OSIRIS

Optical, Spectroscopic, and Infrared Remote Imaging System

OSIRIS Camera Solar Stray Light

RO-RIS-MPAE-TN-087 Issue: 1 Revision: a 25/04/2018

> Prepared by: Gabor Kovacs

Reference:**RO-RIS-MPAE-TN-087**Issue:1Rev.: aDate:25/04/2018Page:2

Approval Sheet

27.4/18

prepared by: Gabor Kovacs (signature/date)

approved by: Holger Sierks (signature/date)

Document Change Record

Iss./Rev.	Date	Author	Pages affected	Description
D / -	23/06/2017	Kovacs	all	first draft
1 / -	13/02/2018	Güttler	all	Overall style and description Added Table 2 with specific images used Added before/after example Added Sect. 3
1 / a	25/04/2018	Güttler		Clarify : - OSIRIS vs. CODMAC levels - location of calibration files

Table of contents

1	Ge	neral aspects	5
	1.1	Scope	5
	1.2	Reference Documents	5
	1.3	Acronyms and Abbreviations	5
2	So	ar stray-light analysis	6
	2.1	Evaluation method	6
	2.2	Results	7
3	Ex	trapolation to other Solar Elongations and Filters	9
4	Ca	libration files used by OsiCalliope	9

List of Figures

Figure 1: NAC F22 (left) and WAC 12 (right) solar stray-light pattern at 60° solar elongation (both represented in Rosetta standard orientation, see RD3).	7
Figure 2: Normalized average DN/s vs. solar elongation. Data from Table 3	8
Figure 3: Original OSIRIS level 3 (CODMAC L4) image (left; WAC_2015-08- 28T19.27.59.318Z _ID30_1397549002_F21) compared to the corrected OSIRIS level 3C (CODMAC L4) image (right). The solar elongation is 40° and both images are scaled from 0 to 10 ⁻⁶ W / m ² sr nm (both represented in Rosetta standard orientation, see RD3)	

List of Tables

Table 1: Stray-light observation campaigns in flight.	6
Table 2: Images used for stray-light computations.	6
Table 3: Average stray-light-signal DN/s, normalized to 1 au.	7

1 General aspects

1.1 Scope

This document describes the methods and results of the OSIRIS camera solar stray-light analysis. The examination was carried out on the OSIRIS FM Narrow Angle and Wide Angle Cameras to provide the following data for the calibration pipeline:

- Reference images for stray-light calibration, based on solar stray-light observation sequences with specific filter combinations
- Spectral scaling parameters, for filter combinations without dedicated stray-light sequence

The analysis is based on inflight solar stray-light tests.

no.	document name	document number, Iss./Rev.
RD1	OSIRIS user manual	RO-RIS-MPAE-MA-004, D/s
RD2	OSIRIS calibration pipeline OsiCalliope	RO-RIS-MPAE-MA-007, 1/c
RD3	Rosetta-OSIRIS To Planetary Science Archive Interface Control Document	RO-RIS-MPAE-ID-015, 4/b

1.2 Reference Documents

1.3 Acronyms and Abbreviations

- OSIRIS Optical, Spectroscopic, and Infrared Remote Imaging System
- NAC Narrow Angle Camera
- WAC Wide Angle Camera
- FM Flight Model
- CG Comet 67P/Churyumov-Gerasimenko
- DN Digital numbers, i.e., counts on the CCD

2 Solar stray-light analysis

The solar stray-light analysis is based on the observation sequences of the NAC and WAC systems, during the CG comet approach and escort phases of the Rosetta spacecraft. These sequences provided images with different solar elongation angles and exposure times.

Observation Name	Date	Cameras & Filters	Solar Elongations	Comment
STP003_CALIB_STRAYLIGHT	2014-05-11	N22 W12, W21	20°-90°	< 30° images saturated
STP102_STRAYLIGHT_001	2016-04-01	N22, N24 W12, W21	30°-100°	< 50° images saturated biased by CG and dust
STP107_STRAYLIGHT_001	2016-05-09	N22, N24 W12, W21	30°-70°	biased by CG and dust

Table 1: Stray-light observation campaigns in flight.

Wherever it was possible, the "STP003_CALIB_STRAYLIGHT" sequence was used in the analysis, as the best sequence with no cometary dust particles and coma effect. However, due to overexposure and missing filters, this was not always possible. The filenames of the specific images used for this study are listed in the following table.

Solar	NAC F22	NAC F24	WAC F12	WAC F21	
Elong.					
30°	NAC_2016-05-09T20.55.15.523Z	NAC_2016-05-09T20.55.21.383Z	WAC_2014-05-11T16.27.46.407Z	WAC_2014-05-11T16.24.55.488Z	
	_ID10_1397549000_F22	_ID10_1397549001_F24	_ID10_1397549000_F12	_ID10_1397549000_F21	
40°	NAC_2014-05-11T16.39.46.647Z	NAC_2016-05-09T20.45.29.699Z	WAC_2014-05-11T16.42.46.429Z	WAC_2014-05-11T16.39.55.435Z	
	_ID10_1397549000_F22	_ID10_1397549001_F24	_ID10_1397549000_F12	_ID10_1397549000_F21	
50°	NAC_2014-05-11T16.54.46.572Z	NAC_2016-05-09T20.34.35.734Z	WAC_2014-05-11T16.57.46.433Z	WAC_2014-05-11T16.54.55.434Z	
	_ID10_1397549000_F22	_ID10_1397549001_F24	_ID10_1397549000_F12	_ID10_1397549000_F21	
60°	NAC_2014-05-11T17.09.46.559Z	NAC_2016-05-09T20.21.42.043Z	WAC_2014-05-11T17.12.46.428Z	WAC_2014-05-11T17.09.56.392Z	
	_ID10_1397549000_F22	_ID10_1397549001_F24	_ID10_1397549000_F12	_ID10_1397549000_F21	
70°	NAC_2014-05-11T17.24.46.570Z	NAC_2016-04-01T17.30.57.702Z	WAC_2014-05-11T17.27.46.409Z	WAC_2014-05-11T17.24.55.531Z	
	_ID10_1397549000_F22	_ID10_1397549001_F24	_ID10_1397549000_F12	_ID10_1397549000_F21	
80°	NAC_2014-05-11T17.39.46.546Z	NAC_2016-04-01T17.55.21.700Z	WAC_2014-05-11T17.42.46.416Z	WAC_2014-05-11T17.39.56.395Z	
	_ID10_1397549000_F22	_ID10_1397549001_F24	_ID10_1397549000_F12	_ID10_1397549000_F21	
90°	NAC_2014-05-11T17.54.46.547Z	NAC_2016-04-01T18.19.45.701Z	WAC_2014-05-11T17.57.46.405Z	WAC_2014-05-11T17.54.55.504Z	
	_ID10_1397549000_F22	ID10_1397549001_F24	ID10_1397549000_F12	ID10_1397549000_F21	

Table 2: Images used for stray-light computations.

2.1 Evaluation method

The solar stray-light images were processed by the following method:

- The image statistics were calculated for the full window area of each image: average, standard deviation, median, total flux
- 5x5 median filtering to remove cosmics and other artefacts
- Un-bin images to full size (2048x2048)
- ADC offset correction
- Bias removal
- Flat field correction
- Bad pixel removal
- Normalization to 1 s exposure time

• Normalization to 1 au solar distance

The processed images – with increasing solar elongation – were assembled into a single PDS data product for each filter combination. This is stored as the stray-light reference image in the calibration database (see Sect. 4). It contains seven objects (image layers) of solar elongation and the relevant ancillary data in the attached header.

2.2 Results

Examples for the stray-light pattern after the processing steps described in Sect. 2.1 are shown below. The patterns are different for NAC and WAC as can be seen in Figure 1. Also the pattern changes with solar elongation, in particular for the NAC.

To get a feeling for the overall stray-light contribution, Table 3 provides an average solar straylight signal over the full image. A graphic representation of the same data is provided in Figure 2.

Figure 1: NAC F22 (left) and WAC 12 (right) solar stray-light pattern at 60° solar elongation (both represented in Rosetta standard orientation, see RD3).

Solar elongation	NAC F22	NAC F24	WAC F12	WAC F21
30°	829	492	1227	481.5
40°	112	67.9	635.7	251.5
50°	70	45.9	360.7	143.9
60°	52	36.1	216.9	86.12
70°	1.5	1.17	136.7	54.7
80°	1.52	1.17	18.36	7.17
90°	0	0	0	0

Table 3: Average stray-light-signal DN/s, normalized to 1 au.

Figure 2: Normalized average DN/s vs. solar elongation. Data from Table 3.

An example of an original image (OSIRIS level 3; CODMAC L4) compared to its stray light corrected image (OSIRIS level 3C; CODMAC L4) is presented in Figure 3. The image was taken at 40° solar elongation (wrt. the image centre). Small features like screw heads at the upper and lower edges are not fully corrected but the overall image is free of solar stray light. In this particular example, the solar stray light component was 90% of the total signal and 10% remain after correction.

Figure 3: Original OSIRIS level 3 (CODMAC L4) image (left; WAC_2015-08-28T19.27.59.318Z _ID30_1397549002_F21) compared to the corrected OSIRIS level 3C (CODMAC L4) image (right). The solar elongation is 40° and both images are scaled from 0 to 10^{-6} W / m² sr nm (both represented in Rosetta standard orientation, see RD3).

3 Extrapolation to other Solar Elongations and Filters

The actual stray-light contribution of an image at a given solar elongation is calculated by parabolic interpolation of the reference image planes, pixel by pixel. For filter combinations where no reference image is available (no stray-light calibration observations), the closest wavelength filter combination is used with relative solar flux and sensitivity scaling. This is based on the OsiCalliope database absolute calibration factors, and solar flux values. The calibration algorithm is further explained in the OsiCalliope manual [RD2].

4 Calibration files used by OsiCalliope

The calibration files used by OsiCalliope to calibrate OSIRIS images are:

- NAC_FM_SOL_STL_22_V01.IMG
- NAC_FM_SOL_STL_24_V01.IMG
- WAC_FM_SOL_STL_12_V01.IMG
- WAC_FM_SOL_STL_21_V01.IMG

The files are included in each public delivery of OSIRIS data to PSA. The location is specified in the OSIRIS EAICD [RD3].