KPL/FK Venus Express Spacecraft Frames Kernel ======================================================================== This frame kernel contains complete set of frame definitions for the Venus Express Spacecraft (VEX) including definitions for the VEX fixed and VEX science instrument frames. This kernel also contains NAIF ID/name mapping for the VEX instruments. Version and Date ======================================================================== Version 0.6 -- August 24, 2006 -- Maud Barthelemy, RSSD/ESA & Boris Semenov, NAIF/JPL Modified VEX_SPICAV_SIR_SOLAR, VEX_SPICAV_SUV_SOLAR, VEX_SPICAV_SOIR: - correction of error (30 degrees with X axis not 60) - update of the boresight for VEX_SPICAV_SOIR. Version 0.5 -- July 12, 2006 -- Maud Barthelemy, RSSD/ESA & Boris Semenov, NAIF/JPL Added star tracker (ST1 and ST2) frames and name/ID mappings. Version 0.4 -- February 6, 2006 -- Boris Semenov, NAIF/JPL Added VEX_VIRTIS-M_VIS_ZERO and VEX_VIRTIS-M_IR_ZERO frames. Incorporated preliminary VIRTIS-M alignment data. Improved VIRTIS frame descriptions. Version 0.3 -- January 18, 2006 -- Boris Semenov, NAIF/JPL Modified VIRTIS-M frames and IDs to provide more efficient layout for capturing scan mirror orientation and detector alignment data, specifically: - eliminated VEX_VIRTIS-M_VIS_SCAN (-248512) and VEX_VIRTIS-M_IR_SCAN (-248514) frames and parallel instrument name/IDs pairs - introduced VEX_VIRTIS-M_SCAN (-248515) CK-based frame to capture instrument pointing for an arbitrary scan mirror position - redefined VEX_VIRTIS-M_VIS and VEX_VIRTIS-M_IR frames to be with respect to VEX_VIRTIS-M_SCAN Version 0.2 -- December 09, 2005 -- Jorge Diaz del Rio, RSSD/ESA VIRTIS-H frame comments updated to reflect that the slit is aligned with the +Y axis (spatial resolution) Version 0.1 -- November 15, 2005 -- Jorge Diaz del Rio, RSSD/ESA VIRTIS, VMC and ASPERA-4 frames added. Preliminary Version. Pending review and approval by VEX instrument teams and Venus Express Science Operations team. Version 0.0 -- November 01, 2005 -- Jorge Diaz del Rio, RSSD/ESA Preliminary Version. Pending review and approval by VEX instrument teams and Venus Express Science operations team. References ======================================================================== 1. ``Frames Required Reading'', NAIF Document No.____ 2. ``Kernel Pool Required Reading'', NAIF Document No.____ 3. ``C-Kernel Required Reading'', NAIF Document No.____ 4. ``Venus Express User Manual'' VEX-T-ASTR-TCN.00394, Issue 02, Rev 00, 06/02/2004, by Astrium 5. ``VMC Flight User Manual'' VMC-IDA-MA-SF000-001_1, Issue 01, Rev a, 15/03/2005 6. ``VMC Payload Interface Document, Part-B'' VMC-MPAE-PID-B, Issue 02, Rev a, 01/06/2004 7. ``MAG Payload Interface Document, Part-B'' VE-MAG-DS-0001, Issue 02, Rev. 1, 29/04/2004 8. ``PFS Instrument Description'' MEX-CNR-IQAR-02, November 15, 2001 9. ``PFS for Venus Express'' Delta Documentation 10. ``SPICAV Payload Interface Document, Part-B'' SPV-DES-011 Issue 3.2 May 01, 2004 11. ``Venus Express SPICAV Flight User Manual'', SPV-DES-032, Issue 002, Rev. 2, February 04, 2004 12. ``FM VIRTIS EXPERIMENT USER MANUAL (Delta Documentation)'', VVX-VIR-UM-001, Issue 1, June 05, 2004 13. ``Rosetta - VIRTIS Experiment Interface Document Part-B'', ROS-EST-RS-3015/EID-B, Issue 2, February 14, 2000 14. ``ASPERA-3 PID-B'', VE-ASP-MA-0003, Issue D. December 06, 2002 15. Email from Stephane Erard (VIRTIS Team), December 8, 2005 16. VIRTIS Presentation, VEX SWT Meeting, December 2005. 17. LOS_Alignment_Geometry_Measured-2.pdf, provided by Dr. Giuseppe Piccioni, February 2006 18. ``Alignment Test Engineering Evaluation Report'', VEX.ASTR.RP.01830, 20/06/05, pg 49. Contact Information ======================================================================== Jorge Diaz del Rio, RSSD/ESA, (31) 71-565-5175, jdiaz@rssd.esa.int Boris Semenov, NAIF/JPL, (818) 354-8136, boris.semenov@jpl.nasa.gov Implementation Notes ======================================================================== This file is used by the SPICE system as follows: programs that make use of this frame kernel must `load' the kernel, normally during program initialization. The SPICELIB routine FURNSH and CSPICE function furnsh_c load a kernel file into the kernel pool as shown below. CALL FURNSH ( 'frame_kernel_name' ) furnsh_c ( "frame_kernel_name" ); This file was created and may be updated with a text editor or word processor. Venus Express Mission NAIF ID Codes ======================================================================== The following names and NAIF ID codes are assigned to the VEX spacecraft, its structures and science instruments (the keywords implementing these definitions are located in the section "Venus Express Mission NAIF ID Codes -- Definition Section" at the end of this file): VEX Spacecraft and Spacecraft Structures names/IDs: VEX -248 (synonyms: VENUS EXPRESS, VENUS-EXPRESS, VENUS_EXPRESS ) VEX_SPACECRAFT -248000 (synonym: VEX_SC) VEX_SA+Y -248011 VEX_SA+Y_GIMBAL -248012 VEX_SA-Y -248013 VEX_SA-Y_GIMBAL -248014 VEX_HGA1 -248021 VEX_HGA2 -248022 VEX_LGA-1 -248031 VEX_LGA-2 -248032 VEX_ST1 -248033 VEX_ST2 -248034 ASPERA-4 names/IDs: VEX_ASPERA4 -248100 VEX_ASPERA4_URF -248110 VEX_ASPERA4_SAF -248111 VEX_ASPERA4_ELS -248120 VEX_ASPERA4_NPI -248130 VEX_ASPERA4_NPD1 -248141 VEX_ASPERA4_NPD2 -248142 VEX_ASPERA4_IMA_URF -248150 VEX_ASPERA4_IMA -248151 VEX_ASPERA4_IMAS -248152 VEX_ASPERA4_SS1 -248161 VEX_ASPERA4_SS2 -248162 MAG names/IDs: VEX_MAG_MAGB-H -248200 VEX_MAG_MAGB -248201 VEX_MAG_MAGIS -248210 VEX_MAG_MAGOS -248220 PFS names/IDs: VEX_PFS_BASE -248300 VEX_PFS_SCANNER -248310 VEX_PFS_LWC -248320 VEX_PFS_SWC -248330 SPICAV names/IDs: VEX_SPICAV_BASE -248400 VEX_SPICAV_SIR -248410 VEX_SPICAV_SIR_SOLAR -248411 VEX_SPICAV_SUV -248420 VEX_SPICAV_SUV_SOLAR -248421 VEX_SPICAV_SOIR -248430 VIRTIS names/IDs: VEX_VIRTIS -248500 VEX_VIRTIS-M -248510 VEX_VIRTIS-M_VIS -248511 VEX_VIRTIS-M_IR -248513 VEX_VIRTIS-M_VIS_ZERO -248512 VEX_VIRTIS-M_IR_ZERO -248514 VEX_VIRTIS-H -248520 VMC names/IDs: VEX_VMC_BASE -248600 VEX_VMC_NIR-1 -248610 VEX_VMC_NIR-2 -248620 VEX_VMC_UV -248630 VEX_VMC_VIS -248640 Venus Express Frames ======================================================================== The following VEX frames are defined in this kernel file: Name Relative to Type NAIF ID ====================== =================== ============ ======= VEX Spacecraft and Spacecraft Structures frames: ------------------------------------------------ VEX_SPACECRAFT J2000 CK -248000 VEX_SA+Y VEX_SPACECRAFT CK -248011 VEX_SA-Y VEX_SPACECRAFT CK -248013 VEX_HGA1 VEX_SPACECRAFT FIXED -248021 VEX_HGA2 VEX_SPACECRAFT FIXED -248022 VEX_LGA-1 VEX_SPACECRAFT FIXED -248031 VEX_LGA-2 VEX_SPACECRAFT FIXED -248032 VEX_ST1 VEX_SPACECRAFT FIXED -248033 VEX_ST2 VEX_SPACECRAFT FIXED -248034 ASPERA-4 frames: ---------------- VEX_ASPERA4_URF VEX_SPACECRAFT FIXED -248110 VEX_ASPERA4_SAF VEX_ASPERA4_URF CK -248111 VEX_ASPERA4_ELS VEX_ASPERA4_SAF FIXED -248120 VEX_ASPERA4_NPI VEX_ASPERA4_SAF FIXED -248130 VEX_ASPERA4_NPD1 VEX_ASPERA4_SAF FIXED -248141 VEX_ASPERA4_NPD2 VEX_ASPERA4_SAF FIXED -248142 VEX_ASPERA4_IMA_URF VEX_SPACECRAFT FIXED -248150 VEX_ASPERA4_IMA VEX_ASPERA4_IMA_URF FIXED -248151 VEX_ASPERA4_IMAS VEX_ASPERA4_IMA FIXED -248152 VEX_ASPERA4_SS1 VEX_ASPERA4_SAF FIXED -248161 VEX_ASPERA4_SS2 VEX_ASPERA4_SAF FIXED -248162 MAG frames: ----------- VEX_MAG_MAGB-H VEX_SPACECRAFT FIXED -248200 VEX_MAG_MAGB VEX_MAG_MAGB-H CK -248201 VEX_MAG_MAGIS VEX_SPACECRAFT FIXED -248210 VEX_MAG_MAGOS VEX_MAG_MAGB FIXED -248220 PFS frames: ----------- VEX_PFS_BASE VEX_SPACECRAFT FIXED -248300 VEX_PFS_SCANNER VEX_PFS_BASE CK -248310 VEX_PFS_SWC VEX_PFS_SCANNER FIXED -248320 VEX_PFS_LWC VEX_PFS_SCANNER FIXED -248330 SPICAV frames: -------------- VEX_SPICAV_BASE VEX_SPACECRAFT FIXED -248400 VEX_SPICAV_SIR VEX_SPICAV_BASE FIXED -248410 VEX_SPICAV_SIR_SOLAR VEX_SPICAV_BASE FIXED -248411 VEX_SPICAV_SUV VEX_SPICAV_BASE FIXED -248420 VEX_SPICAV_SUV_SOLAR VEX_SPICAV_BASE FIXED -248421 VEX_SPICAV_SOIR VEX_SPICAV_BASE FIXED -248430 VIRTIS frames: -------------- VEX_VIRTIS-M VEX_SPACECRAFT FIXED -248510 VEX_VIRTIS-M_SCAN VEX_VIRTIS-M CK -248515 VEX_VIRTIS-M_VIS VEX_VIRTIS-M_SCAN FIXED -248511 VEX_VIRTIS-M_IR VEX_VIRTIS-M_SCAN FIXED -248513 VEX_VIRTIS-M_VIS_ZERO VEX_VIRTIS-M FIXED -248512 VEX_VIRTIS-M_IR_ZERO VEX_VIRTIS-M FIXED -248514 VEX_VIRTIS-H VEX_SPACECRAFT FIXED -248520 VMC frames: ----------- VEX_VMC_BASE VEX_SPACECRAFT FIXED -248600 VEX_VMC_NIR-1 VEX_VMC_BASE FIXED -248610 VEX_VMC_NIR-2 VEX_VMC_BASE FIXED -248620 VEX_VMC_UV VEX_VMC_BASE FIXED -248630 VEX_VMC_VIS VEX_VMC_BASE FIXED -248640 Spacecraft and Its Structures Frame Tree ======================================================================== The diagram below shows the Venus Express spacecraft and its structures frame hierarchy (not including science instrument frames.) "J2000" INERTIAL +-----------------------------------------------------+ | | | |<-pck | |<-pck | | | V | V "IAU_VENUS" | "IAU_EARTH" VENUS BODY-FIXED | EARTH BODY-FIXED ---------------- | ---------------- | | | | "VEX_ST1" "VEX_ST2" | --------- --------- | ^ ^ | | | |<-ck fixed->| |<-fixed | | | V | | "VEX_SPACECRAFT" | | +-----------------------------------------------------+ | | . | | | | |<-ck |<-ck . fixed->| | | |<-fixed | | . | | | | V V . V | | V "VEX_SA+Y" "VEX_SA-Y" . "VEX_HGA1" | | "VEX_HGA2" ---------- ---------- . ---------- | | ---------- . | | . fixed->| |<-fixed . | | . V V . "VEX_LGA-1" "VEX_LGA-2" . ----------- ----------- . . V Individual instrument frame trees are provided in the corresponding sections of this file VEX Spacecraft and Spacecraft Structures Frames ======================================================================== This section of the file contains the definitions of the spacecraft and spacecraft structures frames. VEX Spacecraft Frames -------------------------------------- According to [4] the Venus Express spacecraft frame is defined as follows: - +Z axis is perpendicular to the launch vehicle interface plane and points toward the payload side; representing the spacecraft line of sight toward Venus during science operation; - +X axis is perpendicular to the HGA-1 mounting plane and points toward HGA1; - +Y axis completes the right-handed frame. - the origin of this frame is the launch vehicle interface point. These diagrams illustrate the VEX_SPACECRAFT frame: +X s/c side (HGA1 side) view: ----------------------------- ^ | Nadir | Science Deck ._____________. | | =====================o | | o===================== -Y Solar Array | | +Y Solar Array | +Zsc | | ^ | | | | | | | .______|______. +Xsc is out | | | of the page .____o-------> +Ysc / \ /_____\ Main Engine +Z s/c side view: ----------------- .________________. ._____________. .________________. | \ | | / | | \ | | / | | |. | +Zsc +Ysc | | | | o| o------->o| | | |' | | | | | | / | | | \ | ._________________/ .______|______. \_________________. -Y Solar Array . | . +Y Solar Array HGA1 .' V +Xsc /_________\ +Zsc is out of the page Since the orientation of the VEX_SPACECRAFT frame is computed on-board, sent down in telemetry, and stored in the s/c CK files, it is defined as a CK-based frame. \begindata FRAME_VEX_SPACECRAFT = -248000 FRAME_-248000_NAME = 'VEX_SPACECRAFT' FRAME_-248000_CLASS = 3 FRAME_-248000_CLASS_ID = -248000 FRAME_-248000_CENTER = -248 CK_-248000_SCLK = -248 CK_-248000_SPK = -248 \begintext Venus Express Solar Array Frames -------------------------------------- Since the VEX solar arrays can be articulated (having one degree of freedom), the solar Array frames, VEX_SA+Y and VEX_SA-Y, are defined as CK frames with their orientation given relative to the VEX_SPACECRAFT frame. Both array frames are defined as follows: - +Y is parallel to the longest side of the array, positively oriented from the yoke to the end of the wing; - +Z is normal to the solar array plane, the solar cells facing -Z; - +X is defined such that (X,Y,Z) is right handed; - the origin of the frame is located at the yoke geometric center. The axis of rotation is parallel to the Y axis of the spacecraft and solar array frames. This diagram illustrates the VEX_SA+Y and VEX_SA-Y frames: +X s/c side view: ----------------- +Zsa-y ^ ^ +Zsa+y | | | | | | | ._____________. | +Ysa-y <---------x |Science Deck | o---------> +Ysa+y =====================o | | o===================== -Y SA cell side | | +Y SA, cell side | +Zsc | | ^ | | | | +Xsa+y is out of the page | | | +Xsa-y is into the page .______|______. | | | .____o-------> +Ysc +Xsc \ /_____\ Main Engine These sets of keywords define solar array frames as CK frames: \begindata FRAME_VEX_SA+Y = -248011 FRAME_-248011_NAME = 'VEX_SA+Y' FRAME_-248011_CLASS = 3 FRAME_-248011_CLASS_ID = -248011 FRAME_-248011_CENTER = -248 CK_-248011_SCLK = -248 CK_-248011_SPK = -248 FRAME_VEX_SA-Y = -248013 FRAME_-248013_NAME = 'VEX_SA-Y' FRAME_-248013_CLASS = 3 FRAME_-248013_CLASS_ID = -248013 FRAME_-248013_CENTER = -248 CK_-248013_SCLK = -248 CK_-248013_SPK = -248 \begintext VEX High Gain Antenna Frame -------------------------------------- Venus Express has two fixed high gain antennas, HGA1 and HGA2, accommodated on the spacecraft to allow the Earth pointing of the spacecraft while satisfying the thermal constraints. The Venus Express main High Gain Antenna, HGA1, is rigidly attached to the +X side of the spacecraft bus. Therefore, the VEX HGA1 frame, VEX_HGA1, is defined as a fixed offset frame with its orientation given relative to the VEX_SPACECRAFT frame. The VEX_HGA1 frame is defined as follows: - +Z axis is in the antenna boresight direction (nominally -5 degrees off the s/c +X axis toward the s/c +Z axis); - +Y axis is in the direction of the s/c +Y axis ; - +X completes the right hand frame; - the origin of the frame is located at the geometric center of the HGA1 dish outer rim circle. The Venus Express auxiliary High Gain Antenna, HGA2, is rigidly attached to the +Z side of the spacecraft bus. Its pointing direction is symmetric to the HGA1 antenna with respect to the +Z axis of the spacecraft frame. Therefore, the VEX HGA2 frame, VEX_HGA2, is defined as a fixed offset frame with its orientation given relative to the VEX_SPACECRAFT frame. The VEX_HGA2 frame is defined as follows: - +Z axis is in the antenna boresight direction (nominally 5 degrees off the s/c -X axis toward the s/c +Z axis); - +Y axis is in the direction of the s/c +Y axis ; - +X completes the right hand frame; - the origin of the frame is located at the geometric center of the HGA2 dish outer rim circle. This diagram illustrates the VEX High Gain Antennas frames: +Z s/c side view: ----------------- .________________. ._____________. .________________. | \ | ^+Zhga2| / | | \ | | | / | | | | | | | | | |o=|+Xhga2| +Yhga2 | | | | ____o------> | | | / | \ / | \ | ._________________/ .___`.____'___. \_________________. -Y Solar Array +Zsc o------> `. +Y Solar Array | / +Ysc +Yhga1 |._____x-------> | |+Xhga1 +Xsc V | +Xhga1 is into the page | +Xhga2 is out of the page | +Xsc is out of the page V +Zhga1 Nominally a single rotation of +85 degrees about the +Y axis is needed to co-align the s/c frame with the HGA1 frame. Nominally a single rotation of -85 degrees about the +Y axis is needed to co-align the s/c frame with the HGA2 frame. Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_VEX_HGA1 = -248021 FRAME_-248021_NAME = 'VEX_HGA1' FRAME_-248021_CLASS = 4 FRAME_-248021_CLASS_ID = -248021 FRAME_-248021_CENTER = -248 TKFRAME_-248021_RELATIVE = 'VEX_SPACECRAFT' TKFRAME_-248021_SPEC = 'ANGLES' TKFRAME_-248021_UNITS = 'DEGREES' TKFRAME_-248021_AXES = ( 1, 2, 3 ) TKFRAME_-248021_ANGLES = ( 0.0, -85.0, 0.0 ) FRAME_VEX_HGA2 = -248022 FRAME_-248022_NAME = 'VEX_HGA2' FRAME_-248022_CLASS = 4 FRAME_-248022_CLASS_ID = -248022 FRAME_-248022_CENTER = -248 TKFRAME_-248022_RELATIVE = 'VEX_SPACECRAFT' TKFRAME_-248022_SPEC = 'ANGLES' TKFRAME_-248022_UNITS = 'DEGREES' TKFRAME_-248022_AXES = ( 1, 2, 3 ) TKFRAME_-248022_ANGLES = ( 0.0, 85.0, 0.0 ) \begintext Other Venus Express Antenna Frames -------------------------------------- The frames for the other two Venus Express antennas -- LGA-1 and LGA-2 -- are defined as follows: - +Z axis is in the antenna boresight direction; - +Y axis is nominally parallel to the s/c +Y axis; - +X axis completes the right hand frame; - the origin of the frame is located at the geometric center of the antenna outer side. The LGA-1 is located on the +Z side of the spacecraft bus and nominally points toward the spacecraft +Z axis, therefore, the s/c frame and the LGA-1 frames are nominally co-aligned. The LGA-2 is located on the -Z side of the spacecraft bus and nominally points 17.5 degrees off the spacecraft -Z axis toward the s/c +X axis. One rotation by +162.5 degrees about +Y is needed to align the s/c frame with the LGA-2 frame. This diagram illustrates the VEX_LGA-1 and VEX_LGA-2 frames: +Y s/c side view: ----------------- ^ | +Zlga1 ^ | | | toward Venus | |+Ylga1 <-------o +Xlga1 _|___________. | Science Deck| |`. | | | \| +Zsc | | | ^ | HGA1 | | | | | | | | | /| | | |.' | |+Ysc | <-------o _____| +Xsc / o. / `. / `. +Xlga2 / v V +Zlga2 +Y solar array is not shown +Ysc, +Ylga1, and +Ylga2 are out of the page These sets of keywords define LGA frames as fixed offset frames: \begindata FRAME_VEX_LGA-1 = -248031 FRAME_-248031_NAME = 'VEX_LGA-1' FRAME_-248031_CLASS = 4 FRAME_-248031_CLASS_ID = -248031 FRAME_-248031_CENTER = -248 TKFRAME_-248031_RELATIVE = 'VEX_SPACECRAFT' TKFRAME_-248031_SPEC = 'ANGLES' TKFRAME_-248031_UNITS = 'DEGREES' TKFRAME_-248031_ANGLES = ( 0.000, 0.000, 0.000 ) TKFRAME_-248031_AXES = ( 1, 2, 3 ) FRAME_VEX_LGA-2 = -248032 FRAME_-248032_NAME = 'VEX_LGA-2' FRAME_-248032_CLASS = 4 FRAME_-248032_CLASS_ID = -248032 FRAME_-248032_CENTER = -248 TKFRAME_-248032_RELATIVE = 'VEX_SPACECRAFT' TKFRAME_-248032_SPEC = 'ANGLES' TKFRAME_-248032_UNITS = 'DEGREES' TKFRAME_-248032_ANGLES = ( 0.000, -162.500, 0.000 ) TKFRAME_-248032_AXES = ( 1, 2, 3 ) \begintext Venus Express Star Tracker Frames --------------------------------- The frames for the two Venus Express star trackers -- ST1 and ST2 -- are defined as follows: - +Z axis is in the star tracker boresight direction; - +X axis nominally points along the s/c -X/+Z quadrant bisector; - +Y axis completes the right hand frame; - the origin of the frame is located at the star tracker focal point. Both star trackers are mounted on the -X panel of the s/c and point roughly in the s/c -X/-Z direction with the ST1 boresight tilted about 15 degrees toward the s/c +Y axis and the ST2 boresight tilted about 15 degrees toward the s/c -Y axis, resulting in the nominal 30 degree separation between the ST1 and ST2 boresight directions. This diagram illustrates the VEX_ST1 and VEX_ST2 frames: +Y s/c side view: ----------------- ._____________. | Science Deck| |`. | | +Xst1 | \| +Zsc | ^ +Xst2 | | ^ | .' HGA1 | | | | .' | | | |o | /| | | `. |.' | |+Ysc | `. <-------o _____| v +Zst1 +Xsc / \ +Zst2 /_____\ Main Engine +Ysc, +Yst1, and +Yst2 are out of the page +Zst1 is 15 deg above the page +Zst2 is 15 deg below the page The precise orientation of the ST1 and ST2 frames is provided in [18] using rotation matrices. These matrices are incorporated in the keywords below defining the star tracker frames as fixed offset frames relative to the s/c frame: \begindata FRAME_VEX_ST1 = -248033 FRAME_-248033_NAME = 'VEX_ST1' FRAME_-248033_CLASS = 4 FRAME_-248033_CLASS_ID = -248033 FRAME_-248033_CENTER = -248 TKFRAME_-248033_RELATIVE = 'VEX_SPACECRAFT' TKFRAME_-248033_SPEC = 'MATRIX' TKFRAME_-248033_MATRIX = (-0.707260, -0.000260, 0.706940, 0.181777, 0.966322, 0.182179, -0.683185, 0.257328, -0.683395) FRAME_VEX_ST2 = -248034 FRAME_-248034_NAME = 'VEX_ST2' FRAME_-248034_CLASS = 4 FRAME_-248034_CLASS_ID = -248034 FRAME_-248034_CENTER = -248 TKFRAME_-248034_RELATIVE = 'VEX_SPACECRAFT' TKFRAME_-248034_SPEC = 'MATRIX' TKFRAME_-248034_MATRIX = (-0.707271, 0.000324, 0.706944, -0.182987, 0.965819, -0.183553, -0.682853, -0.259208, -0.683036) \begintext ASPERA-4 Frames ======================================================================== This section of the file contains the definitions of the ASPERA-4 instrument frames. ASPERA-4 Frame Tree -------------------------------------- The diagram below shows the ASPERA-4 frame hierarchy. "J2000" INERTIAL +-----------------------------------------------------+ | | | |<-pck | |<-pck | | | V | V "IAU_VENUS" | "IAU_EARTH" VENUS BODY-FIXED | EARTH BODY-FIXED ---------------- | ---------------- | |<-ck | "VEX_SPACECRAFT" +-----------------------------------+ | | |<-fixed |<-fixed | | V V "VEX_ASPERA4_URF" "VEX_ASPERA4_IMA_URF" ----------------- --------------------- | | | |<-fixed | | | V | "VEX_ASPERA4_IMA" | ----------------- | | | |<-fixed | | | V | "VEX_ASPERA4_IMAS" | ------------------ | | | | "VEX_ASPERA4_NPD1" "VEX_ASPERA4_NPD2" | ------------------ ----------------- | ^ ^ |<-ck | | | |<-fixed |<-fixed V | | "VEX_ASPERA4_SAF" | | -----------------------------------------------------------------+ | | | | |<-fixed |<-fixed |<-fixed fixed->| | | | | V V V V "VEX_ASPERA4_ELS" "VEX_ASPERA4_NPI" "VEX_ASPERA4_SS1" "VEX_ASPERA4_SS2" ----------------- ----------------- ----------------- ----------------- ASPERA-4 Main Unit URF and SAF Frames -------------------------------------- The ASPERA-4 main unit base is rigidly mounted on the s/c -Y wall. Therefore, the frame associated with it -- the ASPERA-4 main unit reference frame, VEX_ASPERA4_URF, -- is a fixed offset frame with its orientation given relative to the VEX_SPACECRAFT frame. The VEX_ASPERA4_URF frame is defined as follows: - +Z axis is along the scanner rotation axis and points from the main unit mounting plate toward the scanner (nominally this axis is co-aligned with the s/c -Y axis); - +X axis is parallel to the longer side of the main unit base and points from the NPD side toward the ELS side for scanner in "90 degrees" position (nominally this axis is co-aligned with the s/c -Z axis); - +Y completes the right handed frame; - the origin of the frame is located at the intersection of the mounting surface of the main unit base and the axis of the mounting screw hole located at NPD2 side for scanner in "90 degrees" position. Nominally two rotations are required to align the ASPERA-4 Main Unit base frame and the S/C frame: first the ASPERA-4 Main Unit frame has to be rotated by +90 degrees about +X axis and then by -90 degrees about the new position of +Z axis. Since ASPERA-4 main unit scanner rotates with respect to its base with 0..180 angle range clockwise about Z axis of the VEX_ASPERA4_URF frame, the frame associated with it -- the sensor assembly frame, VEX_ASPERA4_SAF, -- is defined as a CK frame with its orientation provided in a CK file relative to the VEX_ASPERA4_URF frame. The VEX_ASPERA4_SAF frame is defined as follows: - +Z axis is along the scanner rotation axis and points from the main unit mounting plate toward the scanner; this axis is co-aligned with the +Z axis of the VEX_ASPERA4_URF frame; - +X axis is along the ASPERA-4 sensor assembly central axis and points from the NPD sensor toward the ELS sensor; this axis is co-aligned with the +X axis of the VEX_ASPERA4_URF frame when scanner is in "90 degrees" position. - +Y axis completes the right handed frame; - the origin of the VEX_ASPERA4_SAF frame is located at the intersection of the scanner rotation axis and the bottom (mounting) surface of the scanner base. This diagram illustrates the VEX_ASPERA4_URF and VEX_ASPERA4_SAF frames for the scanner angle of 90 degrees: +X s/c side view: ----------------- .______^_+Zsc_. | .-|-. | o=======================o | .' | `. |o======================o -Y Solar Array ASPERA-4' | | +Y Solar Array .---MU| .o----->| <-----o | '-' +Ysc +Zurf |_|_| `. .' | +Zsaf ||||____`---'____| | V +Xurf +Xsaf +Xsc, +Yurf and +Ysaf are out of the | page. . | "90 deg" position -Y s/c side view: ----------------- ^ .______| +Zsc_. | | | ,| HGA1 | | | . | | | |' | | x-----> +Xsc | ASPERA-4 | | | MU .---. |+Yurf "180 deg"-.- | | o----->.+Ysaf -.- "0 deg" position | '-|-' | position '________|||__' | V +Xurf +Xsaf | . | "90 deg" position -Y solar array is not shown +Ysc is into the page +Zurf and +Zsaf are out of the page In general the VEX_ASPERA4_SAF frame is rotated with respect to the VEX_ASPERA4_URF frame by ( 90- ) degrees about +Z axis for scanner in position. This rotation as a function of time is provided in the ASPERA-4 scanner CK files. These sets of keywords define the ASPERA-4 URF and SAF frames: \begindata FRAME_VEX_ASPERA4_URF = -248110 FRAME_-248110_NAME = 'VEX_ASPERA4_URF' FRAME_-248110_CLASS = 4 FRAME_-248110_CLASS_ID = -248110 FRAME_-248110_CENTER = -248 TKFRAME_-248110_RELATIVE = 'VEX_SPACECRAFT' TKFRAME_-248110_SPEC = 'ANGLES' TKFRAME_-248110_UNITS = 'DEGREES' TKFRAME_-248110_AXES = ( 2, 1, 3 ) TKFRAME_-248110_ANGLES = ( 0.0, -90.0, 90.0 ) FRAME_VEX_ASPERA4_SAF = -248111 FRAME_-248111_NAME = 'VEX_ASPERA4_SAF' FRAME_-248111_CLASS = 3 FRAME_-248111_CLASS_ID = -248111 FRAME_-248111_CENTER = -248 CK_-248111_SCLK = -248 CK_-248111_SPK = -248 \begintext ASPERA Main Unit Sensor Frames -------------------------------------- Because ASPERA-4 main unit sensors are rigidly mounted on the scanner, their corresponding frames -- VEX_ASPERA4_ELS, VEX_ASPERA4_NPI, VEX_ASPERA4_NPD1, and VEX_ASPERA4_NPD2 -- are defined as fixed-offset frames with respect to the VEX_ASPERA4_SAF frame. ELS and NPI sensor frames are defined such that their axes are co-aligned with the axes of the VEX_ASPERA4_SAF frame and their origins are at the sensors' "focal points", located at the intersection of the sensor's aperture plane and the sensor's symmetry axis. NPD1 and NPD2 sensor frames are defined such that their +Y and +Z axes are in the sensor's aperture plane, with the +Z axis along the central axis of the aperture (view direction of the middle sector), and +X axis is perpendicular to the aperture plane and points in direction of the SAF frame +X axis. The origins of these frames are at the sensor "focal points", which are located in the sensor's aperture plane at the point here the sensor sector view directions intersect. In all cases the "focal point" of a particular sensor is the point from which all sensor view direction are emanating. This diagram illustrates the ELS, NPI, NPD1, and NPD2 sensor frames orientation w.r.t to the SAF, URF and spacecraft frames (for scanner at 90 degrees position: +Xels .--- ^ ---. ELS | | | +Yels |<---o | - - - - - - - - - - - - - - | | ELS aperture +Xnpi ^ -----. NPI plane +Xss2 ^ | | +Ynpi <---o | - - - - - - - - - - - - - ----------- +Yss2 <---o o---> +Yss1 -. NPI aperture / .--------------|----------. | plane | | +Xsaf^ V +Xss1 | | \ | | | | / | +Ysaf <---o +Xnpd1 | | YZ of "npd1" frame | | ^ +Znpd1 are in the aperture \ | .-\--.^.| plane / +Xnpd2 +Ynpd1 <--o' || +Xnpd1 is into the page | ^ `------'| +Ynpd1 and +Znpd1 are \ .---\---. NPD1 | | out of the page / +Ynpd2 <---o | | | | `--.'---' NPD2 Scanner | | YZ of "npd2" frame \ +Znpd2 <'________________________. | are in the aperture / | | | plane | |^ +Xurf | | \ || Base | | +Ynpd1 is into the page \ +Yurf <---o____________________. | +Xnpd1 and +Znpd1 are \ | out of the page +Xsc \____ Nadir deck | <---x \____________ | | \__________________| +Z axes of all frames V +Zsc are out of the page +Ysc axis is into the page. These sets of keywords define the VEX_ASPERA4_ELS and VEX_ASPERA4_NPI frames: \begindata FRAME_VEX_ASPERA4_ELS = -248120 FRAME_-248120_NAME = 'VEX_ASPERA4_ELS' FRAME_-248120_CLASS = 4 FRAME_-248120_CLASS_ID = -248120 FRAME_-248120_CENTER = -248 TKFRAME_-248120_RELATIVE = 'VEX_ASPERA4_SAF' TKFRAME_-248120_SPEC = 'ANGLES' TKFRAME_-248120_UNITS = 'DEGREES' TKFRAME_-248120_AXES = ( 1, 2, 3 ) TKFRAME_-248120_ANGLES = ( 0.0, 0.0, 0.0 ) FRAME_VEX_ASPERA4_NPI = -248130 FRAME_-248130_NAME = 'VEX_ASPERA4_NPI' FRAME_-248130_CLASS = 4 FRAME_-248130_CLASS_ID = -248130 FRAME_-248130_CENTER = -248 TKFRAME_-248130_RELATIVE = 'VEX_ASPERA4_SAF' TKFRAME_-248130_SPEC = 'ANGLES' TKFRAME_-248130_UNITS = 'DEGREES' TKFRAME_-248130_AXES = ( 1, 2, 3 ) TKFRAME_-248130_ANGLES = ( 0.0, 0.0, 0.0 ) \begintext The NPD1 aperture plane is tilted by 15 degrees toward +X axis of the SAF frame about +Y/+Z line of the SAF frame. Thus, to align the SAF frame with the NPD1 frame the SAF frame has to be rotated by +45 degrees about X axis and then by +15 degrees about new position of Y axis. The NPD2 aperture plane is tilted by 15 degrees toward -X axis of the SAF frame about -Y/+Z line of the SAF frame. Thus, to align the SAF frame with the NPD2 frame the SAF frame has to be rotated by -45 degrees about X axis and then by -15 degrees about new position of Y axis. Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. These sets of keywords define the VEX_ASPERA4_NPD1 and VEX_ASPERA4_NPD2 frames: \begindata FRAME_VEX_ASPERA4_NPD1 = -248141 FRAME_-248141_NAME = 'VEX_ASPERA4_NPD1' FRAME_-248141_CLASS = 4 FRAME_-248141_CLASS_ID = -248141 FRAME_-248141_CENTER = -248 TKFRAME_-248141_RELATIVE = 'VEX_ASPERA4_SAF' TKFRAME_-248141_SPEC = 'ANGLES' TKFRAME_-248141_UNITS = 'DEGREES' TKFRAME_-248141_AXES = ( 1, 2, 1 ) TKFRAME_-248141_ANGLES = ( -45.0, -15.0, 0.0 ) FRAME_VEX_ASPERA4_NPD2 = -248142 FRAME_-248142_NAME = 'VEX_ASPERA4_NPD2' FRAME_-248142_CLASS = 4 FRAME_-248142_CLASS_ID = -248142 FRAME_-248142_CENTER = -248 TKFRAME_-248142_RELATIVE = 'VEX_ASPERA4_SAF' TKFRAME_-248142_SPEC = 'ANGLES' TKFRAME_-248142_UNITS = 'DEGREES' TKFRAME_-248142_AXES = ( 1, 2, 1 ) TKFRAME_-248142_ANGLES = ( 45.0, 15.0, 0.0 ) \begintext The ASPERA-4 Solar Sensor 1 frame, VEX_ASPERA4_SS1, is defined as follows: - +X axis is co-aligned with +X axis of the VEX_ASPERA4_SAF frame; - +Z axis is 15 degrees off +Z axis of the VEX_ASPERA4_SAF frame toward -Y axis of VEX_ASPERA4_SAF frame; - +Y completes the right handed frame and is along the sensor boresight direction; - the origin of the frame is located at the sensor's FOV focal point. The ASPERA-4 Solar Sensor 2 frame, VEX_ASPERA4_SS2, is defined as follows: - +X axis is co-aligned with -X axis of the VEX_ASPERA4_SAF frame; - +Z axis is 15 degrees off +Z axis of the VEX_ASPERA4_SAF frame toward +Y axis of VEX_ASPERA4_SAF frame; - +Y completes the right handed frame and is along the sensor boresight direction; - the origin of the frame is located at the sensor's FOV focal point. This diagram illustrates the VEX_ASPERA4_SS1 and VEX_ASPERA4_SS2 frames: ^ +Zsaf | +Zss1 ^ | ^ +Zss2 ..\.|./.. .' \|/ `. +Yss2 <-. .' | `. .-> +Yss1 `-. /|\ .-' . `-. / | \ .-' . . +Xss2`x | o'+Xss1 . . o--------------> +Ysaf . +Xsaf . . . . . . . `. .' ` ......... ' Both frames are defined as fixed offset frames with respect to the VEX_ASPERA4_SAF frame. To align the SAF frame with the SS1 frame the SAF frame has to be rotated by +15 degrees about X axis. To align the SAF frame with the SS2 frame the SAF frame has to be rotated by 180 degrees about Z axis and then by +15 degrees about new position of X axis. Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. These sets of keywords define the VEX_ASPERA4_SS1 and VEX_ASPERA4_SS2 frames: \begindata FRAME_VEX_ASPERA4_SS1 = -248161 FRAME_-248161_NAME = 'VEX_ASPERA4_SS1' FRAME_-248161_CLASS = 4 FRAME_-248161_CLASS_ID = -248161 FRAME_-248161_CENTER = -248 TKFRAME_-248161_RELATIVE = 'VEX_ASPERA4_SAF' TKFRAME_-248161_SPEC = 'ANGLES' TKFRAME_-248161_UNITS = 'DEGREES' TKFRAME_-248161_AXES = ( 3, 2, 1 ) TKFRAME_-248161_ANGLES = ( 0.0, 0.0, -15.0 ) FRAME_VEX_ASPERA4_SS2 = -248162 FRAME_-248162_NAME = 'VEX_ASPERA4_SS2' FRAME_-248162_CLASS = 4 FRAME_-248162_CLASS_ID = -248162 FRAME_-248162_CENTER = -248 TKFRAME_-248162_RELATIVE = 'VEX_ASPERA4_SAF' TKFRAME_-248162_SPEC = 'ANGLES' TKFRAME_-248162_UNITS = 'DEGREES' TKFRAME_-248162_AXES = ( 3, 2, 1 ) TKFRAME_-248162_ANGLES = ( 180.0, 0.0, -15.0 ) \begintext ASPERA-4 Ion Mass Analyzer Unit Frames -------------------------------------- The ASPERA-4 IMA unit is rigidly mounted in the +X/+Y quadrant of the on the s/c -Z ("main engine") deck and has no moving parts. Therefore, the three ASPERA IMA frames -- IMA Unit Reference Frame (VEX_ASPERA4_IMA_URF), IMA sensor frame (VEX_ASPERA4_IMA), and IMA sensor head frame (VEX_ASPERA4_IMAS) -- are defined as fixed offset frames. The VEX_ASPERA4_IMA_URF frame is defined as follows: - +Z axis is normal to the UMA unit mounting plate and points from the the mounting plate toward the sensor (nominally this axis is co-aligned with the s/c -Z axis); - +X axis is parallel to the longer side of the IMA unit base and sensor symmetry axis and points toward the sensors aperture side (nominally this axis is co-aligned with the s/c +Y axis); - +Y completes the right handed frame; - the origin of the frame is located at the intersection of the mounting surface of the IMA unit base and the axis of the mounting screw hole located far right from the sensor aperture (as seen on the top view with the sensor aperture at the bottom on the page) The VEX_ASPERA4_IMA frame is defined such that its axes are co-aligned with the axes of the VEX_ASPERA4_IMA_URF frame and its origin is at the sensor's "focal point", located at the intersection of the sensor's aperture symmetry plane and the sensor's symmetry axis. The VEX_ASPERA4_IMAS frame is defined such that its axes are aligned with the axes of the VEX_ASPERA4_IMA frame as follows: - +Z-imas points along the +X-ima axis - +X-imas axis points along the +Y-ima axis - +Y-imas axis points along the +Z-ima axis The origin of the VEX_ASPERA4_IMAS is also at the sensor's "focal point". These diagrams illustrate the VEX_ASPERA4_IMA_URF, VEX_ASPERA4_IMA, and VEX_ASPERA4_IMAS frames: -Z s/c side view ("main engine" side): -------------------------------------- +Ximas HGA1 +Yima ^+Yimau _________^_| \+Xsc^ |/| _________________ __`.__|__.|_| +Ximau_____________ | \ | | | o---->/ | | \ | | o----->+Zimas | | | | | | +Xima | | |o=| x-------> | | | | | +Ysc| | | / | | \ | ._________________/ ._____________. \_________________. -Y Solar Array +Y Solar Array +Zsc is into the page +Zima, +Zimau, and +Yimas are out of the page -Z s/c side view ("main engine" side) -- zoom in: ------------------------------------------------- +Zsc -- <-------x | \ +Ysc | | \__ | | \_________ | | \ | | \ v IMA |._____________. \ +Xsc Aperture || o o | \ .___________________. | \____ +Zimas | | +Yimas | | \ +Xima | | +Zima | | \ <-------o | | | \ | | | | | | IMA | | | | | | | Mounting \ .___|_______________. | plate | | || o <-------o | | +Ximas V |. +Ximau ___|_. / +Yima | | | "Main Engine" .____________|_______________/ Deck | +Yimau V As seen in the diagram two rotations are needed to align the s/c frame (VEX_SPACECRAFT) with the IMA URF frame (VEX_ASPERA4_IMA_URF) -- first rotation is by 180 degrees about Y axis, and then by +90 degrees about new position of Z axis. No rotations are needed to align the IMA URF frame (VEX_ASPERA4_IMA_URF) with the IMA sensor frame (VEX_ASPERA4_IMA). Two rotations -- first by +90 degrees about X axis and then by +90 degrees about Y axis -- are needed to align the IMA sensor frame (VEX_ASPERA4_IMA) with the IMA sensor head frame (VEX_ASPERA4_IMAS). Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_VEX_ASPERA4_IMA_URF = -248150 FRAME_-248150_NAME = 'VEX_ASPERA4_IMA_URF' FRAME_-248150_CLASS = 4 FRAME_-248150_CLASS_ID = -248150 FRAME_-248150_CENTER = -248 TKFRAME_-248150_RELATIVE = 'VEX_SPACECRAFT' TKFRAME_-248150_SPEC = 'ANGLES' TKFRAME_-248150_UNITS = 'DEGREES' TKFRAME_-248150_AXES = ( 1, 2, 3 ) TKFRAME_-248150_ANGLES = ( 0.0, 180.0, -90.0 ) FRAME_VEX_ASPERA4_IMA = -248151 FRAME_-248151_NAME = 'VEX_ASPERA4_IMA' FRAME_-248151_CLASS = 4 FRAME_-248151_CLASS_ID = -248151 FRAME_-248151_CENTER = -248 TKFRAME_-248151_RELATIVE = 'VEX_ASPERA4_IMA_URF' TKFRAME_-248151_SPEC = 'ANGLES' TKFRAME_-248151_UNITS = 'DEGREES' TKFRAME_-248151_AXES = ( 1, 2, 3 ) TKFRAME_-248151_ANGLES = ( 0.0, 0.0, 0.0 ) FRAME_VEX_ASPERA4_IMAS = -248152 FRAME_-248152_NAME = 'VEX_ASPERA4_IMAS' FRAME_-248152_CLASS = 4 FRAME_-248152_CLASS_ID = -248152 FRAME_-248152_CENTER = -248 TKFRAME_-248152_RELATIVE = 'VEX_ASPERA4_IMA' TKFRAME_-248152_SPEC = 'ANGLES' TKFRAME_-248152_UNITS = 'DEGREES' TKFRAME_-248152_AXES = ( 3 , 1, 2 ) TKFRAME_-248152_ANGLES = ( 0.0, -90.0, -90.0 ) \begintext MAG Frames ======================================================================== This section of the file contains the definitions of the Magnetometer frames. MAG Frame Tree -------------------------------------- The diagram below shows the MAG frame hierarchy. "J2000" INERTIAL +-----------------------------------------------------+ | | | |<-pck | |<-pck | | | V | V "IAU_VENUS" | "IAU_EARTH" VENUS BODY-FIXED | EARTH BODY-FIXED ---------------- | ---------------- | |<-ck | V "VEX_SPACECRAFT" ---------------- | |<-fixed | V "VEX_MAG" +------------------------------+ | | |<-fixed fixed->| | | V V "VEX_MAG_MAGB-H" "VEX_MAG_MAGIS" ---------------- --------------- | |<-ck | V "VEX_MAG_MAGB" -------------- | |<-fixed | V "VEX_MAG_MAGOS" --------------- MAG Boom hinge and MAGIS Frames -------------------------------------- The Magnetometer's boom hinge and MAGIS sensor frames -- VEX_MAG_MAGB-H and VEX_MAG_MAGIS -- are defined based as follows (from [7]): - +Z axis is nominally co-aligned with the S/C +Z mechanical axis; - +X axis is nominally co-aligned with the S/C +X mechanical axis, pointing toward the HGA-1; - +Y axis completes the right hand frame; - the origin of the frame is located at each respective reference hole. This diagram illustrates the MAGIS and Magnetometer's boom hinge frames: +Y s/c side view: ----------------- ^ +Zhinge | ^ | |^+Zmagis | toward Venus || +Yhinge|| +Xhinge <-------o|+Ymagis <------o__________. +Xmagis | Science Deck| |`. | | | \| +Zsc | | | ^ | HGA1 | | | | | | | | | /| | | |.' | |+Ysc | <-------o _____| +Xsc +Y solar array is not shown +Ysc, +Ymagis, and +Yhinge are out of the page As shown on the diagram, no rotation is required to co-align the s/c frame with neither the Magnetometer's boom hinge nor the MAGIS sensor frame. \begindata FRAME_VEX_MAG_MAGB-H = -248200 FRAME_-248200_NAME = 'VEX_MAG_MAGB-H' FRAME_-248200_CLASS = 4 FRAME_-248200_CLASS_ID = -248200 FRAME_-248200_CENTER = -248 TKFRAME_-248200_RELATIVE = 'VEX_SPACECRAFT' TKFRAME_-248200_SPEC = 'ANGLES' TKFRAME_-248200_UNITS = 'DEGREES' TKFRAME_-248200_ANGLES = ( 0.0, 0.0, 0.0 ) TKFRAME_-248200_AXES = ( 2, 3, 1 ) FRAME_VEX_MAG_MAGIS = -248210 FRAME_-248210_NAME = 'VEX_MAG_MAGIS' FRAME_-248210_CLASS = 4 FRAME_-248210_CLASS_ID = -248210 FRAME_-248210_CENTER = -248 TKFRAME_-248210_RELATIVE = 'VEX_SPACECRAFT' TKFRAME_-248210_SPEC = 'ANGLES' TKFRAME_-248210_UNITS = 'DEGREES' TKFRAME_-248210_ANGLES = ( 0.0, 0.0, 0.0 ) TKFRAME_-248210_AXES = ( 2, 3, 1 ) \begintext MAG Boom Frame -------------------------------------- Since both, pre- and post- deployment orientation of the Magnetometer's boom could be required for MAG data analysis, the boom's frame is defined as a CK-based frame with its orientation provided in CK files. This frame is describing the time dependent relationship between the Magnetometer's boom hinge and MAGOS fixed frames. The Magnetometer's boom frame is defined as follows: - +Z axis is parallel to the boom and points from the boom deployment hinge toward its tip; and in deployed configuration is nominally co-aligned with the s/c +Z axis; - +Y axis is parallel to the Magnetometer's hinge rotation axis, +Y and nominally co-aligned with the s/c +Y axis; - +X axis completes the right hand frame; - the origin of the frame is located at the boom's hinge geometrical center. This diagram illustrates the Magnetometer's boom frame: +Z s/c side view (Magnetometer's boom is showed in deployed position): ---------------------------------------------------------------------- ._____________ | | | | | +Zsc | +Ysc o==/ /==================o | o------->o==================/ /==o -Y Solar Array | | | +Y Solar Array +Zboom | | |o----->+Yboom| -|-----V------' |.' +Xsc `. HGA1 |___________\ +XboomV +Zsc and +Zboom point out of the page These sets of keywords define the Magnetometer's boom frame as CK frame: \begindata FRAME_VEX_MAG_MAGB = -248201 FRAME_-248201_NAME = 'VEX_MAG_MAGB' FRAME_-248201_CLASS = 3 FRAME_-248201_CLASS_ID = -248201 FRAME_-248201_CENTER = -248 CK_-248201_SCLK = -248 CK_-248201_SPK = -248 \begintext MAG MAGOS Frame -------------------------------------- The MAGOS sensor frame -- VEX_MAG_MAGOS -- is defined as follows (from [7]): - +Z axis is parallel to the boom and points from the boom deployment hinge toward the sensor; and in deployed configuration is nominally co-aligned with the s/c +Z axis; - +X axis is nominally co-aligned with the boom's +X axis; and in deployed configuration it is also co-aligned with the s/c +X axis; - +Y axis completes the right hand frame; - the origin of the frame is located at the geometric center of the sensor. This diagram illustrates the MAG MAGOS frame: +Y s/c side view (Magnetometer's boom is showed in deployed position): ---------------------------------------------------------------------- ^+Zmagos | ^ | | +Xmagos _|+Ymagos | <-----o| | toward Venus |^ ||+Zboom || +Xboom ||+Yboom <-----o___________. | Science Deck| |`. | | | \| +Zsc | | | ^ | HGA1 | | | | | | | | | /| | | |.' | |+Ysc | <-------o _____| +Xsc +Y solar array is not shown +Ysc, +Yboom, and +Ymagos are out of the page As shown on the diagram, nominally no rotation is needed to co-align the Magnetometer's boom frame with the MAG MAGOS frame. \begindata FRAME_VEX_MAG_MAGOS = -248220 FRAME_-248220_NAME = 'VEX_MAG_MAGOS' FRAME_-248220_CLASS = 4 FRAME_-248220_CLASS_ID = -248220 FRAME_-248220_CENTER = -248 TKFRAME_-248220_RELATIVE = 'VEX_MAG_MAGB' TKFRAME_-248220_SPEC = 'ANGLES' TKFRAME_-248220_UNITS = 'DEGREES' TKFRAME_-248220_ANGLES = ( 0.0, 0.0, 0.0 ) TKFRAME_-248220_AXES = ( 2, 3, 1 ) \begintext PFS Frames ======================================================================== This section of the file contains the definitions of the PFS frames. PFS Frame Tree -------------------------------------- The diagram below shows the PFS frame hierarchy. "J2000" INERTIAL +-----------------------------------------------------+ | | | |<-pck | |<-pck | | | V | V "IAU_VENUS" | "IAU_EARTH" VENUS BODY-FIXED | EARTH BODY-FIXED ---------------- | ---------------- | |<-ck | V "VEX_SPACECRAFT" ---------------- | |<-fixed | V "VEX_PFS_BASE" -------------- | |<-ck | V "VEX_PFS_SCANNER" +-----------------+ | | |<-fixed |<-fixed | | V V "VEX_PFS_SWC" "VEX_PFS_LWC" ------------- ------------- PFS Base and Scanner Frames -------------------------------------- The PFS instrument is rigidly mounted on the s/c science deck. Therefore, the PFS base frame, VEX_PFS_BASE, is a fixed offset frame with its orientation given relative to the VEX_SPACECRAFT frame. The VEX_PFS_BASE frame is defined by the instrument design and its mounting on the s/c as follows (from [8] and [9]): - +Y axis is along the nominal PFS 'S' module scanner rotation axis and nominal PFS 'O' module optical axis, and points from the PFS 'S' module toward the PFS 'O' module; nominally this axis is co-aligned with the s/c +Y axis; - +Z axis is parallel to the nominal direction of the PFS 'S' scanner boresight in its 'nadir' (zero) position; it nominally points in the same direction as the s/c +Z axis; - +X completes the right hand frame; it nominally points in the same direction as the s/c +X axis; - the origin of this frame is located at the intersection of the PFS 'S' scanner rotation axis and the scanner cylinder central axis. Nominally this frame is co-aligned with the s/c frame. Any misalignment between nominal and actual PFS mounting alignment measured pre-launch can be incorporated into the definition of this frame. Since the PFS 'S' scanner rotates with respect to its base, the VEX_PFS_SCANNER frame is defined as a CK frame with its orientation provided in a CK file relative to the VEX_PFS_BASE frame. The VEX_PFS_SCANNER frame is defined as follows: - +Y axis is along the nominal PFS 'S' module scanner rotation axis and nominal PFS 'O' module optical axis, and points from the PFS 'S' module toward PFS 'O' module; nominally this axis is co-aligned with the +Y axis of the VEX_PFS_BASE frame; - +Z axis is parallel to the PFS 'S' scanner boresight; in 'nadir' scanner position it is co-aligned with the +Z axis of the VEX_PFS_BASE frame; - +X completes the right hand frame; - the origin of this frame is located at the intersection of the PFS 'S' scanner rotation axis and the scanner central axis. For an arbitrary scanner angle, the VEX_PFS_SCANNER frame is rotated by this angle about the +Y axis with respect to the VEX_PFS_BASE frame. Possible nominal scanner angels are (in degrees), taken from [9]: -25.0, -12.5, -10.0, -7.5, -5.0, -2.5, 0.0 +25.0, +12.5, +10.0, +7.5, +5.0, +2.5, +85.0 This diagram illustrates the VEX_PFS_BASE and VEX_PFS_SCANNER frames for scanner angles of +25 degrees ('25 left') and -25 degrees ('25 right'). Both diagrams are +Y s/c side view: Scanner in '25 left' position Scanner in '25 right' position ----------------------------- ------------------------------ +Zbase +Zbase +Zscan ^ ^ +Zscan ^ | +Xscan | ^ \ | Science ^. | / Science \ | PFS Deck `. | / Deck \|___________. `.|/__________. <-------o | | <-------o | | +Xbase .' | =o======== +Xbase | | =o======== .'|___. SA+Y PFS___. SA+Y <' | +Zsc | | +Zsc | +Xscan | ^ | | ^ | | | | | | | | | | | | | .______|______. .______|______. | | | | | | <-------o____. <-------o____. +Xsc / +Ysc +Xsc / +Ysc /_____\ /_____\ Main Engine Main Engine +Ysc, +Ybase, and +Yscan are out of the page These sets of keywords define PFS base and scanner frames: \begindata FRAME_VEX_PFS_BASE = -248300 FRAME_-248300_NAME = 'VEX_PFS_BASE' FRAME_-248300_CLASS = 4 FRAME_-248300_CLASS_ID = -248300 FRAME_-248300_CENTER = -248 TKFRAME_-248300_RELATIVE = 'VEX_SPACECRAFT' TKFRAME_-248300_SPEC = 'ANGLES' TKFRAME_-248300_UNITS = 'DEGREES' TKFRAME_-248300_AXES = ( 1, 2, 3 ) TKFRAME_-248300_ANGLES = ( 0.0, 0.0, 0.0 ) FRAME_VEX_PFS_SCANNER = -248310 FRAME_-248310_NAME = 'VEX_PFS_SCANNER' FRAME_-248310_CLASS = 3 FRAME_-248310_CLASS_ID = -248310 FRAME_-248310_CENTER = -248 CK_-248310_SCLK = -248 CK_-248310_SPK = -248 \begintext PFS Detector Frames -------------------------------------- Since both PFS detectors receive radiation through the scanner and both essentially have a single pixel, their frames, VEX_PFS_SWC and VEX_PFS_LWC, are defined to be nominally co-aligned with the PFS scanner frame, VEX_PFS_SCANNER. These frames are introduced to allow incorporating into the PFS frame chain any misalignment between the scanner boresight direction and the individual detector view directions measured prior to delivering the instrument for installation on the s/c. Currently no misalignment data are available, and, therefore, the set of keywords below makes these frames co-aligned with their reference. \begindata FRAME_VEX_PFS_SWC = -248320 FRAME_-248320_NAME = 'VEX_PFS_SWC' FRAME_-248320_CLASS = 4 FRAME_-248320_CLASS_ID = -248320 FRAME_-248320_CENTER = -248 TKFRAME_-248320_RELATIVE = 'VEX_PFS_SCANNER' TKFRAME_-248320_SPEC = 'ANGLES' TKFRAME_-248320_UNITS = 'DEGREES' TKFRAME_-248320_AXES = ( 1, 2, 3 ) TKFRAME_-248320_ANGLES = ( 0.0, 0.0, 0.0 ) FRAME_VEX_PFS_LWC = -248320 FRAME_-248320_NAME = 'VEX_PFS_LWC' FRAME_-248320_CLASS = 4 FRAME_-248320_CLASS_ID = -248320 FRAME_-248320_CENTER = -248 TKFRAME_-248320_RELATIVE = 'VEX_PFS_SCANNER' TKFRAME_-248320_SPEC = 'ANGLES' TKFRAME_-248320_UNITS = 'DEGREES' TKFRAME_-248320_AXES = ( 1, 2, 3 ) TKFRAME_-248320_ANGLES = ( 0.0, 0.0, 0.0 ) \begintext SPICAV Frames ======================================================================== This section of the file contains the definitions of the SPICAV frames. SPICAV Frame Tree -------------------------------------- The diagram below shows the SPICAV frame hierarchy. "J2000" INERTIAL +-----------------------------------------------------+ | | | |<-pck | |<-pck | | | V | V "IAU_VENUS" | "IAU_EARTH" VENUS BODY-FIXED | EARTH BODY-FIXED ---------------- | ---------------- | |<-ck | V "VEX_SPACECRAFT" ---------------- | |<-fixed | V "VEX_SPICAV_BASE" +-------------------------------------------------+ | | | | | |<-fixed |<-fixed |<--fixed |<--fixed |<-fixed | | | | | V | V | v "VEX_SPICAV_SIR" | "VEX_SPICAV_SUV" | "VEX_SPICAV_SOIR" ---------------- | ---------------- | ----------------- V V "VEX_SPICAV_SIR_SOLAR" "VEX_SPICAV_SUV_SOLAR" ---------------------- ---------------------- SPICAV Base Frame -------------------------------------- The SPICAV base frame is defined by the instrument design and its mounting on the s/c as follows: - +Z axis is in the nominal direction of the SPICAV SUV/nadir and IR detector boresights; it nominally points in the direction of the s/c +Z axis; - +X axis is parallel to the nominal direction of SPICAV SUV CCD columns; it is nominally along the s/c +X axis; - +Y completes the right hand frame; it is nominally along the s/c +Y axis; (*) - the origin of the frame is located at the SPICAV SUV detector focal point. (*) SPICAV SUV spectral dimension is along CCD lines, which are parallel to Y,Z plane. SPICAV SIR has a single pixel. Because the SPICAV instrument is rigidly mounted to the s/c, the SPICAV base frame is defined as a fixed-offset frame with its orientation given relative to the VEX_SPACECRAFT frame. Any misalignment between the nominal and actual SPICAV mounting alignment measured pre-launch can be incorporated into the definition of this frame. This diagram illustrates the nominal VEX_SPICAV_BASE frame with respect to the spacecraft frame. +Z s/c side view: ----------------- .________________. ._____SPICAV__. +Ysbase______________. | \ | ' o------> / | | \ | | | | | / | | |. | +Zsc -|- +Ysc| | | | o| o--|---->o| | | |' | | V | | | | / | | +Xsbase \ | ._________________/ .______|______. \_________________. -Y Solar Array . | . +Y Solar Array HGA1 .' V +Xsc /_________\ +Zsc and +Zsbase are out of the page Nominally, the SPICAV base frame is co-aligned the s/c frame. Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_VEX_SPICAV_BASE = -248400 FRAME_-248400_NAME = 'VEX_SPICAV_BASE' FRAME_-248400_CLASS = 4 FRAME_-248400_CLASS_ID = -248400 FRAME_-248400_CENTER = -248 TKFRAME_-248400_RELATIVE = 'VEX_SPACECRAFT' TKFRAME_-248400_SPEC = 'ANGLES' TKFRAME_-248400_UNITS = 'DEGREES' TKFRAME_-248400_AXES = ( 1, 2, 3 ) TKFRAME_-248400_ANGLES = ( 000.000, 000.000, 000.000 ) \begintext SPICAV Detector Frames -------------------------------------- The SPICAV detector nadir port frames -- VEX_SPICAV_SUV and VEX_SPICAV_SIR -- are defined exactly as, and are nominally co-aligned with, the SPICAV base frame VEX_SPICAV_BASE. These frames are introduced to allow incorporating into the SPICAV frame chain any misalignment between the instrument base and detectors measured prior to delivering the instrument for installation on the s/c. The SPICAV SIR and SUV detector solar port frames -- VEX_SPICAV_SIR_SOLAR and VEX_SPICAV_SUV_SOLAR -- and the SPICAV SOIR detector frame -- VEX_SPICAV_SOIR -- are defined in the same way as follows: - +Z axis points along SIR/SUV/SOIR solar port boresight; - +X axis is parallel to the Sensor Unit assembly symmetry axis and points toward the SPICAV SUV/SIR/SOIR opening side; it points nominally along the s/c +Z axis; - +Y axis completes the right hand frame; - the origin of the frame is located at the SPICAV SIR/SUV/SOIR detector focal point. SPICAV solar ports are located in the +Y wall of the S/C, pointing +30 degrees off from the +X SPICAV base frame axis, within the +X/+Y plane. This diagram illustrates all five SPICAV detector port frames: +Z s/c side view: ----------------- __ ______ .________SPICAV_ _+Ysir_____. ____________ ___ | \\ \ | |o-------> | / \\ | | // \ | || o--------> | / // | | \\ \ | || | | +Ysuv| / \\ | | // \ | +Xsir| | | +Ysbase / // | | \\ \ | |v | | | / \\ | | // \ | +Xsuv_|____o. | / // | | \\ |==| +Xsbase v .' \ |==| \\ | | // | | .' \ | | +Ysc // | | \\ |==| .' \ |==| -----> \\ | | // / | v' \ +Zsir_solar // | | \\ / | +Ysir_solar V +Zsuv_solar \\ | | // / | +Ysuv_solar +Zsoir \ // | | \\ / | +Ysoir |<--->\ | \ \\ | | // / | | 30 deg | \ // | |__\\_____/ ._____________|_____________. \____________\\__| -Y Solar Array .' | '. +Y Solar Array .' | +Xsc '. / HGA1 V \ .______________________. +Zsc, +Zsbase, +Zsuv, +Zsir, +Xsir_solar, +Xsoir +Xsuv_solar are out of the page Nominally, the SPICAV SIR and SUV frames are co-aligned the SPICAV base frame while the SPICAV SIR and SUV solar port frames frame are first rotated from the SPICAV base frame by -90 degrees about +Y, and then rotated by -150 degrees about the new position of +X. MB: The SPICAV SOIR is first rotated from the SPICAV base frame by -90 degrees about +Y, and then rotated by -150.2167 degrees about the new position of +X. The SPICAV SOIR frame is then rotated by +0.1166 degrees about the new +Y axis. Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_VEX_SPICAV_SIR = -248410 FRAME_-248410_NAME = 'VEX_SPICAV_SIR'' FRAME_-248410_CLASS = 4 FRAME_-248410_CLASS_ID = -248410 FRAME_-248410_CENTER = -248 TKFRAME_-248410_RELATIVE = 'VEX_SPICAV_BASE' TKFRAME_-248410_SPEC = 'ANGLES' TKFRAME_-248410_UNITS = 'DEGREES' TKFRAME_-248410_AXES = ( 1, 2, 3 ) TKFRAME_-248410_ANGLES = ( 000.000, 000.000, 000.000 ) FRAME_VEX_SPICAV_SUV = -248420 FRAME_-248420_NAME = 'VEX_SPICAV_SUV' FRAME_-248420_CLASS = 4 FRAME_-248420_CLASS_ID = -248420 FRAME_-248420_CENTER = -248 TKFRAME_-248420_RELATIVE = 'VEX_SPICAV_BASE' TKFRAME_-248420_SPEC = 'ANGLES' TKFRAME_-248420_UNITS = 'DEGREES' TKFRAME_-248420_AXES = ( 1, 2, 3 ) TKFRAME_-248420_ANGLES = ( 000.000, 000.000, 000.000 ) FRAME_VEX_SPICAV_SIR_SOLAR = -248411 FRAME_-248411_NAME = 'VEX_SPICAV_SIR_SOLAR' FRAME_-248411_CLASS = 4 FRAME_-248411_CLASS_ID = -248411 FRAME_-248411_CENTER = -248 TKFRAME_-248411_RELATIVE = 'VEX_SPICAV_BASE' TKFRAME_-248411_SPEC = 'ANGLES' TKFRAME_-248411_UNITS = 'DEGREES' TKFRAME_-248411_AXES = ( 3, 2, 1 ) TKFRAME_-248411_ANGLES = ( 000.000, 90.000, 150.000 ) FRAME_VEX_SPICAV_SUV_SOLAR = -248421 FRAME_-248421_NAME = 'VEX_SPICAV_SUV_SOLAR' FRAME_-248421_CLASS = 4 FRAME_-248421_CLASS_ID = -248421 FRAME_-248421_CENTER = -248 TKFRAME_-248421_RELATIVE = 'VEX_SPICAV_BASE' TKFRAME_-248421_SPEC = 'ANGLES' TKFRAME_-248421_UNITS = 'DEGREES' TKFRAME_-248421_AXES = ( 3, 2, 1 ) TKFRAME_-248421_ANGLES = ( 000.000, 90.000, 150.000 ) FRAME_VEX_SPICAV_SOIR = -248430 FRAME_-248430_NAME = 'VEX_SPICAV_SOIR' FRAME_-248430_CLASS = 4 FRAME_-248430_CLASS_ID = -248430 FRAME_-248430_CENTER = -248 TKFRAME_-248430_RELATIVE = 'VEX_SPICAV_BASE' TKFRAME_-248430_SPEC = 'ANGLES' TKFRAME_-248430_UNITS = 'DEGREES' TKFRAME_-248430_AXES = ( 2, 1, 2 ) TKFRAME_-248430_ANGLES = ( 90.000, 150.2167, -0.1166 ) \begintext VIRTIS frames ======================================================================== This section of the file contains the definitions of the VIRTIS frames. VIRTIS Frame Tree -------------------------------------- The diagram below shows the VIRTIS frame hierarchy. "J2000" INERTIAL +-----------------------------------------------------+ | | | |<-pck | |<-pck | | | V | V "IAU_VENUS" | "IAU_EARTH" VENUS BODY-FIXED | EARTH BODY-FIXED ---------------- | ---------------- | |<-ck | V "VEX_SPACECRAFT" +--------------------------+ | | |<-fixed |<-fixed | | V | "VEX_VIRTIS-H" | -------------- | | V "VEX_VIRTIS-M" +---------------------------------------------+ | | | |<-fixed |<-ck |<-fixed | | | V V V "VEX_VIRTIS-M_VIS_ZERO" "VEX_VIRTIS-M_SCAN" "VEX_VIRTIS-M_IR_ZERO" ----------------------- +-----------------+ ---------------------- | | |<-fixed |<-fixed | | V V "VEX_VIRTIS-M_VIS" "VEX_VIRTIS-M_IR" ------------------ ----------------- VIRTIS Frames -------------------------------------- The six different frames are defined for VIRTIS-M instrument with the following intent: Frame Name Frame Intent -------------------- -------------------------------------- VEX_VIRTIS-M This frame is defined to capture misalignment between the instrument mirror rotation axis and the s/c +Y axis. This misalignment is constant therefore this frame is defined as a fixed offset frame relative to the VEX_SPACECRAFT frame. VEX_VIRTIS-M_SCAN This frame is defined to capture orientation of the reflected instrument view direction due to the scan mirror motion. This frame is defined as as CK-based frame because this time variable orientation is stored in a CK file. VEX_VIRTIS-M_VIS These two frames are defined to capture VEX_VIRTIS-M_IR misalignments for each of the two instrument channels relative to the reflected view view direction. These frames are defined as fixed offset frames relative to the VEX_VIRTIS-M_SCAN frame. These two frames are the frames that should be used to compute the instrument pixel view directions when the CK files for the scan mirror are available. VEX_VIRTIS-M_VIS_ZERO These two frames are defined to capture VEX_VIRTIS-M_IR_ZERO misalignments for each of the two instrument channels relative to the reflected view view direction with scan mirror in zero position. The main purpose of these frames is to capture all available misalignment data while allowing to compute reflected view direction externally to SPICE and then combine it with the misalignments. These frames should be used when CK files for the scan mirror are not available. Each of the VIRTIS-M frames listed above is defined in the same way as follows: - +Z axis points along the boresight (for VEX_VIRTIS-M boresight is the nominal center pixel view direction for the scan mirror in "zero" position; for VEX_VIRTIS-M_SCAN boresight is the nominal center pixel view direction, "off-pointed" due to the scan mirror; for VEX_VIRTIS-M_VIS and VEX_VIRTIS-M_IR boresight is the particular detector center pixel view direction, "off-pointed" due to the scan mirror; for VEX_VIRTIS-M_VIS_ZERO and VEX_VIRTIS-M_IR_ZERO frames it is the center pixel view direction, adjusted for all known misalignments with the scan mirror in "zero" position) - +Y axis is parallel to the apparent spatial resolution direction; it is nominally co-aligned with the s/c +Y axis; - +X axis completes the right hand frame; - the origin of the frame is located at the instrument focal point for VEX_VIRTIS-M_VIS, VEX_VIRTIS-M_IR, VEX_VIRTIS-M_VIS_ZERO and VEX_VIRTIS-M_IR_ZERO frames and at the intersection of the nominal center pixel view direction and the scan mirror axis for VEX_VIRTIS-M and VEX_VIRTIS-M_SCAN frames. Nominally, in "zero" scan mirror position all six frames are co-aligned with each other and the s/c frame. The VIRTIS-H frame, VEX_VIRTIS-H, is defined as follows: - +Z axis points along the boresight; - +Y axis is parallel to the apparent spatial resolution direction (i.e. along the slit); it is nominally co-aligned with the s/c +Y axis; - +X axis completes the right hand frame; it is nominally co-aligned with the s/c +X axis; - the origin of the frame is located at the instrument focal point. Nominally, VEX_VIRTIS-H frame is co-aligned with the s/c frame. This diagram illustrates the VIRTIS frames (with VIRTIS-M scan mirror in "zero" position): +Z s/c side (science deck side) view: ------------------------------------- +Ymir .____ +Yh __ +Ymvis VIRTIS | o-o---->-> +Ymscan | | | +Ym | | | | +Ysc o==/ /==================o | | | o------->o==================/ /==o -Y Solar Array | | | | +Y Solar Array +Xh V v | | ._+Xm _|______. +Xmscan| .' +Xmvis-V +Xsc +Xmir `. /___________\ HGA1 +Zsc, +Zmvis, +Zmir, +Zm, +Zmscan and +Zh are out of the page. According to [16] preliminary alignment data indicate that VIRTIS-M rotation axis is tilted from s/c +Y toward s/c +X by 1.23 milliradians. This misalignment is incorporated as a single rotation by -1.23 milliradians about +Z axis into the definition of the VEX_VIRTIS-M frame. According to [17] preliminary alignment data for VIRTIS-M indicate that the instrument boresight (center pixel view direction) is tilted with respect to the spacecraft +Z axis by 0.270 milliradians toward +Y axis and 0.069 milliradians toward -X. This misalignment is incorporated as a two rotations, first by -0.270 milliradians about +X axis and then by -0.069 milliradians about +Y axis, into the definitions of the VEX_VIRTIS-M_VIS, VEX_VIRTIS-M_IR, VEX_VIRTIS-M_VIS_ZERO and VEX_VIRTIS-M_IR_ZERO frames. According to [17] preliminary alignment data for VIRTIS-H indicate that the instrument boresight (center pixel view direction) is tilted with respect to the spacecraft +Z axis by 0.993 milliradians toward +Y axis and 0.845 milliradians toward -X. This misalignment is incorporated as a two rotations, first by -0.993 milliradians about +X axis and then by -0.845 milliradians about +Y axis, into the definition of the VEX_VIRTIS-H frame. Keyword blocks below define VIRTIS frames. Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_VEX_VIRTIS-M = -248510 FRAME_-248510_NAME = 'VEX_VIRTIS-M' FRAME_-248510_CLASS = 4 FRAME_-248510_CLASS_ID = -248510 FRAME_-248510_CENTER = -248 TKFRAME_-248510_RELATIVE = 'VEX_SPACECRAFT' TKFRAME_-248510_SPEC = 'ANGLES' TKFRAME_-248510_UNITS = 'RADIANS' TKFRAME_-248510_AXES = ( 1, 2, 3 ) TKFRAME_-248510_ANGLES = ( 0.0, 0.0, 0.00123 ) FRAME_VEX_VIRTIS-M_SCAN = -248515 FRAME_-248515_NAME = 'VEX_VIRTIS-M_SCAN' FRAME_-248515_CLASS = 3 FRAME_-248515_CLASS_ID = -248515 FRAME_-248515_CENTER = -248 CK_-248515_SCLK = -248 CK_-248515_SPK = -248 FRAME_VEX_VIRTIS-M_VIS = -248511 FRAME_-248511_NAME = 'VEX_VIRTIS-M_VIS' FRAME_-248511_CLASS = 4 FRAME_-248511_CLASS_ID = -248511 FRAME_-248511_CENTER = -248 TKFRAME_-248511_RELATIVE = 'VEX_VIRTIS-M_SCAN' TKFRAME_-248511_SPEC = 'ANGLES' TKFRAME_-248511_UNITS = 'RADIANS' TKFRAME_-248511_AXES = ( 3, 1, 2 ) TKFRAME_-248511_ANGLES = ( 0.0, 0.000270, 0.000069 ) FRAME_VEX_VIRTIS-M_IR = -248513 FRAME_-248513_NAME = 'VEX_VIRTIS-M_IR' FRAME_-248513_CLASS = 4 FRAME_-248513_CLASS_ID = -248513 FRAME_-248513_CENTER = -248 TKFRAME_-248513_RELATIVE = 'VEX_VIRTIS-M_SCAN' TKFRAME_-248513_SPEC = 'ANGLES' TKFRAME_-248513_UNITS = 'RADIANS' TKFRAME_-248513_AXES = ( 3, 1, 2 ) TKFRAME_-248513_ANGLES = ( 0.0, 0.000270, 0.000069 ) FRAME_VEX_VIRTIS-M_VIS_ZERO = -248512 FRAME_-248512_NAME = 'VEX_VIRTIS-M_VIS_ZERO' FRAME_-248512_CLASS = 4 FRAME_-248512_CLASS_ID = -248512 FRAME_-248512_CENTER = -248 TKFRAME_-248512_RELATIVE = 'VEX_VIRTIS-M' TKFRAME_-248512_SPEC = 'ANGLES' TKFRAME_-248512_UNITS = 'RADIANS' TKFRAME_-248512_AXES = ( 3, 1, 2 ) TKFRAME_-248512_ANGLES = ( 0.0, 0.000270, 0.000069 ) FRAME_VEX_VIRTIS-M_IR_ZERO = -248514 FRAME_-248514_NAME = 'VEX_VIRTIS-M_IR_ZERO' FRAME_-248514_CLASS = 4 FRAME_-248514_CLASS_ID = -248514 FRAME_-248514_CENTER = -248 TKFRAME_-248514_RELATIVE = 'VEX_VIRTIS-M' TKFRAME_-248514_SPEC = 'ANGLES' TKFRAME_-248514_UNITS = 'RADIANS' TKFRAME_-248514_AXES = ( 3, 1, 2 ) TKFRAME_-248514_ANGLES = ( 0.0, 0.000270, 0.000069 ) FRAME_VEX_VIRTIS-H = -248520 FRAME_-248520_NAME = 'VEX_VIRTIS-H' FRAME_-248520_CLASS = 4 FRAME_-248520_CLASS_ID = -248520 FRAME_-248520_CENTER = -248 TKFRAME_-248520_RELATIVE = 'VEX_SPACECRAFT' TKFRAME_-248520_SPEC = 'ANGLES' TKFRAME_-248520_UNITS = 'RADIANS' TKFRAME_-248520_AXES = ( 3, 1, 2 ) TKFRAME_-248520_ANGLES = ( 0.0, 0.000993, 0.000845 ) \begintext VMC Frames ======================================================================== This section of the file contains the definitions of the VMC camera frames. VMC Frame Tree -------------------------------------- The diagram below shows the VMC frame hierarchy. "J2000" INERTIAL +-----------------------------------------------------+ | | | |<-pck | |<-pck | | | V | V "IAU_VENUS" | "IAU_EARTH" VENUS BODY-FIXED | EARTH BODY-FIXED ---------------- | ---------------- | |<-ck | V "VEX_SPACECRAFT" ---------------- | |<-fixed | V "VEX_VMC_BASE" +-----------------------------------------------------+ | | | | | | | | | | | | V V V V "VEX_VMC_NIR-1" "VEX_VMC_NIR-2" "VEX_VMC_UV" "VEX_VMC_VIS" --------------- --------------- ------------ ------------- VMC Base Frame -------------------------------------- The VMC camera base frame -- VEX_VMC_BASE -- is defined by the camera design and its mounting on the s/c as follows: - +Z axis is in the nominal direction of the VMC camera boresight; it nominally points in the direction of the s/c +Z axis; - +Y axis is perpendicular to the nominal opposite direction of VMC camera CCD lines and nominally points along the s/c +Y axis; - +X completes the right hand frame and is parallel to the nominal CCD detector lines; it nominally points in the direction of the s/c +X axis; - the origin of the frame is located at the VMC camera focal point. Because the VMC camera is rigidly mounted on the s/c, the VMC base frame is defined as a fixed-offset frame with its orientation given relative to the VEX_SPACECRAFT frame. Any misalignment between nominal and actual VMC camera mounting alignment measured pre-launch should be incorporated into the definition of this frame. This diagram illustrates nominal VEX_VMC_BASE frame with respect to the spacecraft frame. +Z s/c side view: ----------------- .________________. ._______VMC___. +Yvmcb____________. | \ | | o------> | | \ | |_|+Zvmcb | | |. | +Zsc | | | +Ysc | | | o| o--- | | o| -------> | | |' | | V | | | | / | | +Xvmcb | ._________________/ .______|______. \_________________. -Y Solar Array . | . +Y Solar Array HGA1 .' V +Xsc /_________\ +Zsc and +Zvmcb are out of the page Nominally, the VMC base frame is co-aligned with the s/c frame. Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_VEX_VMC_BASE = -248600 FRAME_-248600_NAME = 'VEX_VMC_BASE' FRAME_-248600_CLASS = 4 FRAME_-248600_CLASS_ID = -248600 FRAME_-248600_CENTER = -248 TKFRAME_-248600_RELATIVE = 'VEX_SPACECRAFT' TKFRAME_-248600_SPEC = 'ANGLES' TKFRAME_-248600_UNITS = 'DEGREES' TKFRAME_-248600_AXES = ( 1, 2, 3 ) TKFRAME_-248600_ANGLES = ( 000.000, 000.000, 000.000 ) \begintext VMC Optical Channels Frames -------------------------------------- The VMC Camera Optical Channels, NIR-1, NIR-2, UV and VIS -- VEX_VMC_NIR-1, VEX_VMC_NIR-2, VEX_VMC_UV and VEX_VMC_VIS -- are nominally co-aligned with the VMC base frame -- VEX_VMC_BASE (from [5]): - +Z axis is in the nominal direction of the VMC camera boresight; it nominally points in the direction of the s/c +Z axis; - +Y axis is perpendicular to the nominal opposite direction of VMC camera CCD lines and nominally points along the s/c +Y axis; - +X completes the right hand frame and is parallel to the nominal CCD detector lines; it nominally points in the direction of the s/c +X axis; - the origin of the frame is located at the optical channel focal point. This diagram illustrates nominal VMC optical channel frames with respect to the VEX_VMC_BASE +Z s/c side view: ----------------- .________________. ._______VMC___. +Ynir2 ______+Yvmcb. | \ | |ooo-----> +Ynir1 ---> | | \ | |o|o----->+Yuv | | |. | +Zsc |||| .| +Yvis +Ysc | | |==| o---||||==| -------> | | |' | | ||V+Xnir2 | | / | | V +Xuv | ._________________/ .______|___+Xnir1 \_________________. -Y Solar Array . | . +Xvis +Y Solar Array HGA1 .' V | /__+Xsc___| | V +Xvmcb +Zsc, +Zvmcb, +Zuv, +Zvis, +Znir1 and +Znir2 are out of the page The focal point of each of the optical channels of the VMC camera is on the same plane, and therefore, every single frame is, nominally co-aligned with the VMC base frame. \begindata FRAME_VEX_VMC_NIR-1 = -248610 FRAME_-248610_NAME = 'VEX_VMC_NIR-1' FRAME_-248610_CLASS = 4 FRAME_-248610_CLASS_ID = -248610 FRAME_-248610_CENTER = -248 TKFRAME_-248610_RELATIVE = 'VEX_VMC_BASE' TKFRAME_-248610_SPEC = 'ANGLES' TKFRAME_-248610_UNITS = 'DEGREES' TKFRAME_-248610_AXES = ( 1, 2, 3 ) TKFRAME_-248610_ANGLES = ( 000.000, 000.000, 000.000 ) FRAME_VEX_VMC_NIR-2 = -248620 FRAME_-248620_NAME = 'VEX_VMC_NIR-2' FRAME_-248620_CLASS = 4 FRAME_-248620_CLASS_ID = -248620 FRAME_-248620_CENTER = -248 TKFRAME_-248620_RELATIVE = 'VEX_VMC_BASE' TKFRAME_-248620_SPEC = 'ANGLES' TKFRAME_-248620_UNITS = 'DEGREES' TKFRAME_-248620_AXES = ( 1, 2, 3 ) TKFRAME_-248620_ANGLES = ( 000.000, 000.000, 000.000 ) FRAME_VEX_VMC_UV = -248630 FRAME_-248630_NAME = 'VEX_VMC_UV' FRAME_-248630_CLASS = 4 FRAME_-248630_CLASS_ID = -248630 FRAME_-248630_CENTER = -248 TKFRAME_-248630_RELATIVE = 'VEX_VMC_BASE' TKFRAME_-248630_SPEC = 'ANGLES' TKFRAME_-248630_UNITS = 'DEGREES' TKFRAME_-248630_AXES = ( 1, 2, 3 ) TKFRAME_-248630_ANGLES = ( 000.000, 000.000, 000.000 ) FRAME_VEX_VMC_VIS = -248640 FRAME_-248640_NAME = 'VEX_VMC_VIS' FRAME_-248640_CLASS = 4 FRAME_-248640_CLASS_ID = -248640 FRAME_-248640_CENTER = -248 TKFRAME_-248640_RELATIVE = 'VEX_VMC_BASE' TKFRAME_-248640_SPEC = 'ANGLES' TKFRAME_-248640_UNITS = 'DEGREES' TKFRAME_-248640_AXES = ( 1, 2, 3 ) TKFRAME_-248640_ANGLES = ( 000.000, 000.000, 000.000 ) \begintext Venus Express Mission NAIF ID Codes -- Definition Section ======================================================================== This section contains name to NAIF ID mappings for the VEX mission. Venus Express Spacecraft (VEX) spacecraft and instruments IDs: ------------------------------------------------------------- This table summarizes VEX Spacecraft IDs: Name ID Synonyms --------------------- ------- ---------------------------- VEX -248 VENUS EXPRESS, VENUS-EXPRESS, VENUS_EXPRESS Notes: -- 'VEX', 'VENUS EXPRESS', 'VENUS-EXPRESS', and 'VENUS_EXPRESS' are synonyms and all map to the official VEX s/c ID (-248); Name-ID Mapping keywords: \begindata NAIF_BODY_NAME += ( 'VEX' ) NAIF_BODY_CODE += ( -248 ) NAIF_BODY_NAME += ( 'VENUS EXPRESS' ) NAIF_BODY_CODE += ( -248 ) NAIF_BODY_NAME += ( 'VENUS-EXPRESS' ) NAIF_BODY_CODE += ( -248 ) NAIF_BODY_NAME += ( 'VENUS_EXPRESS' ) NAIF_BODY_CODE += ( -248 ) \begintext VEX Spacecraft Structures IDs -------------------------------------- This table summarizes VEX Spacecraft Structure IDs: Name ID Synonyms --------------------- ------- ------------------------- VEX_SPACECRAFT -248000 VEX_SC VEX_SA+Y -248011 VEX_SA+Y_GIMBAL -248012 VEX_SA-Y -248013 VEX_SA-Y_GIMBAL -248014 VEX_HGA1 -248021 VEX_HGA2 -248022 VEX_LGA-1 -248031 VEX_LGA-2 -248032 VEX_ST1 -248033 VEX_ST2 -248034 Notes: -- 'VEX_SC' and 'VEX_SPACECRAFT' are synonyms and all map to the VEX s/c bus structure ID (-248000); Name-ID Mapping keywords: \begindata NAIF_BODY_NAME += ( 'VEX_SPACECRAFT' ) NAIF_BODY_CODE += ( -248000 ) NAIF_BODY_NAME += ( 'VEX_SC' ) NAIF_BODY_CODE += ( -248000 ) NAIF_BODY_NAME += ( 'VEX_SA+Y' ) NAIF_BODY_CODE += ( -248011 ) NAIF_BODY_NAME += ( 'VEX_SA+Y_GIMBAL' ) NAIF_BODY_CODE += ( -248012 ) NAIF_BODY_NAME += ( 'VEX_SA-Y' ) NAIF_BODY_CODE += ( -248013 ) NAIF_BODY_NAME += ( 'VEX_SA-Y_GIMBAL' ) NAIF_BODY_CODE += ( -248014 ) NAIF_BODY_NAME += ( 'VEX_HGA1' ) NAIF_BODY_CODE += ( -248021 ) NAIF_BODY_NAME += ( 'VEX_HGA2' ) NAIF_BODY_CODE += ( -248022 ) NAIF_BODY_NAME += ( 'VEX_LGA-1' ) NAIF_BODY_CODE += ( -248031 ) NAIF_BODY_NAME += ( 'VEX_LGA-2' ) NAIF_BODY_CODE += ( -248032 ) NAIF_BODY_NAME += ( 'VEX_ST1' ) NAIF_BODY_CODE += ( -248033 ) NAIF_BODY_NAME += ( 'VEX_ST2' ) NAIF_BODY_CODE += ( -248034 ) \begintext ASPERA-4 IDs -------------------------------------- This table summarizes ASPERA-4 IDs: Name ID --------------------- ------- VEX_ASPERA4 -248100 VEX_ASPERA4_URF -248110 VEX_ASPERA4_SAF -248111 VEX_ASPERA4_ELS -248120 VEX_ASPERA4_NPI -248130 VEX_ASPERA4_NPD1 -248141 VEX_ASPERA4_NPD2 -248142 VEX_ASPERA4_IMA_URF -248150 VEX_ASPERA4_IMA -248151 VEX_ASPERA4_IMAS -248152 VEX_ASPERA4_SS1 -248161 VEX_ASPERA4_SS2 -248162 Name-ID Mapping keywords: \begindata NAIF_BODY_NAME += ( 'VEX_ASPERA4' ) NAIF_BODY_CODE += ( -248100 ) NAIF_BODY_NAME += ( 'VEX_ASPERA4_URF' ) NAIF_BODY_CODE += ( -248110 ) NAIF_BODY_NAME += ( 'VEX_ASPERA4_SAF' ) NAIF_BODY_CODE += ( -248111 ) NAIF_BODY_NAME += ( 'VEX_ASPERA4_ELS' ) NAIF_BODY_CODE += ( -248120 ) NAIF_BODY_NAME += ( 'VEX_ASPERA4_NPI' ) NAIF_BODY_CODE += ( -248130 ) NAIF_BODY_NAME += ( 'VEX_ASPERA4_NPD1' ) NAIF_BODY_CODE += ( -248141 ) NAIF_BODY_NAME += ( 'VEX_ASPERA4_NPD2' ) NAIF_BODY_CODE += ( -248142 ) NAIF_BODY_NAME += ( 'VEX_ASPERA4_IMA_URF' ) NAIF_BODY_CODE += ( -248150 ) NAIF_BODY_NAME += ( 'VEX_ASPERA4_IMA' ) NAIF_BODY_CODE += ( -248151 ) NAIF_BODY_NAME += ( 'VEX_ASPERA4_IMAS' ) NAIF_BODY_CODE += ( -248152 ) NAIF_BODY_NAME += ( 'VEX_ASPERA4_SS1' ) NAIF_BODY_CODE += ( -248161 ) NAIF_BODY_NAME += ( 'VEX_ASPERA4_SS2' ) NAIF_BODY_CODE += ( -248162 ) \begintext MAG IDs -------------------------------------- This table summarizes MAG IDs: Name ID --------------------- ------- VEX_MAG_MAGB-H -248200 VEX_MAG_MAGB -248201 VEX_MAG_MAGIS -248210 VEX_MAG_MAGOS -248220 Name-ID Mapping keywords: \begindata NAIF_BODY_NAME += ( 'VEX_MAG_MAGB-H' ) NAIF_BODY_CODE += ( -248200 ) NAIF_BODY_NAME += ( 'VEX_MAG_MAGB' ) NAIF_BODY_CODE += ( -248201 ) NAIF_BODY_NAME += ( 'VEX_MAG_MAGIS' ) NAIF_BODY_CODE += ( -248210 ) NAIF_BODY_NAME += ( 'VEX_MAG_MAGOS' ) NAIF_BODY_CODE += ( -248220 ) \begintext PFS IDs -------------------------------------- This table summarizes PFS IDs: Name ID --------------------- ------- VEX_PFS_BASE -248300 VEX_PFS_SCANNER -248310 VEX_PFS_LWC -248320 VEX_PFS_SWC -248330 Name-ID Mapping keywords: \begindata NAIF_BODY_NAME += ( 'VEX_PFS_BASE' ) NAIF_BODY_CODE += ( -248300 ) NAIF_BODY_NAME += ( 'VEX_PFS_SCANNER' ) NAIF_BODY_CODE += ( -248310 ) NAIF_BODY_NAME += ( 'VEX_PFS_LWC' ) NAIF_BODY_CODE += ( -248320 ) NAIF_BODY_NAME += ( 'VEX_PFS_SWC' ) NAIF_BODY_CODE += ( -248330 ) \begintext SPICAV IDs -------------------------------------- This table summarizes SPICAV IDs: Name ID --------------------- ------- VEX_SPICAV_BASE -248400 VEX_SPICAV_SIR -248410 VEX_SPICAV_SIR_SOLAR -248411 VEX_SPICAV_SUV -248420 VEX_SPICAV_SUV_SOLAR -248421 VEX_SPICAV_SOIR -248430 Name-ID Mapping keywords: \begindata NAIF_BODY_NAME += ( 'VEX_SPICAV_BASE' ) NAIF_BODY_CODE += ( -248400 ) NAIF_BODY_NAME += ( 'VEX_SPICAV_SIR' ) NAIF_BODY_CODE += ( -248410 ) NAIF_BODY_NAME += ( 'VEX_SPICAV_SIR_SOLAR' ) NAIF_BODY_CODE += ( -248411 ) NAIF_BODY_NAME += ( 'VEX_SPICAV_SUV' ) NAIF_BODY_CODE += ( -248420 ) NAIF_BODY_NAME += ( 'VEX_SPICAV_SUV_SOLAR' ) NAIF_BODY_CODE += ( -248421 ) NAIF_BODY_NAME += ( 'VEX_SPICAV_SOIR' ) NAIF_BODY_CODE += ( -248430 ) \begintext VIRTIS IDs -------------------------------------- This table summarizes VIRTIS IDs: Name ID --------------------- ------- VEX_VIRTIS -248500 VEX_VIRTIS-M -248510 VEX_VIRTIS-M_VIS -248511 VEX_VIRTIS-M_IR -248513 VEX_VIRTIS-H -248520 Name-ID Mapping keywords: \begindata NAIF_BODY_NAME += ( 'VEX_VIRTIS' ) NAIF_BODY_CODE += ( -248500 ) NAIF_BODY_NAME += ( 'VEX_VIRTIS-M' ) NAIF_BODY_CODE += ( -248510 ) NAIF_BODY_NAME += ( 'VEX_VIRTIS-M_VIS' ) NAIF_BODY_CODE += ( -248511 ) NAIF_BODY_NAME += ( 'VEX_VIRTIS-M_IR' ) NAIF_BODY_CODE += ( -248513 ) NAIF_BODY_NAME += ( 'VEX_VIRTIS-H' ) NAIF_BODY_CODE += ( -248520 ) \begintext VMC IDs -------------------------------------- This table summarizes VMC IDs: Name ID --------------------- ------- VEX_VMC_BASE -248600 VEX_VMC_NIR-1 -248610 VEX_VMC_NIR-2 -248620 VEX_VMC_UV -248630 VEX_VMC_VIS -248640 Name-ID Mapping keywords: \begindata NAIF_BODY_NAME += ( 'VEX_VMC_BASE' ) NAIF_BODY_CODE += ( -248600 ) NAIF_BODY_NAME += ( 'VEX_VMC_NIR-1' ) NAIF_BODY_CODE += ( -248610 ) NAIF_BODY_NAME += ( 'VEX_VMC_NIR-2' ) NAIF_BODY_CODE += ( -248620 ) NAIF_BODY_NAME += ( 'VEX_VMC_UV' ) NAIF_BODY_CODE += ( -248630 ) NAIF_BODY_NAME += ( 'VEX_VMC_VIS' ) NAIF_BODY_CODE += ( -248640 ) \begintext