PRO sunpos, jd, ra, dec, longmed, oblt, RADIAN = radian ;+ ; NAME: ; SUNPOS ; PURPOSE: ; To compute the RA and Dec of the Sun at a given date. ; ; CALLING SEQUENCE: ; SUNPOS, jd, ra, dec, [elong, obliquity, /RADIAN ] ; INPUTS: ; jd - The Julian date of the day (and time), scalar or vector ; usually double precision ; OUTPUTS: ; ra - The right ascension of the sun at that date in DEGREES ; double precision, same number of elements as jd ; dec - The declination of the sun at that date in DEGREES ; ; OPTIONAL OUTPUTS: ; elong - Ecliptic longitude of the sun at that date in DEGREES. ; obliquity - the obliquity of the ecliptic, in DEGREES ; ; OPTIONAL INPUT KEYWORD: ; RADIAN - If this keyword is set and non-zero, then all output variables ; are given in Radians rather than Degrees ; ; NOTES: ; The accuracy in the 20th century should be within 1"; however this ; has not been extensively tested. ; ; The returned RA and Dec are in the given date's equinox. ; ; Procedure was extensively revised in May 1996, and the new calling ; sequence is incompatible with the old one. ; METHOD: ; Uses a truncated version of Newcomb's Sun. Adapted from the IDL ; routine SUN_POS by CD Pike, which was adapted from a FORTRAN routine ; by B. Emerson (RGO). ; EXAMPLE: ; (1) Find the apparent RA and Dec of the Sun on May 1, 1982 ; ; IDL> jdcnv, 1982, 5, 1,0 ,jd ;Find Julian date jd = 2445090.5 ; IDL> sunpos, jd, ra, dec ; IDL> print,adstring(ra,dec,2) ; 02 31 32.61 +14 54 34.9 ; ; The Astronomical Almanac gives 02 31 32.58 +14 54 34.9 so the error ; in SUNPOS for this case is < 0.5". ; ; (2) Find the apparent RA and Dec of the Sun for every day in 1997 ; ; IDL> jdcnv, 1997,1,1,0, jd ;Julian date on Jan 1, 1997 ; IDL> sunpos, jd+ dindgen(365), ra, dec ;RA and Dec for each day ; ; MODIFICATION HISTORY: ; Written by Michael R. Greason, STX, 28 October 1988. ; Accept vector arguments, W. Landsman April,1989 ; Eliminated negative right ascensions. MRG, Hughes STX, 6 May 1992. ; Rewritten using the 1993 Almanac. Keywords added. MRG, HSTX, ; 10 February 1994. ; Major rewrite, improved accuracy, always return values in degrees ; W. Landsman May, 1996 ; Added /RADIAN keyword, W. Landsman August, 1997 ; Converted to IDL V5.0 W. Landsman September 1997 ;- On_error,2 ; Check arguments. if N_params() LT 3 then begin print, 'Syntax - SUNPOS, jd, ra, dec, [elong, obliquity, /RADIAN] ' print, 'Inputs - jd (Julian date) print, 'Outputs - Apparent RA and Dec, longitude, & obliquity' print, 'All angles in DEGREES unless /RADIAN is set' return endif dtor = !DPI/180.0d ;(degrees to radian, double precision) ; form time in Julian centuries from 1900.0 t = (jd - 2415020.0d)/36525.0d0 ; form sun's mean longitude l = (279.696678d0+((36000.768925d0*t) mod 360.0d0))*3600.0d0 ; allow for ellipticity of the orbit (equation of centre) ; using the Earth's mean anomoly ME me = 358.475844d0 + ((35999.049750D0*t) mod 360.0d0) ellcor = (6910.1d0 - 17.2D0*t)*sin(me*dtor) + 72.3D0*sin(2.0D0*me*dtor) l = l + ellcor ; allow for the Venus perturbations using the mean anomaly of Venus MV mv = 212.603219d0 + ((58517.803875d0*t) mod 360.0d0) vencorr = 4.8D0 * cos((299.1017d0 + mv - me)*dtor) + $ 5.5D0 * cos((148.3133d0 + 2.0D0 * mv - 2.0D0 * me )*dtor) + $ 2.5D0 * cos((315.9433d0 + 2.0D0 * mv - 3.0D0 * me )*dtor) + $ 1.6D0 * cos((345.2533d0 + 3.0D0 * mv - 4.0D0 * me )*dtor) + $ 1.0D0 * cos((318.15d0 + 3.0D0 * mv - 5.0D0 * me )*dtor) l = l + vencorr ; Allow for the Mars perturbations using the mean anomaly of Mars MM mm = 319.529425d0 + (( 19139.858500d0 * t) mod 360.0d0 ) marscorr = 2.0d0 * cos((343.8883d0 - 2.0d0 * mm + 2.0d0 * me)*dtor ) + $ 1.8D0 * cos((200.4017d0 - 2.0d0 * mm + me) * dtor) l = l + marscorr ; Allow for the Jupiter perturbations using the mean anomaly of ; Jupiter MJ mj = 225.328328d0 + (( 3034.6920239d0 * t) mod 360.0d0 ) jupcorr = 7.2d0 * cos(( 179.5317d0 - mj + me )*dtor) + $ 2.6d0 * cos((263.2167d0 - MJ ) *dtor) + $ 2.7d0 * cos(( 87.1450d0 - 2.0d0 * mj + 2.0D0 * me ) *dtor) + $ 1.6d0 * cos((109.4933d0 - 2.0d0 * mj + me ) *dtor) l = l + jupcorr ; Allow for the Moons perturbations using the mean elongation of ; the Moon from the Sun D d = 350.7376814d0 + (( 445267.11422d0 * t) mod 360.0d0 ) mooncorr = 6.5d0 * sin(d*dtor) l = l + mooncorr ; Allow for long period terms longterm = + 6.4d0 * sin(( 231.19d0 + 20.20d0 * t )*dtor) l = l + longterm l = ( l + 2592000.0d0) mod 1296000.0d0 longmed = l/3600.0d0 ; Allow for Aberration l = l - 20.5d0 ; Allow for Nutation using the longitude of the Moons mean node OMEGA omega = 259.183275d0 - (( 1934.142008d0 * t ) mod 360.0d0 ) l = l - 17.2d0 * sin(omega*dtor) ; Form the True Obliquity oblt = 23.452294d0 - 0.0130125d0*t + (9.2d0*cos(omega*dtor))/3600.0d0 ; Form Right Ascension and Declination l = l/3600.0d0 ra = atan( sin(l*dtor) * cos(oblt*dtor) , cos(l*dtor) ) neg = where(ra LT 0.0d0, Nneg) if Nneg GT 0 then ra[neg] = ra[neg] + 2.0d*!DPI dec = asin(sin(l*dtor) * sin(oblt*dtor)) if keyword_set(RADIAN) then begin oblt = oblt*dtor longmed = longmed*dtor endif else begin ra = ra/dtor dec = dec/dtor endelse end