	[image: image64.png]

	HERSCHEL/PACS

SPU HLSW
Specification Document
	Project:
HERSCHEL/PACS
Doc. Ref.:
PACS-TW-GS-001
Issue:
4.8
Date:
18-Feb-09

	
	Document
	Sheet:
11

 of 217

HERSCHEL/PACS

SPU High Level SoftWare
Specification Document

Document Ref.: PACS-TW-GS-001

Issue: 4.8
[image: image64.png]
Distribution Record

	Issue / Revision
	Draft 0
	Draft 1
	Draft 2
	1.0
	1.1
	1.2
	1.3

	Distribution Date
	16.07.2000
	29.08.2000
	16.03.2001
	22.05.2001
	02.09.2001
	15.11.2001
	29.01.2002

	Issue / Revision
	1.4
	2.0
	2.1
	2.2
	3.0
	4.0
	4.1

	Distribution Date
	08.04.2002
	06.08.2002
	12.09.2002
	17.02.2003
	10.03.2003
	23.09.2003
	13.10.2003

	Issue / Revision
	4.2
	4.3
	4.4
	4.5
	4.6
	4.7
	4.8

	Distribution Date
	27.02.2004
	30.03.2004
	13.04.2006
	04.09.2006
	05.11.2007
	01.07.2008
	18.02.2009

	INTERNAL
	EXTERNAL

	Department
	Name
	Qty
	Company
	Name
	Qty

	UVIE/ASTRO
	F. Kerschbaum
	1
	MPE
	H. Feuchtgruber, O. Bauer, E. Wieprecht, A. Contursi, T. Müller, G. Wildgruber
	1

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	CSL
	J.M. Gillis, A. Mazy
	1

	
	
	
	IAC
	J.M. Herreros, P. Gomez
	1

	
	
	
	IFSI
	R. Orfei, S. Pezzuto
	1

	
	
	
	MPE
	PACS Project Office
(pacs@mpe.mpg.de)

PACS Warm Electronic
(pacs-we@ster.kuleuven.ac.be)
	1

	
	
	
	
	
	

	
	
	Electronic Archives at Leuven

http://pacs.ster.kuleuven.ac.be
	1

Document Change Records

	Document Title

HERSCHEL – PACS

SPU High Level Software Document

	Issue
	Date
	Reason for Change

	Draft 0
	15/07/2000
	Initial Issue

	Draft 1
	22/08/2000
	Comments from MPE

	Draft 2
	16/03/2001
	Comments from Consortia and OBS#4, document structure update

	1.0
	16/05/2001
	Comments from the SPU HLSW Meeting #1

	1.1
	02/09/2001
	Comments from OBS#5

	1.2
	28/10/2001
	Inclusion of the HLSW Design

	1.3
	29/01/2002
	Update taking into account new version of the documents

	1.4
	08/04/2002
	Include the SW Tables structure

	2.0
	05/08/2002
	Comments from IBDR, reorganized

	2.1
	11/09/2002
	Comments from SPU HLSW Version 1 AVM Delivery

	2.2
	17/02/2003
	· New Perform Activity (RCS) added, description of expected TM Rates for all Compression Modes in Phot./Spec. added, CEH size changed to 28 Bytes, detailed Label description inserted, parameters RCXNB and RCX in DET_CST_SPEC/DET_CST_PHOT tables deleted.

· Triple and Quadruple Compression Modes in photometry and spectroscopy are removed because Default and Double Compression Mode fulfil the TM requirements. Further integration may be performed on ground if required

· Lossless Coding Only Compression Mode in photometry and spectroscopy is removed. This mode is already covered by The Lossless Compression Mode.

· SPU Test Compression Mode in photometry and spectroscopy is removed. This mode is already covered by The Default Compression Mode + Raw Channel, and by the SPU Internal Test Mode (where data are generated inside the SPU).

	3.0
	10/03/2003
	Updated for SPU HLSW Version 3.0

	
	
	

	4.0
	23/09/2003
	· Updated for SPU HLSW Version 6.0

· Include two new DPU commands: “Copy data from RAM to EEPROM” and “Connect to DEC/MEC”.

· Update the logical model (Watch Process and Command Interpretation and Acknowledgment) by including the two new commands

· Include a description of SPU HLSW SMCS handling in Section 5.1.

· Include a list of HLSW HK parameters and update the HK rate in Section 5.5

· Compression SW Scheme updated (Figure 16)

· Raw Channel data compression included (Appendix A.1.3 and Section 5.9.1)

· Updated description for ramp fitting in Spectroscopy (Section 5.9.4 and Appendix B.2.2.7) where several slopes can derived out of a ramp.

· Update the Section 6 “Feasibility and Resource Estimates”, and delete the decompression SW description from this Section

· Update Section 7 and 8 “Traceability Matrices”

· Include a CRISA document as reference document “RD015”

· Update the tables for the Write command in Section 5.7.11

	4.1
	13/10/2003
	· Include software specifications for lossless compression ode (Section3.4.3.1.4)

· Update the traceability matrices according to the added scpecifications above (Section7

 REF _Ref26712213 \n \h
8)

· Update Section 5.9.6 according to the specifications above

	4.2
	27/02/2004
	· Include a parameter for the Half Compression Mode in Photometry (20Hz readout rate)

· Modify the DIFS field in Compressed entity Header by REAL (reduction algorithm) used on-board.

· Include two parameters for the Write command in spectroscopy (Reduction algorithm to use, the use of glitch or not)

· Update the appendixes for the used algorithms in HLSW version 8.

· Include the description of new data sorting algorithm in Appendix (Reorder)

· Include in Appendix the description of subramp fitting

· Update the TM rate calculated for Buffer transmission mode

· after increasing the transmission rate (SPU-DPU) in photometry and after including the TM packet header

	4.3
	26/03/2004
	· Include SW requirements

 SPU-HSR-FN0202 and SPU-HSR-FN0203

· Update the HK Table parameters Section 5.5.

· Update Fill_InputBuffer Section 5.6 including the functions used for mrmory scrubbing.

· Updated Section 5.8.5 for Buffer Transmission Mode in Photometry

· Noise resampling algorithm is implemented in the peak-up module. Update the the Peak-up description Section 5.13.

· Update the traceability matices in Section7 and 8 include the new software requirements

	4.4
	13/04/2006
	· Include SW requirements (for FDIR)

SPU-HSR-SA0010, SPU-HSR-SA0011 and SPU-HSR-SA0012

· Update the traceability matix in 8 include the new software requirements

· Include Section 9
Software Requirements vs. Software Verification & Validation Traceability Matrix
· Implementation of the reworked CASE Tool diagrams in
Section 2.2.
· Update llc.c component description (Section 5.9.7)
· Update Section A.1 of currently implemented algorithms for the lossless compression

· Update Section A.2 of library of available algorithms for the lossless compression
· Update Section B.2 of library of available algorithms for the fitting algorithms

	4.5
	01/09/2006
	· Update and include SW requirements according to CAPTEC code review comments (see 588-200b_SPU_SSD_Comments.xls)
· Update Section 9 (Software Requirements vs. Software Verification & Validation Traceability Matrix)
· Update Sections according to CAPTEC code review comments (see 588-200b_SPU_SSD_Comments.xls)

	4.6
	05/11/2007
	· Adaption of requirements to HLSW version 13.8
· Apply new naming conventions from the “cleaned version” (e.g. bol1_2 (bol_ex, …)
· Add new algorithms in Section A.1: RZIP2

· Add new algorithms in Section A.2: RZIP2, Data Resorting (Reorder), FM Arithmetic Compression and VBWL_short

· Add new Section B.2.4: Averaging and Rounding in Photometry

	4.7
	01/07/2008
	· Added Compressed Sensing mode short description (table 4)
· Added Section “FM Averaging” in appendix B

	4.8
	18/02/2009
	· Added appendix B.3: Decimation

Contents

161
Introduction

161.1
Purpose of the document

161.2
Definitions, Acronyms and Abbreviations

201.3
References

201.3.1
Applicable Documents

201.3.2
Reference Documents

211.4
Overview of the document

222
Model Description

222.1
General

232.1.1
The Signal Processing Unit (SPU)

252.1.2
The SPU High Level Software (HLSW)

262.2
Logical Model

353
Specific Requirements

353.1
Functional Requirements

353.1.1
The Watch Process

393.1.2
Application Software

403.1.3
HK Module

413.2
Performance Requirements

413.3
Interface Requirements

413.3.1
DPU Commands

413.3.1.1
LOAD Command

423.3.1.2
DUMP Command

423.3.1.3
CHECK Command

423.3.1.4
RESET Command

433.3.1.5
RAW_CHAN_TRAN_MODE Command

433.3.1.6
STOP_REDUCT_COMPR Command

433.3.1.7
START_REDUCT_COMPR Command

433.3.1.8
ACT_TEST_PHOT Command

433.3.1.9
ACT_TEST_SPEC

443.3.1.10
ACT_BOL_BGND_CANCEL Command

443.3.1.11
Write Commands

443.3.1.12
CP_DATA_RAM_EEPROM Command

443.3.1.13
CONNECT_DMC Command

453.3.2
The Compressed Entity

453.3.3
DEC/MEC to SPU Interface

463.4
Operational Requirements

463.4.1
DEC/MEC Header Usage

463.4.1.1
Spectroscopy

513.4.1.2
Photometry

553.4.2
Instrument Configuration

553.4.2.1
Instrument Operating Modes

553.4.2.2
Instrument Observing Modes

563.4.3
SPU HLSW Compression Modes

563.4.3.1
Compressed Data Transmission Mode

573.4.3.1.1
Default Compression Mode

573.4.3.1.2
Double Compression Mode

573.4.3.1.3
Half-Compression Mode (Photometry only)

573.4.3.1.4
Lossless Compression Mode

583.4.3.2
SPU Test Mode

583.4.3.3
Transparent Mode

583.4.3.4
Buffer Transmission Mode

583.4.3.5
Compression Mode for 4s Reset (Spectroscopy only)

593.5
Resource Requirements

593.6
Verification Requirements

603.7
Acceptance Testing Requirements

603.8
Documentation Requirements

603.9
Portability Requirements

613.10
Quality Requirements

613.11
Reliability Requirements

623.12
Maintainability Requirements

633.13
Safety Requirements

644
System Design

644.1
Design Method

644.2
Decomposition Description

644.2.1
The Watch Process and Command Interpretation and Acknowledgement

664.2.2
The Application SW

664.2.2.1
Supervisor

674.2.2.2
Compression Software

684.2.2.2.1
HLSW Compression Modes

694.2.2.2.2
Summary of Compression Modes

714.2.3
The HK Module

725
Component and Functional Description

735.1
Main Task

775.2
Watch Process

805.3
Supervisor

895.4
Data Transmission

925.5
Housekeeping

945.6
Fill_InputBuffer

965.7
Command Interpretation and Acknowledgement

965.7.1
LOAD Command

985.7.2
DUMP Command

1005.7.3
CHECK Command

1025.7.4
Perform Activity Command

1055.7.5
CP_DATA_RAM_EEPROM Command

1075.7.6
RESET Command

1095.7.7
RAW_CHAN_TRAN_MODE Command

1115.7.8
START/STOP_REDUCT_COMPR Command

1135.7.9
ACT_TEST_PHOT/SPEC Command

1155.7.10
CONNECT_DMC Command

1175.7.11
Write Command

1205.8
Compression Software

1205.8.1
Compression Software Main Task

1235.8.2
Photometry Modes 0, 1 and 2

1255.8.3
Photometry Mode 3

1275.8.4
Photometry Mode 4

1295.8.5
Photometry Buffer Transmission Mode

1325.8.6
Spectroscopy Modes 1 and 2

1345.8.7
Spectroscopy Mode 3

1365.8.8
Spectroscopy Mode 4

1375.8.9
Spectroscopy Buffer Transmission Mode

1395.9
Compression SW Modules

1395.9.1
Detector Selection

1415.9.2
Preprocessing

1435.9.3
Robust Averaging

1455.9.4
Ramp Fitting

1485.9.5
Integration (obsolete)

1505.9.6
Temporal and Spatial Redundancy Reduction

1535.9.7
Lossless Coding

1555.9.8
Header Compression

1575.9.9
Fill_OutputBuffer

1605.10
Supervisor for Test Mode

1655.11
Photometry Data Generator

1675.12
Spectroscopy Data Generator

1696
Feasibility and Resource Estimates

1696.1
Memory Allocation

1706.2
Processing Power

1706.3
Application SW Estimates

1706.3.1
Compression Ratio

1716.3.2
Entropy Estimates for Redundancy Reduction

1726.4
Data Rates Estimate

1736.4.1
Photometry

1756.4.2
Spectroscopy

1777
User Requirements vs. Software Traceability Matrix

1798
Software Requirements vs. Components Traceability Matrix

1859
Software Requirements vs. Software Verification & Validation Traceability Matrix

191Appendices

193A.1 Currently implemented Algorithms

193A.1.1 Lossless DEC/MEC Header Compression

193A.1.2 Lossless Science Data Compression

194A.1.3 Raw Channel Data Compression

195A.2. Library of LLC Algorithms

195A.2.1 List of Available Algorithms

195A.2.2 Dynamic and Static Temporal Redundancy Reduction (D_S_TRR)

196A.2.3 Simple Zero Repetition Suppression (ZRS)

196A.2.4 RZIP/RZIP2

198A.2.5 Arithmetic Coding (ARC)

199A.2.6 Data Resorting (Reorder)

200A.2.7 PACS Codec (new_srt)

200A.2.8 FM Arithmetic Compression

201A.2.9 VBWL

203B.1 Currently implemented Algorithms

203B.1.1 Robust Averaging in Photometry

203B.1.2 Ramp-Fitting in Spectroscopy

204B.2 Library of Fitting Algorithms

204B.2.1 List of Available Algorithms

205B.2.2 Robust Averaging in Photometry

205B.2.2.1 Glitch Detection and Rejection

205B.2.2.1.1 Sample Deviation Detection Method

206B.2.2.2 Averaging

206B.2.2.2.1 FM Averaging

206B.2.2.2.2 Mean Value Calculation

207B.2.3 Ramp-Fitting in Spectroscopy

207B.2.3.1 Glitch Detection and Rejection

207B.2.3.1.1 Crossed Slope Deviation Detection

208B.2.3.2 Ramp-Fitting

208B.2.3.2.1 Least Squares Fitting

211B.2.3.2.4 Two-Sample-Fit

212B.2.3.2.5 Slope Deviation Detection Method

215B.2.3.2.6 Two-Samples Difference Method

216B.2.3.2.7 Subramp Fitting

217B.2.4 Averaging and Rounding in Photometry

203B.3 Decimation

7
204B.3.1 Decimation in Photometry

17
204B.3.2 Decimation in Spectroscopy

17

Index of Figures

22Figure 1. PACS Instrument Block Diagram

Figure 2. Communication Links between SPU and other Subsystems
24
Figure 3. SPU HLSW Architecture
26
Figure 4. WP_and_CIA Module
27
Figure 5. Watch Process Module
28
Figure 6. ASW Module
29
Figure 7. CSW Module
30
Figure 8. Components of Spectroscopy Mode 1 (Spec1) Module
31
Figure 10. Components of Spectroscopy Mode 3 (Spec3) Module
32
Figure 11. Components of Spectroscopy Mode 4 (Spec4) and Photometry Mode 4 (Bol4) Module
32
Figure 12. Buffer Transmission Mode in Spectroscopy (BUF_Spec) and Photometry (BUF_Bol)
33
Figure 13. Components of Photometry Mode (Bol_ex) Module
33
Figure 15. Components of Photometry Mode 3 (Bol3) Module
34
Figure 18. Flowchart of the Supervisor Algorithm
67
Figure 19. Compression SW Scheme.
70
Figure 20. Flowchart of the Main Taks.
75
Figure 21. Flowchart of the Watch Process Task
78
Figure 22. Detector array for the Spectroscopy.
80
Figure 23. Configuration of the (a) SWL-Detector Arrays and of the (b) LWL-Detector Arrays.
81
Figure 24. Resulting DMC packet structure for Spectroscopy.
81
Figure 25. Resulting DMC packet structure for (a) SWL-Photometry and for (b) LWL-Photometry.
82
Figure 26. Flowchart of the Supervisor Task (Part 1)
85
Figure 27. Flowchart of the Supervisor Task (Part 2)
85
Figure 28. Flowchart of the Supervisor Task (Part 3)
85
Figure 29. Flowchart of the Data Transmission Task.
90
Figure 30. Flowchart of the Housekeeping Task
93
Figure 31. Flowchart of the Fill_InputBuffer Procedure
95
Figure 32. Flowchart of the Procedure for Load Command Handling
97
Figure 33. Flowchart of the Procedure for Dump Command Handling
99
Figure 34. Flowchart of the Procedure for Check Command Handling
101
Figure 35. Flowchart of the Procedure for the Perform Activity Command Handling
103
Figure 36. Flowchart of the Procedure for Copy Data from RAM to EEPROM Command Handling
106
Figure 37. Flowchart of the Procedure for Warm Reset Command Handling
108
Figure 38. Flowchart of the Procedure for Raw Channel Selection Command Handling
110
Figure 39. Flowchart of the Procedure for the Start and Stop Commands Handling
112
Figure 40. Flowchart of theProcedure for SPU Test Command Handling
114
Figure 41. Flowchart of the Procedure for Connect to DEC/MEC Command Handling
116
Figure 42. Flowchart of the Procedure for Write Command Handling
119
Figure 43. Flowchart of the Compression Software Main Task (Part 1)
121
Figure 44. Flowchart of the Compression Software Main Task (Part 2)
122
Figure 45. Flowchart of the Bol_ex Procedure
124
Figure 46. Flowchart of the Bol3 Procedure
126
Figure 47. Flowchart of the Bol4 Procedure
128
Figure 48. Flowchart of the BUF_Bol Procedure
130
Figure 49. Flowchart of the Spec1_2 Procedure
133
Figure 50. Flowchart of the Spec3 Procedure
135
Figure 51. Flowchart of the Spec4 Procedure
136
Figure 52. Flowchart of the BUF_Spec Procedure
138
Figure 53. Flowchart of the Detector Selection Procedure
140
Figure 54. Flowchart of the Preprocessing Procedure
142
Figure 55. Flowchart of the Robust Averaging Procedure
144
Figure 56. Flowchart of the Ramp-fitting Procedure
146
Figure 57. Flowchart of the Integration Procedure
149
Figure 58. Flowchart of the Temporal and Spatial Redundancy Reduction Procedure for Spectroscopy
151
Figure 59. Flowchart of the Temporal and Spatial Redundancy Reduction Procedure for Photometry
152
Figure 60. Flowchart of the Lossless Compression Procedure
154
Figure 61. Flowchart of the DEC/MEC Header Compression Procedure
156
Figure 62. Splitting of the Compressed Entity and the Resulting Science Data Blocks
157
Figure 63. Flowchart of the Fill_OutputBuffer Procedure
158
Figure 64. Flowchart of the Supervisor for Test Mode Task (Part 1)
161
Figure 65. Flowchart of the Supervisor for Test Mode Task (Part 2)
161
Figure 66. Flowchart of the Supervisor for Test Mode Task (Part 3)
161
Figure 67. Flowchart of the Supervisor for Test Mode Task (Part 4)
164
Figure 68. Flowchart of the Photometry Data Generator Task
166
Figure 69. Flowchart of the Spectroscopy Data Generator Task
168
Figure 70. SPU HLSW Memory Map.
169
Figure 71. Redundancy Reduction.
171
Figure 72. Scheme of the PACS Codec algorithm.
200
Figure 73. Example showing the sample deviation detection method
205
Figure 77. Example showing the crossed slope deviation detection
207
Figure 78. Least Square Fitting (1)
208
Figure 79. Least Square Fitting (2)
208
Figure 83. Example showing the ramp-fitting method (fit and residuals)
211
Figure 84 Example showing the slope deviation detection method
212
Figure 85. Photoconductor Readouts from 1 Channel with Additive Noise
213
Figure 86. Successive Slopes in the Ramp
213
Figure 87. Successive Slope Deviations in the Ramp
214
Figure 88. Example showing the Two-Samples Difference Method
215
Figure 89. Illustration of Sub-ramp Fitting
216

Index of Tables

55Table 1. PACS Instrument Operating Modes

Table 2. PACS Instrument Observing Modes
56
Table 3, Acceptance Test
60
Table 4. Photometric and Spectroscopic compression modes
69
Table 5. Software Files of the SPU HLSW
72
Table 7. List of Compression Parameters for Photometry and Spectroscopy
83
Table 12. Memory Allocation of the SPU HLSW.
169
Table 13. Number of Bits Allocated to the Noise.
172
Table 14. Expected Data Rates for the Compression Modes in Photometry
172
Table 15. Expected Data Rates for the Compression Modes in Spectroscopy
173
Table 16. Nominal Data Rates for Photometry.
174
Table 17. Nominal Data Rates for Spectroscopy.
175
Table 18. List of available LLC algorithms.
195
Table 19. Keys for RZIP Combinationss
197
Table 20. The Basic Arithmetic Coding Process
198
Table 21. List of available fitting algorithms.
204

1 Introduction

1.1 Purpose of the document

The purpose of this document is to describe the software specifications of the SPU HLSW developed by UVIE/TUVIE according to the ESA Software Engineering Standards described in RD001, which includes the Software Requirement Definition Phase (SR), Architectural Design Phase (AD) and the Software Design Phase (SD). These specifications include the SW concept, design, requirements and library of data reduction algorithms.

The SPU HLSW consists mainly of the ASW (Reduction/Compression), the watch process (it acts upon DPU commands) and communication protocols with other sub-units. The rest of the SPU development, which consists of HW-LLSW, is part of the IAC responsibility and out of the scope of this document.

1.2 Definitions, Acronyms and Abbreviations

	Acronyms and
Abbreviations
	Description

	ADSP
	Analog device DSP

	AID
	Activity ID

	AOCS
	Attitude and Orbit Control Subsystem

	ASW
	Application SoftWare

	AVM
	AVionics Model

	BOL
	BOLometers

	CDMS
	Command and Data Management System

	CPU
	Central Processing Unit

	CQM
	Cryogenic Qualification Model

	CRE
	Cold Readout Electronics

	CSL
CVS
	Centre Spatial de Liège
Concurrent Versions System

	DDR
	Detailed Design Review

	DEC/MEC
	Detector Controller/Mechanisms Controller

	DMC
	DEC/MEC

	DMCH
	DEC/MEC Header

	DPU
	Digital Processing Unit

	DRCU
	Detector Readout and Control Unit

	DSP
	Digital Signal Processor

	EDAC
	Error Detection And Correction

	EEPROM
	Electrically Erasable Programmable Read Only Memory

	FCU
	FPU Control Unit

	FIRST
	Far Infrared and Sub-millimetre Telescope

	FPU
	Focal Plane Unit

	FS
	Flight Spare (Model)

	HIFI
	Heterodyne Instrument for HERSCHEL (HiFi instrument)

	HK
	House-Keeping

	HLSW
	High Level SW

	HS
	High Speed

	HSO
	Herschel Space Observatory

	HW
	HardWare

	I/F
	Interface

	IAC
	Instituto de Astrofísica de Canarias

	ID
	Identification

	IFSI
	Istituto di Fisica dello Spazio Interplanetario

	LLSW
	Low Level SW

	LSB
	Least Significant Byte

	LWL
	Long WaveLength

	MFCU
	Mechanisms and Focal plane electronics Control Unit

	MSB
	Most Significant Byte

	OBCP
	On-Board Control Procedure

	OBS
	On-Board Software

	PACS
	Photo-detector Array Camera and Spectrometer

	PFM
	Proto-Flight Model

	PHC
	PhotoConductors

	PMA
	Program Memory Address

	PMD
	Program Memory Data

	PRIP
	Pattern Recognition and Image Processing

	PROM
	Programmable Read Only Memory

	RAM
	Random Access Memory

	ROM
	Read Only Memory

	SAU
	Smallest Addressable Unit

	SCR
	Software Change Request

	SDE
	Software Development Environment

	SEU

	Single Error Upsets

	SID
	Structure ID

	SPIRE
	Spectral and Photometric Imaging Receiver

	SPR
	Software Problem Report

	SPU
	Signal Processing Unit

	SW
	SoftWare

	SWL
	Short WaveLength

	TBC
	To Be Confirmed

	TBD
	To Be Defined

	TBU
	To Be Updated

	TBW
	To Be Written

	TC
	TeleCommand

	TM
	TeleMetry

	TUVIE
	Technical UVIE

	UR
	User Requirement

	URD
	User Requirements Document

	UVIE
	University of Vienna

	WE
	Warm Electronics

	Definition
	Description

	
	

	BBID
	Building Block Identification

	BSID
	Bolometer Setup Identification

	CDH
	Compressed DEC/MEC Header

	CDHS
	Compressed DEC/MEC Header Size

	CEH
	Compressed Entity Header

	CI
	Counter Increments

	CMM
	Compression Mode

	CPR
	Chopper Position Readback

	CR
	Compression Ratio achieved

	CRCRMP
	Current Readout Count in a RaMP

	CRDC
	Current ReaDout Count

	CRDCCP
	Current ReaDout Count in Chopper Position

	CRECR
	CRE Control Readback

	CSD
	Compressed Science Data

	CSW
	Compression SoftWare

	DBID
	Data Block ID

	DECID
	DEcompression Code IDentification

	DXS ID
	Detectors Selection table IDentification

	GPR
	Grating Position Readback

	
	

	HK
	HouseKeeping

	LBL
	Label

	MEM_STATUS_CNTS
	MEMory STATUS CouNTerS

	NACK
	Negative Acknowledgement

	OBSID
	Observation Identification

	PACK
	Positive Acknowledgement

	PIX
	Packet Index

	RCS
	Raw Channel Selection

	RCX
	Raw Channel IndeX

	REAL
	REduction ALgorithm

	ROSP
	Readout Specifications in Photometry

	ROSS
	Readout Specifications in Spectroscopy

	RRR
	Readouts in Ramp Readback

	SCIS
	compressed SCIence data Size

	SPR
	Spare

	SPUID
	SPU ID

	TMP
	Timing Parameters

	VID
	Version ID

	VLD
	Validity

	WPR
	Wheel Position Readback

To identify all software requirements they are structured as follows:

ID-type.number

Where

ID
System identification (SPU-OBS for On Board Software User Requirements or SPU-HSR for HLSW Requirements)

type
type of the requirement

… for ID = SPU-HSR:

FN
Functional

IF
Interface

OP
Operational

RS
Resource

VF
Verification

AT
Acceptance Testing

DO
Documentation

SA
Safety

QA
Quality

… for ID = SPU-OBS:

ON
Switch On

OF
Switch Off

SW
Software

CR
Communication

TM
Telemetry

number
serial number of the requirement

1.3 References

1.3.1 Applicable Documents

	AD001

AD002

AD003

AD004

AD005

AD006

AD007
	PT-PACS-02126

SCI-PT-ICD-7527

PACS-ME-ID-001

PACS-ME-SP-001

ESA-TM-06

PACS-ME-RS-005

IFSI/OBS/PL/2000-001
	FIRST/PLANCK Instrument Interface Document - Part B – Instrument

 PACS

Packet Structure Interface Control Document

PACS Instrument Interface Requirement Document

The Photoconductor Array Camera & Spectrometer (PACS) for the Far

InfraRed and Submillimetre Telescope (FIRST)

Handbook of Data Compression Algorithms

PACS Instrument Requirement Document

DPU/ICU On Board Software Product Assurance Plan

1.3.2 Reference Documents

	RD001

RD002

RD003

RD004

RD005

RD006

RD007

RD008

RD009

RD010

RD011

RD012

RD013

RD014

RD015

RD016

RD017
RD018
RD019
RD020
	BSSC(96)2

PACS-ME-PL-006

SCI-PT-IIDA-04624

PACS-ME-PL-005

DIPSAPII-DAS-31-06

PACS-TW-SR-001

PACS-TW-ID-001

PACS-IC-RD-001

PACS-CL-ID-004

FPL-IC-1214-01-CRS

FPL-IC-1214-04-CRS

FPL-TN-1214-03-CRS

Analog Devices

Com. ACM 24 Jun. 1981

FPL-SDD-1214-01-CRS

PACS-TW-HM-002

PACS-TW-TS-004
Proc. of SPIE Vol. 5487
(2004), Part 1, p. 481
PACS-CR-UM-024
PACS-TW-TN-014
	Guide to applying the ESA software engineering standards to small

software projects

PACS Project Configuration Management Plan

FIRST/PLANCK Instrument Interface Document IID - Part A -

Operating Modes of the PACS Instrument

SMCS332 User Manual Issue2

PACS SPU HLSW User Requirement Document

PACS SPU HLSW to DPU Interface Description

PACS SPU Start-Up SW and LLSW Drivers URD

DEC/MEC to SPU Interface Description

PACS SPU HW-SW Interface Control Document

PACS SPU LLSW drivers SW ICD

Planck/Herschel PACS SPU Technical Description (17. July 2001, issue 2)

ADSP-21020 User’s Manual. Second Edition, USA 1995

Random sample consensus: A paradigm for model fitting with applications

to image analysis and automated cartography

HERSHEL PACS Start up and LLSW Drivers SDD (issue 1)

PACS SPU HLSW User Manual

PACS SPU HLSW Acceptance Test Plan for FM Delivery
 “Herschel/PACS On-noard Reduction/Compression Software Implementation” (by R. Ottensamer et al.)
DPU OBS User Manual
The flightdata file from the compression point of view

1.4 Overview of the document

This document is structured as follows:

· Section 1, an introduction and an outline of this document is given.

· Section 2 contains the logical model description of the SPU High Level Software.

· In Section 3, the SW requirements are listed.

· Section 4, a detailed description of the SPU HLSW design is given.

· Section 5 contains details about the SW components and their functions.

· Section 6 includes the summarisation of the computer resources required to build, operate and maintain the software.

· Section 7 contains the User Requirements vs. Software Traceability Matrix
· Section 8 includes the Software Requirements vs. Components Traceability Matrix and
· Section 9 displays the Software Requirements vs. Software Verification & Validation Traceability Matrix
2 Model Description

2.1 General

The Herschel Space Observatory
 is the fourth cornerstone mission of the European Space Agency (ESA) `Horizon 2000' science plan. It will be implemented together with the Planck mission as a single project. It is defined as a multi-user “observatory type” mission with the goal to open up the wavelength range (60-600 (m to photometry and spectroscopy with unprecedented sensitivity and spatial resolution, unobscured by the Earth's atmosphere. The Herschel space observatory will be launched in 2008 to operate at a distance of 1.5 million km far from the earth. The scientific topics of the mission include the formation and evolution of galaxies in the early universe, the search for protostars in our own Galaxy, and the evolution of planetary systems including the Solar System.

[image: image1.png]MEC1 nominal

MEC I/F Module M

FPU
Cold Focal Plane Unit

| DSP Module |

MEC Base

ll

DEC1 blue

Blue DEC Module

Temp. Sensors.
KT/MPE

v

MPE / ANTEC /IMEC

Blue Ge:Ga Array

Blue Bol Array
& Read-out
CEA

BOLC prire BOLA
BOL 1 Blue Bol Array
Module Buffer Amplifier

Bol 2 Red Bol Array
Module Buffer Amplifier
CEA
Codler
Control
CEA

Red Bol Array
& Read-out
CEA

MPE / ANTEC /IMEC

Red Ge:Ga Array
& CRE

nominal DPU
redundant DPU
nominal DPU
redundant DPU

BOLC prime

Warm Interconnecting Harness

BOLC redundant-

MEC1

MEC2

nominal SPU
redundant SPU
nominal SPU
redundant SPU
DEC1/2

MEC1
MEC2

0.3K Codler
CEA

MEC Base

Grating Assy
Launch Lock
CSLLiege

SPY DEC Base
DPU N . Eij i
Nominal Nominal ¥ CSL-Liege
|AC-Tenerife/ TU-Wien MEC2 redundant
DPU
MEC I/F Moduls
SPU
SPU I
Redundant DSP Module .
IFSI-Rome IAC-Tenerife/ TU-Wien -
Csl

Chopper Assy
MPIA

DEC2 red

Red DEC Moduls |4

2 Filter Wheels
KT

DEC Base

i

CSL-Liege

2 Cal. Sources
KT

KT / MPE

DB-01'p:

odr

Figure 1. PACS Instrument Block Diagram

A payload complement of three instruments is housed inside a super fluid helium cryostat of the Telescope: “HIFI”, “SPIRE” and “PACS”. Three consortia develop them. Many of the involved processes are known to emit most of their luminosity in the far-infrared and sub-millimetre band, both as continuum radiation from dust and as spectral line features. The shortest wavelength band, 60-210 (m, will be covered by the Photoconductor Array Camera & Spectrometer (PACS), which will provide both photometric and spectroscopic observing modes suited to address the key scientific topics of the HERSCHEL mission. The electrical, thermal and configuration aspect of the PACS instrument is given in Figure 1. As shown in this diagram, the instrument contains several sub-units, which are developed by different institutions in a consortium led by MPE, Garching, Germany.

DEC/MEC, SPU, and DPU represent PACS warm electronic sub-units. CSL, IAC/UVIE and IFSI respectively have the task to develop these modules. They are responsible for data handling and processing according to ground instructions.

2.1.1 The Signal Processing Unit (SPU)

The main function of the Signal Processing Unit (SPU) of the PACS instrument consists of the data reduction and compression for transmission purpose. This task is achieved by the ASW and related programs, implemented on the DSPs. Furthermore, the SPU has to control the communication functionality with DEC/MEC and DPU. Figure 2 represents the communication links between the SPU unit, DEC/MEC and DPU. Transmission of science data from DEC/MEC is ensured by two IEEE 1355/spacewire data links. Two links also lie between SPU and DPU. They will allow the transmission of compressed data, HLSW HK and DPU/SPU commands/responses. The SPU development consists of two main parts: SPU HW+LLSW and SPU HLSW. We only consider the HLSW in this document.

[image: image65.wmf]

Figure 2. Communication Links between SPU and other Subsystems

The SPU unit consists of two CPU boards, which work independently. They are called SWL SPU and LWL SPU. The HLSW will be identically implemented in each SPU sub-unit (SWL and LWL). As both CPUs have equivalent functionality, we only focus on the HLSW description of one board. The SPU contains two data inputs:

· Science data + header from DEC/MEC

· Commands from DPU

and three data outputs:

· Compressed data to DPU

· HK to DPU

· Command response to DPU

The HLSW operates with these inputs to provide the required output data. The overall DEC/MEC raw data description can be found in the specific document RD009.

2.1.2 The SPU High Level Software (HLSW)

The detector readouts are collected by the DEC/MEC and put into packets. A header is attached to each packet including the data type, the observation configuration and the compression parameters. Then data packets and headers are sent to SPU. The science data are reduced and compressed by the SPU HLSW regarding the DEC/MEC header information. The DEC/MEC header parameters will also be compressed and packaged with the compressed science data and will be sent to the DPU. The HK parameters, which consist either of data reduction-compression results of the HLSW whenever raw data are received from DEC/MEC or the SPU status while no observation is performed, will also be sent to DPU. The compression mode, which represents the way the reduction and compression should be done, is read from the DEC/MEC header. It defines the way the compression should be done.

The HLSW deals with the instrument configuration through the DEC/MEC header information as specified in Section 3.4.2. The PACS instrument configuration consists of the instrument operating and observing modes described in the document RD004.

· Instrument Operating Modes: They represent the basic activities carried out within the PACS instrument.

· Instrument Observing Modes: They represent the kind of imaging performed by the PACS instrument. The data stream, size, and behaviour will depend on the mode used.

2.2 Logical Model

The SPU HLSW is developed according to ESA engineering software standards described in RD001. The definition of the functions and procedures to establish the software assurance for the SPU HLSW is written in AD007 (approved Product Assurance Plan from DPU SW).
 The software design methodology is the Yourdon-deMarco structured analysis method with the Hatley-Phirbai real-time extensions.
The interaction between the HLSW, SUSW and LLSW as well as the handover to the SPU HLSW is given in RD015. The general layout of the SPU HLSW is represented in Figure 3.

[image: image2.png]from DPU

from DEC/MEC —
~
- -
I command
initiate_SPU_Test_S _ ~
= - — —
DMC_data — initiate_SPU_Test P_
test_data —— = 1
_ WP_and_CIA
start CSW — — — _
test_data stop_CSW _ -
- -
e
- start_Test”
— - _—stop_Test
- 1o
- I
—
2 ! |
Application_SW / \
start_HK \
stop_HK
HK_parameters / \
/ |
HK_buffer / \
HK_parameters !
response

|

compressed_data

4
Data_Transmission

"~ response
HK —h

T~

compressed_data
to DPU

Figure 3. SPU HLSW Architecture
The WP_and_CIA (Watch Process and Command Interpretation and Acknowledgment) module is depicted in Figure 4.

[image: image3.png]from DPU

\ . 4 to Data_Transmission

to Application_SW

r se response
\ response /V «< _ P2 4
- —~
\ response / start_PKUP
command res| ({nse -7
\ P - 142
-
\ LOD / > Peak_Up —
A J - - -
~ DMP —~ response
to slop,CS\W _Rcs _ - ~ ~ IS
~ —
App. * stop_Test 10 _ - _PKU _ response: —J to Data_Transmission
—stop_PKUP - - _ - v
Process - PR — ‘WRS response
_ - ponse
& stop_BBC PFA - 14 // _ - 144 -
WRT Perform -3SC- Start_Stop
. . — — start_ CSW
start HK 7 D Activity ~ = - _ - stop_CSW
top_HK N —STS ~ =~ —
/SOP, // NREN ~ o - —~ - stop_Test 1 3
N -
N = to Application_SW
K N ~ - C2EEPROM Tstart_Test— PP -
to HK_Module - ~ ~
s , \ N DMC_Con < O~
/ 7 [N \ SO « initiate_SPU_Test S
/ WD)(S / | \ invalid_PID AN ~ ~ ~A
\ - \
4 invalid_AID AN
/ s VﬁDCSW dep WSDP N \ initiate_SPU_Test_P t0S_Gen
7
/ / I \ \ AN \ N N
/ 151 | \ \ A
\ Sel_Table \ \ toP_Gen
1.to 7 . N \
\ _ 154 Activity N N response
\ Simulated N N
Params N N response
/ N \ \ \
\ \ \ / AN response \ \
\ \ / N \ \
\ ! / N \
\ \ response / / . \ \ \
response | response response response N \ \
\ response |\ / AN \ \
\ | / response AN N \
\ vl /oy N NN *
\ * < v v AN 4 4 4
< » to Data_Transmission

to Data_Transmission

Figure 4. WP_and_CIA Module
The Watch Process module is illustrated in Figure 5.

[image: image4.png]from DPU

~

commani _ v to HK_Module
- _ -
=~ — start_HK
104 - - < A
SPU_ldle /
4 |
/
/
d / ‘
comman
\ stop_HK s&anl HK - v oo
< / | -,
sMcs / -
e to Dum
Y / \ Lodb v P
N\ / e -
command e -
- / ~~_ DwmP W toCheck
—~
7 _cH™
—
101 102 ~ _ _ppa — — W toPerform Activity
Interrupt .command — Check -
Tasks Command_ID T —WRT— __ N
to Write
N
, - invalid_CID
N
/ /
, stop_Test 103
stop_CSW / Reject
, 4 / Command
/
/
[2 »
N
to Application_SW \
response
\
\
<4

to Data_Transmission

Figure 5. Watch Process Module
The components of the ASW (Application Software) module are shown in Figure 6.

[image: image5.png]from DEC/MEC

from S_Gen
from P_Gen
from WP_and_CIA
DMC_data _ - AN
start_CSW N N test_data
stop_CSW N test_data
ps start_Test
- stop_Test
N
~ 22
=~ Supervisor_Test
start_CSW
stop_CSW
N\
N\
AN
DMC_data \ test_data

23
Compression_SW
HK_parameters.

T to HK_Buffer

compressed_data

to Data_Transmission

Figure 6. ASW Module

The CSW (Compression Software) concept is given in Figure 7.

[image: image6.png]from Supervisor_Test to Supervisor

from Supervisor N _
test_data

DMC_data

start_CSW to HK_Buffer

/slop,CSW /

HK_parameters

valid_data
231

Compression

Mode

photometry Switch

spectroscopy
photometry

spectroscopy
photomephotometry 250
spectroscopy BUF_Spec,
spectroscopy
254
Spec4
409
BUF_Bol

compressed_data
compressed_data HK_parameters

compressed_data compressed_dat:

. to HK Buffer compressed_data
to HK_Buffer
v A

to Data_Transmission to Data_Transmission

404
Bol4

compressed_data compressed_data

HK_parameters compressed_data

Figure 7. CSW Module

The modules for all HLSW compression modes for Spectroscopy (Spec1 to Spec5 and BUF_Spec) and for Photometry (Bol1 to Bol4 and BUF_Bol) are represented in Figure 8 to REF _Ref33004219 \h
.

[image: image7.png]from Compression_Mode_Switch

\ to HK_Buffer

spectroscopy
2522

Detector
Selection

2523 HK_parameters

Preprocessing

raw_sc_data

2521
Header
Control

preprocessed

2524
Glitch_Detection
and_Ramp_Fitting
Module

DMC_header

2528
Header
ramp_fitted

Compression

2526
Temp_Spat
Redundancy
Reduction

compressed_DMC_header

2529
Output
Buffer

TS_redundancy_reduced

compressed_sc_data

2527
Lossless
Coding

compressed_data

to Data_Transmission

Figure 8. Components of Spectroscopy Mode 1 (Spec1) Module
[image: image8.png]from Compression_Mode_Swilch

speciroscopy
2532
Detector
Selection

raw_sc_data
2531

Header
Control

DMC_header

2538
Header

Compression

compressed DMC_header

compressed_sc_data

compressed_data

1o Data_Transmission

2537
Lossless
Coding

TS_redundancy_reduced

2536
Temp_Spat
Redundancy

Reduction

Figure 9. Components of Spectroscopy Mode 3 (Spec3) Module

[image: image9.png]from Compression_Mode_Swilch

speciroscopy
2542
Detector
Selection

251
Header
Control

raw_sc_data

DMC_header

2548
Header
Compression

compressed_DMC_header

compressed_data

1o Data_Transmission

from Compression_Mode_Switch

|

pholometry

2442
Detector
Selection

2441
Header
Control

raw_sc_data

DMC_header

2448
Header
Compression

compressed_DMC_header

compressed_data

1o Data_Transmission

Figure 10. Components of Spectroscopy Mode 4 (Spec4) and Photometry Mode 4 (Bol4) Module

[image: image10.png]from Compression_Mode_Swilch

speciroscopy

2501
Header
Control

DMC_header

from Compression_Mode_Switch

|

pholometry

2401
Header
Control

raw_sc_data

raw_sc_data

DMC_header

compressed_data compressed_data

to Data_Transmission 1o Data_Transmission

Figure 11. Buffer Transmission Mode in Spectroscopy (BUF_Spec) and Photometry (BUF_Bol)

[image: image11.png]from Compression_Mode_Switch 1o HK_Buffer

|

pholometry

2412
Detector
Selection HK_parameters

raw_sc_data
2411

Header
Control

2413
Preprocessing

preprocessed 2414

Glitch_Detection_and
Robust_Averaging
Module

DMC_header

2418
Header
Compression

robust_averaged

compressed_DMC_header

2416
Temp_Spat
Redundancy
Reduction
TS_redundancy_reduced

compressed_sc_data_ 2417
Lossless
Coding

compressed_data

1o Data_Transmission

Figure 12. Components of Photometry Mode (Bol_ex) Module

[image: image12.png]from Compression_Mode_Switch

|

pholometry

2431
Header
Control

DMC_header

2432
Detector
Selection

raw_sc_data

2438
Header

Compression

compressed_DMC_header

compressed_sc_data,

compressed_data

1o Data_Transmission

selecled

2437
Lossless
Coding

TS_redundancy_reduced

2436
Temp_Spat
Redundancy

Reduction

Figure 13. Components of Photometry Mode 3 (Bol3) Module

3 Specific Requirements

3.1 Functional Requirements

3.1.1 The Watch Process

SPU-HSR-FN0001

If the Watch Process detects a received DPU command, it shall read it.

SPU-HSR-FN0002

The Watch Process shall check whether the received DPU command is Load, Dump, Check, Perform, Write or Invalid command by use of reference table.
SPU-HSR-FN0003

The Watch Process shall abort data compression for any received command.

SPU-HSR-FN0004

If the received command is a Load command, attached data shall be checked (via checksum calculation) and written into memory if checksum is right. If the checksum is wrong a NACK will be signalled.

SPU-HSR-FN0005

The correctness of the Load shall be verified by checking (via checksum calculation) the data written into memory. If the checksum is wrong a NACK will be signalled.

SPU-HSR-FN0007

If the received command is a Dump command, the required length of data is read from memory. A checksum over the read data is calculated and attached to the dumped data.

SPU-HSR-FN0009

If the received command is a Check command, the required length of memory is checked via the checksum calculation

SPU-HSR-FN0010

Program RAM, Data RAM, Extended Data RAM and Dual Port RAM can be checked by HLSW. The HLSW does not check the EEPROM and the PROM.
SPU-HSR-FN0011

If the received command is a Perform command, the validity of the attached activity shall be checked using a reference table.
SPU-HSR-FN0012

If Warm Reset command is received, HLSW shall clean the data buffers (Input Data buffer, Processing buffer, Compressed DMC Header buffer and RC data buffer), reset the counters (CI and PIX) to zero and reset the connection to DPU and DEC/MEC (reset SMCS chip).
SPU-HSR-FN0013

If Raw Channel Selection command is received, HLSW shall upgrade the Raw Channel Selection table with the attached parameters. The default value of Raw Channel Selection components at HLSW start-up is zero (no selected channel and default channel index is zero).
SPU-HSR-FN0014

If Stop command is received, Watch Process shall signal the abortion of the data compression. If there is no data compression when a Stop command is received no action will be performed.
SPU-HSR-FN0015

If Start command is received, Watch Process shall signal the begin of the data compression. If Start command is received when data compression is ongoing the data compression will be aborted (compound of Stop-Start command).
SPU-HSR-FN0016

If SW Test command for photometry is received, Watch Process shall disable the DEC/MEC link interrupt, enables the internal data generation through Phot_gn and then signal the begin of data compression.

SPU-HSR-FN0017

If SW Test command for spectroscopy is received, Watch Process shall disable the DEC/MEC link interrupt, enables the internal data generation through Spec_gn and then signal the begin of data compression.

SPU-HSR-FN0020

If the received command is a Write command, the validity of the attached parameters shall be checked using a reference table. The write command only checks for valid Parameter ID, valid length and valid checksum, but never checks the content of the attached data. If the checksum is wrong a NACK will be signalled.
SPU-HSR-FN0021

If the received command is a Write DXS1 (Blue Bolometer sub-array1) command, attached data shall be checked (via checksum calculation). If checksum is correct, HLSW shall upgrade the Table DXS1 with the attached data. If the checksum is wrong a NACK will be signalled.
SPU-HSR-FN0022

If the received command is a Write DXS2 (Blue Bolometer sub-array2) command, attached data shall be checked (via checksum calculation). If checksum is correct, HLSW shall upgrade the Table DXS2 with the attached data. If the checksum is wrong a NACK will be signalled.
SPU-HSR-FN0023

If the received command is a Write DXS3 (Blue Bolometer sub-array3) command, attached data shall be checked (via checksum calculation). If checksum is correct, HLSW shall upgrade the Table DXS3 with the attached data. If the checksum is wrong a NACK will be signalled.
SPU-HSR-FN0024

If the received command is a Write DXS4 (Blue Bolometer sub-array4) command, attached data shall be checked (via checksum calculation). If checksum is correct, HLSW shall upgrade the Table DXS4 with the attached data. If the checksum is wrong a NACK will be signalled.
SPU-HSR-FN0025

If the received command is a Write DXS5 (Red Bolometer) command, attached data shall be checked (via checksum calculation). If checksum is correct, HLSW shall upgrade the Table DXS5 with the attached data. If the checksum is wrong a NACK will be signalled.
SPU-HSR-FN0026

If the received command is a Write DXS6 (Photoconductor main array “Blue array for Blue SPU or Red Array for Red SPU”) command, attached data shall be checked (via checksum calculation). If checksum is correct, HLSW shall upgrade the Table DXS6 with the attached data. If the checksum is wrong a NACK will be signalled.
SPU-HSR-FN0027

If the received command is a Write DXS7 (Photoconductor secondary array “Red array for Blue SPU or Blue Array for Red SPU”) command, attached data shall be checked (via checksum calculation). If checksum is correct, HLSW shall upgrade the Table DXS7 with the attached data. If the checksum is wrong a NACK will be signalled.
SPU-HSR-FN0028

If the received command is a Write Detector Constants for Photometry command, attached data shall be checked (via checksum calculation). If checksum is correct, HLSW shall upgrade the Detector Constants for Photometry Table with the attached data. If the checksum is wrong a NACK will be signalled.
SPU-HSR-FN0029

If the received command is a Write Detector Constants for Spectroscopy command, attached data shall be checked (via checksum calculation). If checksum is correct, HLSW shall upgrade the Detector Constants for Spectroscopy Table with the attached data. If the checksum is wrong a NACK will be signalled.
SPU-HSR-FN0030

If the received command is a Write Simulated Data command, attached data shall be checked (via checksum calculation). If checksum is correct, HLSW shall upgrade the Simulated Data Table with the attached data. If the checksum is wrong a NACK will be signalled.
SPU-HSR-FN0031

If Copy Data from RAM to EEPROM command is received, the HLSW shall copy the program source code data from RAM to EEPROM.

SPU-HSR-FN0032

If Connect to DEC/MEC command is received, the HLSW should start the link to DEC/MEC as slave or master depending on the attached parameter.

3.1.2 Application Software

SPU-HSR-FN0100

If the Application SW detects DEC/MEC data, it shall read them.

SPU-HSR-FN0101

The Application SW shall be able to trigger the Compression Software in case of the START command.

SPU-HSR-FN0102

In case of HLSW Started Mode (i.e. Start command received), the Application SW shall check whether the received data are photometric, spectroscopic or invalid data.

SPU-HSR-FN0103

After reception of Start command, HLSW buffers data starting from the first sample in ramp “spectroscopy”. Data read up to this sample are ignored except in Buffer Transmission Mode.

SPU-HSR-FN0104

A buffer ready for compression shall contain data with uniform header i.e. valid-flagged data, one OBSID, and one compression mode. In case of non-uniform header (i.e. transition to a new OBSID or compression mode), the data buffers are cleaned and filled with new input data.

SPU-HSR-FN0105

The application software shall be able to process data according to the received compressed mode and make it ready to DPU.
3.1.3 HK Module

SPU-HSR-FN0200

HLSW shall transmit HK packets to DPU at maximum time interval of 2000 ms.

SPU-HSR-FN0201

Successive HK packets shall contain an incremental counter starting from 0.

SPU-HSR-FN0202

EDAC status concerning single error correction and double error detection in RAM is signalled within the HK. Memory check status word is generated in every HK packet in SPU idle mode and for every 256 HK packets in SPU started mode.
SPU-HSR-FN0203

Ground SW has to detect the permanent memory errors by dumping and analyzing the failing addresses reported with EDAC check. Information for dumping the array of failing addresses can be found in RD016.
SPU-HSR-FN204

To correct single errors and avoid additional double errors memory scrubbing shall be performed every minute in idle mode and every 20 min when the SW is started.
3.2 Performance Requirements

SPU-HSR-FN0300

In started mode, HLSW shall process a data buffer and transmit the resulted compressed packets before a new buffer is filled and ready for processing.

SPU-HSR-FN0301

In started mode, HLSW shall not integrate slopes from different chopper plateaus.
3.3 Interface Requirements

3.3.1 DPU Commands

SPU-HSR-IF0001

If a DPU command is received, HLSW shall abort any running activity (data compression).

SPU-HSR-IF0002

The maximum response time for the DPU command is 200 ms. In case of Dump and Check commands, data length shall not exceed 10 KB to fulfil the max response time requirement.

SPU-HSR-IF0003

The HLSW shall acknowledge any received DPU commands (NACK or PACK) according to the protocol described in RD007.

3.3.1.1 LOAD Command

SPU-HSR-IF0010

If a Load command is received, HLSW shall abort any running activity, acknowledge the execution of the command according to the protocol described in RD007.
SPU-HSR-IF0011

Data can only be loaded to Data RAM, Extended Data RAM and Dual Port RAM. The HLSW does not write data into Program RAM or EEPROM.
3.3.1.2 DUMP Command

SPU-HSR-IF0020

If a Dump command is received, HLSW shall abort any running activity, acknowledge the execution of the command according to the protocol described in RD007.
SPU-HSR-IF0021

Data can be dumped from Program RAM, Data RAM, Extended Data RAM and Dual Port RAM. The HLSW does not read the EEPROM and the PROM.
3.3.1.3 CHECK Command

SPU-HSR-IF0030

If a Check command is received, HLSW shall abort any running activity, acknowledge the execution of the command if correct parameters according to the protocol described in RD007.

3.3.1.4

3.3.1.5 RESET Command

SPU-HSR-IF0050

If a Warm Reset command is received, HLSW shall abort any running activity, acknowledge the reception of the command, and execute the command if correct parameters.

3.3.1.6 RAW_CHAN_TRAN_MODE Command

SPU-HSR-IF0060

If Raw Channel Selection command is received, HLSW shall abort any running activity, acknowledge the execution of the command and update the Raw Channel table.

3.3.1.7 STOP_REDUCT_COMPR Command

SPU-HSR-IF0070

If Stop command is received, HLSW shall acknowledge the reception of the command, and execute the command. If there is no data compression when a Stop command is received no action will be performed.
3.3.1.8 START_REDUCT_COMPR Command

SPU-HSR-IF0080

If Start command is received, HLSW shall abort any running activity, acknowledge the reception of the command, and execute the command if parameters are correct.

3.3.1.9 ACT_TEST_PHOT Command

SPU-HSR-IF0090

If SPU Test command for photometry is received, HLSW shall abort any running activity, acknowledge the reception of the command, and execute the command if parameters are correct.

3.3.1.10 ACT_TEST_SPEC

SPU-HSR-IF0100

If SPU Test command for spectroscopy is received, HLSW shall abort any running activity, acknowledge the reception of the command, and execute the command if parameters are correct.

3.3.1.11 ACT_BOL_BGND_CANCEL Command

SPU-HSR-IF0110 … deleted
If Bolometer Background Cancelling command is received, HLSW shall abort any running activity, acknowledge the reception of the command, and execute the command if correct parameters.

3.3.1.12 Write Commands

SPU-HSR-IF0120

If a Write command is received, HLSW shall abort any running activity, acknowledge the execution of the command.

3.3.1.13 CP_DATA_RAM_EEPROM Command

SPU-HSR-IF0130

If a Copy Data from RAM to EEPROM command is received, the HLSW acknowledges the reception of the command and starts copying data into EEPROM if parameters are correct.
If the copy to EEPROM fails, the failure shall be reflected in the HK.
SPU-HSR-IF0131

While data is copied from RAM to EEPROM, no HK packets are transmitted to DPU.

3.3.1.14 CONNECT_DMC Command

SPU-HSR-IF0140

If a Connect to DEC/MEC command is received, HLSW acknowledges the reception of the command and starts the Link to DEC/MEC as Master or Slave according to the command parameter settings. The status of the link connection with DEC/MEC is reported in the HK.

3.3.2 The Compressed Entity

SPU-HSR-IF0200

HLSW transmits TM packets with fixed size of 1012 Bytes. The useful data size in the last TM packet is calculated using this formula:

Data Size in Last TM Packet = (250 * Total Nb. of TM Packets per Compressed entity) – (7+SCIS+CDMHS)

The size unit is 4-byte words.
SPU-HSR-IF0201

In started mode, HLSW transmits output packets (TM packets or HK packets) to DPU. HLSW may buffer a maximum number of 75 output packets in a FIFO whenever DPU is not ready to receive packets from SPU. Overflowing this number of packets, TM packets are lost. Remark: the DPU is not informed that the buffer has overflowed. The DPU input buffer is limited to 400 packets (RD019), therefore modes with higher data rates than 120 kbit/s (Buffer Transmission Mode) must send the data delayed.
3.3.3 DEC/MEC to SPU Interface

SPU-HSR-IF0300

HLSW does not acknowledge the reception of DEC/MEC data packets.

SPU-HSR-IF0301

HLSW shall detect corrupted DEC/MEC data packets through the fields: Type and CMM. Packets must be of valid Type and CMM, otherwise they are designated as corrupt.
SPU-HSR-IF0302

HLSW shall distinguish between photometric and spectroscopic data through the Type field.

SPU-HSR-IF0303

The HLSW shall signal the DMC Link connection status in the SPU HK.
SPU-HSR-IF0304

The maximum DEC/MEC packet size accepted by the HLSW is 250 Word in spectroscopy and 272 Word in photometry as specified in RD009. If the received packet lengths differs from these specifications a DEC/MEC header error is signalled in the HK.
3.4 Operational Requirements

3.4.1 DEC/MEC Header Usage

3.4.1.1 Spectroscopy

Generality

SPU-HSR-OP0001 … obsolete (this restriction does no longer apply)
Buffer granularity of the compression SW is 8Hz. i.e. SPU starts data compression if at least 32 frames (256Hz readout rate) are collected for a coherent DEC/MEC header. If not the already stored data frames are deleted and a new buffering will start. Coherent header refers to the label usage (see Label Section)

SPU-HSR-OP0002

SPU starts compression after collecting a maximum number of frames of 512 (2s Buffer at 256Hz readout rate).
SPU-HSR-OP0003

DEC/MEC header is compressed lossless and transmitted within TM.

SPUID

SPU-HSR-OP0010

SPUID is not taken into account. It is deleted from the buffer.
Type

SPU-HSR-OP0020

If the Type is not conform to the specifications (1 for Spectroscopy packet and 2 for Photometry packet), the science data is not buffered and a DEC/MEC header error is signalled in the SPU HK.

SPU-HSR-OP0021

If the Type is set to 1 „Spectroscopy packet“, HLSW checks CRCRMP to start buffering with the first sample of a ramp.

Current Readout Count in a Ramp

SPU-HSR-OP0030

This field signals the begin of a ramp. It is the first readout stored in a buffer.

SPU-HSR-OP0031

Each begin of a ramp, chopper position, grating position and validity fields are checked and stored as lookup table for processing this buffer.

Readout in Ramp Readback

SPU-HSR-OP0040

This field together with CRCRMP signals the begin of a ramp.

SPU-HSR-OP0041

The last RRR is used for the compression i.e. if a begin and an end of buffer has different RRR, then ramps are fit using the last received RRR.

Compression parameter

SPU-HSR-OP0050

If a buffer is stored with compression parameter not conform to the specifications, a DEC/MEC header error is signalled in the SPU HK and the buffer is compressed in the default compression mode for spectroscopy.

SPU-HSR-OP0051

If a buffer storage is not completed (Frames collected are less than 512) and the compression parameter has changed, the previous buffer is closed, compressed and transmitted. Then a new buffer storage begins. The last ramp of the previous buffer may be cancelled if the new CMM value arrives within a ramp

Validity

SPU-HSR-OP0070

This field is checked for every ramp once. It is only checked for the first sample of a ramp.

SPU-HSR-OP0071 … obsolete
If several ramps should be integrated, invalid-flagged ramps are not included.

SPU-HSR-OP0072

If no integration over ramps is required on board, invalid ramps are also transmitted within the TM.

Chopper Position Readback

SPU-HSR-OP0080

This field is checked for every ramp once. It is only checked for the first sample of a ramp.

SPU-HSR-OP0081 … obsolete
If several ramps should be integrated, only successive ramps from the same chopper plateau are integrated together. Ramps from different chopper plateaus are not together integrated.

SPU-HSR-OP0082

A slope is calculated over a ramp within chopper motion if not invalid-flagged.

SPU-HSR-OP0083

The default value for the max allowed chopper position deviation is 100. It is calculated as following:

Max.Chopper position deviation = Abs (Actual CPR – Previous CPR)

Label

SPU-HSR-OP0090

Bit 0 of this field is checked. It set to 1, and then the DEC/MEC sequence for wavelength switching mode is running. The grating position is taken into account for the integration. Chopper positions are not taken into account.

SPU-HSR-OP0091

If label is signalled, the previous stored buffer is closed (if bigger than buffer granularity), and individually compressed while a new buffer will begin. If there is no previous stored buffer nothing will be sent and a new buffer will begin.
Grating Position Readback

SPU-HSR-OP0100

This field is checked only in the wavelength-switching mode. It is checked for every ramp once. It is only checked for the first sample of a ramp.

SPU-HSR-OP0101 … obsolete
If several ramps should be integrated, only successive ramps for the same grating position are integrated together. Ramps from different grating positions are not together integrated.

SPU-HSR-OP0102

The default value for the max allowed grating position deviation is 100. It is calculated as following:

Max. grating position deviation = Abs (Actual GPR – Pervious GPR)

BBID

SPU-HSR-OP0110

BBID is not taken into account in the compression. It is transmitted within the TM packet.

Time

SPU-HSR-OP0120

Time is not taken into account in the compression. It is transmitted within the TM packet.

Wheel Position Readback

SPU-HSR-OP0130

WPR is not taken into account in the compression. It is transmitted within the TM packet.

CRECR

SPU-HSR-OP0140

CRECR is not taken into account in the compression. It is transmitted within the TM packet.

3.4.1.2 Photometry

Generality

SPU-HSR-OP0200 … obsolete (no granularity)
Buffer granularity of the compression SW is 10Hz for the Blue SPU and 2.5Hz for the red SPU i.e. SPU starts data compression if at least 4 frames for blue and 16 frames for red SPU (40Hz readout rate) are collected for a coherent DEC/MEC header. If not, the already stored data frames are deleted and a new buffering will starts. Coherent header refers to the label usage (see Label Section)

SPU-HSR-OP0201

SPU starts compression after collecting a maximum number of frames of 120 frames for Blue SPU and 480 frames for red SPU (3s and 12s Buffer at 40Hz readout rate). Compression also starts for less collected number of frames if the label field is signalled (See label section)

SPU-HSR-OP0202

DEC/MEC header is compressed lossless and transmitted within TM.

SPUID

SPU-HSR-OP0210

SPUID is not taken into account. It is deleted from the buffer in the actual version of the SPU HLSW.
Type

SPU-HSR-OP0220

If the Type is set to 2 „Photometry packet“, HLSW checks CRDCCP to start buffering with the first sample in chopper plateau.

Current Readout Count in a Chopper Plateau

SPU-HSR-OP0230

This field signals the begin of a chopper plateau „average“. It is the first readout stored in a buffer.

SPU-HSR-OP0231

Each time this counter is set to 1, chopper position is checked and stored as lookup table for processing this buffer.

Current Readout Count

SPU-HSR-OP0240

This field is not taken into account in the compression. It is transmitted within the TM.
Compression parameter

SPU-HSR-OP0250

If a buffer is stored with compression parameter not conforming to the specifications, a DEC/MEC header error is signalled in the SPU HK and the buffer is compressed in the default compression mode for photometry.

SPU-HSR-OP0251

If a buffer storage is not completed (Frames collected are less than 120 for blue or 480 for red SPU) and the compression parameter has changed, the previous buffer is closed, compressed and transmitted. Then a new buffer storage begins.

Validity

SPU-HSR-OP0270

This field is checked for every readout.

SPU-HSR-OP0271

Invalid-flagged readouts are discarded and the averaging always begins using the first valid sample.

SPU-HSR-OP0272

If all samples for an average are flagged invalid, they will not be transmitted within the TM.
Chopper Position Readback

SPU-HSR-OP0280

If integration, only successive averages from the same chopper plateau are integrated together. Averages from different chopper plateaus are not together integrated. This may affect the compression rate in the parallel mode if chopper is moving faster than 5 Hz.

SPU-HSR-OP0281

The default value for the max allowed chopper position deviation is 100. It is calculated as following:

Max.Chopper position deviation = Abs (Actual CPR – Pervious CPR)

Label

SPU-HSR-OP0290

Bit 0 of this field shall be checked. It indicates the start of a sequence, if set to 1.

SPU-HSR-OP0291

If label is signalled, the previous stored buffer is closed, and individually compressed while a new buffer will begin.

Data Block ID

SPU-HSR-OP0300

This field is used to distinguish between blue and red SPU. An incorrect value will cause a DMC header error signalled in the HK.
BBID

SPU-HSR-OP0310

BBID is not taken into account in the compression. It is transmitted within the TM packet.

Time

SPU-HSR-OP0320

Time is not taken into account in the compression. It is transmitted within the TM packet.

Wheel Position Readback

SPU-HSR-OP0330

WPR is not taken into account in the compression. It is transmitted within the TM packet.

BSID

SPU-HSR-OP0340

BSID is not taken into account in the compression. It is transmitted within the TM packet.

3.4.2 Instrument Configuration

3.4.2.1 Instrument Operating Modes

SPU-HSR-OP0400

The SPU HLSW shall be adapted to operate with any of the instrument operating modes described in Table 1.

	Mode
	Description
	SPU Task

	Safe
	PACS is in this mode when other instrument are prime
	HK transmission

	Standby
	State needed for the stabilization of the CRE
	Compressed data + HK transmission

	Prime
	All instrument observing modes listed below in Table 2
	Compressed data + HK transmission

	Parallel
	All instrument observing modes listed below in Table 2
	Compressed data + HK transmission

	Test
	Check instrument functionality with synthetic data
	Compressed data + HK transmission

Table 1. PACS Instrument Operating Modes
SPU-HSR-OP0401

The SPU HLSW shall allow a safe transition from a mode to another with a minimum loss of useful scientific data.

SPU-HSR-OP0402

The parameters of the instrument-operating mode are not sent to the SPU HLSW with the DEC/MEC raw data.

3.4.2.2 Instrument Observing Modes

SPU-HSR-OP0500

The SPU HLSW shall be adapted to operate with any of the instrument observing modes described in Table 2.

	Mode
	Description

	Dual-Band Photometry
	Standard photometry mode. Both detector arrays are operating simultaneously (BOL)

	Single-Band Photometry
	One detector array is operating (BOL).

	Line Spectroscopy
	A short spectral coverage for each pixel is produced. Both detector arrays (PHC) are used at a time

	Range Spectroscopy
	Large spectral range coverage for each pixel is produced. Both detector arrays (PHC) are used at a time

	Parallel
	Dual-Band and Single-Band Photometry are used

	Calibration Measurements/Observations
	Various instrumental settings

Table 2. PACS Instrument Observing Modes

SPU-HSR-OP0501

The instrument observing parameters are not sent within the DEC/MEC header to the SPU HLSW.

3.4.3 SPU HLSW Compression Modes

3.4.3.1 Compressed Data Transmission Mode

SPU-HSR-OP0600

The transmission of additional raw data is optional. The remaining difference to the maximum data rate (120 kbits/s) could be used for transmission of lossless-compressed raw data from a few consecutive channels if Raw Channel Selection parameters are set accordingly.

SPU-HSR-OP0601

The DEC/MEC header shall be compressed and transmitted with the compressed data except in the buffer transmission mode.

SPU-HSR-OP0602

The following parameters shall be sent within the SPU HLSW HK: Housekeeping Header, Observation Identification, Packet Index, Counter Increment, Reduction Algorithm used, Saturation Flag, Glitch counter information, Number of maintained subramps, CPU workload, DEC/MEC link status, Number of integrated ramps, SW Version Identification, Raw Channel Index, DEC/MEC header error, Counters for EDAC Memory Checks, SW Sub-version, Invalid LLC Parameter and Monitored Write Parameter.

SPU-HSR-OP0603

In nominal case one compressed entity is generated every 12 seconds for red photometry (LWL) while it is generated at 3 seconds interval for blue photometry (SWL).

SPU-HSR-OP0604

In nominal case one compressed entity is generated every 2 seconds for spectroscopy (LWL and SWL).

3.4.3.1.1 Default Compression Mode

SPU-HSR-OP0610

HLSW shall be able to support the TM rate of 120 Kbits/s in the default compression mode.

SPU-HSR-OP0611

In started compression SW, the transmitted HK packet following an already-sent compression entity shall contain the compression results as described in RD007.

3.4.3.1.2 Double Compression Mode

SPU-HSR-OP0620

HLSW shall be able to support the TM rate of parallel mode by integrating over a predefined set of readouts.

3.4.3.1.3 Half-Compression Mode (Photometry only)

SPU-HSR-OP0625

For 20 Hz readout rate in photometry, every two successive samples are reduced (averaged) in nominal case. One compressed entity is generated every 24 seconds for red photometry (LWL) while it is generated at 6 seconds interval for blue photometry (SWL).

3.4.3.1.4 Lossless Compression Mode

SPU-HSR-OP0630

HLSW shall be able to select a few detectors data through DXS tables, to compress them lossless and to make them available to DPU.

SPU-HSR-OP0631

HLSW shall not compress all selected pixels lossless to avoid SW crash. Maximum data size for lossless compression mode is decribed in Section 5.9.6.

SPU-HSR-OP0632

If all pixels are selected, HLSW shall be able to select few detectors data (Maximum data size) and compress them lossless.

3.4.3.2 SPU Test Mode

SPU-HSR-OP0640

HLSW shall be able to support SPU test mode. It generates internally simulated data and compresses them.

3.4.3.3 Transparent Mode

SPU-HSR-OP0650

HLSW shall be able to support SPU transparent mode with a few selected pixels.

3.4.3.4 Buffer Transmission Mode

SPU-HSR-OP0660

Buffer transmission mode (described in Section 5.8.5 for photometry and Section 5.8.9 for spectroscopy) shall be used in PACS Burst mode. Remark: the DPU is not informed that burst mode is executing.
SPU-HSR-OP0661

Compression software shall be in stopped state before the run of the buffer compression and vice versa. The switch to the buffer transmission mode from an already commanded compression mode, while compression software is started, may lead to an unpredictable result.

3.4.3.5 Compression Mode for 4s Reset (Spectroscopy only)

SPU-HSR-OP0670

The 4 seconds data buffer shall be subdivided to two identical 2 seconds buffers, where each sub-buffer is independently compressed and put into telemetry.
3.5 Resource Requirements

SPU-HSR-RS0001

HLSW shall have 20% more memory capacity at the time of DDR.

SPU-HSR-RS0100

HLSW software shall have 20% spare processing capacity at the time of the DDR.

3.6 Verification Requirements

SPU-HSR-VF0001

The software shall undergo acceptance verification based at the validation and verification test plan at the following levels:

· Equipment level

· Subsystem level

· System level

SPU-HSR-VF0002

It should be ensured that compressed data can be decompressed to yield the original data.

SPU-HSR-VF0003
It should be ensured that test data sets are chosen to fully execute all paths of the algorithm logic, and to demonstrate handling of worst-case data.

3.7 Acceptance Testing Requirements

SPU-HSR-AT0001

For Acceptance Tests the test cases listed in the following table shall be performed.

	Task name
	AVM
	CQM
	PFM
	FS

	DPU to SPU SWL Communication Interface
	
	
	
	

	SWTC.1
	X
	X
	X
	X

	DEC/MEC to SPU SWL Communication Interface
	
	
	
	

	SWTC.2
	X
	X
	X
	X

	Application Software Test
	
	
	
	

	SWTC.3
	X
	X
	X
	X

	Integration of HLSW in LWL SPU
	
	
	
	

	SWTC.4
	X
	X
	X
	X

Table 3, Acceptance Test

3.8 Documentation Requirements

SPU-HSR-DO0001

The software specification document shall replace the three documents: Architectural Design Document, Detailed Design Document and the Software Requirement Document.

3.9 Portability Requirements

SPU-HSR-PT0001

The software shall be compiled with G21K from Analog Devices. It is runnable on the ADSP 21020 with the communication chip SMCS332 and under Virtuoso Operating System.

3.10 Quality Requirements

SPU-HSR-QA0001

The software development shall be performed in compliance with the Software Quality Assurance Plan (see AD007).

SPU-HSR-QA0002

The software source code shall be commented according to the rules described in AD007.

3.11 Reliability Requirements

SPU-HSR-QA0100

The software shall handle anomalies with respect to:

· Command execution

SPU-HSR-QA0101
The software shall be designed to avoid

· deadlock, starvation and endless looping.

· dynamic memory allocation.

SPU-HSR-QA0102
The software shall include mechanisms in respect to protect data and resources shared between processes.

SPU-HSR-QA0103
The software shall be able to handle RAM and EEPROM SEU.

SPU-HSR-QA0104
The software shall be able to handle corrupt and incomplete DEC/MEC data.
SPU-HSR-QA0105

The software shall be able to detect and handle arithmetic errors. Divisions by 0 shall yield to the result 0xFFFFFFFF (-1).
SPU-HSR-QA0106
The software shall not lead to buffer overflow/underrun.

3.12 Maintainability Requirements

SPU-HSR-QA0200

The software shall be maintainable to later extent.

SPU-HSR-QA0201

Maintainability shall contain error detection and fault repair until launch.

SPU-HSR-QA0202
The SW build shall follow automated procedures using deliverable scripts.
SPU-HSR-QA0203
The SDE shall include all software licences and tools to be frozen and made available to MPE.
SPU-HSR-QA0204
The SW deliveries shall include a detailed map file produced by ADSP compiler.
SPU-HSR-QA0205
The in-house tools needed in development or test shall be documented.
SPU-HSR-QA0206
For problem reporting the SPR/SCR system at http://pacs.ster.kuleuven.ac.be/ shall be used and for CVS repository management the CVS system at http://cvs.ster.kuleuven.be/ shall be used.
3.13 Safety Requirements

SPU-HSR-SA0001

The order of commands, HK and telemetry are classified as safety critical. The commanding must strictly follow the User Manual (RD016).
SPU-HSR-SA0010

The HK shall provide a detailed SPU HLSW status, which should indicate memory failures on the SPU or data consistency failures (DEC/MEC Header).

SPU-HSR-SA0011
Memory failures detected by the EDAC should be indicated in the HK The corresponding HK parameter is described in RD016. Permanent memory errors should be isolated and recovered by dumping and analyzing the failing addresses.
SPU-HSR-SA0012
The HLSW shall signal DEC/MEC header errors in the HK. The list of errors is given in RD016.
4 System Design

4.1 Design Method

A top down approach is used for structuring the HLSW in small modules.

4.2 Decomposition Description

The HLSW has been decomposed in three main tasks

· The Watch Process: This task listens to the DPU link. It interrupts the Application SW whenever a command is received for its acknowledgment. Basically, any running activity on board SPU is interrupted whenever a command is received from DPU.

· The Application Software: This task performs data reduction and compression according to DEC/MEC header received within the raw data. Its responsibility is to achieve the required compression ratio according to telemetry requirements and to the compression mode.

· The HK module: This task generates HK, which is sent to the DPU at 1.9 seconds interval.

A detailed component description follows in Section 5.

4.2.1 The Watch Process and Command Interpretation and Acknowledgement

The responsibility of this module is to listen to the DPU communication link. If a DPU command is received, actual running activities are interrupted and the command is acknowledged and executed. In fact, the DPU command consist of memory load, dump, check, write or perform the sub-unit warm reset, start/stop compression, start SPU test mode and raw channel selection. The description of these commands is reported in RD007.

[image: image66.wmf]
[image: image67.wmf]
4.2.2 The Application SW

This task performs data reduction and compression according to the DEC/MEC header. The ASW consists of 2 main parts:

· Supervisor

· Compression software

4.2.2.1 Supervisor

The DEC/MEC science data + header are composed of scientific data and information about the observation configuration and the compression parameters.

The supervisor is implemented at the top of the SPU ASW. It reads from the DEC/MEC header the way the compression should be done. Then, it buffers the separately DEC/MEC header and the science data. Finally, it activates the compression software whenever a buffer is ready for compression.

Furthermore, the supervisor listens to the watch process and wait for a signal to start or stop data processing.

[image: image68.wmf]
Figure 15. Flowchart of the Supervisor Algorithm

4.2.2.2 Compression Software

Figure 16 represents the general layout of the compression software modules. This part represents the core of the SPU HLSW. It is the SW part in which data is reduced and/or compressed using arithmetical and logical operations.

This module is responsible of:

· Science data compression following the DEC/MEC header logic

· DEC/MEC header compression

· Putting the compression results in the HK

· Building the compressed entity packet

· Transmission of the compressed data

· Raw channel data lossless compression

The CSW performs data reduction and compression according to the header information. It consists of a sequence of functions to fulfil the required compression mode.

4.2.2.2.1 HLSW Compression Modes

The SPU HLSW has 12 possible compression modes, which are listed and described below.

Compressed Data Transmission Mode

In the compressed data transmission mode, reduced and compressed data including DEC/MEC header have to be transmitted to DPU. They consist of either sample average rates in photometry mode or slope rates of ramps generated by the ramp-fitting module in spectroscopy imaging. Then, data may also be treated by the integration module to achieve the required compression ratio. This data will be further processed by redundancy reduction modules and finally by a lossless coding module, which will produce a stream of 16 bit words. The following compression modes are available:

· Default Compression Mode: BOL1 (Photometry), SPEC1 (Spectroscopy)

· Double Compression Mode: BOL2 (Photometry), SPEC2 (Spectroscopy)

· Half Compression Mode: BOL0 (Photometry)

· Compressed Sensing Mode: BOLCS (Photometry)

Lossless Compression Mode

In the lossless compression mode, a selection of measurement values shall be transmitted without any loss of information, while the non-selected data are omitted. Therefore, data from selected detectors will be compressed (lossless compression only), and then transmitted to the DPU subsystem. The following modes are available:

· BOL3 (Photometry), SPEC3 (Spectroscopy)

Transparent Mode

In the transparent mode, data from selected detectors are transmitted without any compression. Furthermore, the DEC/MEC header is compressed and transmitted to DPU within the science data packet. The following modes are available:

· BOL4 (Photometry), SPEC4 (Spectroscopy).

Buffer Transmission Mode

In the buffer transmission mode, data from all detectors are transmitted without any compression. Therefore the whole data memory apart the output buffer will be filled with a continuous raw data stream. The following modes are available:

· BUF_BOL (Photometry), BUF_SPEC (Spectroscopy).

Compressed Sensing Mode (Photometry only)

In this compression mode a selection of samples from a projection onto an incoherent basis will be made. The following mode is available:

· BOLCS (Photometry).

Compression Mode for 4s Reset (Spectroscopy only)

In this compression mode a 4 seconds buffer will be subdivided into two 2-seconds buffers. Each buffer will be independently processed using the default compression mode in spectroscopy. The following mode is available:

· SPEC5 (Spectroscopy).

4.2.2.2.2 Summary of Compression Modes

The compression modes are represented in Table 4. It shows the used functions for each mode.

	HLSW Compression
Mode

	DXS
	PRE
	RBA/ RPF
DEG

	T_SRR
	LLC
	raw data
sel.
	Memory use
	CMM

	
BOL0
	(
	(
	(
	(
	(
	
	1 Buffer
	0x02

	
BOL1
	(
	(
	(
	(
	(
	
	1 Buffer
	0x00

	
BOL2
	(
	(
	(

	(
	(
	
	1 Buffer
	0x01

	
BOL3
	(
	
	
	(
	(
	
	 1 Buffer
	0x04

	
BOL4
	(
	
	
	
	
	
	 1 Buffer
	0x07

	BUF_BOL
	
	
	
	
	
	
	5 Buffers
	0x09

	
BOLCS
	
	
	
	
	(
	
	1 Buffer
	0x0C

	
SPEC1
	(
	(
	(

	(
	(
	(
	1 Buffer
	0x10

	
SPEC2
	(
	(
	(

	(
	(
	(
	1 Buffer
	0x11

	
SPEC3
	(
	
	
	(
	(
	
	1 Buffer
	0x14

	
SPEC4
	(
	
	
	
	
	
	1 Buffer
	0x17

	
SPEC5
	(
	(
	(
	
	
	(
	2 Buffers
	0x18

	
BUF_SPEC
	
	
	
	
	
	
	5 Buffers
	0x19

Table 4. Photometric and Spectroscopic compression modes
[image: image69.wmf]

Figure 16. Compression SW Scheme.
4.2.3 The HK Module

The SPU HLSW HK is sent from the SPU to the DPU. It consists either of compression results and status of the HLSW whenever raw data are received from DEC/MEC, or the SPU HLSW status while no observation is performed. Depending on their availability, the SPU HLSW HK are transmitted at a data rate compatible with the overall PACS HK.

The functionality of the SPU HLSW is continuously checked by the DPU monitoring some SPU HLSW HK data. The “Are you alive SPU” is described in the document RD007.

5 Component and Functional Description

	SW Component

	Files

	Header Files
	“bitmodel.h”, “pacscod.h”, “qsmodel.h”, “rangecod.h”, “genspu.h”, “spu_io.h”, “spuasw.h”, “spulib.h”

	Low Level Driver Library
	“l_dsp.h”, “l_errcod.h”, “l_gendef.h“, “l_hwmap.h“, “l_smcsco.h”, “l_smcsge.h”, “l_smcsin.h”, “l_smcsre.h”, “l_smcstr.h”, “l_itlmis.oba”, “l_memory.oba”, “l_memory.obc”, “l_smcsge.obc”, “l_smcsco.obc”, “l_smcsin.obc”, “l_smcsre.obc”, “l_smcstr.obc”, “l_dsp.oba”, “l_dsp.obc” , “l_pscgen.obc” , “l_eeprom.obc”

	Communication Interface
	“datatx.c”, ”dorada.s”, ”spu_io.c”, “supervs.c”, “watchpc.c”

	Command Acknowledgment
	 “C2EEPROM.c”, “check.c”, “DMC_Con.c” “dump.c”, “Load.c”, “perform.c”, “Rc_Sel.c”, “spu_tst.c”, “Str_Stp.c”, “w_reset.c”, “write.c”

	Compression Software

	”average.c”, “bitmodel.c”, “bol_ex.c”, “bol1_2.c”, “bol3.c”, “bol4.c”, ”buf_bol.c”, ”buf_spec.c”, “csw.c”, “dmch_cp.c”, ”dxs.c”, “fill_in.c”, “fill_out.c” , “integ.c” , “llc.c” , “pacscod.c”, “p_proc.c” , “pacs_srt.c”, “qsmodel.c”, “ramp_ft.c”, “rangecod.c”, “spec1_2.c” , “spec3.c” , “spec4.c” , “T_S_Red.c”, “T_S_fm.c”

	Housekeeping
	“Hk.c”

	Miscellaneous
	“phot_gn.c”, “pkup_pg.c”, “spec_gn.c”, ”Spvs_Tst.c”, “rolib_a.s”

	

	

	
	

	
	

	
	

	
	

	

	

	
	

	
	

Table 5. Software Files of the SPU HLSW

5.1 Main Task

5.1.1 Type

spu_io.c – main task

5.1.2 Function

This is the main program task of the HLSW. It configures and initialises the connection SPU-DPU and SPU-DEC/MEC. When connection is established, it starts the HLSW task (Watch process, Supervisor, HK,…).

The following functions are contained:

DpuConnect
Start the Link towards DPU
ConnectLinkAsSlave
Start the Link Connection as Slave
ConnectLinkAsMaster
Start the Link Connection as Master

DMCLinkConnect
Start the Link Connection to DEC/MEC as Slave or Master

LinkSmcsRead
Reads from SMCS communication link memory

Link1355Write
Writes to SMCS communication link memory

Memory_Error_Check
Checks for Single and/or Double Error Failure in memory

MemoryScrubbing
Scrubs the Memory and correct Single Bit Error Failure in memory

ResetLink
Resets the SMCS communication link
SMCSHandlerC
Wrapper for Assembly ISR
5.1.2.1 SMCS Chip Handling by SPU HLSW

· SPU Handover to HLSW

The SPU HLSW is configured to start the DPU Link as Master (see link Start-up Protocol in RD005). When the SPU control is handed over from LLSW to the HLSW, the following steps are performed :

1. Reset SMCS chip

2. Set the DEC/MEC Link Connection Status in the HK to OFF

3. Set Nominal Configuration of the SMCS

4. Set DSP Interrupt at IRQ2 to Signal SMCS Events

5. Configure SMCS sub-interrupt for the two links (DPU and DMC). Unmask the following sub-interrupt (CH1_PAR_DIS_ERR, CH1_DATA_TXED, CH1_EOP_RXED, CH2_PAR_DIS_ERR, CH2_DATA_TXED and CH2_EOP_RXED)

6. Start the link to DPU as Master

7. Wait 9 seconds

8. If Connection to DPU is not established, then go back to Step 1.
9. Start the Application SW tasks

a. Communication Tasks and HK

b. Compression Tasks

c. Tasks for SPU Test Mode

The link start-up to DMC is performed under request using the command CONNECT_DMC. The start-up protocol (Master/Slave) could be chosen by the user.

The DEC/MEC Link Connection Status in the HK is set to ON, whenever the connection between SPU and DMC is established.
· Connection Loss between SPU and Other Subunits

▪ DPU-SPU Disconnect Error

When the SPU HLSW detects a disconnect error on the DPU link, the following steps are performed:

1. Stop the Application SW tasks

i. Communication Tasks and HK

ii. Compression Tasks

iii. Tasks for SPU Test Mode

2. Perform the Steps 1-9 in the Paragraph ‘SPU Handover to HLSW’ above.

▪ DMC-SPU Disconnect Error

When the SPU HLSW detects a disconnect error on the DMC link, the DMC Link Status in the HK is set to OFF.

5.1.3 Interfaces

Call: KS_TaskGroupStart(SPU_INIT)
Starts communication and HK tasks

Call: KS_TaskGroupStart(SPU_ASW)
Starts compression software task

Call: KS_TaskGroupStart(SPU_TEST_TASKS)
Starts data generators for photometry and spectr. tasks

Call: KS_TaskGroupAbort(SPU_INIT)
Aborts communication and HK tasks

Call: KS_TaskGroupAbort(SPU_ASW)
Aborts compression software task

Call: KS_TaskGroupAbort(SPU_TEST_TASKS)
Aborts data generators for photometry and spectr. Tasks

Call: KS_TaskSleep
Time delay

5.1.4 Dependencies

None

5.1.5 Processing

See flowchart in Figure 17.

[image: image13]
Figure 17. Flowchart of the Main Taks.
5.1.6 Data

None

5.1.7 Resources

SMCS Chip
5.2 Watch Process

5.2.1 Type

watchpc.c – task

5.2.2 Function

The watch process program listens to the DPU link. When a command is received, all running activities (except the HK task) are interrupted and the respective function is called to acknowledge and execute the command.

5.2.3 Interfaces

Call: Link1355Read
Reads from SMCS communication link towards DPU
Call: LinkSMCSRead
Reads from SMCS communication link

Call: InitDetectorSelectionTables
Initialise the Data Selection Table

Call: InitTables
Initialise the Bit Mask Table
Call: KS_FIFOPut
Send the response packet to the FIFO (Data Transmission task)

Call: KS_SemaSignal
Signals the start of HK transmission

Call: KS_TaskSleep
Time delay

Call: Load
Calls procedure to acknowledge and perform the Load Command request

Call: Dump
Calls procedure to acknowledge and perform the Dump Command request

Call: Check
Calls procedure to acknowledge and perform the Check Command request

Call: Perform
Calls procedure to acknowledge and perform the Perform Activity command request

Call: Write
Calls procedure to acknowledge and perform the Write Command request

5.2.4 Dependencies

Called from the main task.

5.2.5 Processing

See flowchart in Figure 18.

[image: image14]
Figure 18. Flowchart of the Watch Process Task

5.2.6 Data

Read data from SMCS Link1.

5.2.7 Resources

SMCS Chip

5.3 Supervisor

5.3.1 Type

supervs.c – task

5.3.2 Function

The supervisor task listens to the DMC link. It reads DMC packets whenever received. If a start CSW command is signalled, the DMC packets are buffered and the compression is started. Otherwise, new DMC packets will overwrite the old ones (DMC data are ignored).

Furthermore, the Supervisor prepares the lookup tables from the received DMC header and makes them ready for the CSW, whenever the CSW is started.

The DMC packet structure is outlined below. More details can be found in RD009.

DEC/MEC Raw Data Stream to SPU

Figure 19 represents one detector array in spectroscopy. They consist of a total of 18x25 detectors. Each detector will deliver a 16-bit signal. One row of 18 detector data is added at the DEC level. Therefore, the total science data frame size is 468 words.

Figure 19. Detector array for the Spectroscopy.
Figure 20a represents the 8 arrays of the SWL photometer and Figure 20b the 2 arrays of the LWL photometer. They consist of a total of 2048 detectors for SWL and 512 detectors for LWL. Each detector will deliver a 16-bit signal.

Figure 20. Configuration of the (a) SWL-Detector Arrays and of the (b) LWL-Detector Arrays.
The maximum packet size sent from DEC/MEC to SPU is 250 words (64 Bytes DMC header + 26x18x16/8 Bytes science data = 1000 Bytes) in spectroscopy and 272 words (64 Bytes DMC header + 16x16x2x16/8 Bytes science Data = 1088 Bytes) in photometry as depicted in Figure 21 and Figure 22

 REF _Ref530216210 \h
.

Figure 21. Resulting DMC packet structure for Spectroscopy.
Figure 22. Resulting DMC packet structure for (a) SWL-Photometry and for (b) LWL-Photometry.

DEC/MEC Header Structure

The DEC/MEC header structure is represented in RD016 (HLSW User Manual)

	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	

	
	
	
	

	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	

	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	

	

Label (LBL)

The Label statement is meant to indicate to the SPU-HLSW across which "quadruples" it has to average in photometry. It is further used also to indicate the number of discrete chopper steps within a sequence. In spectroscopy the Label statement is used in wavelength switching mode when Bit 1 and Bit 6 are set. Hereafter, the following conventions for the Label in photometry:

If Label is set to 0, then no sequence is active otherwise

 Bit 1 … is set to 1, to indicate that DMC sequence is active.

Bit 2-6 … counts chopper positions within sequence

Bit 7 … signal from BB1

Bit 8 … signal from BB2

LABEL = 63 has a special meaning and indicates "freeze frame mode"

Validity (VLD)

The “Validity” statement defines if the data is valid or not. If the data is declared invalid the data will be ignored and the buffer is cleaned until valid data is arriving.

Compression Parameters

The compression and transmission mode which corresponds to the Compression Parameters field in REF _Ref4829832 \h
 * MERGEFORMAT are listed in Table 6.

	Comp. and Trans. Mode ID
	Photometry
	Spectroscopy

	0x00
	Default Mode
	None

	0x01
	Double Compression Mode
	None

	0x02
	Half Compression Mode
	None

	0x04
	Lossless Compression Mode
	None

	0x07
	Transparent Mode
	None

	0x09
	Buffer Transmission Mode
	None

	0x10
	None
	Default Mode

	0x11
	None
	Double Compression Mode

	0x14
	None
	Lossless Compression Mode

	0x17
	None
	Transparent Mode

	0x18
	None
	Compression Mode for 4 second reset

	0x19
	None
	Buffer Transmission Mode

	
	
	

Table 6. List of Compression Parameters for Photometry and Spectroscopy
5.3.3 Interfaces

Call: Link1355Read
Reads from SMCS link towards DPU
Call: LinkSmcsRead
Reads from SMCS link
Call: WriteInCircularBuffer
Calls procedure to fill the Input Buffer with Science data

Call: KS_SemaSignal(SEMA_ASW)
Signals the start of the compression software task
Call: ResetCircularBuffers
Memory allocation for buffering of DMC header, science and telemetry data

5.3.4 Dependencies

Called from the main task.

5.3.5 Processing

See flowchart in Figure 23, Figure 24, Figure 25 and REF _Ref33002658 \h
 * MERGEFORMAT .

‘Compress_Now = true’ in the flowchart means: “Close the actual buffer and make it ready for compression. Begin to store data in a new buffer.”

[image: image15]
Figure 23. Flowchart of the Supervisor Task (Part 1)

Figure 24. Flowchart of the Supervisor Task (Part 2)

see next page
Figure 25. Flowchart of the Supervisor Task (Part 3)

see page after next

[image: image16]

[image: image17]

5.3.6 Data

Read data from SMCS Link2.

5.3.7 Resources

SMCS Chip

1 MB allocated Data Memory

5.4 Data Transmission

5.4.1 Type

datatx.c – task

5.4.2 Function

The data transmission program module waits for the tasks outputs and sends them to the DPU. This task organizes the data flow from SPU to DPU.

5.4.3 Interfaces

Call: LinkSmcsWrite
Writes to SMCS communication link

Call: KS_FIFOGetW
Wait that another task writes in the FIFO

5.4.4 Dependencies

Called from the main task.

5.4.5 Processing

See flowchart in Figure 26.

[image: image21]
Figure 26. Flowchart of the Data Transmission Task.
5.4.6 Data

Data read from FIFO.

5.4.7 Resources

SMCS Chip

5.5 Housekeeping

5.5.1 Type

hk.c – task

5.5.2 Function

This program module produces HK parameters at 1.9 seconds interval. One relevant parameter is an incremental counter as described in RD007 (“Are You Alive SPU”). When the CSW is started some parameters are read from HK buffer (compression information).

Following parameters are included in the HK:

	HK_HEADER

	Housekeeping Header

	OBSID

	Observation Identification

	PIX

	Packet Index

	CI

	Counter Increment

	REAL

	Reduction Algorithm used

	SATUR_FLAG

	Saturation Flag

	SAMP_CORR

	Glitch counter information

	MAINT_RAMPS

	Number of maintained subramps

	CPU_WORKLOAD

	CPU workload

	DMC_LINK_STATUS

	DEC/MEC link status

	INTEG_RAMPS

	Number of integrated ramps

	VID

	Version Identification

	RCX

	Raw Channel Index

	DMC_ERROR

	DEC/MEC header error

	MEM_STATUS_CNTS

	Counters for EDAC Memory Checks

	SUBVERSION

	Subversion of the SPU HLSW

	LLC_ERROR

	Invalid LLC Parameter

	PAR_MONITOR

	Monitored Write Parameter

5.5.3 Interfaces

Call: KS_FIFOPut
Sends the HK packet to the FIFO (Data Transmission task)

Call: KS_TaskSleep
Time delay

5.5.4 Dependencies

Called from the main task.

5.5.5 Processing

[image: image22]
Figure 27. Flowchart of the Housekeeping Task

5.5.6 Data

Writes data to the FIFO.

5.5.7 Resources

None

5.6 Fill_InputBuffer

5.6.1 Type

fill_in.c – procedure

5.6.2 Function

The Fill_InputBuffer programme module is used to handle the data flow from/to the memory. It consists of circular buffer and functions to load and dump data to/from the memory.

Contains of following functions:

DeclareCircularBuffer
Reserves a memory space in the SPU RAM for data buffering
WriteInCircularBuffer
Fills the input buffer with the DEC/MEC science data

ReadInCircularBuffer
Reads the science data from input buffer

CircularBufferQuerySpace
Checks the empty memory space in science data input buffer
CircularBufferQueryUsed
Checks the used memory space in science data input buffer

CircularBufferRemoveLastWrittenValues
Remove the last values from a circular buffer
CircularBufferRemove
Clears a circular buffer by depletion

ResetCircularBuffers
Memory allocation for buffering of science header, DMC and telemetry data
5.6.3 Interfaces

None

5.6.4 Dependencies

Called from Supervisor or Supervisor_Test.

5.6.5 Processing

[image: image23]
Figure 28. Flowchart of the Fill_InputBuffer Procedure

5.6.6 Data

None

5.6.7 Resources

2 MB Memory

5.7 Command Interpretation and Acknowledgement

5.7.1 LOAD Command

5.7.1.1 Type

load.c – procedure

5.7.1.2 Function

This procedure acknowledges and executes (if Load parameters are correct) the Load command received from DPU. This command is used to transfer data in SPU DRAM and DPRAM. For more details see RD007.

5.7.1.3 Interfaces

Call: KS_FIFOPut
Sends the response packet to the FIFO (Data Transmission task)

5.7.1.4 Dependencies

Called from watch process.

5.7.1.5 Processing

See flowchart in Figure 29.

[image: image24]
Figure 29. Flowchart of the Procedure for Load Command Handling

5.7.1.6 Data

Writes data to the FIFO.

5.7.1.7 Resources

None

5.7.2 DUMP Command

5.7.2.1 Type

dump.c – procedure

5.7.2.2 Function

This procedure acknowledges and executes (if Dump parameters are correct) the Dump command received from DPU. This command is used to transfer data from SPU RAM. For more details see RD007.

5.7.2.3 Interfaces

Call: KS_FIFOPut
Sends the response packet to the FIFO (Data Transmission task)

Call: KS_TaskSleep
Time delay

5.7.2.4 Dependencies

Called from watch process.

5.7.2.5 Processing

See flowchart in Figure 30.

30Figure . Flowchart of the Procedure for Dump Command Handling

5.7.2.6 Data

Writes data to the FIFO.

5.7.2.7 Resources

None

5.7.3 CHECK Command

5.7.3.1 Type

check.c – procedure

5.7.3.2 Function

This procedure acknowledges and executes (if Check parameters are correct) the Check command received from DPU. This command is used to check the SPU RAM. For more details see RD007.

Contains of following functions:

Crc
Calculates the Checksum
5.7.3.3 Interfaces

Call: KS_FIFOPut
Sends the response packet to the FIFO (Data Transmission task)

5.7.3.4 Dependencies

Called from watch process.

5.7.3.5 Processing

See flowchart in Figure 31

[image: image25]
Figure 31. Flowchart of the Procedure for Check Command Handling

5.7.3.6 Data

Writes data to the FIFO.

5.7.3.7 Resources

2 MB Data Memory

5.7.4 Perform Activity Command

5.7.4.1 Type

perform.c – procedure

5.7.4.2 Function

This procedure acknowledges the reception of the Perform command and starts the appropriate function according to the received Activity ID.

5.7.4.3 Interfaces

Call: PerformCopyToEeprom
Copy Data from RAM to EEPROM

Call: PerformWarmReset
Warm Reset function

Call: PerformRawChannelSelection
Raw Channel Selection function

Call: PerformStartStop
Start or Stop CSW function

Call: PerformSpuTestMode
SPU Test for Spectroscopy or Photometry function

Call: PerformConnectToDmc
Start Link to DEC/MEC as Master or Slave

Call: KS_FIFOPut
Sends the response packet to the FIFO (Data Transmission task)

5.7.4.4 Dependencies

Called from watch process.

5.7.4.5 Processing

See Flowchart in Figure 32.

Figure 32. Flowchart of the Procedure for the Perform Activity Command Handling

5.7.4.6 Data

Writes data to the FIFO.

5.7.4.7 Resources

None

5.7.5 CP_DATA_RAM_EEPROM Command

5.7.5.1 Type

C2EEPROM.c – procedure

5.7.5.2 Function

This procedure acknowledges the reception of the Copy data from RAM to EEPROM command and updates the HLSW in SPU EEPROM. It Copies the HLSW from PRAM and/or DRAM to EEPROM..

5.7.5.3 Interfaces

Call: PerformCopyToEeprom
Copies Data from RAM to EEPROM

Call: KS_FIFOPut
Sends the response packet to the FIFO (Data Transmission task)

Call: KS_TaskSleep
Time delay

5.7.5.4 Dependencies

Called from perform activity command module.

5.7.5.5 Processing

See flowchart in Figure 33.

[image: image26]
Figure 33. Flowchart of the Procedure for Copy Data from RAM to EEPROM Command Handling

5.7.5.6 Data

Writes data to the FIFO.

5.7.5.7 Resources

None

5.7.6 RESET Command

5.7.6.1 Type

w_reset.c – procedure

5.7.6.2 Function

This procedure performs a Warm Reset of the HLSW. If SPU HLSW receives the Warm Reset command it cleans all buffers (DCMH data, science data and telemetry data buffers), reset the HK counter CI and PIX, kill all tasks (Supervisor, Watch Process, Data Transmission and HK) , reset the SMCS chip and restart the link connection to DPU.

5.7.6.3 Interfaces

Call: KS_FIFOPut
Sends the response packet to the FIFO (Data Transmission task)

Call: KS_TaskSleep
Time delay

Call: KS_SemaSignal(WARM_RESET_SEMA)
Reset SMCS chip and all the tasks apart the spu_io

5.7.6.4 Dependencies

Called from perform activity command module.

5.7.6.5 Processing

See flowchart in Figure 34.

Figure 34. Flowchart of the Procedure for Warm Reset Command Handling

5.7.6.6 Data

Writes data to the FIFO.

5.7.6.7 Resources

None

5.7.7 RAW_CHAN_TRAN_MODE Command

5.7.7.1 Type

Rc_Sel.c – procedure

5.7.7.2 Function

This procedure is used to select the number and index of channels from which data should be lossless compressed and transmitted. The channels index and number could be selected for photoconductors and bolometers. At startup this index and number are set to zero.

5.7.7.3 Interfaces

Call: KS_FIFOPut
Sends the response packet to the FIFO (Data Transmission task)

5.7.7.4 Dependencies

Called from perform activity command module.

5.7.7.5 Processing

See flowchart in Figure 35.

Figure 35. Flowchart of the Procedure for Raw Channel Selection Command Handling

5.7.7.6 Data

Writes data to the FIFO.

5.7.7.7 Resources

None

5.7.8 START/STOP_REDUCT_COMPR Command

5.7.8.1 Type

Str_Stp.c – procedure

5.7.8.2 Function

This procedure is used to Start or Stop the CSW.

· The Start command is performed to run the SPU CSW for DEC/MEC data.

· The Stop command is used to abort any running activity. When called it deletes the buffered data (DCMH data, science data and telemetry data buffers).

5.7.8.3 Interfaces

Call: KS_FIFOPut
Sends the response packet to the FIFO (Data Transmission task)

Call: KS_TaskSleep
Time delay

Call: ResetCircularBuffers
Memory allocation for buffering of science header, DMC and telemetry data

5.7.8.4 Dependencies

Called from perform activity command module.

5.7.8.5 Processing

See flowchart in Figure 36.

Figure 36. Flowchart of the Procedure for the Start and Stop Commands Handling

5.7.8.6 Data

Writes data to the FIFO.

5.7.8.7 Resources

None

5.7.9
5.7.9.1

5.7.9.2

5.7.9.3

5.7.9.4

5.7.9.5

5.7.9.6

5.7.9.7

5.7.10 ACT_TEST_PHOT/SPEC Command

5.7.10.1 Type

Spu_tst.c – procedure

5.7.10.2 Function

This procedure is used to start the SPU Test Mode for Spectroscopy or Photometry.

5.7.10.3 Interfaces

Call: KS_FIFOPut
Sends the response packet to the FIFO (Data Transmission task)

Call: KS_SemaSignal(SPU_SPVS_TST)
Signals the start of the Supervisor for the SPU Test

Call: KS_SemaSignal(SEMA_SPUTESTS)
Signals the start of the data generator of photometry' frames

Call: KS_SemaSignal(SEMA_SPUTESTP)
Signals the start of the data generator of spectroscopy' frames

5.7.10.4 Dependencies

Called from perform activity command module.

5.7.10.5 Processing

See flowchart in Figure 37.

Figure 37. Flowchart of theProcedure for SPU Test Command Handling

5.7.10.6 Data

Writes data to the FIFO.

5.7.10.7 Resources

None

5.7.11
5.7.11.1

5.7.11.2

5.7.11.3

5.7.11.4

5.7.11.5

5.7.11.6

5.7.11.7

5.7.12 CONNECT_DMC Command

5.7.12.1 Type

DMC_Con.c – procedure

5.7.12.2 Function

This procedure acknowledges the reception of the Connect to DEC/MEC command and starts the link to DEC/MEC as Master or Slave depending on the attached parameter.

5.7.12.3 Interfaces

Call: PerformConnectToDmc
DEC/MEC Link Start Task

Call: KS_FIFOPut
Sends the response packet to the FIFO (Data Transmission task)

Call: KS_TaskSleep
Time delay

5.7.12.4 Dependencies

Called from perform activity command module.

5.7.12.5 Processing

See flowchart in Figure 38.

[image: image27]
Figure 38. Flowchart of the Procedure for Connect to DEC/MEC Command Handling
5.7.12.6 Data

Writes data to the FIFO.

5.7.12.7 Resources

None

5.7.13 Write Command

5.7.13.1 Type

write.c – procedure

5.7.13.2 Function

This procedure is used to update the compression lookup tables (DXS, DET_CST_PHOT, DET_CST_SPEC and SIM_DATA tables).

It contains the following functions:

InitDetectorSelectionTables
Initialises the Data Selection Table

InitTables
Initialises the Bit Mask Tables
A short description of the ten-lookup tables is given below.

· Write of Detectors Selection Table in the SPU Memory (WRT_DXS)

Seven write commands allow the upgrade of the detectors tables from which data are requested. The detectors (photoconductors and bolometers) information is written in seven tables. Five for the bolometers and two for the photoconductors. The length of each DXS table is 96 Bytes (0x18 words).

The same HLSW is running in both SPUs Red and Blue. The SW accepts all seven write commands WRT_DXS1-7. The user has to choose the command to send depending on the Detector type (photometer WRT_DXS1-5 or spectrometer WRT_DXS6-7).

Both SPUs have the same set of commands, the SW accepts all commands but the usage of the tables depends on the observing mode (photometry or spectroscopy) and the wavelength (SWL and LWL).

· WRT_DXS1-5 commands are required for photometry data processing for both SPUs

· WRT_DXS6 command is actually required for spectroscopy for both SPUs

· WRT_DXS1-4 and WRT_DXS6 commands are required for SWL data processing in any SPU

· WRT_DXS5 and WRT_DXS6 commands are required for LWL data processing in any SPU

· WRT_DXS7 command may be used in degraded mode whenever one SPU sub-unit has to process data from both detectors (SWL and LWL). In the current SW version WRT_DXS7 is not exploited as the degraded mode is not implemented .
See RD016 (HLSW User Manual) for more details.
· Write of Detectors Constants for Spectroscopy in the SPU Memory (WRT_DET_CST_SPEC)

It allows the upgrade of the table of photoconductor constants, which are relevant for the pre-processing step in spectroscopy. The table length is 96 Bytes (0x18 words). See RD016 (HLSW User Manual) for more details.

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

· Write of Detectors Constants for Photometry in the SPU Memory (WRT_DET_CST_PHOT)

It allows the upgrade of the table of bolometer constants, which are relevant for the pre-processing step in photometry. The table length is 96 Bytes (0x18 words). See RD016 (HLSW User Manual) for more details.

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

· Write of Simulated Data Parameters in the SPU Memory (WRT_SIM_DATA)

It allows the upgrade of the parameters table, which will be used for data generation in the SPU test mode. The table length is 96 Bytes (0x18 words). See RD016 (HLSW User Manual) for more details.

	
	
	
	

	
	
	
	
·
·

	
	
	
	
·
·

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

5.7.13.3 Interfaces

Call: InitDetectorSelectionTables
Initialises the Data Selection Table

Call: KS_FIFOPut
Sends the response packet to the FIFO (Data Transmission task)

5.7.13.4 Dependencies

Called from watch process.

5.7.13.5 Processing

See flowchart in Figure 39.

[image: image28]
Figure 39. Flowchart of the Procedure for Write Command Handling

5.7.13.6 Data

Writes data to the FIFO and the data memory.

5.7.13.7 Resources

None

5.8 Compression Software

5.8.1 Compression Software Main Task

5.8.1.1 Type

csw.c – task

5.8.1.2 Function

The compression software compresses the science data according to the required compressed mode. The compressed parameter is received via the supervisor. The compression software will accordingly start appropriate tasks.

5.8.1.3 Interfaces

Call: PhotoReductionAndCompression
Bol1 and Bol2 compression procedure

Call: PhotoLosslessCompressionMode
Bol3 compression procedure

Call: PhotoTransparentMode
Bol4 compression procedure

Call: PhotoBufferTransmissionMode
Procedure for Buffer Transmission Mode in Photometry

Call: SpectroReductionAndCompressionMode
Spec1 and Spec2 compression procedure

Call: SpectroLosslessCompressionMode
Spec3 compression procedure

Call: SpectroTransparentMode
Spec4 compression procedure

Call: SpectroBufferTransmissionMode
Procedure for Buffer Transmission Mode in Spectroscopy

Call: KS_TaskSleep
Time delay

Call: KS_SemaSignal
Signals the start of HK transmission
5.8.1.4 Dependencies

Called from the main task.

Activated by Supervisor or Supervisor_Test task.

5.8.1.5 Processing

See flowchart in Figure 40 and Figure 41.

[image: image29]
Figure 40. Flowchart of the Compression Software Main Task (Part 1)

[image: image30]
Figure 41. Flowchart of the Compression Software Main Task (Part 2)

5.8.1.6 Data

None

5.8.1.7 Resources

None

5.8.2 Photometry Modes 0, 1 and 2

5.8.2.1 Type

bol_ex.c – procedure

5.8.2.2 Function

This procedure performs data compression in photometry for the Bol1 or Bol2 modes depending on the received compression parameter.

*
Bol1 (Default Compression Mode): This is the default mode for photometry.

*
Bol2 (Double the Compression Ratio): This mode is used whenever the default compression ratio should be doubled.

*
Bol0 (Half Compression Mode): This mode is used whenever the readout rate in photometry is decreased to 20 Hz. It performs 2 sample averaging for reduction.

5.8.2.3 Interfaces

Call: DmcHeaderCompression
DMC header extraction and compression

Call: Dxs
Detector selection

Call: PreProcessing
Pre-processing of the data

Call: FloatAveraging
when averaging arbitrary number of samples
Call: Averaging4Samples
default averaging
Call: PhotoCompression
Temporal and spatial redundancy reduction, lossless coding
Call: PhotoCompression2
Temporal and spatial redundancy reduction, lossless coding
Call: BuildCompressedEntity
Write the compressed data into the output buffer

5.8.2.4 Dependencies

Called from the compression software main task.

5.8.2.5 Processing

See flowchart in Figure 42.

[image: image31]
Figure 42. Flowchart of the Bol_ex Procedure

5.8.2.6 Data

None

5.8.2.7 Resources

None

5.8.3 Photometry Mode 3

5.8.3.1 Type

bol3.c – procedure

5.8.3.2 Function

Bol3 (Lossless Compression Mode) is used for the lossless compression of photometry data from selected detectors.

5.8.3.3 Interfaces

Call: DmcHeaderCompression
DMC header extraction and compression

Call: Dxs
Detector selection

Call: TSReductionForPhotoLlc_
Temporal and spatial redundancy reduction

Call: LosslessCompressionForPhoto
Lossless Coding

Call: BuildCompressedEntity
Write the compressed data into the output buffer

5.8.3.4 Dependencies

Called from the compression software main task.

5.8.3.5 Processing

See flowchart in Figure 43.

Figure 43. Flowchart of the Bol3 Procedure

5.8.3.6 Data

None

5.8.3.7 Resources

None

5.8.4 Photometry Mode 4

5.8.4.1 Type

bol4.c – procedure

5.8.4.2 Function

Bol4 (Transparent Mode) is used for the transparent mode. It transmits raw data from selected detectors without compression.

5.8.4.3 Interfaces

Call: DmcHeaderCompression
DMC header extraction and compression

Call: Dxs
Detector selection

Call: BuildCompressedEntity
Write the compressed data into the output buffer

5.8.4.4 Dependencies

Called from the compression software main task.

5.8.4.5 Processing

See flowchart in Figure 44.

Figure 44. Flowchart of the Bol4 Procedure

5.8.4.6 Data

None

5.8.4.7 Resources

None

5.8.5 Photometry Buffer Transmission Mode

5.8.5.1 Type

buf_bol.c – procedure

5.8.5.2 Function

This procedure deals with the Buffer Transmission mode in photometry. It fills the memory for a certain time with the data, then sends them in raw mode.

BUF_Bol (Buffer Transmission Mode): The entire memory buffers will be filled with DEC/MEC header and science data (Blue SPU: 5 x 3 seconds; Red SPU: 5 x 12 seconds). After 15/60 seconds (Blue/Red SPU) the SPU HLSW ignores the input DEC/MEC data and start sending the buffered data for duration of 150 seconds in case of Blue SPU and 155 seconds in case of Red SPU. The data is then transmitted to the DPU with rate compatible to the telemetry rate in burst mode. The telemetry packets are transmitted at 60 msec average time intervals to DPU i.e. 37 TM packets are made ready for DPU every 2220 msec

In SWL the buffers will be filled with 15 seconds data from all detectors. This data will be stored in five buffers (buffer1, buffer2, buffer3, buffer4 and buffer5). Therefore, each buffer includes 3 seconds of data. Then the SPU HLSW ignores all incoming data from DMC and begins to transmit the buffered 15 seconds data to DPU. They will be sent in the following sequence: buffer5, buffer1, buffer2, buffer3 and then buffer4. The data consists of uncompressed DMCH (only from 1 array ID) and uncompressed science data. In the compressed entity header the CDHS is set to Zero while SCIS contains the full data size (size = 0x1E618 words = 497760 Bytes). During this period HK are transmitted at regular rate to DPU.

- Blue SPU:
5 x 498 packets = 2490 packets of 1000 Bytes are sent at average time interval of 50 ms

- SPU puts every 2220 msec 37 TM packets to DPU (2220/37=60 ms time interval between two TM packets).

- 28 B + 497760 B (SD & DMH) + 24 B (TM Header) x 498 packets = 509740 Bytes x5 = 2548700Bytes

- 2548700Bytes*60ms/1024Bytes = 149,4sec (150sec)

- 2548700Bytes /(150+15) sec = 121 kbit/s

- The averaged TM rate for the blue SPU is 121 kbit/s

In LWL the buffers will be filled with 60 seconds data from all detectors. This data will be stored in five buffers (buffer1, buffer2, buffer3, buffer4 and buffer5). Therefore, each buffer includes 12 seconds of data. Then the SPU HLSW ignores all incoming data from DMC and begins to transmit the buffered 60 seconds to DPU. They will be sent in the following sequence: buffer5, buffer1, buffer2, buffer3 and then buffer4. The data consists of uncompressed DMCH and uncompressed science data. In the compressed entity header the CDHS is set to Zero while SCIS contains the full data size (size = 0x1F860 word = 516480 Bytes). During this period HK are transmitted at regular rate to DPU.

- Red SPU:
5 x 517 packets = 2585 packets of 1000 Bytes are sent at average time interval of 50 ms

- SPU puts every 2220 msec 37 TM packets to DPU (2220/37=60 ms time interval between two TM packets).

- 28 B + 516480 B (SD & DMH) + 24 B x 517 packets = 528916 Bytes x5 = 2644580 Bytes

- 2644580 Bytes*60ms/1024Bytes = 154.9 sec (155sec)

- 2644580 Bytes/(155+60) sec = 90kbit/s

- The averaged TM rate for the red SPU is 90 kbit/s

- The averaged TM rate for both SPUs is 211 kbit/s.

5.8.5.3 Interfaces

Call: ReadInCircularBuffer
Reads the science data from input buffer

Call: BuildCompressedEntity
Write the compressed data into the output buffer

5.8.5.4 Dependencies

Called from the compression software main task.

5.8.5.5 Processing

See flowchart in Figure 45.

Figure 45. Flowchart of the BUF_Bol Procedure

5.8.5.6 Data

None

5.8.5.7 Resources

It requires at least 3 MB of memory.

5.8.6 Spectroscopy Modes 1 and 2

5.8.6.1 Type

spec1_2.c – procedure

5.8.6.2 Function

This procedure performs data compression in spectroscopy for the Spec1, Spec2 or Spec5 modes depending on the received compression parameter.

*
Spec1 (Default Compression Mode): This is the default mode for spectroscopy.

*
Spec2 (Double the Compression Ratio): This mode is used whenever the default compression ratio should be doubled.

The Spec5 mode performs a default compression mode for a 4-second ramp. The ramp is subdivided to 2 sub-ramps of 2-second length.

*
Spec5 (Compression Mode for 4s Reset): This mode is used to handle detectors data with a reset interval of 4s. The compression software receives 1024 frames and put them into two buffers. Each buffer contains 512 frames. Then the SW resamples the data from 256Hz to 8Hz with the implemented fitting algorithm.

5.8.6.3 Interfaces

Call: DmcHeaderCompression
DMC header extraction and compression

Call: Dxs
Detector selection

Call: PreProcessing
Pre-processing of the data

Call: RampFit
Ramp fitting and glitch rejection

Call: TSReductionForSpectro
Resorting the data and Temporal and spatial redundancy reduction

Call: LosslessCompressionForSpectro
Lossless Coding

Call: BuildCompressedEntity
Write the compressed data into the output buffer

5.8.6.4 Dependencies

Called from the compression software main task.

5.8.6.5 Processing

See flowchart in Figure 46.

Figure 46. Flowchart of the Spec1_2 Procedure

5.8.6.6 Data

None

5.8.6.7 Resources

None

5.8.7 Spectroscopy Mode 3

5.8.7.1 Type

spec3.c – procedure

5.8.7.2 Function

Spec3 (Lossless Compression Mode) is used for the lossless compression of spectroscopy data from selected detectors.

5.8.7.3 Interfaces

Call: DmcHeaderCompression
DMC header extraction and compression

Call: Dxs
Detector selection

Call: TSReductionForSpectro
Resorting the data and Temporal and spatial redundancy reduction

Call: LosslessCompressionForSpectro
Lossless Coding

Call: BuildCompressedEntity
Write the compressed data into the output buffer

5.8.7.4 Dependencies

Called from the compression software main task.

5.8.7.5 Processing

See flowchart in Figure 47.

Figure 47. Flowchart of the Spec3 Procedure

5.8.7.6 Data

None

5.8.7.7 Resources

None

5.8.8 Spectroscopy Mode 4

5.8.8.1 Type

spec4.c – procedure

5.8.8.2 Function

Spec4 (Transparent Mode) is used for the transparent mode. It transmits raw data from selected detectors without compression.

5.8.8.3 Interfaces

Call: DmcHeaderCompression
DMC header extraction and compression

Call: Dxs
Detector selection

Call: BuildCompressedEntity
Write the compressed data into the output buffer

5.8.8.4 Dependencies

Called from the compression software main task.

5.8.8.5 Processing

See flowchart in Figure 48.

Figure 48. Flowchart of the Spec4 Procedure

5.8.8.6 Data

None

5.8.8.7 Resources

None

5.8.9 Spectroscopy Buffer Transmission Mode

5.8.9.1 Type

buf_spec.c – procedure

5.8.9.2 Function

This procedure deals with the Buffer Transmission mode in spectroscopy. It fills the memory for a certain period with data, and then sends them in raw mode.

BUF_Spec (Buffer Transmission Mode): The entire memory buffers will be filled with DEC/MEC header and science data (Blue and Red SPU: 5 x 2 seconds). After 10 seconds the SPU HLSW ignores the input DEC/MEC data and start sending the buffered data for duration of 152 seconds. The data is then transmitted to the DPU with rate compatible to the telemetry rate in burst mode. The telemetry packets are transmitted at 60 msec average time intervals to DPU i.e. 37 TM packets are made ready for DPU every 2220 msec.

In LWL and SWL the buffers will be filled with 10 seconds data from all detectors. This data will be stored in five buffers (buffer1, buffer2, buffer3, buffer4 and buffer5). Therefore, each buffer includes 2 seconds of data. Then the SPU HLSW ignores all incoming data from DMC and begins to transmit the buffered 10 seconds data to DPU. They will be sent in the following sequence: buffer5, buffer1, buffer2, buffer3 and then buffer4. The data consists of uncompressed DMCH and uncompressed science data. In the compressed entity header the CDHS is set to Zero while SCIS contains the full data size (size = 0x1EE00 words = 494 kB). During this period HK are transmitted at regular rate to DPU.

- Blue/Red SPU: 5 buffer x 506 packets = 2530 packets of 1000 Bytes are sent at average time interval of 60 ms.

- SPU puts every 2220 msec 37 TM packets to DPU (2220/37=60 ms time interval between two TM packets).

- 28 B + 494 KB (SD & DMH) + 24 B (TM packet header) x 506 packets = 518028 Bytes x5 = 2590140 Bytes

- 2590140 Bytes /1024B*60ms = 151.77sec (152sec)

- 2590140/(152+10) sec = 124.91kbit/s

The averaged TM rate per SPU board is 124.91 kbit/s.

The averaged TM rate for both SPUs is 249,82 kbit/s.

5.8.9.3 Interfaces

Call: ReadInCircularBuffer
Reads the science data from input buffer

Call: BuildCompressedEntity
Write the compressed data into the output buffer

5.8.9.4 Dependencies

Called from the compression software main task.

5.8.9.5 Processing

See flowchart in Figure 49.

Figure 49. Flowchart of the BUF_Spec Procedure

5.8.9.6 Data

None

5.8.9.7 Resources

It requires at least 3 MB of memory.

5.9 Compression SW Modules

5.9.1 Detector Selection

5.9.1.1 Type

dxs.c – procedure

5.9.1.2 Function

This procedure performs the data selection according to the detector tables. The detectors selection tables are directly set by DPU in the SPU memory using a write command. This is used to identify the selected detectors from which data are solicited.

The solicited data are transmitted to DPU using the predefined compression mode. If the compression mode requires data reduction (compression modes spec1_2, spec5 or bol_ex), additional raw data from few channels can be transmitted lossless-compressed to fill the TM bandwidth.

5.9.1.3 Interfaces

None

5.9.1.4 Dependencies

Called from Bol_ex, Bol3, Bol4, Spec1_2, Spec3 or Spec4 procedure.

5.9.1.5 Processing

Detector selection procedure is depicted in Figure 50.

[image: image32]
Figure 50. Flowchart of the Detector Selection Procedure

The currently implemented raw channel data compression algorithm is described in Appendix A.1.3.

5.9.1.6 Data

None

5.9.1.7 Resources

2 MB data memory

5.9.2 Preprocessing

5.9.2.1 Type

p_proc.c – procedure

5.9.2.2 Function

This procedure is used in photometry and spectroscopy mode in order to transform the received signal to the appropriate form (linear ramps in spectroscopy and constant signal in photometry). In fact, the use of this module is still TBD depending on the efficiency of the electronics and the electric filters.

5.9.2.3 Interfaces

None

5.9.2.4 Dependencies

Called from Bol_ex or Spec1_2 procedure.

5.9.2.5 Processing

See flowchart in Figure 51.

[image: image33]
Figure 51. Flowchart of the Preprocessing Procedure

5.9.2.6 Data

None

5.9.2.7 Resources

None

5.9.3 Robust Averaging

5.9.3.1 Type

average.c – procedure

5.9.3.2 Function

This procedure is used to perform glitch rejection and oversampling reduction of the photometry data.

5.9.3.3 Interfaces

None

5.9.3.4 Dependencies

Called from Bol_ex procedure.

5.9.3.5 Processing

See flowchart in Figure 52.

A library of fitting algorithms for photometry data is proposed in Appendix B.2.1.

[image: image34]
Figure 52. Flowchart of the Robust Averaging Procedure

The currently implemented averaging algorithm is described in Appendix B.1.1.

5.9.3.6 Data

None

5.9.3.7 Resources

None

5.9.4 Ramp Fitting

5.9.4.1 Type

ramp_ft.c – procedure

5.9.4.2 Function

This procedure is used to perform glitch rejection and calculating a slope or a mean out of a predefined set of samples in spectroscopy. The number of samples to use can be set using the write detectors constants in spectroscopy command (Section 5.7.11). From one to several slopes/means can be derived out of a ramp depending on the set parameter (Number of sample per sub-ramp)

5.9.4.3 Interfaces

None

5.9.4.4 Dependencies

Called from Spec1_2 procedure.

5.9.4.5 Processing

See the following flowchart.

A library of fitting algorithms for spectroscopy data is proposed in Appendix B.2.1.

[image: image35]
Figure 53. Flowchart of the Ramp-fitting Procedure

The currently implemented ramp-fitting algorithm is described in Appendix B.1.2.

5.9.4.6 Data

None

5.9.4.7 Resources

None

5.9.5 Integration (obsolete)
5.9.5.1 Type

integ.c – procedure

5.9.5.2 Function

This procedure performs on-board integration over the sensor readings in order to achieve the desired compression ratio.

5.9.5.3 Interfaces

None

5.9.5.4 Dependencies

Called from Bol_ex or Spec1_2 procedure.

5.9.5.5 Processing

See flowchart in Figure 54.

[image: image36]
Figure 54. Flowchart of the Integration Procedure

5.9.5.6 Data

None

5.9.5.7 Resources

None

5.9.6 Temporal and Spatial Redundancy Reduction

5.9.6.1 Type

T_S_Red.c – procedure

5.9.6.2 Function

The aim of this procedure is to eliminate the temporal and spatial correlation of the sensor readings and resorting the data for better peroformance of lossless coding.

In case of Lossless Compression Mode, this module checks and selects the maximum data size allowed for lossless compression.

Maximum data size= 120 Kbytes:

· First 60 detectors (Figure 19) in spectroscopy are chosen

· First 256 detectors (Figure 20) in photometry are chosen for SWL SPU

· First 64 detectors (Figure 20) in photometry are chosen for LWL SPU

5.9.6.3 Interfaces

None

5.9.6.4 Dependencies

Called from Bol_ex, Bol3, Spec1_2 or Spec3 procedure.

5.9.6.5 Processing

See the flowchart in Figure 55 for spectroscopy and Figure 56 for photometry.

[image: image37]
Figure 55. Flowchart of the Temporal and Spatial Redundancy Reduction Procedure for Spectroscopy

[image: image38]
Figure 56. Flowchart of the Temporal and Spatial Redundancy Reduction Procedure for Photometry
5.9.6.6 Data

None

5.9.6.7 Resources

None

5.9.7 Lossless Coding

5.9.7.1 Type

llc.c – procedure

5.9.7.2 Function

This procedure performs the lossless coding of the data.

5.9.7.3 Interfaces

Call: pacs_srt
Sorts the data for following compression algorithm
Call: initmodel (in pacs_cod.c)
initialization of the dynamical model for the range coder
Call: pacs_encode (in pacs_cod.c)
applies the model and calls the range coder
Call: deletemodel (in pacs_cod.c)
deletes the model
5.9.7.4 Dependencies

Called from Bol_ex, Bol3, Spec1_2 or Spec3 procedure.

5.9.7.5 Processing

See flowchart in Figure 57.

A library of Lossless Coding (LLC) algorithms is proposed in Appendix A.2.

[image: image39]
Figure 57. Flowchart of the Lossless Compression Procedure

The currently implemented Lossless Coding algorithm for science data can be found in Appendix A.1.2.

5.9.7.6 Data

None

5.9.7.7 Resources

None

5.9.8 Header Compression

5.9.8.1 Type

dmch_cp.c – procedure

5.9.8.2 Function

This procedure performs a lossless compression of the received DEC/MEC header.

5.9.8.3 Interfaces

Call: ReadInCircularBuffer
Reads the DMC header from input buffer

5.9.8.4 Dependencies

Called from Bol_ex, Bol3, Bol4, Spec1_2, Spec3 or Spec4 procedure.

5.9.8.5 Processing

See flowchart in Figure 57.

A library of Lossless Coding (LLC) algorithms is proposed in Appendix A.2.

[image: image40]
Figure 58. Flowchart of the DEC/MEC Header Compression Procedure

The currently implemented lossless compression algorithm for DEC/MEC header can be found in Appendix A.1.1.

5.9.8.6 Data

None

5.9.8.7 Resources

None

5.9.9 Fill_OutputBuffer

5.9.9.1 Type

fill_out.c – procedure

5.9.9.2 Function

The Fill_OutputBuffer procedure is used to prepare the compressed entity and build the PUS packets. It sets the packet ready-to-transmit to the data transmission function.

The compressed entity represents the data packet sent from the SPU to the DPU. It consists of the compressed science data and the compressed DEC/MEC header. It should be packaged and split into blocks, which fit in the telemetry packets (AD002) and made available to the DPU according to document RD007. The compressed entity packet structure is described in the document RD007.

The compressed entity is split by the SPU into blocks to fit into the telemetry packets (AD002). A header of 12 Bytes (Block Header) is added to each block before it is sent to the DPU (Figure 59). 8 Bytes of this header will be ignored in the DPU as described in RD007.

Figure 59. Splitting of the Compressed Entity and the Resulting Science Data Blocks

5.9.9.3 Interfaces

Call: KS_FIFOPut
Sends the response packet to the FIFO (Data Transmission task)

Call: KS_TaskSleep
Time delay

Call: WriteInCircularBuffer
Store The TM packet in the output buffer

Call: KS_SemaSignal
Signals the start of HK transmission
5.9.9.4 Dependencies

Called from Bol_ex, Bol3, Bol4, BUF_Bol, Spec1_2, Spec3, Spec4, Spec5 and BUF_Spec procedure.

5.9.9.5 Processing

 See flowchart in Figure 60.

60Figure . Flowchart of the Fill_OutputBuffer Procedure
5.9.9.6 Data

Writes data to the FIFO.

5.9.9.7 Resources

1 MB data memory

5.10 Supervisor for Test Mode

5.10.1 Type

Spvs_Tst.c – task
5.10.2 Function

The supervisor for test mode task listens to the data generators. It reads test data packets whenever received. If a start CSW command is signalled, then the test data packets are buffered and the compression is started.

It performs the supervisor activities while SPU test mode is activated.

5.10.3 Interfaces

Call: WriteInCircularBuffer
Calls procedure to fill the Input Buffer with Science data

Call: KS_SemaSignal(SEMA_ASW)
Signals the start of the compression software task
5.10.4 Dependencies

Called from the main task.

5.10.5 Processing

See flowchart in Figure 61, Figure 62, Figure 63 and Figure 64.

‘Compress_Now = true’ in the flowchart means: “Close the actual buffer and make it ready for compression. Begin to store data in a new buffer.”

[image: image41]
Figure 61. Flowchart of the Supervisor for Test Mode Task (Part 1)

Figure 62. Flowchart of the Supervisor for Test Mode Task (Part 2)

See next page

Figure 63. Flowchart of the Supervisor for Test Mode Task (Part 3)

See page after next

[image: image42][image: image43]
[image: image44]
Figure 64. Flowchart of the Supervisor for Test Mode Task (Part 4)

5.10.6 Data

Read data from the data generator.

5.10.7 Resources

1 MB allocated Data Memory

5.11 Photometry Data Generator

5.11.1 Type

phot_gen.c – task

5.11.2 Function

This program generates simulated data for photometry.

5.11.3 Interfaces

Call: KS_SemaSignal(SPU_TEST)
Signals the start of the SPU Test Mode

Call: KS_TaskSleep
Time Delay

5.11.4 Dependencies

Called from Spu_tst procedure.

5.11.5 Processing

See flowchart in Figure 65.

[image: image45]
Figure 65. Flowchart of the Photometry Data Generator Task

5.11.6 Data

None

5.11.7 Resources

None

5.12 Spectroscopy Data Generator

5.12.1 Type

spec_gen.c – task

5.12.2 Function

This program generates simulated data for spectroscopy.

5.12.3 Interfaces

Call: KS_SemaSignal(SPU_TEST)
Signals the start of the SPU Test Mode.

Call: KS_TaskSleep
Time Delay

5.12.4 Dependencies

Called from Spu_tst procedure.

5.12.5 Processing

See flowchart in Figure 66.

[image: image46]
Figure 66. Flowchart of the Spectroscopy Data Generator Task

5.12.6 Data

None

5.12.7 Resources

None

5.13
5.13.1

5.13.2

5.13.3

5.13.4

5.13.5

·
·
·
·

5.13.6

5.13.7

5.14
5.14.1

5.14.2

5.14.3

5.14.4

5.14.5

5.14.6

5.14.7

6 Feasibility and Resource Estimates

6.1 Memory Allocation

The operations of the SPU HLSW are limited by the available memory size. Figure 67 represents the memory allocation within one SPU board. Table 7 shows the memory allocation for the SPU HLSW.

	Memory Type
	Memory Size [MB]
	Memory Allocation [%]
	Description

	EEPROM
	1.5
	17
	for storage and backup of the program code to avoid several uplinks of the same program code in case of SPU switch off/on, RAM corruption etc.

	Program Memory
(PRAM)
	3.0
	25

	used to store and run the program code.

	Data Memory
(DRAM)
	4.0
	94
	for static data allocation and data processing storage.

	SMCS Memory
(DPRAM)
	32 kB
	87.5
	used for data transfer between SPU – DEC/MEC and SPU – DPU.

Table 7. Memory Allocation of the SPU HLSW.

The memory usage is at least 10% less than the memory allocated.

Figure 67. SPU HLSW Memory Map.

In data memory (DRAM) three circular buffers are available per SPU board for data acquisition, storage and transmission, in addition to the processing memory. For data compression the SPU HLSW swaps between two 0.5 Mbytes buffered data. After the buffering of 0.5 Mbytes of input data (science data and DEC/MEC header) the compression of this data starts while the second 0.5 Mbytes buffer is filled.

The memory map is given in RD016. The PRAM is not protected from overwriting by the HLSW because the PRAM is used by two compression modes for data buffering (Buffer Transmission Mode and 4s Reset mode in spectroscopy). Furthermore, the write command is able to access the PRAM area.
6.2 Processing Power

The SPU consists of two CPU boards (TSC21020). The clock frequency of each CPU is 18 MHz with 54 MFLOPs (peak) and 36 MFLOPs (sustained) (see RD012, page 11). The exact CPU workload derived for all compression modes, for a HLSW version, can be found in the respective HLSW user manual (RD016).

6.3 Application SW Estimates

In this section, additional requirements of the compression SW (ASW) on the signal in order to achieve the required compression ratio are given.

6.3.1 Compression Ratio

Nominal PACS science data rate is about 120 kbits/s in prime mode. Therefore, the allocated rate for science data excluding the header is about 118 kbits/s.

Based on this assumption the minimum required compression ratio is calculated below.

Photometry

Science Data Input
(2048 + 512) detectors x 40 Hz x 16 bit = 1600 kbit/s

Minimum CR in photometry:

1600/118 = 13.56

Spectroscopy

Science Data Input
2 (boards) x (26x18) detectors x 256 Hz x 16 bit = 3744 kbit/s

Minimum CR in spectroscopy

3744/118 = 31.73
6.3.2 Entropy Estimates for Redundancy Reduction

In this Section, we calculate the redundancy in the signal, in terms of bits, that is required to achieve the minimum compression ratio. We only consider the lossless compression part of the ASW. A compression factor (see Table 8) should be already achieved by the lossy compression module in nominal compression modes.

In the lossless compression module one reference value is kept every tref time interval. The differences to the reference are calculated (see also Figure 68) and coded in nbit bits (noise). For more details see Section 5.9.6.

[image: image49]
Figure 68. Redundancy Reduction.
The compression ratio (CR) achieved by the redundancy reduction module can be calculated as follows:
CR = [16 x Nd x tref x S / CR_fit] / [chop_pos x 16 + nbit x (Nd x tref x S / CR_fit – chop_pos)]

where

Nd
number of detectors

S
sampling frequency

CR_fit
compression ratio of the previous lossy compression step (averaging/ramp fitting module)

chop_pos
number of chopper positions (one reference per chopper plateau).

Therefore, the maximum number of bits allocated to the noise can be calculated as follows:

nbit = [(16 x Nd x tref x S / CR_fit) / CR – chop_pos x 16] / [Nd x tref x S / CR_fit – chop_pos] .

Table 8 depicts the maximum number of bits allocated to the noise required to fulfil the TM rate. They are calculated for 4 Hz chopper frequency.

	Observing Mode
	Minimum CR
	CR by lossy compression module
	CR by lossless compression module
	number of bits allocated to the noise

	Photometry
	13.56
	4
	3.390
	4.72

	Spectroscopy
	31.73
	32
	0.992
	16.13

	
	
	16
	1.983
	8.06

	
	
	8
	3.966
	4.03

	
	
	4
	7.933
	2.02

	
	
	2
	15.865
	1.01

Table 8. Number of Bits Allocated to the Noise.
6.4 Data Rates Estimate

Table 9 and Table 10 show the data rates estimate for all compression modes in photometry and spectroscopy. These numbers are calculated as presented in the next subsections.

	Compression Mode in Photometry
	Description
	Selected Detectors
	Expected TM Rate
[kbits/s]
	Packets per second

	
	
	SPU LWL
	SPU
SWL
	SPU LWL
	SPU
SWL
	Total
	

	BOL0
	Half Compression Mode
	512
	2048
	87.44
	29.93
	117.37
	15.05

	BOL1
	Default Mode
	512
	2048
	81.95
	21.53
	103.48
	13.17

	BOL2
	Double Compression Mode
	512
	2048
	41.68
	11.45
	53.13
	6.76

	BOL3
	Lossless Compression Mode
	512

148
	2048

592
	323.39

94.53
	81.89

24.67
	405.28

119.20
	51.57

15.17

	BOL4
	Transparent Mode
	512

37
	2048

148
	1289.11

94.48
	323.28

24.63
	1612.39

119.11
	205.15

15.16

	BUF_Bol
	Buffer Transmission Mode
	512
	2048
	94.50
	118.60
	213.10
	27.11

Table 9. Expected Data Rates for the Compression Modes in Photometry

	Compression Mode in Spectroscopy
	Description
	Selected Detectors
	Expected TM Rate
[kbits/s]
	Packets per second

	
	
	SPU LWL
	SPU SWL
	SPU LWL
	SPU SWL
	Total
	

	SPEC1
	Default Mode
	450
	450
	58.76
	58.76
	117.52
	14.95

	SPEC2
	Double Compression Mode
	450
	450
	30.47
	30.47
	60.94
	7.75

	SPEC3
	Lossless Compression Mode
	450

57
	450

57
	454.88

59.53
	454.88

59.53
	909.75

119.06
	115.75

15.14

	SPEC4
	Transparent Mode
	450

14
	450

14
	1812.94

58.46
	1812.94

58.46
	3625.88

116.92
	461.34

14.88

	SPEC5
	Compression Mode for 4s Reset
	450
	450
	58.73
	58.73
	117.47
	14.95

	BUF_Spec
	Buffer Transmission Mode
	450
	450
	122.71
	122.71
	245.42
	31.23

Table 10. Expected Data Rates for the Compression Modes in Spectroscopy

The data rate for one raw channel in photometry is

40 Hz x 16 bit = 0,625 kbits/s
and for one raw channel in spectroscopy

256 Hz x 16 bit = 4 kbits/s .

6.4.1 Photometry

The nominal data rates in photometry are calculated as follows:

Step 1: Averaging

Since we have to average 4 samples, we reduce the input science data by a factor of 4.

The input science data of 1280 + 320 = 1600 kbit/s are reduced to 320 + 80 = 400 kbit/s here.

Step 2: Redundancy Reduction

-
SWL:

16 bits x 10 (averages) x 2048 (detectors) after data averaging = 327680 bits per array

(4 x 16 bits) + 4 bits x (10 x 2048 detectors - 4) = 81968 bits per array

The ratio achieved in this step is 327680/81968 = 3.9977

-
LWL:

16 bits x 10 (averages) x 512 (detectors) after data averaging = 81920 bits per array

(4 x 16 bits) + 4 bits x (10 x 512 detectors - 4) = 20528 bits per array

The ratio achieved for the red SPU is 81920/20528 = 3.9906

The science data is reduced to 80.0469 + 20.0469 = 100.0938 kbit/s here.

Table 11 shows the nominal data rates for photometry. The calculation of the header rates is described below.

	
	SWL
[kbits/s]
	LWL
[kbits/s]
	SWL & SWL
[kbits/s]

	Compressed Science Data
	80.0469
	20.0469
	100.0938

	Compressed DEC/MEC Header Rate
	1.3333
	1.3333
	2.6667

	Compressed Entity Header
	0.0729
	0.0182
	0.0911

	Packet Header
	0.5000
	0.1289
	0.6289

	Total
	81.9531
	21.5273
	103.4805

Table 11. Nominal Data Rates for Photometry.
Compressed DEC/MEC Header Rate

If we consider 512 Bytes per compressed entity for the compressed DEC/MEC header then we get

SWL:

512 Bytes / 3 s = 170.67 Bytes/s (1.333 kbits/s)

LWL:

2048 Bytes / 12 s = 170.67 Bytes/s (1.333 kbits/s)

Compressed Entity Header Rate

If we consider 28 Bytes per compressed entity for the CEH then we get

SWL:

28 Bytes / 3 s = 9.333 Bytes/s (0.0729 kbits/s)

LWL:

28 Bytes / 12 s = 2.333 Bytes/s (0.0182 kbits/s)

Packet Header Rate

If we consider a packet size of 1000 Bytes we get the number of packets

SWL
(28B + 512B + [3s x 2048 x 40Hz x 2B / 15.9976(CR)]) / 1000B = 31.265

→ 32 packets/buffer; 32 packets / 3s = 10.667 packets/s

LWL
(28B + 2048B + [12s x 512 x 40Hz x 2B / 15.9908 (CR)]) / 1000B = 32.814

→ 33 packets/buffer; 33 packets / 12s = 2.75 packets/s

If we consider 6 Bytes per packet then we get a packet header rate of

SWL:

10.667 packets/s x 0.046875 kbits = 0.5 kbits/s
LWL:

2.75 packets/s x 0.046875 kbits = 0.1289 kbits/s
6.4.2 Spectroscopy

The nomunal data rates in spectroscopy are calculated as follows:

Step 1: Ramp Fitting

Since we have to fit over 8 samples, we reduce the input science data by a factor of 8.

The input science data of 2 x 1800 = 3600 kbit/s are reduced to 2 x 225 = 450 kbit/s here.

Step 2: Redundancy Reduction

-
SWL & LWL:

16 bits x 32 (slopes) x 450 (detectors) after data fitting = 230400 bits per array

(4 x 16 bits) + 4 bits x (32 x 450 detectors - 4) = 57648 bits per array

The ratio achieved in this step is 230400/57648 = 3.9967

The science data is reduced to 2 x 56.2969 = 112.5938 kbit/s here.

Table 12 shows the nominal data rates for spectroscopy. The calculation of the header rates is described below.

	
	SWL
[kbits/s]
	LWL
[kbits/s]
	SWL & SWL
[kbits/s]

	Compressed Science Data
	56.2969
	56.2969
	112.5938

	Compressed DEC/MEC Header Rate
	2.0000
	2.0000
	4.0000

	Compressed Entity Header
	0.1094
	0.1094
	0.2188

	Packet Header
	0.3516
	0.3516
	0.7031

	Total
	58.7578
	58.7578
	117.5156

Table 12. Nominal Data Rates for Spectroscopy.
Compressed DEC/MEC Header Rate

If we consider 512 Bytes per compressed entity for the compressed DEC/MEC header then we get

SWL & LWL:
512 Bytes / 2 s = 256 Bytes/s (2 kbits/s)

Compressed Entity Header Rate

If we consider 28 Bytes per compressed entity for the CEH then we get

SWL & LWL:
28 Bytes / 2 s = 14 Bytes/s (0.1094 kbits/s)

Packet Header Rate

If we consider a packet size of 1000 Bytes we get the number of packets

SWL & LWL:
(28B + 512B + [2s x 450 x 256Hz x 2B / 31.97 (CR)]) / 1000B = 14.95

→ 15 packets/buffer; 15 packets / 2s = 7.5 packets/s

If we consider 6 Bytes per packet then we get a packet header rate of

SWL & LWL:
7.5 packets/s x 0.046875 kbits = 0,3516 kbits/s
7 User Requirements vs. Software Traceability Matrix

	User Requirements
	Software Requirements
	Description

	SPU-OBS-ON1
	SPU-SUSW-2610
	SPU handover to HLSW (see RD015 page 41)

	SPU-OBS-ON2
	SPU-HSR-FN0200
	HK to DPU

	SPU-OBS-OF1

	No data storage before the switch off of the SPU unit

	SPU-OBS-SW1
	SPU-HSR-FN0102..105
	HLSW performs the data reduction and compression according to DEC/MEC header

	SPU-OBS-SW2
	SPU-HSR-FN0005

SPU-HSR-FN0202

SPU-HSR-FN0203
	HLSW has the possibility to detect data corruption in the Loaded memory area

	SPU-OBS-SW3
	SPU-HSR-OP0611
	The compression results are included in the HK whenever compression is started

	SPU-OBS-SW4
	SPU-HSR-FN0020..30
	HLSW upgrades the parameters for data reduction

	SPU-OBS-SW5
	SPU-HSR-FN0014,
SPU-HSR-IF0003,
SPU-HSR-IF0070
	HLSW aborts data processing whenever a stop command is received

	SPU-OBS-SW6
	SPU-HSR-FN0015,
SPU-HSR-IF0003,
SPU-HSR-IF0080
	HLSW starts data processing whenever a start command is received

	SPU-OBS-SW7
	SPU-HSR-FN0012,
SPU-HSR-IF0003,
SPU-HSR-IF0050
	HLSW performs the warm reset when a reset command is received

	SPU-OBS-SW8
deleted
	SPU-HSR-FN0018,
SPU-HSR-IF0003,
SPU-HSR-IF0040
	HLSW starts the peak-up program when a peak-up command is received

	SPU-OBS-SW9
	SPU-HSR-OP0400,
SPU-HSR-OP0500
	HLSW supports all the operating and observing modes of the PACS instrument

	SPU-OBS-SW10
	SPU-HSR-FN0016,
SPU-HSR-FN0017,
SPU-HSR-IF0003,
SPU-HSR-IF0090,
SPU-HSR-IF0100,
SPU-HSR-OP0640
	HLSW generates simulated data for test purpose, triggered by DPU command

	SPU-OBS-SW11
	SPU-HSR-FN0007,
SPU-HSR-FN0008,

SPU-HSR-IF0002,
SPU-HSR-IF0003,

SPU-HSR-IF0020
	HLSW could dump data from RAM

	SPU-OBS-SW12
	SPU-HSR-FN0004,
SPU-HSR-FN0005,

SPU-HSR-FN0006,
SPU-HSR-IF0003,
SPU-HSR-IF0010
	HLSW could Load data into RAM

	SPU-OBS-SW13
	SPU-HSR-FN0009,
SPU-HSR-FN0010,
SPU-HSR-IF0002,
SPU-HSR-IF0003,
SPU-HSR-IF0030,
	HLSW could check a specific RAM area

	SPU-OBS-SW14
	SPU-HSR-FN0020..30, SPU-HSR-IF0003,
SPU-HSR-IF0120
	HLSW could write detector selection tables and detector constant tables to RAM

	SPU-OBS-SW15
deleted
	SPU-HSR-FN0019,
SPU-HSR-IF0003,
SPU-HSR-IF0110
	HLSW performs the Bolometer Background Cancelling mode whenever a BBC command is received

	SPU-OBS-CR1
	SPU-HSR-FN0102..105
	HLSW performs the data reduction and compression according to DEC/MEC header

	SPU-OBS-CR2
	SPU-HSR-FN0300
	No data loss during data acquisition

	SPU-OBS-CR3
	SPU-HSR-OP0600..04,

SPU-HSR-OP0610..11,

SPU-HSR-OP0620,

SPU-HSR-OP0625,

SPU-HSR-OP0630,

SPU-HSR-OP0631,

SPU-HSR-OP0632,

SPU-HSR-OP0640,

SPU-HSR-OP0650,

SPU-HSR-OP0660..62,

SPU-HSR-OP0670
	HLSW supports several compression modes

	SPU-OBS-CR4
	SPU-HSR-IF0200..01
	Compression data is split into packets which fit into the telemetry packet

	SPU-OBS-CR5
	SPU-HSR-IF0200..01
	Compressed data packet structure fulfil the protocol described in RD007

	SPU-OBS-CR6
	SPU-HSR-IF0300..04
	HLSW is able to receive data packets from DEC/MEC

	SPU-OBS-CR7
	SPU-HSR-RS0001,

SPU-HSR-RS0100
	HLSW is adapted to the SPU hardware

	SPU-OBS-CR8
	SPU-HSR-IF0003
	HLSW acknowledges the reception of all DPU commands

	SPU-OBS-CR9
	SPU-HSR-FN0200
	HLSW sends HK to DPU

	SPU-OBS-CR10
	SPU-HSR-FN0200
	Regular rate for the HLSW HK transmission to DPU

	SPU-OBS-CR11
	SPU-HSR-FN0201
	“Are You Alive” SPU is available in the HLSW HK

	SPU-OBS-TM1
	SPU-HSR-OP0610
	HLSW supports the PACS prime mode (120 Kbits/s)

	SPU-OBS-TM2
	SPU-HSR-OP0660
	HLSW supports the PACS burst mode (~300 Kbits/s)

	SPU-OBS-TM3
	SPU-HSR-OP0620
	HLSW supports the PACS parallel mode

	SPU-OBS-TM4
	SPU-HSR-OP0611
	The compression results are included in the HK whenever compression is started

	SPU-OBS-TM5
	SPU-HSR-IF0200..01
	Compression data is split into packets which fit into the telemetry packet

8 Software Requirements vs. Components Traceability Matrix

	Software Requirements
	Component
	Description

	SPU-HSR-FN0001
	spu_io.c, watchp.c
	HLSW is able to receive command packets from DPU

	SPU-HSR-FN0002
	watchp.c
	HLSW is able to identify the DPU command

	SPU-HSR-FN0003
	watchp.c
	HLSW aborts data compression if DPU command is received

	SPU-HSR-FN0004
	watchp.c, Load.c
	HLSW can load data into SPU RAM

	SPU-HSR-FN0005
	Load.c
	HLSW checks the consistency of the data before the load

	SPU-HSR-FN0006
transfered to

SPU-HSR-IF0011
	Load.c
	Data load only to DRAM, Ext. DRAM and DPRAM

	SPU-HSR-FN0007
	watchp.c, dump.c
	HLSW can dump data from SPU RAM

	SPU-HSR-FN0008
transfered to

SPU-HSR-IF0021
	dump.c
	Data dump only from PRAM, DRAM, Ext. DRAM and DPRAM

	SPU-HSR-FN0009
	watchp.c, check.c
	HLSW can check SPU RAM

	SPU-HSR-FN0010
	check.c
	Data check only for PRAM, DRAM, Ext. DRAM and DPRAM

	SPU-HSR-FN0011
	watchp.c, perform.c
	HLSW checks consistency of the parameter of the perform activity command

	SPU-HSR-FN0012
	w_reset.c, fill_in.c, spu_io.c
	HLSW can perform warm reset

	SPU-HSR-FN0013
	Rc_Sel.c
	HLSW can transmit data from selected channels in raw

	SPU-HSR-FN0014
	Str_Stp.c
	HLSW can abort data compression

	SPU-HSR-FN0015
	Str_Stp.c
	HLSW can start data compression

	SPU-HSR-FN0016
	spu_tst.c, phot_gn.c, Spvs_Tst.c
	HLSW can generate simulated photometry data on board for test purposes

	SPU-HSR-FN0017
	spu_tst.c, spec_gn.c, Spvs_Tst.c
	HLSW can generate simulated spectroscopy data on board for test purposes

	SPU-HSR-FN0018
deleted
	peak_up.c, pkup_pg.c, csw.c
	HLSW provides an interface to the peak-up program

	SPU-HSR-FN0019
deleted
	bol_bc.c, bbc_pg.c, csw.c
	HLSW provides an interface to the bolometer background cancelling program

	SPU-HSR-FN0020
	watchp.c, write.c
	HLSW checks consistency of the parameter of the write command

	SPU-HSR-FN0021
	write.c
	HLSW can load detectors table from subarray 1 in photometry

	SPU-HSR-FN0022
	write.c
	HLSW can load detectors table from subarray 2 in photometry

	SPU-HSR-FN0023
	write.c
	HLSW can load detectors table from subarray 3 in photometry

	SPU-HSR-FN0024
	write.c
	HLSW can load detectors table from subarray 4 in photometry

	SPU-HSR-FN0025
	write.c
	HLSW can load detectors table from subarray 5 in photometry

	SPU-HSR-FN0026
	write.c
	HLSW can load detectors table from subarray 1 in spectroscopy

	SPU-HSR-FN0027
	write.c
	HLSW can load detectors table from subarray 2 in spectroscopy

	SPU-HSR-FN0028
	write.c
	HLSW can load detector constants table in photometry

	SPU-HSR-FN0029
	write.c
	HLSW can load detector constants table in spectroscopy

	SPU-HSR-FN0030
	write.c
	HLSW can load simulated data table for SPU test mode

	SPU-HSR-FN0031
	C2EEPROM.c
	HLSW can copy SW code from RAM to EEPROM

	SPU-HSR-FN0032
	DMC_Con.c, spu_io.c
	HLSW connects to DEC/MEC upon DPU command

	SPU-HSR-FN0100
	spu_io.c, supervs.c
	HLSW is able to receive data packets from DPU

	SPU-HSR-FN0101
	csw.c
	HLSW can start data compression

	SPU-HSR-FN0102
	Supervs.c
	HLSW can distinguish between photometry and spectroscopy data

	SPU-HSR-FN0103
	Supervs.c, fill_in.c
	HLSW is able to buffer DEC/MEC data to memory

	SPU-HSR-FN0104
	Supervs.c, csw.c
	For real time processing procedures are implemented in HLSW to handle the buffers

	SPU-HSR-FN0105
	csw.c, bol_ex.c, bol3.c, bol4.c, buf_bol.c, spec1_2.c, spec3.c, spec4.c, spec5.c, buf_spec.c
	HLSW supports eleven compression modes

	SPU-HSR-FN0200
	hk.c, datatx.c
	HLSW send permanently HK packets to DPU

	SPU-HSR-FN0201
	hk.c
	„Are You Alive“ SPU is implemented in the HLSW HK

	SPU-HSR-FN0202
	hk.c
	EDAC check status is implemented in the HLSW HK

	SPU-HSR-FN0203
	hk.c
	Ground people are responsible for analyzing the failing memory addresses detected using EDAC check

	SPU-HSR-FN0300
	All
	HLSW fulfils real time data processing requirement

	SPU-HSR-FN0301
	Supervs.c, integ.c
	HLSW doesn’t allow science data loss

	SPU-HSR-IF0001
	watchp.c
	HLSW aborts any running activity, if DPU command is received

	SPU-HSR-IF0002
	watchp.c, Load.c, dump.c, C2EEPROM.c, check.c, DMC_Con.c, perform.c, w_reset.c, Rc_Sel.c, Str_Stp.c, spu_tst.c, write.c, datatx.c
	Maximum response time for DPU commands is 200ms

	SPU-HSR-IF0003
	watchp.c, Load.c, dump.c, C2EEPROM.c, check.c, DMC_Con.c, perform.c, w_reset.c, Rc_Sel.c, Str_Stp.c, spu_tst.c, write.c, datatx.c
	HLSW acknowledges any received DPU command according to the defined protocol

	SPU-HSR-IF0010
	watchp.c, Load.c, datatx.c
	HLSW acknowledges the execution of the load command

	SPU-HSR-IF0011
	Load.c
	Data load only to DRAM, Ext. DRAM and DPRAM

	SPU-HSR-IF0020
	watchp.c, dump.c, datatx.c
	HLSW acknowledges the execution of the dump command

	SPU-HSR-IF0021
	dump.c
	Data dump only from PRAM, DRAM, Ext. DRAM and DPRAM

	SPU-HSR-IF0030
	watchp.c, check.c, datatx.c
	HLSW acknowledges the execution of the check command

	SPU-HSR-IF0040
deleted
	watchp.c, perform.c, peak_up.c, pkup_pg.c, csw.c, datatx.c
	HLSW acknowledges the reception of the peak-up command

	SPU-HSR-IF0050
	watchp.c, perform.c, w_reset.c, datatx.c, spu_io.c
	HLSW acknowledges the reception of the warm reset command

	SPU-HSR-IF0060
	watchp.c, perform.c, Rc_Sel.c, datatx.c
	HLSW acknowledges the execution of the raw channel selection command

	SPU-HSR-IF0070
	watchp.c, perform.c, Str_Stp.c, datatx.c
	HLSW acknowledges the reception of the stop command

	SPU-HSR-IF0080
	watchp.c, perform.c, Str_Stp.c, datatx.c
	HLSW acknowledges the reception of the start command

	SPU-HSR-IF0090
	watchp.c, perform.c, spu_tst.c, phot_gn.c, Spvs_Tst.c, datatx.c
	HLSW acknowledges the reception of the SPU test in photometry command

	SPU-HSR-IF0100
	watchp.c, perform.c, spu_tst.c, spec_gn.c, Spvs_Tst.c, datatx.c
	HLSW acknowledges the reception of the SPU test in spectroscopy command

	SPU-HSR-IF0110
deleted
	watchp.c, perform.c, bol_bc.c, bbc_pg.c, csw.c, datatx.c
	HLSW acknowledges the reception of the Bolometer Background Cancelling command

	SPU-HSR-IF0120
	watchp.c, write.c, datatx.c
	HLSW acknowledges the execution of the write command

	SPU-HSR-IF0130
	watchp.c, perform.c, C2EEPROM.c, datatx.c
	HLSW acknowledges the reception of the Copy Data to EEPROM command

	SPU-HSR-IF0131
	C2EEPROM.c
	No HK packet are transmitted to DPU while data are copied to EEPROM

	SPU-HSR-IF0140
	watchp.c, perform.c, DMC_Con.c, spu_io.c
	HLSW acknowledges the reception of the Connect to DEC/MEC command

	SPU-HSR-IF0200
	fill_out.c, datatx.c
	HLSW is able to transmit TM packets to DPU

	SPU-HSR-IF0201
	fill_in.c, datatx.c, spu_io.c
	HLSW can buffer a maximum number of 75 TM packets

	SPU-HSR-IF0300
	Supervs.c
	HLSW doesn’t acknowledge the reception of DEC/MEC packets

	SPU-HSR-IF0301
	Supervs.c, csw.c, hk.c
	HLSW can detect some corrupted fields in the DEC/MEC packets

	SPU-HSR-IF0302
	Supervs.c
	HLSW can distinguish between photometry and spectroscopy packets

	SPU-HSR-IF0303
	spu_io.c, hk.c
	DEC/MEC link connection status is set in the HLSW HK

	SPU-HSR-IF0304
	Supervs.c, csw.c, hk.c
	DEC/MEC packet size

	SPU-HSR-OP0001
obsolete
	Supervs.c, csw.c
	HLSW set the buffer granularity in spectroscopy to 8 Hz

	SPU-HSR-OP0002
	Supervs.c, fill_in.c, csw.c
	HLSW can compress a maximum buffer size of 468kB in spectroscopy

	SPU-HSR-OP0003
	dmch_cp.c, fill_out.c, datatx.c
	HLSW compresses DEC/MEC header lossless

	SPU-HSR-OP0010
	Supervs.c
	DEC/MEC header field in spectroscopy (SPUID)

	SPU-HSR-OP0020
	Supervs.c, csw.c, hk.c
	DEC/MEC header field in spectroscopy (Type)

	SPU-HSR-OP0021
	Supervs.c
	DEC/MEC header field in spectroscopy (Type)

	SPU-HSR-OP0030
	Supervs.c
	DEC/MEC header field in spectroscopy (CRDCR)

	SPU-HSR-OP0031
	Supervs.c
	DEC/MEC header field in spectroscopy (CRDCR)

	SPU-HSR-OP0040
	Supervs.c
	DEC/MEC header field in spectroscopy (RRR)

	SPU-HSR-OP0041
	Supervs.c
	DEC/MEC header field in spectroscopy (RRR)

	SPU-HSR-OP0050
	csw.c, hk.c, spec1_2.c
	DEC/MEC header field in spectroscopy (CMM)

	SPU-HSR-OP0051
	supervs.c, csw.c, spec1_2.c, spec3.c, spec4.c, spec5.c, fill_in.c
	DEC/MEC header field in spectroscopy (CMM)

	SPU-HSR-OP0060
deleted
	supervs.c, csw.c, spec1_2.c, spec3.c, spec4.c, spec5.c, fill_in.c
	DEC/MEC header field in spectroscopy (OBSID)

	SPU-HSR-OP0070
	supervs.c
	DEC/MEC header field in spectroscopy (Validity)

	SPU-HSR-OP0071
obsolete
	supervs.c, integ.c
	DEC/MEC header field in spectroscopy (Validity)

	SPU-HSR-OP0072
	Supervs.c
	DEC/MEC header field in spectroscopy (Validity)

	SPU-HSR-OP0080
	Supervs.c
	DEC/MEC header field in spectroscopy (CPR)

	SPU-HSR-OP0081
obsolete
	Supervs.c, integ.c
	DEC/MEC header field in spectroscopy (CPR)

	SPU-HSR-OP0082
	supervs.c, ramp_ft.c
	DEC/MEC header field in spectroscopy (CPR)

	SPU-HSR-OP0083
	supervs.c
	DEC/MEC header field in spectroscopy (CPR)

	SPU-HSR-OP0090
	supervs.c
	DEC/MEC header field in spectroscopy (Label)

	SPU-HSR-OP0091
	supervs.c, csw.c, fill_in.c
	DEC/MEC header field in spectroscopy (Label)

	SPU-HSR-OP0100
	supervs.c
	DEC/MEC header field in spectroscopy (GPR)

	SPU-HSR-OP0101
obsolete
	supervs.c, integ.c
	DEC/MEC header field in spectroscopy (GPR)

	SPU-HSR-OP0102
	supervs.c
	DEC/MEC header field in spectroscopy (GPR)

	SPU-HSR-OP0110
	supervs.c, fill_out.c, datatx.c
	DEC/MEC header field in spectroscopy (BBID)

	SPU-HSR-OP0120
	supervs.c, fill_out.c, datatx.c
	DEC/MEC header field in spectroscopy (Time)

	SPU-HSR-OP0130
	supervs.c, fill_out.c, datatx.c
	DEC/MEC header field in spectroscopy (WPR)

	SPU-HSR-OP0140
	supervs.c, fill_out.c, datatx.c
	DEC/MEC header field in spectroscopy (CRECR)

	SPU-HSR-OP0200
obsolete
	supervs.c, csw.c, fill_in.c
	HLSW set the buffer granularity in photometry to 10 Hz in SWL and 2.5 Hz in LWL

	SPU-HSR-OP0201
	supervs.c, csw.c, bol_ex.c, bol3.c, bol4.c, fill_in.c
	HLSW can compress a maximum buffer size of 480kB in photometry

	SPU-HSR-OP0202
	dmch_cp.c, fill_out.c, datatx.c
	HLSW compresses DEC/MEC header lossless

	SPU-HSR-OP0210
	supervs.c
	DEC/MEC header field in photometry (SPUID)

	SPU-HSR-OP0220
	supervs.c, csw.c, hk.c
	DEC/MEC header field in photometry (Type)

	SPU-HSR-OP0230
	supervs.c
	DEC/MEC header field in photometry (CRDCCP)

	SPU-HSR-OP0231
	supervs.c
	DEC/MEC header field in photometry (CRDCCP)

	SPU-HSR-OP0240
	supervs.c, fill_out.c, datatx.c
	DEC/MEC header field in photometry (CRC)

	SPU-HSR-OP0250
	csw.c, hk.c, bol_ex.c
	DEC/MEC header field in photometry (CMM)

	SPU-HSR-OP0251
	supervs.c, csw.c, bol_ex.c, bol3.c, bol4.c, fill_in.c
	DEC/MEC header field in photometry (CMM)

	SPU-HSR-OP0260
deleted
	supervs.c, csw.c, bol_ex.c, bol3.c, bol4.c, fill_in.c
	DEC/MEC header field in photometry (OBSID)

	SPU-HSR-OP0270
	supervs.c
	DEC/MEC header field in photometry (Validity)

	SPU-HSR-OP0271
	average.c
	DEC/MEC header field in photometry (Validity)

	SPU-HSR-OP0272
	average.c
	DEC/MEC header field in photometry (Validity)

	SPU-HSR-OP0280
	integ.c
	DEC/MEC header field in photometry (CPR)

	SPU-HSR-OP0281
	supervs.c
	DEC/MEC header field in photometry (CPR)

	SPU-HSR-OP0290
	supervs.c
	DEC/MEC header field in photometry (Label)

	SPU-HSR-OP0291
	supervs.c, csw.c, bol_ex.c, bol3.c, bol4.c, fill_in.c
	DEC/MEC header field in photometry (Label)

	SPU-HSR-OP0300
	supervs.c
	DEC/MEC header field in photometry (DBID)

	SPU-HSR-OP0310
	supervs.c, fill_out.c, datatx.c
	DEC/MEC header field in photometry (BBID)

	SPU-HSR-OP0320
	supervs.c, fill_out.c, datatx.c
	DEC/MEC header field in photometry (Time)

	SPU-HSR-OP0330
	supervs.c, fill_out.c, datatx.c
	DEC/MEC header field in photometry (WPR)

	SPU-HSR-OP0340
	supervs.c, fill_out.c, datatx.c
	DEC/MEC header field in photometry (BSID)

	SPU-HSR-OP0400
	supervs.c, csw.c, hk.c
	HLSW supports PACS operating modes

	SPU-HSR-OP0401
	supervs.c
	Flexibility of the HLSW in science data compression

	SPU-HSR-OP0402
	none (see RD009)
	mode parameters are not sent within DEC/MEC data

	SPU-HSR-OP0500
	supervs.c, csw.c
	HLSW supports PACS observing modes

	SPU-HSR-OP0501
	none (see RD009)
	mode parameters are not sent within DEC/MEC data

	SPU-HSR-OP0600
	dxs.c, llc.c, fill_out.c, datatx.c, Rc_Sel.c
	Raw data from selected channels can be sent if required

	SPU-HSR-OP0601
	dmch_cp.c, fill_out.c, datatx.c
	DEC/MEC header is compressed lossless apart in the buffer transmission mode

	SPU-HSR-OP0602
	hk.c, fill_out.c, ramp_ft.c, average.c
	Specified parameters are included in the HLSW HK

	SPU-HSR-OP0603
	supervs.c, spuasw.h, fill_out.c
	Nominal compressed entity time interval is 12s for LWL and 3s for SWL in photometry

	SPU-HSR-OP0604
	supervs.c, spuasw.h, fill_out.c
	Nominal compressed entity time interval is 2s for LWL and SWL in spectroscopy

	SPU-HSR-OP0610
	csw.c, bol_ex.c, spec1_2.c
	HLSW supports the PACS prime mode

	SPU-HSR-OP0611
	hk.c, fill_out.c
	Compression results are included in the HLSW HK

	SPU-HSR-OP0620
	csw.c, bol_ex.c, spec1_2.c
	HLSW supports the PACS parallel mode

	SPU-HSR-OP0625
	csw.c, bol_ex.c
	HLSW supports the PACS prime mode

	SPU-HSR-OP0630
	csw.c, bol3.c, spec3.c, dxs.c
	HLSW can compress data from selected detectors lossless

	SPU-HSR-OP0631
	csw.c, bol3.c, spec3.c, dxs.c, T_S_Red.c
	HLSW can compress data from selected detectors lossless

	SPU-HSR-OP0632
	csw.c, bol3.c, spec3.c, dxs.c, T_S_Red.c
	HLSW can compress data from selected detectors lossless

	SPU-HSR-OP0640
	Spvs_Test.c, spu_tst.c, csw.c, phot_gn.c, spec_gn.c
	HLSW supports SPU test mode

	SPU-HSR-OP0650
	csw.c, bol4.c, spec4.c
	HLSW can transmit data from selected detectors without compression

	SPU-HSR-OP0660
	csw.c, buf_bol.c, buf_spec.c, fill_out.c
	HLSW supports buffer transmission mode

	SPU-HSR-OP0661
	supervs.c, csw.c
	HLSW should be in stopped compression mode before running the buffer transmission mode

	SPU-HSR-OP0670
	csw.c, spec5.c, spec1_2.c
	HLSW splits 4s ramp in two 2s ramps

	SPU-HSR-RS0001
	All
	memory processing

	SPU-HSR-RS0100
	All
	processing capacity

	SPU-HSR-VF0001
	All
	SW acceptance verification

	SPU-HSR-VF0002
	All (+ decompression SW components)
	ensure compression/decompression yields to orig. data

	SPU-HSR-VF0003
	All
	ensure fully execution of algorithm logic by test data

	SPU-HSR-AT0001
	All
	test cases for acceptance tests

	SPU-HSR-DO0001
	All
	SDD replaces ADD, DDD and SRD

	SPU-HSR-PT0001
	All
	Compiler G21K, Processor ADSP 21020, Communication Chip SMC S332, Operating System VirtuosoTM

	SPU-HSR-QA0001
	All
	HLSW development complies with the QA plan

	SPU-HSR-QA0002
	All
	HLSW source code is commented

	SPU-HSR-QA0100
	watchp.c
	handle anomalies with respect to command execution

	SPU-HSR-QA0101
	All
	SW design to avoid flaws

	SPU-HSR-QA0102
	All
	mechanisms to protect data and resources

	SPU-HSR-QA0103
	spu_io.c, supervs.c, fill_in.c, hk.c
	handle RAM and EEPROM SEU

	SPU-HSR-QA0104
	supervs.c
	handle corrupt and incomplete DEC/MEC data

	SPU-HSR-QA0105
	asmlib.s
	detect and handle arithmetic errors

	SPU-HSR-QA0106
	llc.c
	not lead to buffer overflow/underrun

	SPU-HSR-QA0200
	All (+ documentation)
	maintainable to later extend

	SPU-HSR-QA0201
	All (+ documentation)
	error detection and fault repair

	SPU-HSR-QA0202
	make.bat
(in CVS: / obsw/ spu/ tools/ compilation)
	deliverable scripts for SW build

	SPU-HSR-QA0203
	files in CVS: / obsw/ spu/ tools
	SDE includes SW licences and tools

	SPU-HSR-QA0204
	HLSW.MAP
(in CVS: / obsw/ spu/ tools/ compilation)
	detailed map for SW deliveries

	SPU-HSR-QA0205
	files in CVS: / obsw/ spu/ tools
	documentation of in-house tools

	SPU-HSR-QA0206
	see http://pacs.ster.kuleuven.ac.be/ shall and http://cvs.ster.kuleuven.be/
	use of SPR/SCR and CVS management

	SPU-HSR-SA0001
	All
	order of commands, HK and telemetry

	SPU-HSR-SA0010
	hk.c
	HK provide detailed SPU status

	SPU-HSR-SA0011
	hk.c, spu_io.c, fill_in.c
	Memory failure detection

	SPU-HSR-SA0012
	hk.c
	DEC/MEC Header Errors

9 Software Requirements vs. Software Verification & Validation Traceability Matrix

	Software Requirements
	Verification Activity
in RD017
	Description

	SPU-HSR-FN0001
	Proc. 3.4.4.1 – 15
	HLSW is able to receive command packets from DPU

	SPU-HSR-FN0002
	Proc. 3.4.4.1 – 15
	HLSW is able to identify the DPU command

	SPU-HSR-FN0003
	Proc. 3.5.4.1 – 6 (spec)

Proc. 3.6.4.1 – 6 (phot)
	HLSW aborts data compression if DPU command is received

	SPU-HSR-FN0004
	Proc. 3.4.4.1
	HLSW can load data into SPU RAM

	SPU-HSR-FN0005
	Proc. 3.4.4.1
	HLSW checks the consistency of the data before the load

	SPU-HSR-FN0006
transfered to

SPU-HSR-IF0011
	Proc. 3.4.4.1
	Data load only to DRAM, Ext. DRAM and DPRAM

	SPU-HSR-FN0007
	Proc. 3.4.4.2
	HLSW can dump data from SPU RAM

	SPU-HSR-FN0008
transfered to

SPU-HSR-IF0021
	Proc. 3.4.4.2
	Data dump only from PRAM, DRAM, Ext. DRAM and DPRAM

	SPU-HSR-FN0009
	Proc. 3.4.4.3
	HLSW can check SPU RAM

	SPU-HSR-FN0010
	Proc. 3.4.4.3
	Data check only for PRAM, DRAM, Ext. DRAM and DPRAM

	SPU-HSR-FN0011
	Proc. 3.4.4.4 – 15
	HLSW checks consistency of the parameter of the perform activity command

	SPU-HSR-FN0012
	Proc. 3.4.4.4
	HLSW can perform warm reset

	SPU-HSR-FN0013
	Proc. 3.5.4.7 – 16 (spec)
Proc. 3.6.4.7 – 28 (phot)
	HLSW can transmit data from selected channels in raw

	SPU-HSR-FN0014
	Proc. 3.4.4.6 – 8 (sim), Proc. 3.4.4.9 – 11 (sim)

Proc. 3.5.4.1 – 4 & 6 (spec)

Proc. 3.6.4.1 – 4 & 6 (phot)
	HLSW can abort data compression

	SPU-HSR-FN0015
	Proc. 3.5.4.1 – 2 (spec)

Proc. 3.6.4.1 – 2 (phot)
	HLSW can start data compression

	SPU-HSR-FN0016
	Proc. 3.4.4.9 – 10
	HLSW can generate simulated photometry data on board for test purposes

	SPU-HSR-FN0017
	Proc. 3.4.4.6 – 7
	HLSW can generate simulated spectroscopy data on board for test purposes

	SPU-HSR-FN0018
deleted
	N/A
	HLSW provides an interface to the peak-up program

	SPU-HSR-FN0019
deleted
	N/A
	HLSW provides an interface to the bolometer background cancelling program

	SPU-HSR-FN0020
	Proc. 3.4.4.6, Proc. 3.4.4.9
	HLSW checks consistency of the parameter of the write command

	SPU-HSR-FN0021
	Proc. 3.6.4.7 – 10
	HLSW can load detectors table from subarray 1 in photometry

	SPU-HSR-FN0022
	Proc. 3.6.4.11 – 14
	HLSW can load detectors table from subarray 2 in photometry

	SPU-HSR-FN0023
	Proc. 3.6.4.15 – 18
	HLSW can load detectors table from subarray 3 in photometry

	SPU-HSR-FN0024
	Proc. 3.6.4.19 – 22
	HLSW can load detectors table from subarray 4 in photometry

	SPU-HSR-FN0025
	Proc. 3.6.4.23 – 26
	HLSW can load detectors table from subarray 5 in photometry

	SPU-HSR-FN0026
	Proc. 3.5.4.7 – 10
	HLSW can load detectors table from subarray 1 in spectroscopy

	SPU-HSR-FN0027
	Proc. 3.6.4.11 – 14
	HLSW can load detectors table from subarray 2 in spectroscopy

	SPU-HSR-FN0028
	Proc. 3.4.4.13
	HLSW can load detector constants table in photometry

	SPU-HSR-FN0029
	Proc. 3.4.4.12
	HLSW can load detector constants table in spectroscopy

	SPU-HSR-FN0030
	Proc. 3.4.4.6 (spec)

Proc. 3.4.4.9 (phot)
	HLSW can load simulated data table for SPU test mode

	SPU-HSR-FN0031
	Proc. 3.4.4.12
	HLSW can copy SW code from RAM to EEPROM

	SPU-HSR-FN0032
	Proc. 3.2 (item 16)
	HLSW connects to DEC/MEC upon DPU command

	SPU-HSR-FN0100
	Proc. 3.5.4.1 – 2 (spec)

Proc. 3.6.4.1 – 2 (phot)
	HLSW is able to receive data packets from DMC

	SPU-HSR-FN0101
	Proc. 3.5.4.1 – 6 (spec)

Proc. 3.6.4.1 – 6 (phot)
	HLSW can start data compression

	SPU-HSR-FN0102
	Proc. 3.5.4.1 – 2 (spec)

Proc. 3.6.4.1 – 2 (phot)
	HLSW can distinguish between photometry and spectroscopy data

	SPU-HSR-FN0103
	Proc. 3.5.4.18 – 20 (spec)

Proc. 3.6.4.30 – 32 (phot)
	HLSW is able to buffer DEC/MEC data to memory

	SPU-HSR-FN0104
	Proc. 3.5.4.1 – 6 (spec)

Proc. 3.6.4.1 – 6 (phot)
	For real time processing procedures are implemented in HLSW to handle the buffers

	SPU-HSR-FN0105
	Proc. 3.5.4.1 – 23 (spec)

Proc. 3.6.4.1 – 35 (phot)
	HLSW supports eleven compression modes

	SPU-HSR-FN0200
	Proc. 3.5.4.1 – 6 (spec)

Proc. 3.6.4.1 – 6 (phot)
	HLSW send permanently HK packets to DPU

	SPU-HSR-FN0201
	Proc. 3.5.4.1 – 6 (spec) => HK analysis

Proc. 3.6.4.1 – 6 (phot) => HK analysis
	„Are You Alive“ SPU is implemented in the HLSW HK

	SPU-HSR-FN0202
	Proc. 3.5.4.1 – 6 (spec) => HK analysis

Proc. 3.6.4.1 – 6 (phot) => HK analysis
	EDAC check status is implemented in the HLSW HK

	SPU-HSR-FN0203
	Proc. 3.5.4.1 – 6 (spec) => HK analysis

Proc. 3.6.4.1 – 6 (phot) => HK analysis
	Ground people are responsible for analyzing the failing memory addresses detected using EDAC check

	SPU-HSR-FN0300
	Proc. 3.5.4.1 – 6 (spec)

Proc. 3.6.4.1 – 6 (phot)
	HLSW fulfils real time data processing requirement

	SPU-HSR-FN0301
	Proc. 3.5.4.1 – 6 (spec) => TM Packet analysis

Proc. 3.6.4.1 – 6 (phot) => TM Packet analysis
	HLSW doesn’t allow science data loss

	SPU-HSR-IF0001
	Proc. 3.5.4.1 – 6 (spec)

Proc. 3.6.4.1 – 6 (phot)
	HLSW aborts any running activity, if DPU command is received

	SPU-HSR-IF0002
	Proc. 3.4.4.1 – 15
	Maximum response time for DPU commands is 200ms

	SPU-HSR-IF0003
	Proc. 3.4.4.1 – 15
	HLSW acknowledges any received DPU command according to the defined protocol

	SPU-HSR-IF0010
	Proc. 3.4.4.1
	HLSW acknowledges the execution of the load command

	SPU-HSR-IF0011
	Proc. 3.4.4.1
	Data load only to DRAM, Ext. DRAM and DPRAM

	SPU-HSR-IF0020
	Proc. 3.4.4.2
	HLSW acknowledges the execution of the dump command

	SPU-HSR-IF0021
	Proc. 3.4.4.2
	Data dump only from PRAM, DRAM, Ext. DRAM and DPRAM

	SPU-HSR-IF0030
	Proc. 3.4.4.3
	HLSW acknowledges the execution of the check command

	SPU-HSR-IF0040
deleted
	N/A
	HLSW acknowledges the reception of the peak-up command

	SPU-HSR-IF0050
	Proc. 3.4.4.4
	HLSW acknowledges the reception of the warm reset command

	SPU-HSR-IF0060
	Proc. 3.4.4.5
	HLSW acknowledges the execution of the raw channel selection command

	SPU-HSR-IF0070
	Proc. 3.4.4.8, Proc. 3.4.4.11
	HLSW acknowledges the reception of the stop command

	SPU-HSR-IF0080
	Proc. 3.5.4.2 (spec)

Proc. 3.6.4.2 (phot)
	HLSW acknowledges the reception of the start command

	SPU-HSR-IF0090
	Proc. 3.4.4.10
	HLSW acknowledges the reception of the SPU test in photometry command

	SPU-HSR-IF0100
	Proc. 3.4.4.7
	HLSW acknowledges the reception of the SPU test in spectroscopy command

	SPU-HSR-IF0110
deleted
	N/A
	HLSW acknowledges the reception of the Bolometer Background Cancelling command

	SPU-HSR-IF0120
	Proc. 3.4.4.6, Proc. 3.4.4.9
	HLSW acknowledges the execution of the write command

	SPU-HSR-IF0130
	Proc. 3.4.4.12
	HLSW acknowledges the reception of the Copy Data to EEPROM command

	SPU-HSR-IF0131
	Proc. 3.4.4.12
	No HK packet are transmitted to DPU while data are copied to EEPROM

	SPU-HSR-IF0140
	Proc. 3.2 (item 16)
	HLSW acknowledges the reception of the Connect to DEC/MEC command

	SPU-HSR-IF0200
	Proc. 3.4.4.6 / 7 (sim), Proc. 3.4.4.9 / 10 (sim)

Proc. 3.5.4.1 – 2 (spec)

Proc. 3.6.4.1 – 2 (phot)
	HLSW is able to transmit TM packets to DPU

	SPU-HSR-IF0201
	Proc. 3.5.4.1 – 6 (spec) => TM Packet analysis

Proc. 3.6.4.1 – 6 (phot) => TM Packet analysis
	HLSW can buffer a maximum number of 75 TM packets

	SPU-HSR-IF0300
	Proc. 3.5.4.1 – 6 (spec)

Proc. 3.6.4.1 – 6 (phot)
	HLSW doesn’t acknowledge the reception of DEC/MEC packets

	SPU-HSR-IF0301
	Proc. 3.5.4.1 – 6 (spec) => HK analysis
Proc. 3.6.4.1 – 6 (phot) => HK analysis
	HLSW can detect some corrupted fields in the DEC/MEC packets

	SPU-HSR-IF0302
	Proc. 3.5.4.1 – 6 (spec)

Proc. 3.6.4.1 – 6 (phot)
	HLSW can distinguish between photometry and spectroscopy packets

	SPU-HSR-IF0303
	Proc. 3.5.4.1 – 6 (spec) => HK analysis

Proc. 3.6.4.1 – 6 (phot) => HK analysis
	DEC/MEC link connection status is set in the HLSW HK

	SPU-HSR-IF0304
	Proc. 3.5.4.1 – 6 (spec) => HK analysis

Proc. 3.6.4.1 – 6 (phot) => HK analysis
	DEC/MEC packet size

	SPU-HSR-OP0001
	Proc. 3.5.4.1 – 6 => TM analysis
	HLSW set the buffer granularity in spectroscopy to 8 Hz

	SPU-HSR-OP0002
	Proc. 3.5.4.1 – 6 => TM analysis
	HLSW can compress a maximum buffer size of 468kB in spectroscopy

	SPU-HSR-OP0003
	Proc. 3.5.4.1 – 6 => TM analysis
	HLSW compresses DEC/MEC header lossless

	SPU-HSR-OP0010
	is not taken into account by HLSW
	DEC/MEC header field in spectroscopy (SPUID)

	SPU-HSR-OP0020
	Verifiable by code inspection
	DEC/MEC header field in spectroscopy (Type)

	SPU-HSR-OP0021
	Proc. 3.5.4.1 – 6 => TM analysis
	DEC/MEC header field in spectroscopy (Type)

	SPU-HSR-OP0030
	Proc. 3.5.4.1 – 6 => TM analysis
	DEC/MEC header field in spectroscopy (CRDCR)

	SPU-HSR-OP0031
	Proc. 3.5.4.1 – 6 => TM analysis
	DEC/MEC header field in spectroscopy (CRDCR)

	SPU-HSR-OP0040
	Proc. 3.5.4.1 – 6 => TM analysis
	DEC/MEC header field in spectroscopy (RRR)

	SPU-HSR-OP0041
	Proc. 3.5.4.1 – 6 => TM analysis
	DEC/MEC header field in spectroscopy (RRR)

	SPU-HSR-OP0050
	Proc. 3.5.4.1 – 65
	DEC/MEC header field in spectroscopy (CMM)

	SPU-HSR-OP0051
	Proc. 3.5.4.1 – 6 => TM analysis
	DEC/MEC header field in spectroscopy (CMM)

	SPU-HSR-OP0060
deleted
	Proc. 3.5.4.1 – 6
	DEC/MEC header field in spectroscopy (OBSID)

	SPU-HSR-OP0070
	Proc. 3.5.4.1 – 6 => TM analysis
	DEC/MEC header field in spectroscopy (Validity)

	SPU-HSR-OP0071
	Proc. 3.5.4.1 – 6 => TM analysis
	DEC/MEC header field in spectroscopy (Validity)

	SPU-HSR-OP0072
	Proc. 3.5.4.1 – 6 => TM analysis
	DEC/MEC header field in spectroscopy (Validity)

	SPU-HSR-OP0080
	Proc. 3.5.4.1 – 6 => TM analysis
	DEC/MEC header field in spectroscopy (CPR)

	SPU-HSR-OP0081
	Proc. 3.5.4.1 – 6 => TM analysis
	DEC/MEC header field in spectroscopy (CPR)

	SPU-HSR-OP0082
	Proc. 3.5.4.1 – 6 => TM analysis
	DEC/MEC header field in spectroscopy (CPR)

	SPU-HSR-OP0083
	Proc. 3.5.4.1 – 6 => TM analysis
	DEC/MEC header field in spectroscopy (CPR)

	SPU-HSR-OP0090
	Proc. 3.5.4.1 – 6 => TM analysis
	DEC/MEC header field in spectroscopy (Label)

	SPU-HSR-OP0091
	Proc. 3.5.4.1 – 6 => TM analysis
	DEC/MEC header field in spectroscopy (Label)

	SPU-HSR-OP0100
	Proc. 3.5.4.1 – 6 => TM analysis
	DEC/MEC header field in spectroscopy (GPR)

	SPU-HSR-OP0101
	Proc. 3.5.4.1 – 6 => TM analysis
	DEC/MEC header field in spectroscopy (GPR)

	SPU-HSR-OP0102
	Proc. 3.5.4.1 – 6 => TM analysis
	DEC/MEC header field in spectroscopy (GPR)

	SPU-HSR-OP0110
	is not taken into account by HLSW
	DEC/MEC header field in spectroscopy (BBID)

	SPU-HSR-OP0120
	is not taken into account by HLSW
	DEC/MEC header field in spectroscopy (Time)

	SPU-HSR-OP0130
	is not taken into account by HLSW
	DEC/MEC header field in spectroscopy (WPR)

	SPU-HSR-OP0140
	is not taken into account by HLSW
	DEC/MEC header field in spectroscopy (CRECR)

	SPU-HSR-OP0200
	Proc. 3.6.4.1 – 6 => TM analysis
	HLSW set the buffer granularity in photometry to 10 Hz in SWL and 2.5 Hz in LWL

	SPU-HSR-OP0201
	Proc. 3.6.4.1 – 6 => TM analysis
	HLSW can compress a maximum buffer size of 480kB in photometry

	SPU-HSR-OP0202
	Proc. 3.6.4.1 – 6 => TM analysis
	HLSW compresses DEC/MEC header lossless

	SPU-HSR-OP0210
	is not taken into account by HLSW
	DEC/MEC header field in photometry (SPUID)

	SPU-HSR-OP0220
	Proc. 3.6.4.1 – 6 => TM analysis
	DEC/MEC header field in photometry (Type)

	SPU-HSR-OP0230
	Proc. 3.6.4.1 – 6 => TM analysis
	DEC/MEC header field in photometry (CRDCCP)

	SPU-HSR-OP0231
	Proc. 3.6.4.1 – 6 => TM analysis
	DEC/MEC header field in photometry (CRDCCP)

	SPU-HSR-OP0240
	is not taken into account by HLSW
	DEC/MEC header field in photometry (CRC)

	SPU-HSR-OP0250
	Proc. 3.6.4.1 – 6
	DEC/MEC header field in photometry (CMM)

	SPU-HSR-OP0251
	Proc. 3.6.4.1 – 6 => TM analysis
	DEC/MEC header field in photometry (CMM)

	SPU-HSR-OP0260
deleted
	Proc. 3.6.4.1 – 6
	DEC/MEC header field in photometry (OBSID)

	SPU-HSR-OP0270
	Proc. 3.6.4.1 – 6 => TM analysis
	DEC/MEC header field in photometry (Validity)

	SPU-HSR-OP0271
	Proc. 3.6.4.1 – 6 => TM analysis
	DEC/MEC header field in photometry (Validity)

	SPU-HSR-OP0272
	Proc. 3.6.4.1 – 6 => TM analysis
	DEC/MEC header field in photometry (Validity)

	SPU-HSR-OP0280
	Proc. 3.6.4.1 – 6 => TM analysis
	DEC/MEC header field in photometry (CPR)

	SPU-HSR-OP0281
	Proc. 3.6.4.1 – 6 => TM analysis
	DEC/MEC header field in photometry (CPR)

	SPU-HSR-OP0290
	Proc. 3.6.4.1 – 5 => TM analysis
	DEC/MEC header field in photometry (Label)

	SPU-HSR-OP0291
	Proc. 3.6.4.1 – 5 => TM analysis
	DEC/MEC header field in photometry (Label)

	SPU-HSR-OP0300
	is not taken into account by HLSW
	DEC/MEC header field in photometry (DBID)

	SPU-HSR-OP0310
	is not taken into account by HLSW
	DEC/MEC header field in photometry (BBID)

	SPU-HSR-OP0320
	is not taken into account by HLSW
	DEC/MEC header field in photometry (Time)

	SPU-HSR-OP0330
	is not taken into account by HLSW
	DEC/MEC header field in photometry (WPR)

	SPU-HSR-OP0340
	is not taken into account by HLSW
	DEC/MEC header field in photometry (BSID)

	SPU-HSR-OP0400
	3.5.4.1 – 32 (spec)

3.6.4.1 – 41 (phot)
	HLSW supports PACS operating modes

	SPU-HSR-OP0401
	3.5.4.1 – 32 (spec)

3.6.4.1 – 41 (phot)
	Flexibility of the HLSW in science data compression

	SPU-HSR-OP0402
	is not taken into account by HLSW
	mode parameters are not sent within DEC/MEC data

	SPU-HSR-OP0500
	3.5.4.1 – 32 (spec)

3.6.4.1 – 41 (phot)
	HLSW supports PACS observing modes

	SPU-HSR-OP0501
	is not taken into account by HLSW
	mode parameters are not sent within DEC/MEC data

	SPU-HSR-OP0600
	Proc. 3.5.4.1 – 2 (spec)

Proc. 3.6.4.1 – 2 (phot)
	Raw data from selected channels can be sent if required

	SPU-HSR-OP0601
	Proc. 3.5.4.1 – 32 (spec) => TM analysis

Proc. 3.6.4.1 – 41 (phot) => TM analysis
	DEC/MEC header is compressed lossless apart in the buffer transmission mode

	SPU-HSR-OP0602
	Proc. 3.5.4.1 – 32 (spec) => HK analysis

Proc. 3.6.4.1 – 41 (phot) => HK analysis
	Specified parameters are included in the HLSW HK

	SPU-HSR-OP0603
	Proc. 3.6.4.1 – 32 => TM analysis
	Nominal compressed entity time interval is 12s for LWL and 3s for SWL in photometry

	SPU-HSR-OP0604
	Proc. 3.5.4.1 – 41 => TM analysis
	Nominal compressed entity time interval is 2s for LWL and SWL in spectroscopy

	SPU-HSR-OP0610
	Proc. 3.5.4.1 – 2 (spec)

Proc. 3.6.4.1 – 2 (phot)
	HLSW supports the PACS prime mode

	SPU-HSR-OP0611
	Proc. 3.5.4.1 – 32 (spec) => HK analysis

Proc. 3.6.4.1 – 41 (phot) => HK analysis
	Compression results are included in the HLSW HK

	SPU-HSR-OP0620
	Proc. 3.5.4.1 – 2 (spec)

Proc. 3.6.4.1 – 2 (phot)
	HLSW supports the PACS parallel mode

	SPU-HSR-OP0625
	Proc. 3.5.4.1 – 32 (spec)

Proc. 3.6.4.1 – 41 (phot)
	HLSW supports the PACS prime mode

	SPU-HSR-OP0630
	Proc. 3.5.4.7 – 10 (spec)

Proc. 3.6.4.7 – 10 (phot)
	HLSW can compress data from selected detectors lossless

	SPU-HSR-OP0631
	Proc. 3.5.4.7 – 16 (spec)
Proc. 3.6.4.7 – 28 (phot)
	HLSW can compress data from selected detectors lossless

	SPU-HSR-OP0632
	Proc. 3.5.4.7 – 10 (spec)

Proc. 3.6.4.7 – 10 (phot)
	HLSW can compress data from selected detectors lossless

	SPU-HSR-OP0640
	Proc. 3.4.4.6 – 7 (sim spec)

Proc. 3.4.4.9 – 10 (sim phot)
	HLSW supports SPU test mode

	SPU-HSR-OP0650
	Proc. 3.5.4.11 – 17 (spec)

Proc. 3.6.4.23 – 29 (phot)
	HLSW can transmit data from selected detectors without compression

	SPU-HSR-OP0660
	Proc. 3.5.4.11 – 20 (spec)

Proc. 3.6.4.23 – 32 (phot)
	HLSW supports buffer transmission mode

	SPU-HSR-OP0661
	Proc. 3.5.4.11 – 20 (spec)

Proc. 3.6.4.23 – 32 (phot)
	HLSW should be in stopped compression mode before running the buffer transmission mode

	SPU-HSR-OP0670
	Proc. 3.5.4.21 – 23 (spec)
	HLSW splits 4s ramp in two 2s ramps

	SPU-HSR-RS0001
	Proc. 3.5.4.1 – 32 (spec) => TM/HK analysis

Proc. 3.6.4.1 – 41 (phot) => TM/HK analysis
	20% more memory capacity

	SPU-HSR-RS0100
	Proc. 3.5.4.1 – 32 (spec) => TM/HK analysis

Proc. 3.6.4.1 – 41 (phot) => TM/HK analysis
	20% spare processing capacity

	SPU-HSR-VF0001
	All
	SW acceptance verification

	SPU-HSR-VF0002
	All (+ PCSS test harness)
	ensure compression/decompression yields to orig. data

	SPU-HSR-VF0003
	All
	ensure fully execution of algorithm logic by test data

	SPU-HSR-AT0001
	All
	test cases for acceptance tests

	SPU-HSR-DO0001
	see RD001
	SSD replaces ADD, DDD and SRD

	SPU-HSR-PT0001
	see RD016
	Compiler G21K, Processor ADSP 21020, Communication Chip SMC S332, Operating System VirtuosoTM

	SPU-HSR-QA0001
	Verifiable by code inspection
	HLSW development complies with the QA plan

	SPU-HSR-QA0002
	Verifiable by code inspection
	HLSW source code is commented

	SPU-HSR-QA0100
	Proc. 3.5.4.1 – 6 (spec)

Proc. 3.6.4.1 – 6 (phot)
	handle anomalies with respect to command execution

	SPU-HSR-QA0101
	All
	SW design to avoid flaws

	SPU-HSR-QA0102
	All
	mechanisms to protect data and resources

	SPU-HSR-QA0103
	Verifiable by code inspection
	handle RAM and EEPROM SEU

	SPU-HSR-QA0104
	Proc. 3.5.4.1 – 32 (spec) => TM/HK analysis

Proc. 3.6.4.1 – 41 (phot) => TM/HK analysis
	handle corrupt and incomplete DEC/MEC data

	SPU-HSR-QA0105
	Verifiable by code inspection
	detect and handle arithmetic errors

	SPU-HSR-QA0106
	Verifiable by code inspection
	not lead to buffer overflow/underrun

	SPU-HSR-QA0200
	Verifiable by code inspection (+ see RD016)
	maintainable to later extend

	SPU-HSR-QA0201
	Verifiable by code inspection (+ see RD016)
	error detection and fault repair

	SPU-HSR-QA0202
	N/A
	deliverable scripts for SW build

	SPU-HSR-QA0203
	N/A
	SDE includes SW licences and tools

	SPU-HSR-QA0204
	N/A
	detailed map for SW deliveries

	SPU-HSR-QA0205
	N/A
	documentation of in-house tools

	SPU-HSR-QA0206
	N/A
	use of SPR/SCR and CVS management

	SPU-HSR-SA0001
	Verifiable by code inspection (+ see RD016)
	order of commands, HK and telemetry

	SPU-HSR-SA0010
	Proc. 3.5.4.1 – 32 (spec) => TM/HK analysis

Proc. 3.6.4.1 – 41 (phot) => TM/HK analysis
	HK provide detailed SPU status

	SPU-HSR-SA0011
	Proc. 3.5.4.1 – 32 (spec) => TM/HK analysis

Proc. 3.6.4.1 – 41 (phot) => TM/HK analysis
	Memory failure detection

	SPU-HSR-SA0012
	Proc. 3.5.4.1 – 32 (spec) => TM/HK analysis

Proc. 3.6.4.1 – 41 (phot) => TM/HK analysis
	DEC/MEC Header Errors

Note:
N/A indicates that this requirements could not be tested or visualised at SVV level (HK, TM or code insepction) or belongs to SW management or deleted SW tasks.
Appendices

Appendix A:
LLC Algorithms

A.1 Currently implemented Algorithms

A.1.1 Lossless DEC/MEC Header Compression

The actually implemented algorithms in SPU HLSW version 13.8 are:

1.) D_S_TRR

2.) ZRS

3.) RZIP
4.) RZIP2
See Appendix A.2 for more detail. These algorithms have been tested for the worst case with several variations in the DEC/MEC header. The maximum compressed header size will not exceed 0.5 Kbytes.

A.1.2 Lossless Science Data Compression

The actually implemented lossless compression algorithms in SPU HLSW version 13.8 are:

1.) Photometry

a. Temporal and Spatial redundancy Reduction

b. VBWL encoder
c. FM
d.
e. Arithmetic Coding

2.) Specstropcopy

a. Data Sorting and Spatial Redundancy Reduction

b. pacs_codec

c. RZIP (with range 3)

d. Temporal Redundancy Reduction

e. Rampdiff

f. FM Arithmetic Coding
See Appendix A.2 for more details.

A.1.3 Raw Channel Data Compression

The actually implemented Raw Channel compression algorithms in SPU HLSW version 13.8 are:
1.) Photometry

a. D_S_TRR

b. RZIP (with range 7)
c. RZIP (with range 6)

d. RZIP (with range 4)

2.) Specstropcopy

a. Data Sorting and Spatial Redundancy Reduction

b. RZIP (with range 3)

See Appendix A.2 for more details.

A.2. Library of LLC Algorithms

A.2.1 List of Available Algorithms

The following table shows a summary of possible LLC algorithms.

	Name of Algorithm
	Description
	Implemented in HLSW v13.8

	Dynamic and Static Temporal Redundancy Reduction (D_S_TRR)
	see section A.2.2
	(

	Simple Zero Repetition Suppression (ZRS)
	see section A.2.3
	(

	RZIP/RZIP2
	see section A.2.4
	(

	
	
	

	Arithmetic Coding (ARC)
	see section A.2.5
	(

	Data Resorting (Reorder)
	see section A.2.6
	(

	PACS Codec (new_srt)
	see section A.2.7
	(

	FM Aritmetic Compression
	see section A.2.8
	(

	VBWL_short
	see section A.2.9
	(

Table 13. List of available LLC algorithms.
A.2.2 Dynamic and Static Temporal Redundancy Reduction (D_S_TRR)

We consider 512 frames whereas each contains 13 words of data (DMCH). Then the algorithm of the DTRR is as follows:

Frame001 is not changed

Frame002new = Frame001 – Frame002

Frame003new = Frame002 – Frame003

Frame004new = Frame003 – Frame004

…

Frame512new = Frame511 – Frame512

In the next step the STRR algorithm is done:

Frame001 is not changed

Frame002new = Frame001 – Frame002

Frame003newnew = Frame002new – Frame003new

Frame004newnew = Frame002new – Frame004new

…

Frame512newnew = Frame002new – Frame512new

A.2.3 Simple Zero Repetition Suppression (ZRS)

ZRS is a small algorithm to quickly get rid of buffers with many zeroes. It simply ignores zeroes by encoding non-zero symbols and their relative position in the original buffer - or, in other words, the number of zeroes between the symbol and the one that was encoded before.

A symbol sequence of

A 0 B 0 0 0 0 0 0 0 C 0 0 0 A

Is encoded to

A 0 B 1 C 7 A 3

Note that the first symbol’s position information is always 0. Another thing is that a buffer, which does not at least contain as many 0s as other symbols, is not compressed but expanded.

A.2.4 RZIP/RZIP2
Rzip is a simple lexicographic compression algorithm written for PACS OBSW DMC header compression (see RD018). The goal is to achieve maximum compression with a minimum of processing power on a 32-Bit big endian DSP. Though its power lies within iteration, it is considerably faster than conventional lz-based algorithms and much more efficient than encoders using DPCM and VBWL.

Let SOURCE be a buffer of data to compress with a size of SSIZE.

Let DEST be the destination buffer where the compressed data will be put.

Let ALPHA be a working buffer of SSIZE (it could be SSIZE bits, but this would be slow).

SYMBOLSIZE is a parameter, which determines the number of bits to use for the symbols.

RANGEWIDTH is a parameter, which determines the number of bits to use for encoding ranges.

A width of 3 means that the RANGE will be 7 (23-1).

Let the SYMBOLSIZE be 32bit. Let our SSIZE be 128 Bytes. Hence the SOURCE consists of 128*8/32 symbols. Add the necessary empty bits to the buffer if it is not separable by the SYMBOLSIZE. Store the number of bits added that way in TAIL, which will contribute to the compressed header information. In our example we have 32 symbols a 32 bit and the tail is 0.

We will now take a look at the symbols. Our buffer may look like:

A-A-B-C-A-B-A-C-D-… (32 32bit Symbols)

0-0-0-0-0-0-0-0-0-… (This is our alpha channel)

a) Select the first unused (alpha=0) Symbol. This is shown bold above. Set the Alpha 1.

b) Look ahead if you find the symbol in the next symbols within RANGE. If you do so, code YES in 1 bit plus the RANGE within RANGEWIDTH bits. Set the Alpha of the found symbol 1. Reset the RANGE to 0 and continue until no further occurrences are found. Code NO in 1 bit.

c) Go back to a) until the buffer is finished.

d) Encode the original size plus the tail in the header. You may also encode a version number, the symbol size and the range width optionally.

NOTE THAT:

The difference between A-A will be encoded 0 (0 symbols are between them).

The difference between A-X-X-A will be encoded 2.

Once you have already coded all As, the difference between the Bs in

B-A-C-B will be encoded as 1 (the As are already invisible due to the ALPHA).

Our DEST looks like:

A-Y0-Y2-Y1-…-N

B-Y1-…-N

C-Y0-…-N

D…

Iteration:

Once you have coded your buffer with a set of parameters, it can be encoded another time with different parameters. For example, for DMC compression a 32-5 32-3 32-5 triple run showed the best compression.

The following keys are used for compression-decompression interface to identify the different RZIP combination.

	RZIP Combination

(in term of range)
	Key

	3
	0x30xxxxxx

	3-3
	0x22xxxxxx

	3-3-3
	0x03xxxxxx

	7
	0x70xxxxxx

	6-6
	0x00xxxxxx

	7-6-4
	0x07xxxxxx

Table 14. Keys for RZIP Combinationss
RZIP2 works in principle in the same way as RZIP, except that the symbols, answers and ranges are stored in a separated way. First, the 32-bit symbols are stored, then the block of ranges, padded by the block of answers. That way better iterative characteristics are achieved.

A.2.5 Arithmetic Coding (ARC)

The algorithm for encoding data using arithmetic coding works conceptually as follows:

· The encoding process begins with a current interval [L ; H[initialised to [0 ; 1[.

· For each symbol of the file, two steps are performed:

· The current interval is divided into subintervals, one for each possible alphabet symbol. The size of a symbol's subinterval is proportional to the estimated probability that the symbol will be the next symbol in the file, according to the model of the input.

· The subinterval corresponding to the symbol that actually occurs next in the file is selected as the new current interval.

· Enough bits are output to distinguish the final current interval from all other possible final intervals.

The length of the final subinterval is clearly equal to the product of the probabilities of the individual symbols, which is the probability p of the particular sequence of symbols in the file. The final step uses almost exactly - log2 p bits to distinguish the file from all other possible files. An additional mechanism is needed to indicate the end of the file, either a special end-of-file symbol coded just once, or some external indication of the file's length.

In the second step, it is required to compute only the subinterval corresponding to the symbol that actually occurs. To do this, two cumulative probabilities are defined, Pci = Σ pk (for k = 1 to i-1) (the cumulative probability) and Pni = Σ pk (for k = 1 to i) (the next cumulative probability). The new subinterval is [L+Pci (H-L), L+Pni (H-L)]. The need to maintain and supply cumulative probabilities requires the model to have a complicated data structure.

Example: a non-adaptive code, encoding the stream bbb using arbitrary fixed probability estimates pa = 0.4, pb = 0.5, and pEOF = 0.1.

Encoding proceeds as shown in Table 15.

	Current Interval
	Action
	Subinterval

a
	Subinterval

b
	Subinterval

EOF
	Input

	[0.0000 ;1.0000[
	Subdivide
	[0.0000 ; 0.4000[
	[0.4000 ; 0.9000[
	[0.9000 ; 1.0000[
	b

	[0.4000 ;0.9000[
	Subdivide
	[0.4000 ; 0.6000[
	[0.6000 ; 0.8500[
	[0.8500 ; 0.9000[
	b

	[0.6000 ;0.8500[
	Subdivide
	[0.6000 ; 0.7000[
	[0.7000 ; 0.8250[
	[0.8250 ; 0.8500[
	b

	[0.7000 ;0.8250[
	Subdivide
	[0.7000 ; 0.7500[
	[0.7500 ; 0.8125[
	[0.8125 ; 0.8250[
	EOF

	[0.8125 ;0.8250[
	Subdivide
	
	
	
	

Table 15. The Basic Arithmetic Coding Process
The final interval is [0.8125, 0.8250[, which in binary is approximately [0.11010 00000, 0.11010 01100[. This interval is uniquely identified by outputting 11010 00. According to the fixed model, the probability p of this particular file is (0.5)3 (0.1) = 0.0125 (exactly the size of the final interval) and the code length (in bits) should be - log2 p ≈ 6.322. In practice, 7 bits are needed.

For further details see AD005.

A.2.6 Data Resorting (Reorder)

The aim of this algorithm is to increase the local redundancy (between successive samples) of the data but resorting the samples.

We consider 64 ramps from 450 detectors wher each ramp contains 8 samples. The Reorder algorithm sort the data as follows:

1st sample of 1st ramp of 1st detector

1st sample of 2nd ramp of 1st detector

…

1st sample of 64th ramp of 1st detector

1st sample of 1st ramp of 2nd detector

1st sample of 2nd ramp of 2nd detector

…

1st sample of 64th ramp of 2nd detector

….

1st sample of 64th ramp of 450th detector

2nd sample of 1st ramp of 1st detector

2nd sample of 2nd ramp of 1st detector

…

2nd sample of 64th ramp of 1st detector

……

8th sample of 1st ramp of 450th detector

8th sample of 2nd ramp of 450th detector

…

8th sample of 64th ramp of 450th detector

A.2.7 PACS Codec (new_srt)

This algorithm is based on szip, which uses a Burrows-Wheeler Transform like block sorting technique, followed by a dynamic model range coder.

[image: image50]
Figure 69. Scheme of the PACS Codec algorithm.
A.2.8 FM Arithmetic Compression
The compression scheme has been adapted to address the data from the FM detectors in a better way. In principle, the encoding process is still the same as in the standard Arithmetic Compression, with a few modifications:
· the chunksize is fixed at 8192 byte to replace the division by a right shift.

· The input symbol width is 32 bit

· Input values bigger than 255 are encoded with the “spill symbol” and sent to the “spillover”

· The “spillover” is a separate buffer which will be compressed by VBWL. The VBWL algorithm used is a slight modification of in the VBWL only setting.
· The data model is semi-static: The fitst chunk is compressed with a built-in statistic, each next chunk is compressed with a statistic derived from the previous chunk.

A.2.9 VBWL

A standard VBWL implementation with a few modifications, allowing for better flexibility. The blocksize is pretty short (4 symbols). Three different code lengths are used: the standard length is 3 bits, addressing the majority of the encoded (positive) differences. A 7-bit length is used for encoding bigger differences.

Appendix B:
Fitting Algorithms

B.1 Currently implemented Algorithms

B.1.1 Robust Averaging in Photometry

The actually implemented algorithm in SPU HLSW version 12.2 is:

1.) Mean Value Calculation for signed or unsigned integers (see Appendix B.2.1.2).

B.1.2 Ramp-Fitting in Spectroscopy

The actually implemented algorithm in SPU HLSW version 12.2 is:

1.) Least Squares Fit for more than 2 samples to fit (default) (see Appendix B.2.2.2)

2.) Two-sample difference (see Appendix B.2.2.7) if least square fit if selected and 2 samples per subramps are considered

3.) Mean algorithm if selected (see Appendix B.2.1.2)

B.2 Library of Fitting Algorithms

B.2.1 List of Available Algorithms

The following table shows a summary of possible fitting algorithms for robust averaging in photometry and ramp-fitting in spectroscopy.

	Action
	Name of Algorithm
	Description
	Implemented in HLSW v13.8

	Photometry
	

	Glitch Detection and Rejection
	Sample Deviation Detection Method
	see section B.2.2.1.1
	(

	
	Averaging with Median + Mean Value Calculation
	see section B.2.2.1.2
	(

	Averaging
	Mean Value Calculation
	see section B.2.2.2.1
	(

	
	
	
	

	Spectroscopy
	

	Glitch Detection and Rejection
	Crossed Slope Deviation Detection
	see section B.2.3.1.1
	(

	Ramp-Fitting
	Least Squares Fitting
	see section B.2.3.2.1
	(

	
	Two-Sample-Fit
	see section B.2.3.2.4
	(

	
	Slope Deviation Detection Method
	see section B.2.3.2.5
	(

	
	Two-Samples Difference Method
	see section B.2.3.2.6
	(

	
	Subramp Fitting
	see section B.2.3.2.7
	(

	Averaging
	Mean Value Calculation
	see section B.2.2.2.1
	(

Table 16. List of available fitting algorithms.
B.2.2 Robust Averaging in Photometry

B.2.2.1 Glitch Detection and Rejection

B.2.2.1.1 Sample Deviation Detection Method

The glitch detection uses the Sample Deviation Detection Method. It performs the following:

1- Calculate the sum of valid quadruples.

S(i DIV 4) = sum(X(4*(i DIV 4):4*(i DIV 4)+3))

2- Calculate the deviation (using the weighted sample) of every sample in the quadruple comparing to the calculated sum.

Dev(i) = 4X(i) – S(i DIV 4)

If no glitches occur, all deviations would be less than a predefined Threshold

3- Remove all deviations that are above a certain threshold

4- Average all the remaining readouts with the currently implemented averaging algorithm.

Figure 70. Example showing the sample deviation detection method

B.2.2.2 Averaging

B.2.2.2.1 FM Averaging algorithm

Beginning with software version 13.9, photometry and spectroscopy both use the same statistical averaging algorithm for the calculation of mean values. It supports arbitrary number of samples to average and additional bit rounding at the same time. There is also a random number generator involved for statistically correct up/down-rounding.
The mean value of this averaging method is generated as follows:

[image: image51.wmf]n

rand

y

y

n

mean

r

n

i

i

n

i

i

r

×

+

+

×

=

å

å

=

=

2

)

1

(

)

sgn(

2

1

2

1

1

1

Where n is the number of samples to average, r is the number of bits to round, sgn() is the signum function and rand(1) is a random number being 0 or 1. After calculation, the result is cast to an integer. Note that the mean is right shifted yb r bits if bit rounding is used.
For both, spectroscopy and photometry it is possible to use the “old” averaging algorithms via a parameter in the detector constants photometry/spectroscopy table.
B.2.2.2.2 Mean Value Calculation

This averaging method consists of calculating of the mean value. All points in the support set are taken for the mean calculation. The advantage of this method is the simplicity of the mean value calculation. One assumption on the support set is that any kind of drift, skewness, detector behaviour, etc. is corrected by the preprocessing step.

The main objective of the averaging method is a robust oversampling reduction to facilitate the data processing. Further data processing can be performed on ground.

The mean value of this averaging method is generated for 4 data values as follows

[image: image52.wmf](

)

(

)

(

)

(

)

4

)

2

3

2

1

(

+

+

+

+

+

+

+

=

x

y

x

y

x

y

x

y

mean

where y represent either signed or unsigned integer values. In the software the mean is calculated like below.
Pseudo-Code example:

Mean_val= ((y[x] + y[x+1] + y[x+2] + y[x+3]) + 2) >> 2
Definitions :

signed :
int Mean_val, y;

unsigned int x;

unsigned :
unsigned int Mean_val, y, x ;
 After the summation a bitwise shift by two was performed. This is equal to a division by 4. The result of this mean value calculation is either signed or unsigned integer. The remainder of the division is truncated.

B.2.3 Ramp-Fitting in Spectroscopy

B.2.3.1 Glitch Detection and Rejection

B.2.3.1.1 Crossed Slope Deviation Detection

The glitch detection and rejection using the Wide Slope Deviation Detection method (Figure 71) is performed as described below:

1- Calculate the differences between samples in a ramp as follows:

D(i,dist) = X(i) – X(i+dist)
2- Calculate the deviation of these differences as follows.

Dev(i,dist) = D(i,dist) – dist * D(i,1)

For the first sub-ramp the difference of the first two samples is compared with the difference of the first and last sample in the sub-ramp. For all the following sub-ramps the difference of the last two samples of the previous sub-ramp is compared to the last sample of the new sub-ramp.

If deviations are under a certain threshold, then no information of glitches is available.

 Fit all safe readouts in a ramp with the currently implemented ramp-fitting algorithm till glitch information occurs.
3- If a glitch occurs then reject the 8 following samples and go to point 1
4- Average all fitted slopes when the whole ramp was processed.

Figure 71. Example showing the crossed slope deviation detection
B.2.3.2 Ramp-Fitting

B.2.3.2.1 Least Squares Fitting

The least squares solution can be easily calculated in analytic form and it is optimal with respect to the Gaussian noise process. However, in case of heavy outliers (i.e., glitches) it performs very poor.

Figure 72(a) shows an example where least squares is performing very well, whereas Figure 72(b) shows the least squares solution on the same data as in Figure 72(a) where one sample is an outlier. One can clearly see that the obtained ramp is far from being perfect.

Figure 72. Least Square Fitting (1)

Figure 73. Least Square Fitting (2)

The slope of this fitting method is generated for a ramp or sub-ramps as follows

[image: image53.wmf](

)

å

å

å

å

å

-

-

=

2

2

x

n

x

xy

n

y

x

slope

where

[image: image54.wmf]å

x

 := sumX

[image: image55.wmf]å

2

x

 := Sum_of_X_Square

[image: image56.wmf](

)

2

å

x

 := Sum_of_X_By_X

[image: image57.wmf]å

xy

 := sumXY

[image: image58.wmf]å

y

 := sumY
are float values. The result is an integer value where the float result is truncated.

Pseudo-Code example:

/*=================================*/

 /* Least Square Tables Preparation */

Sum_of_X[0]=Sum_of_X_Square[0]= Sum_of_X_By_X[0]=0;

LSQ_Denominator[0]= 1; /* To Avoid Division By Zero */

for(i=1;i<512;i++)

{

Sum_of_X[i] = i+Sum_of_X[i-1];

Sum_of_X_Square[i] =(i*i)+Sum_of_X_Square[i-1];

 Sum_of_X_By_X[i]= Sum_of_X[i]*Sum_of_X[i];

LSQ_Denominator[i]= ((i+1) * Sum_of_X_Square[i] - Sum_of_X_By_X[i]);

}

Definitions :

float Sum_of_X, Sum_of_X_By_X, Sum_of_X_Square, LSQ_Denominator;

unsigned int i;

 /*===*/

/* Slope Calculation for Every Ramp/Sub-ramp */

/* calculated in ramp_ft.c */

/* denominator isset in write.c */

for(i=0; i<ramps; i++)

{

sumY = sumXY = 0;

/* Intermediate Sums */

for(j=0; j<RRR; j++)

{

sumXY += j*y[j];

sumY += y[j];

}

/* Intermediate Results */

slope_z = (RRR * sumXY - sumY * sumX[RRR -1]);

slope_n = denominator[RRR-1];

if(slope_z>0) /* Choose the Rounding Error for the Division */

/* Write The Final Result into Buffer */

MEMWRITE((u4*)(buffer+i+1), (int)((slope_z/slope_n)*RRR+0.5)&0xffff);

else

/* Write The Final Result into Buffer */

MEMWRITE((u4*)(buffer+i+1), (int)((slope_z/slope_n)*RRR-0.5)&0xffff);

 y += RRR;

}

Definitions :

float sumX, sumY, sumXY, denominator, slope_z, slope_n;

int y;

unsigned int i, j, RRR;
Example:

with RRR = 64

sumX = 26.

Sum_of_X_Square = 174.

Sum_of_X_By_X = 676.

sumXY = 326208.

sumY = 50145.
The numerator is:

slope_z = sumX sumY – n sumXY = 1303770. – 1304832. = -1062.
The denominator is:

slope_n = Sum_of_X_By_X – n Sum_of_X_Square = 676. – 696. = -20.
The result is therefore:

slope = (slope_z/slope_n)*RRR±0.5 = 53.1*64-0.5 (float) => slope = 3397 (integer)

B.2.3.2.4 Two-Sample-Fit

This ramp-fitting method consists of calculating the slope by the difference of the second and last but one sample point. The advantage of this method is the simplicity of the difference value calculation. The disadvantage is that all other samples of the ramp are neglected. But in mind of a cumulative process where all information of the preceding samples are included in the last sample point this method
Assumptions on the points of the support set:

· No glitches (should be eliminated by the deglitching task)

· No non-linearity (e.g. saturation, etc.)

The calculation of the differences is performed as follows:

D(i) = X((i – 1) *N + 2) – X(i*N – 1)

for N ≥ 4
The differences are represented as unsigned integer values.
Figure 74 shows the ramp-fitting method.

Figure 74. Example showing the ramp-fitting method (fit and residuals)
B.2.3.2.5 Slope Deviation Detection Method

The idea of the ramp fitting using the Slope Deviation Detection Method is very simple (Figure 76 shows one example ramp using the Matlab generator with three glitches). It performs the following:

5- Calculate the differences between all successive readouts in a ramp. As the readout interval is equidistant, the differences represent the slopes using two successive readouts.

D(i) = X(i) – X(i+1) (Figure 77)

6- Calculate the deviation of these slopes. It is the differences of the differences of successive samples.

Dev(i) = D(i+1) –D(i) (Figure 78)

If no glitches occur, all deviations would be close to zero

7- Remove all deviations that are above 0.03 (3% of slope precision)

8- Average all the remaining slopes (This is the result)

Figure 75 Example showing the slope deviation detection method
[image: image59.png]Voltage

3000

2500

2000

1500

1000

500

Rarmp with 3 Glitch Occurences

0 Eil a0 60 ERCIRE
Time

140

160

Figure 76. Photoconductor Readouts from 1 Channel with Additive Noise

[image: image60.png]Sample Difirences

250

200

150

Slope

100

120

& 13
' Qe Yo

140

160

60

Figure 77. Successive Slopes in the Ramp

[image: image61.png]100

50

200

250
0

Slope Deviation

Eil

a0

60

0
Time

100

120

140

160

Figure 78. Successive Slope Deviations in the Ramp

Advantages of the Method

· Very Robust as all the slopes are tested

· Very fast it only calculates samples differences. For N readouts (3N-3) operations are required

· Well-suited for PACS. As each readout is equivalent to the number of photon/time. For an equidistant readout interval, this number is fix in the ideal case. It only changes with any temperature drift (Glitch), which will be easily detected and rejected.

· It could be generalized for other applications

Disadvantages of the Method

· Not suited to short ramps. If a glitch occurs, it would be hard to find the best slope for a long relaxation time (For PACS, we decided to have ramps no shorter to one second as the CRE are only stable and precise for a long ramp)
Conclusion

The method was tested for several ramp cases and compared with standard methods (RANSAC and Least Squares). It gives the best results with a very low complexity. We have also optimised the complexity of the algorithm to 3N/2-1 for the same precision.

B.2.3.2.6 Two-Samples Difference Method

In case of 2 samples to fit, the slope is calculated using the difference between two successive samples i.e. 32 slopes are calculated out of a 64 samples ramp
The calculation of the differences is performed as follows:

D(i) = X(2*i – 1) – X(2*i)

The differences are represented as unsigned integer values.

Figure 79. Example showing the Two-Samples Difference Method
B.2.3.2.7 Subramp Fitting

The SPU On-board SW reduces the ramp by deriving either the ramp slope or the ramp mean depending on the algorithm chosen by the the user. It contains an option to derive not only 1 slope/mean per reset interval, but also slopes/means for every 2,4,8,16,32,... samples within a ramp. The number of samples to fit is a commandable parameter. Figure 80 illustrates the sub-ramp fitting procedure. The fitting result is then subslope (in case of least square fit) of submean (in case of mean algorithm). The used algorithm could be read from the compressed entity header (See RD016 for more details).

Figure 80. Illustration of Sub-ramp Fitting
B.2.4 Averaging and Rounding in Photometry

Averaging and rounding in photometry is now also done by the FM Averaging algorithm (see a few pages above). The “old” algorithm can still be used and is described hereafter.
Rounding has been developed and implemented as a countermeasure against high noise settings. In the default averaging process 4 samples are added up and divided by 4. The datatype is 16 bit short and no decimal digits are kept, so the value 2 has to be added before division to get a rounded average instead of a truncated one. In other words, there is already a 2-bit rounding made in the nominal averaging process. The SPU software is able to intensify the rounding inside the averaging process.

Instead of the default
[image: image62.wmf](

)

(

)

(

)

(

)

4

)

2

3

2

1

(

+

+

+

+

+

+

+

=

x

y

x

y

x

y

x

y

mean

 additional roundings can be

calculated by
[image: image63.wmf](

)

(

)

(

)

(

)

2

*

)

8

)

4

3

2

1

(

int(

+

+

+

+

+

+

+

=

x

y

x

y

x

y

x

y

mean

 and so on.
In addition to that, the number of samples to average is also freely configurable. Instead of 4 samples, 3, 5, or any other number 0<n<120 can be chosen.
For more information see document RD020.
B.3 Decimation

B.3.1 Decimation in Photometry

Beginning with SPU SW version 13.95 frame dropping is implemented via two uploadble parameters DPRE and DPOST (see user manual for usage). DPRE determines the number of frames to be discarded at the beginning of an averaging group and DPOST does so for the end. An averaging group is 4 frames in default mode, 8 frames in double mode or any number of frames when the number of frames to average is overridden with the NAVG parameter. The implementation is done by a preprocessing module (in p_proc.c) that copies (in place) frames to be averaged and leaves out frames to be dropped. The reduced number of frames and the modified number of frames to average are then passed to the averaging module.
B.3.2 Decimation in Spectroscopy
Similarly, frames at the start of a complete ramp and at its end can be dropped. The implementation is the same as in photometry with the difference that not the averaging groups (= the submeans) are decimated, but the whole ramp is.
No

Yes

Yes

Yes

Set NACK parameters for invalid memory block

No

memblock = ok?

Example: 32-sample ramp

CMM= 33

Set NACK parameters for invalid checksum

Store compressed raw channel data in the output buffer

Compress_Now = true

No

No

Yes

END

Set NACK parameters for invalid address

No

checksum = ok?

preproc.?

Addition of the offset to the data

Write the compressed data into the output buffer

Set NACK parameters for �Invalid Memory ID

Call Lossless Coding

END

Yes

MemID = ok?

Yes

Call Temporal and Spatial Redundancy Reduction

Call Robust Averaging and Glitch Rejection

Division?

multipli-cation?

Multiply the offset by data samples

Subtraction of the offset to the data

Call Pre-processing

Addition?

Call Detector Selection 1 time

Raw channel selection in phot.?

address �= ok?

Divide the data samples by offset

Noise Resampling procedure in Spectroscopy

No

Yes

No

Buffer under granularity size?

1

Read parameters

from HK buffer

1

2

Set HK parameters for invalid Compression Mode and call default compression procedure for Spectroscopy

Free DMC Header & Science Data Buffers

Raw �Data �Selection

NACK �"Invalid Command"

No

Send Packet to DPU

Yes

Write HK

parameters to FIFO

1

Increment Counter

Raw �Data �Selection

Lossless Coding

Store validity information for this ramp

NACK �"Write"

No

CID = WRITE

No

Yes

Proceed with

current activity

DPU command

Send Housekeeping

Yes

Stop the Compression SW

Yes

Start the Compression SW

Read the Activity ID

Run the Write Routines:

DXS1..7, DET_CST_SPEC, DET_CST_PHOT or SIM_DATA

1

Yes

ActivityID = Warm Reset?

Time

No

END

Slope1/ Mean1

2

Buffer new data

Multiply the offset by data samples

END

Subtraction of the offset to the data

Addition?

Sub-traction?

Write the compressed data into the output buffer

Set PACK parameters

Calculate checksum of the data field

Read the load command parameters

END

Set NACK parameters for invalid memory type

Write the compressed data into the output buffer

Yes

No

No

Yes

preproc.?

Write data to memory

memtype = ok?

2

Yes

Perform SPU Test for Spectroscopy

Yes

Perform SPU Test for Photometry

Yes

No

2

1

BEGIN

Set HK parameters for Invalid Observing Mode

No

Yes

No Sequence is running

Compress_Now = true

Call Lossless Coding

1st sample in ramp?

Lossless Coding

No

No

No

Yes

Yes

Yes

Store grating informat.

No

No

1

Set the end of a Sequence

Call Temporal and Spatial Redundancy Reduction

Call Detector Selection for 1 time

BEGIN

Spectroscopy?

Buffer Transmisson Mode procedure in Spectroscopy

Addition of the offset to the data

Write the compressed data into the output buffer

Yes

No

Perform a Warm Reset

Check if begin of sequence

No

END

No

Yes

Compressed data

Command/response / HK

Raw Data

END

Yes

Grating_info = false

Load command?

3

1

Invalid Command ID

Compress_Now = true

No

Default compression procedure in Spectroscopy for 4s reset

Yes

No

Yes

No

Get new frame

Half Compression procedure �in Photometry

Yes

Stop command?

Store up to the max. nb. of TM packets in TM buffer

Stop command?

1

1

Stop command?

No

Transmit every TM buffer within 4440 ms

Yes

Perform Spatial Redundancy Reduction

Calculate sample differences and perform Spatial Redundancy Reduction�

Reorder the data and perform Spatial Redundancy Reduction

Reorder and calculate differences of the data, perform Spatial Redundancy Reduction

No

No

Yes

Yes

-pixels

reference pixel

pixels of frame 5

pixels of frame 4

pixels of frame 3

pixels of frame 2

pixels of frame 1

reference pixel

-pixels

reference pixel

channel x

time

samples of channel x

Interrupt the tasks

(CSW PEAK_UP, BBC and Test Tasks)

Listen to the DPU link

Initialisation of the DXS tables and bit mask tables at start-up

Initialisation of the parameters for the SPU Idle Mode

BEGIN

No

1

Yes

Data generator started?

No

1

Yes

Compressed data

Command/response / HK

Raw Data

Command/response

SPU LWL

DEC/

MEC

SPU SWL

DPU

Prepared by: 	Ahmed Nabil BELBACHIR 		 	 Date: 050413 November18. FebSeptemberApril 200796

	Roland OTTENSAMER

	Christian REIMERS

Checked and Approved by: Franz KERSCHBAUM

Checked and Approved by: Helmut FEUCHTGRUBER

Yes

Yes

Yes

Invalid Activity ID

Run the Check Routine

No

No

No

CID = CHECK

Store validity information for this ramp

No

Store choppper informat.

No

Take initial parameters

Delay of 1.5 seconds

CSW started?

No

Yes

BEGIN

chopper

Chopper_info = false

Blue Bolometers?

No

Yes

Output Buffer

(74.1 kB, circular)

Chopper_info = true

Blue Bolometers?

No

No

No

AID=TEST_P

DEC/MEC Header extraction and compression

DEC/MEC Header extraction and compression

Call Lossless Coding

PACK �"Write"

Start compression of stored buffer using the actual look-up tables

Call Lossless Coding

Call Temporal and Spatial Redundancy Reduction

No

ASW semastate?

Run the Dump Routine

Run the Load Routine

CID = LOAD

CID = DUMP

Yes

CID = PFA

Same chopper plateau?

Yes

Yes

No

Bolometer Arrays (SWL)

Bolometer Arrays (LWL)

HK HBC

parameter 4

HK HBC

parameter 3

HK HBC

parameter 2

HK HBC

parameter 1

10

9

8

4

7

3

6

Voltage

No

Slope3/ Mean3

No

2

5

1

468

1

Header

row

column

26

1

18

1

Data generator started?

Write the new data size

No

(b)

Check command?

Perform command?

Dump command?

Lossless compress raw channel data for some detectors

Lossless compress raw channel data for some detectors

Yes

No

AID=TEST_S

Write the compressed data into the output buffer

Detector Selection

No

256

1

256

END

 sort_me

Detector Selection

Pre-processing

Redundancy Reduction

Yes

 No

Read the Command ID

DPU command

Yes

Perform SPU link start-up to DEC/MEC

No

Check chopper position

Compress_Now = true

1

3

5

Store DMC Header

Within a Sequence?

Begin of Sequence?

DMC Sequence?

END

Set PACK Parameters

Integration

Glitch Detection and R. Averaging

Pre-processing

Redundancy Reduction

Integration

Glitch Detection and Ramp Fitting

1280 kbit/s

320 kbit/s

Photometry

1872 kbit/s

1872 kbit/s

Spectroscopy

≤120 kbit/s

Fill DMC Header and Science Data Buffer

1

Read Compression

Mode

5

No

1

array 10

 512

Yes

Copy data from RAM to EEPROM

No

AID=CONNECT_DMC

No

Yes

Misc. SW

phot_gn.c

spec_gn.c

Com. I/F

datatx.c

Application SW

supervs.c csw.c

Housekeeping

Hk.c

Watch Process

watchpc.c

HLSW Main

spu_io.c

Kernel Initialisation

Stack and Heap

(0.6 MB)

DMCH Buffer

(52.1 kB, circular)

Science Data Buffer

(960.5 kB, circular)

I/O Buffers

(1.1 MB)

Static Data Allocation and �Processing Memory

(2.3 MB)

DRAM (4 MB)

Margin

(2.5 MB)

Program Code �and Data

(0.5 MB)

PRAM (3 MB)

DPRAM (32 kB)

No

Yes

Yes

Grating_info = true

Same grating position?

Check grating position

1st sample in ramp?

4

Store DMC Header

Photometry?

DEC/MEC Header Error signalling in the HK

No

Call Detector Selection 1 time

No Sequence for WL_Switching is running

Write the compressed data into the output buffer

Yes

No

Blue Bolometers?

DEC/MEC Header extraction and compression

� EMBED Word.Picture.8 ���

Filter the data with the Detector Selection Table

Transparent or LLC mode?

Store maximum number of TM packets in TM buffer

Yes

Buffer Transmission Mode?

TM Blocks = 0

Copy the compressed raw channel data in the compressed entity, if selected

Send HK packet after compressed entity

Fill the HK packet

No

No

No

Transmit the stored TM packets

BEGIN

Yes

AID = RESET

Slope2/ Mean2

Initialise the Block Counter

array 9

1

Header

(a)

256

256

Yes

Spectroscopy?

Yes

No

Test data

received?

2

Compression of the data if buffer is full

Fill DMC Header and Science Data Buffer

1

1

AID = C2EEPROM

BEGIN

Read Compression

Mode

No

Yes

Read the Type

 Photometry?

Yes

MAIN

Virtuoso Node

No

Stop CSW command?

Yes

No

DMC Raw Data?

BEGIN

256

256

256

256

256

1

1

1

1

1

1

1

256

Set the end of a Sequence

No

Yes

CSW started?

Listen to the data generator

1

No

BEGIN

Store Science Data

1

Compress_Now = true

Compress_Now = true

2

No

No

No

Yes

Yes

Yes

Store grating informat.

Grating_info = false

No

No

Yes

Yes

Grating_info = true

Same grating position?

Check grating position

1st sample in ramp?

4

Store DMC Header

1

array 2

 512

array 1

1

Header

array 4

 512

array 3

1

Header

array 6

 512

array 5

1

Header

array 8

 512

array 7

1

Header

(b)

(a)

241

32

16

256

17

1

array 10

241

32

16

256

17

1

array 9

 16

1

No Sequence for WL_Switching is running

Set the end of a Sequence

Within a Sequence?

Begin of Sequence?

Label or WL_Switching_Mode set?

Store choppper informat.

Chopper_info = false

No

Yes

column

Chopper_info = true

Same chopper plateau?

Check chopper position

row

16

1

32

17

241

32

16

256

17

1

array 8

241

32

16

256

17

1

array 7

241

32

16

256

17

1

array 4

241

32

16

256

17

1

array 3

241

32

16

256

17

1

array 6

241

32

16

256

17

1

array 2

241

32

16

256

17

1

array 5

241

32

16

256

17

1

array 1

49

64

48

33

 32

17

 16

1

column

row

16

1

32

17

Store Science Data

1

Compress_Now = true

No

Yes

1st sample in chopper plateau?

Yes

No

Yes

No

Frame valid?

New Frame?

No

No

No

No

Yes

Yes

Within a Sequence?

Begin of Sequence?

Label or WL_Switching_Mode set?

Store choppper informat.

Chopper_info = false

No

Yes

Chopper_info = true

Same chopper plateau?

Check chopper position

No

Yes

Store validity information for this ramp

1st sample in ramp?

No

No

No

No

Yes

Yes

Yes

Yes

Compress_Now = true

CMM or OBSID are not identical?

Reset frame counter

1

Increment the Frame Counter

Frame Counter = 512 or Compress_Now = true?

Store_Now = true?

Store_Now = true

Start compression of buffer

Yes

3

1

No

Photometry?

DEC/MEC Header Error signaling in the HK

No

Yes

Spectroscopy?

Yes

No

DMC data

received?

2

No

Yes

CSW started?

Listen to DEC/MEC link

1

Memory Allocation for Data Buffering

BEGIN

END

Yes

No

END

Yes

Yes

CMM=2

Slope4/ Mean4

Dump the buffer to a proccesing memory

END

Read the size of the obtained data

Lossless compression of the DMC header data

BEGIN

Calculate total size of compressed entity, the number of TM Blocks and set the max size of TM packets

Averaging over 2 samples

END

T_S_SortingFunction = 4?

Call DMC_Con function

END

BEGIN

Lossless compression of the science data using predefined algorithm

T_S_Sorting Function = 2?

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

YesNo

No

No

Yes

NACK "Perform"

No

Yes

PACK �"Perform"

Yes

YesNo

No

Send dump data to FIFO

sub-traction?

1

Set the packet header according to the data type

Figure � SEQ Figure * ARABIC �141417�. Flowchart of the Watch Process + Command Acknowledgment Algorithm

No

Yes

NACK �"Check"

No

Yes

PACK �"Check"

No

Yes

1

2

1

NACK �"Dump"

No

Send Packet to DPU

Yes

PACK �"Dump of the LastPacket"

No

Yes

PACK "Dump of the Intermediate or First Packet"

No

Yes

NACK �"Load"

No

Yes

Copy the science data in the compressed entity

Copy the compressed DMC header in the compressed entity

PACK �"Load"

No

Yes

Science Data Packet in Photometry

Prepare the compr. entity header

Calculate the size of science data

Block

Header

1012 Bytes

Data

Block

Header

1012 Bytes

Data

Block

Header

1012 Bytes

Data

((((((

((((((

Data (1000 Bytes)

Data (1000 Bytes)

Data (1000Bytes)

Data (1000 Bytes)

CSD

CDH

CEH

Address = ok?

No

memblock = EEPRAOM?

memtype = program memory?

No

No

Send NACK (Invalid Memory Type) to FIFO

Send NACK (invalid Address) to FIFO

Send response packet to the FIFO

END

Yes

memtype = data memory?

No Yes

No

Read the dump command parameters

No

No

No

No

No

No

Yes

division?

multipli-cation?

Divide the data samples by offset

Send NACK (Invalid Memory ID) to FIFO

Yes

No

Yes

YesNo

Calculate checksum and set PACK parameters

Address = ok?

memblock = EEPRAOM?

memtype = program memory?

No

Set NACK parameters for Invalid Memory Type

Set NACK parameters for Invalid Address

Yes

memtype = data memory?

Read the check command parameters

Set NACK parameters for Invalid Memory ID

Yes

Yes

No

BEGIN

No

No

Yes

END

Send NACK (Invalid Activity ID)

Call bol_bc function (Bolometer Background Cancelling SW)

ActivityID = Bol. Background Cancelling?

Yes

No

Call Spu_tst function (SPU Test for Spectroscopy or Photometry)

ActivityID = SPU Test for Spectroscopy?

Yes

No

ActivityID = SPU Test for Photometry?

Yes

No

Call Peak_Up function (Peak-Up SW)

ActivityID = Peak-Up?

Yes

No

Call Str_Stp function (Start or Stop CSW)

ActivityID = Start?

Yes

No

ActivityID = Stop?

Yes

No

Call Rc_Sel function (Raw Channel Selection)

ActivityID = Raw Channel Selection?

Yes

No

Call W_Reset function (Warm Reset)

ActivityID = Warm Reset?

Read the perform command Parameters

Yes

No

BEGIN

Store DXS ID and Setup Table

Set NACK parameters for �Invalid Length

Length = ok ?

Yes

Yes

No

END

Set PACK Parameters

Call DX_Table_Init

Send the Response Packet to the FIFO

Set NACK parameters for �Invalid Checksum

DXS?

No

Yes

Read Write parameters�(Data Length and Checksum)

Read Parameter ID

Calculate Checksum

Set Address according to Parameter ID

Set NACK parameters for �Invalid Parameter ID

Send the Response Packet to the DPU

Update the table�(DCS, DCP or SDP)

Checksum = ok ?

Yes

1

Buffer Transmission Mode?

Buffer Transmission Mode?

Update the look-up tables with the actual DEC/MEC header information (validity and chopper) for the compression task

Update the look-up tables with the actual DEC/MEC header information (validity, chopper and grating) for the compression task

Re-initialize the variables after closing a buffer (frame counter, PIX, etc.)

Store_Now = false (Set the begin of a new buffer)

Yes

Yes

CMM or OBSID are not identical?

Set parameters OBSID and CMM

1

Store Science Data and increment Frame counter

Frame counter = 480(Red)/120(Blue) or Compress_Now = true?

Store_Now = true?

Store_Now = true

First sample on a chopper plateau and in buffer?

Compression of the data if buffer is full

END

Integrate over valid samples from the same chopper plateau

Integrate over valid samples

Check grating information

Spectroscopy?

Point to the buffered data

No

BEGIN

Yes

Re-initialize the variables after closing a buffer (frame counter, PIX, etc.)

Store_Now = false (Set the begin of a new buffer)

Start compression of stored buffer using the actual look-up tables

4

No

Buffer new data

Buffer new data

No

No

Yes

Yes

Write the compressed data into the output buffer

Buffer number = 4

Science Data extraction from the 4 sub-regions

DMCH extraction

Buffer number < 4

Last DMCH extraction

Last Science Data ex-traction for the 4 sub-r.

Ignore DMC data

No

Set NACK parameters for �Invalid Structure ID

Send the Response Packet to the FIFO

Copy PRAM to EEPROM

Call Detector Selection 4 times for 4 sub-arrays

BEGIN

Yes

1

Call Detector Selection 4 times for 4 sub-arrays

BEGIN

Call Temporal and Spatial Redundancy Reduction

Call Robust Averaging and Glitch Rejection

No

Yes

Yes

END

Write the compressed data into the output buffer

Buffer number = 4

Science Data extraction from the 4 sub-regions

DMCH extraction

Buffer number < 4

BEGIN

END

Check for saturation

Stop the CSW

Write the compressed data into the output buffer

Last DMCH extraction

Yes

No

Last Science Data ex-traction for the 4 sub-r.

Ignore DMC data

Call Lossless Coding

Call Temporal and Spatial Redundancy Reduction

Call Ramp Fitting and Glitch Rejection

Call Pre-processing

Stop CSW?

END

No

Yes

Call Detector Selection

Yes

SID != 0

BEGIN

Set NACK parameters for Invalid Structure ID

Send the Response Packet to the FIFO

SID = 5?

BEGIN

No

Yes

DEC/MEC Header extraction and compression

BEGIN

Set NACK parameters for Invalid SID Parameter 2 and send Response Packet to FIFO

END

Set NACK parameters for Invalid SID Parameter 1 and send Response Packet to FIFO

Write the compressed data into the output buffer

Call Lossless Coding

Call Temporal and Spatial Redundancy Reduction

Call Detector Selection

Observing Mode = ok?

RCNB Parameter = ok?

Set Raw Channel Selection for Photometry

No

Yes

Observing Mode = 1?

END

DEC/MEC Header extraction and compression

No

Yes

SID != 5

Set NACK parameters for Invalid Structure ID

BEGIN

Yes

Reset the SMCS chip and all the tasks apart the spu_io

Call C2EEPROM function

Yes

Send the Response Packet to the FIFO

BEGIN

Set PACK parameters

Send the Response Packet to the FIFO

Set Raw Channel Selection for Spectroscopy

Send the Response Packet to the FIFO

END

No

No

No

Yes

Yes

SID != 0

Call DMC_Con function

Set NACK Parameters for Invalid Structure ID

ActivityID = Connect to DEC/MEC?

ActivityID = Copy RAM to EEPROM?

AID = RCS

Yes

Perform Raw Channel Selection Settings

Listen to DEC/MEC linkFrame counter = 0

Send the Response Packet to the FIFO

No

BEGIN

Delay to Alow the Transmission of the PACK

Yes

Set PACK Parameters

Raw channel selection in spec.?

AID = START

Yes

Write the compressed data into the output buffer

Buffer number = 4

Science Data extraction

DMCH extraction

Buffer number < 4

Check sample index

Blue Bolometers?

Last DMCH extraction

Write the compressed data into the output buffer

Call Detector Selection

DEC/MEC Header extraction and compression

Store compressed raw channel data in the output buffer

Send the Response Packet to the FIFO

Last Science Data extraction.

Ignore DMC data

END

Call C2EEPROM function

Yes

BEGIN

BEGIN

No

Yes

Yes

Call Pre-processing

Call Detector Selection 4 times for 4 sub-arrays

No

BEGIN

Parameter ID = ok?

No

END

No

Yes

SID != 0

Set NACK Parameters for Invalid Structure ID

Send the Response Packet to the FIFO

BEGIN

Set PACK Parameters

Signal the Start of the Peak-Up Program

Send the Response Packet to the FIFO

Yes

END

No

Yes

SID != 1

Set NACK Parameters for Invalid Structure ID

Send the Response Packet to the FIFO

BEGIN

Set PACK Parameters

Signal the Start of the Background Cancelling Program

Send the Response Packet to the FIFO

Read from FIFO

Yes

No

Signal the start of the CSW

Stop the TM data transmission

Delete the on-board buffered science and DMC header data

Restart the HK for idle mode

Stop the buffer transmission mode and reset the buffer

No

BEGIN

No

Yes

Send the Response Packet to the FIFO

Set PACK Parameters

Signal the Start of the SPU HLSW Test

Call the Supervisor for the SPU Test

Test Mode Photometry?

Call Data Generator of Spectroscopy’ Frames

Call Data Generator of Photometry’ Frames

END

No

Yes

SID != 0

Set NACK Parameters for Invalid Structure ID

Send the Response Packet to the FIFO

BEGIN

BEGIN

No

Yes

Test Mode started?

Start the DMC Link respective to the Link Start-up Parameter

Generate science data for two chopper plateaus

2

BEGIN

Transparent mode procedure in Spectroscopy

Send the Response Packet to the FIFO

Continue running ASW tasks

2

Start the link to DPU as Master

Define number of averages to generate by buffer

Set default parameters if the table is not available

Read the number of samples per average

Read the SPU ID and Compression Mode

Clean the Sema of the Warm Reset

Start high level SMCS Driver the 1st time

Send the Response Packet to the FIFO

Set NACK parameters for �Invalid SID Parameter

No

No

Yes

Photometry?

No

Yes

Yes

AID = STOP

Yes

BEGIN

1

ActivityID = Connect to DEC/MEC?

1

2

CMM= 1

Yes

1

Read the size of the obtained data

(Part 3)

(Part 2)

(Part 3)

(Part 2)

Prepares the DEC/MEC header

Prepares the DEC/MEC header

BEGIN

Test Mode started?

1

No

Yes

Generate science data for two chopper plateaus

Define number of ramps to generate by buffer

Set default parameters if the table is not available

Read the number of samples per ramp

Read the SPU ID and Compression Mode

2

Set HK parameters for invalid Compression Mode and call default compression procedure for Photometry

Free DMC Header & Science Data Buffers

Buffer Transmission Mode procedure in Photometry

Transparent mode procedure �in Photometry

Lossless compression procedure in Photometry

Default compression procedure in Photometry

Double compression procedure in Photometry

Yes

No

Buffer under granularity size?

Yes

No

CMM=9

Yes

No

No

CMM=7

Yes

BEGIN

No

CMM=4

No

No

Yes

Set NACK parameters for �invalid checksum after re-reading

No

Yes

No

checksum = ok?

Calculate checksum �of the data field

Write Re-read data tofrom memory

T_S_Sorting Function = 1?

T_S_Sorting Function = 0?

Yes

No

Yes

No

CMM= 0

No

Check chopper information

Science Data Packet in Spectroscopy

No

Yes

Glitch �detection ?

Yes

Calculate sample differences, reorder the data and perform Spatial Redundancy Reduction

T_S_Sorting Function = 3?

END

No

No

Yes

Listen to tasks output

BEGIN

HK Packet

No

Yes

No

No

Yes

Yes

Yes

Yes

Perform�two samples algorithm

No

Yes

Glitch �detection ?

Perform�mean value algorithm

Glitch �detection ?

Read the size of the obtained data and number of samples to fit

No

Yes

Glitch rejection and perform �the currently implemented algorithm

2 samples per subramp ?

Check for saturation

No

Yes

Glitch rejection and perform�mean value algorithm

END

BEGIN

Mean aglorithm selected?

No

Get the Observing and Compression Modes from the Supervisor

CSW?

Perform the currently implemented fitting algorithm

Yes

Perform Spatial Redundancy Reduction

BEGIN

BEGIN

2 samples to average ?

Averaging over the required number of samples

Dump the buffer to a proccesing memory

Spectroscopy?

Yes

No

No

DMC sequence running?

Yes

No

Yes

Yes

Yes

Yes

Compress_Now = true

CMM or OBSID are not identical?

Set parameters OBSID and CMM

1

Increment the Frame Counter

Frame Counter = 512 or Compress_Now = true?

Store_Now = true?

Store_Now = true

First sample in a ramp and in buffer?

Start compression of stored buffer using the actual look-up tables

5

No

Yes

1

Buffer Transmission Mode?

Update the look-up tables with the actual DEC/MEC header information (validity and chopper) for the compression task

Re-initialize the variables after closing a buffer (frame counter, PIX, etc.)

Store_Now = false (Set the begin of a new buffer)

Start compression of stored buffer using the actual look-up tables

4

No

Yes

1

Buffer Transmission Mode?

Update the look-up tables with the actual DEC/MEC header information (validity, chopper and grating) for the compression task

Re-initialize the variables after closing a buffer (frame counter, PIX, etc.)

Store_Now = false (Set the begin of a new buffer)

No

Yes

No Sequence is running

Compress_Now = true

Set the end of a Sequence

Compress_Now = true

No

Yes

No

Yes

Store validity information for this ramp

Store choppper informat.

Chopper_info = false

No

Yes

Chopper_info = true

Same chopper plateau?

Check chopper position

Compress_Now = true

1

3

5

Store DMC Header

Within a Sequence?

Begin of Sequence?

DMC Sequence?

No

Yes

1st sample in chopper plateau?

Yes

No

Yes

No

Frame valid?

New Frame?

No

No

No

No

Yes

Yes

Yes

Yes

CMM or OBSID are not identical?

Set parameters OBSID and CMM

1

Store Science Data and increment Frame counter

Frame counter = 480(Red)/120(Blue) or Compress_Now = true?

Store_Now = true?

Store_Now = true

First sample on a chopper plateau and in buffer?

1

Source address = PRAM?

Set NACK parameters for �Invalid EEPROM length

EEPROM length = ok?

Set NACK parameters for �Invalid EEPROM address

EEPROM address = ok?

Copy DRAM to EEPROM

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

1

1

1

Yes

No

DPU command received?

Call Write function

Call Perform Activity function

Call Check function

Call Dump function

Call Load function

No

Send NACK (Invalid Command ID)

to DPU

Glitch rejection and averaging over the required number of samples

Write command?

Parameter for Link Start-up = ok?

Yes

No

END

Set PACK Parameters

Lossless compression procedure in Spectroscopy

Default compression procedure in Spectroscopy

Set NACK parameters for �Invalid Structure ID

Send the Response Packet to the FIFO

Send the Response Packet to the FIFO

Configure (Unmask) SMCS Interrupt for DPU and DEC/MEC Link

BEGIN

SID = 1?

No

Yes

Set DSP Interrupt at IRQ2 to Signal SMCS Events

Set Nominal Configuration of the SMCS

Reset the SMCS chip

No

No

No

Yes

Yes

Yes

1

Yes

No

Connection to DPU estabished?

Set DMC Link status in HK to OFF

Abort all ASW tasks

DMC Link disconnection error?

DPU Link disconnection error?

2

Warm Reset command?

Start all ASW tasks

Set the DEC/MEC Link Connection Status to Not Connected

Set the link connection timeout to 9sec

BEGIN

Yes

No

CMM=25

Yes

No

CMM= 24

Read the remaining size R to the end of the circular buffer

Yes

1

Yes

No

Enough space in the circular buffer?

No

CMM=23

Yes

No

Store S – R of the data in the circular buffer

1

CMM= 20

Yes

Store R of the data in the circular buffer

Store the data in the circular buffer

Reset the address pointer of the circular buffer

Set the address pointer address of the circular buffer

BEGIN

Read size S of data to buffer

Increment the address pointer by S

No

CMM=16

No

Yes

�Spectroscopy?

BEGIN

END

No

No

Yes

Yes

Reorder, reduce resolution and align the data, perform Spatial Redundancy Reduction�

Reorder and reduce resolution of the data, perform Spatial Redundancy Reduction�

8 bit resampling?

BOLC Test Pattern?

Calculate sample differences and perform Spatial Redundancy Reduction

BEGIN

time [s]

D(0)

D(0) = X(0) – X(1)

D(1) = X(2) – X(3)

D(2) = …

D(1)

D(2)

-----+------

 X Y

 -----+------

 5 12457

 6 12509

 7 12563

 8 12616

 -----+------

Convert buffered data from 4Bytes to 1Byte alignment

Dev(0,3) = D(0,3) – 3 * D(0,1)

Dev(2,5) = D(2,5) – 5 * D(2,1)

D(0,1)

D(2,5)

D(2,1)

D(0,3)

time [s]

N = 8:

D(1)

D(0) = X(1) – X(6)

D(1) = X(9) – X(14)

D(2) = …

D(0)

time [s]

D(2)

D(1)

Dev(0) = D(1) – D(0)

Dev(1) = D(2) – D(1)

Dev(2) = …

D(0)

time [s]

Dev(1)

Dev(0)

S(0)

Dev(0)

 pacs_srt (in pacs_srt.c)

deletemodel (in pacs_cod.c)

S(0) = X(0) + X(1) + X(2) + X(3)

Dev(0) = 4*X(0) – S(0)

Dev(1) = 4*X(1) – S(0)

Dev(2) = 4*X(2) – S(0)

Dev(3) = 4*X(3) – S(0)

S(1) = X(4) + X(5) + X(6) + X(7)

Dev(4) = 4*X(4) – S(1)

Dev(5) = …

time [s]

time [s]

Dev(1)

Dev(2)

Dev(3)

S(1)

Dev(4)

Dev(5)

Dev(6)

Dev(7)

Dev(8)

Dev(9)

Dev(10)

Dev(11)

Dev(12)

Dev(13)

Dev(14)

Dev(15)

S(2)

S(3)

pacs_encode (in pacs_cod.c)

fixafterfirst (in pacs_cod.c)

pacs_encode (in pacs_cod.c)

initmodel (in pacs_cod.c)

compress_me

�
�

convert_byte_to_int

convert_byte_to_int

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

No

ActivityID = Copy RAM to EEPROM?

END

Send NACK (Invalid Activity ID)

Call Spu_tst function (SPU Test for Spectroscopy or Photometry)

ActivityID = SPU Test for Spectroscopy?

ActivityID = SPU Test for Photometry?

Call Str_Stp function (Start or Stop CSW)

ActivityID = Start?

ActivityID = Stop?

Call Rc_Sel function (Raw Channel Selection)

ActivityID = Raw Channel Selection?

Call W_Reset function (Warm Reset)

Read the perform command Parameters

BEGIN

512 frames received or signal to compr.?

Increment the frame counter

Store science data in buffer

Store DMC header data in buffer

Signal compression

Identical compression mode?

Signal synchronization

Signal synchronization

Synchronized?

Set DMC Error = 0x11

ramp begin and fill buffer synchron.?

Store the Relevant Information of DEC/MEC Header from 1st Frame

Store the Relevant Information of DEC/MEC Header from 1st Frame

Frame counter = 0?

Buffer Transmission Mode?

(Part 2)

(Part 32)

32

Get new frame

ASW semastate?

Check if begin of sequence

Initialize the buffer to start storage with 1st sample

Check sample index

1

Start compression of buffer

Reset frame counter

512 frames received or signal to compr.?

Increment the frame counter

Store science data in buffer

Yes

Signal compression

Identical compression mode?

Signal synchronization

Signal synchronization

Synchronized?

Set DMC Error = 0x011

ramp begin and fill buffer synchron.?

Store the Relevant Information of DEC/MEC Header from 1st Frame

Store the Relevant Information of DEC/MEC Header from 1st Frame

Frame counter = 0?

Buffer Transmission Mode?

Check and store DEC/MEC header only one tTime as it is identical for all sub-arrays

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

No

No

No

No

No

No

No

No

� The previous name of Herschel Space Observatory was �HYPERLINK "http://astro.estec.esa.nl/SA-general/Projects/First/first.html"��Far InfraRed and Submillimeter Telescope ‘FIRST�’

� These are the HK for the bolometer background cancelling mode (see Section 12)

� In the buffer transmission mode (see Section � REF _Ref32741975 \n \h ��5.8.5� and Section � REF _Ref32742006 \n \h ��5.8.9�) program memory is also used for data buffering. Therefore the program memory allocation increases to 99.95%.

_1199088716.unknown

_1200987507.unknown

_1255776507.unknown

_1296561592.unknown

_1255771857.unknown

_1255775195.unknown

_1200987526.unknown

_1200987445.unknown

_1200987479.unknown

_1200987358.unknown

_1142090956.unknown

_1142090975.unknown

_1073295556.bin

_1073811172.doc
[image: image1.png]Bad Hypotheses Good Hypotheses

_1040327362.doc

_1065859588.doc
[image: image1.png]

_1029152559.doc

