Rosetta Radio Science Investigations RSIMars Express Orbiter Radio Science Experiment MaRSVenus Express Radio Science Experiment VeRaIFMS Doppler Processing Software : Level 1a to Level 2Document numberIssue: 5MEX-MRS-IGM-DS-3035Date: 26.07.2005

Revision:0Page1

0 1 of 61

ROSETTA MARS EXPRESS VENUS EXPRESS

Radio Science Experiments RSI / MaRS / VeRa

IFMS Doppler Processing and Calibration Software: Level 1a to Level 2 Software Design Specifications

Issue:5Revision:0Date:26.07.2005Document:MEX-MRS-IGM-DS-3035

Prepared by

Martin Pätzold

Approved by

Martin Pätzold (MaRS Principal Investigator)

Rosetta Radio Science Investigations RSI Mars Express Orbiter Radio Science Experiment MaRS Venus Express Radio Science Experiment VeRa							
IFMS Doppler Processing Software :	Level 1	a to Level 2					
Document number Issue: 5 Revision: 0							
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	2 of 61			

Page left free

Rosetta Radio Science Investigations RSI Mars Express Orbiter Radio Science Experiment MaRS								
	Venus Express Radio Science Experiment VeRa IFMS Doppler Processing Software : Level 1a to Level 2							
Document number Issue: 5 Revision: 0								
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	3 of 61				

Document Change Record

Issue	Rev	Sec	Date	Changes	author
Draft	0	all	22.07.2003	first version	mpa
1	0	all	30.07.2003	first issue	mpa
1	1	2.4	14.08.2003	Section 2.4 deleted, part of new document MEX-MRS-IGM-DS-3036	mpa
1	2	2.1.4 2.3.6	25.08.2002	Update flow diagram Introducing two output files for X-band and S-band each.	mpa
2	0	all	16.09.2003	Complete revision	mpa
2	1	all	30.10.2003		mpa
2	2	all	14.01.2004		T.A.
2	3	2.1.3 2.5 2.8	12.02.2004	Introduction of IFMS-DEF-1025 Correction of IFMS-SPEC-2364 Correction of IFMS-SPEC-2365 Correcting column 8 in Tables 2.2 and 2.3	mpa
3	0	All	06.08.2004	Complete revision	mpa et al.
3	2	2.7 Appendix A	14.08.2004	Description of option file included Appendix included	T.A.
3	3	2.7	16.09.2004	Tables 2-2.2 and 2-2.3 extended	mpa
4	0	2.7 2.3 2.4 2.6	23.10.2004	Correction and introduction of IFMS-SPEC 2401 to 2404 Correction and introduction of IFMS-SPEC 2362 to 2368 Correction and introduction of IFMS-SPEC 2236 to 2251	mpa
4	1	2.7	01.12.2004	Tables 2.2 and 2.3 updated	mpa
4	2	Appendix 2.4	24.01.2005	Appendix B inserted IFMS-SPEC-2367 updated	T.A.
4	3	2.7	14.03.2005	File name corrected IFMS-SPEC-2956	mpa
5	0	All 2.3 2.4 2.5 2.7	26.07.2005	Complete revision Section 2.3 inserted Section 2.4 updated Section 2.5 erased and section 2.4.4 instead inserted Section 2.7 renamed in section 3	T.A.

Rosetta Radio Science Investigations RSI Mars Express Orbiter Radio Science Experiment MaRS Venus Express Radio Science Experiment VeRa IFMS Doppler Processing Software : Level 1a to Level 2							
Document number Issue: 5 Revision: 0							
MEX-MRS-IGM-DS-3035 Date: 26.07.2005 Page 4 of 61							

3.1.3	Section 3.1.3.1 updated and section 3.1.3.2 inserted
4	Section 4 inserted
Appendix	Appendix C and D inserted
C and D	

Rosetta Radio Science Investigations RSI Mars Express Orbiter Radio Science Experiment MaRS Venus Express Radio Science Experiment VeRa							
IFMS Doppler Processing Software :	Level 1	a to Level 2					
Document number Issue: 5 Revision: 0							
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	5 of 61			

Page left free

Rosetta Radio Science Investigations RSI								
Mars Express Orbiter Radio Science Experiment MaRS								
Venus Express Radio Science Experiment VeRa								
IFMS Doppler Processing Software : I	Level 1a	to Level 2						
Document number Issue: 5 Revision: 0								
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	6 of 61				

DISTRIBUTION LIST

Destination	Number of copies
Martin Pätzold	1
Silvia Tellmann	1
Christina Stanzel	1
Thomas Andert	1
Markus Fels	1
Alexander Gahr	1
Ralf Schaa	1
Ludmila Carone	1
Christina Walter	1
Anna Müller	1
Dusan Stupar	1
Len Tyler	1
Richard Simpson	1
Dave Hinson	1
Jörg Selle	1
Bernd Häusler	1
Véronique Dehant	1
Jean-Pierre Barriot	1

Rosetta Radio Science Investigations RSI Mars Express Orbiter Radio Science Experiment MaRS Venus Express Radio Science Experiment VeRa							
IFMS Doppler Processing Software :	IFMS Doppler Processing Software : Level 1a to Level 2						
Document number Issue: 5 Revision: 0							
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	7 of 61			

Page left free

Rosetta Radio Science Investigations RSI							
Mars Express Orbiter Radio Science Experiment MaRS							
Venus Express Radio Science Exper	Venus Express Radio Science Experiment VeRa						
IFMS Doppler Processing Software :	IFMS Doppler Processing Software : Level 1a to Level 2						
Document number Issue: 5 Revision: 0							
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	8 of 61			

ACRONYMS

A/D	Analog/Digital
AGC	Automatic Gain Control
AGVTP	Archive Generation, Validation and Transfer Plan
AOL	Amplitude Open Loop
ATDF	Archival Tracking Data Format
CD-ROM	Compact Disk - Read Only Memory
CL	Closed-Loop
DDS	Data Delivery System
DSN	Deep Space Network
DVD	Digital Versatile Disk
ESA	European Space Agency
ESOC	European Space Operation Center
ESTEC	European Space Technology Center
FOL	Frequency Open Loop
G/S	Ground Station
HGA	High Gain Antenna
IFMS	Intermediate Frequency Modulation System
JPL	Jet Propulsion Laboratory
LCP	Left Circular Polarization
LGA	Low Gain Antenna
LOS	Line Of Sight
MaRS	Mars Express Radio Science Experiment
MGA	Medium Gain Antenna
MGS	Mars Global Surveyor
NASA	National Aeronautics and Space Administration
ODR	Original Data Record
OL	Open-Loop
ONED	one-way dual-frequency mode
ONES	One-way single-frequency mode
PDS	Planetary Data System
POL	Polarization Open Loop
RCP	Right Circular Polarization
RSR	Radio Science Receiver
RX	Receiver
S/C	Spacecraft
SIS	Software Interface Specification
S-TX	S-Band Transmitter

Rosetta Radio Science Investigations RSI Mars Express Orbiter Radio Science Experiment MaRS Venus Express Radio Science Experiment VeRa IFMS Doppler Processing Software : Level 1a to Level 2							
Document numberIssue:5Revision:0MEX-MRS-IGM-DS-3035Date:26.07.2005Page9 of 61							

SPICE	Space Planet Instrument C-Matrix Events
TBC	To Be Confirmed
TBD	To Be Determined
TWOD	Two-way dual-frequency mode
TWOS	Two-way single-frequency mode
USO	Ultra Stable Oszillator
X-TX	X-band Transmitter

Rosetta Radio Science Investigations RSI Mars Express Orbiter Radio Science Experiment MaRS Venus Express Radio Science Experiment VeRa IFMS Doppler Processing Software : Level 1a to Level 2					
Document number	Issue:	5	Revision:	0	
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	10 of 61	

Contents

1	INTRODUCTION	13
1.1	Scope	. 13
1.2	Referenced Documents	. 13
1.3	Document Overview	. 13
2	SOFTWARE DESIGN SPECIFICATIONS	15
2	Main program specifications.1.1Modules.1.2Input files.1.2.1Data file types.1.2.2File names.1.2.3File formats.1.3Definition of constants.1.4Flow Diagram	. 15 . 16 . 16 . 16 . 16 . 16 . 17
2.2 2	MODULE M_READ_INPUT_DATA AND M_READ_HEADER .2.1 Computation of the observed antenna frequency.	
2.3	Module M_SPICE	. 23
2.4 2 2 2	_	• 24 • 24 • 26 • 26 • 27 • 27
2.4 2 2 2	MODULES M_CALIBRATION AND M_IONO_CALIB	• 24 • 24 • 26 • 26 • 27 • 27
2.4 2 2 2 2	MODULES M_CALIBRATION AND M_IONO_CALIB	.24 .26 .26 .27 .27 .31 .31

Rosetta Radio Science Investigations	RSI						
Mars Express Orbiter Radio Science Experiment MaRS Venus Express Radio Science Experiment VeRa							
IFMS Doppler Processing Software : I	_evel 1a	a to Level 2					
Document number	Issue:	•	Revision:	0			
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	11 of 61			
4 USAGE OF THE SOFTWAR	E				46		
4.1 Graphical Interface			••••••	•••••	. 47		
					=0		
4.2 Additional output files							
4.2.1 Data validation Excel sh							
4.2.2 Data illustration	•••••	•••••	•••••	•••••	. 30		
4.3 Errors	•••••		•••••	••••••	. 51		
APPENDIX A	•••••			•••••	54		
APPENDIX B					57		
				•••••	57		
APPENDIX C					59		
APPENDIX D					61		

Rosetta Radio Science Investigations RSI Mars Express Orbiter Radio Science Experiment MaRS						
Venus Express Radio Science Exper	Venus Express Radio Science Experiment VeRa IFMS Doppler Processing Software : Level 1a to Level 2					
Document number	Issue:	5	Revision:	0		
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	12 of 61		

Page left free

Rosetta Radio Science Investigations RSI Mars Express Orbiter Radio Science Experiment MaRS Venus Express Radio Science Experiment VeRa IFMS Doppler Processing Software : Level 1a to Level 2						
Document number Issue: 5 Revision: 0						
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	13 of 61		

1 INTRODUCTION

1.1 SCOPE

This document specifies the requirements for the development of the IFMS processing software, transferring Level 1a IFMS data towards Level 2. The software shall analyze radio Doppler tracking data recorded at the IFMS receiving systems of the ground stations New Norcia (NNO). AGC and meteo data are handeled via the IFMS (tbd) software.

1.2 REFERENCED DOCUMENTS

	Reference Number	Title	lssue Number	Date
[1]	MEX-MRS-IGM-IS-3016	Radio Science File naming Convention	9.6	22.10.2004
[2]	IFMS_OCCFTP_10.5.0	IFMS-to-OCC	10.5.0	01.12.2004
[3]	MEX-MRS-IGM-DS-3039	Radio Science Predicted and Reconstructed Orbit Data: Specifications	2.3	17.05.2005
[4]	IFMS_SUM_10.3.1	Software User Manual	10.3.1	15.09.2004

1.3 DOCUMENT OVERVIEW

Section 2 defines the design specifications:

2.1 the input file names and used constants

2.2 defines MODULE PREDICT

2.3 defines MODULE DOPPLER

Section 3 gives an overview of the output file name definitions. Section 4 describes the usage of the software and additional output files produced by

means of a PERL script

Rosetta Radio Science Investigations RSI Mars Express Orbiter Radio Science Experiment MaRS						
	Venus Express Radio Science Experiment VeRa IFMS Doppler Processing Software : Level 1a to Level 2					
Document number Issue: 5 Revision: 0						
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	14 of 61		

Page left free

 Rosetta Radio Science Investigations RSI

 Mars Express Orbiter Radio Science Experiment MaRS

 Venus Express Radio Science Experiment VeRa

 IFMS Doppler Processing Software : Level 1a to Level 2

 Document number
 Issue:
 5
 Revision:
 0

 MEX-MRS-IGM-DS-3035
 Date:
 26.07.2005
 Page
 15 of 61

2 SOFTWARE DESIGN SPECIFICATIONS

2.1 MAIN PROGRAM SPECIFICATIONS

The MAIN program shall read the IFMS level 1a Doppler data both at S-band and Xband compute from the data contained therein the observed frequency received at groundstation. A detailed explanation of the computation is given in section 2.2. After reading the data the MAIN program shall correct the Doppler data for the contribution by the propagation through the plasma and the Earth troposphere. That step will be done via Module M_CALIBRATION. Doppler residuals will be computed from the predicted or reconstructed Doppler provided by M_PREDICT. The output data files and an log file containing processing information shall be produced via M_OUTPUT. The according label files shall be generated via M_LABEL.

2.1.1 Modules

The MAIN program uses a number of modules:

- 1. M_READ_INPUT_DATA
- 2. M_READ_HEADER
- 3. M_PREDICT
- 4. M_DOPPLER_SHIFT
- 5. M_CALIBRATION
- 6. M_IONO_CALIB
- 7. M_OUTPUT
- 8. M_DIFFERENTIAL DOPPLER
- 9. M_GLOBAL_VAR

and some general modules, wherein shared subroutines and functions are provided

10. M_FILE_UTILITIES

- 11. M_SPICE
- 12. M_ERROR
- 13. M_UTILITIES
- 14. M_FILE_NAMING_CONVENTION
- 15. M_LABELNAMEIFMS
- 16. M_LABEL
- 17. M_INTERPOL
- 18. M_SEARCH

The flow diagram is shown in section 2.1.4

Mars Express Orbiter Radio Science Venus Express Radio Science Experi	Rosetta Radio Science Investigations RSI Mars Express Orbiter Radio Science Experiment MaRS Venus Express Radio Science Experiment VeRa IFMS Doppler Processing Software : Level 1a to Level 2					
Document number	Issue:	5	Revision:	0		
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	16 of 61		

2.1.2 Input files

2.1.2.1 Data file types

IFMS-SPEC-1210: the following table defines the input file types and the logical file names used in this specification and within the program.

Klobuchar coefficients are only needed if X-band and S-band Doppler files have no overlapping timestamp or the kind of data processing is occultation:

File type	Logical name within program
IFMS level 1a Doppler	
X-band	IFMS_DOPPLER_X
S-band	IFMS_DOPPLER_S
predicted Doppler file	PREDICT_FILE
IFMS_Meteo file level 1a	IFMS_METEO
IFMS AGC file level 1a	IFMS_AGC_X
X-band	IFMS_AGC_S
S-band	
Klobuchar coefficients for Earth	ION_COEFF
ionosphere calibration	
Orbit SPICE Kernels	N/A

2.1.2.2 File names

IFMS-SPEC-1220: File names are defined in [1] section 4.1

2.1.2.3 File formats

IFMS-SPEC-1230: File formats are defined in [1] in section 5.2, section 8 and section 9

Rosetta Radio Science Investigations RSI Mars Express Orbiter Radio Science Experiment MaRS						
Venus Express Radio Science Experiment VeRa IFMS Doppler Processing Software : Level 1a to Level 2						
Document number Issue: 5 Revision: 0						
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	17 of 61		

2.1.3 Definition of constants

IFMS-DEF-1010: ASTRONOMICAL UNIT (AU)

1 AU = 149,597,870 kilometers

IFMS-DEF-1020: SPEED OF LIGHT

c = 299,792,458 m/s

IFMS-DEF-1025: PHYSICAL CONSTANTS

Constant		Value	SI units
Electron charge	е	1.6022 10 ⁻¹⁹	As
Electron mass	m _e	9.1094 10 ⁻³¹	kg
Electric field constant	ϵ_0	8.8542 10 ⁻¹²	s ⁴ A ² m ⁻³ kg ⁻¹
Plasma constant	1 1 e ²	40.30924	m ³ s ⁻²
	$\overline{2} \overline{4p^2} \overline{m_e e_0}$		

IFMS-DEF-1030: CARRIER FREQUENCIES Mars Express (nominal)

Mars Express:

frequency band	uplink	downlink
S-band	2114.676 MHz	2296.482 MHz
X-band	7116.936 MHz	8420.432 MHz

Actual transmitted frequencies (up and downlink) may vary according to expected Doppler shift (approx. 10 – 100 kHz).

IFMS-DEF-1031: Transponder constants and ratios

Mars Express:

frequency band uplink	transponder ratios downlink/uplink				
	S-band X-band				
S-band	240/211	880/211			
X-band	240/749	880/749			

Rosetta Radio Science Investigations RSI Mars Express Orbiter Radio Science Experiment MaRS					
Venus Express Radio Science Exper					
IFMS Doppler Processing Software :	Level 1	a to Level 2			
Document number Issue: 5 Revision: 0					
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	18 of 61	

2.1.4 Flow Diagram

Figur 1: Flowchart for evaluation software for the IFMS Doppler data

Z:\documents\all_missions\IFMS_software\doppler\MEX-MRS-IGM-DS-3035_I5_R0_IFMS_Doppler_level1a_level2.doc Erstelldatum 25.07.2005 4:53

Rosetta Radio Science Investigations Mars Express Orbiter Radio Science Venus Express Radio Science Exper IFMS Doppler Processing Software :	Experin	eRa			
Document number Issue: 5 Revision: 0					
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	19 of 61	

2.2 MODULE M_READ_INPUT_DATA AND M_READ_HEADER

Module M_READ_HEADER contains subroutines in order to read the header and the active table from IFMS_DOPPLER_X, IFMS_DOPPLER_S, IFMS_METEO, IFMS_AGC_X and IFMS_AGC_S.

Module M_READ_INPUT_DATA contains subroutines in order to read IFMS level 1a Doppler data at X-band and S-band, the meteorological data, the AGC data at Xband and S-band, respectively from IFMS_DOPPLER_X, IFMS_DOPPLER_S, IFMS_METEO, IFMS_AGC_X and IFMS_AGC_S and to reconstruct the observed antenna frequency using therein contained data.

The main program is able to read more than one IFMS level 1a Doppler data at Xband and S-band, the meteorological data, the AGC data at X-band and S-band, respectively from IFMS_DOPPLER_X, IFMS_DOPPLER_S, IFMS_METEO, IFMS_AGC_X and IFMS_AGC_S.

IFMS-SPEC-2305: M_READ_HEADER accepts the information contained in the header and active table of IFMS_DOPPLER_X, IFMS_DOPPLER_S, IFMS_METEO, IFMS_AGC_X and IFMS_AGC_S.

IFMS-SPEC-2310: M_READ_INPUT_DATA accepts Doppler data from IFMS_DOPPLER_X, IFMS_DOPPLER_S, IFMS_METEO, IFMS_AGC_X and IFMS_AGC_S.

IFMS-SPEC-2311: M_READ_INPUT_DATA merges Doppler data from IFMS_DOPPLER_X, IFMS_DOPPLER_S, IFMS_METEO, IFMS_AGC_X and IFMS_AGC_S, if more than one respective IFMS level 1a file is available.

IFMS-SPEC-2315: The file name formats are defined according to [1] section 5.2.

IFMS-SPEC-2316: The file formats are defined according to [2] and [1] section 5.2.

IFMS-SPEC-2320: IFMS_DOPPLER_X, IFMS_DOPPLER_S, IFMS_METEO, IFMS_AGC_X and IFMS_AGC_S file names will be accepted via a Windows interface described in detail in section 4.1.

IFMS-SPEC-2321: The kind of data processing for (a) occultation entry, (b) occultation exit, (c) gravity, and (d) solar corona is selected via a graphical interface.

Rosetta Radio Science Investigations Mars Express Orbiter Radio Science Venus Express Radio Science Exper IFMS Doppler Processing Software :	Experin	eRa			
Document number Issue: 5 Revision: 0					
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	20 of 61	

2.2.1 <u>Computation of the observed antenna frequency</u>

Subroutine S_READ_INPUT_DATA reads IFMS level 1a Doppler data at X-band and S-band and reconstructs the observed antenna frequency as followed using therein contained data. The required information contained in reads IFMS level 1a Doppler data at X-band and S-band for this computation are listed in detail in the above IFMS-DEF-2402. It is important to know that the timestamp in the original IFMS level 1a Doppler data is not the same as for the observed antenna frequency (see IFMS-SPEC-2401).

IFMS-SPEC-2400: antenna frequency fantenna

$$\Delta count(t_{i}) = count(t_{i}) - count(t_{i-1})$$

$$\Delta time = \frac{\Delta count}{17.5 \times 10^{6}}$$

$$\Delta phase(t_{i}) = phase(t_{i}) - phase(t_{i-1})$$

$$f_{offset,down} = k \cdot f_{offsetup}$$

$$\Delta phase_{Dop=0} = \Delta time \cdot f_{offsetdown}$$

$$\Delta phase_{Dop}(t_{i}) = \Delta phase(t_{i}) - \Delta phase_{Dop=0}$$

$$f_{up} = f_{offsetup} + f_{inter} + f_{LO}$$

$$f_{antenna}(t_{i}) = k \cdot f_{up} + \frac{\Delta phase_{Dop}(t_{i})}{\Delta time(t_{i})}$$

For detailed information see in [2] section 6.3.

IFMS-SPEC-2401: The antenna frequency is computed between two time stamps t_i and t_{i+1} of the original IFMS level 1a Doppler data. Therefore the timestamp $t_{antenna}$ of the antenna frequency $f_{antenna}$ is computed via:

$$t_{antenna} = \frac{t_i + t_{i+1}}{2}$$

Rosetta Radio Science Investigations RSI Mars Express Orbiter Radio Science Experiment MaRS Venus Express Radio Science Experiment VeRa IFMS Doppler Processing Software : Level 1a to Level 2					
Document numberIssue:5Revision:0MEX-MRS-IGM-DS-3035Date:26.07.2005Page21 of 61					

IFMS-DEF-2402: Definitions:

Acronyms as specified in [2]	Symbol	Explanation	SI units
Count	count(_{ti})	count at a given timestamp t_i	
DeltaCount	∆count(t _i)	Variation of the counts of a numerical clock between two timestamps t_i and t_{i-1} , i.e nodes of the 17.5 MHz signal	
DeltaTime	∆time	Time interval between two timestamps t_i and t_{i-1}	sec
Phase	phase(t _i)	measured phase in cycles	cycles
DeltaPhase	∆phase	Variation in phase between two timestamps t_i and t_{i-1} ,	cycles
ActualCarrierFreqOffset	f _{offset,up}	Expected uplink Doppler shift Contained in ActiveTable	Hz
InputCarrierFreqOffset	f _{offset,down}	expected uplink Doppler shift multiplied by the transponder ratio factor <i>k</i> defined in IFMS-DEF-1031; substracted from expected nominal uplink frequency received at spacecraft	Hz
ZeroDopplerDeltaPhase	$\Delta phase_{Dop=0}$	Phase change in ∆time assuming that Doppler shift is zero	cycles
DeltaPhaseDoppler	$\Delta phase_{Dop}$	Phase change in ∆time for the true Doppler shift	cycles
UlmCarFrSel	f _{inter}	Intermediate frequency after downconversion Ca. 70 MHz or 230 MHz Contained in ActiveTable	Hz
XxxUplkConv	f _{LO}	Ground station local oscillator frequency in order to generate true uplink frequency Ca. 7100 MHz or 2100 MHz Contained in ActiveTable	Hz
UplinkCarrierFreq	f _{up}	transmitted uplink carrier frequency	Hz

Rosetta Radio Science Investigations RSI Mars Express Orbiter Radio Science Experiment MaRS Venus Express Radio Science Experiment VeRa IFMS Doppler Processing Software : Level 1a to Level 2					
Document number Issue: 5 Revision: 0					
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	22 of 61	

IFMS-SPEC-2403: The uplink frequency f_{up} (result from IFMS-SPEC-2401) is transferred to M_OUTPUT and stored in column 7.

IFMS-SPEC-2404: Column 8 in M_OUTPUT (uplink frequency ramp rate) is set to zero.

IFMS-SPEC-2405: The antenna frequency $f_{antenna}$ (result from IFMS-SPEC-2401) is transferred to M_OUTPUT and stored in column 9.

Rosetta Radio Science Investigations RSI Mars Express Orbiter Radio Science Experiment MaRS Venus Express Radio Science Experiment VeRa					
	IFMS Doppler Processing Software : Level 1a to Level 2				
Document number Issue: 5 Revision: 0					
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	23 of 61	

2.3 MODULE M_SPICE

The IFMS Doppler Processing Software uses the program package SPICE built by the Navigation and Ancillary Information Facility (NAIF) at the Jet Propulsion Laboratory. The SPICE system includes a large suite of software, mostly in the form of subroutines to compute derived observation geometry and to perform other useful computations. The SPICE system needs so called kernels containing information for example about Spacecraft ephemeris as a function of time. For more information about SPICE see

http://naif.jpl.nasa.gov/naif/.

Module M_SPICE provides a subroutine S_WRITE_LOLK in order to generate a file which comprises a list of kernels to load for the SPICE system. The name of the generated file is "list_of_loaded_kernels.txt" and contains all files required to perform the processing step. The selection of the kernels depends on mission, time of the operation and receiving groundstation. An example of such a file is given in Figure 2-1.

The file containing the required kernels is automatically generated in the subdirectory \kernels of the directory where the IFMS Doppler Processing Software is located. The required kernels have to be located also in the subdirectory \kernels.

Figure 2-1: Example of file "list_of_loaded_kernels,txt"

```
\begindata
KERNELS_TO_LOAD = (
'Z:\ddswork\process_data\Soft_Doppler_L2\Kernels\PCK00008.TPC',
'Z:\ddswork\process_data\Soft_Doppler_L2\Kernels\EARTH_000101_050131_04110
9.BPC',
'Z:\ddswork\process data\Soft Doppler L2\Kernels\earthfixedITRF93.frm',
'Z:\ddswork\process_data\Soft_Doppler_L2\Kernels\earthfixedIAU.frm',
'Z:\ddswork\process_data\Soft_Doppler_L2\Kernels\new_norcia.txt',
'Z:\ddswork\process_data\Soft_Doppler_L2\Kernels\new_norcia.bsp',
'Z:\ddswork\process data\Soft Doppler L2\Kernels\new norcia topo.frm',
'Z:\ddswork\process_data\Soft_Doppler_L2\Kernels\mars_iau2000_v0.tpc',
'Z:\ddswork\process_data\Soft_Doppler_L2\Kernels\MEX_040930_STEP.TSC',
'Z:\ddswork\process_data\Soft_Doppler_L2\Kernels\ORMM_041001000000_00096.
BSP'.
'Z:\ddswork\process data\Soft Doppler L2\Kernels\de405s.bsp'
)
```

Rosetta Radio Science Investigations RSI Mars Express Orbiter Radio Science Experiment MaRS Venus Express Radio Science Experiment VeRa IFMS Doppler Processing Software : Level 1a to Level 2					
Document numberIssue:5Revision:0MEX-MRS-IGM-DS-3035Date:26.07.2005Page24 of 61					

2.4 MODULES M_CALIBRATION AND M_IONO_CALIB

Module M_CALIBRATION provides several subroutines in order to correct for the contribution by the propagation through the plasma and the neutral Earth troposphere.

Module M_IONO_CALIB provides several subroutines to compute the correction for the Earth ionosphere, i.e. the ionospheric delay in nanoseconds, using the so called Klobuchar model for the Earth ionosphere.

Plasma media correction can only be performed if two downlink frequencies have been recorded and is done only for gravity observations. If only one frequency is available or for occultation observations, the Earth ionosphere is corrected via the Klobuchar model.

2.4.1 <u>Tropospheric calibration</u>

Subroutine S_TROP_CALIB uses the meteo data observed at the respective ground station to compute the path delay (unit is meter) of the dry and wet component of the Earth troposphere and calculate from the path delay the total correction for the Earth troposphere in Hz.

IFMS-SPEC-2460: Troposheric calibration

The path delay (unit is meter) of the dry and wet component of the Earth troposphere is (Hofmann-Wellenhoff et al., Global Positioning System, 4th Ed.):

$$\Delta_{dry}(E) = \frac{10^{-6}}{5} \frac{77.64 \frac{p}{T}}{\sin\left(\sqrt{E^2 + 6.25}\right)} \left[40136 + 148.72(T - 273.16) \right]$$

$$\Delta_{wet}(E) = \frac{10^{-6}}{5} \frac{-12.96T + 3.718 \cdot 10^5}{\sin\left(\sqrt{E^2 + 2.25}\right)} \frac{e}{T^2} 11000$$
(1.1)

where p, T and e are the atmospheric pressure, Temperature and partial water vapour pressure, respectively, as observed at the ground station site.

These values are given in the IFMS_METEO file. The elevation angle E (unit in degrees) is provided by M_PREDICT.

The following transformations have to be applied:

	equation (20)	IFMS_METEO	M_PREDICT
pressure p	mbar	hPascal	-
Temperature T	Kelvin	°Celsius	-
Water vapour	hPascal	-	-
partial pressure e			
humidity h	-	% humidity	-
elevation E	degrees	-	radian

The relation between the water vapour partial pressure and the humidity given in IFMS_METEO is:

Rosetta Radio Science Investigations RSI
Mars Express Orbiter Radio Science Experiment MaRS
Venus Express Radio Science Experiment VeRa
IFMS Doppler Processing Software : Level 1a to Level 2Kerner State
Document numberIssue:
5Revision:0MEX-MRS-IGM-DS-3035Date:26.07.2005Page25 of 61

$$e = 6.108 \cdot 10^{-2} \cdot humidity[\%] \cdot \exp\left\{\frac{17.393(T - 272.15)}{T - 33.95}\right\}$$
(1.2)

The total tropospheric calibration expressed as delay time in seconds is:

$$\boldsymbol{t}_{tropo} = \frac{2}{c} \left\{ \Delta_{dry} \left(\boldsymbol{E} \right) + \Delta_{wet} \left(\boldsymbol{E} \right) \right\}$$
(1.3)

for the two-way radio link where c is the speed of light with definition given in IFMS-DEF-1020 and

$$\boldsymbol{t}_{tropo} = \frac{1}{c} \left\{ \Delta_{dry} \left(\boldsymbol{E} \right) + \Delta_{wet} \left(\boldsymbol{E} \right) \right\}$$

for the one-way radio link.

IFMS-SPEC-2461: The correction for the Earth troposphere is then for one-way radio link:

$$m_{ONE} = t_{tropo} \cdot f_{down} \tag{1.4}$$

and for the two-way radio link:

$$m_{TWO} = t_{tropo} \cdot \left(f_{down} + f_{up} \right)$$
(1.5)

where m is the cycle advance and the shift in frequency is:

$$\Delta f_{ONE,tropo} = \frac{dm_{ONE}}{dt} \tag{1.6}$$

and for the two-way radio link:

$$\Delta f_{TWOtropo} = \frac{dm_{TWO}}{dt} \tag{1.7}$$

This is done for each frequency band.

IFMS-SPEC-2462: The result from IFMS-SPEC-2461 is transferred to M_OUTPUT, added to the respective plasma correction described below and the sum is stored in column 11.

IFMS-SPEC-2463: The result from IFMS-SPEC-2461 is transferred to M_PREDICT and added to the predicted Doppler data (see section 2.5)

Rosetta Radio Science Investigations RSI Mars Express Orbiter Radio Science Experiment MaRS Venus Express Radio Science Experiment VeRa IFMS Doppler Processing Software : Level 1a to Level 2					
Document number Issue: 5 Revision: 0					
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	26 of 61	

2.4.2 Differential Doppler

Subroutine S_DIFF_DOP finds out whether IFMS level 1a Doppler data at X-band and S-band are overlapping in time. If this is the case and the IFMS level 1a Doppler data at X-band and S-band having the same sample interval the differential Doppler is computed.

IFMS-SPEC-2465: Differential Doppler

The result from IFMS-SPEC-2363 is taken to compute the differential Doppler

$$\boldsymbol{d} f = f_{S,antenna} - \frac{3}{11} f_{X,antenna}$$
(1.8)

IFMS-SPEC-2466: The result from IFMS-SPEC-2465 is transferred to M_OUTPUT and stored in column 14.

2.4.3 Plasma calibration using the differential doppler

Subroutine S_PLASMA_CALIB calculates the temporal change in electron content from the differential Doppler and the according frequency-shift in antenna frequency at X-band and S-band

IFMS-SPEC-2470: Plasma calibration

Derive the temporal change in electron content from the differential Doppler and computes the dispersive frequency shift for each frequency band. f_s and f_x are downlink carrier frequencies and *c* is the speed of light, all defined in section 1.

$$df = -\frac{1}{2c} \frac{1}{4p^2} \frac{e^2}{m_e e_0} \left\{ \frac{1}{f_s^2} - \frac{1}{f_x^2} \right\} f_s \frac{dI}{dt}$$

$$\Rightarrow \frac{dI}{dt} = -\left\{ \frac{1}{2c} \frac{1}{4p^2} \frac{e^2}{m_e e_0} \right\}^{-1} \frac{df}{f_s} \left\{ \frac{1}{f_s^2} - \frac{1}{f_x^2} \right\}^{-1}$$
(1.9)

IFMS-SPEC-2471: plasma correction

The temporal change in electron content will be used to correct for the downlink plasma propagation for gravity observations only:

$$\Delta f_{S,plasmacal} = \frac{40.31}{c} \frac{1}{f_S} \frac{dl}{dt}$$

$$\Delta f_{X,plasmacal} = \frac{40.31}{c} \frac{1}{f_X} \frac{dl}{dt}$$
(1.10)

Rosetta Radio Science Investigation Mars Express Orbiter Radio Science Venus Express Radio Science Exper IFMS Doppler Processing Software :	Experin iment V	eRa			
Document number Issue: 5 Revision: 0					
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	27 of 61	

If equation (1.9) is applied to equation (1.10), the plasma correction is than

$$\Delta f_{S,plasmacal} = \boldsymbol{d} f \frac{121}{112}$$

$$\Delta f_{X,plasmacal} = \boldsymbol{d} f \frac{33}{112}$$
(1.11)

For further details see APPENDIX B

IFMS-SPEC-2472: The result from IFMS-SPEC-2471 is transferred to M_OUTPUT added to the tropospheric correction described above and the sum is stored in column 11

IFMS-SPEC-2473: The result from IFMS-SPEC-2471 is transferred to M_PREDICT and added to the predicted Doppler data (see section 2.5)

2.4.4 Plasma calibration using the Klobuchar model

If only one frequency is available or the kind of data processing is Occultation, the Earth ionosphere plasma has to be modeled. Module M_IONO_CAL contains subroutines in order to provide a model of the electron content of the Earth ionosphere and will be described below in detail.

2.4.4.1 The Klobuchar model

Module M_IONO_CALIB contains several subroutines to provide a model of the electron content of the Earth ionosphere at any local time and pointing direction of the ground station antenna and determines the path delay. This is done using the Klobuchar model introducing the Klobuchar coefficients from GPS measurements of the International GPS Service (IGS). The IGS is based on about 200 globally distributed permanent GPS tracking sites. The coefficients used by module M_IONO_CALIB come from one of the seven IGS Analysis Center: the Center for Orbit Determination in Europe (CODE) of the Astronomical Institute of the University of Berne (AIUB), Switzerland.

CODE generates Global bnosphere maps (GIM) on a daily basis using data from about 200 GPS/GLONASS sites of the IGS and other institutions. The vertical total electron content (VTEC) is modelled in a solar-geomagnetic reference frame using a spherical harmonics expansion up to degree and order 15. Piece-wise linear functions are used for representation in the time domain. The time spacing of their vertices is 2 hours, conforming with the epochs of the VTEC maps. Instrumental biases, so-called differential P1-P2 code biases (DCB), for all GPS satellites and ground stations are estimated as constant values for each day, simultaneously with

Rosetta Radio Science Investigation Mars Express Orbiter Radio Science Venus Express Radio Science Exper IFMS Doppler Processing Software :	Experin	eRa		
Document number Issue: 5 Revision: 0				
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	28 of 61

the 13 times 256, or 3328 parameters used to represent the global VTEC distribution. The DCB datum is defined by a zero-mean condition imposed on the satellite bias estimates. P1-C1 bias corrections are taken into account if needed. To convert line-of-sight TEC into vertical TEC, a modified single-layer model mapping (MSLM) mapping function approximating the JPL extended slab model mapping function is adopted. The global coverage of the GPS tracking ground stations considered at CODE is shown figure 3.5.1 including abbreviations for station identification.

Figure 2-2: GPS Tracking Ground Stations

CODE computes Klobuchar-style ionospheric coefficients (alphas and betas) best fitting the IONosphere map EXchange data (IONEX) on a regular basis. The description how the Klobuchar coefficients are computed and on which ionopsheric model they are based on can be found in ANNEX B.

The data files containing the Klobuchar coefficients are named CGIMddd0.yyN, where ddd and yy substitute doy and 2-digit year. Those coefficients derived from a final IONEX product are stored under <u>ftp://ftp.unibe.ch/aiub/CODE/</u> in yyyy-specific subdirectories as of <u>1995</u>. For the few days where the final product is not yet available, rapid as well as predicted coefficients serving real-time applications may be found generally at <u>ftp://ftp.unibe.ch/aiub/CODE/</u>. <u>CGIM2410.04N_R</u> contains the latest set of rapid coefficients; <u>CGIM2420.04N_P</u> and <u>CGIM2430.04N_P2</u> contain the current 1-day and 2-day predicted coefficients, respectively.

Unlike the original Klobuchar ionosphere model which is based on a total of 370 possible sets of base coefficients and which is therefore of discrete nature, the model

Rosetta Radio Science Investigations Mars Express Orbiter Radio Science Venus Express Radio Science Exper IFMS Doppler Processing Software :	Experin iment V	eRa		
Document number Issue: 5 Revision: 0				
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	29 of 61

derived by CODE is not subject to a similar restriction. All the night-time TEC level of this type of ionosphere model is hard-wired to 5 nanoseconds of ionospheric delay on the first GPS frequency (corresponding to approximately 9 TECU). Because the Klobuchar-style TEC parameterization may be unpleasant at the polar caps and especially at the poles, CODE displays a corresponding warning in the RINEX navigation data files in case the TEC above a latitude of 75 degrees reaches day-time level. The format of RINEX data files is described in ANNEX C.

The module is currently only valid for the NNO ground station.

IFMS-SPEC-2480: Module M_IONO_CALIB accepts the actual needed Klobuchar coefficients (described above) from input file ION_COEFF. The input file can be downloaded from

ftp.unibe.ch/aiub/CODE/

M_IONO_CALIB needs several input parameters, which are listed in the table below.

Parameter	Description	Unit
Phi	Geodetic latitude of receiver	Degree
Lambda	Geodetic longitude of receiver	Degree
TOW	Time of Week	Degree
Beta	The coefficients of a cubic equation representing the amplitude of the vertical delay	
Alpha	The coefficients of a cubic equation representing the period of the model	

Table 2-1: Input parameter of M_IONO_CALIB

IFMS-SPEC-2481: The output of Module M_IONO_CALIB is the ionospheric slant range correction τ_{iono} . The unit of τ_{iono} is seconds. The calculation of τ_{iono} is described in IFMS-SPEC-2482.

IFMS-SPEC-2482: The computation of the ionospheric slant range correction t_{iono} depends on the local time at the ground station side. For the calculation of t_{iono} the following parameters are used:

1. Local Time t:

t = 4.32·long_i + TOW

Rosetta Radio Science Investigations Mars Express Orbiter Radio Science Venus Express Radio Science Experi IFMS Doppler Processing Software :	Experin	eRa			
Document number Issue: 5 Revision: 0					
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	30 of 61	

2. Azimuth a (in radian):

a = azimuth pi /180

3. Elevation angle e (in semicircles):

e = e lev - 1./180

4. Earth Centered angle psi:

psi = 0.0137/ (e+0.11) - 0.022

5. Subionospheric longitude long_i :

long_i = lambda•1./180.+ (psi•DSIN(a)/DCOS(lat_i•pi))

6. Subionospheric latitude lat_i :

lat_i = phi-1./180+ psi-DCOS(a)

7. Time of the Week TOW (output of the subroutine S_GPSTIME)

!

t = DMOD(t,86400.) !

8. Slant factor sf:

sf = 1. + 16. \cdot (0.53-e)³

9. Period of model PER:

If PER less than 72000.D0

PER = 72000.

Else

PER = beta(1) + beta(2)
$$\cdot$$
lat_m + beta(3) \cdot lat_m² + beta(4) \cdot lat_m³

10. Phase of the model x (Maximum at 14.00 =! 50400 sec local time):

x = 2.•pi•(t-50400.) / PER !

11. Amplitude of the model AMP:

AMP = alpha (1) + alpha (2) ·lat_m + alpha (3) ·lat_m² +alpha(4) ·lat_m³ Z:\documents\all_missions\IFMS_software\doppler\MEX-MRS-IGM-DS-3035_I5_R0_IFMS_Doppler_level1a_level2.doc Erstelldatum 25.07.2005 4:53 Rosetta Radio Science Investigations RSI
Mars Express Orbiter Radio Science Experiment MaRS
Venus Express Radio Science Experiment VeRa
IFMS Doppler Processing Software : Level 1a to Level 2
Document numberIssue:
5Revision:0MEX-MRS-IGM-DS-3035Date:26.07.2005Page31 of 61

12. Ionospheric slant correction tiono:

Night (DABS(x) greater Than 1.57):

 $\tau_{iono} = sf \cdot (5.D-9)$

Day:

 $\tau_{iono} = sf \cdot (5.D-9 + AMP^*(1.D0 - x^2/2. + x^4/24.))$

at any local time and pointing direction of the ground station antenna and determines the path delay. This is done using the Klobuchar model introducing the Klobuchar coefficients from GPS measurements.

2.4.4.2 Plasma calibration of the antenna frequency

Subroutine S_PLASMA_CALIB_MOD corrects for the contribution by the propagation through the earth ionosphere by using the model for the earth ionosphere defined in module M_ION_CALIB.

IFMS-SPEC-2483: Subroutine S_PLASMA_CALIB_MOD accepts the ionospheric slant correction τ_{iono} from module M_IONO_CALIB

IFMS-SPEC-2484: The correction for the Earth ionosphere is then

$$m = \boldsymbol{t}_{iono} \cdot f_{down}$$

where *m* is the cycle advance and the shift in frequency is:

$$\Delta f_{iono} = \frac{dm}{dt_{iono}}$$

This is done for each frequency band

IFMS-SPEC-2485: The result from IFMS-SPEC-2484 is transferred to M_OUTPUT added to the tropospheric correction described above and the sum is stored in column 11

IFMS-SPEC-2486: The result from IFMS-SPEC-2484 is transferred to M_PREDICT and added to the predicted Doppler data (see section 2.5)

Rosetta Radio Science Investigations Mars Express Orbiter Radio Science Venus Express Radio Science Exper IFMS Doppler Processing Software :	Experin	eRa		
Document number Issue: 5 Revision: 0				
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	32 of 61

2.5 MODULE M_PREDICT

M_PREDICT accepts a Doppler predict file: the predict file PREDICT_FILE considers all possible perturbing forces as the best known gravity field and solar and albedo radiation pressure. For more details about the PREDICT_FILE see document [3]. M_PREDICT interpolates for a given time stamp between the computed sky frequency based on predicted parameters and returns an estimated sky frequency for each observed time stamp. This is done for each frequency band.

IFMS-SPEC-2510: M_PREDICT accepts input data from PREDICT_FILE with the file name format defined in [1] section 8.1 or in [1] section 8.2 for the predicted orbit or the reconstructed orbit file, respectively. PREDICT_FILE contains both the Doppler uplink and downlink data.

IFMS-SPEC-2520: M_PREDICT accepts predicted Doppler data from PREDICT_FILE (file name specified in IFMS-SPEC-2210) formatted as defined in [1] section 8.1 or in [1] section 8.2 for the predicted orbit or the reconstructed orbit file, respectively.

IFMS-SPEC-2525: M_PREDICT_FILE contains predicted Doppler data with a time period that covers one entire operation.

IFMS-SPEC-2530: Subroutine S_DOP_PRED reads predicted Doppler data from PREDICT_FILE and computes for each frequency band the predicted antenna frequency $f_{predantenna}$ received at a given ground station via

$$f_{\text{pred,antenna}} = k \cdot f_{up} \left(1 + P_{up} + P_{down} + P_{up} \cdot P_{down} \right)$$

where $P_{up} = \frac{\Delta f_{up}}{f_{up}} = \frac{V_{rup}}{c}$ and P_{down} is the predicted Doppler of the uplink and the

downlink path, respectively. The result is stored in the array DOPPLER_PREDICT_SKY. For more details about the computation see Appendix A.

IFMS-SPEC-2535: Subroutine S DOP PRED accepts from M READ INPUT DATA the array TIME DOPPLER representing the observed Doppler time stamps. S_DOP_PRED interpolates between each skv frequency data of DOPPLER PREDICT SKY for each observed time stamp aiven as TIME DOPPLER. This is done for each frequency band.

Rosetta Radio Science Investigations Mars Express Orbiter Radio Science Venus Express Radio Science Exper IFMS Doppler Processing Software :	Experin	eRa		-		
Document number Issue: 5 Revision: 0						
MEX-MRS-IGM-DS-3035						

IFMS-SPEC-2540: The interpolated result will be provided as the array DOPPLER_PREDICT_INT in subroutine S_DOP_PRED. The troposheric calibration and the plasma correction are added to the interpolated predicts.

$$f_{\textit{pred},\textit{calib}} = f_{\textit{pred}} + \Delta f_{\textit{iono}} + \Delta f_{\textit{tropo}}$$

This is done for each frequency band.

IFMS-SPEC-2545: The corrected result from IFMS-SPEC-2540 will be provided as the array DOPPLER_PREDICT_CAL in subroutine S_DOP_PRED. The array is transferred to the subroutine M_OUTPUT and stored in column 10 of the output file. This is done for each frequency band.

IFMS-SPEC-2550: Subroutine S_DOP_PRED computes for each frequency band the frequency residuals Δf_{res} by subtracting the interpolated and corrected, predicted antenna frequency $\Delta f_{predcalib}$ stored in the array DOPPLER_PREDICT_INT from the measured and calibrated antenna frequency $f_{antenna}$.

$$\Delta f_{\rm res} = f_{\rm antenna} - f_{\rm pred, calib}$$

IFMS-SPEC-2551: The result from IFMS-SPEC-2550 is transferred to M_OUTPUT and stored in column 12.

IFMS-SPEC-2560: M Subroutine S_DOP_PRED reads time values of the two way light time from PREDICT_FILE and interpolates between each value of the two way light time for each observed time stamp given as TIME_DOPPLER. This is done for each frequency band.

IFMS-SPEC-2561: The resulting values are subtracted from TIME_DOPPLER at each time stamp in order to compute the transmit frequency ramp reference time.

IFMS-SPEC-2562: The result from IFMS-SPEC-2561 is transferred to M_OUTPUT and stored in column 6.

Rosetta Radio Science Investigations Mars Express Orbiter Radio Science Venus Express Radio Science Exper IFMS Doppler Processing Software :	Experin	eRa		
Document number Issue: 5 Revision: 0				
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	34 of 61

3 OUTPUT FILES

3.1 MODULE M_OUTPUT

The module M_OUTPUT provides different functions and subroutines in order to generate the output files of the X-band and S-band Doppler data. In addition routines are provided to produce the .log file and a file containing data about frequency computation if the information in the header and the active table of the IFMS X-band and S-band files are not equal.

3.1.1 Data files

IFMS-SPEC-3000: The DOPPLER_OUTPUT file names are defined as

rggICLxL02_sss_yydddhhmm_qq.TAB

The definitions are given in Table 3-1.

placeholder	description	example
r	spacecraft name M = MEX R = Rosetta V = VEX	M
<u>g</u> g	ground station xx = ESA Cerbreros 32 = ESA New Norcia	32
ICLx	Data source IFMS closed-loop x = 1 => NN11 x = 2 => NN12 x = 3 => NN13	ICL1
L02	Data level L02	L02
SSS	File type D1X = X-band Doppler file channel 1 D1S = S-band Doppler file channel 1 D2X = X-band Doppler file channel 2 D2S = S-band Doppler file channel 2	D1X
уу	year	03
ddd	day of year	180
hhmm	start time of data in hour, minute	2345
qq	not used	00
ТАВ	Extension .TAB data file	ТАВ

Table 3-1: DOPPLER_OUTPUT file name Definition

Mars Express Orbiter Radio Science Venus Express Radio Science Exper	Rosetta Radio Science Investigations RSI Mars Express Orbiter Radio Science Experiment MaRS Venus Express Radio Science Experiment VeRa IFMS Doppler Processing Software : Level 1a to Level 2				
Document number Issue: 5 Revision: 0					
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	35 of 61	

IFMS-SPEC-3010: The format of the DOPPLER_OUTPUT_X file is defined in Table 3-2. The format of the DOPPLER_OUTPUT_S file is defined in Table 3-3.

IFMS-SPEC-3020: All data that are not available in the data file are set to a default value corresponding to their format description. For example data with format F10.3 are set to -99999.999. This default value indicates that the data is not a valid number and can not be used for further computations. For details see Table 3-2 and Table 3-3.

IFMS-SPEC-3030: The first and the last value of column 11 of the DOPPLER_OUTPUT_X file and DOPPLER_OUTPUT_S_file (calibration) is set to his default value due to the way of computation.

IFMS-SPEC-3040: If the differential Doppler can not be computed the differential Doppler will be set to -99999.999. This is the case if only X-band Doppler data exist, only S-band Doppler data exist and/or the sample interval of S-Band data and X-Band data are not equal.

Rosetta Radio Science Investigations RSI Mars Express Orbiter Radio Science Experiment MaRS Venus Express Radio Science Experiment VeRa					
IFMS Doppler Processing Software :	IFMS Doppler Processing Software : Level 1a to Level 2				
Document number Issue: 5 Revision: 0					
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	36 of 61	

Table 3-2 Definition of DOPPLER_OUTPUT_X file format

column	description	unit	resolution		
1	Sample number				
2	Ground received time as UTC in ISO format				
3	Ground received time as UTC in fractions of day of year starting with the first day of the year the data was recorded at 00:00.000	days	10 ⁻¹⁰ days		
4	Ground received time as elapsed terrestrial barycentric dynamic time (TDB) time since noon of the first calendar day of year 2000 (12:00 1 January 2000 TDB)	Sec	10 ⁻⁶ sec		
5	Geometric impact parameter <u>Propagation experiments:</u> approximate value of the closest approach of a downlink geometric ray path to the center of the reference body (Sun, planet, minor object). When two-way, the value is approximate average of uplink and downlink rays <u>Gravity observations:</u> geometric distance of the s/c from the center of mass of referenced body	km	10 ⁻³ m		
6	Transmit frequency ramp reference time UTC in ISO format The time (t0) at which the transmitted frequency would have been f_0 using the coefficients f_0 (column 7) and df (column 8). At any time t within the interval when those coefficients are valid, the transmitted frequency f_t may be calculated from $f_t = f_0 + df \cdot (t - t_0)$ For DSN two-way measurements: f_t is the uplink frequency of the ground transmitter; the f_t photon will reach the receiver one RTLT later. For DSN one-way measurements: f_t is the downlink frequency of the spacecraft transmitter; the f_t photon will reach the receiver OWLT later. In both cases, f_0 and df may change; but f_t is always continuous, and changes in the coefficients occur only on integer seconds. For IFMS measurements: $f_t = f_0$ because df=0.				
Rosetta Radio Science Investigations RSI Mars Express Orbiter Radio Science Experiment MaRS Venus Express Radio Science Experiment VeRa IFMS Doppler Processing Software : Level 1a to Level 2					
---	--------------------------------------	------------	---------	----	---------------------
Document number	Document number Issue: 5 Revision: 0				0
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Pa	ge	37 of 61
7 Transmit fr	equency corresp	onding to	time in	Hz	10 ⁻⁶ Hz

	Transmit frequency corresponding to time in column 6 <u>Two-way coherent modes:</u> Uplink frequency of ground station S-band order of 2100 MHZ X-band order of 7100 MHZ <u>One-way mode:</u> S/C transmission frequency X-band order of 8400 MHz S-band order of 2300 MHz	ΗZ	10 ° HZ
8	Uplink frequency ramp rate <u>DSN two-way coherent:</u> Time derivative of uplink frequency in column 7 <u>DSN one-way downlink mode:</u> Value of spacecraft frequency drift, if known and/or meaningful; -99999.999999 <u>IFMS measurements:</u> Ramp rate is always zero; df=0	Hz/sec	10 ⁻⁶ Hz/sec
9	Observed X-band antenna frequency Frequency of the signal at the terminals of the receiving antenna structure at UTC TIME columns 2 to 4 (t_r). Set to -9999999999999999999999999999999999	Hz	10 ⁻⁶ Hz
10	Predicted X-band antenna frequency Based on the ESOC reconstructed orbit file or SPICE kernels Expected frequency of the signal at the terminals of the receiving antenna structure at UTC TIME in columns 2 to 4 (t _r). The calculation includes geometrical effects (relative positions and motions of ground station and spacecraft, including Earth rotation and light time adjustments), tuning of both the transmitter and receiver and a model-based correction for one- or two-way (as appropriate) propagation through the Earth's atmosphere.	Hz	10 ⁻⁶ Hz
11	Correction of Earth atmosphere propagation Correction term for the propagation of the signal in the Earth atmosphere, based on meteorological data observed at the ground station site (MET-files)	Hz	10 ⁻⁶ Hz
12	Residual calibrated X-band frequency shift column 9 minus 10	Hz	10 ⁻⁶ Hz
13	Received signal level <u>Closed-loop data:</u> Signal level from AGC in decibels relative	dBm / dB	0.1 dB

-			
Mars Expr Venus Exp IFMS Dop Document		evision: age	0 38 of 61
	to one milliwatt (dBm). <u>Open-loop (RSR):</u> Signal level in decibels (dB) relative to an arbitrary reference.		
14	Differential Doppler $f_{s} - \frac{3}{11}f_{x}$ Where f_{s} and f_{x} are the received S-band and X- band frequencies If BAND_NAME = X (from the label file), f_{x} comes from column 9 in this table and f_{s} comes from column 9 in the file identified by SOURCE_ID (from the label file). If BAND_NAME = S (from the label file), f_{s} comes from column 9 in this table and f_{x} comes from column 9 in the file identified by SOURCE_ID (from the label file). if either band is not available, this column is set "-99999.999"		10 ⁻⁶ Hz
15	standard deviation of the observed antenna frequency X-band in column 9 (open-loop only) for closed-loop this value is set "-99999.999"	Hz	10 ⁻⁶ Hz
16	Received X-band signal quality (open-loop only) Ratio of observed received signal strength to the statistical standard deviation of the measurement, column 15 devided by column 19 For closed-loop this is value is set "-999.9"		0.1 dB
17	standard deviation of received signal level at X- band (open-loop) A statistical measure of the error in determining SIGNAL LEVEL (column 15) based on fit of a data spectrum to a sinc function. Uses the same arbitrary scale factor as column 15; units of dB. for closed-loop this is set "-999.9"		0.1 dB

Rosetta Radio Science Investigations RSI Mars Express Orbiter Radio Science Experiment MaRS Venus Express Radio Science Experiment VeRa				
IFMS Doppler Processing Software : Level 1a to Level 2				
Document number	Issue:	5	Revision:	0
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	39 of 61

Table 3-3: Definition of DOPPLER_OUTPUT_S file format

column	description	unit	resolution
1	Sample number		
2	Ground received time as UTC in ISO format		
3	Ground received time as UTC in fractions of day of year starting with the first day of the year the data was recorded at 00:00.000	days	10 ⁻¹⁰ days
4	Ground received time as elapsed terrestrial barycentric dynamic time (TDB) time since noon of the first calendar day of year 2000 (12:00 1 January 2000 TDB)	Sec	10 ⁻⁶ sec
5	Geometric impact parameter <u>Propagation experiments:</u> approximate value of the closest approach of a downlink geometric ray path to the center of the reference body (Sun, planet, minor object). When two-way, the value is approximate average of uplink and downlink rays <u>Gravity observations:</u> geometric distance of the s/c from the center of mass of referenced body	km	10 ⁻³ m
6	Transmit frequency ramp reference time UTC in ISO format The time (t0) at which the transmitted frequency would have been f_0 using the coefficients f_0 (column 7) and df (column 8). At any time t within the interval when those coefficients are valid, the transmitted frequency f_t may be calculated from $f_t = f_0 + df \cdot (t - t_0)$		
	For DSN two-way measurements: f_t is the uplink frequency of the ground $transmitter;$ the f_t photon will reach the receiverone RTLT later.For DSN one-way measurements: f_t is the downlink frequency of the spacecrafttransmitter; the f_t photon will reach the receiverOWLT later.OWLT later.In both cases, f_0 and df maychange; but f_t is always continuous, andchanges in the coefficients occur only on integerseconds.For IFMS measurements: $f_t = f_0$		
	because df=0.		

Rosetta R	adio Science Investigations RSI		
Mars Exp Venus Ex IFMS Dop Document	ress Orbiter Radio Science Experiment MaRS press Radio Science Experiment VeRa pler Processing Software : Level 1a to Level 2 number Issue: 5 R	evision: age	0 40 of 61
		0	
7	Transmitted frequency corresponding to time in column 6 <u>Two-way coherent modes:</u> Uplink frequency of ground station S-band order of 2100 MHZ X-band order of 7100 MHZ <u>One-way mode:</u> S/C transmission frequency X-band order of 8400 MHz S-band order of 2300 MHz	Hz	10 ⁻⁶ Hz
8	Uplink frequency ramp rate <u>DSN two-way coherent:</u> Time derivative of uplink frequency in column 7 <u>DSN one-way downlink mode:</u> Value of spacecraft frequency drift, if known and/or meaningful; -99999.999999 <u>IFMS measurements:</u> Ramp rate is always zero; df=0	Hz/sec	10 ⁻⁶ Hz/sec
9	Observed S-band antenna frequency Frequency of the signal at the terminals of the receiving antenna structure at UTC TIME columns 2 to 4 (t_r). Set to -9999999999999999999999999999999999		10 ⁻⁶ Hz
10	Predicted S-band antenna frequency Based on the ESOC reconstructed orbit file or SPICE kernels Expected frequency of the signal at the terminals of the receiving antenna structure at UTC TIME in columns 2 to 4 (t _r). The calculation includes geometrical effects (relative positions and motions of ground station and spacecraft, including Earth rotation and light time adjustments), tuning of both the transmitter and receiver and a model-based correction for one- or two-way (as appropriate) propagation through the Earth's atmosphere.		10 ⁻⁶ Hz
11	Correction of Earth atmosphere propagation Correction term for the propagation of the signal in the Earth atmosphere and ionosphere, based on meteorological data observed at the ground station site (MET-files)		10 ⁻⁶ Hz
12	Residual calibrated X-band frequency shift column 9 minus 10	Hz	10 ⁻⁶ Hz
13	Received S-band signal level	dBm /	0.1 dB

Rosetta Radio Science Investigations RSI
Mars Express Orbiter Radio Science Experiment MaRS
Venus Express Radio Science Experiment VeRa
IFMS Doppler Processing Software : Level 1a to Level 2
Document numberIssue:
5Revision:
00MEX-MRS-IGM-DS-3035Date:26.07.2005Page41 of 61

	<u>Closed-loop data:</u> Signal level from AGC in decibels relative to one milliwatt (dBm). <u>Open-loop (RSR):</u> Signal level in decibels (dB) relative to an arbitrary reference.	dB	
14	Differential Doppler $f_{\rm S} - \frac{3}{11} f_{\chi}$ Where $f_{\rm S}$ and f_{χ} are the received S-band and X- band frequenciesIf BAND_NAME = X (from the label file), f_{χ} comes from column 9 in this table and $f_{\rm S}$ comes from column 9 in the file identified by SOURCE_ID (from the label file).If BAND_NAME = S (from the label file), $f_{\rm S}$ comes from column 9 in this table and f_{χ} comes from the label file).If BAND_NAME = S (from the label file), $f_{\rm S}$ comes from column 9 in this table and f_{χ} comes from column 9 in the file identified by SOURCE_ID (from the label file).If either band is not available, this column is set "-99999.999"	Hz	10 ⁻⁶ Hz
15	standard deviation of the observed antenna frequency S-band in column 9 (open-loop only) for closed-loop this value is set "-99999.999"	Hz	10 ⁻⁶ Hz
16	Received S-band signal quality (open-loop only) Ratio of observed received signal strength to the statistical standard deviation of the measurement, column 15 devided by column 19 For closed-loop this is value is set "-999.9"	dB	0.1 dB
17	standard deviation of received signal level at S- band (open-loop) A statistical measure of the error in determining SIGNAL LEVEL (column 15) based on fit of a data spectrum to a sinc function. Uses the same arbitrary scale factor as column 15; units of dB. for closed-loop this is set "-999.9"	dB	0.1 dB

3.1.2 Label files

See [1] for more information.

3.1.3 Additional Output Files

3.1.3.1 Log file

The Module M_OUTPUT generates an additional output file a so called log file. This file contains the processing mode, the whole path of all input files, additional information like downlink and uplink frequency in Hz, the sample rate in samples per seconds, statistical data about the processed data like average value and standard deviation, version of the processing software and error messages.

The log file will not be distributed and is only intended for internal use. Therefore the filename of the log file is not complying with [1]. But in order to relate the log file with the corresponding data files the log file gets the file name of the corresponding DOPPLER_OUTPUT_X_file but instead of the ending .tab the ending .log is used. If a log file is already existing in the processing folder and the date are not automatically processed the log file gets the file name of the corresponding DOPPLER_OUTPUT_S_file with ending .log. An example of a log file is shown in Figure 3-1.

IFMS-SPEC-3100: The average values of the residuals of S-Band data and X-Band data are computed only for the first 40% of the data. The computation is done via the following formulation

$$\overline{f}_{res} = \frac{1}{N} \sum_{i=1}^{N} f_{res_i}$$

IFMS-SPEC-3110: The standard deviation of the residuals of S-Band data and X-Band data are computed only for the first 40% of the data. The computation is done via the following formulation

$$f_{resstd} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(f_{res_i} - \overline{f}_{res} \right)^2}$$

Rosetta Radio Science Investigations RSI				
Mars Express Orbiter Radio Science Experiment MaRS				
Venus Express Radio Science Experi	iment V	eRa		
IFMS Doppler Processing Software : Level 1a to Level 2				
Document number	Issue:	5	Revision:	0
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	43 of 61

MEX
GR
GRAVITY
FLAGS FROM PROCESS_OPTIONS FILE:
T Processing with Predict T Processing with AGC F Additional file containing the correct frequencies is needed T Active table of the X-band file contains the correct frequencies F Coherency flag is automatically set to false (i.e. one-way)
NUMBER OF INPUT FILES:
02 Number of doppler S-band files 02 Number of doppler X-band files 01 Number of Meteo files 02 Number of AGC S-Band files 02 Number of AGC X-Band files
FILES USED FOR PROCESSING:
Z:\processed_temp\mex\Orbit\2005\DOY_002_1_MEX\NN13_NN11\D1\NN13_MEX1_20 05_002_OP_D1_054220_0000 Z:\processed_temp\mex\Orbit\2005\DOY_002_1_MEX\NN13_NN11\D1\NN13_MEX1_20 05_002_OP_D1_054220_0001
Z:\processed_temp\mex\Orbit\2005\DOY_002_1_MEX\NN13_NN11\D1\NN11_MEX1_20 05 002 OP D1 054206 0000
Z:\processed_temp\mex\Orbit\2005\DOY_002_1_MEX\NN13_NN11\D1\NN11_MEX1_20 05 002 OP D1 054206 0001
Z:\processed_temp\mex\Orbit\2005\DOY_002_1_MEX\add\NN11_MEX1_2005_002_OP ME 054214 0000
Z:\processed_temp\mex\Orbit\2005\DOY_002_1_MEX\add\M32UNBWL02_PTW_050020 523_00.TAB
Z:\processed_temp\mex\Orbit\2005\DOY_002_1_MEX\NN13_NN11\D1\NN13_MEX1_20 05_002_OP_G1_054232_0000
Z:\processed_temp\mex\Orbit\2005\DOY_002_1_MEX\NN13_NN11\D1\NN13_MEX1_20 05_002_OP_G1_054232_0001
Z:\processed_temp\mex\Orbit\2005\DOY_002_1_MEX\NN13_NN11\D1\NN11_MEX1_20 05_002_OP_G1_054218_0000
Z:\processed_temp\mex\Orbit\2005\DOY_002_1_MEX\NN13_NN11\D1\NN11_MEX1_20 05_002_OP_G1_054218_0001

Rosetta Radio Science Investigations RSIMars Express Orbiter Radio Science Experiment MaRSVenus Express Radio Science Experiment VeRaIFMS Doppler Processing Software : Level 1a to Level 2Document numberIssue: 5MEX-MRS-IGM-DS-3035Date: 26.07.2005Page44 of 61

FILES CREATED DURING PROCESSING: _____ Z:/Processed_temp/MEX/Orbit/2005/DOY_002_1_MEX/NN13_NN11/D1/M32ICL3L02 _D1S_050020542_00.TAB Z:/Processed temp/MEX/Orbit/2005/DOY 002 1 MEX/NN13 NN11/D1/M32ICL1L02 _D1X_050020542_00.TAB Z:/Processed_temp/MEX/Orbit/2005/DOY_002_1_MEX/NN13_NN11/D1/M32ICL3L02 _D1S_050020542_00.LBL Z:/Processed temp/MEX/Orbit/2005/DOY 002 1 MEX/NN13 NN11/D1/M32ICL1L02 _D1X_050020542_00.LBL CONFIGURATION INFO: _____ UPLINK-FREQUENCY X-BAND: 7166619369.9976720809936523 DOWNLINK-FREQUENCY X-BAND: 8420060140.9852495193481445 SAMPLE-INTERVAL X-BAND: 1.00000000000000000 TRANSPONDER-RATIO X-BAND:880/749 UPLINK-FREQUENCY S-BAND: 7166619369.9976720809936523 DOWNLINK-FREQUENCY S-BAND: 2296380038.4505224227905273 1.00000000000000000 SAMPLE-INTERVAL S-BAND: TRANSPONDER-RATIO S-BAND:240/749 PROCESSING INFO _____ AVERAGE S-BAND RESIDUALS IN mHZ: -6.94218 STANDARD DEVIATION S-BAND RESIDUALS IN mHZ: 4.39143 AVERAGE X-BAND RESIDUALS IN mHZ: 9.68471 STANDARD DEVIATION X-BAND RESIDUALS IN mHZ: 14.90616 PLASMA-CORRECTION DONE WITH DIFFERENTIAL DOPPLER FILES OVERLAPPING IN TIME X-BAND-MODE: TWO-WAY S-BAND-MODE: TWO-WAY SOFTWARE INFO: _____ SOFTWARE NAME: ESA IFMS PROC DOP L1A TO L2 V2.0 CREATION TIME: 2005-05-27T12:23:41.000 PROCESSED BY: andert ERRORS: _____

Figure 3-1: Example of a log file

Rosetta Radio Science Investigations Mars Express Orbiter Radio Science Venus Express Radio Science Exper IFMS Doppler Processing Software :	Experin	eRa		
Document number	Issue:	5	Revision:	0
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	45 of 61

3.1.3.2 Frequency correction files

The data contained in the header and active table of the IFMS level 1a Doppler data file at X-band and S-band for reconstruction of the uplink frequency at groundstation should be equal because only one signal with one frequency is emitted from groundstation.

Sometimes the data for frequency reconstruction IFMS level 1a Doppler data file at X-band and S-band are not equal due to unknown problems on ESOC site. In this case the data for frequency reconstruction of the IFMS level 1a Doppler data file are used per default from the IFMS level 1a Doppler data file at X-band for processing both files and a data file containing information about the source file, the output file, the file in which the frequency is changed and the original and new frequency and the according label file is generated.

IFMS-SPEC-3150: The UPLINK_CORRECTION and the according label file names are defined as

Acronym	Description	Example
nn	IFMS 1, 2 or 3	NN11
		NN12
		NN13
d	Doppler channel 1 or 2	1
		2
eee	File ending	TAB (Data file)
		LBL (Label file)

UPLINK_FREQ_CORRECT_NN nn_Dd.eee

Table 3-4: File Naming Convention of the uplink frequency correction file and the corresponding label file.

 Table 3-5 Definition of UPLINK_CORRECTION file format

column	description
1	Original Level 1a file in which the wrong frequency information are detected
2	Level 2 file in which the corrected frequency information are incorporated
3	Original uplink frequency [Hz]
4	Corrected uplink frequency [Hz]
5	Source file where the correct frequency is stored

A detailed description of the label files can be found in [1].

Rosetta Radio Science Investigations RSI Mars Express Orbiter Radio Science Experiment MaRS Venus Express Radio Science Experiment VeRa IFMS Doppler Processing Software : Level 1a to Level 2						
Document number Issue: 5 Revision: 0						
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	46 of 61		

4 USAGE OF THE SOFTWARE

The above described software is embedded in a PERL script that calls the software. The processing options like mission, observation type and number of files can be adjusted by means of a graphical interface. In addition there is a possibility provided to process an amount of data automatically. But for this a log file (see section 3.1.3.1) must exist.

The selection of the respective files for processing is done via another graphical interface shown below in Figure 4-1. The simultaneously arising DOS window (see Figure 4-2) indicates what kind of file is needed and shows subsequently the processing status.

öffnen				? ×
<u>S</u> uchen in:	🔁 D1		▼	
Verlauf Verlauf Desktop Arbeitsplatz	M32ICL 1L02_D1% M32ICL 1L02_D1% M32ICL 1L02_D1% M32ICL 3L02_D1% MN11_MEX1_200 MN11_MEX1_200 MN11_MEX1_200 MN11_MEX1_200 MN11_MEX1_200 MN11_MEX1_200	<pre><-043300357_00.LBL <-043300357_00.log <-043300357_00.TAB <-043300357_00.Xls 5_043300356_00.LBL 5_043300356_00.TAB !4_330_OP_D1_035704_0000 !4_330_OP_D1_035704_0000 !4_330_OP_D1_035704_0002 !4_330_OP_D1_035704_0003 !4_330_OP_G1_035706_0000 !4_330_OP_G1_035706_0002</pre>	 NN11_MEX1_2004_330 NN13_MEX1_2004_330 NN13_MEX1_2004_330 NN13_MEX1_2004_330 NN13_MEX1_2004_330 NN13_MEX1_2004_330 NN13_MEX1_2004_330 NN13_MEX1_2004_330 NN13_MEX1_2004_330 NN13_MEX1_2004_330 S_AGC_komplett.png S_Calibration_komplett.png S_Diff Doppler_1.png S_Diff Doppler_2.png 	_OP_D1_035634 _OP_D1_035634 _OP_D1_035634 _OP_D1_035634 _OP_G1_035638 _OP_G1_035638 _OP_G1_035638 _OP_G1_035638 _OP_G1_035638
	Datei <u>n</u> ame:		•	Ö <u>f</u> fnen
	Dateityp:	All files (*.*)	•	Abbrechen

Figure 4-1: Graphical interface for selection of the input files.

					_		
Rosetta Radio Science Investigations RSI							
Mars Express Orbiter Radio Science	Experin	nent MaRS					
Venus Express Radio Science Exper	iment V	eRa					
IFMS Doppler Processing Software :	Level 1a	a to Level 2					
Document number	Issue:	5	Revision:	0			
MEX-MRS-IGM-DS-3035 Date: 26.07.2005 Page 47 of 61							
					_		

Figure 4-2: DOS window showing information about the kind of file needed to be inputted and processing status.

4.1 GRAPHICAL INTERFACE

The graphical interface shown in Figure 4-3 is divided in several adjustment parts for processing. The programming language for the graphical interface is Perl.

1. Mission

- **MEX**: Mars-Express
- ROS: Rosetta
- **VEX**: Venus-Express

2. Observation type

- **Commissioning**: Part of the mission where the retrieved data are only used for calibration aims.
- Occultation: Occultation measurements are performed
- Target Gravity: A specified target is chosen for gravity measurements
- Global Gravity: Global measurements are performed
- **Phobos**: Gravity measurements at the Mars moon Phobos are performed (only for Mars-Express applicable)

Rosetta Radio Science Investigations RSI Mars Express Orbiter Radio Science Experiment MaRS Venus Express Radio Science Experiment VeRa IFMS Doppler Processing Software : Level 1a to Level 2						
Document number Issue: 5 Revision: 0						
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	48 of 61		

3. Procession mode:

- **Occultation**: Only tropospheric calibration (see section 2.4.1 is applied)
- **Gravity**: Tropospheric and plasma calibration is applied. The plasma calibration is done via the differential Doppler (see section 2.4.2 and 2.4.3 for more details). If the conditions for plasma calibration are not fulfilled no plasma correction will be applied.

4. Automatically processing

In this part the year and the day of year of the data to process must be entered. If the data are automatically processed all other information required for processing are read in from the corresponding log file that is stored in the same folder as the data to process. Therefore no other options are need to be adjusted. The format of the year must be yyyy for example 2004 and for the day of year ddd for example 009. To process only one day start day and stop day have to be the same.

5. Additional processing information

- **One way operation**: If the information in the header and the active table of the IFMS Doppler files of level 1a are wrong the operation mode can be set manually to one way by setting this button.
- Additional file for frequency correction: If the information in the header and active table of the IFMS Doppler files of level 1a for frequency reconstruction are in both files not correct it is possible to add another file containing the correct frequency reconstruction information to the process operation. This can be done by setting this button
- Active table of X-Band is containing the correct frequency data: If the information in the header and active table of the IFMS Doppler files of level 1a for frequency reconstruction are not equal the information in the X-Band data are used per default for both files. Does the S-band is containing the correct data and this data should be used this can be done by not setting this button.

6. Number of input files

This part defines the number of files to process and which kind of files are available. Both X-band and S-band files and the meteo file are required for processing. The processing can be done without a predict file and AGC file but not all columns of the output file will get a valid value. The Klobuchar file is only required for plasma correction (see section 2.4.4 for more details) for Occultation and for Gravity measurements if no differential Doppler is available. Rosetta Radio Science Investigations RSI
Mars Express Orbiter Radio Science Experiment MaRS
Venus Express Radio Science Experiment VeRaIFMS Doppler Processing Software : Level 1a to Level 2Document numberIssue:5Revision:0MEX-MRS-IGM-DS-3035Date:26.07.2005Page49 of 61

74 Perl IFMS Doppler 1A TO 2
Your login: andert
Please choose Mission: MEX ROS VEX
Select Observation Type:
C COMMISSIONING
OCCULTATION
C TARGET GRAVITY
C GLOBAL GRAVITY
C PHOBOS
Select Processing Mode:
OCCULTATION
C GRAVITY
Autoprocessing: ON Year: Start: End:
One-Way Operation: YES
Additional file for frequency correction: YES
Active table of X-Band is containing the correct frequency data: YES
X-Band Doppler File available 1
S-Band Doppler File available 1
✓ AGCX-Band File available 1
GC S-Band File available
MET File available
✓ UBW File available
🔽 Klobuchar File available
Quit
Process IFMS DOPPLER

Rosetta Radio Science Investigations RSI Mars Express Orbiter Radio Science Experiment MaRS						
Venus Express Radio Science Experiment VeRa IFMS Doppler Processing Software : Level 1a to Level 2						
Document number Issue: 5 Revision: 0						
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	50 of 61		

4.2 ADDITIONAL OUTPUT FILES

Several files with additional information about the processed data are produced during the processing operation by means of a PERL script which is called by the main script.

4.2.1 Data validation Excel sheet

An Excel sheet is automatically generated during the processing operation. The information contained in the Excel sheet is read in from the above described log file. This Excel sheet is used for data validation aims and is complemented with additional information during data validation and can accordingly be copied into a log book comprising processing information about all level 2 data.

The excel sheet will not be distributed and is only intended for internal use. Therefore the filename of the Excel sheet is not complying with [1]. But in order to relate the Excel sheet with the corresponding data files the Excel sheet gets the file name of the corresponding DOPPLER_OUTPUT_X_file but instead of the ending .tab the ending .xls is used.

4.2.2 Data illustration

During the processing operation a number of plots illustrating the processed data are automatically generated.

- **Correction of the earth atmosphere propagation** (column 11 in the data file of level 2) in Hz is plotted over the entire time period. This is done for S-band and X-band Doppler data.
- **Residual calibrated data** (column 12 in the data file of level 2) in Hz is plotted over the entire time period for S-band and X-Band Doppler data. In addition partial plots are generated. If the total number of sample points is bigger than 3600 the data to illustrate is divided into subintervals with 3600 data points or less for the remaining data points and plotted. If the total number of sample points is smaller than 3600 the data to illustrate is divided into subintervals with 600 data points or less for the remaining data points and plotted.
- **Received signal level** (column 13 in the data file of level 2) in dBm is plotted over the entire time period for S-band and X-Band Doppler data.
- **Differential Doppler** (column 14 in the data file of level 2) is plotted over the entire time period for S-band and X-Band Doppler data if it is available. In addition partial plots are generated. If the total number of sample points is bigger than 3600 the data to illustrate is divided into subintervals with 3600 data points or less for the remaining data points and plotted. If the total number of sample points is smaller than 3600 the data to illustrate is divided into subintervals with 3600 data points or less for the remaining data points and plotted.

Rosetta Radio Science Investigations RSI Mars Express Orbiter Radio Science Experiment MaRS Venus Express Radio Science Experiment VeRa IFMS Doppler Processing Software : Level 1a to Level 2						
Document number Issue: 5 Revision: 0						
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	51 of 61		

4.3 ERRORS

The following describes some errors that maybe occur during the processing operation.

• A kernel defined in the list of loaded kernels is not available in the folder where all kernels for processing are stored. Therefore the missing kernel has to be copied into the kernel folder. An example of the error message is shown in Figure 4-4.

Figure 4-4: Example of an error message if a kernel file is missing.

Rosetta Radio Science Investigations RSI Mars Express Orbiter Radio Science Experiment MaRS Venus Express Radio Science Experiment VeRa						
IFMS Doppler Processing Software : Level 1a to Level 2						
Document number Issue: 5 Revision: 0						
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	52 of 61		

 A wrong kernel file containing ephemeris data with inappropriate time stamps is loaded. This has to be corrected in the module M_SPICE. An example of the error message is shown in Figure 4-5

🚱 D:\Coding\Perl\586\bin\perl.exe
D0Y_365_MEX
find_log done!!
STARTS TO WORK
Toolkit version: N0053
SPICE(SPKINSUFFDATA)
Insufficient ephemeris data has been loaded to compute the state of -41 (MARS EXPRESS) relative to 0 (SOLAR SYSTEM BARYCENTER) at the ephemeris epoch 2004 DEC 30 05:34:15.683.
A traceback follows. The name of the highest level module is first. SPKEZR> SPKEZ> SPKAPP> SPKSSB> SPKGEO
Oh, by the way: The SPICELIB error handling actions are USER-TAILORABLE. You can choose whether the Toolkit aborts or continues when errors occur, which error messages to output, and where to send the output. Please read the ERROR "Required Reading" file, or see the routines ERRACT, ERRDEV, and ERRPRT.
Return code 1
Sorry, an error occurred! No output produced! 🗾 🔽

Figure 4-5: Example of an error message if a wrong kernel file is loaded.

• Two or more identical lines in the data file are existing and therefore the interpolation routine is not working. Consequently the redundant information has to be erased. This can happen in the meteo file of level 1a and the predict file. An example of the error message is shown in Figure 4-6. If the meteo file contains redundant data the terminal error arises after READ DOPPLER DONE.

Rosetta Radio Science Investigations RSI Mars Express Orbiter Radio Science Experiment MaRS Venus Express Radio Science Experiment VeRa IFMS Doppler Processing Software : Level 1a to Level 2					
Document numberIssue:5Revision:0MEX-MRS-IGM-DS-3035Date:26.07.2005Page53 of 61					

Real D:\Coding\Perl\586\bin\perl.exe				<u> </u>
Start:365 Ende:365				
DOY_365_MEX				
find_log_done!!				
STARTS TO WORK READ DOPPLER DONE				
READ METEO DONE				
TROPO CALIBRATON DONE				
DIFFERENTIAL DOPPLER DONE				
PLASMA CALIBRATION DONE				
*** TERMINAL ERROR 2 from DC1SOR.	Points in the	data poim	nt abscissas arrau	
*** XDATA, must be distin	nct, but XDATA(2			
*** 1.576555624123737D+08				
Here is a traceback of subprog Routine name	Error type E			
			-	
DC1SOR	5		(Called internal)	
DC2DEC	0	0	(Called internal)	
DC2INT DC2IEZ	0 0	0 0	(Called internal) (Called internal)	
DCSIEZ	0	0	(carred finter narr	-97
USER	Ō	Ō		
Kein Logfile				~

Figure 4-6: Example of an error message if redundant data is contained in the predict file.

APPENDIX A

<u>Computation of the sky frequency received at ground station from doppler</u> predicts

Acronyms:

- fs_{gs} = frequency emitted from ground station
- fs_{sc} = frequency emitted from spacecraft
- fr_{sc} = frequency received at spacecraft
- fr_{gs} = frequency received at ground station
- Δf_{sc} = frequency shift received at spacecraft in the uplink signal emitted from groundstation
- Δf_{gs} = frequency shift received at groundstation in the downlink signal emitted from the spacecraft
- K = transponder conversion ratio
- P_{UL} = doppler predict of the uplink signal independent from frequency
- P_{DL} = doppler predict of the downlink signal independent from frequency

General relations:

$$P_{UL} = \frac{\Delta f_{sc}}{fs_{gs}}$$

$$P_{DL} = \frac{\Delta f_{gs}}{fs_{sc}}$$

Rosetta Radio Science Investigations RSI Mars Express Orbiter Radio Science Experiment MaRS						
Venus Express Radio Science Experiment VeRa IFMS Doppler Processing Software : Level 1a to Level 2						
Document number Issue: 5 Revision: 0						
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	55 of 61		

One-way case

$$\Delta f_{gs} = fs_{sc} \cdot P_{DL}$$

it is needed

$$fr_{gs} = \Delta f_{gs} + fs_{sc}$$

therefore the sky frequency is

$$fr_{gs} = fs_{sc} \cdot P_{DL} + fs_{sc}$$

or

$$fr_{gs} = fs_{sc} \cdot \left(P_{DL} + 1\right)$$

Rosetta Radio Science Investigations RSI Mars Express Orbiter Radio Science Experiment MaRS					
Venus Express Radio Science Experiment VeRa IFMS Doppler Processing Software : Level 1a to Level 2					
Document number Issue: 5 Revision: 0					
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	56 of 61	

Two-way case:

$$\Delta f_{sc} = fs_{gs} \cdot P_{UL}$$
$$\Delta f_{gs} = fs_{sc} \cdot P_{DL}$$

needed is

 $fr_{gs} = \Delta f_{gs} + fs_{sc}$

therefore

$$fr_{gs} = fs_{sc} \cdot P_{DL} + fs_{sc}$$

or

$$fr_{gs} = fs_{sc} \cdot \left(P_{DL} + 1\right)$$

with

$$\begin{aligned} fs_{sc} &= K \cdot fr_{sc} \\ \Rightarrow & fr_{gs} = K \cdot fr_{sc} \cdot (P_{DL} + 1) \\ \Rightarrow & fr_{gs} = K \cdot (fs_{gs} + \Delta f_{sc}) \cdot (P_{DL} + 1) \\ \Rightarrow & fr_{gs} = K \cdot fs_{gs} \left(1 + \frac{\Delta f_{sc}}{fs_{gs}} \right) \cdot (P_{DL} + 1) \\ \Rightarrow & fr_{gs} = K \cdot fs_{gs} \left(1 + P_{UL} \right) \cdot (1 + P_{DL}) \end{aligned}$$

and therefore the sky frequency is

$$fr_{gs} = K \cdot fs_{gs} \left(1 + P_{UL} + P_{DL} + P_{UL} \cdot P_{DL} \right)$$

Rosetta Radio Science Investigations RSI Mars Express Orbiter Radio Science Experiment MaRS Venus Express Radio Science Experiment VeRa					
IFMS Doppler Processing Software : Level 1a to Level 2					
Document number Issue: 5 Revision: 0					
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	57 of 61	

APPENDIX B

Computation of the plasma correction using the differential doppler

The differential doppler is computed via

$$df = f_{Santenna}\Big|_{tropo_corrected} - \frac{3}{11}f_{X,antenna}\Big|_{tropo_corrected}$$
(1.12)

or

$$df = -\frac{1}{2c} \frac{1}{4p^2} \frac{e^2}{m_e e_0} \left\{ \frac{1}{f_s^2} - \frac{1}{f_\chi^2} \right\} f_s \frac{dl}{dt}$$
(1.13)

therefore the temporal change in electron content is

$$\frac{dl}{dt} = -\left\{\frac{1}{2c}\frac{1}{4p^2}\frac{e^2}{m_e e_0}\right\}^{-1}\frac{df}{f_s}\left\{\frac{1}{f_s^2} - \frac{1}{f_x^2}\right\}^{-1}$$
(1.14)

the plasma correction for S-Band is

$$f_{Santenna,cal} = f_{Santenna} \Big|_{tropo_corrected} + \frac{1}{2c} \frac{1}{4p^2} \frac{e^2}{m_e e_0} \frac{1}{f_S} \frac{dl}{dt}$$
(1.15)

and for X-Band

$$f_{Xantenna,cal} = f_{X,antenna}\Big|_{tropo_corrected} + \frac{1}{2c} \frac{1}{4p^2} \frac{e^2}{m_e e_0} \frac{1}{f_X} \frac{dI}{dt}$$
(1.16)

If equation (1.14) is inserted into (1.15)

$$f_{Santennacal} = f_{Santenna}\Big|_{tropo_corrected} + \frac{1}{2e} \frac{1}{4p^2} \frac{e^2}{m_e e_0} \frac{1}{f_S} \left(-\left\{ \frac{1}{2e} \frac{1}{4p^2} \frac{e^2}{m_e e_0} \right\}^{-1} \frac{df}{f_S} \left\{ \frac{1}{f_S^2} - \frac{1}{f_X^2} \right\}^{-1} \right)$$

$$\Rightarrow \quad f_{Santennacal} = f_{Santenna}\Big|_{tropo_corrected} - df \left\{ \frac{f_S^2}{f_S^2} - \frac{f_S^2}{f_X^2} \right\}^{-1}$$

Rosetta Radio Science Investigations RSI						
Mars Express Orbiter Radio Science Experiment MaRS						
Venus Express Radio Science Experiment VeRa						
IFMS Doppler Processing Software : Level 1a to Level 2						
Document number Issue: 5 Revision: 0						
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	58 of 61		

and with the general relations

$$f_{\chi} = \frac{11}{3} f_{S} \quad \Leftrightarrow \quad \frac{f_{\chi}}{f_{S}} = \frac{11}{3} \quad \Leftrightarrow \quad \frac{f_{S}}{f_{\chi}} = \frac{3}{11}$$
 (1.17)

follows than

$$f_{\text{Santennacal}} = f_{\text{Santenna}}\Big|_{\text{tropo}_corrected} - df \left\{ 1 - \frac{9}{121} \right\}^{-1}.$$

Therefore equation (1.15) ca be written as

$$f_{Santenna,cal} = f_{Santenna}\Big|_{tropo_corrected} - df \frac{121}{112}$$
(1.18).

A similar computation can be done for equation (1.16).

$$\Rightarrow f_{X,antenna,cal} = f_{X,antenna} \Big|_{tropo_corrected} - d f \left\{ \frac{f_X f_S}{f_S^2} - \frac{f_X f_S}{f_X^2} \right\}^{-1}$$

Using equation (1.17)

$$\Rightarrow f_{X,antenna,cal} = f_{X,antenna} \Big|_{tropo_corrected} - dt \left\{ \frac{11}{3} - \frac{3}{11} \right\}^{-1},$$

therefore equation (1.16) can be written as

$$f_{Xantennacal} = f_{X,antenna}\Big|_{tropo_corrected} - df \frac{33}{112}$$
(1.19)

Rosetta Radio Science Investigations RSI Mars Express Orbiter Radio Science Experiment MaRS Venus Express Radio Science Experiment VeRa IFMS Doppler Processing Software : Level 1a to Level 2					
Document numberIssue:5Revision:0MEX-MRS-IGM-DS-3035Date:26.07.2005Page59 of 61					

APPENDIX C

Earth Klobuchar Ionosphere Model (see attached document CGIM_ANNEX_C.pdf)

Rosetta Radio Science Investigations RSI Mars Express Orbiter Radio Science Experiment MaRS						
Venus Express Radio Science Experiment VeRa IFMS Doppler Processing Software : Level 1a to Level 2						
Document number Issue: 5 Revision: 0						
MEX-MRS-IGM-DS-3035	Date:	26.07.2005	Page	60 of 61		

Page left free

MAPPING AND PREDICTING THE IONOSPHERE

Stefan Schaer, Gerhard Beutler, Markus Rothacher Astronomical Institute, University of Berne CH-3012 Berne, Switzerland

ABSTRACT

The Center for Orbit Determination in Europe (CODE) produces daily maps of the Earth's ionosphere on a regular basis since January 1, 1996. These global ionosphere maps (GIMs) are derived from exactly the same GPS tracking data — doubly differenced carrier phase measurements — as those used for the determination of CODE core products delivered to the IGS like precise GPS orbits, earth orientation parameters (EOPs), station coordinates and velocities. For the ionospheric product we have to analyze the so-called *geometry*-free linear combination (LC), which primarily contains ionospheric information, as opposed to the *ionosphere*-free LC, which contains the "geometrical" information and completely eliminates the influence of the ionospheric refraction (ignoring higher-order terms). At present (March 1998), the GPS tracking network processed at CODE consists of more than 110 globally distributed stations of the International GPS Service for Geodynamics (IGS).

After reprocessing all 1995 IGS data using the "Bernese Processing Engine" [Rothacher et al., 1996a], a long-time series of daily GIM parameters covering a time span of about 3.2 years is at our disposal. On the one hand this ionosphere time series reveals the evolution of the total electron content (TEC) on a global scale, on the other hand it indicates that *short*-term as well as *long*-term predictions for CODE GIM parameters are possible. We discuss the time series for a few selected TEC parameters and develop a method to predict the TEC parameters. Futhermore, we describe how the temporal resolution can be increased when using spherical harmonic (SH) expansions to model the global TEC. First attempts estimating 2-hour maps are encouraging.

CODE'S IONOSPHERE PRODUCTS — AN OVERVIEW

The principles of the TEC mapping technique used at CODE were described in [Schaer et at., 1995] and [Schaer et al., 1996a].

At present the following ionosphere products are generated on a routine basis:

Proceedings of the IGS AC Workshop, Darmstadt, Germany, February 9-11, 1998

- 24-hour global ionosphere maps (GIMs) are produced using double-difference phase or phase-smoothed code observations. The *phase*-derived TEC maps proved their usefulness for ambiguity resolution (AR) on long baselines [Rothacher et al., 1996b].
- *Rapid* global maps are available with a delay of about 12 hours, the *final* ones after 3 days (in the IONEX format [Schaer et al., 1998]).
- Regional (European) maps are produced as well and are also used to support AR. On the average 90% of the initial carrier phase ambiguities can be resolved reliably — without making use of code measurements. Daily IONEX files containing hourly snapshots of the ionosphere are made available via anonymous ftp.
- Daily sets of differential code biases (DCBs) for all GPS satellites (and the contributing receivers) are estimated at CODE since October 1997.

Figure 1 shows the daily DCB estimates (dots) for 27 GPS satellites from day 022, 1998, to day 071, 1998, and the combined DCBs (circles) aligning all satellite-specific DCBs in the sense that the overall mean becomes *zero* (to obtain a virtual, but very stable reference). However, there are a couple of PRNs with *drifting* DCBs with respect to the remaining PRNs. PRN 08, which was launched few months ago, shows a significant drift of almost -0.5 ns over 50 days. We observe an increased root-mean-square error (RMS) for this satellite when assuming and modeling the DCBs as constant quantities (see Figure 1 and Table 1).

Figure 1. Daily PRN-specific DCB estimates (dots) for 27 GPS satellites from day 022, 1998, to day 071, 1998, and combined DCBs (circles)

The combined values of the satellite-specific DCBs taking into account the variance information of the individual solutions are listed in Table 1. In addition, the weighted RMS (WRMS) of the daily estimation is given for each PRN. The total WRMS of the 50-day DCB combination amounts to 0.08 ns. Let us mention that the estimated receiver-specific DCBs are of the order of ± 15 ns and show a day-to-day scattering highly depending on the station considered. Note that the DCB results presented here originate from a special solution where we simultaneously estimate n station-specific TEC models leading to 16 n TEC plus n + 27 DCB parameters per day in total, where n is the number of stations processed.

PRN	DCB (ns)	WRMS (ns)	PRN	DCB (ns)	WRMS (ns)
01	-0.63	0.06	17	-1.74	0.06
02	-1.90	0.07	18	+0.49	0.07
03	+0.14	0.06	19	-0.87	0.08
04	+1.26	0.06	21	-1.41	0.08
05	+0.11	0.07	22	-0.23	0.06
06	+0.51	0.07	23	-0.97	0.06
07	-1.68	0.11	24	-2.19	0.06
08	+0.35	0.16	25	+2.23	0.05
09	+0.86	0.07	26	+1.51	0.09
10	-1.57	0.07	27	-0.04	0.08
13	+5.16	0.06	29	+2.17	0.07
14	-1.22	0.07	30	+2.22	0.06
15	-1.34	0.07	31	+1.19	0.07
16	-2.43	0.08			

Table 1. Combined DCBs and weighted RMS errors of daily estimation

Figure 2 shows snapshots of (a) a *phase*-derived and (b) a *code*-derived 24-hour TEC map for day 017, 1998 (taken at 12:00 UT). The number of contributing stations was 79 on that particular day. Light fields indicate small TEC, dark ones large TEC (up to 37.6 and 39.0 TECU here). The level lines are drawn at intervals of 2.5 TECU. There is no significant difference between the two maps.

LONG-TIME SERIES OF GLOBAL TEC PARAMETERS

The long-time series of global TEC parameters available at CODE covers over 1168 days and includes $(8 + 1)^2 = 81$ SH coefficients (the SH expansion was truncated at degree and order 8). The zero-degree SH coefficient representing the mean TEC on a global scale characterizes the ionospheric activity pretty well. The evolution of this particular TEC parameter during a period of low solar activity is shown in Figure 3. The daily estimates (dots) and a smoothed curve to better visualize the behavior are given. One recognizes a long-term trend caused by the 11-year solar cycle, annual and semi-annual variations, and relatively strong short-term fluctuations with periods of the order of 27 days due to the Sun's rotation. We clearly see maxima at equinox and minima at solstice, however, the minima in summer are more pronounced than those in winter. The recent ionospheric minimum was observed in summer 1996.

(a) *Phase*-derived TEC map

Figure 2. 24-hour TEC maps for day 017, 1998

Figure 3. Zero-degree coefficient (mean TEC) from day 001, 1995 to day 072, 1998

Figures 4 and 5 illustrate a few other SH coefficients showing similar periodicities and features as mentioned above.

Figure 4. Zonal SH terms

Figure 5. Tesseral SH terms

When correlating the mean TEC values and the 10.7-cm solar flux, the correlation factor is almost 0.8, reaching its maximum at a lag of 1 day.

PREDICTING THE IONOSPHERE

Let us split up the "ionospheric signal" \boldsymbol{l} — a time series of SH TEC parameters $e_{ij}(t_k)$ — into a *deterministic* component \boldsymbol{d} , which can be represented by a so-called trend function $\Phi(t)$, a *stochastic* component \boldsymbol{s} , and a noise component \boldsymbol{n} :

$$\boldsymbol{l} = \boldsymbol{d} + \boldsymbol{s} + \boldsymbol{n} \quad \text{or} \quad \boldsymbol{l} - \boldsymbol{\Phi}(\boldsymbol{x}_0) = \boldsymbol{A} \, \boldsymbol{x} + \boldsymbol{s} + \boldsymbol{n}. \tag{1}$$

As our trend function we use a harmonic expansion with a few prominent periods (11, 1, and 1/2 years)

$$\Phi(t) = a_0 + \sum_{i=1}^{m} \left(a_i \, \cos(\omega_i \, t) + b_i \, \sin(\omega_i \, t) \right) \quad \text{with} \quad \omega_i = \frac{2 \, \pi}{\tau_i}.$$
(2)

The unknown parameters \boldsymbol{x} of the trend function are estimated in a least-squares adjustment

$$\boldsymbol{x} = \left(\boldsymbol{A}^T \, \boldsymbol{C}_{zz}^{-1} \, \boldsymbol{A}\right)^{-1} \, \boldsymbol{A}^T \, \boldsymbol{C}_{zz}^{-1} \, \left(\boldsymbol{l} - \boldsymbol{\Phi}(\boldsymbol{x}_0)\right), \tag{3}$$

where

$$\boldsymbol{x}^{T} = [a_0, a_1, b_1, \dots, a_n, b_n] \quad \text{and} \quad \boldsymbol{C}_{zz} = \boldsymbol{C}_{ss} + \boldsymbol{C}_{nn}.$$
 (4)

 C_{ss} and C_{nn} are the covariance matrices for the actual "signal" and the pure "noise", respectively. Finally, if we perform short-term predictions (or interpolations), the *stochastic* component s is of interest, too:

$$\begin{bmatrix} s \\ n \end{bmatrix} = \begin{bmatrix} C_{ss} \\ C_{nn} \end{bmatrix} C_{zz}^{-1} (\boldsymbol{l} - \boldsymbol{\Phi}(\boldsymbol{x})).$$
(5)

The autocovariance function γ , which is used to set up the covariance matrices C_{ss} and C_{zz} , may be evaluated as

$$\gamma(h\,\Delta t) = \frac{1}{n} \sum_{k=1}^{n-|h|} (e_{ij}(t_k) - \Phi(t_k)) \left(e_{ij}(t_{k+|h|}) - \Phi(t_{k+|h|}) \right). \tag{6}$$

 $h \Delta t$ denotes the lag; $\gamma(0)$ is the variance of the stochastic component.

The autocovariance function (ACF) of the mean TEC, i.e., the SH coefficient e_{00} , is given in Figure 6. We notice that the ACF mainly reflects the Sun's rotation period of approximately 27 days.

Figure 6. Autocovariance function of zero-degree coefficient for lags up to 120 days

Figure 7 shows the results when predicting (and interpolating) the mean TEC based on (a) a two-year time series only and (b) the complete time series. The daily GIM estimates are represented by dots. The trend function $\Phi(t)$ is given by the solid, smooths line and follows the general signal pretty well. It is amazing, considering that the time span of two years is quite short compared to a solar cycle, how well the extrapolated trend function shown in Figure 7a matches the real TEC observations shown in Figure 7b. The rapidly varying line also includes the *stochastic* component covering a prediction length of 30 days.

Figure 7. Prediction of mean TEC based on (a) a two-year time series and (b) the complete time series

When inspecting Figure 7 we see that the prediction consisting of d + s does not exactly match the daily estimates because the matrix C_{nn} is not a zero matrix but contains the variances provided by the primary ionosphere parameter estimation.

By performing the least-squares collocation step for each SH coefficient using the same prediction length, merging the predicted TEC coefficients to a full set of SH parameters, and writing a corresponding GIM file, we get a procedure that allows us to predict entire CODE GIMs! A software tool solving that task has been developed.

HIGH TEMPORAL RESOLUTION TEC USING SPHERICAL HARMONIC EXPANSIONS

In this section we discuss a method on how to increase the temporal resolution of the TEC representation when using spherical harmonic (SH) expansion.

SH expansions are well suited to model time-independent quantities given on a spherical surface. When dealing with the ionosphere, the entire sphere is probed by GPS stations when deriving one-day TEC maps. The disadvantage is a poor temporal resolution because of the assumption of a "frozen" ionosphere co-rotating with the Sun. However, the general ionospheric behavior may well be described with daily TEC maps. When generating several TEC maps per day, one has to expect at times unreasonable — very high or negative — TEC estimates in regions where no stations are located. One may avoid such problems by limiting the variations between consecutive TEC maps with "relative" a priori constraints between consecutive maps by adding "relative" pseudo-observations of the type

$$\Delta e_{ij} = e_{ij}(t_k) - e_{ij}(t_{k-1}) = 0 \quad \text{for} \quad k = 2, \dots, n$$
(7)

to the system of normal equations stemming from actual observations. Note that the a priori sigmas $\sigma_{\Delta e_{ij}}$ used for the pseudo-observations Δe_{ij} do not affect the "absolute" TEC determinations. Optimal values for these sigmas have to be found experimentally. Due to the fact that we deal with *normalized* SH coefficients, we may simplify this problem by setting $\sigma_{\Delta e_{ij}} \approx \sigma_{\Delta e}$.

A series of 12 2-hourly TEC maps (taken at $01:00, 03:00, \ldots, 23:00$ UT) is shown in Figure 8a. The typical double-peak structure co-rotating with the Sun fairly well follows the geomagnetic equator, even when referring the TEC representation to a solar-geographic coordinate system. Nevertheless, Figure 8a indicates that a solar-geomagnetic reference frame is more appropriate.

The associated RMS maps shown in Figure 8b describe the formal accuracy of the TEC as a function of earth-fixed coordinates and basically reflect the station coverage. "Light" regions indicate small RMS (see, e.g., Europe or North America), "dark" regions mean large RMS (see, e.g., the region around the station O'Higgens, Antarctica). The ratio of the largest and smallest RMS is about 11. Such RMS maps may be included in IONEX files [Schaer et al., 1998].

(b) RMS maps

Figure 8. 2-hourly TEC and RMS maps for day 017, 1998

The CODE Analysis Center produces global and European ionosphere maps by analyzing double-difference phase observations (using an interferometric processing technique) and phase-smoothed code observations (processing one-way observations) on a regular basis. Some changes were recently made in our processing scheme: The elevation cut-off angle was decreased from 20 to 10 degrees and at the same time the elevation-dependent observation weighting defining $\cos^2 z$ as weight on the zero-difference level, where z is the zenith distance, was activated. The maximum degree of the SH expansion was increased from 8 to 12 in order to be able to resolve smaller TEC structures like, e. g., the equatorial anomaly.

A higher temporal resolution when using SH expansions is possible by limiting the variations in time with slight "relative" constraints between consecutive sets of SH coefficients. The 2-hour results obtained are very encouraging. The higher the temporal resolution, the less important it is whether a solar-geographic or a solar-geomagnetic reference frame is used.

Daily sets of differential code biases for the GPS satellites (and receivers) are estimated at CODE since October 1997. The day-to-day scatter of the satellite-specific DCBs is about 0.08 ns. Finally, an approach based on a least-squares collocation to predict global TEC was developed. Approaching the next solar maximum, the knowledge of the ionosphere becomes more and more important. The access to *fast* and *up-to-date* ionospheric information is required by many applications.

OUTLOOK

We will start to produce global ionosphere maps with a 2-hour resolution in the near future. Furthermore we intend to derive predicted ionosphere maps on a regular basis (e. g., 2-day predictions).

The generation of global maps statistically describing the fluctuations of the TEC as presented in [Schaer et al., 1996b] is planned. Reprocessing all global data since 1995 becomes more and more important in view of the progress made in the ionosphere modeling.

It is our declared goal to continuously map the ionosphere for (at least) the next period of high solar activity and to study in particular the impact of the ionosphere on the IGS core products. The establishment of a future IGS ionosphere product as discussed at the IGS AC Workshop in Darmstadt, Germany [Feltens and Schaer, 1998] is another reason to continue these efforts.

REFERENCES

- Feltens, J. and S. Schaer, 1998, IGS Products for the Ionosphere, *Proceedings of the IGS AC Workshop*, Darmstadt, Germany, February 9–11, 1998.
- Rothacher, M., G. Beutler, E. Brockmann, S. Fankhauser, W. Gurtner, J. Johnson, L. Mervart, S. Schaer, T. A. Springer, and R. Weber, 1996a, *The Bernese GPS Software Ver*sion 4.0, September 1996, Astronomical Institute, University of Berne, Switzerland.

- Rothacher, M., G. Beutler, E. Brockmann, L. Mervart, S. Schaer, T. A. Springer, U. Wild, A. Wiget, C. Boucher, and H. Seeger, 1996b, Annual Report 1995 of the CODE Analysis Center of the IGS, 1995 Annual Report of the IGS, September 1996, IGS Central Bureau, JPL, Pasadena, CA, USA, pp. 151–173.
- Schaer, S., G. Beutler, L. Mervart, M. Rothacher, and U. Wild, 1995, Global and Regional Ionosphere Models Using the GPS Double Difference Phase Observable, *Proceedings* of the IGS Workshop on Special Topics and New Directions, Potsdam, Germany, May 15–17, 1995, pp. 77–92.
- Schaer, S., G. Beutler, M. Rothacher, and T. A. Springer, 1996a, Daily Global Ionosphere Maps Based on GPS Carrier Phase Data Routinely Produced by the CODE Analysis Center, *Proceedings of the IGS AC Workshop*, Silver Spring, MD, USA, March 19–21, 1996, pp. 181–192.
- Schaer, S., M. Rothacher, T. A. Springer, and G. Beutler, 1996b, Mapping the Deterministic and Stochastic Component of the Ionosphere Using GPS, EOS Transactions of the 1996 AGU Fall Meeting, Vol. 77, No. 46, p. 142.
- Schaer, S., W. Gurtner, and J. Feltens, 1998, IONEX: The IONosphere Map EXchange Format Version 1, February 25, 1998, Proceedings of the IGS AC Workshop, Darmstadt, Germany, February 9–11, 1998.
| Rosetta Radio Science Investigations RSI
Mars Express Orbiter Radio Science Experiment MaRS
Venus Express Radio Science Experiment VeRa
IFMS Doppler Processing Software : Level 1a to Level 2 | | | | | | | | |
|---|--------|------------|-----------|----------|--|--|--|--|
| Document number | Issue: | 5 | Revision: | 0 | | | | |
| MEX-MRS-IGM-DS-3035 | Date: | 26.07.2005 | Page | 61 of 61 | | | | |

APPENDIX D

Klobuchar File Format Description (see attached document CGIM_ANNEX_D.pdf)

IONEX: The IONosphere Map EXchange Format Version 1

Stefan Schaer, Werner Gurtner Astronomical Institute, University of Berne, Switzerland stefan.schaer@aiub.unibe.ch

> Joachim Feltens ESA/ESOC, Darmstadt, Germany

> > February 25, 1998

Introduction

The International GPS Service for Geodynamics (IGS) provides precise GPS orbits, earth orientation parameters (EOPs), station coordinates, satellite clock information, and — on a test basis — tropospheric zenith delays. The IGS community is well aware of the fact that the IGS network can also be used to extract information about the total electron content (TEC) of the ionosphere on a global scale. One may expect that the IGS will include TEC maps into its product palette in the near future.

As part of the 1996 IGS Workshop in Silver Spring, a first effort has been made to compare GPS-derived TEC maps produced by IGS Analysis Centers (CODE and ESA/ESOC) as well as external processing centers (DLR Neustrelitz and University of New Brunswick) [Feltens, 1996a]. For this purpose, a very simple data exchange format proposed by Wilson (JPL) has been used.

One essential conclusion of the ionosphere-related discussion was that a common data format to exchange, compare, or combine TEC maps has to be defined. Based on a first format proposal by [Schaer, 1996], which strongly follows the Receiver INdependent EXchange format (RINEX) [Gurtner and Mader, 1990], [Schaer and Gurtner, 1996], and [Feltens, 1996b], we present a revised version of the so-called IONosphere map EXchange format (IONEX) that supports the exchange of 2- and 3-dimensional TEC maps given in a geographic grid.

The most important modifications with respect to [Schaer and Gurtner, 1996] are:

Proceedings of the IGS AC Workshop, Darmstadt, Germany, February 9-11, 1998

- Ionosphere maps given in an earth-fixed reference frame are supported only.
- Ionosphere maps are epoch-specific, i. e., they have to be interpreted as "snapshots" at certain epochs. Guidelines how to use IONEX TEC maps are formulated in the next section.
- In addition to TEC and RMS error maps, single-layer height maps are allowed, too.
- The option of 3-dimensional TEC maps has been included into IONEX, i.e., multilayer models may be handled very easily by performing an additional loop over an equidistant height grid.
- TEC values are written using format mI5 instead of m(X1,I4). The definition of an exponent (see "EXPONENT") should help to cover the necessary dynamic range of electron density.
- Further satellite systems and techniques have been added to the list (see "IONEX VERSION / TYPE").
- A general escape sequence has been defined to include technique-related auxiliary data blocks in the header part of IONEX files.

Application of IONEX TEC Maps

We may use three different procedures to compute the TEC E as a function of geocentric latitude β , longitude λ , and universal time t, when we have the TEC maps $E_i = E(T_i), i = 1, 2, ..., n$ at our disposal:

• Simply take the nearest TEC map $E_i = E(T_i)$ at epoch T_i :

$$E(\beta, \lambda, t) = E_i(\beta, \lambda), \tag{1}$$

where $|t - T_i| = \min$.

• Interpolate between consecutive TEC maps $E_i = E(T_i)$ and $E_{i+1} = E(T_{i+1})$:

$$E(\beta, \lambda, t) = \frac{T_{i+1} - t}{T_{i+1} - T_i} E_i(\beta, \lambda) + \frac{t - T_i}{T_{i+1} - T_i} E_{i+1}(\beta, \lambda),$$
(2)

where $T_i \leq t < T_{i+1}$.

• Interpolate between consecutive *rotated* TEC maps:

$$E(\beta, \lambda, t) = \frac{T_{i+1} - t}{T_{i+1} - T_i} E_i(\beta, \lambda'_i) + \frac{t - T_i}{T_{i+1} - T_i} E_{i+1}(\beta, \lambda'_{i+1}),$$
(3)

where $T_i \leq t < T_{i+1}$ and $\lambda'_i = \lambda + (t - T_i)$. The TEC maps are rotated by $t - T_i$ around the Z-axis in order to compensate to a great extent the strong correlation between the ionosphere and the Sun's position. Note that method (1) can be refined accordingly by taking the nearest *rotated* map: $E(\beta, \lambda, t) = E_i(\beta, \lambda')$. From method (1) to method (3), one may expect an improvement of the interpolation results, therefore we recommend to use the last approach (3).

Grid interpolation algorithms to be used are not discussed in detail here. However, a simple 4-point formula should be adequate, if the IONEX grid is dense enough:

$$E(\lambda_0 + p\,\Delta\lambda,\beta_0 + q\,\Delta\beta) = (1-p)\,(1-q)\,E_{0,0} + p\,(1-q)\,E_{1,0} + q\,(1-p)\,E_{0,1} + p\,q\,E_{1,1},$$

where $0 \le p < 1$ and $0 \le q < 1$. $\Delta \lambda$ and $\Delta \beta$ denote the grid widths in longitude and latitude.

Figure 1: Bivariate interpolation using the nearest 4 TEC values $E_{i,j}$

General Format Description

Each IONEX file consists of a header section and a data section. The header section contains global information for the entire file and is placed at the beginning of the file. The header section contains header labels in columns 61–80 for each line contained in the header section. These labels are mandatory and must appear exactly as given in the IONEX descriptions. Note that the maximum record length is 80 bytes per record.

As record descriptors in columns 61–80 are mandatory, the programs reading an IONEX file should be able to decode the header records with formats according to the record descriptor, provided the records have been first read into an internal buffer.

We propose to allow free ordering of the header records, with the following exception:

• The "IONEX VERSION / TYPE" record must be the first record in a file.

There are further rules to be considered:

- Each value remains valid until changed by an additional header record!
- Fields of lines with formatted numbers must contain at least a "0" to facilitate reading with C language routines, i. e., empty fields are not permitted here.

• In principle there should be no blank lines. We recommend however to anticipate blank line skipping by the reading routines.

Writing and reading IONEX files one has to perform loops over up to a maximum of five arguments, namely: time (EPOCH), latitude (LAT), longitude (LON), height (HGT), and map type. Possible loops are:

- (a) map type, EPOCH, HGT, LAT, LON,
- (b) EPOCH, map type, HGT, LAT, LON.

Both enclosed examples have been created according to loop (a).

The proposed format descriptions as well as examples are given in the tables at the end of this paper.

Exchange of IONEX Files

We recommend to use the following naming convention for IONEX files:

 $\tt cccedddh.yyI,$

where

ccc:	3-figure Analysis Center (AC) designator
e:	extension or region code ("G" for Global ionosphere maps)
ddd:	day of the year of first record
h:	file sequence number $(1, 2,)$ or hour $(A, B,)$ within day;
	0: file contains all existing data of the current day
уу:	2-digit year
I:	file type ("I" for Ionosphere maps).

Example: CODG2880.951. It is recommended to specify IONEX file names in uppercase.

When data transmission time or storage volume are critical we recommend to compress the files prior to storage or transmission using the UNIX compress und decompress programs. Compatible routines are available for VAX/VMS and PC/DOS systems.

Proposed naming conventions for compressed files:

	System	Ionosphere files
Ī	UNIX	cccedddh.yyI.Z
	VMS	cccedddh.yyI_Z
	DOS	cccedddh.yyJ

Reading and Writing IONEX Modules

Fortran-77 routines to read and write IONEX files are available, for instance, via AIUB's anonymous ftp server ubeclu.unibe.ch (or 130.92.6.18) — type "cd aiub\$ftp" after login — in the directory [IONEX.SOURCE]. The main modules are RDIXFL (read IONEX file) and WTIXFL (write IONEX file). They use the subroutines RDIXHD/WTIXHD (read/write IONEX header) and RDIXDT/WTIXDT (read/write IONEX data). Auxiliary subroutines are: DJUL (date-to-MJD conversion), JMT (MJD-to-date conversion), and RADGMS (converts a day-fraction into hours-minutes-seconds). Note that the OPNFIL-OPNERR sequence must be replaced by an own file opening sequence.

References

- Feltens, J. (1996a): Ionosphere Maps A New Product of IGS? Summary of the Ionosphere Session, IGS Workshop, Silver Spring, MD, USA, March 19–21, 1996.
- Feltens, J. (1996b): IONEX Format. GPS-IONO mail, October 30, 1996.
- Gurtner, W., G. Mader (1990): Receiver Independent Exchange Format Version 2. CSTG GPS Bulletin, Vol. 3, No. 3, September/October 1990, National Geodetic Survey, Rockville.
- Schaer, S. (1996): Proposal Concerning VTEC Data Format. GPS-IONO mail, February 6, 1996.
- Schaer, S., W. Gurtner (1996): IONEX: The IONosphere Map EXchange Format Version 0 (Proposal, August 1996). GPS-IONO mail, September 3, 1996.

Appendix A: IONEX Version 1 Format Definitions and Examples

HEADER LABEL (Columns 61-80)	DESCRIPTION	FORMAT	
+		<pre>+ F8.1,12X, A1,19X, A3,17X </pre>	
+ PGM / RUN BY / DATE 	<pre>+</pre>	+ A20, A20, A20	-+
+* DESCRIPTION .	<pre>It is highly recommended to give a brief description of the technique, model, Please distinguish between description and pure comment.</pre>	+ A60 	-+ *
+ * COMMENT 	<pre>Comment line(s). Note that comment lines are not allowed right at the beginning of a file or within TEC/RMS/HGT data blocks (see 'LAT/LON1/LON2/DLON/H').</pre>	+ A60 	-+ *
+ EPOCH OF FIRST MAP 	<pre> Epoch of first TEC map (UT): year (4 digits), month, day, hour, min, sec (integer) </pre>	+ 6I6,24X 	-+
+ EPOCH OF LAST MAP 	<pre>+</pre>	+ 6I6,24X 	-+
+	<pre></pre>	+ I6,54X 	+-
+ # OF MAPS IN FILE	+ Total number of TEC/RMS/HGT maps	+ I6,54X	+-

Table 1: Ionosphere map file — header section description

	contained in current file.	l	I
HAPPING FUNCTION	<pre>Mapping function adopted for TEC deter- mination: 'NONE': no MF used (e.g. altimetry), 'COSZ': 1/cos(z), 'QFAC': Q-factor. Others might be introduced.</pre>	2X,A4,54X	- +
++ ELEVATION CUTOFF 	<pre>/ Minimum elevation angle in degrees. '0.0', if unknown; '90.0' for altimetry.</pre>	 F8.1,52X 	+-
++ OBSERVABLES USED 	One-line specification of the observ- able(s) used in the TEC computation (or blank line for theoretical models).	 A60 	+-
++ # OF STATIONS	Number of contributing stations.	I6,54X	-+
# OF SATELLITES	Number of contributing satellites.	I6,54X	-+
	Mean earth radius or bottom of height grid (in km), e.g.: 6371 km or 6771 km.	 F8.1,52X 	-+
MAP DIMENSION	Dimension of TEC/RMS maps: 2 or 3. See also 'TEC VALUES'.	16,54X	- +
HGT1 / HGT2 / DHGT	<pre>Definition of an equidistant grid in height: 'HGT1' to 'HGT2' with increment 'DHGT' (in km), e.g.: ' 200.0 800.0 50.0'. For 2-dimensional maps, HGT1=HGT2 and DHGT=0, e.g.: ' 400.0 400.0 0.0' or 0.0 0.0 0.0' (see also 'BASE RADIUS').</pre>	2X,3F6.1, 40X	
+ LAT1 / LAT2 / DLAT 	Definition of the grid in latitude: 'LAT1' to 'LAT2' with increment 'DLAT' (in degrees). 'LAT1' and 'LAT2' always have to be multiples of 'DLAT'. Example: ' 87.5 -87.5 -2.5'.	2X,3F6.1. 40X	- +
+ LON1 / LON2 / DLON 	Definition of the grid in longitude: 'LON1' to 'LON2' with increment 'DLON' (in degrees), where LON equals east longitude. 'LON1' and 'LON2' always have to be multiples of 'DLON'. Example: ' 0.0 357.5 2.5' or ' -180.0 177.5 2.5'.	2X,3F6.1, 40X	+-
++ « EXPONENT 	<pre>Exponent defining the unit of the values listed in the following data block(s). Default exponent is -1. See also 'TEC VALUES', 'RMS VALUES', and 'HGT VALUES'.</pre>	 	+- *
++ START OF AUX DATA	Record opening general escape sequence	⊢ A60	-+

	that contains technique-related auxiliary data (e.g. differential code biases for GPS). Note that such data blocks may be skipped if you are interested in ionospheric information only. Format definitions and examples are given in Appendix B.		
* END OF AUX DATA	Record closing auxiliary data block.	A60	+ * +
END OF HEADER	Last record of the header section.	60X	• •
	Record indicating the start of the i-th TEC map, where i=1,2,,n denotes the internal number of the current map. All maps have to be ordered chronologically.	16,54X	-
EPOCH OF CURRENT MAP	Epoch of current map (UT): year (4 digits), month, day, hour, min, sec (integer). 'EPOCH OF CURRENT MAP' must be specified at the first occurrence of the associated map!		•
	Record initializing a new TEC/RMS/HGT data block for latitude 'LAT' (and height 'H(GT)'), from 'LON1' to 'LON2 (with increment 'DLON'). In case of 2-dimensional maps, it is recommended to define H=HGT1. Neither other types of records nor comment lines are allowed after this record and within the subsequent data block!	2X,5F6.1, 28X	•
++ END OF TEC MAP	Record indicating the end of the i-th TEC map (see also 'START OF TEC MAP').	 I6,54X 	+
	Record indicating the start of an RMS map related to the i-th TEC map (see also 'START OF TEC MAP').	I6,54X	+ *
++ * END OF RMS MAP	Record indicating the end of an RMS map.	I6,54X	+ *
	Record indicating the start of a HEIGHT map related to the i-th TEC map (see also 'START OF TEC MAP').	I6,54X	+ *
++ * END OF HEIGHT MAP	Record indicating the end of a HGT map.	16,54X	+ * +
++ END OF FILE +	Last record closing the IONEX file.	60X	т 1
T		r	т

(Records marked with "*" are optional)

OBS. RECORD	DESCRIPTION	FORMAT
TEC VALUES	TEC values in 0.1 TECU. After 16 values (per latitude band) continue values in next data record. Non-available TEC values are written as '9999'. If an exponent k is specified, the TEC values are given in units of 10**k TECU. The default exponent is -1. See also 'EXPONENT'. If 3-dimensional maps are provided, TEC values should correspond to the surface electron densities at the grid points times 'DHGT' (again in 10**k TECU), that means, you can derive the surface electron densities by simply dividing the TEC values by 'DHGT'. However, if you estimate electron densities integrated over voxels (volume elements), you should ensure that the height grid specified in 'HGT1 / HGT2 / DHGT' refers to the heights of the voxel centers.	mI5
RMS VALUES	RMS values are formatted exactly in the same way as TEC values (see above).	m15
HGT VALUES	 HGT values are formatted exactly in the same way as TEC values (see above). If an exponent k is specified, the HGT values are given in units of 10**k km. The default exponent is -1, too, i.e. in this case the unit corresponds to 0.1 km. The actual heights (with respect to the 'BASE RADIUS') are computed as the sum of 'HGT1' and 'HGT VALUES'. 	 mI5

(Records marked with "*" are optional)

Table 3: Ionosphere map file — example 1: 2-d TEC maps

----|---1|0---|---2|0---|---3|0---|---4|0---|---5|0---|---6|0---|---7|0---|---8| 1.0 IONOSPHERE MAPS GPS IONEX VERSION / TYPE ionpgm v1.0 aiub 29-jan-96 17:29 PGM / RUN BY / DATE example of an ionex file containing 2-dimensional tec maps COMMENT global ionosphere maps for day 288, 1995 DESCRIPTION modeled by spherical harmonics ... DESCRIPTION 1995 10 15 0 0 0 EPOCH OF FIRST MAP 1995 10 16 0 0 0 EPOCH OF LAST MAP 21600 INTERVAL 5 # OF MAPS IN FILE

----|---1|0---|---2|0---|---3|0---|---4|0---|---5|0---|---6|0---|---7|0---|---8|

1. ionpgm example global	v1.0 e of	an io	a onex i		contai	ining	2 3-dir	-		17:29 tec ma	aps	IONEX PGM / COMMEN DESCRI	RUN E IT	BY / I	
modeled							1000					DESCRI			
1995		spnei L0	15	0	0)					EPOCH		-	a n D
1995 1995		LO LO	16	0	0	(EPOCH			
	1	10	10	0	0	()					INTERV			1P
21600 5												# OF N		м етг	F
-												H UF F MAPPIN			
COSZ 20.	0											ELEVAT			-
		oron		rior	nhoad							OBSERV			
double- 80	-0111	erend	le ca	TTer	pnase	3						UDSERV # OF S)
24												# OF 2 # OF 5			
6371.	0											# OF 2 BASE F			
3	.0											MAP DI			
-	0.80	0.0	50 0									HGT1 /			ICT
	.0 -8		-5.0									LAT1 /			
	.0 35		5.0									LON1 /			
0.			0.0									END OF			1014
1												START)
1995	1	10	15	0	0	()					EPOCH			
-3	-											EXPONE			
85.	.0	0.0 3	355.0	5.0	200	.0						LAT/LO		N2/DI	.ON/H
1000 1	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000					-
1000 1															
1000 1	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
1000 1	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
1000 1	1000	1000	1000	1000	1000	1000	1000								
80.	.0	0.0 3	355.0	5.0	200	.0]	LAT/LC	DN1/LC	N2/DI	.ON/H
1000 1	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
1000 1	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
1000 1	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
1000 1	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
1000 1	1000	1000	1000	1000	1000	1000	1000								
• • •															
-85.		0.0 3			200							LAT/LO		-	
1000 1															
1000 1															
1000 1															
1000 1								1000	1000	1000	1000	1000	1000	1000	1000
1000 1	1000	1000	1000	1000	1000	1000	1000					ססעד	יחזאי		
-2 85.	0	001		E (250	0						EXPONE		זת/ האו	ON /II
1000 1		0.0 3					1000	1000	1000	1000		LAT/L0			-
1000 1															
1000 1															
1000 1															
1000 1								1000	1000	1000	1000	1000	1000	1000	
80.			355.0) 250.		1000				1	LAT/LO)N1/T.C	102/DT	.ON/H
1000 1							1000	1000	1000	1000					•
1000 1															
1000 1															
1000 1															

1000 1000 1000 1000 1000 1000 1000 1000

13

Appendix B: Auxiliary Data Blocks

GPS/GLONASS-Related Data Block

If single-frequency GPS users apply precise ephemerides and precise satellite clock information — which always refers to the ionosphere-free linear combination (LC) — as well as IONEX TEC maps to eliminate or greatly reduce ionosphere-induced errors, they may also be interested in having a set of differential code biases (DCBs) of the satellites to correct their C/A- or P1-code measurements accordingly (to make them consistent to the LC satellite clocks — or vice versa). The DCBs b are estimated simultaneously with the TEC parameters using the relationship

$$cb = (P1 - P2)_{observed} - (P1 - P2)_{corrected},$$

where P1 and P2 denote the C/A- or P-code observables in meters on L1 (under AS or non-AS conditions) and L2, respectively. The DCB correction for the P1 measurements or for the LC satellite clock values $T_{\rm LC}$ (from SP3 orbit file) are given by

$$P1_{corrected} = P1_{observed} - \kappa_2 c b$$

and

$$T_{\text{corrected}} = T_{\text{LC}} + \kappa_2 b,$$

where $\kappa_2 = -\nu_2^2/(\nu_1^2 - \nu_2^2) = -1.55$ is the second LC factor, ν_i is the frequency of the *i*-th carrier, *c* is the vacuum speed of light, and $b = b_1 - b_2$ is the (geometry-free) DCB of the SV considered (usually in nanoseconds).

Since the DCB information is a by-product of the TEC determination when analyzing dual-band code measurements, DCB estimates may be included in IONEX files. The GPS/GLONASS-related data block has to be labelled with "DIFFERENTIAL CODE BIASES" (see example in Table 2).

Table 1: Differential	code biases —	format	definitions

	++ HEADER LABEL (Columns 61-80)	DESCRIPTION	FORMAT	+
	PRN / BIAS / RMS 	Pseudo Random Number (PRN), differential (L1-L2) code bias, and its RMS error in nanoseconds. Note that the PRN consists of a character indicating the satellite system ('G' or blank for GPS and 'R' for GLONASS) and the actual PRN (2 digits).	3X,A1,I2.2, 2F10.3,34X 	+
*	+ Comment +	Comment lines are allowed.	A60	+ * +

(Records marked with "*" are optional)

Table 2: Differential code biases — example

-----|----1|0----|----2|0----|----3|0----|----4|0----|----5|0----|----6|0----|----7|0----|----8| DIFFERENTIAL CODE BIASES START OF AUX DATA 0.000 PRN / BIAS / RMS 01 0.000 0.000 PRN / BIAS / RMS 02 0.000 . . . PRN / BIAS / RMS 31 0.000 0.000 COMMENT 11-12 biases and rms in ns sum of biases constrained to zero COMMENT DIFFERENTIAL CODE BIASES END OF AUX DATA

-----|----1|0----|----2|0----|----3|0----|-----5|0----|----6|0----|----7|0----|----8|