<u>Rosetta and Mars Express Mission Control System -</u> <u>R(ME)MCS</u>

Flight Dynamics System - Mission Control System Interface Control Document

FDS ICD

RO-ESC-ID-5003

Issue B1

2003-03-07

DOCUMENT APPROVAL

Prepared by;	Anite Systems GmbH	
Approved by (ESA/ESOC);	A. Ercolani (TOS-GDS) Rosetta Technical Officer	
	F. Delhaise (TOS-GDS)Mars Express Technical Officer	
	P. Ferri (TOS-OGR)	
	Rosetta Spacecraft Operations Manager	
	M. Denis (TOS-OGM)	
Approved by (ESA/ESOC);	Mars Express Spacecraft Operations Manager	
	M. Warhaut (TOS-OGR)	
	Rosetta Ground Segment Manager	
Approved by (ESA/ESOC);	M. McKay (TOS-OGM)	
	Mars Express Ground Segment Manager	
Approved by (ESA/ESOC);	J.Fertig (TOS-GFI)	
	On behalf of TOS-GF	
Approved by (Contractor);	R. Corkill (Anite)	
	RMCS/MEMCS Contractor Project Manager	

Distribution List

Recipient	Organisation
M. Warhaut	ESOC (TOS-OGR)
M. McKay	ESOC (TOS-OGM)
P. Ferri	ESOC (TOS-OGR)
M. Denis	ESOC (TOS-OGM)
N. Peccia	ESOC (TOS-GCM)
A. Ercolani	ESOC (TOS-GCM)
F. Delhaise	ESOC (TOS-GCM)
J. Wardill	ESOC (TOS-ON)
J. Fertig	ESOC (TOS-GFI)
R. Corkill	ANITE

Document Change Record

Date	Issue	Description/Reason
15/05/99	Draft A0	Initial Draft
31/03/00	Draft A1	First update to include data structures
28/03/01	Issue A0	First Issue
07/02/03	Draft B0	Draft for review after updates in line with the following DCRs;
		173, 174, 175, 176, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 189, 194, 198, 207

Table Of Contents

1	Intro	oduction7	
	1.1 Purpose		
	1.2	Scope	
	1.3	Summary7	
	1.3.	1 Data from MCS to FDS7	
	1.3.	2 Data from FDS to MCS9	
	1.3.	3 Installed Software 11	
	1.4	Change Forecast	
	1.5	Applicable Documents. ⁰⁹⁰ 11	
	1.6	Reference Documents. ⁰⁹⁰ 12	
	1.7	Abbreviation	
2	Ope	rational Assumptions and Constraints14	
	2.1	Assumptions14	
	2.2	Constraints	
	2.2.	5 - 5 - 1 - 5	
	2.2.		
	2.2.3		
	2.2.4		
3	Req	uirements - deleted ⁰⁹⁰	
4	Inter	rface Characteristics	
	4.1	Interface Location and Medium 17	
	4.2	Hardware Characteristics and Limitations 17	
	4.3	Data Source, Destination and Transfer Mechanism17	
	4.4	Node and Device Addressing 17	
	4.4.	1 Rosetta Nodes	
	4.4.2	2 Mars Express Nodes 18	
	4.5	Relationships with other Interfaces	
5		ess 19	
	5.1	Interface Utility Software	
	5.2	Failure Protection, Detection and Recovery Procedures 19	
	5.3 176	File Naming Convention	
		^{179, 181, 183}	
	5.4	Storage and File Detection Requirements	
	5.5	Security Requirements	
	5.6	Data Integrity Checks	
	5.7	Backup Requirements	

	5.8	Error Handling	
6	Deta	iled Interface Specifications	
	6.1	Data Structure	
	6.2	Generation Method	
	6.3	Data Passed Across the Interface a	nd their Direction22
	6.3.1		
	6.3.2	2 Rosetta Files ²⁰⁷	
	6.3.3	3 Mars Express Packetised Data	
	6.3.4	4 Mars Express Files ²⁰⁷	
	6.4	Size and Frequency of Transfers	
	6.4.1	1 Rosetta Data ⁰⁹⁰	
	6.4.2	2 Mars Express Data ⁰⁹⁰	
	6.5	Timing and Synchronisation Require	ements
7	Data	Definition	
	7.1	Flight Dynamics Request Files (FDF	26
	7.2	Direct Operation Request Files (DO	Rs) 26
	7.3	Tracking Data Files	
	7.4	Spacecraft Trajectory Data Files	
	7.5	Packetised Data ⁰⁹⁰	
	7.6	Auxiliary Data Files ⁰⁹⁰	
	7.6.1		
	7.6.2	2 Attitude Files ⁰⁹⁰	
	7.6.3	3 Event File ⁰⁹⁰	
	7.6.4	4 Cometary Environment File ⁰⁹⁰	
	7.6.5	5 Comet Characteristics File ⁰⁹⁰ .	
	7.6.6	6 Comet Kinematics File ⁰⁹⁰	
	7.6.7		Software ⁰⁹⁰
	7.7	Mission Information Base (MIB) ⁰⁹⁰ .	
	7.7.1	1 ccf.dat	
	7.7.2	2 pcf.dat	
	7.7.3	3 Utility Files	
	7.8	One-Way Light Time File (OWLT)	
	7.9	Payload Auxiliary Data	
	7.10	Interplanetary WIMPY	

1 Introduction

1.1 Purpose

The purpose of this document is to specify the interface between the Rosetta and Mars Express Mission Control Systems (RMCS/MEMCS) and the Flight Dynamic System (FDS). It describes the data structures and various file contents pertaining to data flow in both directions as well as any FDS supplied software to be integrated within the MCS.

1.2 Scope

This document is solely concerned with the definition of the interface between the MCS and the FDS.

This ICD is applicable for all phases of the Rosetta and Mars Express missions until the end of spacecraft operations.

1.3 Summary

This document is the interface control document governing the interfaces between the MCS and the FDS.

1.3.1 Data from MCS to FDS

The MCS will provide the following data to the FDS:

• Flight Dynamics Database

The baseline for the provision of Flight Dynamics data (Flight Dynamics Database, FDDB) by the S/C prime contractor foresees the inclusion of such data in the Physical Properties part of the S/C Database of either mission: Rosetta or Mars Express. This approach is currently not being enforced. Flight Dynamics data are delivered by the S/C prime contractor to FD directly via an MS Access database. The future inclusion of the FD data in the S/C Database and hence, the need to transfer these data from the MCS to FD is TBD.

• MIB Files 090

The MCS packet definitions are extracted from the Source Database and converted into Mission Information Base (MIB) files.

• Packetised Data ⁰⁹⁰

Packetised data consists of:

- Telemetry Source packets
- Telecommand History packets (TBC)
- Time Coefficient History packets

These packets will be extracted from the DAS by the FDS using the SCOS-2000/ORATOS Data Access (SoDA) software provided by Flight Dynamics as described in the [SODA-ICD].

• Tracking Data Files ⁰⁹⁰

These files do not originate from the MCS - the MCS acts as part of the delivery mechanism from the originator. The contents of these files are not changed by the MCS. ESA tracking data files are stored on the IFMS at the ESA stations. NASA/DSN tracking data files are stored on the ESA FD-dedicated computer RACSO.

The MCS, via the Network Interface Subsystem (NIS), obtains the ESA tracking data files from the IFMS and stores them in the MCS FARC. $^{\rm 173}$

As defined in the [IFMS-OCC] document, these data files comprise:

- Ranging data;
- Doppler 1 and Doppler 2 data;
- Meteo[rological] data;
- Antenna angles (originating from the station computer, not the IFMS);
- Signal received strength 1 and 2 data. ^{173, 178}

The MCS obtains the NASA/DSN tracking data files from RACSO and stores them in the MCS FARC. $^{\rm 173}\!$

As defined in [JPL-FDS] document, these data files comprise:

- Orbit Data Files (ODFs), that contain tracking data with any combination of different tracking data types (range, Doppler, Delta-VLBI etc);
- Media calibrations.
- NASA/DSN Signal Received Strength ¹⁷³

All the above files will be delivered to the FDS.

• Payload Auxiliary Data Files⁰⁹⁰

Payload pointing and trajectory requests will be based on Scenario Parameter Lists (SPL) during cometary observation. SPL's will be delivered from the RSOC to FD through the MCS. Details of SPL delivery will be defined after launch.

1.3.1.1 Rosetta High Priority Operational Files from MCS to FDS.¹⁷³

The following lists the high priority files (see section 2.2.1) sent from the MCS to the FDS. See [FTS-CONF] for the definition of the FTS node names.

FTS Type	Description	FTS Source(s)	FTS Destination(s)
D1FD	Flight Dynamics Doppler 1 data	NIx	FDx, RMx
D2FD	Flight Dynamics Doppler 2 data	NIx	FDx, RMx
MTFD	Flight Dynamics Meteorological data	NIx	FDx, RMx
RGFD	Flight Dynamics Ranging data	NIx	FDx, RMx
AAF_	Antenna Angles data	NIx	FDx, RMx
ODF_	NASA/DSN Tracking Data	RRA	FDx, RMx
CSP_	NASA/DSN Media Calibration	RRA	FDx, RMx
AGC_	NASA/DSN Signal Received Strength	RRA	FDx, RMx

NOTE: Signal Received Strength 1 and 2 data (AGC1 and AGC2) files are not in the archive so are routed direct to the FDx systems.

1.3.1.2 Mars Express High Priority Operational Files from MCS to FDS.¹⁷³

The following lists the high priority files (see section 2.2.1) sent from the MCS to the FDS. See [FTS-CONF] for the definition of the FTS node names.

FTS Type	Description	FTS Source(s)	FTS Destination(s)
D1FD	Flight Dynamics Doppler 1 data	NIx	FDx, MMx
D2FD	Flight Dynamics Doppler 2 data	NIx	FDx, MMx
MTFD	Flight Dynamics Meteorological data	NIx	FDx, MMx
RGFD	Flight Dynamics Ranging data	NIx	FDx, MMx
AAF_	Antenna Angles data	NIx	FDx, MMx
ODF_	NASA/DSN Tracking Data	MRA	FDx, MMx
CSP_	NASA/DSN Media Calibration	MRA	FDx, MMx
AGC_	NASA/DSN Signal Received Strength	MRA	FDx, MMx

NOTE: Signal Received Strength 1 and 2 data (AGC1 and AGC2) files are not in the archive so are routed direct to the FDx systems.

1.3.2 Data from FDS to MCS

The FDS will provide the following data to the MCS:

• Auxiliary Data Files ⁰⁹⁰

Auxiliary Data are generated by Flight Dynamics to support the experimenters. Auxiliary Data Files are delivered from the FDS to the MCS and archived in the DAS where they will be retrieved from the experimenters through the DDS. All data files are listed in the [DDID] and comprise the following categories:

- S/C orbit files
- S/C attitude files
- Event file
- cometary environment file
- comet characteristics file
- comet kinematics file
- processed NAVCAM images
- FORTRAN software source code files

• Command Request Files

FD produces two types of Command Requests Files: ⁰⁹⁰

- Flight Dynamics Requests (FDR), which are used during routine operations by the scheduler subsystem of the MCS.

Direct Operations Requests (DOR), for commands that are used by the Telecommanding subsystem manual stack on the MCS.

The format of the Command Request Files is described in the [CRID]. 090

• Spacecraft Trajectory Data Files ⁰⁹⁰

The MCS is not the end-recipient of spacecraft trajectory data files - the MCS acts as part of the delivery mechanism to the final destination. The contents of these files are not changed by the MCS.

As defined in the [NCTRS-MCS] document, spacecraft trajectory data files intended to support ESA spacecraft tracking are provided by the FDS in the form of Spacecraft Trajectory Data Messages (STDMs). These files are delivered to the MCS and archived in the DAS. They are transferred from the MCS, via the NIS (also passive regarding data file contents), to the station computer of the participating ESA station(s).

As defined in [CCSDS-502], spacecraft trajectory data files intended to support NASA/DSN tracking are provided by the FDS in the form of Ephemeris Messages (EPMs). An example Rosetta EPM is given in the [JPL-FDS] document. The contents of these files are not changed by the MCS. These files will be delivered to the MCS and archived in the DAS. As defined in the [JPL-FDS] document, they are transferred from the MCS to RACSO and onward to the server at JPL. Navigation Interface Files (NIF_)²⁰⁷, also originating from the FDS, are routed in the same way as EPMs.

• One-Way Light Time File ⁰⁹⁰

FD generates One Way Light Time (OWLT) files which allows the MCS to compute the time of transmission of a TM frame from its Earth reception time. The files are to be used with the FDS-supplied software as described in section 1.3.3.

• Interplanetary WIMPY⁰⁹⁰

The WIMPY is a file which is delivered to the MCS to provide mainly ground station related information.

1.3.2.1 Rosetta High Priority Operational Files from FDS to MCS.¹⁷³

The following lists the high priority files (see section 2.2.1) sent from the FDS to the MCS. See [FTS-CONF] for the definition of the FTS node names.

FTS Type	Description	FTS Source(s)	FTS Destination(s)
STDM	Spacecraft Trajectory Data Files	FDx	NIx, RMx
EPM_	Ephemeris Messages Spacecraft Trajectory Data	FDx	RRA, RMx
NIF_	Navigation Interface Files	FDx	RRA, RMx

1.3.2.2 Mars Express High Priority Operational Files from FDS to MCS.¹⁷³

The following lists the high priority files (see section 2.2.1) sent from the FDS to the MCS. See [FTS-CONF] for the definition of the FTS node names.

FTS Type	Description	FTS Source(s)	FTS Destination(s)
STDM	Spacecraft Trajectory Data Files	FDx	NIx, MMx
EPM_	Ephemeris Messages Spacecraft Trajectory Data	FDx	MRA, MMx
NIF_	Navigation Interface Files	FDx	MRA, MMx

1.3.3 Installed Software

The FDS will provide the following software for integration with the MCS:

• Packet Data Extraction software

FDS will be provide a version of the SODA software to extract packetised data from the MCS DAS as described in [SODA-ICD]. The SODA server process is not continuously running. It is launched remotely by FD client applications.

• Propagation Delay software ⁰⁹⁰

As described in the [TIC-TN], FDS will provide a software routine to calculate the down-link propagation delay as a function of UTC at signal reception at any participating ground station. The computation will use the contents of the FDS-supplied One-Way Light Time (OWLT) files. A single OWLT file will be used for each groundstation and will be identified by a FD Groundstation ID - it should be noted that this FD Groundstation ID does not correspond to the NCTRS Groundstation ID.

1.4 Change Forecast

This document is a draft issue of the ICD and updates are expected after initial review.

1.5 Applicable Documents.⁰⁹⁰

A-1	Rosetta Project Glossary	Issue A0
[ROS-GLOSS]	RO-ESC-LI-5001	15/05/99
A-2 ⁰⁹⁰ [CRID]	RMCS/MEMCS Command Request Interface Document RO-ESC-IF-5004 / MEX-ESC-IF-5004	Issue B3 12/03/02
A-3 ⁰⁹⁰ [DDID]	RMCS/MEMCS Data Delivery Interface Document RO-ESC-IF-5003 / MEX-ESC-IF-5003	Issue B3 12/03/02
A-4 ⁰⁹⁰ [DDID-H]	RMCS/MEMCS Data Delivery Interface Document - Appendix H FD Products RO-ESC-IF-5003 / MEX-ESC-IF-5003	lssue 1.3 01/03/02
A-5 ⁰⁹⁰ [DDID-K]	RMCS/MEMCS Data Delivery Interface Document - Appendix K MCS Products RO-ESC-IF-5003 / MEX-ESC-IF-5003	Issue B3 12/03/02
A-6 ⁰⁹⁰ [JPL-FDS]	ROSETTA/MARS EXPRESS JPL/FDS Navigation Interface RO-ESC-IF-5011	Issue 3.1 23/08/02
A-7 ⁰⁹⁰ [MPS-POS]	Mars Express MPS - POS ICD TBD	Issue TBD

A-8 ⁰⁹⁰	Rosetta, MOD-FDS ICD	Issue 1.4
[MOD-FDS-ICD]	RO-ESC-ID-5008	Nov/02
A-9 ⁰⁹⁰	Description of WIMPY for interplanetary spacecraft.	Issue 1.2
[WIMPY]	RO-ESC-TN-5521	16/08/02
A-10 ⁰⁹⁰	TM/TC ICD Status Synthesis	Issue 1.3
[TM/TC-ICD]	RO-MMT-TN-2091/MEX-MMT-TN-0893	30/08/01
A-11 ⁰⁹⁰	IFMS-OCC Interface ICD	Issue 9.2.1
[IFMS-OCC]	/MakulaMedia/MR/IFMS/ICD/FTP-OCC	20/10/02
A-12 ⁰⁹⁰	Tracking System Interface: Orbit Data File Interface	Change 3
[DSN-ODF]	DSN 820-013: TRK-2-18	15/06/00
A-13 ⁰⁹⁰	Media Calibration Interface	
[DSN-MCI]	DSN 820-013, TRK-2-23	31/05/00.
A-14 ⁰⁹⁰	Interface Control Document - NCTRS - Volume 3 -	Issue 1.3
[NCTRS-MCS]	Detailed interface definition: FDS	27/06/01.
	NCTRS-ICD-3, N2K-MCS-ICD-0003-TOS-GCI	
A-15 ⁰⁹⁰	Orbit Data Messages	Issue 2
[CCSDS-502]	CCSDS 502.0-R-1, Red Book	Jun/02
A-16 ⁰⁹⁰	ROSETTA - Description of the software for the support	Issue 2.4
[TIC-TN]	of the time correlation between the internal clock of	05/11/01
	ROSETTA and UTC	
	RO-ESC-TN-5518	
A-17	Rosetta/MEX Mission Control Systems Configuration	Issue A2
[FTS-CONF]	Control Document; FTS Configuration	2003-03-07
	RO-ESC-IF-5014/ME-ESC-IF-5014	

1.6 Reference Documents.⁰⁹⁰

R-1	R(ME)MCS Software Requirements Document	Issue A0
[MCS-SRD]	RO-ESC-RS-5320	15/05/99
R-2	FDS Support Requirements Compilation	lssue 1.0
[FDS-SRD]	RO-ESC-RS-5510	08/01/01
R-3 [MIN-1]	Minutes to FDS-MCS interface meeting on 04/02/00	14/02/00
R-4 ⁰⁹⁰	SCOS-2000 TM Packet ICD	lssue 1.1
[S2K-PKT-ICD]	S2K-MCS-ICD-0004-TOS-GCI	02/03/01
R-5 ⁰⁹⁰ [SODA-ICD]	Flight Dynamics Infrastructure Software, ORATOS SODA ICD DTOS-FDOS-FDIS-ICD-1422-TOS-GFS	Issue 1.1, Oct/01
R-6 ⁰⁹⁰	SCOS-2000 Database Import ICD	lssue 4.3
[S2K-MIB-ICD]	S2K-MCS-ICD-0001-TOS-GCI	16/10/01

Rosetta and Mars Express Mission Control System - R(ME)MCS; FDS ICD Flight Dynamics System - Mission Control System Interface Control Document RO-ESC-ID-5003

1.7 Abbreviation

All abbreviations and acronyms used in this document are explained in the [ROS-GLOSS] $^{090}\!\!\!$.

2 **Operational Assumptions and Constraints.**

2.1 Assumptions

The following assumptions have been made in preparing this ICD:

- 1. The FDS runs on the ORATOS platforms located at ESOC and accessible from the operational LAN. There are two operational ORATOS platforms connected to the ESOC OPSLAN: ORATOS-L for critical operations and ORATOS-R for routine operations. Each ORATOS platform consists of a highly redundant file server and several client workstations.⁰⁹⁰
- 2. FD applications (including applications interfacing with the MCS, e.g. the telemetry retrieval tasks) may run on any of the client workstations.⁰⁹⁰
- 3. The RMCS and MEMCS will be running on separate machines, each having Prime and Backup computers ⁰⁹⁰ located at ESOC and accessible from the operational LAN
- 4. ^{207207 207207 207207 207}All packets transferred from the MCS and the FDS systems will be extracted from the DAS by the FDS using the SCOS-2000/ORATOS Data Access (SoDA) software provided by Flight Dynamics as described in the [SODA-ICD]. ²⁰⁷
- 5. With the exception of MPTS files for Rosetta, all file transfer between the MCS and FDS systems shall be by means of the File Transfer System (FTS).^{198, 207}
- 6. Rosetta MPTS files shall be retrieved from RONCTRA/RONCTRB to the appropriate FDS system by manual use of FTP from the FDS system.¹⁹⁸
- 7. The only acknowledgement of delivery of files between the MCS and FDS shall be that provided by the standard FTS functionality, i.e. reported via the FTS log file.²⁰⁷
- 8. For files automatically injected into the FTS by the FTS polling task the version number of the FTS file will be assigned by the polling task and for each individual file type for a specific destination the version number will also be 1 greater than the previous unless reset by Software Support. Once a version number of 99999 is reached the next version number will wrap round to 00000.¹⁸².

2.2 Constraints

The following constraints apply to this ICD:

2.2.1 ²⁰⁷High Priority Operational Files.^{173, 189}

Certain files types are deemed to be of high priority operational significance. Such files must be routed as directly as possible from the source node to the destination node. This implies any such files, which have to be stored in the archive and do not have the control system as the final destination must be sent multiple times by the origination source, viz. to the target destination and also to the control system so that they can be put into the archive. Non-high priority files which have to be in the archive are routed to the intended final destination via the control system where they are inserted into the archive via an FTS intermediate action procedure.

2.2.2 File Transfer Between OSCARX (OSCARY) and RACSO ²⁰⁷

Due to security constraints it is not possible to automate file transfer between OSCARX (Backup OSCARY) and RACSO. It is thus necessary to adopt the following procedure to transfer files from OSCARn to RACSO and inject them into the FTS for delivery to the appropriate target;

A manual SFTP connection has to be made from RACSO to OSCAR and the required files on OSCARn selected and copied into the following directory on RACSO;

• /home/sssfts/import

Where sss = ros or mex

- NOTE 1: Since the FTS polling task periodically checks this directory for files it is essential that when the files are being copied over from OSCARn to RACSO that they are first transferred to a different directory and only when the FTP transferred is completely finished moved to the "import" directory.
- NOTE 2: The FTS polling task once it detects a file to be transferred encapsulates the found file into an FTS file with the appropriate name. ¹⁸⁰

2.2.3 File Transfer Between RACSO and OSCARX (OSCARY)²⁰⁷

Due to security constraints it is not possible to automate file transfer between RACSO and OSCARX (Backup OSCARY). It is thus necessary to adopt the following procedure to transfer files from RACSO to OSCARn;

All files transferred via FTS which have a final destination of OSCARn are delivered to RACSO. On arrival the files are unTARred and copied into the directory specified below, from where they have to be manually transferred via SFTP to the appropriate location on OSCAR.

• /home/sssfts/export

Where sss = ros or mex

2.2.4 File Delivery to Multiple Destinations ¹⁷⁵

The File Transfer System is a file delivery system that works on a point to point basis. That is each file injected into the FTS is delivered to exactly one destination. If it is required for operational reasons that the same file be delivered to 2 or more destinations it is the responsibility of the originating system to submit the same file as many times as required to the FTS each time with the appropriate destination specified in the file name.

For example suppose the file ZZZZ_FDRxxx_D_AN_EXAMPLE____00000.ROS has to be delivered to both NIA and NIB from the FDR system. In this case the file has to be injected into the FTS twice, once each with the following names;

- ZZZZ_FDR**NIA**_D_AN_EXAMPLE___00000.ROS
- ZZZZ_FDR**NIB**_D_AN_EXAMPLE___00000.ROS

3 Requirements - deleted ⁰⁹⁰

4 Interface Characteristics

4.1 Interface Location and Medium

This document concerns the I/F between the: ⁰⁹⁰

- RMCS and the FDS, both based at the ROSETTA Missions Operations Centre in Darmstadt.
- MEMCS and the FDS, both based at the MARS EXPRESS Missions Operations Centre in Darmstadt.

4.2 Hardware Characteristics and Limitations

The following table outlines the hardware characteristics and limitations that impact this interface.

Acronym	Location	Platform	Operating System	Network Connection
RMCS	Rosetta Mission Control System	SUN	Solaris	100 Mbps
MEMCS	Mars Express Mission Control System	SUN	Solaris	100 Mbps
FDS	ESOC Flight Dynamics System	SUN	Solaris	100 Mbps

4.3 Data Source, Destination and Transfer Mechanism.

With the exception of MPTS files for Rosetta the transfer of all files between the MCS and the FDS will be by means of the File Transfer System. This software will be installed on the MCS and FTS machines, with the exception of scripts for the handling of files received on the FDS machines, which will be provided by FDS.

Packetised data is retrieved by the FDS system from the MCS by the SCOS-2000/ORATOS Data Access (SoDA).

The following sections give further information on the various data transfers involved;

- 6.3.1; Rosetta Packetised Data⁰⁹⁰
- 6.3.2; Rosetta Files²⁰⁷
- 6.3.2.1; Rosetta MPTS Files ¹⁹⁸
- 6.3.3; Mars Express Packetised Data⁰⁹⁰
- 6.3.4; Mars Express Files ²⁰⁷

4.4 Node and Device Addressing

The following table outlines the node and device addressing that impact this interface. ⁰⁹⁰

4.4.1 Rosetta Nodes

Node	Address	Description	
ROMCA	romca.esoc.ops.esa.int	Prime Rosetta Control System	
ROMCB	romcb.esoc.ops.esa.int	Backup Rosetta Control System	
RONCTRA	ronctra.esoc.ops.esa.int	Rosetta Network Control A	
RONCTRB	ronctrb.esoc.ops.esa.int	Rosetta Network Control B	
LDSA	ldsa.ops.esoc.esa.de	FDS ORATOS LEOP system	
RDSA	rdsa.ops.esoc.esa.det	FDS ORATOS routine system	
RACSO	racso.esoc.ops.esa.int	Gateway to OSCAR at JPL	

4.4.2 Mars Express Nodes

Node	Address	Description
MEMCA	memca.esoc.ops.esa.int	Prime Mars Express Control System
MEMCB	memcb.esoc.ops.esa.int	Backup Mars Express Control System
MENCTRA	menctra.esoc.ops.esa.int	Mars Express Network Control A
MENCTRB	menctrb.esoc.ops.esa.int	Mars Express Network Control B
LDSA	ldsa.ops.esoc.esa.de	FDS ORATOS LEOP system
RDSA	rdsa.ops.esoc.esa.det	FDS ORATOS routine system
RACSO	racso.esoc.ops.esa.int	Gateway to OSCAR at JPL

4.5 Relationships with other Interfaces

The Command Request File definitions for the FDR and DOR are described in detail in the [CRID]. $^{\rm 090}$

Documents available to PIs via the DDS are described in detail in the [DDID]. $^{\rm 090}$

5 Access

5.1 Interface Utility Software

It is foreseen that special utility software will be required on both MCS and FDS machines as follows: $^{\rm 090}$

• File Transfer System software

The MCS will provide special utility software to manage the transfer of files between the 2 systems. This utility software is called the File Transfer Software (FTS) and will be installed on the MCS and FDS machines as a compiled and linked process running in the FTS environment 090 .

• Packet Data Extraction software ⁰⁹⁰

FDS will provide a version of the SODA software to extract packetised data from the MCS DAS. Each ORATOS client process will start an instance of the SODA server on an MCS workstation. Packets are retrieved in real time and passed on to the ORATOS Generic Telemetry Processor (GTP) software. The specification of the software is detailed in the [SODA-ICD]. The SODA application is developed, maintained and installed by FD staff on MCS workstations as described in the [SODA-ICD]

• Propagation Delay software

FDS will provide a software routine to calculate the propagation delay to the spacecraft for a given UTC, using the contents of the FDS supplied One-Way Light Time File stored within the MCS environment. This software shall be delivered for installation on the R(ME)MCS as a fully tested software routine in electronic format and will be embedded within the R(ME)MCS Time Correlation component.

5.2 Failure Protection, Detection and Recovery Procedures

For files handled within the File Transfer System, failure will be detected by the use of an internally generated version control; files of the same type from the same source are sent in increasing version number order. For the nodes on which FTS is installed, automatic recovery will be performed after a link drop or if there is a discontinuity in version numbers.

Note: The version numbering assigned by the FTS is not the user defined version number within the FTS filenaming convention which is freely definable and is not checked by the FTS.

5.3 File Naming Convention

A standardised file naming convention will be used for all files transported within the MCS. This file naming convention is primarily driven by the FTS mechanism.⁰⁹⁰

In summary, the file naming convention is as follows:

```
TTTT_SSSDDD_txxxxxxxxxxxxxxvvvvv.yyy
```

Where:

- TTTT is the document type (as defined in Section 6.3)
- SSS is the source of the file (as defined in Section 6.3)

- DDD is the destination of the file (as defined in Section 6.3)
- t is the type of file contents always set to D for data
- xxxxxxxxxx is a free text field (14 upper case chars)
- vvvvv is the file version number which starts at 00000 and increments, with wraparound at 99999. ⁰⁹⁰
- yyy is the mission identifier ROS for Rosetta and MEX for Mars Express

090

Note: All characters within the filename MUST be in UPPER case.

The use of this generic filenaming convention is specialised for specific files as detailed in the tables below.

In addition to the FTS Filename, the table also indicates:

- if a different 'external' filename is required by other systems external to the MCS. In this case, the external file is 'encapsulated' within an FTS file to enable it to be transferred within the FTS system.
 - Note: The 'encapsulation' of external files is performed using the unix 'tar c' command.
- any special processing performed on the file either at the source node or the destination node. Any other processing of the file (e.g. unwrapping of external files at the FTS node) are outside the scope of the FTS and MCS.

It should be noted that all encapsulated files are unwrapped and archived under their external filename), whereas, files with no external filename (i.e. not encapsulated) are filed under the FTS filename.

For full details of the naming conventions applicable to the various file types please send applicable document [FTS-CONF].

5.4 ^{, 176, 179, 181, 183, 176, 179, 181}Storage and File Detection Requirements

Sufficient space must be available on the FDS and the MCS sides to hold the relevant data. It is the responsibility of the individual systems to ensure that this space is made available.

5.5 Security Requirements

Both the FDS and the MCS shall be installed on the operational LAN at ESOC. This LAN is protected from Ext users by a filter, which prohibits remote login

5.6 Data Integrity Checks

An error free file transmission, ensured by the FTP and TCP/IP protocols is assumed

5.7 Backup Requirements

The MCS has a prime machine and a backup machine. The FDS has a single machine, ORATOS-L, for LEOP/Critical operations and a single machine, ORATOS-R, for Routine operations. 090

Configuration is TBD.

5.8 Error Handling

Error handling is performed by the File Transfer System 090 as provided by the FTP and TCP/IP protocols

6 Detailed Interface Specifications.

6.1 Data Structure

The detailed data structures are defined in section 7.

6.2 Generation Method

As per Rosetta and Mars Express MCS SRD, Reference Document R1⁰⁹⁰ and FDS Requirements Compilation Document [FDS-SRD]⁰⁹⁰

6.3 Data Passed Across the Interface and their Direction

The data files passed between the FDS and the MCS for the Rosetta and Mars Express Missions are shown below. See [FTS-CONF] for the definition of the FTS node names.¹⁷⁵

NOTE: The following convention has been adopted as per applicable document [FTS-CONF].

- 1. RMx is used where a file can be sent to either RMA or RMB
- 2. MMx is used where a file can be sent to either MMA or MMB
- 3. FDx is used where a file can be sent to either FDL or FDR
- 4. NIx is used where a file can be sent to either NIA or NIB

6.3.1 Rosetta Packetised Data⁰⁹⁰

Packetised data is retrieved by the FDS system from the MCS by the SCOS-2000/ORATOS Data Access (SoDA) software provided by Flight Dynamics as described in the [SODA-ICD].²⁰⁷

6.3.2 Rosetta Files²⁰⁷

All files passed between the FDS and the MCS, with the exception of MPTS files, are transferred by means of the FTS. The following table shows the source(s) and destination(s) of the various file types passed between the systems.

File Type	File Description		Dest
File Type	File Description	Src	Dest
AAF_	Antenna Angle Files	NIX	FDX, RMX
AGC_	NASA/DSN Signal Received Strength	RRA	FDX, RMX
AGC1	AGC 1 data from IFMS	NIX	FDX
AGC2	AGC 2 data from IFMS	NIX	FDX
ATNR	S/C attitude	FDX	RMX
ATPR	S/C attitude, medium term planning	FDX	RMX
ССНА	Comet Characteristics	FDX	RMX, RSO

CENV	Cometary Environment		RMX, RSO
CKIN	Comet Kinematics		RMX, RSO
CSP_	NASA/DSN Media Calibration		FDX, RMX
D1FD	Flight Dynamics Doppler 1 Data File	NIX	FDX, RMX
D2FD	Flight Dynamics Doppler 2 Data File	NIX	FDX, RMX
DOR_	Direct Operation Request	FDX	RMX
EPM_	Ephemeris Messages (EPM) Spacecraft Trajectory Data	FDX	RRA, RMX
EVTR	Orbit Event File	FDX	RMX, RSO
FDR_	Flight Dynamics Request	FDX	RMX
MIB_	MCS Database File(s)	RMX	FDX
MTFD	Flight Dynamics Meteo[rological] Data File	NIX	FDX, RMX
NIF_	Navigation Interface Files	FDX	RRA, RMX
OASW	Orbit and attitude file access software	FDX	RMX
ODF_	Tracking Data (ODF)	RRA	FDX, RMX
ORER	Earth centric first Earth swingby S/C orbit	FDX	RMX
ORFR	Earth centric second Earth swingby S/C orbit		RMX
ORHO	Heliocentric Otawara orbit		RMX
ORHR	Heliocentric S/C cruise orbit		RMX
ORHS	Heliocentric Siwa orbit		RMX
ORHW	Comet Orbit, heliocentric	FDX	RMX
ORMR	Mars centric Mars swingby S/C orbit	FDX	RMX
OROR	Otwara centric Otwara flyby S/C orbit	FDX	RMX
ORPR	Medium term planning comet centric S/C orbit	FDX	RMX
ORSR	Siwa centric Siwa flyby S/C orbit	FDX	RMX
ORWR	S/C comet centric orbit	FDX	RMX
OWLT	One-Way Light Time File	FDX	RMX
PNAV	Processed NAVCAM Images	FDX	RMX, RSO
PTR_	Pointing Request File (DDID-TBC)		FDX
RGFD	Flight Dynamics Ranging Data File		FDX, RMX
SCPR	Science Profiles File (DDID-TBC)		FDX
SPL_	Scenario Parameter List (DDID-TBC)		FDX
STDM	Spacecraft Trajectory Data Message File	FDX	NIX, RMX
WIMP	Interplanetary WIMPY (DDID-TBC)	FDX	RMX

[FTS-CONF] provides details of the processing carried out on the above files on the MCS and of the encapsulated file names where applicable.^{184, 185, 186, 187, 194}

6.3.2.1 Rosetta MPTS Files ¹⁹⁸

MPTS files from the Rosetta NCTRS machines (RONCTRA and RONCTRB) shall be retrieved by manual use of FTP from the Flight Dynamics machines where it is required to have these files.

Naming conventions applicable to these files is as per NCTRS - Volume 3 - Detailed interface definition: FDS, A-14. These files will be stored in the following location on the Rosetta NCTRS machines;

• /home/esocfd/mpts/ROSE/tkdata

6.3.3 Mars Express Packetised Data⁰⁹⁰

Packetised data is retrieved by the FDS system from the MCS by the SCOS-2000/ORATOS Data Access (SoDA) software provided by Flight Dynamics as described in the [SODA-ICD].²⁰⁷

6.3.4 Mars Express Files²⁰⁷

All files passed between the FDS and the MCS are transferred by means of the FTS. The following table shows the source(s) and destination(s) of the various file types passed between the systems.

File Type	File Description	Src	Dest
AAF_	Antenna Angle Files	NIX	FDX, MMX
AGC_	NASA/DSN Signal Received Strength	MRA	FDX, MMX
AGC1	AGC 1 data from IFMS	NIX	FDX
AGC2	AGC 2 data from IFMS	NIX	FDX
ATNM	Predicted / reconstituted S/C attitude	FDX	MMX, POS
CSP_	NASA/DSN Media Calibration	MRA	FDX, MMX
D1FD	Flight Dynamics Doppler 1 Data File	NIX	FDX, MMX
D2FD	Flight Dynamics Doppler 2 Data File	NIX	FDX, MMX
DOR_	Direct Operation Request	FDX	MMX
EPM_	Ephemeris Messages (EPM) Spacecraft Trajectory Data	FDX	MRA, MMX
EVTF	Event File. Long Term Planning	FDX	POS, MMX, MPX
EVTM	Orbit Event File.	FDX	MMX, MPX
FDR_	Flight Dynamics Request	FDX, MMX	MMX, MPX
FDSW	FORTRAN Software Source Code Files	FDX	MMX
FECS	Flight Dynamics Events and Communications Skeleton	FDX	POS, MPX
FTL_	Flight Dynamics Timeline	FDX	POS, MPX
MIB_	MCS Database File(s)	ММХ	FDX, MPX, POS
MTFD	Flight Dynamics Meteo[rological] Data File	NIX	FDX, MMX

NIF_	Navigation Interface Files		MRA, MMX
OASW	Orbit and attitude file access software (various)	FDX	MMX
ODF_	Tracking Data (ODF)	MRA	FDX, MMX
ORHM	S/C orbit, cruise, heliocentric	FDX	MMX
ORMF	S/C orbit, operational, Mars centric. Long Term Planning	FDX	POS
ORMM	S/C orbit, operational, Mars centric	FDX	MMX
OWLT	One-Way Light Time File		MMX, MPX
PSCN	POS Constraints File		POS
PTR_	Pointing Timeline Request File		FDX, MPX
RGFD	Flight Dynamics Ranging Data File	NIX	FDX, MMX
SECS	Science Events and Communication Skeleton		FDX, MPX
STDM	Spacecraft Trajectory Data Message File	FDX	NIX, MMX
STOM	Star occultations	FDX	MMX, MPX, POS
VILM	Lander Visibility	FDX	MMX, POS
WIMP	Interplanetary WIMPY	FDX	ММХ

[FTS-CONF] provides details of the processing carried out on the above files on the MCS and of the encapsulated file names where applicable. ^{184, 185, 186, 187, 194}

6.4 Size and Frequency of Transfers

The size and the frequency of the transfers are summarised in the table below.

Note: The number of co-existing files are multiple copies of the same file type (i.e. different versions) that are held in the MCS. This is used to calculate the estimated disk space required for storage.

6.4.1 Rosetta Data⁰⁹⁰

See [FTS-CONF]. 207

6.4.2 Mars Express Data⁰⁹⁰

See [FTS-CONF]. 207

6.5 Timing and Synchronisation Requirements

There are no explicit timing or synchronisation requirements. ⁰⁹⁰

7 Data Definition

The following section details the structure and contents of the various interfaces:

7.1 Flight Dynamics Request Files (FDRs)

As defined in the [CRID]. 090

7.2 Direct Operation Request Files (DORs)

As defined in [CRID]. 090

7.3 Tracking Data Files

IFMS files are as defined in the [IFMS-OCC] document.

Antenna angles files are defined in the [NCTRS-MCS] document

ODF files are defined in the [DSN-ODF] document.

Media calibration files are defined in the [DSN-MCI] document.

7.4 Spacecraft Trajectory Data Files

STDM files are as defined in the [NCTRS-MCS] document.

EPM files are as defined in the [CCSDS-502] document.

The contents of Navigation Interface Files are TBD.

7.5 Packetised Data ⁰⁹⁰

The SODA server process retrieves the packets from the MCS DAS. The source packets and additional information from the SCOS header of the packets are extracted using the SCOS-2000 FDIF interface as described the [S2K-TM-ICD].⁰⁹⁰

The structure and content of the source packets generated by the spacecraft are detailed in the documents referenced by the [TM/TC-ICD]. 090

The structure and content of packets generated by the MCS are detailed in the [DDID-K]. 090

7.6 Auxiliary Data Files ⁰⁹⁰

The following auxiliary files will be passed from the FDS to the MCS:

7.6.1 Orbit Files⁰⁹⁰

Orbit files for S/C, asteroids Otawara and Siwa and comet Wirtanen are as described in the [DDID].

7.6.2 Attitude Files⁰⁹⁰

S/C attitude files are as described in the [DDID].

Rosetta and Mars Express Mission Control System - R(ME)MCS; FDS ICD Flight Dynamics System - Mission Control System Interface Control Document RO-ESC-ID-5003

7.6.3 Event File ⁰⁹⁰

The event file is as described in the [DDID].

7.6.4 Cometary Environment File ⁰⁹⁰

Format and contents of the file will be defined and described in the [DDID] after launch.

7.6.5 Comet Characteristics File ⁰⁹⁰

Format and contents of the file will be defined and described in the [DDID] after launch.

7.6.6 Comet Kinematics File ⁰⁹⁰

Format and contents of the file will be defined and described in the [DDID] after launch.

7.6.7 Orbit and Attitude File Access Software⁰⁹⁰

FORTRAN source code files will be delivered from FDS to the MCS as described in the [DDID].

7.7 Mission Information Base (MIB)⁰⁹⁰

The packet definitions are extracted from the Source Database and converted into Mission Information Base (MIB) files. These files are tarred into a single file for archive and distribution.

The MIB file contains separate files for the SCOS-2000 MIB tables, as described in the [S2K-MIB-ICD] with the following mission specific extensions and updates to fields in the SCOS-2000 Tables. The information is presented in a format consistent with the [S2K-DATABASE-ICD]

7.7.1 ccf.dat

The ccf has been updated with the following:

- The command description has been increased in size from 24 to 40 characters.
- A new field, CCF_SUBSCH, has been added to identify commands as being in a particular onboard sub-schedule.

Fi. Nr	Field Name	Field Type	Description	Ma/Def
2	CCF_DESCR	Char(40)	Textual description of the command	М
20	CCF_SUBSCH	Number(3)	Contains the onboard sub-schedule number	

7.7.2 pcf.dat

The pcf has been updated with the following:

- The TM parameter description has been increased in size from 16 to 24 characters.
- Four new fields have been added to support the creation of service 3 telecommands. The corresponding onboard Group ID, and Offset are stored for TM parameters. Additionally a flag is also provided to indicate if a TM parameter is global or detailed. Only global parameters are named in the service 3 telecommand. A field 'type'

(PCF_WDLEN) is also added to indicate whether the parameter should be on an 8 bit or 16 bit boundary.

Fi. Nr	Field Name	Field Type	Description	Ma/Def
2	PCF_DESCR	Char(24)	Parameter Description. Free textual description of the parameter	
20	PCF_WDLEN	Char(1)	Indicates parameter 'type' in the service 3 command. Set to 'O' if 8 bit boundary, or 'W' for 16 bit.	
21	PCF_GRPID	Number(4)	Group ID of the corresponding on-board parameter.	
22	PCF_OFFSET	Number(5)	Offset of the corresponding on-board parameter.	
23	PCF_GLOBAL	Char(1)	Set 'G' if global parameter, or 'D' if detailed	

7.7.3 Utility Files

Several utility files used during the generation of the MIB files are also contained within the MIB file:

File	Description
spid_hash.txt	This file maintains a mapping between the RSDB telemetry packet id (TMPCK.NAME) and the SCOS-2000 SPID number.
calib_hash.txt	This file maintains a mapping between the RSDB calibration name (P_CALIBRATION.NAME) and the SCOS-2000 calibration number. It is used for all calibration tables.
synparhash.txt	This file is used to maintain a list of expressions for the 'automatically generated' synthetic parameters, and to map a synthetic parameter name for each.
list_of_packet_types_not_in_vpd.txt	This file is used to configure a list of packet types which need not be converted into the vpd table.

7.8 One-Way Light Time File (OWLT)

OWLT files are as defined in the [TIC-TN] document.

7.9 Payload Auxiliary Data

Payload pointing and trajectory requests will be based on Scenario Parameter Lists (SPL) during cometary observation. SPL's will be delivered from the RSOC to FD through the MCS. Details of SPL delivery will be defined after launch.

7.10 Interplanetary WIMPY

The WIMPY is an ASCII file which is delivered to the MCS to provide mainly ground station related information. The format and content of the WIMPY is described in the [WIMPY] document.