OSIRIS

Optical, Spectroscopic, and Infrared Remote Imaging System

Software Interface Specification for OSIRIS Science Products

RO-RIS-MPAE-ID-023 Issue: 1 Revision: -16 October 2017

> Prepared by: Cecilia Tubiana

Reference:**RO-RIS-MPAE-ID-023**Issue:1Rev.: -Date:16/10/2017Page:ii

Approval Sheet

Prepared by: Cecilia Tubiana (signature/date)

Approved by: *Holger Sierks* (signature/date)

Document Change Record

Iss./Rev.	Date / Name	Pages affected	Description
1-	16/10/2017	All	Clone of RO-RIS-MPAE-ID-018_5EDRSIS.docx (merged SIS)
			Sec. 9.7: Updated description of PHASE_ANGLE and NORTH_AZIMUTH

Table of contents

1	Gen	eral aspects	7			
	1.1	Scope				
	1.2	Introduction	7			
	1.3	Reference Documents	7			
2	Acr	onyms	8			
3	Inst	rument Overview	9			
	3.1	The Narrow Angle Camera (NAC)	9			
	3.2	The Wide Angle Camera (WAC)	9			
4	Data	a Structure for .IMG images	.11			
	4.1	PDS Label	. 13			
	4.2	PDS Image Object	. 13			
	4.3	On-board image processing and compression	.14			
5	Data	a structure for .FTS images	.16			
	5.1	FITS Label	.16			
	5.2	FITS Image Data	.16			
	5.3	Detached PDS Label	.17			
	5.4	On-board image processing and compression	.17			
6	File	Naming Convention	.18			
	6.1	The OSIRIS archive filename convention	.18			
	6.2	The PDS archive filename convention	. 19			
7	Coc	rdinate Systems	.21			
	7.1	CCD Coordinate Frames	.21			
	7.2	Inertial Coordinate Frames	.21			
	7.2.	1 Standard Rosetta orientation	.21			
	7.2.	2 Rosetta spacecraft coordinate frame	. 22			
8	Pro	duct Generation	.24			
	8.1	OSIRIS Level 1 (EDR)	.24			
	8.2	OSIRIS Level 2 (RDR)	.24			
	8.3	OSIRIS Level 3 (RDR)	.24			
	8.4	Conversion to FITS Format	.25			
	8.5	Conversion to JPEG Format	.25			
	8.5.	1 Level of images created	.25			

Reference: RO-RIS-MPAE-ID-023 1 Rev.: -16/10/2017 Issue: Date:

Dale.	
Page:	

	8.5.2	2 Scaling	25
	8.5.3	3 Orientation	25
	8.5.4	4 Resizing	26
	8.5.5	5 Compression	26
	8.5.6	5 Header	26
	8.5.7	7 Detached PDS Label	26
9	The	OSIRIS Labels for .IMG files	27
	9.1	System	27
	9.2	Software	28
	9.3	Mission Identification	29
	9.4	Instrument Description	30
	9.5	Image Identification	31
	9.6	Time Identification	38
	9.7	Geometry	39
	9.7.1	SC_COORDINATE_SYSTEM	43
	9.7.2	2 CAMERA_COORDINATE_SYSTEM	45
	9.7.3	3 GEOREFERENCING (IMAGE_POI)	46
	9.8	Data Content Flags	47
	9.9	Status Flags	48
	9.10	Mechanism Status Flags	50
	9.11	Image Acquisition Options	52
	9.12	Processing Flags	64
	9.13	Shutter Config	67
	9.14	Shutter Status	69
	9.15	Data Compression And Segmentation	70
	9.16	Subsystem Hardware Identification	74
	9.17	System Heater Status	76
	9.18	Power Converter Switch Status	77
	9.19	Power System Status	83
	9.20	Calibrated Temperatures	85
	9.21	Radiation Environment	89
1(0 PDS	Objects in .IMG files	90
	10.1	The HISTORY Object	90
	10.2	Shutter Blade 1 position encoder Object	90

Reference:**RO-RIS-MPAE-ID-023**Issue:1Rev.: -Date:16/10/2017Page:vi

10.3	Shutter Blade 2 position encoder Object	
10.4	The IMAGE Object	
10.5	The PA_IMAGE Object	
10.6	The PB_IMAGE Object	
10.7	The OL_IMAGE Object	
10.8	The SIGMA_MAP_IMAGE Object	
10.9	The QUALITY_MAP_IMAGE Object	
11 The	OSIRIS labels for .FTS files	
11.1	Required/Reserved FITS Keywords	
11.2	Mission Specific Keywords	
Appendi	x 1: Example OSIRIS header for .IMG files	
Appendi	x 2: Example OSIRIS .IMG History Object	
Appendi	x 3: Example OSIRIS header for .FTS files	

1 General aspects

1.1 Scope

This document describes in detail the OSIRIS data product PDS and FITS data label.

1.2 Introduction

The purpose of this Data Product Software Interface Specification (SIS) is to provide consumers of OSIRIS Camera Experiment Data Record (EDR, uncalibrated images) and Reduced Data Record (RDR, calibrated images) data products with a detailed description of the products. How the data products are generated, including data sources and destinations, can be found in "Rosetta- OSIRIS To Planetary Science Archive Interface Control Document". The SIS is intended for the planetary science scientific community who will analyse the data.

no.	document name	document number, Iss./Rev.
RD1	Rosetta-OSIRIS To Planetary Science Archive Interface Control Document	RO-RIS-MPAE-ID-015
RD2	OSIRIS Calibration Pipeline OsiCalliope	RO-RIS-MPAE-MA-007
RD3	Osiris camera distortion correction parameters	RO-RIS-MPAE-TN-081

1.3 Reference Documents

2 Acronyms

ASCII	American Standard Code for Information Interchange
ADC	Analog Digital Converter
CRB	CCD Readout Board
CCD	Charge Coupled Device
DDS	Data Distribution System
DPU	Data Processing Unit
DSP	Digital Signal Processor
EDR	Experiment Data Record
ESA	European Space Agency
HK	House Keeping data
IAA	Instituto de Astrofísica de Andalucía
IDA	Institut für Datentechnik und Kommunikationsnetze
INTA	Instituto Nacional de Técnica Aeroespacial
LAM	Laboratoire d'Astrophysique de Marseille
MCB	Motor Controller Board
MLI	Multi-Layer Insulation
MPS	Max Planck Institut für Sonnensystemforschung
NAC	Narrow Angle Camera
ODL	Object Description Language
OIOR	Orbiter Instrument Operational Request
OSIRIS	Optical, Spectroscopic, and Infrared Remote Imaging System
PCM	Power Converter Module
PDS	Planetary Data Systems
RDR	Reduced Data Record
RSSD	Research and Scientific Support Department (ESA)
RO	Rosetta Orbiter
PSA	Planetary Science Archive
SPICE	Spacecraft, Planet, Instrument, C-matrix, Event kernels
SIS	Software Interface Specification
SPIHT	Set Partitioning in Hierarchical Trees (Wavelet compression algorithm)
SSMM	Solid State Mass Memory (Rosetta spacecraft storage device)
TBC	To Be Considered
TBD	To Be Determined
TMI	TeleMetry Image
UPD	Università di Padova
UPM	Universidad Politécnica de Madrid
WAC	Wide Angle Camera

Reference:**RO-RIS-MPAE-ID-023**Issue:1Rev.: -Date:16/10/2017Page:9

3 Instrument Overview

The OSIRIS instrument was provided by the OSIRIS consortium led by the principal investigator Dr. Horst Uwe Keller at the Max Planck Institut für Sonnensystemforschung.

The OSIRIS camera system consists of a Narrow Angle Camera (NAC) and a Wide Angle Camera (WAC).

3.1 The Narrow Angle Camera (NAC)

The NAC uses an off axis three mirror optical design. The off axis design was selected in order to minimize the straylight reaching the CCD (the NAC has a proven stray light attenuation of better than 10⁻⁹). The optical beam is reflected by the three mirrors (M1, M2 and M3) before passing through a double filter wheel, a mechanical shutter mechanism and an anti-radiation plate (ARP) before reaching the CCD.

Figure 1: (Left) The OSIRIS NAC flight unit in the lab. (Right) The NAC optical path

3.2 The Wide Angle Camera (WAC)

The WAC uses an off axis two mirror optical design. The off axis design was selected in order to minimize the stray light reaching the CCD (the WAC has a proven stray light attenuation of better than 10^{-8}).

The optical beam is reflected by the two mirrors (M1 & M2) before passing through a double filter wheel, a mechanical shutter mechanism, and an anti-radiation plate (ARP) before reaching the CCD.

Figure 2: (Left) The OSIRIS WAC flight unit in the lab. (Right) The WAC optical path

Reference:**RO-RIS-MPAE-ID-023**Issue:1Rev.: -Date:16/10/2017Page:10

More detailed information about the design of the cameras, the filter wheels, the mechanical shutter mechanism and the CCD can be found in:

Keller, H. U. et al. OSIRIS -- The Scientific Camera System Onboard Rosetta, *Space Science Reviews*, 2007, **128**, 433-506.

4 Data Structure for .IMG images

The OSIRIS images are stored as binary files with embedded PDS label, as described in the PDS v3.6 specification. The file structure is as follows:

Figure 3: Layout of an OSIRIS data file

- a. The **Image Header** is an embedded PDS label with associated ancillary information. The header contains object and pointer references to all other embedded objects.
- b. The **History Object** is an additional PDS label containing a PDS HISTORY object. The history object contains the processing information of all the processing software used in the processing pipeline.
- c. The **Image Data** contains the actual CCD image data from the exposure. The image data can be addressed using the primary IMAGE object.
- d. The **A Amplifier Pre-pixel Image** data contains the image data from the pre-pixel readout phase of the amplifier A chain of the CCD readout. The pre-pixels are 48 elements in the serial register coupled to ground instead of the physical CCD. These pre-pixels could be used to estimate the CCD bias level and readout noise level. The pre-pixel image data is mapped to the PA_IMAGE object. The pre-pixel image object only exists if the pre-pixel data was transmitted to ground.
- e. The **B** Amplifier Pre-pixel Image data contains the image data from the pre-pixel readout phase of the amplifier B chain of the CCD readout. The pre-pixels are 48 elements in the serial register coupled to ground instead of the physical CCD. These pre-pixels could be used to estimate the CCD bias level and readout noise level. The

pre-pixel image data is mapped to the PB_IMAGE object. The pre-pixel image object only exists if the pre-pixel data was transmitted to ground.

- f. The **Overclocked Lines Image** contains image data acquired by continuing clocking out the CCD after all the physical pixels have been read. Reading out the CCD in this manner allows a measurement of the charge transfer efficiency along the column clocking direction. The over clocking lines data is mapped to the OL_IMAGE object. The image object only exists if over clocked line data was acquired during the image acquisition.
- g. The **Blade 1 Shutter Pulse** object contains the raw timer data from the shutter mechanism motion encoder of the first shutter blade. This pulse data can be used to determine the position vs. time of the shutter blade during the exposure. This data can be used to improve the knowledge of the precise exposure time for each pixel in the image. The blade 1 shutter pulse data is stored in the BLADE1_PULSE_ARRAY array object. The object only exists if the shutter mechanism was used during the exposure and if the pulse data was downlinked to ground.
- h. The **Blade 2 Shutter Pulse** object contains the raw timer data from the shutter mechanism motion encoder of the second shutter blade. This pulse data can be used to determine the position vs. time of the shutter blade during the exposure. This data can be used to improve the knowledge of the precise exposure time for each pixel in the image. The blade 2 shutter pulse data is stored in the BLADE2_PULSE_ARRAY array object. The object only exists if the shutter mechanism was used during the exposure and if the pulse data was downlinked to ground.
- i. The **Sigma Map Image** is a float image with the same dimension as the image itself. For each pixel its error is determined by the Poisson error E_p , and the (bias) readout noise E_B :

$$error_{i,j} = \sqrt{E_P^2 + E_B^2}$$
$$E_P = \frac{\sqrt{N_{i,j}}}{N_{i,j}}$$

where $N_{i,j}$ is the intensity of the pixel with coordinates (i, j) in number of electrons. Since the Poisson statistics are done using the intensity in number of electrons, the image intensity has to be converted from DN to number of electrons and this is done using:

$$I_{e^{-}} = I_{DN} \cdot gain$$

where I_{e^-} and I_{DN} are the intensity in number of electrons and DN, respectively, and gain is the number of electrons per DN (for OSIRIS WAC and NAC gain = 3.1 e⁻/DN in HIGH gain mode and gain = 15.5 e⁻/DN in LOW gain mode).

j. The **Quality Map Image** is an 8-bit image with the same dimension as the image itself and contains a quality estimate of each pixel. The quality map exists for OSIRIS data level 2 and higher.

The quality estimate values stored in the quality map are generated by setting a given bit to value 1 for specific effects. If more than one effect is present in the data several different bits can be set. The following values are possible:

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Value	128	64	32	16	8	4	2	1
Effect	BAD	SAT	DIM	WARM	LOSSY	NLIN	-	VALID
BAD:	Pixel is marked as bad.							
SAT:	Pixel was saturated during the exposure.							
DIM:	Pix	Pixel is marked as dim (low sensitivity).						
WARM:		Pixel is marked as warm (increased or varying sensitivity) use with caution.						
LOSSY:	Los	Lossy image compression applied on pixel.						
NLIN:	Pix	Pixel was exposed into the nonlinear DN range of the CCD.						
VALID:	Pixel is valid. Invalid or non-existing (0) can be due to packet loss, or distortion correction.							

Some flags have been removed from quality map (they are valid for the full image area):

CONV: (bit 1) Pixel has seen gauss convolution filtering as part of the image compression.

SQRT: (bit 0) Pixel has seen square root filtering as part of the image compression.

Pixel with value 0 is used to indicate lost data (lost packets).

4.1 PDS Label

The OSIRIS EDRs and RDRs have an attached PDS label. A PDS label is object-oriented and describes the objects in the data file. The PDS label contains keywords for product identification. The label also contains descriptive information needed to interpret or process the data in the file.

PDS labels are written in Object Description Language (ODL) (see PDS v3.6 specification). PDS label statements have the form:

Each label statement is terminated with a carriage return character (ASCII 13) and a line feed character (ASCII 10) sequence to allow the label to be read by many operating systems.

Pointer statements with the following format are used to indicate the location of data objects in the file:

```
^object = location
```

The carat character (^, also called a pointer) is followed by the name of the specific data object.

The location is the 1-based starting record number for the data object within the file. This record number, when used with RECORD_TYPE and RECORD_BYTES, allows the user to find where the image data starts within the file.

4.2 PDS Image Object

An IMAGE object is a two-dimensional array of values, all of the same type, each of which is referred to as a sample. IMAGE objects are normally processed with special display tools to produce a visual representation of the samples by assigning brightness levels or display colours

to the values. An IMAGE consists of a series of lines, each containing the same number of samples.

The required IMAGE keywords define the parameters for simple IMAGE objects:

LINES	Number of lines in the image.
LINE_SAMPLES	Number of samples in each line.
SAMPLE_BITS	Number of bits in each individual sample.
SAMPLE_TYPE	Defines the sample data type.

Table 1: Required keywords for defining a simple IMAGE object

4.3 On-board image processing and compression

The OSIRIS flight software has the capability to compress the image data before transmission to ground using a number of compression algorithms and filtering schemes.

OSIRIS implements a data segmentation scheme to decrease sensitivity to data loss during transmission. Each image is separated into segments with a maximum size of 512x512 pixels. Each of these blocks are processed and compressed individually.

13	14	15	(2047,2047) 16
9	10	11	12
5	6	7	8
1 (0,0)	2	3	4

Figure 4: Example of the segmentation scheme used for an OSIRIS full frame image (2048x2048) (16 segments)

All information about compression and post processing is found in the SR_COMPRESSION group in the OSIRIS image headers. Each member of this group is a vector containing an entry for each image segment used to generate the final image. The segmentation boundaries can be found using the SEGMENT_[X, Y, W, H] members. The encoding algorithm can be found in the ENCODING member. The supported encoding algorithms are listed in Table 2.

Reference:**RO-RIS-MPAE-ID-023**Issue:1Rev.: -Date:16/10/2017Page:15

NONE	No Compression.
SPIHT_D24	SPIHT based compression used by the OSIRIS flight software prior to release 2.0.
SPIHT_LIFT	SPIHT compression with LIFT filtering.
SPIHT_TAP	SPIHT compression with TAP filtering.
SQRT_16to8	Square rooting followed by 16 to 8 bit reduction.
PACK9BIT	The image data has been compressed by chopping the data range at 9 bits (meaning discarding the upper 7 bits).

Table 2: Supported encoding algorithms for image compression

The effective compression ratio achieved by the encoder is stored in the COMPRESSION_RATIO member.

If the encoding step was performed without information loss then the LOSSLESS_FLAG member is TRUE else FALSE. Please note that LOSSLESS_FLAG only refers to the encoding step. LOSSLESS_FLAG can be TRUE even is a lossy filtering step has been performed.

To increase the quality of the SPIHT compressor OSIRIS also implement a pre-processing filtering step. A sqrt filtering step performing the transformation IOut = SQRT(I * Gain) is available. If the sqrt filter has been used the SQRT_FILTER_FLAG is set to TRUE and the gain used for the transformation is written in SQRT_FILTER_GAIN.

More detailed information about the PDS Specification can be found in:

Planetary Data System -- "Planetary Data System Standards Reference".

https://pds.nasa.gov/tools/standards-reference.shtml

5 Data structure for .FTS images

The OSIRIS images are stored as a standard FITS file, as described in the FITS v3.0 specification, as a primary Header and Data Unit (HDU):

Figure 5 Layout of an OSIRIS FITS data file

- a. The **Image Header** is an ASCII header containing a subset of the PDS ancillary information.
- b. The Image Data contains the actual CCD image data from the exposure.

Pixels with the value 0 are used to indicate lost data (lost packets).

5.1 FITS Label

The OSIRIS EDRs and RDRs have an attached FITS label. A FITS label contains keywords for product identification. The label also contains some descriptive information needed to interpret or process the data in the file.

FITS labels are to conform to the FITS v3.0 specification. FITS label statements have the form of "keyword = value".

5.2 FITS Image Data

The IMAGE data is a two-dimensional array of values, all of the same type, each of which is referred to as a sample. IMAGE data is normally processed with special display tools to produce a visual representation of the samples by assigning brightness levels or display colours to the values. The IMAGE consists of a series of lines, each containing the same number of samples.

The following required FITS keywords define the parameters for simple IMAGE data:

NAXIS1	number of columns in the image
NAXIS2	number of rows in the image
BITPIX	number of bits in each individual sample
BSCALE/ BZERO:	defines the sample data

 Table 3 Required keywords for defining IMAGE data

5.3 Detached PDS Label

In order to provide a PDS compatible delivery, every FITS image delivered to PSA has a detached PDS label, containing some extra information defined in [RD1].

5.4 On-board image processing and compression

The OSIRIS flight software has the capability to compress the image data before transmission to ground using a number of compression algorithms and filtering schemes.

OSIRIS implements a data segmentation scheme to decrease sensitivity to data loss during transmission. Each image is separated into segments with a maximum size of 512x512 pixels. Each of these blocks are processed and compressed individually (see Figure 4).

Information regarding processing and compression is not stored within the FITS header, but can be found in the corresponding PDS image header (Sec. 4.3).

More detailed information about the FITS Specification can be found in:

FITS Support Office -- "Definition of the Flexible Image Transport System".

http://fits.gsfc.nasa.gov/fits_standard.html

6 File Naming Convention

6.1 The OSIRIS archive filename convention

The OSIRIS image files as archived in the project internal archive (please note NOT the PDS archive) use the following filename convention:

Field	Description
CCC	Either: NAC (Narrow Angle Camera) OR WAC (Wide Angle Camera)
YYYY	The year of acquisition
MM	The month of acquisition
DD	The day of acquisition
Т	The letter T (stands for "Time")
HH	The hour of acquisition
MM	The minute of acquisition
SS	The second of acquisition
UUU	The millisecond of acquisition
Ζ	The letter Z
FF	The image file type:
	ID: Image Data (normal images)
	TH: Thumbnail version
	PA: Amplifier A pre pixels (calibration data)
	PB: Amplifier B pre pixels (calibration data)
	OL: Overclocked lines (calibration data)
L	The OSIRIS processing level of the image
Ι	The OSIRIS processing sub-level of the image
NNNNNNNNN	A ten digit user defined image ID number (specified by the user when writing the command timeline)
F	The letter F (stands for "Filter")
Α	The position index of the filter wheel #1
В	The position index of the filter wheel #2
XXX	The file extension: IMG, FTS, JPG

CCC_YYYY-MM-DDTHH.MM.SS.UUUZ_FFLI_NNNNNNNNN_FAB.XXX

Table 4: OSIRIS data file filename elements

Example:

NAC_2003-10-16T13.50.05.012Z_ID10_000000001_F82.IMG

A NAC image acquired at 2003-10-16T13:50:05.012 UTC. The file contains raw (level 1) CCD image data (image type ID). The image was acquired using the filter combination (8, 2). The processing level is 1 (project internal, not CODMAC). The time is the approximate start time of the exposure.

Note! The filename contains an approximate time of acquisition. This time value is only used to uniquely identify the image and should not be used for any calculation needing high precision. The time value in the filename has not been corrected for on-board clock drift and leap seconds. The best possible knowledge about the time of acquisition can be found in the header label START_TIME (in .IMG images) and F_TSTART (in .FTS images).

6.2 The PDS archive filename convention

The OSIRIS image files as archived in the PDS use the following filename convention:

Field	Description
С	Either: N (Narrow Angle Camera) OR W (Wide Angle Camera)
YYYY	The year of acquisition
MM	The month of acquisition
DD	The day of acquisition
Т	The letter T (stands for "Time")
НН	The hour of acquisition
MM	The minute of acquisition
SS	The second of acquisition
UUU	The millisecond of acquisition
FF	The image file type:
	ID: Image Data (normal images)
	TH: Thumbnail version
	PA: Amplifier A pre pixels (calibration data)
	PB: Amplifier B pre pixels (calibration data)
	OL: Overclocked lines (calibration data)
L	The CODMAC processing level of the image
Ι	The OSIRIS processing sub-level of the image
F	The letter F (stands for "Filter")
А	The position index of the filter wheel #1
В	The position index of the filter wheel #2
XXX	The file extension: IMG, FTS, JPG

CYYYYMMDDTHHMMSSUUUFFLIFAB.XXX

Table 5: OSIRIS data file filename elements

Example:

W20040923T071606570ID10F12.IMG

A WAC image acquired at 2004-09-23 at 07:16:06.657 UTC. The file contains raw (level 1) CCD image data (image type ID). The image was acquired using the filter combination (1, 2).

Note! The filename contains an approximate time of acquisition. This time value is only used to uniquely identify the image and should not be used for any calculation needing high precision. The time value in the filename has not been corrected for on-board clock drift and leap seconds. The best possible knowledge about the time of acquisition can be found in the header label START_TIME (in .IMG images) and F_TSTART (in .FTS images).

7 Coordinate Systems

There are a number of coordinate systems relevant to the interpretation of OSIRIS data. These coordinate systems can be separated into two groups: (a) pixel coordinate systems referring directly to the CCD and (b) inertial coordinate systems referring to the spacecraft and viewing geometry.

7.1 CCD Coordinate Frames

In the CCD coordinate frame, pixel (0, 0) is always the closest pixel to amplifier A, independently from which amplifier is used (see Figure 6).

The first pixel to be read-out is the closest to the used amplifier. The on board software rearranges each line as if the CCD would have been read out through amplifier A. In this way, the first pixel in the image corresponds always to pixel (0, 0).

Lines are parallel to the serial register. *The line numbers* increase with distance from the serial register. Samples are perpendicular to the serial register. *The sample numbers* increase with distance from the edge of the CCD that contains read-out amplifier A.

7.2 Inertial Coordinate Frames

7.2.1 Standard Rosetta orientation

To display the images in the "standard Rosetta orientation" as most of the Rosetta products and tools (NAVCAM, 3DTool, MAPPS):

- WAC images have pixel (0,0) in the bottom right corner, the line number increases from bottom to top and the sample number increases from right to left (Figure 7, left).
- NAC images have pixel (0,0) in the bottom left corner, the line number increases from bottom to top and the sample number increases from left to right (Figure 7, right).

The direction in which the line number and the sample number increases is stored in the PDS header keywords SAMPLE_DISPLAY_DIRECTION and LINE_DISPLAY_DIRECTION, respectively. To display the images in the standard Rosetta orientation, an additional 180° rotation has to be applied to both NAC and WAC images.

Figure 7: WAC and NAC images rotated into standard Rosetta orientation

In this orientation, the spacecraft +X axis is up and the spacecraft +Y axis to the right, meaning that the Sun is up in most images.

7.2.2 Rosetta spacecraft coordinate frame

The Rosetta spacecraft coordinate frame (S/C-COORDS) is defined with the +Z axis which is the nominal pointing of remote sensing instruments (orthogonal to the payload plane). The +Y axis is oriented along the solar panels and the +X is orthogonal to the high gain antenna mounting panel. The Rosetta spacecraft coordinate frame can be addressing in the SPICE system using the coordinate frame alias "ROS_SPACECRAFT".

The OSIRIS cameras are mounted on the -X panel, looking nearly parallel along the +Z axis.

Figure 8: The Rosetta spacecraft coordinate frame (S/C-COORDS) definition

8 Product Generation

Products are generated following the process which is described in "Science Archive Interface Control Document" [RD1].

8.1 OSIRIS Level 1 (EDR)

OSIRIS Level 1 (EDR or CODMAC Level 2) data is generated from the telemetry data, by OsiTrap, following the generation of engineering data. Level 1 data includes raw image data, and a calibrated header. Pre-pixel and overclocked lines data, if they were present in the raw telemetry data, are also written into separate IMAGE objects.

8.2 OSIRIS Level 2 (RDR)

OSIRIS Level 2 (RDR or CODMAC Level 3) data is generated by OsiCalliope, taking the level 1 data, calibrating the image data, following the steps in the table below:

1.	IMAGE data is copied.
2.	Convert IMAGE data to "double" format.
3.	Correction of the tandem ADC offset and gain.
4.	Subtraction of bias.
5.	High spatial frequency flat fielding.
6.	Removal of bad pixels and bad columns.
7.	Low spatial frequency flat fielding.
8.	Normalization to exposure time.
9.	Conversion to radiometric units (absolute calibration).
10.	Generate sigma map and quality map.

Table 6: Steps performed during calibration of Level 2 (RDR) data products

As each step is performed, the "Processing Flags" group in the PDS header is updated, indicating which steps have been performed. Additional information can also be found in the relevant HISTORY object. Calibration is described in more detail in "OSIRIS Calibration Pipeline OsiCalliope" [RD2].

Pre-pixels and overclock lines are folded into the calibration when available or extrapolated from previous measurements and therefore do not explicitly appear in level 2 and higher.

8.3 OSIRIS Level 3 (RDR)

OSIRIS Level 3 (RDR or CODMAC Level 4) data is generated by OsiCalliope. This takes the calibrated level 2 data, and applies distortion correction.

NAC and WAC optical layouts are off-axis mirror systems, which provide high transmittance from the UV to the near-IR and diffraction limited performance with low geometrical optical aberrations. However, this layout has a significant geometrical distortion that must be corrected. The correction is performed by resampling the images according to the nonlinear distortion function of the camera, as if it had been acquired by a distortion-free camera. The image

resampling is done by the bi-linear algorithm, and since the original image is in radiance units, the result is also considered radiometrically corrected on large scales.

The resampling is based on a 2D third-order polynomial fit:

$$X_u = \sum_{i,j} k x_{i,j} \cdot X_0^i \cdot Y_0^j$$
$$Y_u = \sum_{i,j} k y_{i,j} \cdot X_0^i \cdot Y_0^j$$

where (X_u, Y_u) are the undistorted coordinates expressed as function of the original coordinates (X_0, Y_0) and kx and ky are the coefficients for the distortion removal.

During the ground calibration of OSIRIS, the distortion correction coefficients were measured, taking images of a metallic grid of 73 pinholes. During in-flight calibration campaigns, star field images were acquired to check and improve the quality of the geometric distortion correction. We have estimated that WAC distortion corrected images (OSIRIS level 3) have accuracy in the position of about 1-1.5 pixels. The accuracy in the position for the NAC images is 0.1 pixels and maximum error in the FOV is 0.5 pixels.

The amplitude of the geometric distortion is about 15 pixels for the NAC and 80 pixels for the WAC in a corner of the OSIRIS level 2 images. For both cameras, we determined the coefficients of the polynomial functions which allow the (X, Y) pixel coordinates in OSIRIS level 2 images to be converted into coordinates in OSIRIS level 3 images (and vice versa).

Distortion corrected OSIRIS level 3 images have the processing flag DISTORTION_CORRECTION_FLAG set to TRUE.

8.4 Conversion to FITS Format

To create FITS files, the PDS files are converted by making a copy of the IMAGE data, and converting the header into FITS format

8.5 Conversion to JPEG Format

8.5.1 Level of images created

The thumbnail images are created for OSIRIS Level 1, 2, and 3, directly from the corresponding Level 1, 2, and 3 PDS images (i.e. from the IMG files).

8.5.2 Scaling

The intensity scaling of the images is done using a ± 2.5 sigma clipping on the full image around the average of the pixel intensity of an image, excluding values below zero. If *M* is the arithmetic average of all pixels and σ the standard deviation of the distribution around the average, the image is linearly scaled from $M - 2.5\sigma$ (translated into JPEG grey value 0) to $M + 2.5\sigma$ (translated into JPEG grey value 255). If $M - 2.5\sigma$ is smaller than zero, the image will be linearly scaled from 0 to $M + 2.5\sigma$.

8.5.3 Orientation

The images are stored in the "standard Rosetta orientation" (see Sec. 7.2.1) as most of the Rosetta products and tools (NAVCAM, 3DTool, MAPPS).

8.5.4 Resizing

Thumbnail images are resized from the original 2048 x 2048 pixels to 64 x 64 pixels with bilinear resampling. For images with original size differing from 2048 x 2048 pixels, the images are resized with the longest dimension being set to 64 pixels. (e.g., an image of 1024 x 512 pixels is resized to 64 x 32 pixels.)

8.5.5 Compression

Standard JPEG compression with quality factor 75.

8.5.6 Header

There is no header associated with the JPEG thumbnail images.

8.5.7 Detached PDS Label

In order to provide a PDS compatible delivery, every thumbnail image delivered to PSA has a detached PDS label, containing some extra information defined in [RD1].

9 The OSIRIS Labels for .IMG files

The header keywords of all OSIRIS .IMG images are identical, independently from the processing level. The content of certain header keywords is updated according to the processing level.

9.1 System

Label	Group	Namespace	Datatype	Unit	Description	Source
PDS_VERSION_ID			Label		PDS version identifier.	Fixed
LABEL_REVISION_NOTE			String		PDS label set version. This value represents the version of this document.	Fixed
RECORD_TYPE			Label		PDS System Label.	Fixed
RECORD_BYTES			Integer		Number of bytes in a record block.	Image converter
FILE_RECORDS			Integer		Number of records in the file.	Image converter
LABEL_RECORDS			Integer		Number of records in the PDS label header.	Image converter
FILE_NAME			String		Original filename.	Image Converter
^IMAGE			Pointer		Offset of the image data within the file (in records).	Image Converter

Reference: **RO-RIS-MPAE-ID-023** Issue: 1 Rev.: -

Date: 16/10/2017 Page: 28

^BLADE1_PULSE_ARRAY	Pointer	Offset of the shutter blade 1 position encoder data within the file (in records). Note: This field only exists if blade 1 shutter pulse data exists in the data.	Image Converter
^BLADE2_PULSE_ARRAY	Pointer	Offset of the shutter blade 2 position encoder data within the file (in records). Note: This field only exists if blade 2 shutter pulse data exists in the data.	Image Converter
^HISTORY	Pointer	Offset of the HISTORY data within the file (in records).	Image Converter

9.2 Software

Label	Group	Namespace	Datatype	Unit	Description	Source
SOFTWARE_DESC			String		Description of the software that generated the PDS file.	Image converter
SOFTWARE_LICENSE_TYPE			String		Brief copyright notice.	Image converter
SOFTWARE_ID			String		Image converter project name.	Image converter

Reference: **RO-RIS-MPAE-ID-023** Issue: 1 Rev.: Date: 16/10/2017 Page: 29

SOFTWARE_NAME		String	Filename of the image converter.	Image converter
SOFTWARE_VERSION_ID		String	Version of the image converter.	Image converter
SOFTWARE_RELEASE_DATE		String	Release date of the image converter.	Image converter
TELEMETRY_FORMAT_CODE	ROSE	ETTA String	Version of the format of the telemetry packets.	Image converter

9.3 Mission Identification

Label	Group	Namespace	Datatype	Unit	Description	Source
INSTRUMENT_HOST_ID			String		ID of the instrument host.	Fixed
INSTRUMENT_HOST_NAME			String		Name of mission.	Fixed
MISSION_ID			String		ID of mission.	Fixed
MISSION_NAME			String		Name of mission.	Fixed
MISSION_PHASE_NAME			String		Name of overall mission phase.	Image converter

9.4 Instrument Description

Label	Group	Namespace	Datatype	Unit	Description	Source
INSTRUMENT_ID			String		ID of the instrument: Either OSINAC or OSIWAC	ТМ
INSTRUMENT_NAME			String		Description of instrument.	TM/Fixed
INSTRUMENT_TYPE			String		Short description of the instrument.	TM/Fixed
DETECTOR_DESC			String		Description of the detector system.	Fixed
DETECTOR_PIXEL_WIDTH			Float	um	Width of a single pixel.	Fixed
DETECTOR_PIXEL_HEIGHT			Float	um	Height of a single pixel.	Fixed
DETECTOR_TYPE			String		Type of detector.	Fixed
DETECTOR_ID			String		ID of detector.	TM/Fixed
DETECTOR_TEMPERATURE			Float	K	Temperature of the CCD detector in Kelvin.	ТМ
ELEVATION_FOV			Float	deg	Full Field Of View of the instrument in elevation in degrees.	Fixed

Reference: RO-RIS-MPAE-ID-023

Issue: 1 Rev.: -Date: 16/10/2017 Page: 31

AZIMUTH_FOV		Float	deg	Full Field Of View of the instrument in azimuth in degrees.	Fixed
VERTICAL_RESOLUTION	ROSETTA	Float	rad	IFOV of instrument in rad, vertical in Rosetta standard orientation (along Rosetta X axis).	Fixed
HORIZONTAL_RESOLUTION	ROSETTA	Float	rad	IFOV of instrument in rad, horizontal in Rosetta standard orientation (along Rosetta Y axis).	Fixed
TELESCOPE_F_NUMBER		Float		Telescope F number.	Fixed
VERTICAL_FOCAL_LENGTH	ROSETTA	Float	m	Telescope focal length, vertical in Rosetta standard orientation (along Rosetta X axis).	Fixed
HORIZONTAL_FOCAL_LENGTH	ROSETTA	Float	m	Telescope focal length, horizontal in Rosetta standard orientation (along Rosetta Y axis).	Fixed

9.5 Image Identification

Label	Group	Namespace	Datatype	Unit	Description	Source
IMAGE_ID			Integer		User defined image ID number.	ТМ

Reference: RO-RIS-MPAE-ID-023

Issue: 1 Rev.: -Date: 16/10/2017 Page: 32

PROCESSING_ID	ROSETTA	Integer	The OSIRIS DPU has the capability to make multiple transfers of the same set of images data (the image can, for example, be first transferred as a highly compressed thumbnail image for quick look purposes followed later by a transfer of the same pixel data as a less compressed version). The value of the processing_id will be unique for each transfer.	ТМ
IMAGE_OBSERVATION_TYPE		String	Type of observation: REGULAR for normal observations BIAS for 0 sec dark exposures DARK for > 0 sec dark exposures	ТМ
EXPOSURE_TYPE		String	Type of exposure: <i>AUTO</i> for auto exposures <i>MANUAL</i> for manual exposures	ТМ
PRODUCT_ID		String	ID of EDR.	Image converter

Reference: **RO-RIS-MPAE-ID-023** Issue: 1 Rev.: -

Date: 16/10/2017 Page: 33

PRODUCT TYPE ID of data product: String Fixed EDR for level 2 data RDR for > level 2 data PRODUCT VERSION ID Release version of product. Image Converter String PRODUCER INSTITUTION NAME Name of the institution that Fixed String produced the data product. PRODUCER FULL NAME Name of person that generated Fixed String the data product. PRODUCER ID ID of institution that generated Fixed String the data product. The medium_type element identifies the physical storage MEDIUM TYPE String Fixed medium for a data volume. PUBLICATION DATE The publication date element Date Fixed provides the date when a published item, such as a document or a compact disc, was issued.

Reference: RO-RIS-MPAE-ID-023

Issue: 1 Rev.: -Date: 16/10/2017 Page: 34

VOLUME_FORMAT	Sting	The volume_format element identifies the logical format used in writing a data volume, such as ANSI, TAR, or BACKUP for tape volumes and ISO-9660, HIGH- SIERRA, for CD-ROM volumes.Fixed
VOLUME_ID	String	The volume_id element Fixed provides a unique identifier for a data volume.
VOLUME_NAME	String	The volume_name element contains the name of a data volume. In most cases the volume_name is more specific than the volume_set_name.Fixed
VOLUME_SERIES_NAME	String	The volume_series_name element provides a full, formal name that describes a broad categorization of data products or data sets related to a planetary body or a research campaign (e.g. International Halley Watch). A volume series consists of one or more volume sets that represent data from one or more missions or campaigns.Fixed

Reference: RO-RIS-MPAE-ID-023

Issue: 1 Rev.: -Date: 16/10/2017 Page: 35

VOLUME_SET_NAME	String	The volume_set_name element provides the full, formal name of one or more data volumes containing a single data set or a collection of related data sets. Volume sets are normally considered as a single orderable entity.Fixed	
VOLUME_SET_ID	String	The volume_set_id element identifies a data volume or a set of volumes. Volume sets are normally considered as a single orderable entity. Fixed	
VOLUME_VERSION_ID	String	The volume_version_id element identifies the version of a data volume. All original volumes should use a volume_version_id of 'Version 1'. Versions are used when data products are remade due to errors or limitations in the original volumes (test volumes, for example), and the new version makes the previous volume obsolete.FixedEnhancements or revisions to data products which constitute 	
VOLUMES	String	The volumes element provides the number of physical data volumes contained in a volume set.	

Reference: **RO-RIS-MPAE-ID-023** Issue: 1 Rev.: -

Date: 16/10/2017 Page: 36

DATA_SET_ID	String	ID of the PDS dataset to which the data product belongs.	Fixed
DATA_SET_NAME	String	Description of the dataset to which the data product belongs.	Fixed
PROCESSING_LEVEL_ID	String	 Processing level: 0: Raw TM 1: Uncalibrated header + raw image data 2: Calibrated header + raw image data 3: Calibrated header + calibrated image data 4: Calibrated header + geometrically corrected image data 	Image converter
PROCESSING_LEVEL_DESC	String	Description of the processing level.	Image converter

DATA_QUALITY_ID	Integer	The data_quality_id element provides a numeric key which identifies the quality of data available for a particular time period. The data_quality_id scheme is unique to a given instrument and is described by the associated data_quality_desc element. Note that the field exists in the OSIRIS labels but will always contain the value 0. The real quality estimate is located in the QUALITY_MAP_IMAGE objects residing in the reduced data records.
DATA_QUALTITY_DESC	String	The data_quality_desc element describes the data quality which is associated with a particular data_quality_id value. The various values of data_quality_id and data_quality_desc are instrument dependent.

 Reference:
 RO-RIS-MPAE-ID-023

 Issue:
 1
 Rev.:

 Date:
 16/10/2017
 Page:
 38

9.6 Time Identification

Unless specified otherwise, all time identifiers are expressed in the Coordinated Universal Time system (UTC). Information about the leap seconds and the drifts in the spacecraft clock are extracted from the corresponding kernels as referenced in SPACE_FILE_NAME.

Label	Group	Namespace	Datatype	Unit	Description	Source
PRODUCT_CREATION_TIME			Time	UTC	Time when the data product was generated in UTC.	Image converter
START_TIME			Time	UTC	Start of the exposure in UTC. Please note that the value stored in START_TIME is the most precise time known at the time of file generation. The START_TIME has been corrected for on board clock drift and leap seconds.	TM/SPICE
STOP_TIME			Time	UTC	Start of image readout in UTC.	TM/SPICE
SPACECRAFT_CLOCK_START_COUNT			SCLK	S/C clock count	Start of the exposure in raw spacecraft clock count. Format: <reset>/<high count="">:<low count></low </high></reset>	ТМ

Date: 16/10/2017 Page: 39

SPACECRAFT_CLOCK_STOP_COUNT		SCLK	Start of image readout in raw spacecraft clock count.	ТМ
			Format:	
			<reset>/<high count="">:<low count></low </high></reset>	

9.7 Geometry

Label	Group	Namespace	Datatype	Unit	Description	Source
TARGET_NAME			String		Name of the observation target, PSA- compliant. Refer to TARGETS.CAT for a complete list of targets.	Image converter
TARGET_TYPE			String		Type of target. PSA-compliant. Refer to TARGETS.CAT for a complete list of targets.	Image converter
SC_SUN_POSITION_VECTOR			3-vector	km	Vector from the S/C to the sun (X, Y, Z) in J2000. The vector is light-time corrected.	SPICE
SPACECRAFT_SOLAR_DISTANCE			Float	km	Spacecraft distance from the Sun.	SPICE
SOLAR_ELONGATION			Float	deg	The solar elongation angle (angle between a vector from the S/C to the sun, and the S/C +Z axis).	SPICE

RIGHT_ASCENSION	FloatdegThe right ascension of the S/C +Z axis specified in J2000 with coordinate system centre in the S/C.SPIC.
DECLINATION	Float deg The declination of the S/C +Z axis specified in J2000 with coordinate system centre in the S/C. SPIC.
NORTH_AZIMUTH	Float deg The north_azimuth element provides the value of the angle between a line from the image centre to the celestial north pole and a reference line in the image plane. The reference line is a horizontal line from the image centre to the middle right edge of the image. The angle increases in the clockwise direction. The image is assumed to be displayed using the PDS header keywords SAMPLE_DISPLAY_DIRECTION and LINE_DISPLAY_DIRECTION (see Sec. 7.1) such that -Y _{SC} points to the right.
SC_TARGET_POSITION_VECTOR	Float 3 None If solar system object this field SPIC vector or contains the vector from the S/C to the target object in km. The vector is light-time corrected. SPIC If stellar target object this field contains a unit vector towards the target object. SPIC
SC_TARGET_VELOCITY_VECTOR	Float 3 m/s This velocity component is the derivative with respect to time of the SC_TARGET_POSITION_VECTOR.

TARGET_CENTER_DISTANCE		Float	km	Distance to the target object (only valid for solar system objects). See note below this table for technical details.	SPICE
SPACECRAFT_ALTITUDE		Float	km	The height of the spacecraft over the surface of an extended target object. See note below this table for technical details.	SPICE
SUB_SPACECRAFT_LATITUDE		Float	deg	With the spacecraft flying over an extended object a vector can be drawn from the centre of the planet to the spacecraft. This vector intersects the target surface at a specific latitude and longitude in the given IAU_XXX rotating coordinate system of the target. This field contains the latitude. See note below this table for technical details.	SPICE

SUB_SPACECRAFT_LONGITUDE	Float	deg	 With the spacecraft flying over an extended object a vector can be drawn from the centre of the planet to the spacecraft. This vector intersects the target surface at a specific latitude and longitude in the given IAU_XXX rotating coordinate system of the target. This field contains the longitude. See note below this table for technical details. 	SPICE
SUB_SOLAR_LATITUDE	Float	deg	The sub_solar_latitude element provides the latitude of the subsolar point. The subsolar point is that point on a body's reference surface where a line from the body center to the sun center intersects that surface. See note below this table for technical details.	SPICE
SUB_SOLAR_LONGITUDE	Float	deg	The sub_solar_longitude element provides the longitude of the subsolar point. The subsolar point is that point on a body's reference surface where a line from the body center to the sun center intersects that surface. See note below this table for technical details.	SPICE

Date: 16/10/2017 Page: 43

PHASE_ANGLE	measure the ins incider light). target; to the target the ins illumir instrum small. Note the as: PHAS SOLA	hase_angle element provides a SPICE re of the relationship between trument viewing position and nt illumination (such as solar Phase_angle is measured at the it is the angle between a vector illumination source and a vector instrument. If not specified, the is assumed to be at the centre of trument field of view. If nation is from behind the nent, phase_angle will be hat the phase angle is calculated $E_ANGLE = 180^\circ - R_ELONGATION.$
SPICE_FILE_NAME	vector genera the lab The or	The spice kernels used to te the geometry information in el.Image converterder of the list is identical to the g order into SPICE.Image converter

Note: For complex-form bodies like 67P geometric values can be computed with respect to an ellipsoid or to the actual shape. The shape kernel provided under SPICE_FILE_NAME determines which one is used. The same principle applies to the rotational state of the body, which can be modelled in a number of different ways. The planetary and frame kernels determine which model is used.

9.7.1 SC_COORDINATE_SYSTEM

Label	Group	Namespace	Datatype	Unit	Description	Source
COORDINATE_SYSTEM_NAME	SC_COORDINATE_SYSTEM				Name of the coordinate system. Always: "S/C-COORDS".	Fixed

Reference: RO-RIS-MPAE-ID-023Issue:1Rev.: -Date:16/10/2017

Page: 44

ORIGIN_OFFSET_VECTOR	SC_COORDINATE_SYSTEM	3-vec	tor km	Offset vector from J2000 origin to the origin of the Rosetta spacecraft coordinate system. Meaning the vector in J2000 from the origin of the J2000 coordinate system to the origin of the S/C coordinate system.	SPICE
ORIGIN_ROTATION_QUATERNION	SC_COORDINATE_SYSTEM	4-vec	ctor	Rotation quaternion for transforming from J2000 to the Rosetta spacecraft coordinate system. The quaternion is stored using the ESA quaternion convention which is [nx sin(a/2), ny sin(a/2), nz sin(a/2), cos(a/2)] To use the quaternion in the SPICE system the vector needs to be transformed to [q3, q0, q1, q2]	SPICE
QUATERNION_DESC	SC_COORDINATE_SYSTEM			Description of the quaternion.	Fixed
REFERENCE_COORD_SYSTEM_NAME	SC_COORDINATE_SYSTEM			Name of the reference coordinate system. Always EME J2000.	Fixed

9.7.2 CAMERA_COORDINATE_SYSTEM

Label	Group	Namespace	Datatype	Unit	Description	Source
COORDINATE_SYSTEM_NAME	CAMERA_COORDINATE_SYSTEM				Name of the coordinate system.	ТМ
					Either: NAC_CAMERA_FRAME	
					Or	
					WAC_CAMERA_FRAME	
ORIGIN_OFFSET_VECTOR	CAMERA_COORDINATE_SYSTEM		3-vector	km	Offset vector from S/C- COORDS origin to the origin of the camera frame. Meaning a vector in the space craft coordinate system from the origin of the space craft coordinate system to the origin of the camera coordinate system.	SPICE

 Reference:
 RO-RIS-MPAE-ID-023

 Issue:
 1
 Rev.:

 Date:
 16/10/2017
 Page:
 46

ORIGIN_ROTATION_QUATERNION	CAMERA_COORDINATE_SYSTEM	4-vector	Rotation quaternion for transforming from S/C- COORDS to the camera frame. The quaternion is stored using the ESA quaternion convention which is [nx sin(a/2), ny sin(a/2), nz sin(a/2), cos(a/2)] To use the quaternion in the SPICE system the vector needs to be transformed to [q3, q0, q1, q2]	SPICE
QUATERNION_DESC	CAMERA_COORDINATE_SYSTEM		Description of the quaternion.	Fixed
REFERENCE_COORD_SYSTEM_NAME	CAMERA_COORDINATE_SYSTEM		Name of the reference coordinate system (always S/C-COORDS).	Fixed

9.7.3 GEOREFERENCING (IMAGE_POI)

Label	Group	Namespace	Datatype	Unit	Description	Source
POINT_OF_INTEREST		ROSETTA	String		A text description of the point of interest represented by the intercept point. Usually this would be "IMAGE CENTER".	Image Converter

Reference: RO-RIS-MPAE-ID-023Issue:1Rev.: -Date:16/10/2017

Page: 47

INTERCEPT_POINT_LINE		Integer		The instrument line location of a point on the body surface.	Image Converter
INTERCEPT_POINT_LINE_SAMPLE		Integer		The instrument sample location of a point on the body surface.	Image Converter
COORDINATE_SYSTEM_NAME		String		The coordinate_system_name element provides the full name of the coordinate system to which the state vectors are referenced.	Image Converter
SURFACE_MODEL_FILE_NAME	ROSETTA	String		The name of the surface model file used to generate the information in the label.	Image Converter
SLANT_DISTANCE		Float	Km	The slant_distance element provides a measure of the distance from an observing position (e.g., a spacecraft) to a point on a target body.	Image Converter
INTERCEPT_POINT_COORD	ROSETTA	Float vector	Km	The intercept point on the body surface, expressed as a X, Y, Z vector from the centre of the body.	Image Converter

9.8 Data Content Flags

Label	Group	Namespace	Datatype	Unit	Description	Source
PREPIXEL_FLAG	SR_DATA_CONTENT	ROSETTA	Label		Indicates if the image contains pre- pixels (TRUE) or not (FALSE).	ТМ
POSTPIXEL_FLAG	SR_DATA_CONTENT	ROSETTA	Label		Indicates if the image contains post- pixels (TRUE) or not (FALSE).	ТМ

Date: 16/10/2017 Page: 48

OVERCLOCKING_LINES_FLAG	SR_DATA_CONTENT	ROSETTA	Label	Indicates if the image contains overclocking lines (TRUE) or not (FALSE).	ТМ
CCD_DATA_FLAG	SR_DATA_CONTENT	ROSETTA	Label	Indicates if the image contains actual CCD image information (TRUE) or just random data (FALSE).	ТМ
B1_SHUTTER_PULSE_FLAG	SR_DATA_CONTENT	ROSETTA	Label	Indicates if the image contains the pulses for blade 1 of the shutter (TRUE) or not (FALSE).	ТМ
B2_SHUTTER_PULSE_FLAG	SR_DATA_CONTENT	ROSETTA	Label	Indicates if the image contains the pulses for blade 2 of the shutter (TRUE) or not (FALSE).	ТМ

9.9 Status Flags

Label	Group	Namespace	Datatype	Unit	Description	Source
SHUTTER_FOUND_IN_ERROR_FLAG	SR_STATUS_FLAGS	ROSETTA	Label		TRUE if the shutter mechanism had to be reset before executing the exposure. Otherwise, FALSE .	ТМ
SHUTTER_PRE_INIT_FAILED_FLAG	SR_STATUS_FLAGS	ROSETTA	Label		TRUE if the pre initiation of the shutter mechanism failed. Otherwise, FALSE .	ТМ

ERROR_RECOVERY_FAILED_FLAG	SR_STATUS_FLAGS	ROSETTA	Label	TRUE if error recovery of the shutter mechanism failed. Otherwise, FALSE .	ТМ
EXPOSURE_STATUS_ID	SR_STATUS_FLAGS	ROSETTA	Label	SUCCESS if no problems were detected during the exposure. FAILURE if an error occurred.	ТМ

 Reference:
 RO-RIS-MPAE-ID-023

 Issue:
 1
 Rev.:

 Date:
 16/10/2017

 Page:
 50

9.10 Mechanism Status Flags

Label	Group	Namespace	Datatype	Unit	Description	Source
FILTER_NUMBER	SR_MECHANISM_STATUS		String		OSIRIS is equipped with a dual filter wheel for doing multispectral imaging. The filter number contains the index of the filter combination that was in the optical beam when the image was acquired. The index is coded as a two digit number (AB) where A is the filter index of the first filter wheel and B is the index of the second filter wheel (for example 12 would mean wheel 1 at index 1 and wheel two at index 2).	ТМ
FILTER_NAME	SR_MECHANISM_STATUS		String		Names of the two commanded filters in the optical path. The name is coded as <name filter<br="" of="">in wheel 1>_<name of<br="">filter in wheel 2> (for example Empty_Red).</name></name>	ТМ

FRONT_DOOR_STATUS_ID SR_MECHANISM_STATUS ROSETT. Image: Comparison of the second s	FALabelOSIRIS is equipped with a front door that blocks the optical beam into the camera when the camera is switched off.This field tells if the front door was open or closed when the image was acquired. (Please note that many image are actually acquired with the door closed since the interior of the door acts as a calibration target for the camera).Possible values: OPEN CLOSED LOCKED UNKNOWNOSIRIS is equipped with a front door that blocks the camera).
---	---

 Reference:
 RO-RIS-MPAE-ID-023

 Issue:
 1
 Rev.:

 Date:
 16/10/2017

 Page:
 52

9.11 Image Acquisition Options

Label	Group	Namespace	Datatype	Unit	Description	Source
SCIENCE_DATA_LINK	SR_ACQUIRE_OPTIONS	ROSETTA	Label		OSIRIS has two data link to the spacecraft. The HIGHSPEED link is a multi-megabit per second IEEE 1355 link used for normal transfer of image data to the spacecraft. Additionally there is a low speed link (the RTU link) normally used for housekeeping acquisition and event data. Image data can also be transferred through this low speed link. Possible values: <i>HIGHSPEED</i> <i>RTU</i> <i>BOTH</i> <i>NONE</i>	ТМ

DATA_ROUTING_ID	SR_ACQUIRE_OPTIONS	ROSETTA	Label		OSIRIS has a number of data telemetry queues for managing the order of downlink. The data routing field contains the ID of the queue used to acquire the image. <i>IMAGEMEM</i> <i>QUEUE1</i> <i>QUEUE2</i> <i>QUEUE3</i> <i>QUEUE4</i> <i>QUEUE5</i> <i>PLAINFILE</i> <i>STORED</i>	ТМ
EXPOSURE_DURATION	SR_ACQUIRE_OPTIONS		Float	S	This field contains the exposure time used to acquire the image.	ТМ
COMMANDED_FILTER_NUMBER	SR_ACQUIRE_OPTIONS	ROSETTA	Integer		OSIRIS has a dual filter wheel in the optical beam. This field contains the index of the filter combination. The index is coded as a two digit number (AB) where A is the filter index of the first filter wheel and B is the index of the second filter wheel (for example 12 would mean wheel 1 at index 1 and wheel two at index 2).	ТМ

COMMANDED_FILTER_NAME	SR_ACQUIRE_OPTIONS	ROSETTA	String	Names of the two commanded filters in the optical path. The name is coded as <name 1="" filter="" in="" of="" wheel="">_<name of<br="">filter in wheel 2> (for example Empty_Red).</name></name>	ТМ
GRAYSCALE_TESTMODE_FLAG	SR_ACQUIRE_OPTIONS	ROSETTA	Label	The OSIRIS CCD readout electronics has a test mode where the electronics transmits a synthetic grayscale test pattern. This test pattern can be used to diagnose problems with the communication links inside OSIRIS. This field is a Boolean telling if the image were acquired using this test mode. TRUE FALSE	ТМ

HARDWARE_BINNING_ID	SR_ACQUIRE_OPTIONS	ROSETTA	String	OSIRIS can bit data two ways: 1. in a software pixel averaging mode and 2. using a hardware driven binning mode.	ТМ
				The hardware binning id specifies what hardware mode were used.	
				The following modes are possible	
				1x1: Each input pixel becomes an output pixel	
				2x2: Each 2x2 input block becomes an output pixel	
				4x4: Each 4x4 input block becomes an output pixel	
				8x8: Each 8x8 input block becomes an output pixel	
				Please note that the hardware binning mode has an influence on the effective exposure time:	
				1x1 -> time	
				2x2 -> 4 x time	
				4x4 -> 16 x time	
				8x8 -> 64 x time	

AMPLIFIER_ID	SR_ACQUIRE_OPTIONS	ROSETTA	Label	 OSIRIS can clock the CCD out using three methods: A: The data is clocked left in the horizontal direction and passed through the A amplifier chain. B: The data is clocked right in the horizontal direction and passed through the B amplifier chain. BOTH: Where the left half of the CCD is clocked through the A channel and the right half of the CCD is clocked through the B channel. This field specifies what amplifier chains were used: A B BOTH 	ТМ
GAIN_ID	SR_ACQUIRE_OPTIONS	ROSETTA	Label	OSIRIS can be operated with two fixed amplifier gain settings (LOW and HIGH). This field tells what gain setting was used to acquire the image: <i>LOW</i> <i>HIGH</i>	ТМ

ADC_ID	SR_ACQUIRE_OPTIONS	ROSETTA	Label	OSIRIS has a 16 bit digital converter that is actually composed of two 14 bit analogue to digital converters working in series. OSIRIS can be operated in three ADC mode: <i>LOW : only the low 14 bit ADC is</i> <i>used</i> <i>HIGH: only the high 14 bit ADC is</i> <i>used</i> <i>TANDEM: Both low and high ADC is</i> <i>used to build the final 16 data number</i>	ТМ
OVERCLOCKING_LINES_FLAG	SR_ACQUIRE_OPTIONS	ROSETTA	Label	OSIRIS has an operation mode where the CCD ready keep clocking for an additional number of lines after having clocked out all the physical pixels of the CCD. The mode allows calibration of the charge transfer efficiency of the CCD in the vertical clocking direction. This field is a boolean telling if this operational mode was used: <i>TRUE</i> <i>FALSE</i>	ТМ

OVERCLOCKING_PIXELS_FLAG	SR_ACQUIRE_OPTIONS	ROSETTA	Label	OSIRIS has an operation mode where the CCD ready keep clocking for an additional number of pixels after having clocked out all the physical pixels of the CCD. The mode allows calibration of the charge transfer efficiency of the CCD in the horizontal clocking direction. This field is a boolean telling if this operational mode was used: <i>TRUE</i> <i>FALSE</i>	ТМ
CCD_ENABLED_FLAG	SR_ACQUIRE_OPTIONS	ROSETTA	Label	OSIRIS can be configured to skip the readout of the CCD when acquiring an image. This field is a boolean telling if the CCD data was actually read out: <i>TRUE</i> <i>FALSE</i>	ТМ
ADC_ENABLED_FLAG	SR_ACQUIRE_OPTIONS	ROSETTA	Label	OSIRIS can be configured to either keep the analogue to digital converters (ADC) powered always or to only power the ADC when an image is acquired. This field is a boolean telling if the ADC were kept powered (the default): <i>TRUE</i> <i>FALSE</i>	ТМ

BLADE1_PULSES_ENABLED_FLAG	SR_ACQUIRE_OPTIONS	ROSETTA	Label	OSIRIS can be configured to retrieve or discard shutter pulse data during operations of the mechanical shutter mechanism. This field is a boolean telling if shutter pulses were acquired for the first blade of the shutter: <i>TRUE</i> <i>FALSE</i>	ТМ
BLADE2_PULSES_ENABLED_FLAG	SR_ACQUIRE_OPTIONS	ROSETTA	Label	OSIRIS can be configured to retrieve or discard shutter pulse data during operations of the mechanical shutter mechanism. This field is a boolean telling if shutter pulses were acquired for the second blade of the shutter: <i>TRUE</i> <i>FALSE</i>	ТМ
BULBMODE_ENABLED_FLAG	SR_ACQUIRE_OPTIONS	ROSETTA	Label	OSIRIS has an operational mode for acquiring very long exposures. In this mode the exposure is commanded to start followed by another command to stop the exposure. This mode is only used for exposures longer than 2^23 milliseconds. This field is a boolean telling if the this operational mode was used: <i>TRUE</i> <i>FALSE</i>	ТМ

FRAMETRANSFER_ENABLED_FLAG	SR_ACQUIRE_OPTIONS	ROSETTA	Label	OSIRIS has an emergency fall-back failsafe mode for acquiring images in case the mechanical shutter would fail during the mission. This field is a boolean telling if the this operational mode was used: <i>TRUE</i> <i>FALSE</i>	ТМ
WINDOWING_ENABLED_FLAG	SR_ACQUIRE_OPTIONS	ROSETTA	Label	OSIRIS can acquire images using a software windowing mode or a hardware windowing mode. (Meaning reading out only a small part of the full CCD surface) This field is a boolean telling if the hardware windowing mode was used during the exposure: TRUE FALSE	ТМ
SHUTTER_ENABLED_FLAG	SR_ACQUIRE_OPTIONS	ROSETTA	Label	OSIRIS is equipped with a mechanical shutter mechanism. This field is a boolean telling if the mechanical shutter was operated during the exposure: <i>TRUE</i> <i>FALSE</i>	ТМ

Reference: RO-RIS-MPAE-ID-023Issue:1Rev.: -Date:16/10/2017

DITHERING_ENABLED_FLAG	SR_ACQUIRE_OPTIONS	ROSETTA	Label		At high CCD temperature OSIRIS can be operated in a special noise reduction mode (called clock dithering). This field is a boolean telling if the this operational mode was used: <i>TRUE</i> <i>FALSE</i>	ТМ
CRB_DUMP_MODE	SR_ACQUIRE_OPTIONS	ROSETTA	Integer		Internal CRB configuration.	ТМ
CRB_PULSE_MODE	SR_ACQUIRE_OPTIONS	ROSETTA	Integer		Internal CRB configuration.	ТМ
SUBFRAME_COORDINATE_ID	SR_ACQUIRE_OPTIONS	ROSETTA	String		Identifies the subframe coordinate system used in the X_START, X_END, Y_START, Y_END tags. OPTICAL ELECTRICAL	Fixed
X_START	SR_ACQUIRE_OPTIONS	ROSETTA	Integer	pixels	First column of the hardware sub frame used to acquire the image. This value is specified in ELECTRICAL CCD coordinates. Note that the binning configuration can modify this value. In case of binning, please use the FIRST_LINE_SAMPLE field in the IMAGE object.	ТМ

 Issue:
 1
 Rev.

 Date:
 16/10/2017
 Page:
 62

X_END	SR_ACQUIRE_OPTIONS	ROSETTA	Integer	pixels	Last column (inclusive) of the hardware sub frame used to acquire the image. This value is specified in ELECTRICAL CCD coordinates. Note that the binning configuration can modify this value. In case of binning, please use the FIRST_LINE_SAMPLE + LINES fields in the IMAGE object.	ТМ
Y_START	SR_ACQUIRE_OPTIONS	ROSETTA	Integer	pixels	First row of the hardware sub frame used to acquire the image. This value is specified in ELECTRICAL CCD coordinates. Note that the binning configuration can modify this value. In case of binning, please use the FIRST_LINE field in the IMAGE object.	ТМ
Y_END	SR_ACQUIRE_OPTIONS	ROSETTA	Integer	pixels	Last row (inclusive) of the hardware sub frame used to acquire the image. This value is specified in ELECTRICAL CCD coordinates. Note that the binning configuration can modify this value. In case of binning, please use the FIRST_LINE + LINES fields in the IMAGE object.	ТМ
SHUTTER_PRETRIGGER_DURATION	SR_ACQUIRE_OPTIONS	ROSETTA	Float	S	The time between the end of the shutter motion and the start of the CCD readout.	ТМ

Reference: **RO-RIS-MPAE-ID-023** Issue: 1 Rev.: Date: 16/10/2017

Page: 63

CRB_TO_PCM_SYNC_MODE	SR_ACQUIRE_OPTIONS	ROSETTA	Integer	Internal CRB configuration parameter (synchronization between the CRB and the CRB power converter).
AUTOEXPOSURE_FLAG	SR_ACQUIRE_OPTIONS	ROSETTA	Label	The OSIRIS flight software has the option of having the camera try to optimize the best exposure time for the scene being imaged.TMThis field is a boolean telling if the this operational mode was used:TRUEFALSEFALSE
LOWPOWER_MODE_FLAG	SR_ACQUIRE_OPTIONS	ROSETTA	Label	OSIRIS can acquire image using a special low power mode (used during the early comet detection phase of the mission where the spacecraft has no power margin).TMThis field is a boolean telling if the this operational mode was used:TRUE FALSE

Issue: 1 Rev.: Date: 16/10/2017 Page: 64

DUAL_EXPOSURE_FLAG	SR_ACQUIRE_OPTIONS	ROSETTA	Label		OSIRIS has an operation mode where the narrow angle camera and the wide angle camera can be commanded to acquire image synchronized to within a few milliseconds. This field is a Boolean telling if the this operational mode was used: <i>TRUE</i> <i>FALSE</i>	ТМ
--------------------	--------------------	---------	-------	--	---	----

9.12 Processing Flags

Label	Group	Namespace	Datatype	Unit	Description	Source
BAD_PIXEL_REPLACEMENT_FLAG			Label		Flag indicating whether on-board bad pixel replacement correction was used. TRUE FALSE	Image Converter
ADC_OFFSET_CORRECTION_FLAG		ROSETTA	Label		Flag indicating if ADC offset and gain correction was applied to the image. TRUE FALSE	Image Converter
BIAS_CORRECTION_FLAG		ROSETTA	Label		Flag indicating if BIAS correction was applied to the image. TRUE FALSE	Image Converter

COHERENT_NOISE_CORRECTION_FLAG	ROSETTA	Label	Flag indicating whether coherent noise correction was applied to the image data. TRUE FALSE	Image Converter
DARK_CURRENT_CORRECTION_FLAG		Label	Flag indicating whether dark current correction was applied to the image data. TRUE FALSE	Image Converter
FLATFIELD_HI_CORRECTION_FLAG	ROSETTA	Label	Flag indicating whether high spatial frequency flatfield correction was applied to the image data. TRUE FALSE	Image Converter
BAD_PIXEL_REPLACEMENT_GROUND_FLAG	ROSETTA	Label	Flag indicating whether ground based bad pixel replacement correction was applied to the image. TRUE FALSE	Image Converter
FLATFIELD_LO_CORRECTION_FLAG	ROSETTA	Label	Flag indicating whether low spatial frequency flatfield correction was applied to the image data. TRUE FALSE	Image Converter

EXPOSURETIME_CORRECTION_FLAG	ROSETTA	Label	Flag indicating whether exposure time correction was applied to the image data. TRUE FALSE	Image Converter
RADIOMETRIC_CALIBRATION_FLAG	ROSETTA	Label	Flag indicating whether radiometric calibration factors were applied to the image data. TRUE FALSE	Image Converter
GEOMETRIC_DISTORTION_CORRECTION_FLAG	ROSETTA	Label	Flag indicating whether geometric distortion correction was applied to the image data. TRUE FALSE	Image Converter
REFLECTIVITY_NORMALIZATION_FLAG	ROSETTA	Label	Flag indicating whether reflectivity normalization was applied to the image data. TRUE FALSE	Image Converter
INFIELD_STRAYLIGHT_CORRECTION_FLAG	ROSETTA	Label	Flag indicating whether infield straylight correction was applied to the image. TRUE FALSE	Image Converter

Date: 16/10/2017 Page: 67

OUTFIELD_STRAYLIGHT_CORRECTION_FLAG	ROS	SETTA	Label	Flag indicating whether out of field straylight correction was applied to the	Image Converter
				image. TRUE	
				FALSE	

9.13 Shutter Config

Label	Group	Namespace	Datatype	Unit	Description	Source
PROFILE_ID	SR_SHUTTER_CONFIG	ROSETTA	String		Timestamp in seconds since epoch 2000 when the shutter mechanism power profile was generated.	ТМ
CONTROL_MASK	SR_SHUTTER_CONFIG	ROSETTA	String		Raw control byte used to drive the shutter electronics.	ТМ
TESTMODE_FLAG	SR_SHUTTER_CONFIG	ROSETTA	Label		The shutter can be operated using a special test mode where the number of transmitted pulse data points is only limited by time. When this mode is switched OFF the shutter will always deliver a maximum of 440 pulse points per shutter blade. Was the shutter test mode enabled: <i>TRUE</i> <i>FALSE</i>	ТМ

ZEROPULSE_FLAG	SR_SHUTTER_CONFIG	ROSETTA	Label	The zero position encoder is a hall sensor located at a known position relative to the edge of the CCD. When the zero pulse flag is enabled the shutter electronics only starts to transmit pulse data after the shutter blade has passed this encode. The field is a Boolean telling is the zero pulse was enable during the exposure: <i>TRUE</i> <i>FALSE</i>	ТМ
LOCKING_ENCODER_FLAG	SR_SHUTTER_CONFIG	ROSETTA	Label	The shutter mechanism has a mechanical latch that catches the shutter blade #1 and keeps the shutter open for long exposure times. The shutter mechanism has a hall sensor for detecting hat the blade #1 was actually caught by the latch mechanism. This sensor can be enabled or disabled. The field is a Boolean that is TRUE is the sensor was enabled. <i>TRUE</i> <i>FALSE</i>	ТМ

Issue: 1 Rev.: -Date: 16/10/2017 Page: 69

CHARGEMODE_ID	SR_SHUTTER_CONFIG	ROSETTA	Label		The shutter mechanism is driven using two motors. The motors draws power from a bank of capacitors that buffers the large power consumption needed during the short time of the actual blade motion. This capacitor bank can be recharged using four different mode: <i>OFF: No recharge</i> <i>SLOW: 32 s to recharge</i> <i>NORMAL: 1s to recharge</i> <i>FAST: 0.5 s to recharge</i>	ТМ
SHUTTER_OPERATION_MODE	SR_SHUTTER_CONFIG	ROSETTA	String		The shutter is usually operated in "NORMAL" mode. The WAC shutter could also be operated in "BALLISTIC", "BALLISTIC_STACKED" and "BALLISTIC_DUAL" modes. If this value reads "UNKNOWN", then the camera could not be identified from the telemetry.	Image Converter
NUM_OF_EXPOSURES	SR_SHUTTER_CONFIG	ROSETTA		Integer	Number of times that the CCD was exposed to light before being read out.	Image Converter

9.14 Shutter Status

Label	Group	Namespace	Datatype	Unit	Description	Source
STATUS_MASK	SR_SHUTTER_STATUS	ROSETTA	String		Raw status value as returned from the CRB.	ТМ

ERROR_TYPE_ID	SR_SHUTTER_STATUS	ROSETTA	Label	Identifies the error (if any) that occurred during the exposure.	ТМ
				NONE	
				LOCKING_ERROR_A MEMORY_ERROR_B UNLOCKING_ERROR_C SHE_RESET_ERROR_D	

9.15 Data Compression And Segmentation

The image compression group contains information about the data compression and pre-processing performed on the transmitted image. All labels are vectors of length N where N is the number of image segments used to transmit the image.

Label	Group	Namespace	Datatype	Unit	Description	Source
LOST_PACKETS	SR_COMPRESSION	ROSETTA	Integer vector	packets	Number of lost packets for each image segment.	ТМ
SEGMENT_X	SR_COMPRESSION	ROSETTA	Integer vector		First column in each image segment (zero indexed).	TM
SEGMENT_Y	SR_COMPRESSION	ROSETTA	Integer vector		First row in each image segment (zero indexed).	TM
SEGMENT_W	SR_COMPRESSION	ROSETTA	Integer vector		Width of each image segment.	TM
SEGMENT_H	SR_COMPRESSION	ROSETTA	Integer vector		Height of each image segment.	ТМ

 Reference:
 RO-RIS-MPAE-ID-023

 Issue:
 1
 Rev.:

 Date:
 16/10/2017
 Page:
 71

ENCODING SR COMPRESSION ROSETTA Label vector Name of the compression algorithm used to compress the ΤM image. Valid values: "NONE": No encoding "SPIHT D24": SPIHT wavelet based compression used by the OSIRIS flight software before release v2.0"SPIHT TAP": SPIHT wavelet based compression using TAP filtering (lossy) "SPIHT LIFT": SPIHT wavelet based compression using LIFT filtering (normally lossless) "SQRT 16to8": Sqrt based 16 to 8 bit scaling "PACK9BIT": A compression where the data numbers are simply truncated at 9 bit thus discarding the high 7 bits. COMPRESSION RATIO SR COMPRESSION ROSETTA Float vector The effective compression ratio obtained by the image ΤM encoder. Example value 16 means 16:1 compression. LOSSLESS FLAG SR COMPRESSION ROSETTA Label vector A flag indicating if the performed compression was lossless. TM Either: lossless compression TRUE: FALSE: lossy compression Number of pyramid levels used by the SPIHT compressor. SPIHT PYRAMID LEVELS SR COMPRESSION ROSETTA Integer vector ΤM NA for other encodings than SPIHT.

Reference: RO-RIS-MPAE-ID-023 Issue: 1 Rev.: Date: 16/10/2017 Page: 72

SPIHT_THRESHOLD_BITS	SR_COMPRESSION	ROSETTA	Integer vector	Number of threshold bits used by the SPIHT compressor. NA for other encodings than SPIHT.	TM
SPIHT_MEAN	SR_COMPRESSION	ROSETTA	Integer vector	Mean value used by the SPIHT compressor. NA for other encodings than SPIHT.	TM
SPIHT_MEAN_SHIFT	SR_COMPRESSION	ROSETTA	Integer vector	Mean shift value used by the SPIHT compressor. NA for other encodings than SPIHT.	ТМ
SPIHT_WAVE_LEVELS	SR_COMPRESSION	ROSETTA	Integer vector	Number of wave levels used by the SPIHT compressor. NA for other encodings than SPIHT.	TM
PIXEL_AVERAGING_WIDTH	SR_COMPRESSION	ROSETTA	Integer vector	The OSIRIS flight software allows the image to be averaged in blocks to reduce the data volume before transmission to ground. The pixel averaging width specified the box width used by the processing pipeline. 1 means 1xN pixel averaging 2 means 2xN pixel averaging And so forth Pre- and post-pixels are typically binned 8x8.	TM

PIXEL_AVERAGING_HEIGHT	SR_COMPRESSION	ROSETTA	Integer vector	 The OSIRIS flight software allows the image to be averaged in blocks to reduce the data volume before transmission to ground. The pixel averaging height specified the box height used by the processing pipeline. 1 means Nx1 pixel averaging 2 means Nx2 pixel averaging And so forth Pre- and post-pixels are typically binned 8x8. 	ТМ
SMOOTH_FILTER_ID	SR_COMPRESSION	ROSETTA	Label vector	The OSIRIS flight software gives the option of passing the image data through a 5x5 convolution filter before passing the image data through the image compressor.Possible values:NONE:NONE:No filteringCONVOL_KERNEL_1: 0.5 FWHM gauss filterCONVOL_KERNEL_2: 0.8 FWHM gauss filterCONVOL_KERNEL_3: 1.0 FWHM gauss filter	ТМ
SQRT_FILTER_FLAG	SR_COMPRESSION	ROSETTA	Label vector	The OSIRIS flight software gives the option of transforming the images using the equation: Filtered DN = sqrt(image DN * gain) This flag indicating if the sqrt filter has been applied by the flight software. Possible Values: TRUE FALSE	ТМ

Page: 74

SQRT_GAIN	SR_COMPRESSION	ROSETTA	Float vector		If SQRT_FILTER_FLAG is TRUE then SQRT_GAIN contains the gain factor used by the filter (see SQRT_FILTER_FLAG).	ТМ	
-----------	----------------	---------	--------------	--	--	----	--

9.16 Subsystem Hardware Identification

Label	Group	Namespace	Datatype	Unit	Description	Source
DATA_PROCESSING_UNIT_ID	SR_HARDWARE_CONFIG	ROSETTA	Label		Hardware ID of the data processing unit:	ТМ
					EM	
					QM	
					FM	
					FS	
POWER_CONVERTER_ID	SR_HARDWARE_CONFIG	ROSETTA	Label		Hardware ID of the main power converter:	ТМ
					EM	
					QM	
					FM	
					FS	
MOTOR_CONTROLLER_ID	SR_HARDWARE_CONFIG	ROSETTA	Label		Hardware ID of the motor controller unit:	ТМ
					EM	
					QM	
					FM	
					FS	

Reference:**RO-RIS-MPAE-ID-023**Issue:1Rev.: -Date:16/10/2017

Page: 75

NAC_CCD_READOUT_BOX_ID	SR_HARDWARE_CONFIG	ROSETTA	Label	Hardware ID of the NAC CCD Readout Box (CRB): EM QM FM FS	ТМ
WAC_CCD_READOUT_BOX_ID	SR_HARDWARE_CONFIG	ROSETTA	Label	Hardware ID of the WAC CCD Readout Box (CRB): <i>EM</i> <i>QM</i> <i>FM</i> <i>FS</i>	ТМ
NAC_CAMERA_ID	SR_HARDWARE_CONFIG	ROSETTA	Label	Hardware ID of the NAC Camera/Focal plane hardware: <i>EM</i> <i>QM</i> <i>FM</i> <i>FS</i>	ТМ

Page: 76

WAC_CAMERA_ID	SR_HARDWARE_CONFIG	ROSETTA	Label	Hardware ID of the WAC Camera/Focal plane hardware:	ТМ
				EM	
				QM	
				FM	
				FS	

9.17 System Heater Status

Label	Group	Namespace	Datatype	Unit	Description	Source
CCD_HEATER_POWER	SR_HEATER_STATUS	ROSETTA	Float	W	Power used by the CCD operation heater.	ТМ
NAC_MAIN_FDM_POWER	SR_HEATER_STATUS	ROSETTA	Float	W	Power used by the main NAC front door operational heater.	ТМ
NAC_RED_FDM_POWER	SR_HEATER_STATUS	ROSETTA	Float	W	Power used by the redundant NAC front door operational heater.	ТМ
NAC_MAIN_PPE_POWER	SR_HEATER_STATUS	ROSETTA	Float	W	Power used by the main PPE structure operational heater.	ТМ
NAC_RED_PPE_POWER	SR_HEATER_STATUS	ROSETTA	Float	W	Power used by the redundant PPE structure operational heater.	ТМ
WAC_MAIN_STR1_POWER	SR_HEATER_STATUS	ROSETTA	Float	W	Power used by the main WAC structure #1 operational heater.	ТМ

WAC_RED_STR1_POWER	SR_HEATER_STATUS	ROSETTA	Float	W	Power used by the redundant WAC structure #1 operational heater.	ТМ
WAC_MAIN_STR2_POWER	SR_HEATER_STATUS	ROSETTA	Float	W	Power used by the main WAC structure #2 operational heater.	ТМ
WAC_RED_STR2_POWER	SR_HEATER_STATUS	ROSETTA	Float	W	Power used by the redundant WAC structure #2 operational heater.	ТМ

9.18 Power Converter Switch Status

Contains the state of the various power switches inside OSIRIS.

Label	Group	Namespace	Datatype	Unit	Description	Source
WAC_SHUTFAILSAFEEXEC_FLAG	SR_SWITCH_STATUS	ROSETTA	Label		Indicates that the WAC shutter failsafe execution switch is switched on or off. <i>ON</i> <i>OFF</i>	ТМ
NAC_SHUTFAILSAFEEXEC_FLAG	SR_SWITCH_STATUS	ROSETTA	Label		Indicates that the NAC shutter failsafe execution switch is switched on or off. <i>ON</i> <i>OFF</i>	TM

WAC_DOORFAILSAFEEXEC_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Indicates that the WAC door failsafe execution switch is switched on or off. <i>ON</i> <i>OFF</i>	ТМ
NAC_DOORFAILSAFEEXEC_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Indicates that the NAC door failsafe execution switch is switched on or off. <i>ON</i> <i>OFF</i>	ТМ
PCM_PASSCTRLACTIVE_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Indicates that the PCM passive controller switch is switched on or off. <i>ON</i> <i>OFF</i>	ТМ
WAC_SHUTFAILSAFE_ENAB_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Indicates that the WAC shutter failsafe enable switch is switched on or off. <i>ON</i> <i>OFF</i>	ТМ
WAC_SHUTTERPOWER_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Indicates that the WAC shutter electronics switch is switched on or off. <i>ON</i> <i>OFF</i>	ТМ

WAC_CCDANNEALHEATER_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Indicates that the WAC CCD annealing heater switch is switched on or off. <i>ON</i> <i>OFF</i>	ТМ
WAC_CRB_PRIMEPOWER_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Indicates that the WAC primary CRB power switch is switched on or off. <i>ON</i> <i>OFF</i>	ТМ
NAC_SHUTFAILSAFE_ENAB_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Indicates that the NAC shutter failsafe enabling switch is switched on or off. <i>ON</i> <i>OFF</i>	ТМ
NAC_SHUTTERPOWER_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Indicates that the NAC shutter electronics power switch is switched on or off. <i>ON</i> <i>OFF</i>	ТМ
NAC_CCDANNEALHEATER_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Indicates that the NAC CCD annealing heater switch is switched on or off. <i>ON</i> <i>OFF</i>	ТМ

Reference: RO-RIS-MPAE-ID-023

Issue: 1 Rev.: -Date: 16/10/2017 Page: 80

NAC_CRB_PRIMEPOWER_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Indicates that the NAC primary CRB power switch is switched on or off. <i>ON</i> <i>OFF</i>	ТМ
WAC_STRUCTUREHEATER_R_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Indicates that the WAC redundant structure heater switch is switched on or off. <i>ON</i> <i>OFF</i>	ТМ
WAC_STRUCTUREHEATER_M_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Indicates that the WAC main structure heater switch is switched on or off. <i>ON</i> <i>OFF</i>	ТМ
WAC_RED_CALLAMP_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Indicates that the WAC redundant calibration lamp switch is switched on or off. <i>ON</i> <i>OFF</i>	ТМ
WAC_MAIN_CALLAMP_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Indicates that the WAC main calibration lamp switch is switched on or off. <i>ON</i> <i>OFF</i>	ТМ

Reference: RO-RIS-MPAE-ID-023

Issue: 1 Rev.: -Date: 16/10/2017 Page: 81

WAC_DOORFAILSAFE_ENAB_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Indicates that the WAC door failsafe enable switch is switched on or off. <i>ON</i> <i>OFF</i>	ТМ
NAC_IFPLATEHEATER_R_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Indicates that the NAC redundant IFP (PPE) heater switch is switched on or off. <i>ON</i> <i>OFF</i>	ТМ
NAC_IFPLATEHEATER_M_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Indicates that the NAC main IFP (PPE) heater switch is switched on or off. <i>ON</i> <i>OFF</i>	ТМ
NAC_RED_CALLAMP_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Indicates that the NAC redundant calibration lamp switch is switched on or off. <i>ON</i> <i>OFF</i>	ТМ
NAC_MAIN_CALLAMP_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Indicates that the NAC main calibration lamp switch is switched on or off. <i>ON</i> <i>OFF</i>	ТМ

NAC_DOORFAILSAFE_ENAB_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Indicates that the NAC door failsafe enable switch is switched on or off. <i>ON</i> <i>OFF</i>	ТМ
MCB_RED_MOTORPOWER_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Indicates that the redundant MCB motor power switch is switched on or off. <i>ON</i> <i>OFF</i>	ТМ
MCB_MAIN_MOTORPOWER_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Indicates that the main MCB motor power switch is switched on or off. <i>ON</i> <i>OFF</i>	ТМ
MCB_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Indicates the MCB power mode. The MCB is the motor controller board which is also used to readout all the analogue housekeeping channels.Possible values:MAIN:Main MCB activeREDUNANT:Redundant MCB activeOFF:MCB powered OFF	ТМ

PRIMARY_POWER_RAIL_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Indicates which primary power rail has been selected (primary spacecraft power switch). <i>MAIN</i> <i>REDUNDANT</i>	ТМ

9.19 Power System Status

Contains current and voltage measurements of the various power rails used by OSIRIS.

Label	Group	Namespace	Datatype	Unit	Description	Source
V_28_MAIN	SR_POWER_STATUS	ROSETTA	Float	V	Voltage of the main 28 V power rail.	ТМ
V_28_REDUNDANT	SR_POWER_STATUS	ROSETTA	Float	V	Voltage of the redundant 28 V power rail.	ТМ
V_5	SR_POWER_STATUS	ROSETTA	Float	V	Main power converter 5V rail voltage.	ТМ
V_3	SR_POWER_STATUS	ROSETTA	Float	V	Main power converter 3V rail voltage.	ТМ
V_15	SR_POWER_STATUS	ROSETTA	Float	V	Main power converter 15V rail voltage.	TM
V_M15	SR_POWER_STATUS	ROSETTA	Float	V	Main power converter -15V rail voltage.	TM
V_NAC_REFERENCE	SR_POWER_STATUS	ROSETTA	Float	V	NAC reference voltage.	TM
V_WAC_REFERENCE	SR_POWER_STATUS	ROSETTA	Float	V	WAC reference voltage.	TM

CAMERA_V_24	SR_POWER_STATUS	ROSETTA	Float	V	Camera CRB power converter 24V rail voltage.	TM
CAMERA_V_8	SR_POWER_STATUS	ROSETTA	Float	V	Camera CRB power converter 8V rail voltage.	TM
CAMERA_V_M12	SR_POWER_STATUS	ROSETTA	Float	V	Camera CRB power converter -12V rail voltage.	TM
CAMERA_V_5_ANALOG	SR_POWER_STATUS	ROSETTA	Float	V	Camera CRB power converter 5V analogue rail voltage.	ТМ
CAMERA_V_5_DIGITAL	SR_POWER_STATUS	ROSETTA	Float	V	Camera CRB power converter 5V digital rail voltage.	ТМ
CAMERA_V_M5	SR_POWER_STATUS	ROSETTA	Float	V	Camera CRB power converter -5V rail voltage.	TM
I_28_MAIN	SR_POWER_STATUS	ROSETTA	Float	mA	Current measurement of the main 28 V power rail.	TM
I_28_REDUNDANT	SR_POWER_STATUS	ROSETTA	Float	mA	Current measurement of the redundant 28 V power rail.	ТМ
1_5	SR_POWER_STATUS	ROSETTA	Float	mA	Current measurement of the main power converter 5V rail.	ТМ
I_3	SR_POWER_STATUS	ROSETTA	Float	mA	Current measurement of the main power converter 3V rail.	ТМ
I_15	SR_POWER_STATUS	ROSETTA	Float	mA	Current measurement of the main power converter 15V rail.	TM

Issue: 1 Rev. Date: 16/10/2017 Page: 85

I_M15	SR_POWER_STATUS	ROSETTA	Float	mA	Current measurement of the main power converter - 15V rail.	TM
CAMERA_I_24	SR_POWER_STATUS	ROSETTA	Float	mA	Current measurement of the camera CRB power converter 24V rail.	ТМ
CAMERA_I_8	SR_POWER_STATUS	ROSETTA	Float	mA	Current measurement of the camera CRB power converter 8V rail.	TM
CAMERA_I_M12	SR_POWER_STATUS	ROSETTA	Float	mA	Current measurement of the Camera CRB power converter -12V rail.	TM
CAMERA_I_5_ANALOG	SR_POWER_STATUS	ROSETTA	Float	mA	Current measurement of the camera CRB power converter 5V analogue rail.	TM
CAMERA_I_5_DIGITAL	SR_POWER_STATUS	ROSETTA	Float	mA	Current measurement of the camera CRB power converter 5V digital rail.	ТМ
CAMERA_I_M5	SR_POWER_STATUS	ROSETTA	Float	mA	Current measurement of the camera CRB power converter -5V rail.	ТМ

9.20 Calibrated Temperatures

Contains temperature measurements of various parts of the OSIRIS instrument

Label	Group	Namespace	Datatype	Unit	Description	Source
T_MAIN_PCM	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	Temperature of the Main power converter electronics board.	ТМ

T_REDUNDANT_PCM	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	Temperature of the Redundant power converter electronics board.	ТМ
T_WAC_STRUCTURE_MAIN_1	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	WAC structure temperature sensor #1 (main).	ТМ
T_WAC_STRUCTURE_REDUNDANT_1	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	WAC structure temperature sensor #1 (redundant).	ТМ
T_WAC_STRUCTURE_MAIN_2	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	WAC structure temperature sensor #2 (main).	ТМ
T_WAC_STRUCTURE_REDUNDANT_2	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	WAC structure temperature sensor #2 (redundant).	ТМ
T_WAC3	SR_TEMPERATURE_STATUS	ROSETTA	Float	К	WAC mirror temperature sensor #3.	ТМ
T_WAC4	SR_TEMPERATURE_STATUS	ROSETTA	Float	К	WAC mirror temperature sensor #4.	ТМ
T_WAC_WHEEL_MOTOR_1	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	WAC filter wheel #1 motor temperature sensor.	ТМ
T_WAC_WHEEL_MOTOR_2	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	WAC filter wheel #2 motor temperature sensor.	ТМ
T_WAC_DOOR_MOTOR	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	WAC filter front door motor temperature sensor.	ТМ

Reference: RO-RIS-MPAE-ID-023Issue:1Rev.: -Date:16/10/2017

Page: 87

T_NAC_CCD_VIA_MCB	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	NAC CCD temperature as read By the MCB HK board.	ТМ
T_WAC_CCD_VIA_MCB	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	WAC CCD temperature as read By the MCB HK board.	ТМ
T_NAC_WHEEL_MOTOR_1	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	NAC filter wheel #1 motor temperature sensor.	ТМ
T_NAC_WHEEL_MOTOR_2	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	NAC filter wheel #2 motor temperature sensor.	ТМ
T_NAC_DOOR_MOTOR	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	NAC filter front door motor temperature sensor.	ТМ
T_NAC_DOOR_IF_MAIN	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	Temperature of NAC front door interface plate (main).	ТМ
T_NAC_MIRROR_2	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	Temperature of NAC M2 mirror.	ТМ
T_NAC_PPE_IF_REDUNDANT	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	Temperature of NAC PPE Redundant Interface Plate (mounting plate for filter wheel, shutter and focal plane).	ТМ
T_NAC_DOOR_IF_REDUNDANT	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	Temperature of NAC front door Redundant Interface Plate.	ТМ

Reference: RO-RIS-MPAE-ID-023

Issue: 1 Rev.: -Date: 16/10/2017 Page: 88

T_NAC_PPE_IF_MAIN	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	Temperature of NAC PPE Main Interface Plate (mounting plate for filter wheel, shutter and focal plane).	ТМ
T_NAC_MIRROR_1_AND_3	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	Temperature of NAC M1 and M3 mirror mounting plate.	ТМ
T_DSP_MAIN	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	Temperature of main DSP (processing unit).	ТМ
T_DSP_REDUNDANT	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	Temperature of redundant DSP (processing unit).	ТМ
T_BOARD_CONTROLLER	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	Temperature of motor controller board.	ТМ
T_BOARD_DRIVER	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	Temperature of motor controller driver state.	
CAMERA_TCCD	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	CCD Temperature as read out by the CRB electronics.	ТМ
CAMERA_T_SENSORHEAD	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	Temperature of the CCD sensor head electronics board.	ТМ
CAMERA_T_ADC_1	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	Temperature of ADC #1.	ТМ
CAMERA_T_ADC_2	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	Temperature of ADC #2.	ТМ

CAMERA_T_SHUTTER_MOTOR_1	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	Temperature of shutter motor #1.	ТМ
CAMERA_T_SHUTTER_MOTOR_2	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	Temperature of shutter motor #2.	ТМ
CAMERA_T_POWER_CONVERTER	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	Temperature of CRB electronics power converter module.	ТМ
CAMERA_T_DOSIMETER	SR_TEMPERATURE_STATUS	ROSETTA	Float	К	Temperature of dosimeter.	ТМ

9.21 Radiation Environment

Label	Group	Namespace	Datatype	Unit	Description	Source
CAMERA_DOSIS	SR_RADIATION_STATUS	ROSETTA	Float	rad	Total radiation doses measured by the radiation MOSFET.	ТМ
SREM_PROTONS_GT_20MEV	SR_RADIATION_STATUS	ROSETTA	Float	DN	SREM doses of >20MeV protons.	ТМ
SREM_PROTONS_50_TO_70MEV	SR_RADIATION_STATUS	ROSETTA	Float	DN	SREM doses of 50-70 MeV protons.	ТМ
SREM_ELECTRONS_LT_2MEV	SR_RADIATION_STATUS	ROSETTA	Float	DN	SREM doses of < 2 MeV electrons.	ТМ

10 PDS Objects in .IMG files

10.1 The HISTORY Object

The HISTORY object is an attached secondary PDS label with additional information about the processing history if the image. The history object data can be extracted from the PDS label via the ^HISTORY pointer specifying the offset of the history label. The history label is terminated using an END statement (same as a normal PDS label). The history object contains a single object called HISTORY with a varying number of sub fields defined by the various processing steps.

HISTORY objects are not part of the PDS specification, and so are not detailed in this document. Example HISTORY objects can be found in the appendices of this document.

10.2 Shutter Blade 1 position encoder Object

Embedded binary object containing the position encoder pulse data for the shutter blade #1. The data is reached using the data pointer ^BLADE1_PULSE_ARRAY. Note this object only exists in the PDS header if shutter pulse data for blade 1 has been downlinked. The BLADE1_PULSE_ARRAY object only exists in the EDR label.

Label	Object	Datatype	Description
NAME	BLADE1_PULSE_ARRAY	String	Short description of the object.
DESCRIPTION	BLADE1_PULSE_ARRAY	String	Description of the object.
INTERCHANGE_FORMAT	BLADE1_PULSE_ARRAY	Label	Interchange format. Always: BINARY
AXES	BLADE1_PULSE_ARRAY	Integer	Number of data axes. Always: 1

AXIS_ITEMS	BLADE1_PULSE_ARRAY	Integer	Number of data elements in array.
NAME	BLADE1_PULSE_ARRAY.ELEMENT	Label	Name of single data elements. Always: COUNT
DATA_TYPE	BLADE1_PULSE_ARRAY.ELEMENT	Label	Datatype of shutter pulse data array. Always: LSB_UNSIGNED_INTEGER
BYTES	BLADE1_PULSE_ARRAY.ELEMENT	Integer	Number of bytes per pulse sample. Always: 4

10.3 Shutter Blade 2 position encoder Object

Embedded binary object containing the position encoder pulse data for the shutter blade #2. The data is reached using the data pointer ^BLADE2_PULSE_ARRAY. Note this object only exists in the PDS header if shutter pulse data for blade 1 has been downlinked. The BLADE1_PULSE_ARRAY object only exists in the EDR label.

Label	Object	Datatype	Description
NAME	BLADE2_PULSE_ARRAY	String	Short description of the object.
DESCRIPTION	BLADE2_PULSE_ARRAY	String	Description of the object.
INTERCHANGE_FORMAT	BLADE2_PULSE_ARRAY	Label	Interchange format.
			Always: BINARY

AXES	BLADE2_PULSE_ARRAY	Integer	Number of data axes.
			Always: 1
AXIS_ITEMS	BLADE2_PULSE_ARRAY	Integer	Number of data elements in array.
NAME	BLADE2_PULSE_ARRAY.ELEMENT	Label	Name of single data elements.
			Always: COUNT
DATA_TYPE	BLADE2_PULSE_ARRAY.ELEMENT	Label	Datatype of shutter pulse data array.
			Always: LSB_UNSIGNED_INTEGER
BYTES	BLADE2_PULSE_ARRAY.ELEMENT	Integer	Number of bytes per pulse sample.
			Always: 4

10.4 The IMAGE Object

(Required object)

The image object contains the image data from the physical CCD surface (the actual image acquired during the exposure).

Label	Object	Datatype	Description
INTERCHANGE_FORMAT	IMAGE	Label	The interchange format of the image data. Always: BINARY
LINE_SAMPLES	IMAGE	Integer	Width of the image in pixels.

LINES	IMAGE	Integer	Height of the image in pixels.
BANDS	IMAGE	Integer	Number of image planes. Always: 1
SAMPLE_TYPE	IMAGE	Label	The binary storage data type. Normally: LSB_UNSIGNED_INTEGER for level 1 data
SAMPLE_BITS	IMAGE	Integer	Number of bits per pixel. Normally: 16 for level 1 data
UNIT	IMAGE	String	Data unit of the image data. Level2: DN
DERIVED_MINIMUM	IMAGE	Integer/Float	Level3 – N: Wm ⁻² sr ⁻¹ nm ⁻¹ Minimum data value in image.
DERIVED_MAXIMUM	IMAGE	Integer/Float	Maximum data value in image.
MEAN	IMAGE	Integer/Float	Mean data value of image data. Note: this label is present only in CODMAC level 2 images.
STANDARD_DEVIATION	IMAGE	Integer/Float	Standard deviation value of the image data. Note: this label is present only in CODMAC level 2 images.

FIRST LINE	IMAGE	Integer	First row of subframe in OPTICAL CCD coordinates.
_			Please note that this value is 1 indexed! Not 0 indexed.
FIRST LINE SAMPLE	IMAGE	Integer	First column of subframe in OPTICAL CCD coordinates.
		integer	Please note that this value is 1 indexed! Not 0 indexed.
			i lease note that this value is i indexed: ivot o indexed.
LINE DISPLAY DIRECTION	IMAGE	Label	The LINE DISPLAY DIRECTION element is the preferred orientation of lines within an
LINE_DISPLAT_DIRECTION	IMAGE	Laber	image viewing on a display device. The default is DOWN.
			Note that the display is rotated 180° with respect to the Rosetta standard orientation (see Sec. 7.2.1).
			Allowed values:
			DOWN,
			LEFT,
			RIGHT,
			UP
SAMPLE_DISPLAY_DIRECTION	IMAGE	Label	The SAMPLE_DISPLAY_DIRECTION element is the preferred orientation of samples within a line for viewing on a display device. The default is RIGHT for the WAC and left for the NAC.
			Note that the display is rotated 180° with respect to the Rosetta standard orientation (see Sec. 7.2.1).
			Allowed values:
			DOWN,
			LEFT,
			RIGHT,
			UP

10.5 The PA_IMAGE Object

(Optional object, only for CODMAC level 2)

The OSIRIS CCD has an operation mode where the CCD first clocks out 48 pixels connected to ground before actually clocking out the real image data (the pre pixels). The pre pixels can be acquired from both the A and B amplifier chains. If data was acquired from the A amplifier chain the pre pixel image data will be found in the PA_IMAGE object.

Label	Object	Datatype	Description
INTERCHANGE_FORMAT	IMAGE_PA	Label	The interchange format of the image data.
			Always: BINARY
LINE_SAMPLES	IMAGE_PA	Integer	Width of the image in pixels.
LINES	IMAGE_PA	Integer	Height of the image in pixels.
BANDS	IMAGE_PA	Integer	Number of image planes.
			Always: 1
SAMPLE_TYPE	IMAGE_PA	Label	The binary storage data type.
			Normally: LSB_UNSIGNED_INTEGER for level 1 data
SAMPLE_BITS	IMAGE_PA	Integer	Number of bits per pixel.
			Normally: 16 for level 1 data
UNIT	IMAGE_PA	Label	Data unit of the image data.
			Level2: DN
			Level3 – N: $Wm^{-2}sr^{-1}nm^{-1}$

DERIVED_MINIMUM	IMAGE_PA	Integer/Float	Minimum data value in image.
DERIVED_MAXIMUM	IMAGE_PA	Integer/Float	Maximum data value in image.
MEAN	IMAGE_PA	Integer/Float	Mean data value of image data. Note: this label is present only in CODMAC level 2 images.
STANDARD_DEVIATION	IMAGE_PA	Integer/Float	Standard deviation value of the image data. Note: this label is present only in CODMAC level 2 images.
FIRST_LINE	IMAGE_PA	Integer	First row of subframe in OPTICAL CCD coordinates. Please note that this value is 1 indexed! Not 0 indexed.
FIRST_LINE_SAMPLE	IMAGE_PA	Integer	First column of subframe in OPTICAL CCD coordinates. Please note that this value is 1 indexed! Not 0 indexed.

10.6 The PB_IMAGE Object

(Optional object, only for CODMAC level 2)

The OSIRIS CCD has an operation mode where the CCD first clocks out 48 pixels connected to ground before actually clocking out the real image data (the pre pixels). The pre pixels can be acquired from both the A and B amplifier chains. If data was acquired from the B amplifier chain the pre pixel image data will be found in the PB_IMAGE object.

LabelObjectDatatype	Description
---------------------	-------------

INTERCHANGE_FORMAT	IMAGE_PB	Label	The interchange format of the image data
			Always: BINARY
LINE_SAMPLES	IMAGE_PB	Integer	Width of the image in pixels.
LINES	IMAGE_PB	Integer	Height of the image in pixels.
BANDS	IMAGE_PB	Integer	Number of image planes.
			Always: 1
SAMPLE_TYPE	IMAGE PB	Label	The binary storage data type.
		Lucci	Normally: LSB_UNSIGNED_INTEGER for level 1 data
SAMPLE_BITS	IMAGE_PB	Integer	Number of bits per pixel.
			Normally: 16 for level 1 data
UNIT	IMAGE_PB	Label	Data unit of the image data.
			Level2: DN
			Level3 – N: $Wm^{-2}sr^{-1}nm^{-1}$
DERIVED_MINIMUM	IMAGE_PB	Integer/Float	Minimum data value in image.
DERIVED_MAXIMUM	IMAGE_PB	Integer/Float	Maximum data value in image.
	IMAGE_PB	integei/rioat	waxinum data varde in image.

MEAN	IMAGE_PB	Integer/Float	Mean data value of image data. Note: this label is present only in CODMAC level 2 images.
STANDARD_DEVIATION	IMAGE_PB	Integer/Float	Standard deviation value of the image data. Note: this label is present only in CODMAC level 2 images.
FIRST_LINE	IMAGE_PB	Integer	First row of subframe in OPTICAL CCD coordinates. Please note that this value is 1 indexed! Not 0 indexed.
FIRST_LINE_SAMPLE	IMAGE_PB	Integer	First column of subframe in OPTICAL CCD coordinates. Please note that this value is 1 indexed! Not 0 indexed.

10.7 The OL_IMAGE Object

(Optional object, only for CODMAC level 2)

The OSIRIS CCD has an operation mode where the CCD keeps clocking lines after the last physical CCD line has been read. This allows calibration of the charge transfer efficiency in the vertical clocking direction. If data was acquired using this mode then the image data will be found in the OL IMAGE object.

Label	Object	Datatype	Description
INTERCHANGE_FORMAT	IMAGE_OL	Label	The interchange format of the image data.
			Always: BINARY
LINE_SAMPLES	IMAGE_OL	Integer	Width of the image in pixels.

IMAGE_OL	Integer	Height of the image in pixels.
IMAGE_OL	Integer	Number of image planes. Always: 1
IMAGE_OL	Label	The binary storage data type. Normally: LSB_UNSIGNED_INTEGER for level 1 data
IMAGE_OL	Integer	Number of bits per pixel. Normally: 16 for level 1 data
IMAGE_OL	String	Data unit of the image data. Level2: DN Level3 - N: Wm ⁻² sr ⁻¹ nm ⁻¹
IMAGE_OL	Integer/Float	Minimum data value in image.
IMAGE_OL	Integer/Float	Maximum data value in image.
IMAGE_OL	Integer/Float	Mean data value of image data. Note: this label is present only in CODMAC level 2 images.
IMAGE_OL	Integer/Float	Standard deviation value of the image data. Note: this label is present only in CODMAC level 2 images.
	IMAGE_OL IMAGE_OL IMAGE_OL IMAGE_OL IMAGE_OL IMAGE_OL IMAGE_OL IMAGE_OL IMAGE_OL	IMAGE_OLIntegerIMAGE_OLLabelIMAGE_OLLabelIMAGE_OLIntegerIMAGE_OLStringIMAGE_OLStringIMAGE_OLInteger/FloatIMAGE_OLInteger/FloatIMAGE_OLInteger/Float

FIRST_LINE	IMAGE_OL	Integer	First row of subframe in OPTICAL CCD coordinates. Please note that this value is 1 indexed! Not 0 indexed.
FIRST_LINE_SAMPLE	IMAGE_OL	Integer	First column of subframe in OPTICAL CCD coordinates. Please note that this value is 1 indexed! Not 0 indexed.

10.8 The SIGMA_MAP_IMAGE Object

(Required for CODMAC level 3 and higher)

The SIGMA_MAP_IMAGE is a float image with the same dimension as the image itself. Details regarding its content can be found in section 4 (Data Structure).

Label	Object	Datatype	Description
INTERCHANGE_FORMAT	SIGMA_MAP_IMAGE	Label	The interchange format of the image data.
			Always: BINARY
LINE_SAMPLES	SIGMA_MAP_IMAGE	Integer	Width of the image in pixels.
LINES	SIGMA_MAP_IMAGE	Integer	Height of the image in pixels.
BANDS	SIGMA_MAP_IMAGE	Integer	Number of image planes.
			Always: 1
SAMPLE_TYPE	SIGMA_MAP_IMAGE	Label	The binary storage data type.
			Normally: LSB_UNSIGNED_INTEGER for level 1 data
SAMPLE_BITS	SIGMA_MAP_IMAGE	Integer	Number of bits per pixel.
			Normally: 16 for level 1 data
UNIT	SIGMA_MAP_IMAGE	String	Data unit of the image data.
			Level2: DN
			Level3 – N: $Wm^{-2}sr^{-1}nm^{-1}$

DERIVED_MINIMUM	SIGMA_MAP_IMAGE	Integer/Float	Minimum data value in image.
DERIVED_MAXIMUM	SIGMA_MAP_IMAGE	Integer/Float	Maximum data value in image.
FIRST_LINE	SIGMA_MAP_IMAGE	Integer	First row of subframe in OPTICAL CCD coordinates.
			Please note that this value is 1 indexed! Not 0 indexed.
FIRST_LINE_SAMPLE	SIGMA_MAP_IMAGE	Integer	First column of subframe in OPTICAL CCD coordinates.
			Please note that this value is 1 indexed! Not 0 indexed.
LINE_DISPLAY_DIRECTION	SIGMA_MAP_IMAGE	Label	The LINE_DISPLAY_DIRECTION element is the preferred orientation of lines within an image viewing on a display device. The default is DOWN; meaning samples are viewed from top to bottom on the display.
			Allowed values:
			DOWN,
			LEFT,
			RIGHT,
			UP

SAMPLE_DISPLAY_DIRECTION	SIGMA_MAP_IMAGE	Label	The SAMPLE_DISPLAY_DIRECTION element is the preferred orientation of samples within a line for viewing on a display device. The default is RIGHT; meaning samples are viewed from left to right on the display.
			Allowed values:
			DOWN,
			LEFT,
			RIGHT,
			UP

10.9 The QUALITY_MAP_IMAGE Object

(Required for CODMAC level 3 and higher)

The QUALITY_MAP_IMAGE is an 8-bit image with the same dimension as the image itself and contains a quality estimate of each pixel. The quality map exists for OSIRIS data level 2 and higher. Details regarding its content can be found in section 4 (Data Structure).

Label	Object	Datatype	Description
INTERCHANGE_FORMAT	QUALITY_MAP_IMAGE	Label	The interchange format of the image data.
			Always: BINARY
LINE_SAMPLES	QUALITY_MAP_IMAGE	Integer	Width of the image in pixels.
LINES	QUALITY_MAP_IMAGE	Integer	Height of the image in pixels.
BANDS	QUALITY_MAP_IMAGE	Integer	Number of image planes.
			Always: 1

SAMPLE_TYPE	QUALITY_MAP_IMAGE	Label	The binary storage data type.
			Normally: LSB_UNSIGNED_INTEGER for level 1 data
SAMPLE_BITS	QUALITY_MAP_IMAGE	Integer	Number of bits per pixel.
			Normally: 16 for level 1 data
FIRST_LINE	QUALITY_MAP_IMAGE	Integer	First row of subframe in OPTICAL CCD coordinates.
			Please note that this value is 1 indexed! Not 0 indexed.
FIRST_LINE_SAMPLE	QUALITY_MAP_IMAGE	Integer	First column of subframe in OPTICAL CCD coordinates.
			Please note that this value is 1 indexed! Not 0 indexed.
LINE_DISPLAY_DIRECTION	QUALITY_MAP_IMAGE	Label	The LINE_DISPLAY_DIRECTION element is the preferred orientation of lines within an image viewing on a display device. The default is DOWN; meaning samples are viewed from top to bottom on the display.
			Allowed values:
			DOWN,
			LEFT,
			RIGHT,
			UP

Reference: **RO-RIS-MPAE-ID-023** Issue: 1 Rev.: Date: 16/10/2017 Page: 105

SAMPLE_DISPLAY_DIRECTION	QUALITY_MAP_IMAGE	Label	The SAMPLE_DISPLAY_DIRECTION element is the preferred orientation of samples within a line for viewing on a display device. The default is RIGHT; meaning samples are viewed from left to right on the display.
			Allowed values:
			DOWN,
			LEFT,
			RIGHT,
			UP

11 The OSIRIS labels for .FTS files

The FITS labels are created by translating the PDS labels. OSIRIS FITS labels are compatible with the FITS v3.0 specification (July 2008).

11.1 Required/Reserved FITS Keywords

These header entries are required by the FITS specification.

Label	PDS Equivalent	Datatype	Unit	Description	Source
SIMPLE		Boolean		Logical constant indicating that the file conforms to the FITS standard. T: TRUE F: FALSE	Image converter
BITPIX		Integer		The number of bits used to represent the data values in the data array.	Image converter
NAXIS		Integer		The number of axes in the data array.	Image converter
NAXIS1		Integer		The number of elements along axis 1 (columns).	Image converter
NAXIS2		Integer		The number of elements along axis 2 (rows).	Image converter
EXTEND		Boolean		Indicates if the file may contain conforming extensions following the primary HDU. T: TRUE F: FALSE	Image converter

BSCALE	Floa	Used with BZERO to scale the array pixel values, using the equation: physical value = BZERO + BSCALE × array value	Image converter
BZERO	Floa	Used with BSCALE to scale the array pixel values, using the equation: physical value = BZERO + BSCALE × array value	Image converter

11.2 Mission Specific Keywords

Label	PDS Equivalent	Datatype	Unit	Description	Source
XEND	ROSETTA:X_END	Integer	Pixels	Last column (inclusive) of the hardware sub frame used to acquire the image. This value is specified in ELECTRICAL CCD coordinates.	ТМ
YEND	ROSETTA:Y_END	Integer	Pixels	Last row (inclusive) of the hardware sub frame used to acquire the image. This value is specified in ELECTRICAL CCD coordinates.	ТМ

DATE-OBS	START_TIME	Character String		Start of the exposure in UTC. Please note that the value stored in START_TIME is the most precise time known at the time of file generation. The START_TIME has been corrected for on board clock drift and leap seconds.	TM/SPICE
F_TSTART	START_TIME	Character String		Start of the exposure in UTC.Please note that the value stored in START_TIME is the most precise time known at the time of file generation.The START_TIME has been corrected for on board clock drift and leap seconds.	TM/SPICE
D_TEMP	DETECTOR_TEMPERATURE	Float	K	Temperature of the CCD detector in Kelvin.	ТМ
EXPTIME	EXPOSURE_DURATION	Float	S	This field contains the exposure time used to acquire the image.	TM
F_FID	COMMANDED_FILTER_NUMBER	Integer		OSIRIS has a dual filter wheel in the optical beam. This field contains the index of the filter combination. The index is coded as a two digit number (AB) where A is the filter index of the first filter wheel and B is the index of the second filter wheel (for example 12 would mean wheel 1 at index 1 and wheel 2 at index 2).	ТМ
FILT	COMMANDED_FILTER_NAME	Character String		Names of the two commanded filters in the optical path. The name is coded as <name 1="" filter="" in="" of="" wheel="">_<name 2="" filter="" in="" of="" wheel=""> (for example Empty_Red).</name></name>	ТМ

Reference: **RO-RIS-MPAE-ID-023** Issue: 1 Rev.: Date: 16/10/2017 Page: 109

TARGET	TARGET_NAME	Character String	Name of the observation target.	SPICE
G_TTYPE	TARGET_TYPE	Character String	Type of target. One of the following values: TEST_POINTING STAR MOON PLANET COMET ASTEROID NEBULA 	Image converter
CAMERA	INSTRUMENT_ID	Character String	ID of the instrument. Either OSINAC or OSIWAC .	ТМ
C_NAME	INSTRUMENT_NAME	Character String	Description of instrument.	TM/Fixed
M_PHASE	MISSION_PHASE_NAME	Character String	Name of overall mission phase.	Image Converter
F_SC1	SPACECRAFT_CLOCK_START_COUNT	Character String	Start of the exposure in raw spacecraft clock count. Format: <reset>/<high count="">:<low count=""></low></high></reset>	ТМ
F_SC2	SPACECRAFT_CLOCK_STOP_COUNT	Character String	Start of image readout in raw spacecraft clock count. Format: <reset>/<high count="">:<low count=""></low></high></reset>	TM

F_LEVEL	PROCESSING_LEVEL_ID	Character String		 Processing level: 0: Raw TM 1: Uncalibrated header + raw image data 2: Calibrated header + raw image data 3: Calibrated header + calibrated image data 4: Calibrated header + geometrically corrected image data 	Image Converter
RS_FDSID	ROSETTA:FRONT_DOOR_STATUS_ID	Character String		OSIRIS is equipped with a front door that blocks the optical beam into the camera when the camera is switched off. This field tells if the front door was open or closed when the image was acquired. (Please note that many image are actually acquired with the door closed since the interior of the door acts as a calibration target for the camera). Possible values: OPEN CLOSED LOCKED UNKNOWN	ТМ
G_RSS01	SC_SUN_POSITION_VECTOR	Float	km	X distance from the S/C to the Sun in J2000. The vector is light-time corrected.	SPICE
G_RSS02	SC_SUN_POSITION_VECTOR	Float	km	Y distance from the S/C to the Sun in J2000. The vector is light-time corrected.	SPICE

Reference: RO-RIS-MPAE-ID-023Issue:1Rev.: -Date:16/10/2017

Page: 111

G_RSS03	SC_SUN_POSITION_VECTOR	Float	km	Z distance from the S/C to the Sun in J2000.	SPICE
				The vector is light-time corrected.	
G_SSDIS	SPACECRAFT_SOLAR_DISTANCE	Float	km	Spacecraft distance from the Sun.	SPICE
G_SELONG	SOLAR_ELONGATION	Float	deg	The solar elongation angle (angle between a vector from the S/C to the sun, and the S/C +Z axis).	SPICE
G_RA	RIGHT_ASCENSION	Float	deg	The right ascension of the S/C +Z axis specified in J2000 with coordinate system centre in the S/C.	SPICE
G_DEC	DECLINATION	Float	deg	The declination of the S/C +Z axis specified in J2000 with coordinate system centre in the S/C.	SPICE
G_AZIN	NORTH_AZIMUTH	Float	deg	The north_azimuth element provides the value of the angle between a line from the image centre to the north pole and a reference line in the image plane. The reference line is a horizontal line from the image centre to the middle right edge of the image. This angle increases in a clockwise direction.	SPICE
G_RST01	SC_TARGET_POSITION_VECTOR	Float	None or km	If solar system object this field contains the X distance from the S/C to the target object in km. The vector is light-time corrected. If stellar target object this field contains a unit vector towards the target object.	SPICE

G_RST02	SC_TARGET_POSITION_VECTOR	Float	None or km	If solar system object this field contains the Y distance from the S/C to the target object in km. The vector is light-time corrected. If stellar target object this field contains a unit vector towards the target object.	SPICE
G_RST03	SC_TARGET_POSITION_VECTOR	Float	None or km	If solar system object this field contains the Z distance from the S/C to the target object in km. The vector is light-time corrected. If stellar target object this field contains a unit vector towards the target object.	SPICE
G_STV01	SC_TARGET_VELOCITY_VECTOR	Float	km/s	This velocity component is the derivative with respect to time of the SC_TARGET_POSITION_VECTOR.	SPICE
G_STV02	SC_TARGET_VELOCITY_VECTOR	Float	km/s	This velocity component is the derivative with respect to time of the SC_TARGET_POSITION_VECTOR.	SPICE
G_STV03	SC_TARGET_VELOCITY_VECTOR	Float	km/s	This velocity component is the derivative with respect to time of the SC_TARGET_POSITION_VECTOR.	SPICE

G_PHASEA	PHASE_ANGLE	Float	Deg	The phase_angle element provides a measure of the relationship between the instrument viewing position and incident illumination (such as solar light). Phase_angle is measured at the target; it is the angle between a vector to the illumination source and a vector to the instrument. If not specified, the target is assumed to be at the centre of the instrument field of view. If illumination is from behind the instrument, phase_ angle will be small.	SPICE
G_CNAME	COORDINATE_SYSTEM_NAME			Name of the coordinate system Always: "S/C-COORDS".	Fixed
G_OVEC01	ORIGIN_OFFSET_VECTOR	Float	km	X component of the offset vector from J2000 origin to the origin of the Rosetta spacecraft coordinate system.Meaning the vector in J2000 from the origin of the J2000 coordinate system to the origin of the S/C coordinate system.	SPICE
G_OVEC02	ORIGIN_OFFSET_VECTOR	Float	km	Y component of the offset vector from J2000 origin to the origin of the Rosetta spacecraft coordinate system. Meaning the vector in J2000 from the origin of the J2000 coordinate system to the origin of the S/C coordinate system.	SPICE

Reference: **RO-RIS-MPAE-ID-023** Issue: 1 Rev.: -

G_OVEC03	ORIGIN_OFFSET_VECTOR	Float	km	Z component of the offset vector from J2000 origin to the origin of the Rosetta spacecraft coordinate system. Meaning the vector in J2000 from the origin of the J2000 coordinate system to the origin of the S/C coordinate system.	SPICE
G_OQUA01	ORIGIN_ROTATION_QUATERNION	Float		Rotation quaternion for transforming from J2000 to the Rosetta spacecraft coordinate system. The quaternion is stored using the ESA quaternion convention which is [nx sin(a/2), ny sin(a/2), nz sin(a/2), cos(a/2)] To use the quaternion in the SPICE system the vector needs to be transformed to [q3, q0, q1, q2]	SPICE
G_OQUA02	ORIGIN_ROTATION_QUATERNION	Float		Rotation quaternion for transforming from J2000 to the Rosetta spacecraft coordinate system. The quaternion is stored using the ESA quaternion convention which is [nx sin(a/2), ny sin(a/2), nz sin(a/2), cos(a/2)] To use the quaternion in the SPICE system the vector needs to be transformed to [q3, q0, q1, q2]	SPICE

G_OQUA03	ORIGIN_ROTATION_QUATERNION	Float	Rotation quaternion for transforming from J2000 to the Rosetta spacecraft coordinate system. The quaternion is stored using the ESA quaternion convention which is [nx sin(a/2), ny sin(a/2), nz sin(a/2), cos(a/2)] To use the quaternion in the SPICE system the vector needs to be transformed to [q3, q0, q1, q2]	SPICE
G_OQUA04	ORIGIN_ROTATION_QUATERNION	Float	Rotation quaternion for transforming from J2000 to the Rosetta spacecraft coordinate system. The quaternion is stored using the ESA quaternion convention which is [nx sin(a/2), ny sin(a/2), nz sin(a/2), cos(a/2)] To use the quaternion in the SPICE system the vector needs to be transformed to [q3, q0, q1, q2]	SPICE
G_NSYS	REFERENCE_COORD_SYSTEM_NAME	Character String	Name of the reference coordinate system. Always EME J2000.	Fixed

BINNING	HARDWARE_BINNING_ID	Character String	OSIRIS can bit data two ways: 1. in a software pixel averaging mode and 2. using a hardware driven binning mode.
			The hardware binning id specifies what hardware mode were used.
			The following modes are possible:
			1x1: Each input pixel becomes an output pixel
			2x2: Each 2x2 input block becomes an output pixel
			4x4: Each 4x4 input block becomes an output pixel
			8x8: Each 8x8 input block becomes an output pixel
			Please note that the hardware binning mode has an influence on the effective exposure time:
			1x1 -> time
			2x2 -> 4x time
			4x4 -> 16 x time
			8x8 -> 64 x time

RS_AMPID	AMPLIFIER_ID	Character String	 OSIRIS can clock the CCD out using three methods: A: The data is clocked left in the horizontal direction and passed through the A amplifier chain. B: The data is clocked right in the horizontal direction and passed through the B amplifier chain. BOTH: Where the left half of the CCD is clocked through the A channel and the right half of the CCD is clocked through the B channel. This field specifies what amplifier chains were used: <i>A</i> <i>B</i> <i>BOTH</i> 	TM
RS_GANID	GAIN_ID	Character String	OSIRIS can be operated with two fixed amplifier gain settings (LOW and HIGH). This field tells what gain setting was used to acquire the image: LOW HIGH	ТМ

RS_ADCID	ADC_ID	Character String	OSIRIS has a 16 bit digital converter that is actually composed of two 14 bit analogue to digital converters working in series. OSIRIS can be operated in three ADC mode: <i>LOW: only the low 14 bit ADC is used.</i> <i>HIGH: only the high 14 bit ADC is used.</i> <i>TANDEM: Both low and high ADC is used to</i> <i>build the final 16 data number.</i>	ТМ
LINEDIR	LINE_DISPLAY_DIRECTION	Character String	The LINE_DISPLAY_DIRECTION element is the preferred orientation of lines within an image viewing on a display device. The default is DOWN; meaning samples are viewed from top to bottom on the display. Allowed values: DOWN, LEFT, RIGHT, UP	Image Converter

SMPLEDIR SAMPLE_DISPLAY_DIRECTION	Character String	The SAMPLE_DISPLAY_DIRECTION element is the preferred orientation of samples within a line for viewing on a display device. The default is RIGHT; meaning samples are viewed from left to right on the display. Allowed values: DOWN, LEFT, RIGHT, UP	Image Converter
---	---------------------	--	--------------------

Appendix 1: Example OSIRIS header for .IMG files

The header keywords of all OSIRIS images are identical, independently from the processing level. The content of certain header keywords is updated according to the processing level.

PDS_VERSION_ID	= PDS3
LABEL_REVISION_NOTE	= "RO-RIS-MPAE-ID-022 1/d"
/* FILE CHARACTERISTICS */	
RECORD_TYPE	= FIXED_LENGTH
RECORD_BYTES	= 512
FILE_RECORDS	= 73777
LABEL_RECORDS	= 42
FILE_NAME	= "NAC_2014-03-24T03.03.57.573Z_ID30_1251276900_F22.IMG"
PROCESSING_HISTORY_TEXT	= "Level 3 PDS file created - OsiCalliope 2017-09-12"
/* POINTERS TO DATA OBJECTS '	*/
^HISTORY	= 43
^IMAGE	= 50
^SIGMA_MAP_IMAGE	= 32818
^QUALITY_MAP_IMAGE	= 65586
/* SOFTWARE */	

SOFTWARE_DESC

Reference: RO-RIS-MPAE-ID-023 Issue: 1 Rev.: -Date: 16/10/2017

121

Page:

= "OSIRIS calibration pipeline"

SOFTWARE_LICENSE_TYPE	= "COMMERCIAL"
SOFTWARE_ID	= "OSICALLIOPE"
SOFTWARE_NAME	= "OsiCalliope.exe"
SOFTWARE_VERSION_ID	= "1.45.0"
SOFTWARE_RELEASE_DATE	= 2017-09-12
ROSETTA:TELEMETRY_FORMAT_CODE	= "210"
/* MISSION IDENTIFICATION	*/
INSTRUMENT_HOST_ID	= "RO"
INSTRUMENT_HOST_NAME	= "ROSETTA-ORBITER"
MISSION_ID	= "ROSETTA"
MISSION_NAME	= "INTERNATIONAL ROSETTA MISSION"

= ""

= "SI CCD"

/* INSTRUMENT DESCRIPTION */

MISSION PHASE NAME

DETECTOR TYPE

/ INSTROMENT DESCRIPTION	
INSTRUMENT_ID	= "OSINAC"
INSTRUMENT_NAME	= "OSIRIS - NARROW ANGLE CAMERA"
INSTRUMENT_TYPE	= "FRAME CCD REFLECTING TELESCOPE"
DETECTOR_DESC	= "2048x2048 PIXELS BACKLIT FRAME CCD DETECTOR"
DETECTOR_PIXEL_WIDTH	= 13.5 <micron></micron>
DETECTOR_PIXEL_HEIGHT	= 13.5 <micron></micron>

Reference: **RO-RIS-MPAE-ID-023** Issue: 1 Rev.: -

	•	
Date:	16/10/2017	
Page:	122	

DETECTOR_ID	=	"EEV-243"
DETECTOR_TEMPERATURE	=	147.87 <k></k>
ELEVATION_FOV		= 2.210 <degrees></degrees>
AZIMUTH_FOV		= 2.210 <degrees></degrees>
ROSETTA:VERTICAL_RESOLUTION		= 1.882000e-05 <rad></rad>
ROSETTA:HORIZONTAL_RESOLUTION		= 1.882000e-05 <rad></rad>
TELESCOPE_F_NUMBER	=	8.000000
ROSETTA:VERTICAL_FOCAL_LENGTH		= 0.7173 <m></m>
ROSETTA:HORIZONTAL_FOCAL_LENG	ΓН	= 0.7173 <m></m>

/* IMAGE IDENTIFICATION */

IMAGE_ID	= 1004900
ROSETTA: PROCESSING_ID	= 0
IMAGE_OBSERVATION_TYPE	= "REGULAR"
EXPOSURE_TYPE	= "MANUAL"
PRODUCT_ID	= "NAC_2014-03-24T03.03.57.573Z_ID30_1251276900_F22.IMG"
PRODUCT_TYPE	= "RDR"
PRODUCT_VERSION_ID	= "1"
PRODUCER_INSTITUTION_NAME	= "Max Planck Institute for Solar System Research"
PRODUCER_FULL_NAME	= "PABLO GUTIERREZ-MARQUES"
PRODUCER_ID	= "MPS"
MEDIUM_TYPE	= "ELECTRONIC"
PUBLICATION_DATE	= 2017-08-15
VOLUME_FORMAT	= "ANSI"

issue.	I	Rev
Date:	16/10/2017	
Page:	123	

VOLUME_ID	= "N/A"
VOLUME_NAME	= "N/A"
VOLUME_SERIES_NAME	= "ROSETTA SCIENCE ARCHIVE"
VOLUME_SET_NAME	= "N/A"
VOLUME_SET_ID	= "N/A"
VOLUME_VERSION_ID	= "N/A"
VOLUMES	= "UNK"
DATA_SET_ID	= "RO-X-OSIRIS-1-RVM2-RENDEZVOUS_MANOEUVRE_2-V1.0"
DATA_SET_NAME	= "ROSETTA-ORBITER RENDEZVOUS MANOEUVRE 2 OSIRIS 1 EDR data"
PROCESSING_LEVEL_ID	= "3"
PROCESSING_LEVEL_DESC units"	= "Radiometrically calibrated, geometric distortion corrected data, in radiance
DATA_QUALITY_ID	= 0
DATA_QUALITY_DESC	= "Zero is good non zero is bad"
/* TIME IDENTIFICATION	*/
PRODUCT_CREATION_TIME	= 2017-09-12T16:14:04

START_TIME	= 2014-03-24T03:05:01.817
STOP_TIME	= 2014-03-24T03:06:01.817
SPACECRAFT_CLOCK_START_COUNT	= "1/354251037.37600"
SPACECRAFT_CLOCK_STOP_COUNT	= "1/354251097.37600"

/* GEOMETRY */

 Reference:
 RO-RIS-MPAE-ID-023

 Issue:
 1
 Rev.:

 Date:
 16/10/2017
 Page:
 124

NOTE = "The values of the keywords SC SUN POSITION VECTOR SC TARGET POSITION VECTOR and SC TARGET VELOCITY VECTOR are related to the Earth Mean Equator J2000 reference frame. The values of SUB SPACECRAFT LATITUDE and SUB SPACECRAFT LONGITUDE are northern latitude and eastern longitude in the standard planetocentric IAU <TARGET NAME> frame. All values are computed for the time t = START TIME. Distances are given in <km> velocities in <km/s>, Angles in <deg>." TARGET NAME = "67P/CHURYUMOV-GERASIMENKO 1 (1969 R1)" TARGET TYPE = COMET SC SUN POSITION VECTOR = (-89886162.338 <km>, 552130005.605 <km>, 303783808.503 <km>) SPACECRAFT SOLAR DISTANCE = 636562383.100 <km> = 147.07052 <DEG> SOLAR ELONGATION = 247.83522 <DEG> RIGHT ASCENSION DECLINATION = -13.23669 <DEG> NORTH AZIMUTH = 212.61008 <DEG> SC TARGET POSITION VECTOR = (-1783849.158 <km>, -4394391.080 <km>, -1110194.907 <km>) = (285.684 <m/s>, 706.597 <m/s>, 176.490 <m/s>) SC TARGET VELOCITY VECTOR TARGET CENTER DISTANCE = 4870864.76050 <km> SPACECRAFT ALTITUDE = 4870863.02908 <km> SUB SPACECRAFT LATITUDE = 39.17923 <DEG> SUB SPACECRAFT LONGITUDE = 249.52615 <DEG> SUB SOLAR LATITUDE = 49.72902 <DEG> SUB SOLAR LONGITUDE = 293.50254 <DEG> = 32.92948 <DEG> PHASE ANGLE

GROUP

= SC COORDINATE SYSTEM

COORDINATE SYSTEM NAME = "S/C-COORDS"

 Reference:
 RO-RIS-MPAE-ID-023

 Issue:
 1
 Rev.:

 Date:
 16/10/2017

 Page:
 125

= (89888268.919 <km>, -552142942.414 <km>, -303790926.424 <km>) ORIGIN OFFSET VECTOR ORIGIN ROTATION QUATERNION = (0.28579149, -0.07125727, 0.78050808, -0.55140980) OUATERNION DESC = "J2000 to Rosetta Coordinate System quaternion (nx sin(a/2), ny sin(a/2), nz sin(a/2), cos(a/2)" REFERENCE COORD SYSTEM NAME = "EME J2000" = SC COORDINATE SYSTEM END GROUP GROUP = CAMERA COORDINATE SYSTEM COORDINATE SYSTEM NAME = "NAC CAMERA FRAME" ORIGIN OFFSET VECTOR = (-0.001052 <km>, -0.000325 <km>, 0.002429 <km>) ORIGIN ROTATION QUATERNION = (-0.00007285, 0.00023825, -0.70724684, -0.70696665) OUATERNION DESC = "Rosetta Coordinate System to camera coordinate system quaternion (nx sin(a/2), ny sin(a/2), nz sin(a/2), cos(a/2)" REFERENCE COORD SYSTEM NAME = "S/C-COORDS" END GROUP = CAMERA COORDINATE SYSTEM SPICE FILE NAME = ("lsk\NAIF0011.TLS", "sclk\ROS 160929 STEP.TSC", "spk\DE405.BSP", "spk\RORB_DV_145_01____00216.BSP", "spk\CORB_DV_145_01____00216.BSP", "fk\ROS_V28.TF", "ck\RATT_DV_145_01_01____00216.BC", "ik\ROS_OSIRIS_V14.TI", "fk\ROS_CHURYUMOV_V01.TF", "fk\ROS_CHURYUMOV_V01.TF", "pck\ROS CGS RSOC V03.TPC", "ck\CATT DV 145 01 00216.BC") /* DATA CONTENT FLAGS */ GROUP = SR DATA CONTENT ROSETTA: PREPIXEL FLAG = TRUE ROSETTA: POSTPIXEL FLAG = FALSE ROSETTA: OVERCLOCKING LINES FLAG = FALSE

ROSETTA:CCD_DATA_FLAG = TRUE

Reference: **RO-RIS-MPAE-ID-023** Issue: 1 Rev.: Date: 16/10/2017 Page: 126

ROSETTA:B1_SHUTTER_PULSE_FLAG = TRUE

ROSETTA:B2_SHUTTER_PULSE_FLAG = TRUE

END GROUP = SR DATA CONTENT

/* STATUS FLAGS */

GROUP = SR_STATUS_FLAGS
ROSETTA:SHUTTER_FOUND_IN_ERROR_FLAG = FALSE
ROSETTA:SHUTTER_PRE_INIT_FAILED_FLAG = FALSE
ROSETTA:ERROR_RECOVERY_FAILED_FLAG = FALSE
ROSETTA:EXPOSURE_STATUS_ID = SUCCESS
END_GROUP = SR_STATUS_FLAGS

/* MECHANISM STATUS FLAGS */

GROU	IP	=	SR_MECHANISM_STATUS
	FILTER_NUMBER	=	"22"
	FILTER_NAME	=	"FFP-Vis_Orange"
	ROSETTA: FRONT_DOOR_STATUS	_11	D = OPEN
END_	GROUP	=	SR_MECHANISM_STATUS

/* IMAGE ACQUISITION OPTIONS */

GROUP = SR_ACQUIRE_OPTIONS
ROSETTA:SCIENCE_DATA_LINK = HIGHSPEED

Reference: **RO-RIS-MPAE-ID-023** Issue: 1 Rev.: -

Date: 16/10/2017 Page: 127

ROSETTA: DATA ROUTING ID = QUEUE1 EXPOSURE DURATION = 60.0000 <s> ROSETTA:COMMANDED FILTER NUMBER = 22 ROSETTA:COMMANDED_FILTER_NAME = "FFP-Vis_Orange" ROSETTA: GRAYSCALE TESTMODE FLAG = FALSE ROSETTA: HARDWARE BINNING ID = "1x1" ROSETTA: AMPLIFIER ID = B ROSETTA: GAIN ID = HIGH ROSETTA:ADC ID = TANDEM ROSETTA: OVERCLOCKING LINES FLAG = FALSE ROSETTA: OVERCLOCKING PIXELS FLAG = FALSE ROSETTA:CCD ENABLED FLAG = TRUE ROSETTA: ADC ENABLED FLAG = TRUE ROSETTA:BLADE1 PULSES ENABLED FLAG = TRUE ROSETTA:BLADE2 PULSES ENABLED FLAG = TRUE ROSETTA: BULBMODE ENABLED FLAG = FALSE ROSETTA: FRAMETRANSFER ENABLED FLAG = FALSE ROSETTA:WINDOWING ENABLED FLAG = FALSE ROSETTA: SHUTTER ENABLED FLAG = TRUE ROSETTA: DITHERING ENABLED FLAG = FALSE ROSETTA:CRB DUMP MODE = 0 ROSETTA:CRB PULSE MODE = 0 ROSETTA: SUBFRAME COORDINATE ID = "ELECTRICAL" ROSETTA:X START = -48ROSETTA:X END = 2048

Reference: **RO-RIS-MPAE-ID-023** Issue: 1 Rev.: -

Date: 16/10/2017 Page: 128

ROSETTA:Y_START = 0
ROSETTA:Y_END = 2048
ROSETTA:SHUTTER_PRETRIGGER_DURATION = 0.2500 <s>
ROSETTA:CRB_TO_PCM_SYNC_MODE = 1
ROSETTA:AUTOEXPOSURE_FLAG = FALSE
ROSETTA:LOWPOWER_MODE_FLAG = FALSE
ROSETTA:DUAL_EXPOSURE_FLAG = FALSE
END GROUP = SR ACQUIRE OPTIONS

/* PROCESSING FLAGS */

GROUP = SR_PROCESSING_FLAGS BAD_PIXEL_REPLACEMENT_FLAG = FALSE ROSETTA:ADC_OFFSET_CORRECTION_FLAG = TRUE ROSETTA:BIAS_CORRECTION_FLAG = TRUE ROSETTA:COHERENT_NOISE_CORRECTION_FLAG = FALSE DARK_CURRENT_CORRECTION_FLAG = FALSE ROSETTA:FLATFIELD_HI_CORRECTION_FLAG = TRUE ROSETTA:BAD_PIXEL_REPLACEMENT_GROUND_FLAG = TRUE ROSETTA:FLATFIELD_LO_CORRECTION_FLAG = TRUE ROSETTA:EXPOSURETIME_CORRECTION_FLAG = TRUE ROSETTA:RADIOMETRIC_CALIBRATION_FLAG = TRUE ROSETTA:GEOMETRIC_DISTORTION_CORRECTION_FLAG = TRUE ROSETTA:REFLECTIVITY_NORMALIZATION_FLAG = FALSE ROSETTA:INFIELD_STRAYLIGHT_CORRECTION_FLAG = FALSE

Reference:**RO-RIS-MPAE-ID-023**Issue:1Rev.: -

Date: 16/10/2017 Page: 129

ROSETTA:OUTFIELD_STRAYLIGHT_CORRECTION_FLAG = FALSE

END GROUP	= SR	PROCESSING	FLAGS
-----------	------	------------	-------

/* SHUTTER CONFIG */

GROUP	= SR_SHUTTER_CONFIG
ROSETTA:PROFILE_ID	= "4294967295"
ROSETTA:CONTROL_MASK	= "16#39#"
ROSETTA:TESTMODE_FLAG	= FALSE
ROSETTA:ZEROPULSE_FLAG	= TRUE
ROSETTA:LOCKING_ENCODER_FI	LAG = TRUE
ROSETTA:CHARGEMODE_ID	= SLOW
ROSETTA:SHUTTER_OPERATION_	MODE = "NORMAL"
ROSETTA:NUM_OF_EXPOSURES	= 1
END_GROUP	= SR_SHUTTER_CONFIG

/* SHUTTER STATUS */

GROUP	= SR_SHUTTER_STATUS
ROSETTA:STATUS_MASK	= "16#6000600#"
ROSETTA:ERROR_TYPE_ID	= SHUTTER_ERROR_NONE
END_GROUP	= SR_SHUTTER_STATUS

/* DATA COMPRESSION AND SEGMENTATION */

 Reference:
 RO-RIS-MPAE-ID-023

 Issue:
 1
 Rev.:

 Date:
 16/10/2017

 Page:
 130

GROUP	= SR_COMPRESSION
ROSETTA:LOST_PACKETS	= (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
ROSETTA:SEGMENT_X	= (0, 512, 1024, 1536, 0, 512, 1024, 1536, 0, 512, 1024, 1536, 0, 512, 1024, 1536)
ROSETTA:SEGMENT_Y	= (0, 0, 0, 0, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1536, 1536, 1536, 1536)
ROSETTA:SEGMENT_W	= (512, 512, 512, 512, 512, 512, 512, 512,
ROSETTA:SEGMENT_H	= (512, 512, 512, 512, 512, 512, 512, 512,
ROSETTA:ENCODING SPIHT_LIFT, SPIHT_LIFT, SPIH	= (SPIHT_LIFT, SPIHT_LIFT, SPIHT_SPI
ROSETTA:COMPRESSION_RATI 2.6, 2.6, 2.5, 2.6)	0 = (2.6, 2.6, 2.6, 2.6, 2.6, 2.5, 2.6, 2.6, 2.6, 2.6, 2.6, 2.5, 2.5,
ROSETTA:LOSSLESS_FLAG TRUE, TRUE)	= (TRUE, TRUE,
ROSETTA:SPIHT_PYRAMID_LE	VELS = (8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
ROSETTA:SPIHT_THRESHOLD_	BITS = (12, 14, 14, 14, 14, 14, 15, 15, 14, 14, 14, 14, 14, 14, 14, 14, 15)
ROSETTA:SPIHT_MEAN	= (236, 238, 238, 236, 241, 240, 238, 236, 241, 239, 243, 237, 240, 238, 238, 237)
ROSETTA:SPIHT_MEAN_SHIFT	= (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
ROSETTA:SPIHT_WAVE_LEVEL	S = (4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
PIXEL_AVERAGING_WIDTH	= (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
PIXEL_AVERAGING_HEIGHT	= (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
ROSETTA:SMOOTH_FILTER_ID NONE, NONE)	= (NONE, NONE,
ROSETTA:SQRT_FILTER_FLAG FALSE, FALSE, FALSE, FALSE)	= (FALSE, FALSE,
ROSETTA:SQRT_GAIN 0.0, 0.0)	= (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
END_GROUP	= SR_COMPRESSION

Reference: RO-RIS-MPAE-ID-023 Issue: 1 Rev.: Date: 16/10/2017 Page: 131

/* SUBSYSTEM HARDWARE IDENTIFICATION */

GROUP = SR_HARDWARE_CONFIG ROSETTA:DATA_PROCESSING_UNIT_ID = FS ROSETTA:POWER_CONVERTER_ID = FS ROSETTA:MOTOR_CONTROLLER_ID = FS ROSETTA:NAC_CCD_READOUT_BOX_ID = FM ROSETTA:WAC_CCD_READOUT_BOX_ID = FM ROSETTA:NAC_CAMERA_ID = FM ROSETTA:WAC_CAMERA_ID = FM END_GROUP = SR_HARDWARE_CONFIG

/* SYSTEM HEATER STATUS */

GROUP = SR_HEATER_STATUS
ROSETTA:CCD_HEATER_POWER = 0.000 <w></w>
ROSETTA:NAC_MAIN_FDM_POWER = 1.498 <w></w>
ROSETTA:NAC_RED_FDM_POWER = 0.000 <w></w>
ROSETTA:NAC_MAIN_PPE_POWER = 4.495 <w></w>
ROSETTA:NAC_RED_PPE_POWER = 0.000 <w></w>
ROSETTA:WAC_MAIN_STR1_POWER = 2.466 <w></w>
ROSETTA:WAC_RED_STR1_POWER = 0.000 <w></w>
ROSETTA:WAC_MAIN_STR2_POWER = 2.566 <w></w>
ROSETTA:WAC_RED_STR2_POWER = 0.000 <w></w>
END_GROUP = SR_HEATER_STATUS

Reference: **RO-RIS-MPAE-ID-023** Issue: 1 Rev.: Date: 16/10/2017 Page: 132

/* POWER CONVERTER SWITCH STATUS */

GROUP = SR SWITCH STATUS ROSETTA:WAC SHUTFAILSAFEEXEC FLAG = OFF ROSETTA:NAC SHUTFAILSAFEEXEC FLAG = OFF ROSETTA:WAC DOORFAILSAFEEXEC FLAG = OFF ROSETTA:NAC DOORFAILSAFEEXEC FLAG = OFF ROSETTA: PCM PASSCTRLACTIVE FLAG = OFF ROSETTA:WAC SHUTFAILSAFE ENAB FLAG = OFF ROSETTA:WAC SHUTTERPOWER FLAG = OFF ROSETTA:WAC CCDANNEALHEATER FLAG = OFF ROSETTA:WAC CRB PRIMEPOWER FLAG = OFF ROSETTA:NAC SHUTFAILSAFE ENAB FLAG = OFF ROSETTA:NAC SHUTTERPOWER FLAG = ON ROSETTA:NAC CCDANNEALHEATER FLAG = OFF ROSETTA:NAC CRB PRIMEPOWER FLAG = ON ROSETTA:WAC STRUCTUREHEATER R FLAG = OFF ROSETTA:WAC STRUCTUREHEATER M FLAG = OFF ROSETTA:WAC RED CALLAMP FLAG = OFF ROSETTA: WAC MAIN CALLAMP FLAG = OFF ROSETTA:WAC DOORFAILSAFE ENAB FLAG = OFF ROSETTA:NAC IFPLATEHEATER R FLAG = OFF ROSETTA:NAC IFPLATEHEATER M FLAG = OFF ROSETTA:NAC RED CALLAMP FLAG = OFF

Reference: **RO-RIS-MPAE-ID-023** Issue: 1 Rev.: -

Date: 16/10/2017 Page: 133

- ROSETTA:NAC_MAIN_CALLAMP_FLAG = OFF ROSETTA:NAC_DOORFAILSAFE_ENAB_FLAG = OFF ROSETTA:MCB_RED_MOTORPOWER_FLAG = OFF ROSETTA:MCB_MAIN_MOTORPOWER_FLAG = ON ROSETTA:MCB_FLAG = MAIN ROSETTA:PRIMARY_POWER_RAIL_FLAG = MAIN END_GROUP = SR_SWITCH_STATUS
- /* POWER SYSTEM STATUS */

GROUP	= SR_POWER_STATUS
ROSETTA:V_28_MAIN	= 28.4 <v></v>
ROSETTA:V_28_REDUNDANT	= 3.3 <v></v>
ROSETTA:V_5	= 5.2 <v></v>
ROSETTA:V_3	= 3.4 <v></v>
ROSETTA:V_15	= 15.0 <v></v>
ROSETTA:V_M15	= -15.0 <v></v>
ROSETTA:V_NAC_REFERENCE	= -9.9 <v></v>
ROSETTA:V_WAC_REFERENCE	= -10.0 <v></v>
ROSETTA:CAMERA_V_24	= 25.0 <v></v>
ROSETTA:CAMERA_V_8	= 8.3 <v></v>
ROSETTA:CAMERA_V_M12	= -12.2 <v></v>
ROSETTA:CAMERA_V_5_ANALOG	= 5.3 <v></v>
ROSETTA:CAMERA_V_5_DIGITA	L = 5.2 <v></v>
ROSETTA:CAMERA_V_M5	= -5.2 <v></v>

issue:	I	Rev.: -
Date:	16/10/2017	
Page:	134	

- ROSETTA:I_28_MAIN = 1430.2 <mA> ROSETTA:I_28_REDUNDANT = -94.4 <mA> ROSETTA:I_5 = 1827.5 <mA> ROSETTA:I_3 = 129.7 <mA> ROSETTA:I_15 = 110.3 <mA> ROSETTA:I_M15 = 50.4 <mA> ROSETTA:CAMERA_I_24 = 17.8 <mA> ROSETTA:CAMERA_I_8 = 11.6 <mA> ROSETTA:CAMERA_I_8 = 11.6 <mA> ROSETTA:CAMERA_I_5_ANALOG = 93.2 <mA> ROSETTA:CAMERA_I_5_DIGITAL = 123.7 <mA> ROSETTA:CAMERA_I_M5 = 65.0 <mA> END_GROUP = SR_POWER_STATUS
- /* CALIBRATED TEMPERATURES */
- GROUP = SR_TEMPERATURE_STATUS ROSETTA:T_MAIN_PCM = 288.4 <K> ROSETTA:T_REDUNDANT_PCM = 284.0 <K> ROSETTA:T_WAC_STRUCTURE_MAIN_1 = 285.2 <K> ROSETTA:T_WAC_STRUCTURE_REDUNDANT_1 = 285.7 <K> ROSETTA:T_WAC_STRUCTURE_MAIN_2 = 285.0 <K> ROSETTA:T_WAC_STRUCTURE_REDUNDANT_2 = 285.5 <K> ROSETTA:T_WAC3 = 288.0 <K> ROSETTA:T_WAC4 = 286.8 <K>

Reference: **RO-RIS-MPAE-ID-023** Issue: 1 Rev.: -

Date: 16/10/2017 Page: 135

ROSETTA:T WAC WHEEL MOTOR 1 = 281.4 <K> ROSETTA:T WAC WHEEL MOTOR 2 = 281.4 <K> ROSETTA:T WAC DOOR MOTOR = 282.7 <K> ROSETTA:T NAC CCD VIA MCB = 205.7 <K> ROSETTA:T WAC CCD VIA MCB = 170.9 <K> ROSETTA:T NAC WHEEL MOTOR 1 = 253.7 <K> ROSETTA:T NAC WHEEL MOTOR 2 = 254.8 <K> ROSETTA:T NAC DOOR MOTOR = 253.0 <K> ROSETTA:T NAC DOOR IF MAIN = 248.2 <K> ROSETTA:T NAC MIRROR 2 = 224.0 <K> ROSETTA:T NAC PPE IF REDUNDANT = 255.5 <K> ROSETTA:T NAC DOOR IF REDUNDANT = 248.2 <K> ROSETTA:T NAC PPE IF MAIN = 255.5 <K> ROSETTA:T NAC MIRROR 1 AND 3 = 223.3 <K> ROSETTA:T DSP MAIN = 290.6 <K> ROSETTA:T DSP REDUNDANT = 283.5 <K> ROSETTA:T BOARD CONTROLLER = 288.5 <K> ROSETTA:T BOARD DRIVER = 286.8 <K> ROSETTA:CAMERA TCCD = 147.9 <K> ROSETTA: CAMERA T SENSORHEAD = 264.3 <K> ROSETTA:CAMERA T ADC 1 = 275.2 <K> ROSETTA:CAMERA T ADC 2 = 275.0 <K> ROSETTA: CAMERA T SHUTTER MOTOR 1 = 255.7 <K> ROSETTA:CAMERA T SHUTTER MOTOR 2 = 255.3 <K> ROSETTA: CAMERA T POWER CONVERTER = 297.5 <K>

Reference: **RO-RIS-MPAE-ID-023** Issue: 1 Rev.: Date: 16/10/2017

Page: 136

ROSETTA:CAMERA_T_DOSIMETER = 271.2 <K>

END_GROUP = SR_TEMPERATURE_STATUS

/* RADIATION ENVIRONMENT */

GROUP = SR_RADIATION_STATUS
ROSETTA:CAMERA_DOSIS = 455.9 <rad>
ROSETTA:SREM_PROTONS_GT_20MEV = 0
ROSETTA:SREM_PROTONS_50_TO_70MEV = 0
ROSETTA:SREM_ELECTRONS_LT_2MEV = 0
END_GROUP = SR_RADIATION_STATUS

/* DATA OBJECT DEFINITIONS */

OBJECT	= IMAGE
INTERCHANGE_FORMAT	= BINARY
LINE_SAMPLES	= 2048
LINES	= 2048
BANDS	= 1
SAMPLE_TYPE	= PC_REAL
SAMPLE_BITS	= 32
UNIT	= "W/M**2/SR/NM"
DERIVED_MINIMUM	= -4.86166e-09
DERIVED_MAXIMUM	= 7.72989e-06
MEAN	= 1.40941e-09

	DSIRIS
--	--------

Issue:	1	Rev.: -
Date:	16/10/2017	
Page:	137	

STANDARD_DEVIATION	= 2.95907e-08
FIRST_LINE	= 1
FIRST_LINE_SAMPLE	= 1
LINE_DISPLAY_DIRECTION	= DOWN
SAMPLE_DISPLAY_DIRECTION	= LEFT
END_OBJECT	= IMAGE

OBJECT	= SIGMA_MAP_IMAGE
INTERCHANGE_FORMAT	= BINARY
LINE_SAMPLES	= 2048
LINES	= 2048
BANDS	= 1
SAMPLE_TYPE	= PC_REAL
SAMPLE_BITS	= 32
UNIT	= "W/M**2/SR/NM"
DERIVED_MINIMUM	= 0
DERIVED_MAXIMUM	= 3.4301e-06
MEAN	= 7.04978e-08
STANDARD_DEVIATION	= 2.59127e-08
FIRST_LINE	= 1
FIRST_LINE_SAMPLE	= 1
LINE_DISPLAY_DIRECTION	= DOWN
SAMPLE_DISPLAY_DIRECTION	= LEFT
END_OBJECT	= SIGMA_MAP_IMAGE

Issue:	1	Rev.: -
Date:	16/10/2017	
Page:	138	

OBJECT	= QUALITY_MAP_IMAGE
INTERCHANGE_FORMAT	= BINARY
LINE_SAMPLES	= 2048
LINES	= 2048
BANDS	= 1
SAMPLE_TYPE	= LSB_UNSIGNED_INTEGER
SAMPLE_BITS	= 8
FIRST_LINE	= 1
FIRST_LINE_SAMPLE	= 1
LINE_DISPLAY_DIRECTION	= DOWN
SAMPLE_DISPLAY_DIRECTION	= LEFT
END_OBJECT	= QUALITY_MAP_IMAGE
END	

END

Appendix 2: Example OSIRIS .IMG History Object

The HISTORY object consists of groups. OSIRIS Level 1 images contain only the group LEVEL_1_GENERATION, while higher levels, processed by OsiCalliope, contain a second group OSICALLIOPE.

OBJ	ECT	= HISTORY
GRO	UP	= LEVEL_1_GENERATION
	SOFTWARE_DESC	= "OSIRIS level 1 PDS file generator"
	SOFTWARE_VERSION_ID	= "1.54.0"
	VERSION_DATE	= 2017-08-15
	DATE_TIME	= 2017-08-15T12:49:30.000Z
	GROUP	= PARAMETERS
	FILENAME	=
	"NAC_2014-03-24T03.03.57.	573Z_ID10_1251276900_F22.IMG"
	END_GROUP	= PARAMETERS
END	GROUP	= LEVEL_1_GENERATION
GRO	UP	= OSICALLIOPE
	SOFTWARE_DESC	= "OSIRIS calibration pipeline"
	SOFTWARE_VERSION_ID	
		= "1.45.0"
	 DATA_VERSION_ID	= "1.45.0" = "OSICALLIOPE_V04.TXT"
	DATA_VERSION_ID	= "OSICALLIOPE_V04.TXT"
	DATA_VERSION_ID PRODUCER_FULL_NAME	<pre>= "OSICALLIOPE_V04.TXT" = "G. KOVACS"</pre>
	DATA_VERSION_ID PRODUCER_FULL_NAME USER_NAME	<pre>= "OSICALLIOPE_V04.TXT" = "G. KOVACS" = "Carsten Guettler"</pre>
	DATA_VERSION_ID PRODUCER_FULL_NAME USER_NAME DATE_TIME	<pre>= "OSICALLIOPE_V04.TXT" = "G. KOVACS" = "Carsten Guettler" = "2017-09-12T16:14:03" = PARAMETERS</pre>
	DATA_VERSION_ID PRODUCER_FULL_NAME USER_NAME DATE_TIME GROUP	<pre>= "OSICALLIOPE_V04.TXT" = "G. KOVACS" = "Carsten Guettler" = "2017-09-12T16:14:03" = PARAMETERS DRRECTION_FLAG = TRUE</pre>

 Reference:
 RO-RIS-MPAE-ID-023

 Issue:
 1
 Rev.:

 Date:
 16/10/2017

 Page:
 140

ROSETTA: COHERENT NOISE CORRECTION FLAG = FALSE DARK_CURRENT_CORRECTION FLAG = FALSE ROSETTA: FLATFIELD HI CORRECTION FLAG = TRUE ROSETTA: BAD PIXEL REPLACEMENT GROUND FLAG = TRUE ROSETTA: FLATFIELD LO CORRECTION FLAG = TRUE ROSETTA: EXPOSURETIME CORRECTION FLAG = TRUE ROSETTA: RADIOMETRIC CALIBRATION FLAG = TRUE ROSETTA: GEOMETRIC DISTORTION CORRECTION FLAG = TRUE ROSETTA: REFLECTIVITY NORMALIZATION FLAG = FALSE ROSETTA: INFIELD STRAYLIGHT CORRECTION FLAG = FALSE ROSETTA: OUTFIELD STRAYLIGHT CORRECTION FLAG = FALSE SATURATION LEVEL = 54000 <DN> SATURATED PIXEL COUNT = (24, 0.00 <)ADC OFFSET VALUES = (36 <DN>, 36 <DN>) BIAS FILE = "NAC FM BIAS V01.TXT" BIAS BASE VALUES = (234.960 <DN>, 234.960 <DN>) BIAS TEMP = (275.2 <K>, 275.0 <K>) BIAS TEMP DELTA = (-6.265 <DN>, -6.265 <DN>) FLAT HI FILE = "NAC FM FLATHI 00 V01.IMG" = "NAC FM BAD PIXEL V01.TXT" BAD PIXEL FILE = "NAC FM FLAT 22 V01.IMG" FLAT LO FILE EXPOSURE CORRECTION TYPE = "NORMAL PULSES" EXPOSURE CORRECTION FILE = "PULSE DATA" NUM OF EXPOSURES = 1 MEAN EFFECTIVE EXPOSURETIME = 59.9973 <s>

 Reference:
 RO-RIS-MPAE-ID-023

 Issue:
 1
 Rev.:

 Date:
 16/10/2017

 Page:
 141

	ABSCAL_FILE	= "NAC_FM_ABSCAL_V01.TXT"
	ABSCAL_FACTOR	= 1.21235e+08 <(DN/s)/(W/m**2/nm/sr)>
	BINNING_FACTOR	= 1
	GEOMETRIC_CORRECTION_FILE	= "NAC_FM_DISTORTION_V01.TXT"
	GEOMETRIC_CORRECTION_METHOD	= (POLY3_2D, POLY3_2D)
	GEOMETRIC_CORRECTION_AVERAGE	= 5.02
END_GROU	IP = PAR	AMETERS
END_GROUP	= OSICALL	IOPE

END_OBJECT = HISTORY

Appendix 3: Example OSIRIS header for .FTS files

1	SIMPLE	=	T / file does conform to FITS standard			
]	BITPIX	=	16 / number of bits per data pixel			
]	NAXIS	=	2 / number of axes			
]	NAXIS1	=	2048 / columns			
]	NAXIS2	=	2048 / rows			
]	EXTEND	=	T / FITS dataset may contain extensions			
2	XEND	=	2048 / columns			
	YEND	=	2048 / rows			
]	BSCALE	=	1			
]	BZERO	=	32768			
1	DATE-OBS	5=	'2014-03-24T03:05:01.817'			
1	F_TSTAR	Γ=	'2014-03-24T03:05:01.817'			
]	D_TEMP	=	147.87			
]	EXPTIME	=	60			
1	F_FID	=	22			
1	FILT	=	'FFP-Vis_Orange'			
1	FARGET	=	'67P/CHURYUMOV-GERASIMENKO (1969 R1)'			
(G_TTYPE	=	'COMET'			
(CAMERA	=	'OSINAC '			
(C_NAME	=	'OSIRIS - NARROW ANGLE CAMERA'			
I	M_PHASE	=	•••			
1	F_SC1	=	'1/354251037.37600'			
1	$r_{SC2} = '1/354251097.37600'$					
i	F_LEVEL	=	'1'			
]	RS_FDSII)=	'OPEN'			

RS_GANID=	'HIGH'
-----------	--------

RS AMPID= 'B'

G RSS01 =

G RSS02 =

BINNING = '1x1'

G_NSYS = 'EME J2000'

G_RST01 =	-1783849.158	/	[SC_TARGET_POSITION_VECTOR]
G_RST02 =	-4394391.08	/	[SC_TARGET_POSITION_VECTOR]
G_RST03 =	-1110194.907	/	[SC_TARGET_POSITION_VECTOR]
G_STV01 =	285.684	/	[SC_TARGET_VELOCITY_VECTOR]
G_STV02 =	706.597	/	[SC_TARGET_VELOCITY_VECTOR]
G_STV03 =	176.49	/	[SC_TARGET_VELOCITY_VECTOR]
G_PHASEA=	32.92948	/	[PHASE_ANGLE]
G_CNAME =	'S/C-COORDS'		
G_OVEC01=	89888268.92	/	[ORIGIN_OFFSET_VECTOR]
G_OVEC02=	-552142942.4	/	[ORIGIN_OFFSET_VECTOR]
G_OVEC03=	-303790926.4	/	[ORIGIN_OFFSET_VECTOR]
G_OQUA01=	0.28579149	/	[ORIGIN_ROTATION_QUATERNION]
G_OQUA02=	-0.07125727	/	[ORIGIN_ROTATION_QUATERNION]
G_OQUA03=	0.78050808	/	[ORIGIN_ROTATION_QUATERNION]
G_OQUA04=	-0.5514098	/	[ORIGIN_ROTATION_QUATERNION]
C NEVE -	EME TOOOD		

G AZIN = 327.38992 / [NORTH_AZIMUTH]

G DEC = -13.23669 / [DECLINATION]

247.83522 / [RIGHT_ASCENSION] G_RA =

G SELONG= 147.07052 / [SOLAR ELONGATION]

636562383.1 / [SPACECRAFT_SOLAR_DISTANCE]

G_SSDIS =

-89886162.34 / [SC_SUN_POSITION_VECTOR]

552130005.6 / [SC_SUN_POSITION_VECTOR]

G RSS03 = 303783808.5 / [SC_SUN_POSITION_VECTOR]

Reference: RO-RIS-MPAE-ID-023 Issue: 1 Rev.: -16/10/2017 Date:

143

Page:

Reference: RO-RIS-MPAE-ID-023 Issue: 1 Rev.: Date: 16/10/2017 Page: 144

RS_ADCID= 'TANDEM'

LINEDIR = 'DOWN'

SMPLEDIR= 'LEFT'

END