; $Id: polywarp.pro,v 1.4 1998/01/15 18:43:26 scottm Exp $ ; ; Copyright (c) 1983-1998, Research Systems, Inc. All rights reserved. ; Unauthorized reproduction prohibited. pro POLYWARP, XI, YI, XO, YO, DEGREE, KX, KY ;+ ; NAME: ; POLYWARP ; ; PURPOSE: ; Perform polynomial spatial warping. ; ; Using least squares estimation, determine the coefficients Kx[i,j] ; and Ky[i,j] of the polynomial functions: ; Xi = sum over i and j of: Kx[i,j] * Xo^j * Yo^i ; Yi = sum over i and j of: Ky[i,j] * Xo^j * Yo^i ; ; Kx and Ky can be used as inputs P and Q to the built-in function ; POLY_2D. ; ; CATEGORY: ; Image processing. ; ; CALLING SEQUENCE: ; POLYWARP, Xi, Yi, Xo, Yo, Degree, Kx, Ky ; ; INPUTS: ; Xi, Yi: The vectors of x,y coordinates to be fit as a function ; of Xo and Yo. ; ; Xo, Yo: The vectors of x,y independent coordinates. These vectors ; must have the same number of elements as Xi and Yi. ; ; Degree: The degree of the fit. The number of coordinate pairs must be ; greater than or equal to (Degree+1)^2. ; ; OUTPUTS: ; Kx: The array of coefficients for Xi as a function of (xo,yo). ; This parameter is returned as a (Degree+1) by (Degree+1) ; element array. ; ; Ky: The array of coefficients for yi. This parameter is returned ; as a (Degree+1) by (Degree+1) element array. ; ; COMMON BLOCKS: ; None. ; ; SIDE EFFECTS: ; None. ; ; RESTRICTIONS: ; None. ; ; PROCEDURE: ; See: Computer Image Processing and Recognition, Ernest L. Hall, ; Academic Press, 1979, Pages 186-188. ; ; Xi and Yi are expressed as polynomials of Xo, Yo: ; Xi = Kx[i,j] * Xo^j * Yo^i Summed for i,j = 0 to degree. ; And ; Yi = Ky[i,j] * Xo^j * Yo^i. ; ; This coordinate transformation may be then used to ; map from Xo, Yo coordinates into Xi, Yi coordinates. ; ; EXAMPLE: ; The following example shows how to display an image and warp it ; using the POLYWARP and POLY_2D routines. ; ; Create and display the original image by entering: ; ; A = BYTSCL(SIN(DIST(250))) ; TVSCL, A ; ; Now set up the Xi's and Yi's. Enter: ; ; XI = [24, 35, 102, 92] ; YI = [81, 24, 25, 92] ; ; Enter the Xo's and Yo's: ; ; XO = [61, 62, 143, 133] ; YO = [89, 34, 38, 105] ; ; Run POLYWARP to obtain a Kx and Ky: ; ; POLYWARP, XI, YI, XO, YO, 1, KX, KY ; ; Create a warped image based on Kx and Ky with POLY_2D: ; ; B = POLY_2D(A, KX, KY) ; ; Display the new image: ; ; TV, B ; ; MODIFICATION HISTORY: ; DMS, RSI, Dec, 1983. ;- ; on_error,2 ;Return to caller if an error occurs m = n_elements(xi) ;# of points.. if (m ne n_elements(yi)) or (n_elements(xo) ne n_elements(yo)) $ or (m ne n_elements(xo)) then begin message,'Inconsistent number of elements.' endif ; n = degree ;use halls notation n2=(n+1)^2 if n2 gt m then message, '# of points must be ge (degree+1)^2.' ; x = dblarr(2,m) ;x array u = x x = double([transpose(xi[*]),transpose(yi[*])]) u = double([transpose(xo[*]),transpose(yo[*])]) ; ut = dblarr(n2,m) ;transpose of U u2i = dblarr(n+1) ;[1,u2i,u2i^2,...] for i=0L,m-1 do begin u2i[0]=1. ;init u2i zz = u[1,i] for j=1,n do u2i[j]=u2i[j-1]*zz ut[0,i]= u2i ;evaluate 0 th power separately for j=1,n do ut[j*(n+1),i]=u2i*u[0,i]^j ;fill ut=u0i^j * U2i endfor ; uu = transpose(ut) ;big u kk = invert(ut#uu)#ut ;solve equation kx = fltarr(n+1,n+1) + float(kk # transpose(x[0,*])) ;g1, make 2d square ky = fltarr(n+1,n+1) + float(kk # transpose(x[1,*])) ;g2 return end