underline{B}^{res}	Residual field of the coil system
$e^{\circ}C$	Engineering degrees centigrade units
enT	Engineering NanoTesla units
c_0, c_1, c_2, c_3	Fit coefficients of the sensor thermistor
i	component x y z
CoC	Center of Coil system
DUT	Device under Test
$\stackrel{\phi}{=}$	$= \underline{\underline{R}}_{nom} \underline{\underline{\rho}} \underline{\underline{\omega}} \underline{\underline{\sigma}},$ Calibration Transfer Matrix
ϕ	$= \underline{\omega} \underline{\sigma}$, Transfer Matrix
$\overline{\overline{\bigwedge}}_{4}$	4 -1 Reduced Transfer Matrix
$\frac{\varphi}{=}$	$= \frac{\phi}{\overline{\phi}} \frac{\phi}{T}$, Reduced Transfer Matrix
$\underline{\underline{\psi}}$	$= (\phi^{1})^{-1}$, Auxilliary transfer matrix
$\underline{\underline{O}}$	Base vector Orthogonalisation matrix
$\underline{\underline{\omega}}$	$=(\underline{\underline{O}}^T)^{-1}$, Field components orthogonalisation matrix
$\underline{\underline{R}}_{nom}$	Nominal Rotation matrix of sensor vs. coil system
$\underline{\rho}$	= Actual rotation matrix
$\frac{\overline{\sigma}}{\sigma}$	= Sensitivity matrix
$\overline{\sigma}_{k,i}$	Polynomial Fit coefficient for sensitivity vs. temperature.
	Coefficient of order k for the sensor component i
TeMeSys	MRode Temperature Measurement System
T_s^c	Temperature of sensor s, calibrated data [°C]
T_s^r	Temperature of sensor s, raw data [e°C]
\mathbf{S}	Sensor IB OB
$U_{\rm T, \ IB}$	IB–Temperature data [V], measured
$U_{\rm T,OB}$	OB–Temperature data [V], measured
ξ_{ij}	Temperature dependent alignment angle (ij component)
$\xi^0_{k,ij}$	Polynomial Fit coefficient for misalignment angle vs. temperature.
	Coefficient of order k for the angle ij
λ, μ, u	Rotation angles wrt. coil system reference coordinates.