

# Herschel/Planck

**IIDB SPIRE** 

# INSTRUMENT INTERFACE DOCUMENT PART B

# **INSTRUMENT "SPIRE"**

|                           | Name                                                                  | Signature |
|---------------------------|-----------------------------------------------------------------------|-----------|
| Prepared/<br>Compiled by: | ALCATEL Herschel/Planck Project team                                  |           |
| Approved by:              | M. Griffin<br>Principal Investigator<br>University of Wales, Cardiff. |           |
| Approved by:              | Th. Passvogel<br>Project Manager<br>ESA/ESTEC/SCI /PT                 |           |



**IIDB SPIRE** 

# **TABLE OF CONTENTS**

|                                  | DISTRIBUTION LIST0-7                         |                          |                                | -7             |
|----------------------------------|----------------------------------------------|--------------------------|--------------------------------|----------------|
|                                  | DC                                           | CU                       | MENT CHANGE RECORD0-           | -8             |
| 1.                               | IN.                                          | TRO                      | DUCTION 1-                     | -1             |
| 2.                               | ΑΡ                                           | PLIC                     | CABLE/REFERENCE DOCUMENTS 2-   | -1             |
| 2<br>2<br>2                      | .1<br>.2<br>.3                               | APF<br>REF<br>LIST       | 2 2<br>PLICABLE DOCUMENTS      | -1<br>-1<br>-2 |
| 3.                               | KE                                           | Y PI                     | ERSONNEL AND RESPONSIBILITIES  | -1             |
| 3                                | .1                                           | KEY                      | PERSONNEL                      | -1             |
|                                  | 3.1.                                         | 1                        | Principal Investigator         | 3-1            |
|                                  | 3.1.                                         | 2                        | Co-Principal Investigator      | 3-1            |
|                                  | 3.1.                                         | 3                        | Instrument Manager             | 3-1            |
| 3                                | .2                                           | RES                      | PONSIBILITIES                  | -2             |
| <b>4</b> .                       | IN<br>.1                                     | STR                      | UMENT DESCRIPTION              | -1<br>-1       |
| 4                                | .2                                           | SCI                      | ENTIFIC RATIONALE              | -1             |
| 4                                | .3                                           | INS                      | TRUMENT OVERVIEW               | -2             |
| 4<br>4                           | .4                                           |                          | RDWARE DESCRIPTION             | -3<br>_4       |
| 4                                | .6                                           | OP                       | ERATING MODES                  | -4             |
|                                  | 4.6.                                         | .1                       | OFF Mode                       | -4             |
|                                  | 4.6.                                         | 2                        | Initialise (INIT) Mode         | -4             |
|                                  | 4.6.                                         | 3                        | ON Mode                        | -5             |
|                                  | 4.6.                                         | 4                        | Ready (REDY) Mode              | !-5            |
|                                  | 4.6.                                         | 5                        | Standby (STBY) Mode            | !-5            |
| 4.6.6 Observe Mode (OBSV) Mode   |                                              | Observe Mode (OBSV) Mode | -5                             |                |
| 4.6.7 Cooler Recycle (CREC) Mode |                                              | -5                       |                                |                |
|                                  | 4.6.                                         | 8                        | SAFE Mode                      | -5             |
| 4                                | .7                                           | OBS                      | SERVING MODES                  | -5             |
|                                  | 4.7.                                         | .1                       | Photometer Observing Modes4    | -6             |
|                                  | 4.7.                                         | .2                       | Spectrometer Observing Modes   | -7             |
|                                  | 4.7.                                         | .3                       | Other Modes                    | -7             |
|                                  | 4.7.                                         | .4                       | Keal-Lime Commanding           | -7             |
|                                  | 4.7.                                         | .5                       | Commissioning/calibration Mode | -8             |
|                                  | 4.7.6 FPU operations at Ambient Temperature4 |                          | -8                             |                |

ALCATEL SPACE

# **IIDB SPIRE**

**REFERENCE :** SCI-PT-IIDB/SPIRE-02124

DATE: 02-12-2003

**ISSUE :** 3.1 **PAGE** : 0-3

| 4.7.7            | FPU Orientation                                                | 4-8          |
|------------------|----------------------------------------------------------------|--------------|
| 4.8              | INSTRUMENT REQUIREMENTS AND PERFORMANCE SPECIFICATION          |              |
| 4.8.1            | Scientific Requirements                                        |              |
| 4.8.2            | Instrument Performance Estimates                               | 4-11         |
| 5 INTE           |                                                                |              |
| 5.1 ID<br>5.2 IN | DENTIFICATION AND LABELLING                                    |              |
| 521              | MECHANICAL COORDINATE SYSTEM                                   | 5-2          |
| 5.3 LC           | DCATION AND ALIGNMENT                                          |              |
| 5.3.1            | Instrument Location                                            |              |
| 5.3.1            | 1.1 Location of units on the SVM                               | 5-5          |
| 5.3.2            | Instrument Alignment on the HOB                                | 5-5          |
| 5.4 EX           | (TERNAL CONFIGURATION DRAWINGS                                 |              |
| 5.4.1            | HSFPU                                                          | 5-6          |
| 5.4.2            | HSJFS                                                          | 5-7          |
| 5.4.3            | HSJFP                                                          | 5-8          |
| 5.4.4            | SVM Mounted Units                                              |              |
| 5.4.4            | 4.1 HSDPU                                                      |              |
| 5.4.4            | 4.3 HSFCU                                                      |              |
| 5.5 SI           | ZES AND MASS PROPERTIES                                        | 5-12         |
| 5.6 M            | ECHANICAL INTERFACES                                           | 5-13         |
| 5.6.1            | Inside cryostat                                                | 5-13         |
| 5.6.             | 1.1 Microvibrations                                            | 5-13         |
| 5.0.             | Outside Crucetet                                               |              |
| 5.0.2            |                                                                |              |
| 5.0.3            |                                                                |              |
| 5.6.4            | On Planck Payload Module                                       |              |
| 5.6.5<br>57 TH   | Cooler valves and piping                                       |              |
| 571              | Inside the cryostat                                            | 5_18         |
| 5.7.             | 1.1 Description of the thermal interfaces                      |              |
| 5.7.             | 1.2 Description of Operation and Interfaces for the 3He Cooler | 5-18         |
| 5.7.             | 1.3 Thermal requirements                                       | 5-18         |
| 5.7.             | 1.4 Worst case temperatures                                    | 5-21         |
| 5.7.2            | Outside the Cryostat                                           |              |
| 5.7.3            | On the SVM                                                     | 5-21         |
| 5.7.4            | On the Planck Payload Module                                   | 5-21         |
| 5.7.5            | Temperature channels                                           |              |
| 5./.5<br>5.7.4   | 5.1 Instrument remperature sensors                             | 5-21<br>5_22 |
| 5.7.5            | 5.3 Satellite Temperature sensors                              | 5-23         |
| 5.8 O            | PTICAL INTERFACES                                              | 5-24         |
| 5.8.1            | Straylight                                                     | 5-24         |
| 5.9 PC           | OWER                                                           |              |
| 5.9.1            | Power inside the cryostat                                      | 5-25         |
| 5.9.2            | Power outside the Cryostat                                     | 5-25         |



# **IIDB SPIRE**

**REFERENCE :** SCI-PT-IIDB/SPIRE-02124

02-12-2003

DATE :

**ISSUE:** 

3.1 **PAGE** : 0-4

| 5.9.3                                                                                                                                                                                                                         | Power on the SVM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.9.4                                                                                                                                                                                                                         | Power on Planck Payload Module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5-26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5.9.5                                                                                                                                                                                                                         | Power versus Instrument Operating Modes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5-26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5.9.6                                                                                                                                                                                                                         | Supply Voltages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5.9.6                                                                                                                                                                                                                         | b.1 Load on main-bus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5-26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5.9.6                                                                                                                                                                                                                         | 5.2 Power Nominal Turn-on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5-27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5.9.6                                                                                                                                                                                                                         | 5.3 Intertace circuits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5-28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5.9.0                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5.9./                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5.10 00                                                                                                                                                                                                                       | NNECTORS, HARNESS, GROUNDING, BONDING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5.10.1                                                                                                                                                                                                                        | Harness and Connectors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5.10.2                                                                                                                                                                                                                        | Grounding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5-32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5.10.3                                                                                                                                                                                                                        | Bonding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5-34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5.10.4                                                                                                                                                                                                                        | Electrical Signal Interfaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5-34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5.10.                                                                                                                                                                                                                         | .4.1 1553 Data Buses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5-34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5.10.                                                                                                                                                                                                                         | .4.2 Master Clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5 11 DA                                                                                                                                                                                                                       | A.S LAUNCH LAICH COMITMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>5-37</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5 11 1                                                                                                                                                                                                                        | Telemetry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5.11                                                                                                                                                                                                                          | 1 1 Telemetry rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5-37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5.11.                                                                                                                                                                                                                         | .1.2 Data-bus rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5-37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5.11.                                                                                                                                                                                                                         | .1.3 Data Packets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5-37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5.11.2                                                                                                                                                                                                                        | S/C housekeeping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5.11.3                                                                                                                                                                                                                        | Timing and synchronisation signals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5 11 4                                                                                                                                                                                                                        | The second state of the se | 5 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                               | Lelecommana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5-39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5.12 AT                                                                                                                                                                                                                       | TITUDE AND ORBIT CONTROL/POINTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5-39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>5.12 AT</b>                                                                                                                                                                                                                | TITUDE AND ORBIT CONTROL/POINTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5-39<br><b>5-41</b><br>5-41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <b>5.12 AT</b><br>5.12.1<br>5.12.1                                                                                                                                                                                            | TITUDE AND ORBIT CONTROL/POINTING<br>Attitude and orbit control<br>Pointing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5-39<br><b>5-41</b><br>5-41<br>5-41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>5.12 AT</b><br>5.12.1<br>5.12.2<br>5.12.2                                                                                                                                                                                  | TITUDE AND ORBIT CONTROL/POINTING<br>Attitude and orbit control<br>Pointing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5-39<br><b>5-41</b><br>5-41<br>5-41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>5.12 AT</b><br>5.12.1<br>5.12.2<br>5.12.3<br><b>5.13 O</b>                                                                                                                                                                 | Trifude and orbit control.<br>Pointing<br>On-Target Flag (OTF)<br>N-BOARD HARDWARE/SOFTWARE AND AUTONOMY FUNCTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5-39<br>5-41<br>5-41<br>5-41<br>5-41<br>5-42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>5.12 AT</b><br>5.12.1<br>5.12.2<br>5.12.3<br><b>5.13 ON</b><br>5.13.1                                                                                                                                                      | TITUDE AND ORBIT CONTROL/POINTING<br>Attitude and orbit control<br>Pointing<br>On-Target Flag (OTF)<br>N-BOARD HARDWARE/SOFTWARE AND AUTONOMY FUNCTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>5-39</b><br><b>5-41</b><br>5-41<br>5-41<br><b>5-41</b><br><b>5-42</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5.12 AT<br>5.12 I<br>5.12.1<br>5.12.2<br>5.12.3<br>5.13 ON<br>5.13.1                                                                                                                                                          | Trifude and orbit control.<br>Attitude and orbit control.<br>Pointing<br>On-Target Flag (OTF).<br>N-BOARD HARDWARE/SOFTWARE AND AUTONOMY FUNCTIONS<br>On-board hardware<br>On board coftware                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5.12 AT<br>5.12 AT<br>5.12.1<br>5.12.2<br>5.12.3<br>5.13 ON<br>5.13.1<br>5.13.2                                                                                                                                               | Trifude and orbit control.<br>Attitude and orbit control.<br>Pointing<br>On-Target Flag (OTF)<br>N-BOARD HARDWARE/SOFTWARE AND AUTONOMY FUNCTIONS<br>On-board hardware<br>On-board software                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5.12 AT<br>5.12.1<br>5.12.2<br>5.12.3<br>5.13 ON<br>5.13.1<br>5.13.2<br>5.13.3                                                                                                                                                | Trifude and orbit control.<br>Attitude and orbit control.<br>Pointing<br>On-Target Flag (OTF).<br>N-BOARD HARDWARE/SOFTWARE AND AUTONOMY FUNCTIONS<br>On-board hardware<br>On-board software<br>Autonomy functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5.12 AT<br>5.12 AT<br>5.12.2<br>5.12.3<br>5.13 ON<br>5.13.1<br>5.13.2<br>5.13.3<br>5.13.4                                                                                                                                     | Trelecommana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5.12 AT<br>5.12.1<br>5.12.2<br>5.12.3<br>5.13 ON<br>5.13.1<br>5.13.2<br>5.13.3<br>5.13.4<br>5.13.5                                                                                                                            | TITUDE AND ORBIT CONTROL/POINTING.<br>Attitude and orbit control.<br>Pointing<br>On-Target Flag (OTF)<br>N-BOARD HARDWARE/SOFTWARE AND AUTONOMY FUNCTIONS<br>On-board hardware.<br>On-board software.<br>Autonomy functions.<br>Instrument Autonomy Housekeeping Packet Definition<br>Instrument Event Packet Definition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5-39<br><b>5-41</b><br>5-41<br>5-41<br>5-41<br><b>5-42</b><br>5-42<br>5-42<br>5-42<br>5-42<br>5-42<br>5-42<br>5-42<br>5-42<br>5-42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5.12 AT<br>5.12.1<br>5.12.2<br>5.12.3<br>5.13 ON<br>5.13.1<br>5.13.2<br>5.13.3<br>5.13.4<br>5.13.5<br>5.14 EN                                                                                                                 | Trifude and orbit control.<br>Attitude and orbit control.<br>Pointing<br>On-Target Flag (OTF).<br>N-BOARD HARDWARE/SOFTWARE AND AUTONOMY FUNCTIONS<br>On-board hardware<br>On-board software.<br>Autonomy functions.<br>Instrument Autonomy Housekeeping Packet Definition<br>Instrument Event Packet Definition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5.12 AT<br>5.12.1<br>5.12.2<br>5.12.3<br>5.13 ON<br>5.13.1<br>5.13.2<br>5.13.3<br>5.13.4<br>5.13.5<br>5.14 EN<br>5.14.1                                                                                                       | Tritude and orbit control<br>Attitude and orbit control<br>Pointing<br>On-Target Flag (OTF)<br>N-BOARD HARDWARE/SOFTWARE AND AUTONOMY FUNCTIONS<br>On-board hardware<br>On-board software<br>Autonomy functions<br>Instrument Autonomy Housekeeping Packet Definition<br>Instrument Event Packet Definition<br>Conducted Emission/Susceptibility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5-39<br>5-41<br>5-41<br>5-41<br>5-42<br>5-42<br>5-42<br>5-42<br>5-42<br>5-42<br>5-42<br>5-42<br>5-42<br>5-42<br>5-42<br>5-42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5.12 AT<br>5.12.1<br>5.12.2<br>5.12.3<br>5.13 ON<br>5.13.1<br>5.13.2<br>5.13.3<br>5.13.4<br>5.13.5<br>5.14 EN<br>5.14.1<br>5.14.2                                                                                             | Tritude and orbit control.<br>Pointing<br>On-Target Flag (OTF)<br>N-BOARD HARDWARE/SOFTWARE AND AUTONOMY FUNCTIONS<br>On-board hardware<br>On-board software<br>Autonomy functions<br>Instrument Autonomy Housekeeping Packet Definition<br>Instrument Event Packet Definition<br>Instrument Event Packet Definition<br>Conducted Emission/Susceptibility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5-39<br>5-41<br>5-41<br>5-41<br>5-41<br>5-42<br>5-42<br>5-42<br>5-42<br>5-42<br>5-42<br>5-42<br>5-42<br>5-43<br>5-43<br>5-43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5.12 AT<br>5.12.1<br>5.12.2<br>5.12.3<br>5.13 ON<br>5.13.1<br>5.13.2<br>5.13.3<br>5.13.4<br>5.13.5<br>5.14 EN<br>5.14.1<br>5.14.2<br>5.14.3                                                                                   | Trerecommana.<br>TITUDE AND ORBIT CONTROL/POINTING.<br>Attitude and orbit control.<br>Pointing<br>On-Target Flag (OTF).<br>N-BOARD HARDWARE/SOFTWARE AND AUTONOMY FUNCTIONS<br>On-board hardware.<br>On-board software.<br>Autonomy functions<br>Instrument Autonomy Housekeeping Packet Definition<br>Instrument Event Packet Definition.<br>Conducted Emission/Susceptibility.<br>Radiated Emission/Susceptibility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5-39<br>5-41<br>5-41<br>5-41<br>5-42<br>5-42<br>5-42<br>5-42<br>5-42<br>5-42<br>5-42<br>5-42<br>5-42<br>5-42<br>5-43<br>5-43<br>5-43<br>5-43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5.12 AT<br>5.12 AT<br>5.12.1<br>5.12.2<br>5.12.3<br>5.13 ON<br>5.13.1<br>5.13.2<br>5.13.3<br>5.13.4<br>5.13.5<br>5.14 EN<br>5.14.1<br>5.14.2<br>5.14.3<br>5.15 TR                                                             | TITUDE AND ORBIT CONTROL/POINTING.<br>Attitude and orbit control.<br>Pointing<br>On-Target Flag (OTF).<br>N-BOARD HARDWARE/SOFTWARE AND AUTONOMY FUNCTIONS<br>On-board hardware<br>On-board software.<br>Autonomy functions.<br>Instrument Autonomy Housekeeping Packet Definition<br>Instrument Event Packet Definition.<br>Instrument Event Packet Definition.<br>Conducted Emission/Susceptibility.<br>Radiated Emission/Susceptibility<br>Frequency Plan.<br>ANSPORT AND HANDLING PROVISIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>5-39</b><br><b>5-41</b><br>5-41<br>5-41<br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-43</b><br><b>5-43</b><br><b>5-43</b><br><b>5-43</b><br><b>5-43</b><br><b>5-43</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5.12 AT<br>5.12 AT<br>5.12.1<br>5.12.2<br>5.12.3<br>5.13 ON<br>5.13.1<br>5.13.2<br>5.13.3<br>5.13.4<br>5.13.5<br>5.14 EN<br>5.14.1<br>5.14.2<br>5.14.3<br>5.15 TR<br>5.15.1                                                   | TITUDE AND ORBIT CONTROL/POINTING<br>Attitude and orbit control<br>Pointing<br>On-Target Flag (OTF)<br>N-BOARD HARDWARE/SOFTWARE AND AUTONOMY FUNCTIONS<br>On-board hardware<br>On-board software<br>Autonomy functions<br>Instrument Autonomy Housekeeping Packet Definition<br>Instrument Event Packet Definition<br>Instrument Event Packet Definition<br>Conducted Emission/Susceptibility<br>Radiated Emission/Susceptibility<br>Frequency Plan<br>ANSPORT AND HANDLING PROVISIONS<br>Focal Plane Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5-39<br>5-41<br>5-41<br>5-41<br>5-41<br>5-42<br>5-42<br>5-42<br>5-42<br>5-42<br>5-42<br>5-42<br>5-43<br>5-43<br>5-43<br>5-43<br>5-43<br>5-43<br>5-43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5.12 AT<br>5.12 AT<br>5.12.1<br>5.12.2<br>5.12.3<br>5.13 ON<br>5.13.1<br>5.13.2<br>5.13.3<br>5.13.4<br>5.13.5<br>5.14 EN<br>5.14.1<br>5.14.2<br>5.14.3<br>5.15 TR<br>5.15.1<br>5.15                                           | TITUDE AND ORBIT CONTROL/POINTING<br>Attitude and orbit control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>5-39</b><br><b>5-41</b><br>5-41<br>5-41<br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-43</b><br><b>5-43</b><br><b>5-43</b><br><b>5-43</b><br><b>5-43</b><br><b>5-43</b><br><b>5-43</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5.12 AT<br>5.12 AT<br>5.12.1<br>5.12.2<br>5.12.3<br>5.13 ON<br>5.13.1<br>5.13.2<br>5.13.3<br>5.13.4<br>5.13.5<br>5.14 EN<br>5.14.1<br>5.14.2<br>5.14.3<br>5.15 TR<br>5.15.1<br>5.15.<br>5.15.                                 | TITUDE AND ORBIT CONTROL/POINTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>5-39</b><br><b>5-41</b><br>5-41<br>5-41<br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-43</b><br><b>5-43</b><br><b>5-43</b><br><b>5-43</b><br><b>5-43</b><br><b>5-43</b><br><b>5-43</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5.12 AT<br>5.12 AT<br>5.12.1<br>5.12.2<br>5.12.3<br>5.13 ON<br>5.13.1<br>5.13.2<br>5.13.3<br>5.13.4<br>5.13.5<br>5.14 EN<br>5.14.1<br>5.14.2<br>5.14.3<br>5.15 TR<br>5.15.1<br>5.15.                                          | Tritude and orbit control./POINTING<br>Attitude and orbit control<br>Pointing<br>On-Target Flag (OTF)<br>N-BOARD HARDWARE/SOFTWARE AND AUTONOMY FUNCTIONS<br>On-board hardware<br>On-board software<br>Autonomy functions<br>Instrument Autonomy Housekeeping Packet Definition<br>Instrument Autonomy Housekeeping Packet Definition<br>Instrument Event Packet Definition<br>Conducted Emission/Susceptibility<br>Radiated Emission/Susceptibility<br>Frequency Plan<br>ANSPORT AND HANDLING PROVISIONS<br>Focal Plane Unit<br>1.1 Transport Container<br>1.2 Cooling and Pumping restrictions<br>1.3 Mechanism positions<br>1.4 Unpacking Procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5-39<br>5-41<br>5-41<br>5-41<br>5-41<br>5-42<br>5-42<br>5-42<br>5-42<br>5-42<br>5-42<br>5-42<br>5-42<br>5-43<br>5-43<br>5-43<br>5-43<br>5-43<br>5-43<br>5-44<br>5-44<br>5-44<br>5-44<br>5-44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5.12 AT<br>5.12 AT<br>5.12.1<br>5.12.2<br>5.12.3<br>5.13 ON<br>5.13.1<br>5.13.2<br>5.13.3<br>5.13.4<br>5.13.5<br>5.14 EN<br>5.14.1<br>5.14.2<br>5.14.3<br>5.15 TR<br>5.15.1<br>5.15.<br>5.15.<br>5.15.<br>5.15.<br>5.15.2     | Titude and orbit control./POINTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>5-39</b><br><b>5-41</b><br>5-41<br>5-41<br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-43</b><br><b>5-43</b><br><b>5-43</b><br><b>5-43</b><br><b>5-43</b><br><b>5-43</b><br><b>5-43</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-5</b><br><b>5-5</b><br><b>5-5</b><br><b>5-5</b><br><b>5-5</b><br><b>5-5</b><br><b>5-5</b><br><b>5-5</b><br><b>5-5</b><br><b>5-</b> |
| 5.12 AT<br>5.12 AT<br>5.12.1<br>5.12.2<br>5.12.3<br>5.13 ON<br>5.13.1<br>5.13.2<br>5.13.3<br>5.13.4<br>5.13.5<br>5.14 EN<br>5.14.1<br>5.14.2<br>5.14.3<br>5.15 TR<br>5.15.1<br>5.15.<br>5.15.<br>5.15.2<br>5.15.2<br>5.15.2   | Tritude and orbit control./Pointing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>5-39</b><br><b>5-41</b><br>5-41<br>5-41<br>5-42<br>5-42<br>5-42<br>5-42<br>5-42<br>5-42<br>5-42<br>5-42<br>5-42<br>5-43<br>5-43<br>5-43<br>5-43<br>5-43<br>5-43<br>5-44<br>5-44<br>5-44<br>5-44<br>5-44<br>5-44<br>5-44<br>5-44<br>5-44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5.12 AT<br>5.12 AT<br>5.12.1<br>5.12.2<br>5.12.3<br>5.13 ON<br>5.13.1<br>5.13.2<br>5.13.3<br>5.13.4<br>5.13.5<br>5.14 EN<br>5.14.1<br>5.14.2<br>5.14.3<br>5.15 TR<br>5.15.1<br>5.15.5<br>5.15.5<br>5.15.2<br>5.15.2<br>5.15.2 | TITUDE AND ORBIT CONTROL/POINTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>5-39</b><br><b>5-41</b><br>5-41<br>5-41<br>5-41<br><b>5-42</b><br>5-42<br>5-42<br>5-42<br>5-42<br>5-42<br><b>5-42</b><br><b>5-43</b><br><b>5-43</b><br><b>5-43</b><br><b>5-43</b><br><b>5-43</b><br><b>5-43</b><br><b>5-43</b><br><b>5-43</b><br><b>5-43</b><br><b>5-43</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5.12 AT<br>5.12 AT<br>5.12.1<br>5.12.2<br>5.12.3<br>5.13 ON<br>5.13.1<br>5.13.2<br>5.13.3<br>5.13.4<br>5.13.5<br>5.14 EN<br>5.14.1<br>5.14.2<br>5.14.3<br>5.15 TR<br>5.15.1<br>5.15.<br>5.15.<br>5.15.2<br>5.15.2<br>5.15.3   | Tritude and orbit control.<br>Pointing<br>On-Target Flag (OTF)<br>N-BOARD HARDWARE/SOFTWARE AND AUTONOMY FUNCTIONS<br>On-board hardware<br>On-board software<br>Autonomy functions<br>Instrument Autonomy Housekeeping Packet Definition<br>Instrument Event Packet Definition<br>Conducted Emission/Susceptibility<br>Radiated Emission/Susceptibility<br>Frequency Plan<br>ANSPORT AND HANDLING PROVISIONS<br>Focal Plane Unit<br>1.1 Transport Container<br>1.2 Cooling and Pumping restrictions<br>1.3 Mechanism positions<br>1.4 Unpacking Procedure<br>JFET/Filter Boxes<br>2.1 Transport Container<br>2.2 Unpacking Procedure<br>Electronics Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>5-39</b><br><b>5-41</b><br>5-41<br>5-41<br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-42</b><br><b>5-43</b><br><b>5-43</b><br><b>5-43</b><br><b>5-43</b><br><b>5-43</b><br><b>5-43</b><br><b>5-43</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-44</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5-45</b><br><b>5</b>        |

ALCATEL SPACE

# **IIDB SPIRE**

**REFERENCE :** SCI-PT-IIDB/SPIRE-02124

02-12-2003

DATE :

**ISSUE:** 3.1 **PAGE**: 0-5

| 5.15.3             | 3.1 Transport Container                     | 5-45                |
|--------------------|---------------------------------------------|---------------------|
| 5.15.3<br>5.16 DEL | 3.2 Unpacking Procedure<br>IVERABLE ITEMS   | 5-45<br><b>5-46</b> |
| 5.16.1             | Instrument Models                           | 5-46                |
| 5.16.2             | Electrical Ground Support Equipment (EGSE)  | 5-46                |
| 5.16.3             | Mechanical Ground Support Equipment (MGSE)  | 5-47                |
| 5.16.4             | Optical Ground Support Equipment (OGSE)     | 5-47                |
| 5.16.5             | System Test Software                        | 5-47                |
| 5.16.6             | Hardware for the Observatory Ground Segment | 5-47                |
| 5.16.7             | Software for the Observatory Ground Segment | 5-47                |
| 5.16.8             | Instrument Software Simulator               | 5-47                |
| 5.16.9             | Test Reference Data                         | 5-48                |
| 5.16.10            | Instrument Characterisation Data            | 5-48                |
| 5.16.11            | Technical Documentation                     |                     |

| 6 GR | 201 | UND SUPPORT EQUIPMENT                |  |
|------|-----|--------------------------------------|--|
| 6.1  | М   | ECHANICAL GROUND SUPPORT EQUIPMENT   |  |
| 6.2  | EL  | ECTRICAL GROUND SUPPORT EQUIPMENT    |  |
| 6.3  | CC  | OMMONALITY                           |  |
| 6.3. | .1  | EGSE                                 |  |
| 6.3. | .2  | Instrument Control and Data Handling |  |
| 6.3. | .3  | Other areas                          |  |

# 7. INTEGRATION, TESTING AND OPERATIONS 7-1 7.1 INTEGRATION 7-1 7.1.1 HPLM Integration 7-1 7.1.2 PPLM Integration 7-1

| 7.4 CO  | OMMONALITY                  | . 7-6 |
|---------|-----------------------------|-------|
| 7.3 OP  | PERATIONS                   | . 7-6 |
| 7.2.3   | Thermal on ground Test      | 7-5   |
| 7.2.2   | PFM Testing                 | 7-5   |
| 7.2.1   | CQM Testing                 | 7-2   |
| 7.2 TES | STING                       | . 7-2 |
| 7.1.4   | Herschel/Planck Integration | 7-1   |
| 7.1.3   | SVM Integration             | 7-1   |
| /.I.Z   | TT LM Integration           | / - 1 |

| 9. D | EVELOPMENT AND VERIFICATION |     |
|------|-----------------------------|-----|
| 9.1  | GENERAL                     |     |
| 9.2  | MODEL PHILOSOPHY            | 9-1 |
| 9.3  | MECHANICAL VERIFICATION     |     |
| 9.4  | THERMAL VERIFICATION        |     |



| 9.5 | VERIFICATION OF SCIENTIFIC PERFORMANCE | 9-2 |
|-----|----------------------------------------|-----|
| 9.6 | ELECTRICAL TESTING                     | 9-2 |
| 9.7 | EMC TESTING                            | 9-2 |

| 10. | MANAGEMENT, | PROGRAMME, | <b>SCHEDULE</b> 1 | <b>  0-</b> ′ | 1 |
|-----|-------------|------------|-------------------|---------------|---|
|-----|-------------|------------|-------------------|---------------|---|

# Annex 1: SPIRE ICD/drawings

# **Annex 2: SPIRE Reduced TMM**

Annex 3: Summary of SPIRE cryoharness wiring functions

Annex 4: Description of the Operation of the 3He Sorption Cooler

Annex 5: SPIRE HDD 1.1 Deltas



 REFERENCE:
 SCI-PT-IIDB/SPIRE-02124

 DATE:
 02-12-2003

 ISSUE:
 3.1
 PAGE: 0-7

# **DISTRIBUTION LIST**

**IIDB SPIRE** 

Distribution in electronic format (Adobe PDF)

| Qty | Organisation                 | Institute        |
|-----|------------------------------|------------------|
| 1   | Herschel/Planck Project Team | ESA              |
| 1   | Prime Contractor             | Alcatel          |
| 1   | Herschel SPIRE               | Univ.Cardiff/RAL |
| 1   | ESA Project Scientist        | ESTEC            |



**IIDB SPIRE** 

# **DOCUMENT CHANGE RECORD**

| lssue-<br>Rev | Date                       | Version                | Pages affected                                                                                                                                               |
|---------------|----------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1-0           | 01/09/2000                 | Initial Issue for ITT  | New Document                                                                                                                                                 |
| 2-0           | 31/07/2001                 | Issue for SRR          | Complete Revision:                                                                                                                                           |
|               |                            |                        | Renaming of HERSCHEL by Herschel.                                                                                                                            |
|               |                            |                        | Changes maked by change bars                                                                                                                                 |
|               |                            |                        | (including editorial changes).                                                                                                                               |
|               |                            |                        | According to SCI/PT/MM-11440                                                                                                                                 |
| 0.1           | 13/02/2001                 | Unpublished<br>version | And DCN                                                                                                                                                      |
| 2-1           |                            |                        | Includes HP-SP-RAL-ECR-005, 06, 07, 12, 14.                                                                                                                  |
|               |                            |                        | ECR 9 and 10 not agreed.                                                                                                                                     |
| 2.2           | 2.2 01/06/2002 PDR version |                        | According to agreed changes published in<br>Minutes of convergence meeting HP-ASPI-MN-<br>1346                                                               |
| 3.0           | 23/09/2003                 | Not signed issue       | According to changes by SPIRE CR & all<br>comments & changes as here under (*), and<br>minutes of IF& IIDB Meetings: H-P-ASP-MN-<br>3513 and H-P-ASP-MN-3668 |
| 3.1           | 02/12/2003                 | New Issue              | According to comments & changes by H-P-<br>ASP-MN-3923, H-P-ASP-MN-3961 and as<br>here under (**)                                                            |
|               |                            |                        |                                                                                                                                                              |

# (\*) Issue 3.0 of SPIRE IIDB takes into account or includes (or not) the following SPIRE CR and/or the ASED/ESA/SPIRE comments and or the following changes versus issue 2.2:

# SPIRE CR's :

- HR-SP-RAL-ECR-032 : Removal of shutter
- HR-SP-RAL-ECR-049 : JFET 3D views (fig 5.4-3 & 5.4-4)
- HR-SP-RAL-ECR-048 v1 : dimension & mass of units, table in §5.5
- HR-SP-RAL-ECR-048 v2 : addendum to CR48v1 table §5.5 for DPU mass and SVM total mass , to reflect IHDR values
- HR-SP-RAL-ECR-009 v6 to v10 : not applied, replaced by new section 5.7 with annex 4 added as in H-P-ASP-MN-3513
- HR-SP-RAL-ECR-030 v3 : Temperature sensors table § 5.7.5.1 only applied, table § 5.7.5.3 replaced by ASED HF proposal dated 07/03

| ▼             | IIDB SPIRE | <b>REFERENCE</b> : | SCI-PT-IIDB/SPIR | E-02124           |
|---------------|------------|--------------------|------------------|-------------------|
| A L C A T E L |            | DATE :             | 02-12-2003       |                   |
| SPACE         |            | ISSUE :            | 3.1              | <b>Page</b> : 0-9 |

- HR-SP-RAL-ECR-050: SPIRE optical beam illustration fig 5.8-1
- HR-SP-RAL-ECR-046: Include HSDPU 1553B interface circuit §5.10.4.1
- HR-SP-RAL-ECR-029 v3: new harness definition, partially applied by SPIRE Harness definition document SPIRE-RAL-PRJ-000608 issue 1.1 (version 1.2 to be issued) as RD 19. Annex 3 (previously SPIRE-RAL-PRJ-000608 issue 1.1) replaced by "Summary of SPIRE cryoharness wiring functions", see H-P-ASP-MN-3513 and H-P-ASP-MN-3668
- HR-SP-RAL-ECR-039v1 : external and internal overshield function is agreed but with reference to HP-ASED-FX-0596-03 proposal in sections 5.10.1 & 5.10.2. common SPIRE/ASED text input. See H-P-ASP-MN-3513 and H-P-ASP-MN-3668
- HR-SP-RAL-ECR-033 : Update of various figures. Applied if not superseded by other CR (like CR 49, 29)
- HR-SP-RAL-ECR-040 v2: as ECR40 version v2 provided by SPIRE, the last ICD pack issue 6 is used as annex 1 (SPIRE-RAL-DWG-001409 issue 6). Waiting for next issue.
- HR-SP-RAL-ECR-041 v1: not applied. Section 7.2.1: text proposed by ASPI mail GL dated 21/11/02 is applied
- HR-SP-RAL-ECR-044 v1: not applied, according H-P-ASP-MN-3668
- HR-SP-RAL-ECR-052 v1: Spire Herschel DPU 28V Power I/F pin-out error: will be in annex 3 (and next issue 1.2 of SPIRE-RAL-PRJ-000608)
- HR-SP-RAL-ECR 053 v1, 057v2 & 058v2 : applied in § 5.6.1.2
- HR-SP-RAL-ECR 063 non official draft: partially applied with note to table in § 5.9.1

#### **IIDB Sections :**

- Section 0 : Table of contents modified in accordance with all section and annex changes
- Section 2 : list and numbering of AD and RD modified (and all corresponding references in all sections 3 to 10)
- Section 3: §3.1.3 Manager, § 3.2 table modified according SPIRE JD inputs
- Section 4: figure 4.1 modified, § 4.4 to 4.8.1 modified according SPIRE JD inputs
- Section 5: modified according previous listed CR's and various comments/inputs from SPIRE/ASED/ASP if not superseded by H-P-ASP-MN-3513 and H-P-ASP-MN-3668
- Section 5, notes added :
  - §5.4.2 and §5.4.3, fig 5.4-3 and fig 5.4-4: HSJFP and HSJFS height ....
  - §5.4.4.3, fig 5.4-8: : figure and ICD/drawing to be updated...
  - §5.5, table : (\*\*\*): HSJFP and HSJFS height increase by +7.3mm ...
- Section 6:
  - §6.1: TBD and waiting for inputs (notes added)
  - §6.2: 2 notes on SCOS 2000 are added
  - §6.3.1 modified according SPIRE JD inputs
- Section 7:
  - § 7.2.1: text proposed by ASPI mail GL dated 21/11/02 is applied
  - § 7.2.3: new sub-section added (Thermal on ground Test)
  - Other sub-sections:: TBD and waiting for inputs (notes added)
- Section 8: AD and RD modified



- Section 9:
  - §9.1 modified according SPIRE JD inputs
  - Other sub-sections:: TBD and waiting for inputs (notes added)
- Section 10: AD replaced by RD
- Annex 1 : SPIRE ICD/drawings new issue 6 , with added note "Forthcoming IID-B Annex 1 Unit ICDs Version 7" SPIRE-RAL-NOT-001822
- Annex 2 : SPIRE Reduced TMM new issue 2.3
- Annex 3 : new annex "Summary of SPIRE cryoharness wiring functions" added
- Annex 4 : new annex " Description of the Operation of the 3He Sorption Cooler" added

**IIDB SPIRE** 

• Annex 5 : new annex " SPIRE HDD 1.1 Deltas" added

\_\_\_\_\_

#### (\*\*) This issue 3.1 of SPIRE IIDB includes the following changes versus issue 3.0:

- This Section 0
- Section 5.4.2, figure 5.4-3, page 5-7: note suppressed
- Section 5.5, page 5-12: note (\*\*\*) under table replaced by "HSJFP and HSJFS height increase by about +7.3mm (bigger carbon fibre support for thermal I/F) is already included in Annex 1 (ICD's): updated table, CR and new drawings are to be issued by SPIRE.
- Section 5.7.1:
  - Note on top page 5-18: ["L0 agreement meeting H-P-ASP-MN-3961" and "Spire IF meeting H-P-ASP-MN-3967", witch take precedence on] added between "... in accordance with minutes of" and "SPIRE IIDB Convergence meeting ... "
  - § 5.7.1.3: New pages 5-19 & 5-20 and tables 5.7-1 & 5.7-2, according H-P-ASP-MN-3923
- Section 5.10: References to to previous Annex 5 corrected (§ 5.10, page 5-30)
- Section 5.15.1.2, page 5-44: "50 mBar/minute" replaced by "50 mBar/hour"
- Annex 1 : updated by SPIRE ICD/drawings new issue 8 , and added front page "ICD issue 8 drawings configuration and Industry comments"
- Annex 5 : updated by "SPIRE HDD 1.1 Deltas Issue 3 " (SPIRE-RAL-NOT-001819, issue 3, 23/10/03)
- All pages of all sections : top of page « IIDB issue and date »



 REFERENCE :
 SCI-PT-IIDB/SPIRE-02124

 DATE :
 02-12-2003

 ISSUE :
 3.1
 PAGE : 1-1

# 1. INTRODUCTION

The purpose of the Instrument Interface Documents (IIDs) is to define and control the overall interface between each of the Herschel/Planck scientific instruments and the Herschel/Planck spacecraft.

The IIDs consist of two parts, IID-A and IID-B. There is one part A, covering the interfaces to all Herschel and Planck instruments, and one IID-B per instrument:

- The IID-A describes the implementation of the instrument requirements in the design of the spacecraft and will be a result of the spacecraft design activities performed by the Contractor.
- Each IID-B is the result of a specific instrument's design activity. In its 'interface' section (chapter 5) are defined the requirements of the instrument and the resources to be provided by the spacecraft. In its 'performance' section (last section of chapter 4) it defines the scientific performance requirements of the instrument as part of the scientific mission requirements and as agreed between the Principal Investigators and ESA.

After issue 2/0 by ESA, the Contractor will be responsible for maintenance and configuration control of the IIDs in agreement with, and after approval by, the Instruments Principal Investigators and ESA.

In case of conflict between the contents of the IID-A and the IID-Bs, the agreement or definition in the IID-B shall take precedence.

The IIDs will not cover any of the interfaces of the Instrument Control Centres (ICCs for Herschel), the Data Processing Centres (DPCs for Planck) or the Herschel Science Centre (HSC).



# 2. APPLICABLE/REFERENCE DOCUMENTS

#### 2.1 APPLICABLE DOCUMENTS

- AD 1 Herschel/Planck Instrument Interface Document Part A. : Ref. SCI-PT-IIDA-04624
- AD 2 Product Assurance Requirements for Herschel/Planck Scientific Instruments Ref. SCI-PT-RQ-04410
- AD 3 Herschel/Planck Operations Interface Requirements Document OIRD Ref. SCI-PT-RS-07360.
- AD 4 Herschel Science-operations Implementation Requirements Document SIRD Ref. SCI- PT-03646
- AD 5 Herschel/Planck Packet Structure Interface Control Document PSICD Ref SCI-PT-ICD-07527
- AD 6 Telescope specification / Herschel: SCI- PT-RS-04671\_5\_0
- AD 7 Alignment Plan-Concept / Herschel: Ref. HP-2-ASED-TN-0002 (Annex of AD1)
- AD 8 Software standard "ECSS E 40 B "

# 2.2 **REFERENCE DOCUMENTS**

- RD 1 SPIRE Instrument Design Description SPIRE-RAL-PRJ-000620
- RD 2 SPIRE Instrument Requirements Document (IRD) SPIRE-RAL-PRJ-000034
- RD 3 SPIRE Data ICD, SPIRE-RAL-PRJ-001078 (covers both telemetry and command data)
- RD 4 SPIRE Management Plan, SPIRE-RAL-PRJ-000029
- RD 5 SPIRE Science Requirements Document (SRD) SPIRE-UCF-PRJ-000064
- RD 6 SPIRE Instrument AIV Plan, SPIRE-RAL-DOC -000410
- **RD 7** SPIRE Product Assurance Plan SPIRE-RAL-PRJ-000017.
- **RD 8** SPIRE Block Diagram SPIRE-RAL-DWG-000646
- **RD 9** SPIRE product tree
- RD 10 Instrument WBS (inside RD4)
- **RD 11** Instrument Science Implementation plan
- RD 12 SPIRE Grounding and Screening Philosophy SPIRE-RAL-PRJ-000624
- RD 13 SPIRE CRYOGENIC INTERFACE THERMAL MATHEMATICAL MODEL (ITMM) SPIRE-RAL-PRJ-000728
- RD 14 Instrument reduced FRM Model
- RD 15 Spire Straylight References SPIRE-RAL-NOT-001124
- RD 16 Swinyard. B , Power profiles for SPIRE operating modes, RAL-NOT-000068
- RD 17 SPIRE Operating Modes, SPIRE RAL-PRJ-000320
- RD 18 SPIRE Thermal Configuration Control Document, SPIRE-RAL-PRJ-000560
- RD 19 Herschel SPIRE Harness Definition, SPIRE-RAL-PRJ-000608
- RD 20 Spire requirements on Cryostat Apertures SPIRE-RAL-NOT-01242

**RD 21** Matching SPIRE - HOB Decentre and tilt amplitudes to the Photometer pupil alignment budget SPIRE-RAL-NOT-000754



IIDB SPIRE SECTION 2 
 REFERENCE:
 SCI-PT-IIDB/SPIRE-02124

 DATE:
 02-12-2003

 ISSUE:
 3.1
 PAGE: 2-2

# 2.3 LIST OF ACRONYMS

| AD       | Applicable Document                                     |
|----------|---------------------------------------------------------|
| AO       | Announcement of Opportunity                             |
| AVM      | Avionics Verification Model                             |
| BSM      | Beam Steering Mechanism                                 |
| CCE      | Central Check-Out Equipment                             |
| CDMS     | Command and Data Management Subsystem                   |
| CQM      | Cryogenic Qualification Model                           |
| CVV      | Cryostat Vacuum Vessel                                  |
| DPU      | Digital Processing Unit                                 |
| DRCU     | Detector Readout and Control Unit                       |
| EGSE     | Electrical Ground Support Equipment                     |
| EMC      | Electro-Magnetic Compatibility                          |
| ESA      | European Space Agency                                   |
| Herschel | Far InfraRed and Submillimetre Telescope (FIRST)        |
| FM       | Flight Model                                            |
| FOV      | Field Of View                                           |
| FTS      | Fourier Transform Spectrometer                          |
| GSE      | Ground Support Equipment                                |
| HIFI     | Heterodyne Instrument for the Far Infrared              |
| HSC      | Herschel Science Centre                                 |
| IA       | Interactive Analysis                                    |
| ICC      | Instrument Control Centre                               |
| ICD      | Interface Control Document                              |
| IID      | Instrument Interface Document                           |
| ISO      | Infrared Space Observatory                              |
| JFET     | Junction Field Effect Transistor                        |
| KAL      | Keep Alive Line                                         |
| LOU      | Local Oscillator Unit (HIFI)                            |
| MGSE     | Mechanical Ground Support Equipment                     |
| МОС      | Mission Operations Centre                               |
| NEP      | Noise Equivalent Power                                  |
| OBS      | On Board Software                                       |
| OGSE     | Optical Ground Support Equipment                        |
| OIRD     | Operations Interface Requirements Document              |
| OTF      | On-Target Flag                                          |
| PACS     | Photoconductor Array Camera and Spectrometer (Herschel) |
|          |                                                         |

ALCATEL SPACE

# IIDB SPIRE SECTION 2

 REFERENCE :
 SCI-PT-IIDB/SPIRE-02124

 DATE :
 02-12-2003

 Issue :
 3.1
 PAGE : 2-3

| PFM   | Proto Flight Model                                       |
|-------|----------------------------------------------------------|
| QLA   | Quick Look Analysis (software)                           |
| RAM   | Random Access Memory                                     |
| RD    | Reference Document                                       |
| RF    | Radio Frequency                                          |
| ROM   | Read Only Memory                                         |
| RTA   | Real Time Assessment (software)                          |
| S/C   | Spacecraft                                               |
| SCOS  | Spacecraft Control and Operations System                 |
| SIRD  | Science –Operations Implementation Requirements Document |
| SPIRE | Spectral Photometer Imaging Receiver                     |
| SPU   | Signal Processing Unit                                   |
| SRD   | Software Requirements Document                           |
| SVM   | Service Module                                           |
| TBC   | To be confirmed                                          |
| TBD   | To be determined                                         |
| TBW   | To be written                                            |
|       |                                                          |



# 3. KEY PERSONNEL AND RESPONSIBILITIES

# 3.1 KEY PERSONNEL

# 3.1.1 Principal Investigator

Prof. Matt Griffin Department of Physics and Astronomy University of Wales, Cardiff Cardiff CF24 3YB United Kingdom

| Telephone (Institute) | : +44-(0)29-2087-4203          |
|-----------------------|--------------------------------|
| Telefax               | : +44-(0)29-2087-4056          |
| E-mail                | : matt.griffin@.astro.cf.ac.uk |

# 3.1.2 Co-Principal Investigator

Dr. Laurent Vigroux CEA - Service d'Astrophysique CEA Saclay, Bat. 709 Orme des Merisiers 91191 Gif sur Yvette France Telephone (Institute)

| Telephone (Institute) | : +33-1-69-08-3912 |
|-----------------------|--------------------|
| Telefax               | : +33-1-69-08-6577 |
| E-mail                | : lvigroux@cea.fr  |

# 3.1.3 Instrument Manager

Dr. Eric Sawyer Rutherford Appleton Laboratory Chilton, Didcot Oxfordshire OX11 0QX England

Telephone (Institute) Telephone (Home) : +44-1235-44-6385

:



IIDB SPIRE SECTION 3 
 REFERENCE :
 SCI-PT-IIDB/SPIRE-02124

 DATE :
 02-12-2003

 ISSUE :
 3.1
 PAGE : 3-2

Telefax E-mail : +44-1235-44-6667

:E.C.Sawyer@rl.ac.uk

# 3.2 **RESPONSIBILITIES**

| INSTITUTE                       | RESPONSIBILITIES                                                                                                                    |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| ATC, Edinburgh                  | Beam steering mechanism                                                                                                             |
| CEA,                            | <sup>3</sup> He cooler                                                                                                              |
| Grenoble                        |                                                                                                                                     |
| CEA, SAp, Paris                 | Detector Readout and Control Unit (DRCU); ICC DAPSAS Centre;                                                                        |
| DESPA,                          | ETS expertise and decian support                                                                                                    |
| Paris                           |                                                                                                                                     |
| GSFC, Maryland                  | FTS Expertise and design support;                                                                                                   |
| IAS, Paris                      | Ground Calibration support                                                                                                          |
| ICSTM, London                   | ICC UK DAPSAS Centre                                                                                                                |
| IFSI, Rome                      | Digital Processing Unit (DPU) and related On-board S/W                                                                              |
| JPL/Caltech,<br>California      | Bolometer arrays and associated cold readout electronics                                                                            |
| LAM, Marseille                  | Optics; FTS mechanism                                                                                                               |
| MSSL, Surrey                    | Focal Plane Unit Structure                                                                                                          |
| University of<br>Wales, Cardiff | Focal plane array testing; filters, dichroics, beam dividers                                                                        |
| RAL, Oxfordshire                | Project management and Project Office, System and Thermal Engineering; AIV and ground calibration facilities; ICC Operations Centre |
| Stockholm<br>Observatory        | Instrument simulator; DRCU Simulator                                                                                                |
| University of<br>Padua          | Provision of ICC Operations Staff                                                                                                   |
| University of<br>Saskatchewan   | OGSE Fourier Spectrometer + Science Support                                                                                         |



# IIDB SPIRE Section 3

 REFERENCE :
 SCI-PT-IIDB/SPIRE-02124

 DATE :
 02-12-2003

 ISSUE :
 3.1
 PAGE : 3-3

| INSTITUTE     | LOCAL<br>MANAGER  | TELEPHONE / FAX<br>EMAIL        | ADDRESS                                 |
|---------------|-------------------|---------------------------------|-----------------------------------------|
| ATC           | Phil Parr Burman  | Tel.+44-131-668-8260            | Royal Observatory                       |
|               |                   | Fax:+44-131-668-8382            | Blackford Hill, Edinburgh               |
|               |                   | E-mail:                         | EH9 3HJ, Scotland                       |
|               |                   | ppb@roe.ac.uk                   |                                         |
| CEA, Grenoble | Lionel Duband     | Tel.+33-4-38-78-41-34           | CEA- Grenoble                           |
|               |                   | Fax:+33-4-38-78-51-71           | Service des Basses                      |
|               |                   | E-mail:                         | 17 and dea Manture                      |
|               |                   | Duband@drfmc.ceng.cea.fr        | 17 av. des Martyrs                      |
|               |                   |                                 | 38054 Grenoble Cedex,<br>France         |
| CEA, SAp      | Jean-Louis        | Tel.: +33-1-6908-3058           | CEA - Service                           |
|               | Augueres          | Fax: +33-1-69-08-6577           | d'Astrophysique                         |
|               |                   | E-mail:augueres@cea.fr          | CEA Saclay, Bât. 709                    |
|               |                   |                                 | Orme des Merisiers                      |
|               |                   |                                 | 91191 Gif sur Yvette,<br>France         |
| IAS           | Francois Pajot    | Tel.+33-1-69-85-8567            | Institut d'Astrophysique                |
|               |                   | Fax:+33-1-69-85-8675            | Spatiale                                |
|               |                   | E-mail:                         | Sud                                     |
|               |                   | Francois.Pajot@ias.fr           | 91405 Orsay, Paris,<br>France           |
| ICSTM         | Tim Sumner        | Tel.+44-207-594-7552            | Blackett Laboratory                     |
|               |                   | Fax:+44-207-594-3465<br>F-mail: | Imperial College, Prince<br>Consort Rd. |
|               |                   | t.sumner@ic.ac.uk               | London SW7 2BZ,<br>England              |
| IFSI          | Riccardo Cerulli- | Tel.+39-6-4993-4377             | Inst. di Fisica dello Spazio            |
|               | Irelli            | Fax:+39-6-4993-4383             | Interplanetario, CNR                    |
|               |                   | E-mail:                         | Area di Ricerca Tor<br>Vegata           |
|               |                   | Cerulli@ifsi.rm.cnr.it          | via Fosso del Cavaliere                 |
|               |                   |                                 | 00133-Roma, Italy                       |
| JPL/Caltech   | Marty Herman      | Tel. + 1 818 354 8541           | Jet Propulsion Laboratory               |
|               |                   | Fax: . + 1 818 393 6984         | Pasadena, CA 91109,                     |
|               |                   | Martin.E.Herman@ipl.nasa.gov    |                                         |



# IIDB SPIRE SECTION 3

**REFERENCE :** SCI-PT-IIDB/SPIRE-02124

3.1

DATE :

**ISSUE:** 

02-12-2003

**Page** : 3-4

| INSTITUTE                       | LOCAL<br>MANAGER       | TELEPHONE / FAX<br>EMAIL                                                             | ADDRESS                                                                                                         |
|---------------------------------|------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| LAM                             | Dominique<br>Pouliquen | Tel.+33-4-91-05-5949<br>Fax:+33-4-91-05-6959                                         | Laboratoire<br>d'Astrophysique de<br>Marseille                                                                  |
|                                 |                        | E-mail:<br>Dominique.pouliquen @astrsp-<br>mrs.fr                                    | BP 8, 13376 Marseille<br>Cedex 12                                                                               |
| MSSL                            | Berend Winter          | Tel. +44-1483-204-215<br>Fax: +44-<br>E-mail:<br>bw@mssl.ucl.ac.uk                   | Mullard Space Science<br>Laboratory<br>Holmbury St. Mary,<br>Dorking,<br>Surrey RH5 6NT, England                |
| University of<br>Wales, Cardiff | Peter Hargrave         | Tel.+44-29-2087-6067<br>Fax:+44-29-2087-6682<br>E-mail:<br>p.hargrave@astro.cf.ac.uk | Department of Physics and<br>Astronomy<br>University of Wales,<br>Cardiff<br>Cardiff CF24 3YB United<br>Kingdom |
| RAL                             | Ken King               | Tel.+44-1235-44-6558<br>Fax:+44-1235-44-6667<br>E-mail:<br>k.j.king@rl.ac.uk         | Rutherford Appleton<br>Laboratory<br>Chilton, Didcot<br>Oxfordshire OX11 0QX,<br>England                        |
| Stockholm<br>Obs.               | H G Floren             | Tel.+46-8-5537-8522<br>Fax:+46-8-5537-8510<br>E-mail:<br>floren@astro.su.se          | Stockholm Observatory<br>S-133 36 Saltsjöbaden<br>Sweden                                                        |
| University of<br>Padua          | Paola Andreani         | Tel.+39-49-829-TBD<br>Fax:+39-49-875-9840<br>E-mail:<br>andreani@astrpd.pd.astro.it  | Dipartimento di<br>Astronomia di Padova<br>vicolo Osservatorio 5<br>I-35122 Padova, Italy                       |



# 4. INSTRUMENT DESCRIPTION

# 4.1 INTRODUCTION

For low background direct detection at wavelengths longer than around 200  $\mu$ m, the most sensitive detectors are cryogenic bolometers operating at temperatures in the 0.1 - 0.3 K range.

SPIRE (Spectral & Photometric Imaging REceiver) is a bolometer instrument comprising a three-band imaging photometer covering the 200-500  $\mu$ m range and an imaging Fourier Transform Spectrometer (FTS) with a spectral resolution of at least 0.4 cm<sup>-1</sup> (corresponding to  $\lambda/\Delta\lambda = 100$  at 250  $\mu$ m, covering wavelengths between 200 and 670  $\mu$ m. The detectors are bolometer arrays cooled to 300 mK using a <sup>3</sup>He refrigerator. The photometer is optimised for deep photometric surveys, and can observe simultaneously the same field of view of 4 x 8 arcminutes in all three bands.



Figure 4-1: Two halves of Spire: photometer shown on left, spectrometer on the right"

# 4.2 SCIENTIFIC RATIONALE

The wavelength range 200 - 700  $\mu$ m is largely unexplored. The thermal emission from many astrophysical sources peaks in this part of the spectrum, including comets, planets, star-forming molecular cloud cores, and starburst galaxies. The short submillimetre region is also rich in atomic and molecular transitions which can be used to probe the chemistry and physical conditions in these sources.

Wavelengths between 200 and 350  $\mu$ m are not observable from the ground and have not be observed by ISO. Between 350  $\mu$ m and 700  $\mu$ m, some low transparency submillimetre windows allow some observations to be made with difficulty from the ground, but with far lower sensitivity than can be achieved from space.

One of the most important scientific projects for the Herschel mission is to investigate the statistics and physics of galaxy formation at high redshift. This requires the ability to carry out deep photometric imaging at far-infrared and submillimetre wavelengths to discover objects, and the ability to follow up the survey observations with spectroscopy of selected sources. The Herschel SPIRE instrument is essential for this

|               |            | <b>REFERENCE</b> : | SCI-PT-IIDB/SPII | RE-02124          |
|---------------|------------|--------------------|------------------|-------------------|
| A L C 🔺 T E L | IIDD SPIKE | DATE :             | 02-12-2003       |                   |
| SPACE         | SECTION 4  | ISSUE :            | 3.1              | <b>Page</b> : 4-2 |

programme, and is being designed so as to be optimised for these extragalactic imaging and spectral surveys. Another key scientific project for SPIRE is a sensitive unbiased search for proto-stellar objects within our own galaxy. This will also be followed up by spectral observations using SPIRE, other Herschel instruments and ground-based facilities.

# 4.3 INSTRUMENT OVERVIEW

SPIRE contains a three-band imaging photometer and an imaging Fourier Transform Spectrometer (FTS), both of which use 0.3-K "spider-web" NTD germanium bolometers cooled by a <sup>3</sup>He refrigerator. The bolometers are coupled to the telescope by close-packed single-mode conical feedhorns. The photometer and spectrometer are not designed to operate simultaneously. The field of view of the photometer is 4 x 8 arcminute, the largest that can be achieved given the location of the SPIRE field of view in the Herschel focal plane and the size of the telescope unvignetted field of view. Three photometer arrays provide broad-band photometry ( $\lambda/\Delta\lambda \approx 3$ ) in wavelength bands centred on 250, 350 and 500 µm. The 250, 350 and 500 µm arrays have 149, 88, and 43 detectors respectively, making a total of 280. The field of view is observed simultaneously in all three bands through the use of fixed dichroic beam-splitters. Spatial modulation can be provided either by a Beam Steering Mirror (BSM) in the instrument or by drift scanning the telescope across the sky, depending on the type of observation. An internal thermal calibration source is available to provide a repeatable calibration signal for the detectors. The FTS uses novel broadband intensity beam dividers, and combines high efficiency with spatially separated input ports. One input port covers a 2.6-arcminute diameter field of view on the sky and the other is fed by an on-board calibration source which serves to null the thermal background from the telescope and to provide absolute calibration. Two bolometer arrays are located at the output ports, one covering 200-300 µm and the other 300-670 µm. The FTS will be operated in continuous scan mode, with the path difference between the two arms of the interferometer being changed by a constantspeed mirror drive mechanism. The spectral resolution, as determined by the maximum optical path difference, will be adjustable between 0.04 and 2 cm<sup>-1</sup> (corresponding to  $\lambda/\Delta\lambda$  = 1000 - 20 at 250  $\mu$ m wavelength).

The focal plane unit has three separate temperature stages at nominal temperatures of 4 K, 2 K (provided by the Herschel cryostat) and 300 mK (provided by SPIRE's internal cooler). The main 4-K structural element of the FPU is an optical bench panel which is supported from the cryostat optical bench by stainless steel blade mounts. The photometer and spectrometer are located on either side of this panel. The majority of the optics are at 4 K, but the detector arrays and final optics are contained within 2-K enclosures. The <sup>3</sup>He refrigerator cools all of the five detector arrays to 0.3 K. Two JFET preamplifier modules (one for the photometer an one for the FTS) are attached to the optical bench close to the 4-K enclosure, with the JFETs heated internally to their optimum operating temperature of  $\sim 120$  K.

The SPIRE warm electronics consist of two boxes with direct connection to the FPU, the Detector Control Unit (DCU) and the Focal Plane Control Unit (FCU) (together these boxes are termed the Detector Readout and Control Unit (DRCU)) plus a Digital Processing Unit (DPU) with interfaces to the other two boxes and the spacecraft data handling system. The DCU provides bias and signal conditioning for the detector arrays and cold readout electronics and reads out the detector signals. The FCU controls the FPU mechanisms and the <sup>3</sup>He cooler and handles housekeeping measurements. The DPU acts as the interface to the spacecraft, including instrument commanding and formats science and housekeeping data for telemetry to the ground.



# 4.4 HARDWARE DESCRIPTION

The SPIRE instrument consists of:

HSFPU Focal Plane Unit (FPU):

This interfaces to the cryostat optical bench, and the 4-K and 2-K temperature stages provided by the cryostat. Within the unit, further cooling of the detector arrays to a temperature of around 300 mK is provided by a <sup>3</sup>He refrigerator which is part of the instrument.

HSJFP JFET box for the photometer detectors

This box is mounted on the optical bench next to the photometer side of the FPU and contains JFET preamplifiers for the detector signals. The JFETs operate at around 120 K, and are thermally isolated inside the enclosure.

HSJFS JFET box for the spectrometer detectors

This box is mounted on the optical bench next to the spectrometer side of the FPU and contains JFET preamplifiers for the detector signals. The JFETs operate at around 120 K, and are thermally isolated inside the enclosure.

HSDCU Detector Control Unit (on Herschel SVM)

A warm analogue electronics box for detector read-out analogue signal processing, multiplexing, A/D conversion, and array sequencing.

HSFCU Focal Plane Control Unit (on Herschel SVM)

A warm analogue electronics box for mechanism control, temperature sensing, general housekeeping and <sup>3</sup>He refrigerator operation. It conditions secondary power both for itself and for the DCU.

- HSDPU Digital Processing Unit (on Herschel SVM) A warm digital electronics box for signal processing and instrument commanding and interfacing to the spacecraft telemetry.
- HSWIH Warm interconnect harness (on Herschel SVM) Harness making connections between SPIRE electronics boxes.



|           | <b>REFERENCE</b> : | SCI-PT-IIDB/SPIRE-02124 |        |  |
|-----------|--------------------|-------------------------|--------|--|
| SECTION 4 | DATE :             | 02-12-2003              |        |  |
|           | ISSUE :            | 3.1 <b>Pa</b>           | ge:4-4 |  |

# 4.5 SOFTWARE DESCRIPTION

The SPIRE OBS will carry out the following functions:

- Read and log housekeeping data and packetise the data that these produce.
- Control and monitor the instrument mechanisms and internal calibration sources
- Carry out pre-defined observing sequences
- Implement pre-defined procedures on detection of instrument anomalies

The on-board software (OBS) will be written in "C" language and will be designed to allow the instrument to operate in an autonomous fashion for 48 hours as required in the IID-A. The basic implication of this requirement is that there must be the facility to store enough commands for a 48 observing programme and enough mass memory on the satellite to store 48 hours of instrument telemetry. More sophisticated autonomy functions may include the on-board analysis of scientific or housekeeping data and the ability to react on the basis of that analysis. The type of automatic operation undertaken following such an analysis may range from the raising of a warning flag to the switching over to a redundant sub-system or the switching off of a defective sub-system. All autonomy functions will require extensive evaluation and test before they are implemented to avoid the possibility of instrument failure. No instrument autonomy mode will be implemented that will affect the satellite operation.

Commands defined in RD5 and conforming to AD5 will be sent via a HERSCHEL 1553 bus to the active HSDPU. The Spire OBS in the HSDPU will verify and then interpret these commands. Many will result in a sequence of internal digital commands which are then sent with appropriate timings to the HSDCU and/or the HSFCU.

A detailed description of the on-board software will be given in Chapter 5

# 4.6 **OPERATING MODES**

This section gives a brief description of the operating modes for the SPIRE instrument.

For latest information, refer to RD 17.

# 4.6.1 OFF Mode

All instrument sub-systems will be switched off - including the DPU and there will be no instrument telemetry.

# 4.6.2 Initialise (INIT) Mode

This is an intermediate mode between OFF and ON. This will be the mode the instrument enters after a power on or re-boot. In this mode only a limited sub-set of commands may be executed. This mode allows updates of DPU on-board software and/or tables to be carried out safely before they are used for instrument control.



# 4.6.3 ON Mode

The DPU will be switched on and can receive and interpret all instrument commands, but no other sub-systems will be switched on (including the DRCU). For engineering purposes it will be possible to command the instrument to switch on individual sub-systems from this mode. Full DPU housekeeping data will be telemetered.

# 4.6.4 Ready (REDY) Mode

The DPU and DRCU are powered on and the on-board software is ready to receive commands. No other sub-systems are switched on in this mode. DRCU housekeeping data will be telemetered.

# 4.6.5 Standby (STBY) Mode

The spacecraft may be pointed in an arbitrary direction (observing with another instrument for instance). The instrument will telemeter only housekeeping information, and perhaps some degraded science data -see below, at a rate very much lower than the full telemetry bandwidth. This is presently baselined to be the photometer detectors on and at 300 mK i.e. the cooler will have been recycled previous to entering STANDBY. All other sub-systems will be switched off.

# 4.6.6 Observe Mode (OBSV) Mode

There are two basic sub-modes for the observe mode Photometer and Spectrometer. The details of the OBSERVATIONS to be carried out in OBSERVE mode are given in section 4.7.

# 4.6.7 Cooler Recycle (CREC) Mode

The <sup>3</sup>He cooler requires recycling every 46 hours (TBC). During this time the instrument will be switched off except for vital housekeeping and cooler functions (TBC).

# 4.6.8 SAFE Mode

The instrument will be switched to SAFE mode in the event of any anomalous situation occurring whilst in autonomous operation. This will be with the DPU on having been rebooted from a restricted set of software stored in ROM.

# 4.7 **OBSERVING MODES**

The spacecraft will be pointed in a specific direction or, for mapping, will either slew slowly over a given region of the sky, or execute a raster pattern by movements of the telescope. The instrument will take scientifically meaningful data and use the full telemetry bandwidth. It is assumed that any calibrations required will also be done in the observe mode (TBC).

For latest information, refer to RD 17.



# 4.7.1 Photometer Observing Modes

The photometer can carry out essentially three kinds of observation: chopping,

jiggling, and scanning, and it is envisaged that these will form the basis of three

Astronomical Observation Templates (AOTs) to allow astronomers to specify their observations. The three kinds of observation are implemented as 6 (TBC) observing modes, named POFs (Photometer Observatory Functions), which are briefly described below. Provision is also made for additional POFs for peak-up and special engineering modes.

# 4.7.1.1 Observation: Point Source Photometry

POF1 Chop without jiggling:

This mode is for point source observations with reliable telescope pointing. The SPIRE Beam Steering Mechanism is used to chop between two positions on the sky at a frequency of typically 2 Hz. The telescope may optionally be nodded with a nod period of typically three minutes.

POF2 Seven-point jiggle map:

This mode is for point source observations for which the telescope pointing or the source co-ordinates are not deemed sufficiently accurate. The SPIRE BSM chops and also executes a seven-point map around the nominal position. Nodding is optional.

#### 4.7.1.2 Observation: Jiggle Map

POF3 n-point jiggle map:

This mode is designed for mapping of extended sources. It is similar to POF2 except that the nominal value of n is 64 rather than 7. It produces a fully sampled map of a

4 x 4 arcminute area.

POF4 Raster map:

This is the same as POF3 except that maps of large regions can be built up by using the telescope rastering capability.

# 4.7.1.3 Observation: Scan Map

POF5 Scan map without chopping:

This mode is used for mapping areas much larger than the SPIRE field of view. The SPIRE BSM is inactive, and the spacecraft is scanned continuously across the sky to modulate the detector signals.

POF6 Scan map with chopping:

This mode is the same as POF5 except that the SPIRE BSM implements chopping. It allows for the possibility of excess 1/f noise by permitting signal modulation at frequencies higher that POF5.

# 4.7.1.4 Others

POF7 Photometer peak-up (TBD):

This mode allows the necessary pointing offsets to be determined in order to allow implementation of POF1

|               |           | <b>REFERENCE</b> : | SCI-PT-IIDB/SPI | RE-02124          |
|---------------|-----------|--------------------|-----------------|-------------------|
| A L C 🔺 T E L |           | DATE :             | 02-12-2003      |                   |
| SPACE         | SECTION 4 | ISSUE :            | 3.1             | <b>Page</b> : 4-7 |

rather than POF2. The observation itself is the same as POF3. On completion, the SPIRE DPU computes the offsets between the telescope pointed position and the source peak emission, and sends this information to the spacecraft, which can then implement the necessary pointing corrections.

POF8 Operate photometer calibrator:

The SPIRE photometer internal calibrator is energised with a pre-determined sequence and the corresponding detector signals are recorded.

POF9 Special engineering/commissioning modes (TBD).

# 4.7.2 Spectrometer Observing Modes

There are two kinds of spectrometer observation: point source and fully sampled map. The latter is carried out by repeating the former at a number of separate pointing using the SPIRE BSM (or, alternatively the spacecraft in RASTER Pointing mode). These are implemented as two Spectrometer Observatory Functions (SOFs):

SOF1: Point source spectrum SOF2: Fully sampled spectral map

In all cases, the telescope pointing and/or Beam Steering Mirror position are kept fixed while the FTS mirror is scanned a predetermined number of times to generate interferograms from which the source spectrum can be derived.

# 4.7.3 Other Modes

# 4.7.3.1 Photometer Serendipity

During spacecraft slews scientifically useful information can be obtained without the necessity of using the focal plane chopper - essentially these are rapid scan maps. The chopper and spectrometer mechanisms will be switched off in this mode. Accurate pointing information will be required from the AOCS to reconstruct the slew path in the data analysis on the ground.

# 4.7.3.2 Photometer Parallel

When observations are being made with PACS, scientifically useful data may be obtainable from the photometer, albeit with degraded sensitivity and spatial resolution. In this mode a science data packet will be telemetered alongside the standard housekeeping data. The chopper and spectrometer mechanisms will be switched off in this mode. The feasibility and scientific desirability of this mode is TBD.

# 4.7.4 Real-Time Commanding

During ground contact it may be necessary to command the instrument in real time and analyse the resultant data on the ground in near real time for instrument testing and debugging purposes. In this case the full telemetry bandwidth will be required for the duration of the instrument test in question. It is not anticipated that this will occur frequently.



# 4.7.5 Commissioning/calibration Mode

During the commissioning and performance verification phases of mission operations, many housekeeping and other health check parameters will be unknown or poorly defined. This mode allows the limits on selected health check parameters to be ignored by whatever real time monitoring systems are in place on the spacecraft/instrument.

# 4.7.6 FPU operations at Ambient Temperature

TBD. It is anticipated that functional checks will be possible for mechanisms and housekeeping lines. The detectors will not function at ambient temperature. Limited verification of the readout electronics may be possible.

# 4.7.7 FPU Orientation

During ground tests the FTS mechanism can only operate when the FPU is on its side. In addition, there is a restriction on the orientation of the <sup>3</sup>He cooler during recycling.

# 4.8 INSTRUMENT REQUIREMENTS AND PERFORMANCE SPECIFICATION

# 4.8.1 Scientific Requirements

The scientific performance requirements for SPIRE are summarised in the SPIRE Scientific Requirements Document as follows:

Requirement SRD-R 1: The photometer should be capable of diffraction-limited extragalactic blind surveys of at least 60 sq. deg. of the sky, to  $1-\sigma$  detection limit of 3 mJy in all bands with an observing time of six months or less.

Requirement SRD-R 2: The photometer should be capable of a galactic survey covering 1 deg. sq. to a  $1-\sigma$  depth of 3 mJy at 250  $\mu$ m within an observing time of one month or less.

Requirement SRD-R 3: Maximising the mapping speed at which confusion limit is reached over a large area of sky is the primary science driver. This means maximising sensitivity and field-of-view (FOV) but NOT at the expense of spatial resolution.

Requirement SRD-R 4: The photometer observing modes should provide a mechanism for telemetering undifferenced samples to the ground.

Requirement SRD-R 5: The photometer should have an observing mode that permits accurate measurement of the point spread function.

Requirement SRD-R 6: Optical field distortion should be less than 10% across the photometer field of view.

Requirement SRD-R 7: The photometer field of view shall be at least  $4 \times 4$  arcminutes, with a goal of  $4 \times 8$  arcminutes.

|               |           | <b>REFERENCE</b> : | SCI-PT-IIDB/SPI | RE-02124          |
|---------------|-----------|--------------------|-----------------|-------------------|
| A L C 🔺 T E L | SECTION A | DATE :             | 02-12-2003      |                   |
| SPACE         | JECHON 4  | ISSUE :            | 3.1             | <b>Page</b> : 4-9 |

Requirement SRD-R 8: For  $2F\lambda$  feedhorns, crosstalk shall be less than 1% (goal 0.5%) for adjacent detectors and 0.1% or less (goal 0.05%) for all non-adjacent detectors in the same array; for 0.5F $\lambda$  pixels, the requirement is 5% (goal 2%) to adjacent detectors and 0.1% (goal 0.05%) to all others.

Requirement SRD-R 9: The maximum available chop throw shall be at least 4 arcminutes; the minimum shall 10 arcseconds or less.

Requirement SRD-R 10: The rms detector NEP variation across any photometer array should be less than 20%.

Requirement SRD-R 11: The photometer dynamic range for astronomical signals shall be 12 bits or higher.

Requirement SRD-R 12: SPIRE absolute photometric accuracy shall be 15% or better at all wavelengths, with a goal of 10%.

Requirement SRD-R 13: The relative photometric accuracy should be 10% or better with a goal or 5%.

Requirement SRD-R 14: SPIRE photometric measurements shall be linear to 5% over a dynamic range of 4000 for astronomical signals.

Requirement SRD-R 15: For feedhorn detectors, the overlapping sets of three detectors at the three wavelengths should be co-aligned to within 2.0 arcseconds on the sky (goal is 1.0 arcsecond).

Requirement SRD-R 16: The spectrometer design shall be optimised for optimum sensitivity to point sources, but shall have an imaging capability with the largest possible field of view that can be accommodated.

Requirement SRD-R 17: The sensitivity of the FTS at any spectral resolution up to the goal value shall be limited by the photon noise from the Herschel telescope within the chosen passband.

Requirement SRD-R 18: The spectrometer dynamic range for astronomical signals shall be 12 bits or higher.

Requirement SRD-R 19: The FTS absolute accuracy shall be 15% or better at all wavelengths, with a goal of 10%.

Requirement SRD-R 20: The FTS shall be capable of making spectrophotometric measurements with a resolution of 2 cm<sup>-1</sup>, with a goal of 4 cm<sup>-1</sup>.

Requirement SRD-R 21: The width of the FTS instrument response function shall be uniform to within 10% across the field of view.

Requirement SRD-R 22: The maximum spectral resolution of the FTS shall be at least 0.4 cm<sup>-1</sup> with a goal of 0.04 cm<sup>-1</sup>.

|               |           | <b>REFERENCE</b> : | SCI-PT-IIDB/SP | IRE-02124          |
|---------------|-----------|--------------------|----------------|--------------------|
| A L C 🔺 T E L | SECTION A | DATE :             | 02-12-2003     |                    |
| SPACE         | JECTION 4 | ISSUE :            | 3.1            | <b>Page</b> : 4-10 |

Requirement SRD-R 23: The SPIRE photometer shall have an observing mode capable of implementing a 64point jiggle map to produce a fully sampled image of a 4 x 4 arcminute region.

Requirement SRD-R 24: The photometer observing modes shall include provision for 5-point or 7-point jiggle maps for accurate point source photometry.

Requirement SRD-R 25: The photometer shall have a "peak-up" observing mode capable of being implemented using the beam steering mirror.



# 4.8.2 Instrument Performance Estimates

# 4.8.2.1 Assumptions

The sensitivity of SPIRE has been estimated under the assumptions listed in Table 4.1.

| Telescope temperature (K)                        |                    | 80          |     |         |
|--------------------------------------------------|--------------------|-------------|-----|---------|
| Telescope emissivity                             |                    | 0.04        |     |         |
| Telescope used diameter (m)                      | (1)                | 3.29        |     |         |
| No. of observable hours per 24-hr                | period             | 21          |     |         |
| Photometer                                       |                    |             |     |         |
| Bands (µm)                                       |                    | 250         | 350 | 500     |
| Numbers of detectors                             |                    | 139         | 88  | 43      |
| Beam FWHM (arcsec.)                              |                    | 17          | 24  | 35      |
| Bolometer DQE                                    | (2)                | 0.6         | 0.7 | 0.7     |
| Throughput                                       |                    | $\lambda^2$ | •   |         |
| Bolometer yield                                  |                    | 0.8         |     |         |
| Feed-horn/cavity efficiency                      | (3)                | 0.7         |     |         |
| Field of view (arcmin.) Scan mapping             |                    | 4 x 8       |     |         |
| Field mapping                                    |                    | 4 x 4       |     |         |
| Overall instrument transmission                  |                    | 0.3         |     |         |
| Filter widths $(\lambda/\Delta\lambda)$          |                    | 3.3         |     |         |
| Observing efficiency (slewing, setting up, etc.) |                    | 0.9         |     |         |
| Chopping efficiency factor                       |                    | 0.45        |     |         |
| Reduction in telescope background                | l by cold stop (4) | 0.8         |     |         |
| FTS spectrometer                                 |                    |             |     |         |
| Bands (μm)                                       |                    | 200-30      | 0   | 300-670 |
| Numbers of detectors                             |                    | 37          |     | 19      |
| Bolometer DQE                                    |                    | 0.6         |     | 0.7     |
| Feed-horn/cavity efficiency                      |                    | 0.70        |     |         |
| Field of view diameter (arcmin.)                 |                    | 2.6         |     |         |
| Max. spectral resolution (cm <sup>-1</sup> )     |                    | 0.04        |     |         |
| Overall instrument transmission                  |                    | 0.15        |     |         |
| Signal modulation efficiency                     |                    | 0.5         |     |         |
| Observing efficiency                             |                    | 0.8         |     |         |
| Electrical filter efficiency                     |                    | 0.8         |     |         |

#### Table 4.1: Assumptions for SPIRE Performance Estimation



IIDB SPIRE<br/>SECTION 4REFERENCE :SCI-PT-IIDB/SPIRE-02124DATE :02-12-2003ISSUE :3.1PAGE : 4-12

Notes:

- 1. The telescope secondary mirror is the pupil stop for the system, so that the outer edges of the primary mirror are not seen by the detectors. This is important to make sure that radiation from highly emissive elements beyond the primary reflector does not contribute stray light.
- The bolometer DQE (Detective Quantum Efficiency) is defined as : [NEPph/ NEPTotal ]<sup>2</sup>, where NEPph is the photon noise NEP due to the absorbed radiant power and NEPTotal is the overall NEP including the contribution from the bolometer noise.
- 3. This is the overall absorption efficiency of the combination of feed-horn, cavity and bolometer element.
- 4. A fraction of the feedhorn throughput falls outside the solid angle defined by the photometer 2-K cold stop and is thus terminated on a cold (non-emitting) surface rather than on the 4% emissive 80-K telescope. This reduces the background power on the detector.

The background power levels on the SPIRE detectors dominated by the telescope

emission), and the corresponding photon noise limited NEP values are given in

Table 4.2.

|                                                                    | Photometer be |     | Photometer band |         | FTS band | (μm) |
|--------------------------------------------------------------------|---------------|-----|-----------------|---------|----------|------|
|                                                                    | 250           | 350 | 500             | 200-300 | 300-670  |      |
| Background power/detector pW                                       | 3.9           | 3.2 | 2.0             | 6.0     | 11       |      |
| Background-limited NEP W Hz <sup>-1/2</sup> x 10 <sup>-17</sup>    | 8.1           | 6.1 | 4.5             | 10      | 11       |      |
| Total NEP (inc. detector) W Hz <sup>-1/2</sup> x 10 <sup>-17</sup> | 10            | 7.3 | 5.4             | 12      | 14       |      |

#### **Table 4.2: Background Power and Photon Noise Levels**

The estimated sensitivity levels for SPIRE are summarised in Table 4.3. The figures quoted are the nominal values, with an overall uncertainty of around 50% to take into account uncertainties in instrument parameters, particularly feedhorn efficiency, detector DQE, and overall transmission efficiency. The pixel size will be increasingly mis-matched to the diffraction spot size. The trade-off between wavelength coverage and sensitivity of the long-wavelength FTS band must be studied in detail. At the moment, we estimate an effective loss of efficiency of a factor of two at 670mm, and scale linearly for wavelengths between 400 and 670 mm. Performance beyond 400 mm may have to be compromised to maintain the desired sensitivity below 400 mm.



IIDB SPIRE SECTION 4

| <b>R</b> EFERENCE : | SCI-PT-IIDB/SP | IRE-02124          |
|---------------------|----------------|--------------------|
| DATE :              | 02-12-2003     |                    |
| ISSUE :             | 3.1            | <b>Page</b> : 4-13 |

#### Table 4.3: SPIRE Estimated Sensitivity

| Photometry                                          |                             |     |     |     |  |  |
|-----------------------------------------------------|-----------------------------|-----|-----|-----|--|--|
| λμm                                                 |                             | 250 | 350 | 500 |  |  |
|                                                     | Point source (7-point) ode) | 2.5 | 2.6 | 2.9 |  |  |
| $\Delta S(5-\sigma; 1-hr)$ mJy                      | 4′ x 4′ jiggle map          | 8.8 | 8.7 | 9.1 |  |  |
|                                                     | 4′ x 8′ scan map            | 7.3 | 7.2 | 7.5 |  |  |
| Time (days) to map 1 deg. $^2$ to 3 mJy 1- $\sigma$ | 1° x 1° scan map            | 1.8 | 1.7 | 1.9 |  |  |

| Line spectroscopy $\Delta \sigma = 0.04 \text{ cm}^{-1}$              |              |     |     |     |  |  |
|-----------------------------------------------------------------------|--------------|-----|-----|-----|--|--|
| λμm                                                                   |              | 200 | 400 | 670 |  |  |
| $\Delta S$ (5- $\sigma$ ; 1-hr) W m <sup>-2</sup> x 10 <sup>-17</sup> | Point source | 3.4 | 3.9 | 7.8 |  |  |
|                                                                       | 2.6′ map     | 9.0 | 10  | 21  |  |  |

| Low-resolution spectrophotometry $\Delta \sigma = 1 \text{ cm}^{-1}$ |              |     |     |     |  |  |
|----------------------------------------------------------------------|--------------|-----|-----|-----|--|--|
| λ μm                                                                 |              | 200 | 400 | 670 |  |  |
| ΔS (5-σ; 1-hr) mJy                                                   | Point source | 110 | 130 | 260 |  |  |
|                                                                      | 2.6′ map     | 300 | 350 | 700 |  |  |

Note: For the FTS, limiting flux density is inversely proportional to spectral resolution

 $(\Delta\sigma)$ . Limiting line flux is independent of spectral resolution (for an unresolved line).

These estimated sensitivity levels are comparable to the figures in the SPIRE proposal.



# 5. INTERFACE WITH SATELLITE

Spacecraft resource allocations are based on present knowledge.

# 5.1 IDENTIFICATION AND LABELLING

Each individual instrument unit is allocated two unique identification codes:

- a project code which is the normal reference used for routine identification in correspondence and technical descriptive material.
- a spacecraft code finalised by the spacecraft contractor in accordance with the computerised configuration control system to be implemented, and used in particular for connector and harness identification purposes. All of these have now been given a working designation anyway as work has progressed. The project code shall form part of the spacecraft code. (See IID-A section 5.1)

| Project code | Instrument unit           | Location         | Temperature |
|--------------|---------------------------|------------------|-------------|
| HSDPU        | Digital Processing Unit   | On SVM           | Warm        |
| HSFCU        | FPU Control Unit          | On SVM           | Warm        |
| HSDCU        | Detector Control Unit     | On SVM           | Warm        |
| HSJFS        | JFETs (Spectrometer)      | See section 5.3  | Cryogenic   |
| HSJFP        | JFETs (Photometer)        | See section 5.3  | Cryogenic   |
| HSFPU        | Focal Plane Unit          | See section 5.3  | Cryogenic   |
| HSWIH        | Warm interconnect harness | See section 5.10 | Warm        |

The project codes allocated to this instrument are:

The HSFCU is a physical unit containing three functions, the HSSCU and the HSMCU meaning the HS Sub-System Control Unit and the HS Mechanisms' Control Unit respectively, plus the HSPSU that provides secondary power to all parts of the Spire DRCU.

[Documentation may refer to a DRCU or Detector Readout and Control Unit. This is no longer a single unit and the term refers collectively to the HSDCU plus the HSFCU.]

There are four groups of harnesses at instrument interface level,

- HSWxx,
- HSIxx
- HSSxx
- HSCxx

where xx represents a number.

The HSWxx are Warm harnesses between Warm HS units on the SVM.

HSSxx are the SVM cryoharnesses between the SVM connector brackets and the HS Warm Units.

The HSIxx are intermediate cryoharnesses, which are external to the cryostat, and are situated between the vacuum connectors and the connector bracket on the SVM.

The HSCxx are cryogenic cryoharnesses located inside the cryostat, between the vacuum connectors and the HS Cryogenic units.

|               |           | <b>REFERENCE</b> : | SCI-PT-IIDB/SPII | RE-02124          |
|---------------|-----------|--------------------|------------------|-------------------|
| A L C 🔺 T E L | SECTION 5 | DATE :             | 02-12-2003       |                   |
| SPACE         | SECTION S | ISSUE :            | 3.1              | <b>Page</b> : 5-2 |

The HSIxx, HSSxx and HSCxx are all considered to be "Cryoharness" and are not provided by the Spire instrument.

The two F harnesses (FPU sub-system F harness) between JFETs and FPU (HSFPU-HSJFP and HSFPU-HSJFS) are provided by SPIRE with the instrument units.

"ESA's contractor will also provide any safing plugs needed (TBD, SPIRE to provide a TN) for the cryoharness"

# 5.2 INTERFACE LOCATIONS

All of the above may be visualised by means of the block diagram, shown in figure 5.2.1 (see RD 8). The Herschel to Herschel-Spire electrical interfaces are in several "planes" shown by dashed blue lines, the categories between each line being labelled along the top. This diagram is for information only, and shall not represent any requirement on the spacecraft.

Note that, to be precise, electrical interfaces are at the connector planes.

# 5.2.1 MECHANICAL COORDINATE SYSTEM

The unit specific x,y,z origin definitions are shown in the External Configuration Drawings. (see section 5.4)

ALC<u>ATEL</u> **SPACE** 

**IIDB SPIRE SECTION 5** 

**REFERENCE :** SCI-PT-IIDB/SPIRE-02124

02-12-2003 DATE : 3.1

**ISSUE:** 

**PAGE** : 5-3



Figure 5.2.1 : Spire Block Diagram – version 5.6

|               |           | <b>REFERENCE</b> : | SCI-PT-IIDB/SPII | RE-02124          |
|---------------|-----------|--------------------|------------------|-------------------|
| A L C 🔺 T E L | SECTION 5 | DATE :             | 02-12-2003       |                   |
| SPACE         | JECHON J  | ISSUE :            | 3.1              | <b>Page</b> : 5-4 |

# 5.3 LOCATION AND ALIGNMENT

Figure 5.3-1 shows the concept of the location of the three Herschel Focal Plane Units (FPUs) for HIFI, PACS and Spire on the Optical Bench (OB) inside the cryostat. The Spire FPU has two nearby JFET racks.



Figure 5.3-1: The Herschel Focal Plane, top view towards –X

|               |           | <b>REFERENCE</b> : | SCI-PT-IIDB/SPI | RE-02124          |
|---------------|-----------|--------------------|-----------------|-------------------|
| A L C A T E L | SECTION 5 | DATE :             | 02-12-2003      |                   |
| SPACE         | JECTION J | ISSUE :            | 3.1             | <b>Page</b> : 5-5 |

# 5.3.1 Instrument Location

The locations of the Spire units are as listed in section 5.1. Spire has no units supported on the outside of the Herschel cryostat or on the Planck Module. There are no critical alignment requirements on the Spire JFET boxes.

# 5.3.1.1 Location of units on the SVM

There are no specific requirements for the location of Spire units on the SVM, except that the HSDCU and HSFCU need optimised harness routing towards the Spire quadrant of cryostat 100way connectors. ESA is asked to advise the Spire Instrument consortium of harness and unit position definitions and 100way type at the earliest date, for comment and for them be recorded herein. The length of the instrument provided harness between the HSDCU and the HSFCU is critical. As a goal, the location of these two units on the SVM should enable this length to be kept below 0.8m.

The picture here under shows the Spire specific SVM panel



# 5.3.2 Instrument Alignment on the HOB

Spire has no critical alignment and/or alignment stability requirements except for those of the HSFPU.

The HSFPU has an externally viewable alignment cube as shown on its ICD. Both the cube's angular alignment and the position of the HSFPU box' feet w.r.t. its internal optics will have been established at instrument level to a defined tolerance before delivery to ESA.

The mechanical process of mounting Spire on the HOB so that it is aligned to the Herschel telescope (when both are at operating temperature) is worked through in AD7. This defines an error budget for how well the alignment has to be achieved, as well as how stable it then has to remain.
ALCATEL SPACE

# 5.4 EXTERNAL CONFIGURATION DRAWINGS

These are included for readability only.

The fully configured detailed interface drawings are provided in Annex 1.

# 5.4.1 HSFPU

An overview of the HSFPU is provided below in Figure 5.4-1. More detailed drawings of the SPIRE focal plane and JFET units, showing their relationship to the Herschel focal plane, the cryostat radiation shield and the diameter of the HOB, can be found in Annex 1.



Note: figure extracted from Interface Drawing, Issue 17, Sheet1

Figure 5.4-1 : HSFPU overall view



|           | <b>REFERENCE</b> : | SCI-PT-IIDB/SPIR | E-02124           |
|-----------|--------------------|------------------|-------------------|
| SECTION 5 | DATE :             | 02-12-2003       |                   |
| SECTION S | ISSUE :            | 3.1              | <b>Page</b> : 5-7 |

# 5.4.2 HSJFS

Figure 5.4-3 provides an isometric view of the Spire Spectrometer JFET rack. More detailed drawings can be found in Annex 1.



Figure 5.4-3 : SPIRE Spectrometer JFET rack external configuration



| RE<br>5 | <b>REFERENCE</b> : | SCI-PT-IIDB/SPII | RE-02124          |
|---------|--------------------|------------------|-------------------|
|         | DATE :             | 02-12-2003       |                   |
| 9       | ISSUE :            | 3.1              | <b>Page</b> : 5-8 |

## 5.4.3 HSJFP

Figure 5.4-4 provides an isometric view of the Spire Photometer JFET rack. More detailed drawings can be found in Annex 1.

**IIDB SPI** 

**SECTION** 

Note: : HSJFP and HSJFS height increase by +7.3mm (bigger carbon fibre support for thermal I/F) is foreseen, a CR and new drawings are to be issued by SPIRE.



Figure 5.4-4 : SPIRE Photometer JFET rack external configuration



## 5.4.4 SVM Mounted Units.

Drawings of the layout of the SPIRE Warm Units on the SVM are provided in the corresponding section of the IIDA.

The following sub-sections provide an overview of the warm units, whereas detailed interface drawings can be found in Annex 1.

### 5.4.4.1 HSDPU

Figure 5.4-6 shows an isometric view of the Spire Digital Processing Unit More detailed drawings can be found in Annex 1.



Figure 5.4-6 Isometric view of the DPU



| REFERENC | E: SCI-PT-IID | SCI-PT-IIDB/SPIRE-02124 |  |  |
|----------|---------------|-------------------------|--|--|
| DATE :   | 02-12-200     | )3                      |  |  |
| ISSUE :  | 3.1           | <b>Page</b> : 5-10      |  |  |

## 5.4.4.2 HSDCU

Figure 5.4-7 shows an isometric view of the Spire Detector Control Unit. More detailed drawings can be found in Annex 1.



Figure 5.4-7 : HSDCU external configuration



# 5.4.4.3 HSFCU

Figure 5.4-8 shows an isometric view of the Spire FPU Control Unit.



Figure 5.4-8 : HSFCU external configuration

Note: figure and ICD/drawing to be updated (contact area and M5 screws), a CR is to be issued by SPIRE

ALCATEL SPACE

| <b>REFERENCE</b> : | SCI-PT-IIDB/SPIRE-02124 |                    |  |  |
|--------------------|-------------------------|--------------------|--|--|
| DATE :             | 02-12-2003              |                    |  |  |
| ISSUE :            | 3.1                     | <b>Page</b> : 5-12 |  |  |

# 5.5 SIZES AND MASS PROPERTIES

The mass budget is a mission critical item and no possibility is foreseen to negotiate any higher values for the allocated totals shown in bold in the following table:

| Note: SPIRE CR | 48 v1 and v2 | applied to this | table |
|----------------|--------------|-----------------|-------|
|                |              |                 |       |

| Project<br>Code | Instrument<br>Unit             | Dimenions (mm) including feet | Nominal Mass<br>without<br>margins (kg) | Allocated<br>Mass (kg) |
|-----------------|--------------------------------|-------------------------------|-----------------------------------------|------------------------|
| HSFPU           | HS Focal Plane<br>Unit (*)     | Non-rectangular               | 44.81 (**)                              | 47.2                   |
| HSJFP           | HS JFET Rack<br>Photometer     | 124.6 x118.2 x 274.5 (***)    | 2.51                                    | 2.8                    |
| HSJFS           | HS JFET Rack<br>Spectrometer   | 114.2 x 114 x 112.5 (***)     | 0.89                                    | 1.0                    |
|                 |                                | Total SPIRE OB Units          | 48.21                                   | 51.0                   |
| HSFCU           | HS FPU Control<br>Unit         | 325 x 370 x 335               | 15.28                                   | 15.0                   |
| HSDCU           | HS Detector<br>Control Unit    | 490 x 285 x 305               | 15.68                                   | 15.5                   |
| HSDPU           | HS Digital<br>Processing Unit  | 274 x 274 x 194               | 7.18                                    | 7.0                    |
| HSW1-8          | HS Warm Inter-<br>unit Harness | To Alenia layout              | 1.5                                     | 1.5                    |
|                 |                                | Total SPIRE SVM Units         | 39.64                                   | 39.0                   |
|                 |                                | SPIRE Instrument Total        | 87.84                                   | 90.0                   |

(\*): HSFPU includes attached flying leads and any FPU thermal strap supports.

(\*\*):includes 32.07Kg Nominal and 34.77Kg Allocation for Structure mass elements, see Iss 1.4 of RD1 as DDR

The drawings for all these items are in annex 1, in SPIRE-RAL-DWG-001409 issue 6

Dimensions are given in the order XxYxZ, and XYZ axis are defined on each unit drawing in annex 1. Dimensions including mounting feet, excluding connectors.

(\*\*\*): HSJFP and HSJFS height increase by about +7.3mm (bigger carbon fibre support for thermal I/F) is already included in Annex 1 (ICD's): updated table, CR and new drawings are to be issued by SPIRE.

ALCATEL SPACE

# 5.6 MECHANICAL INTERFACES

Note: Electrical and thermal characteristics conferred by these mechanical interfaces are covered in the appropriate sections, not here.

### 5.6.1 Inside cryostat

The Focal Plane Unit, the HSFPU, has 3 supporting feet to the Optical Bench. The details of this mechanical interface will be such as to allow the unit alignment and alignment-stability requirements to be fulfilled.

The Spire JFET racks will also mechanically interface directly to the Optical Bench.

### 5.6.1.1 Microvibrations

Spire's mechanisms (SMEC and BSM) are sensitive to microvibrations between 0.03 Hz and 300 Hz, with the potential effect of displacing the SMEC suspended mirrors from their optical positions. The bolometers, as they are accommodated, probably have a similar susceptibility to HOB-driven microvibrations. This is potentially due to harness flexure /capacitance changes, rather than to movements of the detector elements themselves.

Spire needs knowledge of the level of the microvibration-induced forces on the HSFPU at its HOB interface, in order to ensure they can be mitigated. The expected levels of input acceleration are to be provided by ESA/Alcatel, over the frequency range between 30 Hz and 300 Hz.

### 5.6.1.2 Thermal Straps

Note: SPIRE ECR-053 v1, 057v2 & 058v2 applied to this section 5.6.1.2

SPIRE requires the following thermal straps:

- 3 Level-0 thermal straps
- 2 Level-1 thermal straps
- 2 Level-3 thermal straps

The mechanical I/F geometry, fixing torque, mechanical load cases, etc. for each of these straps is as baselined in the IID-A. See section 5.4 for positions on Spire and section 5.7 for more details.

The HERSCHEL to Spire interfaces for the L0 straps are at three standardised points just above the HOB plate. For information, inside SPIRE, these thermal straps will be steadied by non-metallic supports on the outside of the FPU, designed to minimise the forces the straps can apply to thermal lead-throughs, but not be Ohmic shorts. Separate supports are needed to minimise cross-coupling between the two sorption cooler straps.



**SPIRE JFET L3 I/F with electrical insulation** The SPIRE JFET L3 thermal strap interface shall be implemented as shown in the figure below.

The shape of the L3 thermal strap shall have a T-shaped end bracket (40mm x 12mm). The requirement for the two L3 straps are as follows:

- Bolt hole tolerance Ø6.00-6.05mm
- Bolt spacing 25mm +/-0.1 according to AD3-1
- Gold plated on both I/F sides > 10microns
- Flatness <0.05, roughness <0.4mircrons</li>

SPIRE will provide all needed clamping and fixation parts, which will be equipped by SPIRE with an electrical insulation. The H-EPLM Contractor shall supply a T-shaped end-bracket of the flexible link for each JFET rack (i.e. 2-JFET and 6-JFET) as shown below. SPIRE will provide the clamp block with insulated bushes and Kapton on the JFET rack I/F. The impact of the Kapton tape at the JFET I/F belongs to the SPIRE thermal budget. The arrangement is shown in the figure 5.6-1 below.



Figure 5.6-1: SPIRE JFET L3 interface including electrical insulation



#### SPIRE L1 electrical insulation I/F

The electrical insulation of the L1 thermal straps shall be implemented between the SPIRE L1 Thermal Straps and the Optical Bench He ventline.

- The H-EPLM contractor shall provide:
  - A single pressure plate with 4 holes diameter 6.0mm to 6.05mm
  - . 4 holes diameter 6.0mm to 6.05mm in the flexible end bracket
- SPIRE/RAL will provide the following parts to incorporate an electrical insulation:

**SECTION 5** 

- 75micron Kapton tape with adhesive layer to be attached on the flexible end bracket or on the pipe.
- 5.90-5.95 mm bolt bush bolt for electrical isolation of bolt. Required bush length will be defined after freeze of SEN/AIRL bracket design.
- Impact of Kapton tape belongs to the SPIRE thermal budget.

The concept is shown in the figure 5.6-2 below.



Figure 5.6-2: Electrical Insulation of SPIRE L1 thermal strap interface

# 5.6.2 Outside Cryostat

NA



|           | <b>R</b> EFERENCE : | SCI-PT-IIDB/SP | IRE-02124          |
|-----------|---------------------|----------------|--------------------|
| SECTION 5 | DATE :              | 02-12-2003     |                    |
| Section 5 | ISSUE :             | 3.1            | <b>Page</b> : 5-16 |

# 5.6.3 On SVM

The three units mounted on the SVM will each have attachment points for fixation to the equipment platform, as shown in their External Configuration Drawings. Interface flatnesses, fasteners and tightening torques are all defined on these drawings.

The Spire warm harness will be attached to the SVM via TBD ESA provided hold-down ties.

# 5.6.4 On Planck Payload Module

NA

# 5.6.5 Cooler valves and piping

NA



# 5.7 THERMAL INTERFACES

The cryogenic interfaces are the most important category of interfaces for Spire 's success, and the most complicated. They would provide the most gain to science performance from being improved.

The SPIRE reduced TMM (issue 2.3) is given in annex 2

SPIRE heat flow diagram is given by the figure here under:



Figure 5.7-1: SPIRE heat flow diagram

 IDB SPIRE
 REFERENCE:
 SCI-PT-IIDB/SPIRE-02124

 Date:
 02-12-2003

 ISSUE:
 3.1
 Page: 5-18

# 5.7.1 Inside the cryostat

Note: all this section 5.7.1 is in accordance with minutes of "L0 agreement meeting H-P-ASP-MN-3961" and "Spire IF meeting H-P-ASP-MN-3967", witch take precedence on "SPIRE IIDB Convergence meeting H-P-ASP-MN-3513" and "SPIRE IIDB Telecon H-P-ASP-MN-3668".

### 5.7.1.1 Description of the thermal interfaces

Spire uses 4 thermal stages to run 300mK detectors inside a <sup>4</sup>HEII cryostat,. These link into levels provided by the Herschel cryostat. An overview of the Spire system is as follows, drawn with the heat switches associated with its 300mK cooler set as for an observing mode.

Electrical insulation is not shown here for electrical purposes but rather because where high thermal conduction is needed it adds to the design challenge. The radiative loads on Spire, shown in green, potentially come from warm baffles "seen" off-axis up the optical beam aperture. The arrow for external harness loads on the JFETs is not joined to anything specific as this depends on design decisions taken by Astrium.

Spire has two detector optical box structures, one housing the photometer detectors and one the spectrometer's. They mount on thermally isolating mounts inside the HSFPU and, to minimise the heat leak to the 300mK detectors themselves, link to the lowest available temperature, the L0 cryostat liquid sink. The spectrometer box has an external L0 interface and the photometer is then linked from it internally to the HSFPU, so together they only require one external I/F strap to L0.

As shown above in figure 5.7-1, there are two other L0 interfaces associated with the 300mK sorption cooler which is described below.

Not shown in the above overview are the small thermal loads on the Spire side of the I/F on the three L0 straps, due to their necessary mechanical support to the FPU.

The main HSFPU mountings to the HOB are also designed to be thermally isolating, so that the HSFPU can run at L1 whilst the HOB itself is at L2. The HOB tends to warm the HSFPU, which is why the structure and harness heat flow arrows are as shown.

When operational, JFET racks have a comparatively high dissipation. Fortunately, within reason, it is actually advantageous to run them a little warm. They therefore attach further up the boil-off line sequence to L3. Note that **Spire** plans to only power one rack at a time, either spectrometer or photometer and, depending on which is the more thermally demanding mode to operate in, their order on the L3 pipe is significant. Due to gas flow, the earlier can heat the later (with a heat path back into the FPU) but not visa versa.

To provide the required overall thermal balance boundary, the cryostat's inner instrument shield forms an enclosure at level 2, and the effective temperature seen from the surface of the HSFPU, integrated over an outward hemisphere, needs to be well specified.

### 5.7.1.2 Description of Operation and Interfaces for the 3He Cooler

The Sorption Cooler interfaces and operation are described in Annex 4

### 5.7.1.3 Thermal requirements

Two major thermal requirements for SPIRE are its sorption minimum cooler cycle time of 48h, and its detector temperature of < 310 mK.

The table below shows the required operating temperatures and design heat flows at the thermal interfaces of the instrument unit with the cryostat or parts thereof :



# IIDB SPIRE Section 5

| <b>REFERENCE</b> : | SCI-PT-IIDB/SPIRE-02124 |                    |  |  |
|--------------------|-------------------------|--------------------|--|--|
| DATE :             | 02-12-2003              |                    |  |  |
| ISSUE :            | 3.1                     | <b>Page</b> : 5-19 |  |  |

|    | In-Orbit thermal requirements                      |                |                |           |  |  |  |  |
|----|----------------------------------------------------|----------------|----------------|-----------|--|--|--|--|
|    | SPIRE FPU thermal I/F Max I/F Temp @ Max Heat Load |                |                |           |  |  |  |  |
|    |                                                    | Requirement    | Goal           |           |  |  |  |  |
| LO | Detector Box                                       | 2 K @ 4 mW     | 1.71 K @ 1 mW  | Operating |  |  |  |  |
|    | Cooler Pump         2 K @ 2 mW         2 K @ 2 mW  |                | 2 K @ 2 mW     | Operating |  |  |  |  |
|    | 10 K @ 500 mW peak 10 K @ 500 mW peak              |                | Recycling      |           |  |  |  |  |
|    | Cooler Evaporator                                  | 1.85 K @ 15 mW | 1.75 K @ 15 mW | Recycling |  |  |  |  |
| L1 |                                                    | 5.5 K @ 15 mW  | 3.7 K @ 13 mW  | Operating |  |  |  |  |
| L2 | Optical bench / FPU legs                           | 12 K @ no load | 8 K @ no load  | Operating |  |  |  |  |
| L3 | HSJFP (JFET Photometer)                            | 15 K @ 50 mW   | 15 K @ 50 mW   | -         |  |  |  |  |
|    | HSJFS (JFET Spectrometer)                          | 15 K @ 25 mW   | 15 K @ 25 mW   | -         |  |  |  |  |
| -  | Instrument shield                                  | 16 K @ -       | 16 K @ -       | -         |  |  |  |  |
|    | (eq. Radiative temperature)                        |                |                |           |  |  |  |  |

Notes:

- Assuming a He<sup>2</sup> tank temperature of 1.7 K
- Sorption Cooler Recycling phase is composed of 2 phases in sequence, refer to Annex 4

Table 5.7-1: In-Orbit thermal requirements



# IIDB SPIRE Section 5

| <b>REFERENCE</b> : | SCI-PT-IIDB/SPIRE-02124 |                    |  |  |
|--------------------|-------------------------|--------------------|--|--|
| DATE :             | 02-12-2003              |                    |  |  |
| ISSUE :            | 3.1                     | <b>Page</b> : 5-20 |  |  |



Figure 5.7.2: Expected heat profiles on evaporator and Pump strap, during recycling

| SPI | RE FPU thermal I/F                             | Ground                     |                   |                                    |                   |                  |                   |                                  |                                      |
|-----|------------------------------------------------|----------------------------|-------------------|------------------------------------|-------------------|------------------|-------------------|----------------------------------|--------------------------------------|
|     |                                                | Operations FM<br>(IMT/IST) |                   | Operations EQM                     |                   | Cooler recycling |                   | non operating                    |                                      |
|     |                                                | Max I/F<br>Temp.           | Max. Heat<br>load | Max I/F<br>Temp.                   | Max. Heat<br>load | Max I/F<br>Temp. | Max.<br>Heat load | max<br>continuous<br>temperature | Bake out<br>temperature<br>(72h max) |
| LO  | SPIRE SM Detector<br>enclosure [814]           |                            | Same              | as in orbit                        | as far as po      | ssible           |                   | 60.0 °C                          | 80 °C                                |
|     | SPIRE Cooler Pump<br>strap [node 815]          |                            | Came              |                                    |                   |                  |                   | 60.0 °C                          | 80 °C                                |
|     | SPIRE Cooler<br>Evaporator strap<br>[node 816] |                            | All value         | values TBD (on going open actions) |                   |                  |                   | 60.0 °C                          | 80 °C                                |
| L1  | SPIRE L1 (two straps)<br>[node 800]            |                            |                   |                                    |                   |                  |                   | 60.0 °C                          | 80 °C                                |
| L2  | SPIRE L2 (Optical<br>bench / FPU legs)         |                            |                   |                                    |                   |                  |                   |                                  | 80 °C                                |
| L3  | SPIRE L3                                       |                            |                   |                                    |                   |                  |                   |                                  | 80 °C                                |
|     | HSJFP,                                         |                            |                   |                                    |                   |                  |                   |                                  |                                      |
|     | HSJFS                                          |                            |                   |                                    |                   |                  |                   |                                  |                                      |

Table 5.7-2: On ground thermal requirements



### 5.7.1.4 Worst case temperatures

The cryogenic units must withstand the full thermal environment given in the IIDA, including repeated max. 72hr. 80°C bake-outs and indefinite 60°C soak.

## 5.7.2 Outside the Cryostat

NA

# 5.7.3 On the SVM

The table below shows the required operating temperatures at the interface of the instrument unit with a mounting platform or parts thereof:

| Project code | Operating |         | Start-up | Switch-off | Non-op  | perating            |
|--------------|-----------|---------|----------|------------|---------|---------------------|
|              | Min. ⁰C   | Max. ⁰C | ٥C       | ٥C         | Min. ⁰C | Max. <sup>o</sup> C |
| HSDPU        | - 15      | + 45    | - 30     | + 50       | - 35    | + 60                |
| HSFCU        | - 15      | + 45    | - 30     | + 50       | - 35    | + 60                |
| HSDCU        | - 15      | + 45    | - 30     | + 50       | - 35    | + 60                |

Note:

- Acceptance temperature range is from 5 °C below min. to 5 °C above max. operating temp.
- Qualification temperature range is from 10 °C below min. to 10 °C above max. operating temp.
- During nominal operation in-flight, the SVM units will not move at more than 3K/hour.
- Spire units will be thermally joined over their base mounting I/Fs to the panel skins which will help stabilise the temperature of un-powered sections and absorb dissipated heat when powered by conduction. The units have an alochromed aluminium general surface finish. If it is found that other arrangements are needed, such as low temperature limit thermostated heaters, these shall be external and Herschel furnished. If details are determined on time-scales that can be accommodated, Spire will build in minimal necessary mounting arrangements for such systems, TBC.

# 5.7.4 On the Planck Payload Module

NA

### 5.7.5 Temperature channels

### 5.7.5.1 Instrument Temperature Sensors

For information the table below shows the measurement of instrument cryogenic temperatures. These data are available in DPU science packets (unless otherwise indicated) via whichever is powered of the prime and redundant sides of the Spire electronics. They may also be included in some housekeeping packets.

Each Prime/Redundant side uses different, electrically isolated sensors and will therefore have subtlety differing electrical to temperature calibrations. Note that the accuracy columns that follow refer to the performance of the complete system including cryoharness and electronics, not the sensors alone. "Resolutions" and "Accuracy" will need to be further defined as they are actually temperature dependant.



IIDB SPIRE SECTION 5 
 REFERENCE :
 SCI-PT-IIDB/SPIRE-02124

 DATE :
 02-12-2003

 ISSUE :
 3.1
 PAGE : 5-22

Cernox sensors type CX-1030 are used for all HSFPU SPIRE conditioned housekeeping temperatures. The below table is consistent with RD19.

| Location IN HSFPU         | Acronym | Sensor Type        | Temp. Range | Resol. | Acc.  |
|---------------------------|---------|--------------------|-------------|--------|-------|
| PSW BDA_1                 | T_PSW_1 | NTD Ge Thermistor* | 0.2 K>5 K   | 0.5mK  | 2mK   |
| PSW BDA_2                 | T_PSW_2 | NTD Ge Thermistor  | 0.2 K>5 K   | 0.5mK  | 2mK   |
| PMW BDA_1                 | T_PMW_1 | NTD Ge Thermistor  | 0.2 K>5 K   | 0.5mK  | 2mK   |
| PMW BDA_2                 | T_PMW_2 | NTD Ge Thermistor  | 0.2 K>5 K   | 0.5mK  | 2mK   |
| PLW BDA_1                 | T_PLW_1 | NTD Ge Thermistor  | 0.2 K>5 K   | 0.5mK  | 2mK   |
| PLW BDA_2                 | T_PLW_2 | NTD Ge Thermistor  | 0.2 K>5 K   | 0.5mK  | 2mK   |
| SSW BDA_1                 | T_SSW_1 | NTD Ge Thermistor  | 0.2 K>5 K   | 0.5mK  | 2mK   |
| SSW BDA_2                 | T_SSW_2 | NTD Ge Thermistor  | 0.2 K>5 K   | 0.5mK  | 2mK   |
| SLW BDA_1                 | T_SLW_1 | NTD Ge Thermistor  | 0.2 K>5 K   | 0.5mK  | 2mK   |
| SLW BDA_2                 | T_SLW_2 | NTD Ge Thermistor  | 0.2 K>5 K   | 0.5mK  | 2mK   |
| 300mK Plumbing Cntrl_1    | PTC_Ch1 | NTD Ge Thermistor  | 0.2 K>5 K   | 0.05mK | 0.2mK |
| 300mK Plumbing Cntrl_2    | PTC_Ch2 | NTD Ge Thermistor  | 0.2 K>5 K   | 0.05mK | 0.2mK |
| 300mK Plumbing Cntrl_3    | PTC_Ch3 | NTD Ge Thermistor  | 0.2 K>5 K   | 0.05mK | 0.2mK |
| HSFPU EMC filters         | EMCFIL  | CX-1030            | 3K>100K     | 25mK   | 50mK  |
| Spectrometer 2K box       | T_SLO   | CX-1030            | 1K>10K      | 2mK    | 2mK   |
| Photometer 2K box         | T_PLO   | CX-1030            | 1K>10K      | 2mK    | 2mK   |
| M3,5,7 Optical SubBench   | T_SUB   | CX-1030            | 3K>100K     | 25mK   | 50mK  |
| HSFPU Input Baffle        | T_BAF   | CX-1030            | 3K>80K      | 5mK    | 5mK   |
| BSM/SOB I/F               | T_BSMS  | CX-1030            | 3K>80K      | 5mK    | 5mK   |
| HS Spect. Stimulus Flange | T_SCST  | CX-1030            | 1K>50K      | 10mK   | 10mK  |
| Sorption Pump             | T_CPHP  | CX-1030            | 1K>50 K     | 10mK   | 10mK  |
| Evaporator                | T_CEV   | CX-1030            | 0.2 K>5 K   | 1mK    | 1mK   |
| Sorption Pump Heat Switch | T_CPHS  | CX-1030            | 1K>50K      | 10mK   | 10mK  |
| Evaporator Heat Switch    | T_CEHS  | CX-1030            | 1K>50K      | 10mK   | 10mK  |
| Thermal Shunt             | T_CSHT  | CX-1030            | 0.2 K>5 K   | 1mK    | 1mK   |
| HS Spect. Stim 4%         | T_SCL4  | CX-1030            | 3K>80K      | 5mK    | 5mK   |
| HS Spect. Stim 2%         | T_SCL2  | CX-1030            | 3K>80K      | 5mK    | 5mK   |
| BSM                       | T_BSMM  | CX-1030            | 3K>20K      | 10mK   | 10mK  |
| SMEC                      | T_FTSM  | CX-1030            | 3K>20K      | 10mK   | 10mK  |
| SMEC/SOB I/F              | T_FTSS  | CX-1030            | 3K>100K     | 25mK   | 50mK  |

\*NTD Ge Thermistor is equivalent to a detector element, but it is not mounted on an isolating web.

## 5.7.5.2 Shutter Temperature Sensors

The SPIRE shutter has been removed. Temperature sensors are therefore not required

ALCATEL SPACE

# IIDB SPIRE SECTION 5

| <b>REFERENCE</b> : | SCI-PT-IIDB/SPIRE-02124 |                    |  |
|--------------------|-------------------------|--------------------|--|
| DATE :             | 02-12-2003              |                    |  |
| ISSUE :            | 3.1                     | <b>Page</b> : 5-23 |  |

### 5.7.5.3 Satellite Temperature sensors

In addition to the Spire conditioned temperature channels, Spire requires that Herschel itself shall monitor the temperatures of certain locations on the cryostat and SVM. These are given in the table below.

|                                                              |          |          | CCU Measurement |            | EGSE Measure | ment       |
|--------------------------------------------------------------|----------|----------|-----------------|------------|--------------|------------|
| Position                                                     | Type (1) | Name (1) | Range           | Accuracy   | Range        | Accuracy   |
| On Instrument Shield, close to SPIRE                         | C100     | T213     | 3.0K - 20.0K    | ± 0.1K     | 3.0K - 20.0K | ± 0.1K     |
| L0; Cooling Strap 5; to<br>"SPIRE SM Detector enclosure"     | C100     | T225     | 1.6K - 2.0K     | ± < 0.001K | 1.6K - 2.0K  | ± < 0.001K |
| L0; Cooling Strap 6; to<br>"SPIRE Cooler Pump HS"            | C100     | T226     | 2.0K - 10.0K    | ± 0.01K    | 2.0K - 10.0K | ± 0.01K    |
| L0; Cooling Strap 7; to<br>"SPIRE Cooler Evaporator HS"      | C100     | T227     | 1.5K - 2.2K     | ± < 0.01K  | 1.5K - 2.2K  | ± < 0.01K  |
| L1; on Ventline upstream strap 4 to<br>"SPIRE Optical Bench" | C100     | T235     | 2.0K - 10.0K    | ± 0.01K    | 2.0K - 10.0K | ± 0.01K    |
| L1; on Ventline downstream strap 4 to "SPIRE Optical Bench"  | C100     | T236     | 2.0K - 10.0K    | ± 0.01K    | 2.0K - 10.0K | ± 0.01K    |
| L3; on Ventline to JFET-Phot                                 | C100     | T246     | 3.0K - 20.0K    | ± 0.1K     | 3.0K - 20.0K | ± 0.1K     |
| L3; on Ventline to JFET-Spec                                 | C100     | T247     | 3.0K - 20.0K    | ± 0.1K     | 3.0K - 20.0K | ± 0.1K     |
| L1; on Strap 4 on SPIRE FPU side                             | C100     | T248     | 2.0K - 10.0K    | ± 0.01K    | 2.0K - 10.0K | ± 0.01K    |
| On Spire JFET-Spec<br>(Pos on Structure or L3 strap)         | PT1000   | T249     |                 |            | 13K - 370K   | ± 1K       |
| On Spire JFET-Spec<br>(Pos on Structure or L3 strap)         | C100     | T250     | 3.0K - 20.0K    | ± 0.1K     | 3.0K - 20.0K | ± 0.1K     |
| On Spire JFET-Phot<br>(Pos on Structure or L3 strap)         | PT1000   | T251     |                 |            | 13K - 370K   | ± 1K       |
| On Spire JFET-Phot<br>(Pos on Structure or L3 strap)         | C100     | T252     | 3.0K - 20.0K    | ± 0.1K     | 3.0K - 20.0K | ± 0.1K     |
| OB Plate near SPIRE foot (center)                            | PT1000   | T253     |                 |            | 13K - 370K   | ± 1K       |
| OB Plate near SPIRE foot (center)                            | C100     | T254     | 3.0K - 20.0K    | ± 0.1K     | 3.0K - 20.0K | ± 0.1K     |
| OB Plate near SPIRE foot (-z+y)                              | PT1000   | T255     |                 |            | 13K - 370K   | ± 1K       |
| OB Plate near SPIRE foot (-z+y)                              | C100     | T256     | 3.0K - 20.0K    | ± 0.1K     | 3.0K - 20.0K | ± 0.1K     |
| OB Plate near SPIRE foot (-y-z)                              | C100     | T258     | 3.0K - 20.0K    | ± 0.1K     | 3.0K - 20.0K | ± 0.1K     |

(1): Type and name for information only

Note : One temperature sensor (T257) has been removed.

The SPIRE reduced TMM (issue 2.3) is in annex 2

\* Lower values for resolution and accuracy apply at bottom end of range, higher when hot and the absolute value of the requirement is much less stringent. The temperature of an item should be determined (accuracy+ resolution errors) to 2% of its absolute value in Kelvin, TBC

The precise number and location of these sensors shall be confirmed after thermal modelling.

Herschel shall check temperatures are within range, and for instance not empower SVM units outside of their rated operating ranges.

ALCATEL SPACE

|           | <b>REFERENCE</b> : | SCI-PT-IIDB/SPI | RE-02124           |
|-----------|--------------------|-----------------|--------------------|
| SECTION 5 | DATE :             | 02-12-2003      |                    |
| Section 5 | ISSUE :            | 3.1             | <b>Page</b> : 5-24 |

# 5.8 OPTICAL INTERFACES

The cryostat and baffle structures shall be compatible with the SPIRE beam.

# 5.8.1 Straylight

The instrument straylight model and its conclusions related to alignment etc. are described in RD-15.

The dimensions of the Spire optical beam stayout envelopes are defined in the HSFPU ICD annexed to the IID-B. These are simplified inclusive shapes, detailed ones can be found in RD-20

For information, Figure 5.8-1 illustrates the SPIRE optical beam envelope viewed as it passes out of the HSFPU, showing the contributions from the photometer and the spectrometer. The differing beams result from the extremes of the BSM's jiggle and chop displacements. The beam envelope formed is the geometric optical beam passing through the Spire cold stop. The 6mm clearance around the beam is the allowance required for beam diffraction.

The figure 5.8-1 here under takes into account the removing of SPIRE shutter



Figure 5.8-1 Spire optical beam envelope as it leaves the HSFPU

The spectrometer's almost circular used beams are the farther from HERSCHEL field centre, and lie to the side of the semi-rectangular beams of the photometer. FOV switching is not used within SPIRE to boresight the photometer and the spectrometer; both are illuminated simultaneously by the HERSCHEL telescope.

 IDB SPIRE
 REFERENCE:
 SCI-PT-IIDB/SPIRE-02124

 DATE:
 02-12-2003

 ISSUE:
 3.1
 PAGE: 5-25

# 5.9 POWER

The thermal design and thermal model is still under evaluation at system level, with industry and ESA project. The values given in 5.9.1 reflect the current known status.

### 5.9.1 Power inside the cryostat

The SPIRE components which dissipate power inside the cryostat are described in the Table below. It should be noted that the individual component dissipations vary according to the operational mode of the instrument, as described in section 5.9.5.

| Component            | Dissipation. at component level (mW) |
|----------------------|--------------------------------------|
| Photometer Cal       | 0.033                                |
| Spectrometer Cal     | 1.5                                  |
| 300 mK Cooler *      | 1.8                                  |
| BSM / Photometry     | 3                                    |
| BSM / Spectroscopy   | 0.2                                  |
| SMEC / Photometry    | 0                                    |
| SMEC / Spectroscopy  | 3.2                                  |
| JFETS / Photometry   | 42                                   |
| JFETS / Spectrometry | 14                                   |

\* Recycling is a special case, see section 5.7 and Annex 4.

Note: these values are updated (cf SPIRE ECR 63 draft) from thermal model 2.3, and will be included in model version 2.5.

### 5.9.2 Power outside the Cryostat

NA

# 5.9.3 Power on the SVM

The following table shows the heat dissipation (in Watts) of the warm electronic units mounted on the SVM. Note that the power passed through to the Cryoharness and the HSFPU is negligible, such that the dissipation values given here are the same as those corresponding to the unit power loads on the bus (Section 5.9.6.1) :

| Project Code | Instrument Unit            | Dissipation | Comment                     |
|--------------|----------------------------|-------------|-----------------------------|
| HSDPU        | HS Digital Processing Unit | 15.3 W      |                             |
| HSFCU        | HS FPU Control Unit        | 42.9 W      | Includes power cond. losses |
| HSDCU        | HS Detector Control Unit   | 37.0 W      | Lower in spectrometer Mode  |
| HSWIR        | HS Warm Inter-unit Harness | 0.1 W       |                             |
|              | Total                      | 95.3 W      |                             |

|               |           | <b>REFERENCE</b> : | SCI-PT-IIDB/SP | IRE-02124          |
|---------------|-----------|--------------------|----------------|--------------------|
| A L C A T E L | SECTION 5 | DATE :             | 02-12-2003     |                    |
| SPACE         | JECHON J  | ISSUE :            | 3.1            | <b>Page</b> : 5-26 |

The above dissipations are essentially independent of observing mode, with the exception that the baseline is to power EITHER the spectrometer OR the photometer bolometer systems at any one time. The above figures are based on the higher dissipation values expected with *photometer* operation. When operating in spectrometry mode, the reduction in HSDCU power requirements and the associated reduction in conditioning losses in the HSFCU are TBD.

The baseline is to empower either prime or redundant modules of Spire. The instrument will therefore appear to the S/C as simply cold redundant.

### 5.9.4 Power on Planck Payload Module

NA

# 5.9.5 Power versus Instrument Operating Modes

| Unit             | Subsystem                                          | ubsystem Recycle Off |     | On  | Standby/<br>Parallel/ | Observing |          |
|------------------|----------------------------------------------------|----------------------|-----|-----|-----------------------|-----------|----------|
|                  |                                                    |                      |     |     | Serendipity           | Photom.   | Spectro. |
| HSFPU            | Detector Bias                                      | OFF                  | OFF | OFF | ON                    | ON        | ON       |
|                  | Photometer Cal Source                              | OFF                  | OFF | OFF | OFF                   | Х         | OFF      |
|                  | Spect. Cal Source                                  | OFF                  | OFF | OFF | OFF                   | OFF       | ON       |
|                  | Cooler                                             | ON                   | OFF | OFF | ON                    | ON        | ON       |
|                  | BSM                                                | OFF                  | OFF | OFF | ON                    | ON        | ON       |
|                  | FTS Mechanism                                      | OFF                  | OFF | OFF | OFF                   | OFF       | ON       |
| HSFTB            | JFET amplifiers                                    | OFF                  | OFF | OFF | ON                    | ON        | ON       |
| HSFCU +<br>HSDCU | Read-out electronics & mechanism drive electronics | ON                   | OFF | OFF | ON                    | ON        | ON       |
| HSDPU            | Digital Processing Unit                            | ON                   | OFF | ON  | ON                    | ON        | ON       |

The table below shows the status of the instrument subsystems in the various instrument modes.

| LEGEND |                                                         |  |  |  |
|--------|---------------------------------------------------------|--|--|--|
| ON :   | Operational                                             |  |  |  |
| OFF :  | Inactive                                                |  |  |  |
| X :    | Either ON or OFF depending on instrument configuration. |  |  |  |

# 5.9.6 Supply Voltages

### 5.9.6.1 Load on main-bus

The total power load Spire places on the 28V main-bus is defined In the Spire Budgets' Document. The following is an extracted summary:



# IIDB SPIRE Section 5

| <b>REFERENCE</b> : | SCI-PT-IIDB/SP | IRE-02124          |
|--------------------|----------------|--------------------|
| DATE :             | 02-12-2003     |                    |
| ISSUE :            | 3.1            | <b>Page</b> : 5-27 |

\*

#### Reference HP-SPIRE-REQ-0020

The SVM shall provide the allocated power budget as defined hereafter. The "average" and "peak" power values correspond to "worst-case" conditions, i.e. taking into account the specified supply bus voltage range : 26V and 29V.

| Spire Operating Mode | <sup>1</sup> Max. Ave. BOL | <sup>1</sup> Max. Ave. EOL | <sup>1</sup> Long Peak BOL/EOL |
|----------------------|----------------------------|----------------------------|--------------------------------|
| Observing            | 95.3 W                     | 95.3 W                     | TBD                            |
| Parallel             | 95.3 W                     | 95.3 W                     | TBD                            |
| Serendipity          | 95.3 W                     | 95.3 W                     | TBD                            |
| Standby              | 95.3 W                     | 95.3 W                     | TBD                            |
| Cooler Recycle       | 95.3 W                     | 95.3 W                     | TBD                            |
| On                   | 15.3 W                     | 15.3 W                     | TBD                            |
| Off                  | 0 W                        | 0 W                        | 0                              |

| Project Code | Instrument Unit            | Mean load per LCL   |
|--------------|----------------------------|---------------------|
| HSDPU        | HS Digital Processing Unit | 15.3 W <sup>2</sup> |
| HSFCU        | HS FPU Control Unit        | 80.0 W <sup>3</sup> |

1 The "average" and "peak" power values correspond to "worst-case" conditions, i.e. taking into account the specified supply bus voltage range :  $26V \sim 29V$ . The average "with-margin", and peak "with-margin" total power loads are also to be provided. Power requirements cannot be accepted until assumed margins are clearly stated.

2 The **maximum** associated "<u>Long</u> Peak" load on this LCL is understood to be the mean value (above) X 1.20, i.e. 18.5 W.

3 The **maximum** associated "Long Peak" load on this LCL is understood to be the mean value (above) X 1.20, i.e. 96 W.

### 5.9.6.2 Power Nominal Turn-on.

Having checked that Spire is all unpowered, the HPCDU shall empower an HSDPU (P or R).

This DPU checks its health and sends a status packet on the active 1553 bus. If its status is OK, the HCDMU commands the HPCDU to turn on the corresponding HSFCU module (P or R).

Note that turning on the HSFCU has the automatic subsidiary effect of turning on the non-redundant DCU, but this unit is not seen directly via a S/C interface.



|           | <b>REFERENCE</b> : | SCI-PT-IIDB/SPIRE-02124 |                    |
|-----------|--------------------|-------------------------|--------------------|
| SECTION 5 | DATE :             | 02-12-2003              |                    |
| JECHON J  | ISSUE :            | 3.1                     | <b>Page</b> : 5-28 |

#### 5.9.6.3 Interface circuits

#### Reference HP-SPIRE-REQ-0030

The HSDPU and the HSFCU receive both primary and redundant 28V feeds. The configuration is shown in figure 5.2.1, and the connectors are HSDPU J1-2 and HSFCU J5-6.

Their S/C power interfaces circuits shall be designed not to generate unwanted interactions with LCL switching limiters. Instrument power circuits are shown in sections 5.9.6.4.1 & .2.

#### Reference HP-SPIRE-REQ-0040

The HPCDU shall telemeter the Spacecraft's LCL current to a resolution of better than 25mA or 1/256 of (trip x 1.5), whichever is the larger. The stated resolution, to be provided by the current telemetry, does imply any particular level of current measurement *accuracy*.

### 5.9.6.4 LCL fault conditions

#### Reference HP-SPIRE-REQ-0050

The S/C shall not allow simultaneous powering of both FCUs, even in the event of a single point LCL failure.

#### Reference HP-SPIRE-REQ-0060

Both DPUs may be powered but only under LCL fault conditions. To permit this, other design features must be present. The unwanted although powered DPU shall be kept in-active by not commanding the inactive unit, and neither HCDMU shall turn on the corresponding HSFCU. To permit commanding the DPUs to work like this, each HSDPU uses a different 1553 bus address.

The Herschel platform shall monitor that LCL's are behaving correctly. With certain timing restrictions, it shall regularly check that an "off" LCL is passing less than a minimum current, and that an "on" LCL is passing a current between a minimum and a maximum that depends on circuit. It shall re-check this before and after implementing a command to change an LCL's state. The formal status of the functionality of LCLs [working, stuck on, stuck open-circuit, dubious, etc.] shall be stored somewhere in the Herschel commanding system (probably on the ground?) to stop any attempt to switch a failed LCL without specific over-ride .

An open-circuit LCL is not a particularly difficult case to consider as it would just preclude the use of one side of Spire.

|               | IIDB SPIRE | <b>R</b> EFERENCE : | SCI-PT-IIDB/SP | IRE-02124          |
|---------------|------------|---------------------|----------------|--------------------|
| A L C 🛦 T E L |            | DATE :              | 02-12-2003     |                    |
| SPACE         | JECHON J   | ISSUE :             | 3.1            | <b>Page</b> : 5-29 |

# 5.9.6.4.1 HSDPU Power Input Circuit Configuration



5.9.6.4.2 HSFCU Power Input Circuit Configuration

### TBW

# 5.9.7 Keep Alive Line (KAL)

Because Spire should not be switched-on/off frequently, a KAL will not be implemented.

IIDB SPIRE SECTION 5

# 5.10 CONNECTORS, HARNESS, GROUNDING, BONDING

Spire provides the SVM interconnect harnesses wired as per RD-19, and suitable for routing/installation on the SVM as illustrated in the IID-A as regards length, connector back-shells, etc. This is illustrated in figure 5\_3.x (as in section 5.3.1.1).

Herschel provides the "cryoharness" between the warm Spire units and the cryogenic ones on the HOB inside the CVV. Figure 5.2.1 illustrates how these are all in three sections, S, I and C.

The function pin allocations in the cryoharness has adopted RD-19's definitions up to issue 1.1 with corrections (i.e. updated pages, given in Annex 5).

External to the CVV the harnesses are double isolated shielded, with the outer shield linking the CVV connector bodies to the warm unit connector backshells and the inner one also linked to the warm unit connector backshells but passing through the CVV connectors on a ring of pins to join to the HSFPU+JFET Faraday shield.

Internal to the CVV there are no harness overshields. For the bolometer harnesses, C1-C9, the Faraday shields are carried on internal cable when the second outer cable shield is connected to the connector back-shells. For the non-bolometer harnesses, C10-C13, these links are discrete wires rather than a closed shield.

This implementation is consistent with the grounding drawing figure 5.10-2

### 5.10.1 Harness and Connectors

SPACE

EL

The cryoharness interface pinout shall be compliant with RD-19, SPIRE-RAL-PRJ-000608, Issue 1.1 and updated pages, for harness bundles 4 and 6, identified by:

"SPIRE HDD 1.1 Deltas", ref SPIRE-RAL-NOT-001819, Issue 3, dated 23/10/2003

This "SPIRE HDD 1.1 Deltas" document is given in Annex 5.

The Spire harnesses shall be compliant with the requirements specified in Annex 3 (Summary of SPIRE cryoharness wiring functions)

Figure 5.10-1 below gives an overview of the Spire harness layout.

Note that the Cryo-harness, i.e. series C, I, and S are ESA provided and not Spire flight H/W, whilst the T series apply only for instrument test and are not Spire flight items.

The two F harnesses (FPU sub-system F harness) between JFETs and FPU (HSFPU-HSJFP and HSFPU-HSJFS) are provided by SPIRE with the instrument units.



# IIDB SPIRE SECTION 5

| <b>REFERENCE</b> : | SCI-PT-IIDB/SP | IRE-02124          |
|--------------------|----------------|--------------------|
| DATE :             | 02-12-2003     |                    |
| ISSUE :            | 3.1            | <b>Page</b> : 5-31 |



Figure 5.10-1 : SPIRE harness layout

|          | IIDB SPIRE | <b>REFERENCE</b> : | SCI-PT-IIDB/SP | IRE-02124          |
|----------|------------|--------------------|----------------|--------------------|
| ALC ATEL |            | DATE :             | 02-12-2003     |                    |
| SPACE    | JECHON J   | ISSUE :            | 3.1            | <b>Page</b> : 5-32 |

# 5.10.2 Grounding

To fulfil Spire's grounding requirements, the HSFPU and both of the JFET racks need to be electrically isolated from the Optical Bench, at their mechanical mounting points. The same applies to the bolometer system harness screens.

SPIRE grounding diagram provided in the figures 5.10-2 and 5.10-3 below is for information.

The mechanical implementation of thermal straps insulation is described in section 5.6.1.2



#### Figure 5.10-2 : SPIRE Simplified Grounding scheme

The Spire FCU itself and the DPU use a "standard" ESA-type secondary power system, whereas the DCU/FPU and FCU supply sections shown above are an optimised system w.r.t. minimising the overall bolometer analogue ground noise. The FCU powers the DCU, keeping the latter free of conditioning noise. The FCU driven items in the FPU, see figure 5.2.1, are considered less critical and will all be Ohmically grounded in the FCU.



# IIDB SPIRE SECTION 5

| <b>REFERENCE</b> : | SCI-PT-IIDB/SP | IRE-02124          |
|--------------------|----------------|--------------------|
| DATE :             | 02-12-2003     |                    |
| ISSUE :            | 3.1            | <b>Page</b> : 5-33 |



Figure 5.10-3 : SPIRE Grounding scheme



#### 5.10.3 Bonding

It is understood that Herschel bonding applies to harness shields used to maintain closed Faraday cages. Bonded interfaces shall not be used as routine current return paths.

We note that presently all Warm Electronics units rely in conductivity via their mechanical mounting feet to S/C.

The DRCU decreases interface inductance by using conductive interface gasket, see Annex 1

**SECTION 5** 

A bonding strap is connected to each SPIRE SVM mounted unit.

#### 5.10.4 Electrical Signal Interfaces

### 5.10.4.1 1553 Data Buses

#### Reference HP-SPIRE-REQ-0070

The 4 interfaces to the two (prime and redundant) buses between the Spire instrument DPUs and the CDMU shall conform to MIL-STD-1553B, with the CDMU controlling the bus.

#### Reference HP-SPIRE-REQ-0080

The 4 Spire interfaces shall have unique bus addresses, consistent with Herschel properly controlling the use of Prime and Redundant equipment.

#### \* #

#### Reference HP-SPIRE-REQ-0090

A long stub configuration shall be used for each of the 4 interfaces, one transformer for each stub in the bus wiring and one in the instrument I/F.

#### Reference HP-SPIRE-REQ-0100

Connector use is as follows:

| DPU Connector | Prime Bus | Redundant Bus |
|---------------|-----------|---------------|
| Prime DPU     | J3        | J4            |
| Redundant DPU | J5        | J6            |

\* #

The DPU's 1553B interface to the Herschel S/C is configured as follows inside each SPIRE HSDPU :





 REFERENCE :
 SCI-PT-IIDB/SPIRE-02124

 DATE :
 02-12-2003

 ISSUE :
 3.1
 PAGE : 5-35

\*



### 5.10.4.2 Master Clock

#### Reference HP-SPIRE-REQ-0110

Herschel shall supply 2 differential signal lines of  $2^{17}$ Hz (131 kHz). master clock signals. They are therefore supplied unground-referenced. These are shown as brown lines in figure 5.2.1.

#### Reference HP-SPIRE-REQ-0120

Electrical interface details are standard digital differential receiver, through DPU connectors J3 and 5, i.e. bundled with primary 1553 bus.

#### Reference HP-SPIRE-REQ-0130

This shall be supplied to both powered and un-powered Spire HSDPUs.

#### Reference HP-SPIRE-REQ-0140

Note that Herschel arranges the OR-ing of the functions over Prime and Redundant CDMU so that Spire is unaffected by which one is active.

S/C wide synchronisation of dc-dc converters, will NOT be implemented.

|          | IIDB SPIRE | <b>R</b> EFERENCE : | SCI-PT-IIDB/SP | IRE-02124          |
|----------|------------|---------------------|----------------|--------------------|
| ALC ATEL |            | DATE :              | 02-12-2003     |                    |
| SPACE    | SECTION 5  | ISSUE :             | 3.1            | <b>Page</b> : 5-36 |

### 5.10.4.3 Launch Latch confirmation

Spire has two cryogenic mechanisms: BSM and SMEC. It is baselined that each will need to be launch-locked and that their latching will need to be confirmed after launch stack integration. All functions are Prim, and Redundant.

After transportation to Kourou, and the last operation of SPIRE prior to launch, hand-held Spire provided EGSE will require cable access to the two connectors JA and JB shown in the Harness configuration drawing.

Connector blanking plugs PA-PB that interconnect connector contacts as defined by Spire will be HERSCHEL provided and fitted whenever the EGSE is not connected, which includes in-flight.



÷

# 5.11 DATA HANDLING

### 5.11.1 Telemetry

#### 5.11.1.1 Telemetry rate

The instrument produced «raw» housekeeping and science data rates, given for information purposes, are as follows:

| Description                          | Data rate (Kbps) |
|--------------------------------------|------------------|
| Housekeeping data rate (non-prime)   | 2.1              |
| Housekeeping data rate (prime)       | 2                |
| Science data rate: Photometer only   | 93.6             |
| Science data rate: Spectrometer only | 97.4             |
| Science data rate: Parallel mode     | 10               |
| Science data rate: Serendipity mode  | 87               |

Any increase in telemetry rate would have science benefits. Note that the data rate allocation of 100Kbps is a limit on the average including orbit recycling/commanding periods

#### Reference HP-SPIRE-REQ-0150

SPIRE needs a minimum of 100 kbps of TM data rate.

### 5.11.1.2 Data-bus rate

#### Reference HP-SPIRE-REQ-0160

For the purpose of possible (up to 5 minutes) higher instrument data-rates, the bus interconnecting the instrument and the HCDMU shall have the capability of handling a telemetry rate of > 200 kbps.

This will allow for the rapid emptying of Spire on-board data storage units at the end of each observation, thus keeping overheads due to data transfer to a minimum.

### 5.11.1.3 Data Packets

Spire is capable of buffering 10 seconds of data at 100kps.

#### Reference HP-SPIRE-REQ-0170

In order to prevent data overflow in this Spire data storage, the HCDMU shall request packets from Spire at least as frequently as once per second (TBC).

ALCATEL SPACE

| <b>REFERENCE</b> : | SCI-PT-IIDB/SP | IRE-02124          |
|--------------------|----------------|--------------------|
| DATE :             | 02-12-2003     |                    |
| ISSUE :            | 3.1            | <b>Page</b> : 5-38 |

# 5.11.2 S/C housekeeping

#### Reference HP-SPIRE-REQ-0180

The S/C should be capable of collecting and range checking the following instrument parameters every minute. It shall provide a data packet to the ground that includes these housekeeping values, together with any range violations and any actions taken thereon.

- Voltages to instrument
- Currents to instrument
- Power status i.e. which Spire units are on i.e. HSDPU and HSDRC.

**IIDB SPIRE** 

**SECTION 5** 

- Requested temperatures in Section 5.7.5.2.

### 5.11.3 Timing and synchronisation signals

#### Reference HP-SPIRE-REQ-0190

The S/C shall provide Spire with a timing synchronisation at least once per 24 hours to allow cross reference or synchronisation of the Spire clock to the spacecraft clock.

Spire requires to be able to deduce where Herschel is pointing to 0.1 of its smallest pixel IFOV.

#### Reference HP-SPIRE-REQ-0200

So when using the telescope scan mode, a «start of scan» indication will be sent be to the DPU to give a timing precision of better than 5 milliseconds, although the actual UT of the pulse only needs to be within one second of its planned time.

This is required so that the Spire data can be located in time and correctly ground processed to link to Herschel attitude; it is not required for the operation of the Spire instrument.

The Spire instrument typically works by its DPU unpacking S/C commands to a lower level, and sending those lower level commands to the DCU and FCU with timings that they can guarantee to keep up with. There is a minimum of handshaking on internal interfaces and, for instance, the DPU has to be ready to receive science data packets from the DPU and FCU whenever they reasonably send them. In these internal data packet headers are counter values permitting accurate datation of all values back to sequence start pulses sent from the DPU. The scheme can be viewed as:



# IIDB SPIRE SECTION 5

| <b>REFERENCE</b> : | SCI-PT-IIDB/SPI | RE-02124           |
|--------------------|-----------------|--------------------|
| DATE :             | 02-12-2003      |                    |
| ISSUE :            | 3.1             | <b>Page</b> : 5-39 |

**SPIRE DATA TIMINGS** 



\*This process uses known worst case timings for SPIRE operation + margin to ensure that the plan can be implemented and timed starts will not slip.

Note that for the above scheme to work, either the DCU/MCU/SCU need to have no input FIFOs, or the DPU needs to know that they are empty and a reset will go straight through, or these units need to check for the reset pulse in hardware before feeding other packets into a FIFO. TBD.

# 5.11.4 Telecommand

It is assumed that the observation schedule for each 24 hour period will be uplinked during the data transfer and commanding phase (DTCP). It is further assumed that the correct receipt of all Spire commands is verified by the S/C during the DTCP.

#### Reference HP-SPIRE-REQ-0210

The maximum rate of sending command packets from the CDMS to the Spire instrument is less than 10 per second.



# IIDB SPIRE SECTION 5

 REFERENCE:
 SCI-PT-IIDB/SPIRE-02124

 DATE:
 02-12-2003

 ISSUE:
 3.1
 PAGE: 5-40

\*

\*

\*

#### Reference HP-SPIRE-REQ-0220

The maximum telecommand packet length is 256 octets.

#### Reference HP-SPIRE-REQ-0230

All Spire telecommands are defined in document AD (tbd).

▼ ALCATEL SPACE

# 5.12 ATTITUDE AND ORBIT CONTROL/POINTING

**IIDB SPIRE** 

**SECTION 5** 

## 5.12.1 Attitude and orbit control

For information, Spire has the following **instrument** pointing modes:

- Peak up mode. The ACMS pointing ability quoted in the IID-A (3.7 arcsec APE see also section 5.12.2) will not be good enough to prevent unacceptable signal loss when observing point sources with the photometer or spectrometer. The Spire beam steering mirror will be used to perform a cruciform raster over the observation target and the offset between the required pointing and the actual pointing of the telescope will be provided via an ACMS Data Packet (TM(5,1) from the Spire instrument to the S/C. The S/C will then adjust the pointing accordingly.
- Nodding mode. If the telescope temperature stability time constant proves to be short compared with a typical pointed observation with Spire; then the telescope must be capable of being pointed to another fixed position on the sky between 10 arcsec and 4 arcmin from the original pointing in an arbitrary direction with respect to the spacecraft axes. The transition time between the 2 position for 4 arcmin apart shall be less than 32s.
- Line scan mode. To map large areas of the sky, the telescope must be capable of being scanned up to 20 degrees at a constant rate in an arbitrary orientation with respect to the spacecraft axes. The rate of scan must be variable between 0.1 arcsec/sec and 60 arcsec per second. It is expected that the RPE will be maintained in the orthogonal direction during the scan. The S/C must be capable of reaching any scan speed up to the maximum within 20 seconds of the observation commencing.
- Raster mode. To finely sample the Spire FOV the instrument beam steering mirror will be used to step the
  FOV across the sky in an arbitrary direction. The step size will be between 1.7 (this is not agreed by
  industry, current value is 2) arcsec and 30 arcsec. The beam steering mirror can also be used to chop a
  portion of the Spire FOV at a rate up to 2 Hz.
- The S/C is specified as being able to perform its own raster mode, i.e. stepping the FOV of the overall Herschel telescope view to follow predetermined patterns. This is acknowledged to be much less efficient than using the internal Beam Steering Mirror (BSM), but is needed as a backup in the event of Spire BSM failure. The spacecraft shall be capable of performing a rectangular raster with steps of between 1.7 (this is not agreed by industry, current value is 2) and 30 arcsec in any arbitrary orientation with respect to the S/C axes.
- To map extended regions using the spectrometer, the Spire instrument will use the Herschel telescope Normal Raster Mode. The instrument may perform fine sampling of each raster pointing using its internal BSM.

# 5.12.2 Pointing

The Spire instrument requires an absolute pointing error of better than 1.5 arcsec r.m.s. (TBC), and a relative pointing error of better than 0.3 arcsec r.m.s. per minute.

This is achieved by the peak up mode in case the pointing goal values are not fully achieved by the S/C.

# 5.12.3 On-Target Flag (OTF)

For pointed observations, SPIRE requires, an On-Target Flag. It will be provided in the spacecraft telemetry, and will specify the acquisition time to a precision of better than 0.1 second (TBC). This is required for the correct processing of the Spire data on the ground; it is not required for Spire operations.


## 5.13 ON-BOARD HARDWARE/SOFTWARE AND AUTONOMY FUNCTIONS

**IIDB SPIRE** 

SECTION 5

#### 5.13.1 On-board hardware

There is a single on-board computer in each of the prime and redundant SPIRE HSDPUs. Each HSDPU shall have a different 1553 address. The HSDPUs have the only non-hard-coded on-board software used in SPIRE.

#### 5.13.2 On-board software

It is assumed that the Spire warm electronics will remain powered during all operational phases. The DPU will download baseline software from ROM during power up but some additional software may be required (TBD) to be unlinked before observations commence, either patches or whole modules/objects.

No single instrument command nor any sequence of instrument commands will constitute a hazard for the instrument so the HSDPU is required to trap out any such situations. For the same reason, the HSDPU shall ensure its own correct function, at least as far as checking memory function in the background, check-summed read only areas, and an inhibitable SEU safing capability.

### 5.13.3 Autonomy functions

#### Reference HP-SPIRE-REQ-0240

The S/C must be capable of automatic monitoring all SPIRE Housekeeping parameters, i.e. the parameters listed in section 5.7.5.2 when the S/C is not in ground contact.

#### Reference HP-SPIRE-REQ-0250

The S/C must be capable of taking predefined action – e.g. switching off the power to the Spire instrument - when an error or hard limit is detected in the SPIRE S/C housekeeping.

#### Reference HP-SPIRE-REQ-0260

The S/C must be capable of receiving and interpreting Spire «Event Data» packets that will alert the S/C of errors or hard limits detected by the Spire DPU autonomy monitoring software. Again the S/C must be capable of taking the appropriate pre-defined action on detecting an error alert in the Spire Event Data.

#### 5.13.4 Instrument Autonomy Housekeeping Packet Definition

N.A.

#### 5.13.5 Instrument Event Packet Definition

TBD



### 5.14 EMC

#### 5.14.1 **Conducted Emission/Susceptibility**

**SECTION 5** 

None to be found under required test conditions

#### 5.14.2 Radiated Emission/Susceptibility

None to be found under required test conditions

#### 5.14.3 **Frequency Plan**

The original specification for Spire to have all its internal oscillators for signal/power synchronised to S/C sync. signals has been dropped.

The Spire frequencies are arranged to minimise noise problems in the bolometer sub-system's highly sensitive analogue sections, and are provided in the following table.

| SPIRE | Frequency                    | Frequen        | cy Range | Wave- | - Signal |          | Comments                                   |
|-------|------------------------------|----------------|----------|-------|----------|----------|--------------------------------------------|
| Unit  | Source –<br>subsystem        | Lower          | Upper    | form  |          | level(s) |                                            |
| DCU   | Cmd IF Clock                 | 312 kHz        |          | Rect. | 0        | 5 V      | Differential RS422 – Continuous            |
|       | Data IF Clock                | 1MHz           | 2.5 MHz  | Rect  | 0        | 5 V      | Differential RS422                         |
|       | Master Clock                 | 10 MHz         |          | Rect  |          | 5 V      | Crystal Oscillator – Internal to unit      |
|       | Bolometer Bias               | 50 Hz          | 300 Hz   | Sine  | 0        | 100 mV   | Differential – Highly sensitive signal     |
|       | T/C Bias                     | 50 Hz          | 300 Hz   | Sine  | 0        | 500 mV   | Differential – Highly sensitive signal     |
| MCU   | Cmd IF Clock                 | 312 kHz        |          | Rect. | 0        | 5 V      | Differential RS422- Continuous             |
|       | Data IF Clock                | 1MHz           | 2.5 MHz  | Rect  | 0        | 5 V      | Differential RS422                         |
|       | Master Clock                 | 40 MHz         |          | Rect  |          | 5 V      | Crystal Oscillator – Internal to unit      |
|       | DSP Clock                    | 20 MHz         |          | Rect  |          | 5 V      | Master clock / 2 - Internal to unit        |
|       | LVDTexcitation               | 2.5 kHz        |          | Sine  |          | 3 V      | Differential +/- 20 %                      |
|       | DAC change                   | 3.0 kHz        | 10 kHz   | Rand. |          | 10 V     | Internal to unit                           |
|       | Position encoder             | 0              | 2.5 kHz  | Sine  |          | 3 mV     | Differential<br>250 Hz at nominal speed    |
| SCU   | Cmd IF Clock                 | 312 kHz        |          | Rect. | 0        | 5 V      | Differential RS422- Continuous             |
|       | Data IF Clock                | 1MHz           | 2.5 MHz  | Rect  | 0        | 5 V      | Differential RS422                         |
|       | Master Clock                 | 10 MHz         |          | Rect  |          | 5 V      | Crystal Oscillator – Internal to unit      |
|       | 300 mK TS Bias               | 20 Hz          |          | Rect  |          | 6 mV     | Tr/Tf = 1ms Highly sensitive signal        |
|       | Photo Stimulus               | 0              | 5 Hz     | Rect  |          |          |                                            |
| PSU   | DC/DC switching<br>frequency | 131 kHz<br>TBC |          |       |          |          | Free runing - $\pm$ 10% - internal to unit |

Note: PSU DC/DC switching frequency to be confirmed/clarified by SPIRE



## 5.15 Transport and Handling Provisions

#### Focal Plane Unit 5.15.1

For reasons of possible damage caused by vibration during transport, environmental testing and launch, mechanisms shall be transported in their launch-latched state.

SECTION 5

#### 5.15.1.1 Transport Container

The Spire FPU (HSFPU) will be transported in a clean hermetically sealed container to be opened only in class 100 clean conditions (TBC) with less than 50% humidity (TBC).

The maximum shock the HSFPU can sustain in any direction is (TBD). The transport container is fitted with shock recorders and internal humidity monitors. The HSFPU transport container is shown in figure TBD.

#### 5.15.1.2 Cooling and Pumping restrictions

During cryostat warm-up or cool-down phases:

- Above 50 K the rate of temperature change dT/dt shall not exceed 20 K/hour (TBC).
- The rate of depressurisation/pressurisation dP/dt shall not exceed 50 mBar/hour (TBC). As a goal this rate dP/dt shall not exceed 100 mbar/h

#### 5.15.1.3 Mechanism positions

For reasons of possible damage caused by vibration during transport, environmental testing and launch, mechanisms shall be placed in the TBD position. This position is shown in table TBD.

#### 5.15.1.4 Unpacking Procedure

The procedure for removing and installing the HSFPU from its transport container is given in document TBW

#### 5.15.2 JFET/Filter Boxes

#### 5.15.2.1 Transport Container

The Spire JFET/Filter Boxes (HSFTP/S) will be transported in a clean hermetically sealed container to be opened only in class 100 clean conditions (TBC) with less than 50% humidity (TBC).

The maximum shock the HSFTP/S can sustain in any direction is (TBD). The transport container is fitted with shock recorders and internal humidity monitors. The HSFTP/S transport container is shown in figure TBD.

#### 5.15.2.2 Unpacking Procedure

The procedure for removing and installing the HSFTP/S from its transport container is given in document TBW



## 5.15.3 Electronics Units

#### 5.15.3.1 Transport Container

The Spire warm electronics units (HSDPU; HSFCU; HSDCU, HSWIH) will be transported in clean hermetically sealed containers to be opened only in class 100 000 clean conditions (TBC) with less than 75% humidity (TBC).

The maximum shock any of the warm electronics units can sustain in any direction is (TBD). The transport containers are fitted with shock recorders and internal humidity monitors. The Spire warm electronics transport containers are shown in figure TBD.

#### 5.15.3.2 Unpacking Procedure

The procedures for removing and installing the Spire from warm electronics units their transport containers are given in document TBW

IIDB SPIRE SECTION 5

## 5.16 DELIVERABLE ITEMS

SPACE

ALC AT

Note 1: All section 5.16 to be updated and clarified by SPIRE according the new model philosophy and AIV plan

Note 2: All ICD/drawings of deliverable AVM/CQM to be provided by SPIRE

### 5.16.1 Instrument Models.

The model philosophy to be adopted for the AIV of the Herschel Spire instrument will be in accordance with the Spire Development Plan and Model Philosophy, RD5.

In outline, the instrument models to be produced are:

EL

- AVM The Avionics Model shall permit us «...to validate electronics and software for its interface with the S/C, including anything that exchanges information with, for example, the AOCS. In addition all tasks relevant to Spire autonomy shall be verified.» This requires a DPU in at least form, fit and function plus a simulator of the DRCU and cold FPU collectively termed the DRCU Simulator. As the schedule demands that this model will be delivered almost simultaneously with the CQM, it is planned to use the CQM DPU in the AVM.
- CQM Cryogenic Qualification Model. For both the cold FPU and the warm electronics it is assumed that this is built to flight standards, but not necessarily using flight quality electronic components. The performance capabilities of the instrument may be less than the proto-flight model - i.e. fewer pixels in the focal plane arrays, but it will mimic as exactly as possible the thermal, electrical and mechanical properties of the flight instrument and will be capable of under going the full environmental qualification programme
- PFM Proto-Flight Model. This will be the model that is intended for flight, built to full flight standards. The PFM will therefore undergo environmental test to qualification levels for acceptance times (TBD) this applies to both the warm electronics boxes and the cold FPU. A CQM qualification review will determine if in fact the PFM has needed sufficient updates that full requalification is needed in some respects.
- FS Flight Spare. The flight spare cold FPU will be made from the refurbished CQM (TBC). The flight spare warm electronics will consist of spare electronics cards/modules/harness.

### 5.16.2 Electrical Ground Support Equipment (EGSE)

Electrical Ground Support Equipment (EGSE) will be needed to provide Spire instrument level monitoring during instrument integration with the S/C and system level testing.

Deliverables:

- FPU electrical simulator, including simulation of the HSFTP/S, to enable integration of the HSDCU, HSDPU, HSFCFU and HSWIH
- TBD EGSE for integration of the HSFPU
- Quick Look Facility to enable testing of the instrument at system level. This will interface to the S/C test environment

#### Note: EGSE deliverables (including connectors savers and caps) to be clarified by SPIRE



#### 5.16.3 Mechanical Ground Support Equipment (MGSE)

SECTION 5

MGSE is required to ensure safe handling of all instrument components during assembly integration and test procedures.

**Deliverables:** 

- Transport containers
- Instrument to cryostat integration jigs/equipment
- Plus TBD

Note: MGSE deliverables (including protective caps) and hoisting provisions to be clarified by SPIRE

#### 5.16.4 **Optical Ground Support Equipment (OGSE)**

OGSE is required to carry out alignment procedures with the telescope.

The SPIRE alignment can be removed following the FPU alignment to the Herschel Optical Bench

**Deliverables:** 

- Instrument optics primary alignment and alignment verification jigs/equipment
- Plus TBD

Note: OGSE deliverables (alignment cube + ...) to be clarified by SPIRE

#### 5.16.5 System Test Software

Will be based on the Quick Look Facility - computers and software that allow the monitoring in near real time of the instrument housekeeping parameters and instrument data. This is the basic facility to be used for the ICC operations monitoring for the monitoring of the instrument in-orbit. The same facility with enhanced capabilities will be used for the ground tests and in-orbit check out of the instrument.

#### Hardware for the Observatory Ground Segment 5.16.6

Quick Look Facility for the Mission Operations Centre for instrument in-flight commissioning. This will consist of TBD workstations etc....and must be identical to the system used for instrument system level testing.

Note: to be clarified by SPIRE

#### 5.16.7 Software for the Observatory Ground Segment

The software for the Quick Look Facility will be delivered to the MOC for instrument in-flight commissioning.

Plus TBD.

Note: to be clarified by SPIRE

#### Instrument Software Simulator 5.16.8

TBD

Note: to be clarified by SPIRE



#### 5.16.9 Test Reference Data

The Spire instrument test reference data will be delivered in the TBD form generated during instrument and system level testing.

**IIDB SPIRE** 

**SECTION 5** 

Note: to be clarified by SPIRE

#### 5.16.10 Instrument Characterisation Data

The Spire instrument characterisation data will be delivered in the TBD form generated during instrument and system level testing.

Note: to be clarified by SPIRE

#### 5.16.11 Technical Documentation

The following documents will be delivered:

- Instrument User Manual following the requirements laid down in the OIRD (AD3)
- Instrument database this will be delivered in the TBD form generated during instrument and system level testing.
- Each instrument model will be delivered with an Acceptance Data Package consisting of TBD....

Note: to be clarified by SPIRE



#### 6. GROUND SUPPORT EQUIPMENT

#### 6.1 MECHANICAL GROUND SUPPORT EQUIPMENT

TBD -To be clarified by SPIRE

#### ELECTRICAL GROUND SUPPORT EQUIPMENT 6.2

In agreement with all the other instruments of Herschel/Planck the SPIRE EGSE will be implemented using SCOS2000.

In order to achieve the benefits of smooth transition between different mission phases and maximum reuse of resources, this system will also be used during instrument-level testing, system level tests and in the operational phases of the mission. In particular, the interface between the EGSE and the MOC during the Commissioning and Performance Verification phases (and, for Herschel only, contingency activities during the normal operations phase) will be the same as that between the EGSE and the CCE. This interface, concerning telemetry, telecommanding, the instrument database and procedures will follow the standard defined by SCOS 2000.

Note 1: A SCOS 2000 definition document reference is to be provided by ESA and put in ADs .

**SECTION 6** 

Note 2: Recommended version of SCOS is 2.3E. The Alcatel CCS runs under this version.

#### **Telemetry:**

The SPIRE EGSE will be supplied with all telemetry packets from the satellite (or its simulator) in real time.

This telemetry interface will conform to the SCOS2000 telemetry ICD (ref: TBD).

#### **Telecommanding:**

The SPIRE EGSE will not require any commanding capability through the CCE. Instrument commanding will be implemented in the CCE in line with the methods of operation of the MOC.

#### **Databases:**

SPIRE will deliver the instrument database to the Prime Contractor through the standard SCOS2000 database interface mechanism (ref: TBD).

SPIRE expects the Prime Contractor to deliver the full satellite database through the same interface. This will allow checking of the correct implementation of the instrument database in the satellite database and allow the display and monitoring of S/C parameters during tests/operations at the system level.

#### **Test procedures:**

Test procedures, including command sequences, will be delivered in an agreed format (e.g. flow diagrams and descriptions) to the Prime Contractor who will be responsible for their implementation in the CCE.

#### Archive data:

It shall be possible to retrieve test data from the CCE off-line.



| <b>R</b> EFERENCE : | SCI-PT-IIDB/SPIRE-02124 |                   |  |
|---------------------|-------------------------|-------------------|--|
| DATE :              | 02-12-2003              |                   |  |
| ISSUE :             | 3.1                     | <b>Page</b> : 6-2 |  |

### 6.3 COMMONALITY

Taking into account that it is a fundamental design goal of the Herschel/Planck mission that commonality should be pursued to the maximum extent possible, the Herschel instrument teams have been actively engaged in investigating such possibilities.

## 6.3.1 EGSE

A common EGSE system has been developed as a collaborative effort between instrument groups.

**IIDB SPIRE** 

**SECTION 6** 

In addition, it has been agreed that this system would be applicable at various times during all the phases of the mission listed below:

- Subsystem Level Testing
- Instrument Level Testing
- Module and System Level Testing
- In-orbit instrument commissioning
- Performance Verification
- Routine operations

In the interests of minimising the cost and maximising the reliability of such a system through the different phases the EGSE will:

- be based on SCOS 2000 this system will be used in the ground segment by the MOC for controlling the satellite. The cost of the system (essentially free), its proven use in similar situations for other space projects and the support provided by ESOC, contribute to a cheaper and more reliable system.
- use the same interfaces between the EGSE and other systems, in order to improve reliability through reuse throughout the mission.
- Provide a constant implementation of the
  - Man Machine Interfaces
  - Data Archiving and Distribution facilities
  - On-board Software Management
  - On-board Maintenance (e.g. Software Development Environment, Software Validation Facility)
  - Common User Language (for Test procedures and in-orbit operations)

#### 6.3.2 Instrument Control and Data Handling

All three Herschel instruments are using the same supplier (IFSI) for their on-board control and data handling hardware and software systems, which interface to the spacecraft. This has ensured commonality in the areas of;

- on-board microprocessors
- instrument internal interfaces
- On-board Programming language
- Software Development Environments
- Software Validation Facilities

| ▼             |           | <b>REFERENCE :</b> SCI-PT-IID |     | RE-02124          |
|---------------|-----------|-------------------------------|-----|-------------------|
| A L C A T E L | SECTION 6 | <b>DATE :</b> 02-12-2003      |     |                   |
| SPACE         |           | ISSUE :                       | 3.1 | <b>Page</b> : 6-3 |

In addition, the on-board software provides commonality in its non instrument-specific functions. A common instrument commanding scheme has also been agreed and will be implemented by the instrument teams.

### 6.3.3 Other areas

Other areas of possible commonality will be addressed by working groups set up as and when necessary. These may cover:

- Follow-up on Herschel Common Science System data archive activities
- A common approach to IA/QLA systems



#### 7. INTEGRATION, TESTING AND OPERATIONS

Information in this chapter covers all instrument-related activities after the acceptance of SPIRE by ESA and its handover to the Contractor.

Note: all section 7 to be updated and clarified by SPIRE, in line with Integration and Test Plan.

**IIDB SPIRE** 

**SECTION 7** 

#### 7.1 Integration

Procedures detailing the individual integration steps will be prepared and reviewed in due time.

#### 7.1.1 HPLM Integration

It is anticipated that the SPIRE Focal Plane Unit (HSFPU) and the SPIRE JFET boxes will be integrated separately onto the Herschel optical bench. Electrical and RF-shield connections would be made between these boxes after mechanical integration with the Herschel optical bench. Herschel cryoharness shall then be attached. Note: to be clarified by SPIRE (separately or together ?)

This applies to both the CQM and PFM units.

Spire's mechanical alignment shall be checked after mounting, and its aperture cover removed as late as practical during the closing of CVV.

Note: to be clarified by SPIRE

### 7.1.2 PPLM Integration

NA

### 7.1.3 SVM Integration

The SVM warm units shall be first integrated as panels, and the SPIRE units linked by warm Spire warm harness and checked with the HSFPU simulator. Remove SVM static protection ...

Note: to be clarified by SPIRE

#### 7.1.4 Herschel/Planck Integration

TBD

Note: to be clarified by SPIRE

ALCAT EL SPACE

|           | <b>R</b> EFERENCE : | SCI-PT-IIDB/SPIRE-02124 |   |  |
|-----------|---------------------|-------------------------|---|--|
| SECTION 7 | DATE :              | 02-12-2003              |   |  |
|           | ISSUE :             | 3.1 <b>PAGE</b> : 7-2   | , |  |

#### 7.2 Testing

After completion of the integration, be it at the level of the FPLM, PPLM, SVM or Herschel/Planck, a series of verification tests will be carried-out.

Each test will be defined in detail in a test procedure to be written by the Contractor, based on instrument group inputs. It will be reviewed and approved by the Herschel/Planck project group.

## 7.2.1 CQM Testing

#### **Overview**

The detailed system level test procedures for the SPIRE CQM are TBW. An indication of the type of testing anticipated for the SPIRE CQM is given below:

- FPU integration procedures
- **Optical alignment procedures**
- Integration with CCE
- Test of checkout procedures to be done for PFM
- Test of parallel operation with PACS
- Functional checks using standard test procedures
- Thermal balance tests under representative conditions. This will include cooler recycle and some mechanism operations.
- Test switching sequences between all modes. Check length of time required to change modes including waiting for thermal environment to stabilise.
- Test thermal dissipation in each «operating mode».
- Straylight checks with GSE fitted or with final shield blanked off. This is an extreme test as the other shields will be at higher temperatures than expected in flight.
- EMC test of conducted susceptibility only.

#### **Test Environment**

In order to carry out these tests the SPIRE instruments expects the CQM test environment to be as follows:

- The cryostat will give flight representative temperatures at thermal interfaces.
- Under nominal conditions it is expected that the cryostat will have a large gas flow with the CVV at ambient temperature – the heat lift will therefore be greater than expected in space. configuration should be made possible to allow a gas flow nearer to that expected in-flight.
- The cryostat shields will be warmer possibly much warmer than flight.
- The thermal radiation environment will not be representative without some GSE in place. Notably the cryostat lid will be at a minimum of  $\sim$ 300 K
- A configuration with the final radiation shield blanked off is being considered this will give a lower background than expected in space.
- A representative telecommanding and data handling environment will be provided by the Prime Contractor/ESA and the Instrument will provide a quick look facility.

|          |           | <b>REFERENCE :</b> SCI-PT-IID |            | RE-02124          |
|----------|-----------|-------------------------------|------------|-------------------|
| ALC ATEL | SECTION 7 | DATE :                        | 02-12-2003 |                   |
| SPACE    |           | ISSUE :                       | 3.1        | <b>Page</b> : 7-3 |

The nominal on-ground orientations of the SPIRE test cryostat, and of the HOB when the HPLM is aligned in the vertical position, are such that the SPIRE FTS mechanism cannot be operated.

For correct operation of the FTS, the SOB - which lies in the X-Z plane of the HPLM coordinate system - must be rotated by either  $+90^{\circ}$  or  $-90^{\circ}$  about the Z axis. This would be achieved by rotating the complete HPLM by  $\pm 90^{\circ}$  about the Z axis.

Similarly, correct recycling of the SPIRE 0.3K He3 cooler requires that the HPLM be tilted around the Z axis by an angle  $\theta$  such that  $+20^{\circ} \le \theta \le +160^{\circ}$ .

This will ensure that, for recycling, the cooler evaporator lies below the cooler pump, thereby avoiding the adverse convection effects which can occur if the (colder) evaporator lies near-horizontally or above the (warmer) pump.

Note1: alternative text from SPIRE ?, new version of ECR 41 ?

Note 2: according IHDR, minimum goal tilt angle required by the cooler is 30° (against 20°) and maximum tilt is 25° in TV Test.

| Sequence                 | Duratio<br>n [days] | Objective                                                                                                                   | Requirements                                                                                                               | Remarks                                                                                                                |
|--------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Instrument Test<br>SPIRE | 3                   |                                                                                                                             |                                                                                                                            |                                                                                                                        |
| SPIRE<br>Functional Test | ~1.5                |                                                                                                                             |                                                                                                                            |                                                                                                                        |
| 1                        |                     | SPIRE switch on procedure,<br>including validation of<br>connection between EGSE<br>and instrument, memory load<br>and dump |                                                                                                                            | SPIRE will be switched to the<br>ON mode                                                                               |
| 2                        |                     | Validate function of HSDPU                                                                                                  |                                                                                                                            | At the end of this SPIRE will be switched to REDY mode                                                                 |
| 3                        |                     | Validate function of HSDRCU                                                                                                 |                                                                                                                            |                                                                                                                        |
| 4                        |                     | Verify function of cooler thermistors and heaters                                                                           |                                                                                                                            |                                                                                                                        |
| 5                        |                     | Verify function of<br>mechanisms BSM; FTS - see<br>note)                                                                    | To operate the SPIRE<br>FTS mechanism the<br>cryostat will need to<br>be tilted over to 90<br>degrees about the Z<br>axis. |                                                                                                                        |
| 6                        |                     | Cooler recycle                                                                                                              | To recycle the SPIRE<br>cooler the cryostat<br>will need to be<br>rotated about the Z-<br>axis by at least 17<br>degrees   |                                                                                                                        |
| 7                        |                     | Verify function of bolometers,<br>detector readouts, thermal<br>control heaters and<br>temperature sensors                  |                                                                                                                            | To do this properly will<br>require either the use of the<br>PLM GSE; blanking the final<br>shield within the cryostat |

#### **Detailed Sequencing**



## IIDB SPIRE SECTION 7

**REFERENCE :**SCI-PT-IIDB/SPIRE-02124**DATE :**02-12-2003

3.1

ISSUE :

**Page** : 7-4

| Sequence                                | Duratio<br>n [days] | Objective                                                                    | Requirements                                                                                                     | Remarks                                                                                                                                                   |
|-----------------------------------------|---------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8                                       |                     | Verify function of Calibration sources                                       |                                                                                                                  |                                                                                                                                                           |
| 9                                       |                     | Verify SPIRE Autonomy<br>functions                                           |                                                                                                                  |                                                                                                                                                           |
| 10                                      |                     | Verify SPIRE to CDMS interfaces and telemetry rates                          |                                                                                                                  | This to include S/C switching<br>SPIRE to SAFE mode in event<br>of an anomaly                                                                             |
| 11                                      |                     | Validation of SPIRE<br>deactivation (=shut-down)<br>procedure                |                                                                                                                  | SPIRE will be switched to OFF mode                                                                                                                        |
| SPIRE<br>Performance<br>Test            | ~1.5                |                                                                              |                                                                                                                  |                                                                                                                                                           |
| 1                                       |                     | Validation of SPIRE activation<br>sequence and switch to SPIRE<br>ready Mode |                                                                                                                  | Takes SPIRE from OFF to<br>REDY                                                                                                                           |
| 2 Cooler recycle                        |                     | Cooler recycle                                                               | Cryostat needs to be<br>orientated correctly -<br>see above                                                      |                                                                                                                                                           |
| 3                                       |                     | Validation of SPIRE switching<br>to standby mode                             |                                                                                                                  | SPIRE switched to standby                                                                                                                                 |
| 4 Switch SPIRE to photometer<br>OBSERVE |                     |                                                                              | SPIRE switched to one of the<br>photometer observe modes<br>and placed in most straylight<br>sensitive condition |                                                                                                                                                           |
| 5                                       |                     | Cryostat background<br>measurement                                           | This requires GSE or<br>blanked off shield                                                                       |                                                                                                                                                           |
| 6                                       |                     | EMI tests                                                                    |                                                                                                                  | Test for induced noise from<br>whatever source in quiescent<br>conditions                                                                                 |
| 7                                       |                     | Conducted susceptibility                                                     |                                                                                                                  | Inject EMC through supply<br>lines                                                                                                                        |
| 8                                       |                     | Test SPIRE HSFPU thermal<br>behaviour in photometer<br>observe mode          |                                                                                                                  | Run through typical<br>photometer observing<br>sequence in most "thermally<br>intensive" mode - this will<br>include operation of<br>calibrators and BSM. |
| 9                                       |                     | Switch SPIRE to spectrometer<br>OBSERVE                                      | Cryostat needs to be<br>orientated correctly<br>(see above). Test of<br>how long it takes to<br>switch modes.    |                                                                                                                                                           |



## IIDB SPIRE SECTION 7

**REFERENCE :** SCI-PT-IIDB/SPIRE-02124

3.1

DATE :

**ISSUE:** 

02-12-2003

**Page** : 7-5

| Sequence                            | Duratio<br>n [days] | Objective                                                             | Requirements | Remarks                                                                                                                                                                                                   |
|-------------------------------------|---------------------|-----------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10                                  | )                   | Test SPIRE HSFPU thermal<br>behaviour in spectrometer<br>observe mode |              | Run through typical<br>spectrometer observing<br>sequence - this will include<br>operation of calibrators.                                                                                                |
| SPIRE AOT<br>Test                   |                     |                                                                       |              |                                                                                                                                                                                                           |
|                                     |                     | Test SPIRE photometer POFs                                            |              | Details TBD - generates test<br>data sets for interface checks<br>with HCSS and processing<br>software etc                                                                                                |
|                                     | 2                   | Test SPIRE spectrometer POFs                                          |              | Ditto                                                                                                                                                                                                     |
| SPIRE/PACS<br>parallel<br>Operation |                     |                                                                       |              |                                                                                                                                                                                                           |
|                                     |                     | SPIRE switched to standby<br>mode PACS as prime<br>instrument         |              | Details TBD                                                                                                                                                                                               |
| SPIRE<br>Shutdown                   |                     |                                                                       |              |                                                                                                                                                                                                           |
|                                     |                     | SPIRE switched from standby<br>to OFF                                 |              | If all tests are done<br>contiguously then this only<br>need happen once. If not<br>then will need to have<br>appropriate shut down and<br>start up sequences at the<br>beginning of each test<br>period. |

Table 7.2-1: Outline test sequence for the SPIRE CQM integrated in the CQM PLM.

## 7.2.2 PFM Testing

The PFM system level test procedures for SPIRE are TBW. It is expected that they will be for instrument and system verification and validation purposes only as the CQM testing will have addressed all fundamental operational issues. The sequencing and test environment requirements for the PFM testing will be the same, or very similar (TBC), as for the CQM testing shown in table 7.2-1.

## 7.2.3 Thermal on ground Test

See table 5.7-2 in section 5.7.1.3



### 7.3 Operations

Covered in other applicable documentation as follows:

- AD 3 Herschel/Planck Operations Interface Requirements Document (OIRD)
- AD 4 Herschel Science-operations Implementation Requirements Document (Herschel-SIRD)

#### 7.4 Commonality

The SPIRE system level integration and test programme is compatible with that laid out in the IID-A chapter 7.



 REFERENCE :
 SCI-PT-IIDB/SPIRE-02124

 DATE :
 02-12-2003

 ISSUE :
 3.1
 PAGE : 8-1

#### 8. PRODUCT ASSURANCE

The instrument will comply with the 'Product Assurance Requirements for Herschel/Planck Scientific Instruments' (AD2).

Details are to be found in SPIRE Product Assurance Plan (RD7).



#### 9. DEVELOPMENT AND VERIFICATION

#### 9.1 General

These are guidelines that will be followed in constructing the instrument AIV programme:

SECTION 9

- The instrument will be fully tested in compliance with the satellite level AIV plans as set out in the IID part A and reference documents therein.
- The AIV flow will be designed to allow the experience gained on each model to be fed into both the design and construction of the next model and into the AIV procedures to be followed for the next model.
- A cold test facility to house the instrument will be constructed that will represent as nearly as possible the conditions and interfaces within the Herschel cryostat.
- The instrument Quick Look Facility and commanding environment will be the same or accurately simulate the in-flight environment to facilitate the re-use of test command scripts and data analysis tools during in-flight operations.
- The EGSE and instrument Quick Look Facility will interface to HCSS.
- Personnel from the ICC will be used to conduct the instrument functional checkout to allow an early experience of the instrument operations and to facilitate the transfer of expertise from the ground test team to the in-flight operations team.
- A more detailed description of the system level AIV sequence is given in reference document RD4. This document will form the basis of the Herschel SPIRE Instrument Test Plan, which will provide the baseline instrument test plans and detailed procedures and will be submitted to ESA for approval.
- Detailed procedures for the sub-system level AIV will be produced by all sub-system responsible groups.
- Sub-systems will undergo individual qualification or acceptance programmes before integration into the instrument.
- Sub-systems will be operationally and functionally checked at the appropriate level before integration into the instrument.

#### 9.2 **Model Philosophy**

The model philosophy to be adopted for the AIV of the SPIRE instrument will be in accordance with the requirements of the Herschel IID part A. The instrument models to be produced are:

- AVM Avionics Model.
- CQM Cryogenic Qualification Model.
- PFM Proto Flight Model.
- \_ FS - Flight Spare.

See section 5.16.1 for more details

Note: section 9.2 to be updated by SPIRE according new model philosophy

#### 9.3 **Mechanical Verification**

TBD . Text to be provided by SPIRE



#### 9.4 Thermal Verification

TBD. Text to be provided by SPIRE

#### 9.5 Verification of Scientific Performance

TBD. Text to be provided by SPIRE

#### 9.6 Electrical Testing

TBD. Text to be provided by SPIRE

#### 9.7 EMC Testing

TBD. Text to be provided by SPIRE



## 10. MANAGEMENT, PROGRAMME, SCHEDULE

All relevant information can be found in the SPIRE Management Plan, RD4.

## **SPIRE IIDB Issue 3.1 - ANNEX**

## Annex 1

## **SPIRE** units **ICD**

ICD issue 8 drawings configuration and Industry comments

&

SPIRE-RAL-DWG-001409 - Issue 8 - December 2003

## **SPIRE IIDB Issue 3.1 - ANNEX**

### Annex 1-1

## ICD issue 8 drawings configuration and Industry comments

| SPIRE Unit        | SPIRE  | Drawing ref/number        | Issue | Date     | Notes & Comments                               |
|-------------------|--------|---------------------------|-------|----------|------------------------------------------------|
|                   |        |                           |       |          |                                                |
| DPU               | 040 v2 | HER \$005/03              | 4     | 23-02-03 |                                                |
| DCU               | 040 v2 | SPIR-MX-5100 000          | D     | XX-10-02 |                                                |
| FCU               | 040 v2 | SPIR-MX-5200 000          | F     | XX-10-02 | (1) FCU shall use M5 feet. Surface             |
|                   |        |                           |       |          | contact of about 500 cm <sup>2</sup> foreseen. |
|                   |        |                           |       |          | SPIRE to issue new CR and drawing              |
| DCU QM1           | New    | SPIR-MX-5101 000          | Α     | 02/12/02 | (2) To be discussed and agreed                 |
|                   |        |                           |       | , ,      | with industry.                                 |
| FCU QM1           | New    | SPIR-MX-5201 000          | С     | 08/09/03 | (2) To be discussed and agreed                 |
|                   |        | Redlined, added comments  |       |          | with industry.                                 |
| FPU               | 040 v2 | A1 5264 300 sheets 1 to 7 | 17    | 16/10/02 | (3) Issue 18 agreed according                  |
| (SPIRE Interface) | New    | A1 5264 300 sheets 1 to 7 | 18    | 04/07/03 | comments HP-ASED-EM-0740-03                    |
| 2 JFET            | 040 v2 | 0-KE-0104-360             | Н     | 20/05/03 | Issue H agreed, but issue J to be              |
|                   | New    | 0-KE-0104-360             | J     | 12/11/03 | checked/agreed by industry                     |
| 6 JFET            | 040 v2 | 0-KE-0104-350             | F     | 20/03/03 | Issue F agreed, but issue G to be              |
|                   | New    | 0-KE-0104-350             | G     | 13/10/03 | checked/agreed by industry                     |

(\*) : last CR applied (HR-SP-RAL-ECR-) since SPIRE IIDB issue 2.2

(1) : FCU feet shall use M5 feet instead of M4 as on the present drawing. A surface contact of about 500 cm<sup>2</sup> (instead of 1006 cm<sup>2</sup> on the present drawing) is foreseen. SPIRE to issue new CR and drawing

(2) : QM1 drawings to be discussed and agreed with industry: connectors number and position changes versus FM, with corresponding harness and AIT impacts. To be updated by SPIRE. All AVM/CQM units drawing still to be provided by SPIRE.

(3) : Extract of mail HP-ASED-EM-0740-03 From Horst Faas, 28/11/2003 : Objet : HP-ASED-EM-0740-03: Check of SPIRE FPU ICD, Issue 18 - Closure of AI#6, HP-ASP-MN-3961

EADS Astrium has performed an initial review of the SPIRE FPU ICD, MSSL/SPIRE/SP005.03, Issue 18, 7/07/03, contained in SPIRE-RAL-DWG-001409, Issue 7, November 2003.

The comments raised by EADS Astrium in response to the ASP CR-0294 / ECR-040 and discussed in RAL/MSSL/ ASED telecon on 1/07/03 have been incorporated in the update.

List of EADS Astrium comments:

- 1. Change Log: Sheet 4 Described change not applicable to Sheet. Wrong reference.
- 2. Sheet 1: Updated mass properties to be passed to Subcontractor for Mass and Thermal Dummies (MTD). Impact on MTD level tbd.
- 3. Sheet 2 and 6: Update height of JFETs by 7.35mm in Issue 19.
- 4. Sheet 3: Alignment cube comment. Clarify TBD in Issue 19.
- 5. Sheet 3: Note related to Optical beam to be updated in Issue 19. Dimension shall be consistent with Beam Spreadsheet provided by SPIRE.
- 6. Sheet 4: IF torques have been discussed (and initally agreed) with John Coker on 24/11/03 and by email exchange on 25/11. Torque of IF bolts to be specified in terms of net and running torque, i.e. 8.1Nm and tbd Nm (running torque)
- 7. Sheet 5: Torque of L0 and L1 IF to be updated in terms of net and running torque, i.e. L1: 2.2 + 0.4Nm, L0: M4 2.2 + 0.4Nm, L0 / M4 temp. sensor: 1.5Nm + 0.4Nm

As no major issues have been identified in Issue 18, this issue could be included in the updated IID-B, considering the above comments.



## Forms Annex 1 to SCI-PT-IIDB/SPIRE-02124

Subject:

## SPIRE MECHANICAL INTERFACE DRAWINGS

**PREPARED BY:** 

#### ERIC SAWYER pp M.GRIFFIN.....Date: **APPROVED BY:**



## **Issue Drawing Change List**

The detailed changes for each drawing are shown just before the drawing.

- Issue 2. Update to status as of 8th October 2002
- Issue 3 Update to status as of 1st November 2002 FCU, DCU & Cryogenic ICDs changed, see changelists where provided
- Issue 4 Update to status as of 24/2/03. JFET drawing versions raised.
- Issue 5 Updated as to status of 27th March 2003. Non-AVM DPU ICD included. JFET ICDs updated.
- Issue 6 Small errors on JFET ICDs fixed.
- Issue 7 New versions of FPU and JFET ICDs, see their individual changelists.
- Issue 8. DRCU "QM1" I/F drawings added, red-lined with NCR information. 2Module JFET updated but changes are all internal to unit.







| CONNECTORS |          |                |       |          |              |  |  |
|------------|----------|----------------|-------|----------|--------------|--|--|
| DENT       | TYPE     | FUNCTIONS      | IDENT | TYPE     | FUNCTIONS    |  |  |
| J01        | DBMA 25S | DAQ_IF_M/DPU_M | J17   | DDMA 50P | LIA_P_7/FPU  |  |  |
| J02        | DBMA 25S | DAQ_IF_R/DPU_R | J18   | DDMA 50P | LIA_P_7/FPU  |  |  |
| J03        | DBMA 25P | DCU/PSU_M      | J19   | DDMA 50P | LIA_P_8/FPU  |  |  |
| J04        | DBMA 25P | DCU/PSU_R      | J20   | DDMA 50P | LIA_P_8/FPU  |  |  |
| J05        | DDMA 50P | LIA_P_1/FPU    | J21   | DDMA 50P | LIA_P_9/FPU  |  |  |
| J06        | DDMA 50P | LIA_P_1/FPU    | J22   | DDMA 50P | LIA_P_9/FPU  |  |  |
| J07        | DDMA 50P | LIA_P_2/FPU    | J23   | DCMA 37P | LIA_S_1/FPU  |  |  |
| J08        | DDMA 50P | LIA_P_2/FPU    | J24   | DCMA 37P | LIA_\$_1/FPU |  |  |
| 109        | DDMA 50P | LIA_P_3/FPU    | J25   | DCMA 37P | LIA_S_2/FPU  |  |  |
| J10        | DDMA 50P | LIA_P_3/FPU    | J26   | DCMA 37P | LIA_S_2/FPU  |  |  |
| J11        | DDMA 50P | LIA_P_4/FPU    | J27   | DCMA 37P | LIA_S_3/FPU  |  |  |
| J12        | DDMA 50P | LIA_P_4/FPU    | J28   | DCMA 37P | LIA_S_3/FPU  |  |  |
| J13        | DDMA 50P | LIA_P_5/FPU    | J29   | DDMA 78S | BIAS_M/FPU   |  |  |
| J14        | DDMA 50P | LIA_P_5/FPU    | J30   | DDMA 78S | BIAS_R/FPU   |  |  |
| J15        | DDMA 50P | LIA_P_6/FPU    | J31   | DCMA 37S | BLAS_M/FPU   |  |  |
| J16        | DDMA 50P | LIA_P_6/FPU    | J32   | DCMA 37S | BIAS_R/FPU   |  |  |









NOTES

- Ch 0.5x45\*

MATERIAL AL 6082 CENTRE OF GRAVITY REFERRED TO REFERENCE HOLE X-213.2mm Y-132.4mm Z-157.9mm MOMENTS OF INERTIA REFERRED TO CENTRE OF GRAVITY JXp-4.71 N.m2 JYp-2.50 N.m2 JZp-4.44 N.m2 CONTACT AREA MOUNTING FEET-28180mm2 THERMAL COATING AND BLACK ANDDISING ESA.PSS.703 SURFACE EMISSIVITY >0.85 TORQUE VALUE FOR CONNECTOR FIXATION SCREWS-- MALE-0.3mN - FEMALE-0.45mN SPECIFIC HEAT 1170 J/Kg.\*K ESTIMATED MASS-15676g









|                                                        | θ                                                                   | θ                                                                               | θ                                                    | θ                                                       |          |                     |              |
|--------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|----------|---------------------|--------------|
| Ð                                                      |                                                                     | LABEL                                                                           | _                                                    |                                                         | Ð        |                     |              |
| θ                                                      |                                                                     |                                                                                 |                                                      |                                                         | θ        |                     |              |
|                                                        |                                                                     |                                                                                 |                                                      |                                                         |          |                     |              |
| 0                                                      | <br>                                                                |                                                                                 |                                                      | <u>0</u>                                                | 0        |                     |              |
| [<br>                                                  |                                                                     |                                                                                 | 130.98                                               | 0                                                       | <b>9</b> | 7-                  |              |
|                                                        |                                                                     |                                                                                 |                                                      |                                                         |          |                     |              |
| T TYPE<br>DBMA 25S<br>DBMA 25P<br>DDMA 50P<br>DDMA 50P | FUNCTION<br>DAQ_IF_M/DPU<br>DCU/PSU_M<br>LIA_P_5/FPU<br>LIA_P_5/FPU | ONNECTORS<br>IDENT TYPE<br>J24 DCMA 3<br>J25 DCMA 3<br>J26 DCMA 3<br>J27 DCMA 3 | EFUN<br>37PLIA_S<br>37PLIA_S<br>37PLIA_S<br>37PLIA_S | CTION<br>_1/FPU<br>_2/FPU<br>_2/FPU<br>_3/FPU<br>_3/FPU |          |                     |              |
| DDMA 50P<br>DDMA 50P<br>DCMA 37P                       | LIA_P_6/FPU<br>LIA_P_6/FPU<br>LIA_S_1/FPU                           | J28 DCMA 3<br>J29 DDMA 7<br>J31 DCMA 3                                          | 57P LIA_S<br>78S BIAS<br>37S BIAS                    | _3/FPU<br>_M/FPU<br>_M/FPU                              |          |                     | $\geq$       |
|                                                        |                                                                     |                                                                                 |                                                      |                                                         | 5        |                     | $\backslash$ |
|                                                        | <u>CONNECTOR TYPE P</u>                                             |                                                                                 | ~ \                                                  |                                                         | <<br>\   |                     |              |
|                                                        | CONNECTOR TYPE P<br>                                                | (                                                                               |                                                      |                                                         |          |                     |              |
|                                                        | CONNECTOR TYPE P                                                    | (                                                                               |                                                      |                                                         |          | MATIERE : Alu 2017A | PROTECTION : |







| CONNEC                | TORS  |          |                      |
|-----------------------|-------|----------|----------------------|
| INTERFACE NAME        | IDENT | TYPE     | INTERFACE NAME       |
| MAC-M/DPU-M           | J21   | DAMA 15S | TEMP-M/FPU-TS-1-M    |
| MAC-R/DPU-R           | J22   | DAMA 15S | TEMP-R/FPU-TS-1-R    |
| CCHK-IF-M/DPU-M       | J23   | DDMA 50S | TEMP-M/FPU-TS-2-M    |
| CCHK-IF-R/DPU-R       | J24   | DDMA 50S | TEMP-R/FPU-TS-2-R    |
| PSU-M/PCDU-M          | J25   | DAMA 15S | TEMP-M/FPU-MEC-TS-M  |
| PSU-R/PCDU-R          | J26   | DAMA 15S | TEMP-R/FPU-MEC-TS-R  |
| PSU-M/DCU             | J27   | NA       | NA                   |
| PSU-R/DCU             | J28   | NA       | NA                   |
| PSU-M/MCU-M           | J29   | DCMA 37P | SMEC-M/FPU-SMECm-2-M |
| PSU-R/MCU-R           | J30   | DCMA 37P | SMEC-R/FPU-SMECm-2-R |
| K-IF-M/FPU-COOL-CAL-M | J31   | DBMA 25P | MCU-M/PSU-M          |
| K-IF-R/FPU-COOL-CAL-R | J32   | DBMA 25P | MCU-R/PSU-R          |
| K-IF-M/FPU-PH-STIM-M  | J33   | DAMA 15S | PSU-M/SCU-M          |
| K-IF-R/FPU-PH-STIM-R  | J34   | DAMA 15S | PSU-R/SCU-R          |
| NA                    | J35   | DAMA 15P | SCU-M/PSU-M          |
| NA                    | J36   | DAMA 15P | SCU-R/PSU-R          |
| MEC-M/FPU-SMECm-1-M   | J37   | NA       | NA                   |
| MEC-R/FPU-SMECm-1-R   | J38   | NA       | NA                   |
| BSM-M/FPU-BSM-M       | J39   | DEMA 9S  | MAC-H/JTAG           |
| BSM-R/FPU-BSM-R       | J40   | DEMA 95  | MAC-R/JTAG           |











## Change History:

Version C comes as part of the QM1 ADP There's no change list; modules are reordered

In this version C of QM1, and indeed in B, J01 is in the same position within its module as is shown on the latest FM drwg. So J01 is drawn in the same position in its module in all three drawings,

However, NCR\_MCU\_#105.pdf says that J01 is in J39's position and via versa, so this is shown in red to the right.

NCR\_MCU\_#104. pdf also notes unspecific discrepancies, but this issue C is said to discharge NCR 104 by showing all the variations.





#### Herschel/SPIRE

## MULLARD SPACE SCIENCE LABORATORY UNIVERSITY COLLEGE LONDON Author: C BROCKLEY-BLATT

# SPIRE – STRUCTURE INTERFACE DRAWING ISSUE 18 AND MODIFICATION SHEET Document Number: MSSL/SPIRE/SP005.03 7 July 2003

Distribution:

| Spire Project C                  | Office           | B Winter                |  |
|----------------------------------|------------------|-------------------------|--|
| ESA PX                           |                  | A Heske                 |  |
|                                  |                  | J Bruston               |  |
|                                  |                  | J Rautakoski            |  |
| RAL                              |                  | B Swinyard              |  |
|                                  |                  | E Sawyer                |  |
|                                  |                  | J Delderfield           |  |
|                                  |                  | J Long (Project Office) |  |
| Mullard Space Science Laboratory |                  | A Smith                 |  |
|                                  |                  | J Coker                 |  |
|                                  |                  | C Brockley-Blatt        |  |
|                                  |                  | A Dibbens               |  |
| ATC                              |                  | C Cunningham            |  |
|                                  |                  | I Pain                  |  |
|                                  |                  | T Paul                  |  |
| Cardiff                          |                  | P Hargrave              |  |
| CSA                              |                  | D Peterson              |  |
| COMDEV                           |                  | J Hacket                |  |
| JPL                              |                  | J Bock                  |  |
|                                  |                  | J Lilienthal            |  |
| UofS                             |                  | J Taylor                |  |
| CEA                              |                  | L Duband                |  |
| Herschel Project                 |                  | Herschel.Planck@esa.i   |  |
| Author:                          | C Brockley-Blatt | Date:                   |  |
| Checked:                         | B Winter         | Date:                   |  |
| Approved:                        | Tony Dibbens     | Date:                   |  |

#### ISSUE 16

| SHEET | MODIFICATION                                                     |
|-------|------------------------------------------------------------------|
| 2     | JFET note modified.                                              |
| 1     | Dimensions over Blade Mounts added.                              |
| 1     | 'Zu' axis added. Spacecraft co-ordinates note added.             |
| 1     | "Optical Datum Pin" note deleted.                                |
| 4     | Mounting referencing hole added (fixed mounting).                |
| 2     | Section description note changed.                                |
| 3     | 10 mm mechanical clearance zone deleted.                         |
| 3     | Shaded optical beams extended.                                   |
| 3     | Note wrt. Beam dimensions added.                                 |
| 3     | Reference cube angular mounting ad absolute accuracy note added. |
| 4     | Floating details removed.                                        |
| 4     | Alignment of HOB wrt. Herschel to permit Spire to be aligned.    |
| 5     | Unit axes added.                                                 |
| 5     | Cold Straps detail deleted (saved on new drawing A1/5264/300A).  |
| 5     | JFET thermal Interfaces note added. External to MSSL note added. |
| 5     | HSFPU thermal finishes added. Note wrt. JFET thermal interfaces  |
|       | added.                                                           |
| 6     | Electrical isolation note wrt. Cold straps added.                |
| 1     | Mass updated. Moments of Inertia added.                          |
| 4     | FPU mounting cone interface holes modified.                      |
| 4     | Contact area of FPU interface Vespel insulators added.           |
| 4     | Note wrt. HOB flatness and tilt to Herschel X Axis added.        |
| 5     | Detail of FPU internal Level '0' straps deleted - Now on drawing |
|       | A1/5264/300A                                                     |
| 6     | JFET harness "Stay Out" zones added.                             |
| 7     | FPU cone to PACS clearance dimension added.                      |
| ALL   | BDA- Obsolete harness feedthroughs deleted.                      |
| 2     | Addition of RF Filter connector numbers                          |

#### ISSUE 17

| SHEET | MODIFICATION                                                            |  |
|-------|-------------------------------------------------------------------------|--|
| 1     | RF Filter Connector numbers added                                       |  |
| 1,2,3 | Cryostat hole diameter was 270mm                                        |  |
| 1     | Spire axes coincident with Spacecraft axes - note added                 |  |
| 1     | Reference cube to be dismounted after installation on spacecraft – note |  |
|       | added                                                                   |  |
| 1     | Dimension to 'A' Frame top pin centre added                             |  |
| 1,3   | Redundant dimensions deleted                                            |  |
| 1     | Level 1 grounding strap positions moved and applicable note modified    |  |
| 1     | 'Alternative Level 1' note deleted                                      |  |
| 2     | Beams removed bottom LH view                                            |  |
| 3     | Optical reference cube note modified – reference to A3/5264/305-6       |  |
|       | added                                                                   |  |
| 3     | Beam angle added (Bottom LH view)                                       |  |
| 3     | 'Cryogenic' added to two dimensions                                     |  |
| ALL   | 'UNLESS OTHERWISE SPECIFIED' added to note wrt. 'ALL                    |  |
|       | DIMENSIONS AT ROOM TEMPERATURE'                                         |  |
| 3     | Dimension to top of reference cube added                                |  |
| 3     | Note stating U/S of SOB is Yu & Zu Optical Datum Deleted                |  |
| 4     | Front mounting cone centre – positional tolerances added                |  |
| 4     | SPIRE interface bolt material and torques added                         |  |
| 5     | Level 'O' cold strap interfaces modified. Bolt types, torques and       |  |
|       | Belleville types added.                                                 |  |
| 7     | Beam clearance dimension 0.92 reviewed                                  |  |
| 1     | Note WRT clearance between FPU and Inner Shield Added                   |  |
| 1,2,3 | Cryostat Inner shield updated                                           |  |
| 5     | "Stay Out" zone around Level '0' straps added                           |  |
|       |                                                                         |  |
|       |                                                                         |  |
|       |                                                                         |  |
|       |                                                                         |  |

#### ISSUE 18

| SHEET | MODIFICATION                                                                                                                          |
|-------|---------------------------------------------------------------------------------------------------------------------------------------|
| 1     | Mass properties updated to the latest sub system estimates/measured masses. No mass received for the harnesses (A guess in the model) |
| 1     | No weighed masses for Busbar Supports, Light traps, SCAL (Cardiff),                                                                   |
|       | SMEC (LAM) and SOB Harness, Photo BDA, Spectro BDA (Techdata)                                                                         |
| 1     | Notes, "Work in Progress" referring to BDA connector panels deleted                                                                   |
| 1     | Note WRT Aperture cover added                                                                                                         |
| 1     | Notes WRT surface finish at L0 and L1 interfaces added                                                                                |
| 1     | Aperture cover added                                                                                                                  |
| 1     | BDA connector flanges updated                                                                                                         |
| 2     | Pictorial changes WRT BDA connector flanges ad aperture cover to reflect sheet 1                                                      |
| 3     | Pictorial changes WRT BDA connector flanges ad aperture cover to reflect sheet 1                                                      |
| 4     | Pictorial changes WRT BDA connector flanges ad aperture cover to reflect sheet 1                                                      |
| 5     | Surface roughness on L0 straps added with "BY VISUAL INSPECTION ONLY" note                                                            |
| 5     | Gold finish on L0 straps                                                                                                              |
| 5     | Surface roughness and Alochrom 1200 finish note added for L1 straps                                                                   |
| 5     | M4 Torques were 1.26 Nm                                                                                                               |
| 6     | "Work in progress" notes wrt BDA connector panels deleted                                                                             |
| 6     | Note reminding that M4 grounding hole does not have a locking insert fitted added                                                     |
| 6     | Dims to BDA connectors added                                                                                                          |
| 7     | Pictorial changes WRT BDA connector flanges ad aperture cover to reflect sheet 1                                                      |
|       |                                                                                                                                       |
|       |                                                                                                                                       |
|       |                                                                                                                                       |
|       |                                                                                                                                       |
|       |                                                                                                                                       |
|       |                                                                                                                                       |
|       |                                                                                                                                       |
|       |                                                                                                                                       |














| Mechanical Design Office       Base: 12/12/2001         Page: 1/12/2001       Page: 1/12/2001         Page: 1/16       MODIFICATION SHEET         THE CENTRAL LABORATORY OF THE RESARCH COLUCUS: RUTHBEFORD APPLETON LABORATORY         DRAWING NUMBER:       KE-010-3.50         DARWING TITLE:       2 JFET RACK INTERFACE DRAWING         Date:       12-Jun-2002         NCR/ECR:       Modification Description:         Connector identification markings updated. J15, J12, J17, J14 reversed with J11, J16, J13, J18.         Connector Table updated accordingly         RAISED ISSUE TO B       21-Jun-2002 K.Burke         Connector Table, 2 <sup>nd</sup> Label J2 corrected to read J3         Note showing position of REF HOLE added         RAISED ISSUE TO C       21-Jun-2002 K.Burke         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "Backshell" rather than "Backplate" in the 15-way connector entry         Parts table modified to read "JP-10 & J15-18" rather than "JP-14"         RAISED ISSUE TO D       24-Jun-2002 M. Whalley         CofG added, MOI table added, Note modified for warm testing torque, bolt material added, pin1 indicated for connectors.         Raised to issue E 47/02 T.Froud       Issue raised to:         E       By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SSTD                                         | Space Product Assurance Form                    | Doc.No. :ISO9:FORM/MECH/006       |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------|-----------------------------------|------|
| Page :: 1 of 6         MODIFICATION SHEET         THE CENTRAL LABORATORY OF THE RESEARCH COLUCLS         RUTHERTOR LABORATORY         DRAWING NUMBER: EE-0104-360         DRAWING TITLE: 2 JFET RACK INTERFACE DRAWING         Date: 12-Jun-2002         NCR/ECR:         Modification Description:         Connector identification markings updated. J15, J12, J17, J14 reversed with J11, J16, J13, J18.         Connector Table updated accordingly         RAISED ISSUE TO B 21-Jun-2002 K.Burke         Connector Table, 2 <sup>nd</sup> Label J2 corrected to read J3         Note showing position of REF HOLE added         RAISED ISSUE TO C 21-Jun-2002 K.Burke         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPLS with than "Backplate" in the 15-way connector entry         Parts table modified to read "JPLS with than "Phosphur"         Note 4 modified to read "JP-10 & J15-18" rather than "JP-14"         RAISED ISSUE TO D 24-Jun-2002 M. Whalley         CofG added, MOI table added, Note modified for warm testing torque, bolt material added, pin1 indicated for connect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rutherford Appleton<br>Laboratory            | Mechanical Design Office                        | Issue : 2<br>Date : 21/12/2001    | 1    |
| MODIFICATION SHEET           MODIFICATION STHEET           THE CENTRAL LABORATORY OF THE RESEARCICOUNCILS         RUTHERORD APPLETON LABORATORY           DRAWING NUMBER: KE-0104-360           DRAWING TITLE:         2 JFET RACK INTERFACE DRAWING           Date:         12-Jun-2002           NCR/ECR:         Modification Description:           Connector identification markings updated. J15, J12, J17, J14 reversed with J11, J16, J13, J18.           Connector Table updated accordingly           RAISED ISSUE TO B         21-Jun-2002 K.Burke           Connector Table, 2 <sup>ad</sup> Label J2 corrected to read J3           Note showing position of REF HOLE added           RAISED ISSUE TO C         21-Jun-2002 K.Burke           Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.           Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.           Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.           Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.           Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.           Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.           Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.           Parts table mo                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              | Page : 1 of 6                                   |                                   |      |
| Intercentral LABORATORY OF THE RESEARCH COUNCILS       RUTHEBRORD APPLETON LABORATORY         DRAWING NUMBER:       KE-0104-360         DRAWING TITLE:       2 JFET RACK INTERFACE DRAWING         Date:       12-Jun-2002         NCR/ECR:       Modification Description:         Connector identification markings updated. J15, J12, J17, J14 reversed with J11, J16, J13, J18.         Connector Table updated accordingly         RAISED ISSUE TO B       21-Jun-2002 K.Burke         Connector Table, 2 <sup>nd</sup> Label J2 corrected to read J3         Note showing position of REF HOLE added         RAISED ISSUE TO C       21-Jun-2002 K.Burke         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         RAI                                                                                                                                                                                                                                                                                                                                                           |                                              | HEET                                            |                                   |      |
| DRAWING NUMBER:       RE-0104-360         DRAWING TITLE:       2 JFET RACK INTERFACE DRAWING         Date:       12-Jun-2002         NCR/ECR:       Modification Description:         Connector identification markings updated. J15, J12, J17, J14 reversed with J11, J16, J13, J18.         Connector Table updated accordingly         RAISED ISSUE TO B       21-Jun-2002 K.Burke         Connector Table, 2 <sup>nd</sup> Label J2 corrected to read J3         Note showing position of REF HOLE added         RAISED ISSUE TO C       21-Jun-2002 K.Burke         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "Backshell" rather than "Backplate" in the 15-way connector entry         Parts table modified to read "J0-10 & J15-18" rather than "Phosphur"         Note 4 modified to read "J0-10 & J15-18" rather than "J0-14"         RAISED ISSUE TO D       24-Jun-2002 M. Whalley         CofG added, MOI table added, Note modified for warm testing torque, bolt material added, pin1 indicated for connectors.         Raised to issue E 47/02 T.Froud       Issue raised to:         E       By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C THE CENTRA                                 | AL LABORATORY OF THE RESEARCH COUNCILS          | RUTHERFORD APPLETON LABORATORY    | 2952 |
| Date:       12-Jun-2002         NCR/ECR:       Modification Description:         Connector identification markings updated. J15, J12, J17, J14 reversed with J11, J16, J13, J18.         Connector Table updated accordingly         RAISED ISSUE TO B       21-Jun-2002 K.Burke         Connector Table, 2 <sup>nd</sup> Label J2 corrected to read J3         Note showing position of REF HOLE added         RAISED ISSUE TO C       21-Jun-2002 K.Burke         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         RAISED ISSUE TO D 24-Jun-2002 M. Whalley         CofG added, MOI table added, Note modified for warm testing torque, bolt material added, pin1 indicated for connec                                                                                                                                                                                                                                                                                                      | DRAWING NUM                                  | WING                                            | E.                                |      |
| Date:       12-Jun-2002         NCR/ECR:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              | E. 2 JFET KACK INTERFACE DKA                    | Twing                             | _    |
| NCR/ECR:         Modification Description:         Connector identification markings updated. J15, J12, J17, J14 reversed with J11, J16, J13, J18.         Connector Table updated accordingly         RAISED ISSUE TO B 21-Jun-2002 K.Burke         Connector Table, 2 <sup>nd</sup> Label J2 corrected to read J3         Note showing position of REF HOLE added         RAISED ISSUE TO C 21-Jun-2002 K.Burke         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         RAISED ISSUE TO D 24-Jun-2002 M. Whalley         CofG added, MOI table added, Note modified for warm testing torque, bolt mater                                                                                                                                                                                                                                                                                            | Date: 12-Jun                                 | <b>i-2002</b>                                   |                                   | Г    |
| Modification Description:         Connector identification markings updated. J15, J12, J17, J14 reversed with J11, J16, J13, J18.         Connector Table updated accordingly         RAISED ISSUE TO B 21-Jun-2002 K.Burke         Connector Table, 2 <sup>nd</sup> Label J2 corrected to read J3         Note showing position of REF HOLE added         RAISED ISSUE TO C 21-Jun-2002 K.Burke         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         RAISED ISSUE TO D 24-Jun-2002 M. Whalley         CofG added, MOI table added, Note modified for warm testing torque, bolt material added, pin1 indicated for connectors. </td <td>NCR/ECR:</td> <th></th> <td></td> <td>N</td>                                                                                                                                                                                                              | NCR/ECR:                                     |                                                 |                                   | N    |
| Connector identification markings updated. J15, J12, J17, J14 reversed with J11, J16, J13, J18. Connector Table updated accordingly RAISED ISSUE TO B 21-Jun-2002 K.Burke Connector Table, 2 <sup>nd</sup> Label J2 corrected to read J3 Note showing position of REF HOLE added RAISED ISSUE TO C 21-Jun-2002 K.Burke Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry. Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry. Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry. Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry. Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry. Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry. Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry. Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry. Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry. Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry. Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry. Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry. Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry. Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry. Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry. Note 4 modified to read "JP-10 & J15-18" rather than "JP-14" RAISED ISSUE TO D 24-Jun-2002 M. Whalley CofG added, MOI table added, Note modified for warm testing torque, bolt material added, pin1 indicated for connectors. Raised to issue E 4/7/02 T.Froud Issue raised to: E By: | Modification Desc                            | cription:                                       |                                   |      |
| Connector Table updated accordingly RAISED ISSUE TO B 21-Jun-2002 K.Burke Connector Table, 2 <sup>nd</sup> Label J2 corrected to read J3 Note showing position of REF HOLE added RAISED ISSUE TO C 21-Jun-2002 K.Burke Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry. Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry. Parts table modified to read "Backshell" rather than "Backplate" in the 15-way connector entry Parts table modified to read "Phosphor" rather than "Backplate" in the 15-way connector entry Parts table modified to read "JP-10 & J15-18" rather than "J9-14" RAISED ISSUE TO D 24-Jun-2002 M. Whalley CofG added, MOI table added, Note modified for warm testing torque, bolt material added, pin1 indicated for connectors. Raised to issue E 4/7/02 T.Froud Issue raised to: E By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Connector identificat                        | tion markings updated. J15, J12, J17, J14 re    | eversed with J11, J16, J13, J18.  | N    |
| RAISED ISSUE TO B 21-Jun-2002 K.Burke         Connector Table, 2 <sup>nd</sup> Label J2 corrected to read J3         Note showing position of REF HOLE added         RAISED ISSUE TO C 21-Jun-2002 K.Burke         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "Backshell" rather than "Backplate" in the 15-way connector entry         Parts table modified to read "Phosphor" rather than "Backplate" in the 15-way connector entry         Parts table modified to read "JP-10 & J15-18" rather than "J9-14"         RAISED ISSUE TO D 24-Jun-2002 M. Whalley         CofG added, MOI table added, Note modified for warm testing torque, bolt material added, pin1 indicated for connectors.         Raised to issue E 4/7/02 T.Froud         Issue raised to:       E         By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Connector Table und                          | lated accordingly                               | , , ,                             | 1.   |
| RAISED ISSUE TO B 21-Jun-2002 K.Burke         Connector Table, 2 <sup>nd</sup> Label J2 corrected to read J3         Note showing position of REF HOLE added         RAISED ISSUE TO C 21-Jun-2002 K.Burke         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "Backshell" rather than "Backplate" in the 15-way connector entry         Parts table modified to read "Phosphor" rather than "Backplate" in the 15-way connector entry         Parts table modified to read "JP-10 & J15-18" rather than "J9-14"         RAISED ISSUE TO D 24-Jun-2002 M. Whalley         CofG added, MOI table added, Note modified for warm testing torque, bolt material added, pin1 indicated for connectors.         Raised to issue E 4/7/02 T.Froud         Issue raised to:       E         By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              | D. 21 Jun 2002 K Durler                         |                                   | 2.   |
| Connector Table, 2 <sup>nd</sup> Label J2 corrected to read J3 Note showing position of REF HOLE added RAISED ISSUE TO C 21-Jun-2002 K.Burke Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry. Parts table modified to read "Backshell" rather than "Backplate" in the 15-way connector entry Parts table modified to read "Phosphor" rather than "Backplate" in the 15-way connector entry Parts table modified to read "J0-10 & J15-18" rather than "J0-14" RAISED ISSUE TO D 24-Jun-2002 M. Whalley CofG added, MOI table added, Note modified for warm testing torque, bolt material added, pin1 indicated for connectors. Raised to issue E 4/7/02 T.Froud Issue raised to: E By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | KAISED ISSUE TO                              | B 21-Juli-2002 K.Bulke                          |                                   | 3.   |
| Connector Table, 2 <sup>nd</sup> Label J2 corrected to read J3 Note showing position of REF HOLE added RAISED ISSUE TO C 21-Jun-2002 K.Burke Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry. Parts table modified to read "Backshell" rather than "Backplate" in the 15-way connector entry Parts table modified to read "Phosphor" rather than "Backplate" in the 15-way connector entry Parts table modified to read "J9-10 & J15-18" rather than "J9-14" RAISED ISSUE TO D 24-Jun-2002 M. Whalley CofG added, MOI table added, Note modified for warm testing torque, bolt material added, pin1 indicated for connectors. Raised to issue E 4/7/02 T.Froud Issue raised to: E By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                                 |                                   | 4    |
| Note showing position of REF HOLE added         RAISED ISSUE TO C 21-Jun-2002 K.Burke         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "Backshell" rather than "Backplate" in the 15-way connector entry         Parts table modified to read "Phosphor" rather than "Backplate" in the 15-way connector entry         Parts table modified to read "Phosphor" rather than "Phosphur"         Note 4 modified to read "J9-10 & J15-18" rather than "J9-14"         RAISED ISSUE TO D 24-Jun-2002 M. Whalley         CofG added, MOI table added, Note modified for warm testing torque, bolt material added, pin1 indicated for connectors.         Raised to issue E 4/7/02 T.Froud         Issue raised to:       E         By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Connector Table, 2 <sup>nd</sup>             | Label J2 corrected to read J3                   |                                   | 5.   |
| RAISED ISSUE TO C 21-Jun-2002 K.Burke         Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "Backshell" rather than "Backplate" in the 15-way connector entry         Parts table modified to read "Phosphor" rather than "Backplate" in the 15-way connector entry         Parts table modified to read "J9-10 & J15-18" rather than "Phosphur"         Note 4 modified to read "J9-10 & J15-18" rather than "J9-14"         RAISED ISSUE TO D 24-Jun-2002 M. Whalley         CofG added, MOI table added, Note modified for warm testing torque, bolt material added, pin1 indicated for connectors.         Raised to issue E 4/7/02 T.Froud         Issue raised to:       E         By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Note showing position                        | on of REF HOLE added                            |                                   | 6    |
| Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "Backshell" rather than "Backplate" in the 15-way connector entry         Parts table modified to read "Phosphor" rather than "Phosphur"         Note 4 modified to read "J9-10 & J15-18" rather than "J9-14"         RAISED ISSUE TO D 24-Jun-2002 M. Whalley         CofG added, MOI table added, Note modified for warm testing torque, bolt material added, pin1 indicated for connectors.         Raised to issue E 4/7/02 T.Froud         Issue raised to:       E         By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RAISED ISSUE TO                              | C 21-Jun-2002 K.Burke                           |                                   | 7    |
| Parts table modified to read "JPL Supply" as a Remark in the JFET Module entry.         Parts table modified to read "Backshell" rather than "Backplate" in the 15-way connector entry         Parts table modified to read "Phosphor" rather than "Phosphur"         Note 4 modified to read "J9-10 & J15-18" rather than "J9-14"         RAISED ISSUE TO D 24-Jun-2002 M. Whalley         CofG added, MOI table added, Note modified for warm testing torque, bolt material added, pin1 indicated for connectors.         Raised to issue E 4/7/02 T.Froud         Issue raised to:       E         By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |                                                 |                                   | ,.   |
| Parts table modified to read "Backshell" rather than "Backplate" in the 15-way connector entry         Parts table modified to read "Phosphor" rather than "Phosphur"         Note 4 modified to read "J9-10 & J15-18" rather than "J9-14"         RAISED ISSUE TO D 24-Jun-2002 M. Whalley         CofG added, MOI table added, Note modified for warm testing torque, bolt material added, pin1 indicated for connectors.         Raised to issue E 4/7/02 T.Froud         Issue raised to:       E         By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Parts table modified                         | to read "JPL Supply" as a Remark in the JI      | ET Module entry.                  |      |
| Parts table modified to read "Phosphor" rather than "Phosphur"         Note 4 modified to read "J9-10 & J15-18" rather than "J9-14"         RAISED ISSUE TO D 24-Jun-2002 M. Whalley         CofG added, MOI table added, Note modified for warm testing torque, bolt material added, pin 1             indicated for connectors.         Raised to issue E 4/7/02 T.Froud         Issue raised to:       E         By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Parts table modified                         | to read "Backshell" rather than "Backplate      | " in the 15-way connector entry   | 8.   |
| Note 4 modified to read "J9-10 & J15-18" rather than "J9-14"         RAISED ISSUE TO D 24-Jun-2002 M. Whalley         CofG added, MOI table added, Note modified for warm testing torque, bolt material added, pin1         indicated for connectors.         Raised to issue E 4/7/02 T.Froud         Issue raised to:       E         By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Parts table modified                         | to read "Phosphor" rather than "Phosphur"       |                                   | 9.   |
| RAISED ISSUE TO D 24-Jun-2002 M. Whalley         CofG added, MOI table added, Note modified for warm testing torque, bolt material added, pin l indicated for connectors.         Raised to issue E 4/7/02 T.Froud         Issue raised to:       E         By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Note 4 modified to re                        | and "IQ 10 & I15 18" rather than "IQ 14"        |                                   | 10   |
| RAISED ISSUE TO D 24-Jun-2002 M. Whatley         CofG added, MOI table added, Note modified for warm testing torque, bolt material added, pin1         indicated for connectors.         Raised to issue E 4/7/02 T.Froud         Issue raised to:       E         By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |                                                 |                                   | 1    |
| CofG added, MOI table added, Note modified for warm testing torque, bolt material added, pin1 indicated for connectors.         Raised to issue E 4/7/02 T.Froud         Issue raised to:       E         By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KAISED ISSUE TO                              | D 24-Jun-2002 M. Whattey                        |                                   | 12   |
| CoFG added, MOI table added, Note modified for warm testing torque, bolt material added, pin1 indicated for connectors.         Raised to issue E 4/7/02 T.Froud         Issue raised to:       E         By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                 |                                   | 13   |
| Raised to issue E 4/7/02 T.Froud       Issue raised to:     E       By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CofG added, MOI tal<br>indicated for connect | ble added, Note modified for warm testing tors. | torque, bolt material added, pin1 | 14   |
| Issue raised to: E By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Raised to issue E 4/7                        | /02 T.Froud                                     |                                   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Issue raised to:                             | E By:                                           |                                   |      |
| SUBERSEDED ISSUES OF ALL DRAWING HARD CODIES TO DE DESTROVED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |                                                 |                                   | Is   |
| SUPERSEDED ISSUES OF ALL DRAWING HARD COPIES TO BE DESTROYED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SUPERSEDE                                    | ED ISSUES OF ALL DRAWING HARD C                 | COPIES TO BE DESTROYED            |      |
| KE-2952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | KE-2952                                      |                                                 |                                   | KF   |

| SSTD                                | Space Product Assu                             | arance Form         | Doc.No. :ISO9:FORM/MECH/006             |    | SSTD                                                 | Space 1           | Product Ass      | uranc      |
|-------------------------------------|------------------------------------------------|---------------------|-----------------------------------------|----|------------------------------------------------------|-------------------|------------------|------------|
| Rutherford Appleton<br>Laboratory   | Mechanical Desi                                | ign Office          | Issue : 2                               |    | Rutherford Appleton<br>Laboratory                    | Mec               | hanical Des      | ign Oj     |
|                                     |                                                |                     | Page : 2 of 6                           |    |                                                      |                   |                  |            |
|                                     | MODIFIC                                        | ATION S             | HEET                                    |    |                                                      | Ν                 | AODIFIC          | CATI       |
| THE CENTR                           | AL LABORATORY OF THE RESEAR                    | RCH COUNCILS        | RUTHERFORD APPLETON LABORATORY          | 25 | THE CENT                                             | RAL LABORATOF     | Y OF THE RESEA   | RCH СОЦ    |
| DRAWING NUN                         | IBER: KE-0104-360                              |                     |                                         |    | DRAWING NU                                           | MBER: KE-         | 0104-360         |            |
| DRAWING TITI                        | .E: 2 JFET RACK INT                            | TERFACE DRA         | WING                                    | Х  | DRAWING TIT                                          | LE: 2 JF          | ET RACK IN       | TERFA      |
|                                     |                                                |                     |                                         |    | Data: 12 N                                           | an 2002           |                  |            |
| Date: 07-Fe                         | b-2003                                         |                     |                                         |    | Date. 12-iv                                          | 141-2003          |                  |            |
| NCR/ECR:                            |                                                |                     |                                         | 1  | NCR/ECR:                                             |                   |                  |            |
| Modification Des                    | cription:                                      |                     |                                         | ]  | Modification De                                      | scription:        |                  |            |
| Nouncation Des                      |                                                |                     |                                         | 1  | 1. Thermal stando                                    | ff positional d   | imensions cha    | nged to    |
| <ol> <li>Swop connector</li> </ol>  | pairs (MSW)                                    |                     |                                         |    | 2. Thermal strap i                                   | nterface dimer    | nsions added     |            |
| <ol><li>move connector</li></ol>    | labels (MSW)                                   |                     |                                         |    | <ol> <li>Note 3 modifie</li> </ol>                   | d to clarify that | t stud is set to | depth t    |
| <ol><li>make back harne</li></ol>   | ess into parts (MSW)                           |                     |                                         |    | 4 Height of IEET rack dimension added                |                   |                  |            |
| <ol> <li>Dimension and I</li> </ol> | abel thread lengths                            |                     |                                         |    | 5 Note 8 added regarding the protrucion and trimmin  |                   |                  |            |
| <ol><li>add column to p</li></ol>   | arts list showing drawing nu                   | mbers (also crea    | te repeat region BOM table)             |    | American                                             | garung me p       |                  | 41-a4 41-a |
| 6. replace thermal                  | strap part as an assembly                      |                     |                                         |    | (as they have different lengths of parylene coating) |                   |                  |            |
| 7. change note 2 –                  | dimension and to competence                    | nsate for actual    | fet module sizes," and append note      | -  | <ol> <li>Typos fixed</li> </ol>                      |                   |                  |            |
| 2 with "pads on<br>before fasteners | item 3 will also need machin<br>are tightened" | ning if trial asser | nbly of rack on flat surface shows gaps | 8  | 8. Unit mounting h                                   | ole size and p    | ositional accura | acy add    |
| 8. add note 5 " Hea                 | t capacity = {0.9 x mass} jo                   | ules / Kelvin       |                                         |    |                                                      |                   |                  |            |
| <ol><li>show insulation</li></ol>   | additions to feet (kapton tap                  | e washers)          |                                         |    |                                                      |                   |                  |            |
| 10. add note to secti               | on view showing that fasten                    | ers are coated w    | ith parylene C                          |    |                                                      |                   |                  |            |
| 11. put m2.5 washer                 | s under various screws                         |                     |                                         |    |                                                      |                   |                  |            |
| 12. change note 3 to                | say "items 8 to be torqued t                   | o 2.1Nm above       | locking insert running torque           |    |                                                      |                   |                  |            |
| 13. add note 6 " fitte              | d back harness to afford ope                   | en access to to 5   | l ways as shown"                        |    |                                                      |                   |                  |            |
| 14 add note 7 " kan                 | ton tape insulators shall be c                 | ut to fit annuls o  | of thermal standoff to within +/- 1"    |    |                                                      |                   |                  |            |
|                                     |                                                |                     |                                         |    |                                                      |                   |                  |            |
|                                     |                                                |                     |                                         |    | Issue raised to:                                     | G                 |                  | Bv:        |
| Issue raised to:                    | F                                              | By: IPC             | ]                                       |    |                                                      | -                 |                  | <u> </u>   |
| SUPERSED                            | ED ISSUES OF ALL DRAV                          | WING HARD C         | OPIES TO BE DESTROYED                   |    | SUPERSEI                                             | DED ISSUES        | OF ALL DRA       | WING       |
| E-2952                              |                                                |                     |                                         | К  | E-2952                                               |                   |                  |            |
|                                     |                                                |                     |                                         |    |                                                      |                   |                  |            |

| 1    | SSTD<br>Rutherford Appleton<br>Laboratory                                                         | Space Product Assurance Form<br>Mechanical Design Office | Doc.No. :ISO9:FORM/MECH/006<br>Issue : 2<br>Date : 21/12/2001<br>Page : 4 of 6 |  |  |  |  |
|------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------|--|--|--|--|
| 52   | MODIFICATION SHEET THE CENTRAL LABORATORY OF THE RESEARCH COUNCILS RUTHERFORD APPLETON LABORATORY |                                                          |                                                                                |  |  |  |  |
| E-29 | DRAWING NUMB                                                                                      | ER: KE-0104-360                                          |                                                                                |  |  |  |  |
| Кŀ   | DRAWING TITLE:                                                                                    | 2 JFET RACK INTERFACE DRA                                | WING                                                                           |  |  |  |  |

| Ι | Date: | 20-May-2003 |
|---|-------|-------------|
|   |       |             |

NCR/ECR:

Modification Description:

Added note to size of tapped holes for attachment of cooling strap ( L-1/2 )

2 HOLES M4x0.7 1.5D LG HELICOIL FASTENER TO ENGAGE 1.5d

| TORQUE NOT TO    | EXCEED 2.5Nm         |         |                            |
|------------------|----------------------|---------|----------------------------|
|                  |                      |         |                            |
|                  |                      |         |                            |
|                  |                      |         |                            |
|                  |                      |         |                            |
|                  |                      |         |                            |
|                  |                      |         |                            |
|                  |                      |         |                            |
|                  |                      |         |                            |
|                  |                      |         |                            |
|                  |                      |         |                            |
|                  |                      |         |                            |
|                  |                      |         |                            |
|                  |                      |         |                            |
|                  |                      |         |                            |
|                  |                      |         |                            |
| Issue raised to: | Н                    | By:     | Kevin Burke                |
| SUPERSED         | ED ISSUES OF ALL DRA | WING HA | ARD COPIES TO BE DESTROYED |
| KE-2952          |                      |         |                            |

|                   |                       | <b>-</b>                        |                |                                         |  |  |  |  |  |
|-------------------|-----------------------|---------------------------------|----------------|-----------------------------------------|--|--|--|--|--|
| SS<br>D.d. G      | STD                   | Space Product Assura            | ance Form      | Doc.No. :ISO9:FORM/MECH/006             |  |  |  |  |  |
| Labo              | a Appleton<br>oratory | Mechanical Design               | 1 Office       | Issue : 2<br>Date : 21/12/2001          |  |  |  |  |  |
|                   | Page : 5 of 6         |                                 |                |                                         |  |  |  |  |  |
|                   |                       | MODIFICA                        | TION S         | HEET                                    |  |  |  |  |  |
| 796               | THE CENTRAL           | . LABORATORY OF THE RESEARCH    | COUNCILS       | RUTHERFORD APPLETON LABORATORY          |  |  |  |  |  |
| DRAV              | VING NUME             | BER: KE-0104-360                |                |                                         |  |  |  |  |  |
| ∠ DRAV            | VING TITLE            | 2 JFET RACK INTER               | RFACE DRA      | WING                                    |  |  |  |  |  |
| Date: 13-Oct-2003 |                       |                                 |                |                                         |  |  |  |  |  |
|                   |                       |                                 |                |                                         |  |  |  |  |  |
| NCR/E             | CR:                   |                                 |                |                                         |  |  |  |  |  |
| Modific           | ation Desc            | ription:                        |                |                                         |  |  |  |  |  |
| 1. Refl           | ects new ther         | mal standoff design with add    | itional bush a | and upper and lower feet washers.       |  |  |  |  |  |
| Subs<br>List      | equent dimer          | nsions in X direction updated   | to new interf  | face plane. New parts added to Parts    |  |  |  |  |  |
| 2                 |                       |                                 |                | Harris Miner D 16 minerature            |  |  |  |  |  |
| 2. Kell<br>adde   | d to harness          | representation. Micro-D 37 v    | vay elliptical | entry backshells replace standard       |  |  |  |  |  |
| circu             | ilar entry vers       | sions. Mass of harness increa   | ased from 110  | 0g to 205g.                             |  |  |  |  |  |
| 3. L3 s           | trap and inter        | face assembly added. Views      | updated to sl  | how interface details and L3 strap hole |  |  |  |  |  |
| denir             | ntion.                |                                 |                |                                         |  |  |  |  |  |
| 4. Mas            | s of JFET mo          | dules reduced from 305g to 2    | 260g.          |                                         |  |  |  |  |  |
| 5. Kapt           | ton tape remo         | wed from fastener and stand-    | off interfaces | (note 7 deleted).                       |  |  |  |  |  |
| 6. Mon            | nents of inert        | ia updated along with C of G    | position.      |                                         |  |  |  |  |  |
| 7. Kapt           | ion tape note         | removed from L3 interface a     | rea.           |                                         |  |  |  |  |  |
| 8. Inco           | rrectly specif        | ied M2.5 x 8 long fasteners u   | used to fasten | JFET modules to front plate replaced    |  |  |  |  |  |
| with              | M3 x 8 long           |                                 |                |                                         |  |  |  |  |  |
| 9. Tem            | perature sens         | or interface shown on both si   | ides of the L3 | interface sub-assembly.                 |  |  |  |  |  |
| 10. Dis           | tance between         | S/C connector I/F and rear of J | FET harness ir | ncreased due to addition of 15-way      |  |  |  |  |  |
| conn              | ectors to JFET        | harness.                        |                |                                         |  |  |  |  |  |
| 11. Nev           | v dimensions a        | applied to L3 interface area.   |                |                                         |  |  |  |  |  |
| 12. Co            | nnector faster        | ners and nuts added to spacec   | raft connecto  | ITS.                                    |  |  |  |  |  |
|                   |                       |                                 |                |                                         |  |  |  |  |  |
| Issue ra          | ised to:              | I                               | By: Da         | ve Smart                                |  |  |  |  |  |
|                   |                       |                                 | I              |                                         |  |  |  |  |  |
| S                 | UPERSEDEI             | D ISSUES OF ALL DRAWI           | NG HARD C      | OPIES TO BE DESTROYED                   |  |  |  |  |  |

KE-2952

| SUPERSEDED ISSUES OF ALL DRAWING HARD COPIES TO BE DESTROYED |                                               |                                             |             |           |                                                 |                          |
|--------------------------------------------------------------|-----------------------------------------------|---------------------------------------------|-------------|-----------|-------------------------------------------------|--------------------------|
| KI                                                           | E-2952                                        |                                             |             |           |                                                 |                          |
|                                                              |                                               |                                             |             |           |                                                 |                          |
|                                                              | SSTD                                          | Space Product Ass                           | urance l    | Form      | Doc.No. :ISO9:FORM/MECH                         | I/006                    |
|                                                              | Rutherford Appleton<br>Laboratory             | Mechanical Des                              | ign Offi    | ce        | Issue : 2<br>Date : 21/12/2001<br>Page : 6 of 6 |                          |
|                                                              |                                               | MODIFIC                                     | CATIC       | N SF      | IEET                                            |                          |
| 952                                                          | THE CENTRA                                    | AL LABORATORY OF THE RESEA                  | RCH COUNC   | ILS RU    | UTHERFORD APPLETON LABORA                       | TORY                     |
| E-2                                                          | DRAWING NUM                                   | BER: KE-0104-360                            |             |           |                                                 |                          |
| ¥                                                            | DRAWING TITL                                  | E: 2 JFET RACK IN                           | TERFACE     | EDRAV     | VING                                            |                          |
| Γ                                                            | Date: 12-No                                   | v-2003                                      |             |           |                                                 |                          |
| N                                                            | ICR/ECR:                                      |                                             |             |           |                                                 |                          |
| N                                                            | Iodification Des                              | cription:                                   |             |           |                                                 |                          |
|                                                              | 1. Harness re-ro<br>Reference to              | uted to show clearance req<br>note 6 added. | uired to ac | ccess con | nnectors on the rear of the                     | JFETS.                   |
|                                                              | 2. Harness tie de                             | own points added.                           |             |           |                                                 |                          |
|                                                              | <ol> <li>Note 8 added<br/>harness.</li> </ol> | concerning the pre-fitting                  | of the M4   | fastener  | rs prior to the assembly of                     | the                      |
|                                                              |                                               |                                             |             |           |                                                 |                          |
|                                                              |                                               |                                             |             |           |                                                 |                          |
|                                                              |                                               |                                             |             |           |                                                 |                          |
|                                                              |                                               |                                             |             |           |                                                 |                          |
|                                                              |                                               |                                             |             |           |                                                 |                          |
|                                                              |                                               |                                             |             |           |                                                 |                          |
|                                                              |                                               |                                             |             |           |                                                 |                          |
|                                                              |                                               |                                             |             |           |                                                 |                          |
|                                                              |                                               |                                             |             |           |                                                 |                          |
|                                                              |                                               |                                             |             |           |                                                 |                          |
|                                                              |                                               |                                             |             | ?         | John Delde Reld                                 | 2003.11.12<br>15:13:21 Z |
| I                                                            | ssue raised to:                               | J                                           | By:         | Dav       | e Smart                                         |                          |
|                                                              |                                               |                                             |             |           |                                                 |                          |
|                                                              | SUPERSEDE                                     | ED ISSUES OF ALL DRAY                       | WING HA     | ARD CO    | PIES TO BE DESTROY                              | ED                       |
| KI                                                           | E-2952                                        |                                             |             |           |                                                 |                          |

| 2. | Harness  | tie down | points | added. |
|----|----------|----------|--------|--------|
| 4. | 11anness | uc uown  | points | auucu. |

| STD                             | Space Product Ass                         | urance F     | orm           | Doc.No        | :ISO9:FORM/MEC      | H/006                    |
|---------------------------------|-------------------------------------------|--------------|---------------|---------------|---------------------|--------------------------|
| oratory                         | Mechanical Des                            | ign Offic    | e             | Issue<br>Date | : 2<br>: 21/12/2001 |                          |
|                                 |                                           |              |               | Page          | : 6 of 6            |                          |
|                                 | MODIFIC                                   | CATIO        | N SE          | IEET          |                     |                          |
| THE CENTRAL                     | LABORATORY OF THE RESEA                   | RCH COUNCII  | L <b>S</b> RU | THERFOR       | D APPLETON LABOR    | ATORY                    |
| WING NUMB                       | ER: KE-0104-360                           |              |               |               |                     |                          |
| WING TITLE                      | 2 JFET RACK IN                            | TERFACE      | DRAW          | /ING          |                     |                          |
| 12-Nov                          | -2003                                     |              |               |               |                     |                          |
| CR:                             |                                           |              |               |               |                     |                          |
| ation Desci                     | ription:                                  |              |               |               |                     |                          |
| arness re-rou<br>eference to no | ted to show clearance req<br>ote 6 added. | uired to acc | cess coi      | nnectors      | on the rear of th   | e JFETS.                 |
| arness tie dov                  | vn points added.                          |              |               |               |                     |                          |
| lote 8 added c<br>arness.       | oncerning the pre-fitting                 | of the M4 f  | àstener       | s prior t     | to the assembly of  | f the                    |
|                                 |                                           |              |               |               |                     |                          |
|                                 |                                           |              |               |               |                     |                          |
|                                 |                                           |              |               |               |                     |                          |
|                                 |                                           |              |               |               |                     |                          |
|                                 |                                           |              |               |               |                     |                          |
|                                 |                                           |              |               |               |                     |                          |
|                                 |                                           |              |               |               |                     |                          |
|                                 |                                           |              |               |               |                     |                          |
|                                 |                                           |              |               |               |                     |                          |
|                                 |                                           |              |               |               |                     |                          |
|                                 |                                           |              |               |               |                     |                          |
|                                 |                                           |              |               |               |                     |                          |
|                                 |                                           |              |               |               |                     |                          |
|                                 |                                           |              |               |               |                     |                          |
|                                 |                                           | 4            | ?             | John          | Delderfield         | 2003.11.12<br>15:13:21 Z |
| ised to:                        | J                                         | By:          | Dave          | e Smar        | t                   |                          |
| UPERSEDEI                       | DISSUES OF ALL DRA                        | WING HAI     | RD CO         | PIES T        | O BE DESTROY        | 'ED                      |
|                                 |                                           |              |               |               |                     |                          |
|                                 |                                           |              |               |               |                     |                          |

|     |        |                             | 6                  |                                |            |            |          |                     |            |
|-----|--------|-----------------------------|--------------------|--------------------------------|------------|------------|----------|---------------------|------------|
|     |        | SSTD                        | Sp                 | ace Product Ass                | urance l   | form       | Doc.No   | . :ISO9:FORM/MEC    | H/006      |
| R   | Luther | aboratory                   |                    | Mechanical Des                 | ign Offi   | се         | Issue    | : 2                 |            |
|     |        |                             |                    |                                |            |            | Page     | : 6 of 6            |            |
|     |        |                             |                    | MODIFIC                        | CATIC      | N SI       | IEET     | Γ                   |            |
| ŝ   |        | THE CENTI                   | ATORY              |                                |            |            |          |                     |            |
| 7-7 | DR.    | AWING NUI                   | MBER:              | KE-0104-360                    |            |            |          |                     |            |
| Y   | DR.    | AWING TIT                   | LE:                | 2 JFET RACK IN                 | TERFACI    | E DRAV     | VING     |                     |            |
| D   | ate:   | 12-N                        | ov-200             | 13                             |            |            |          |                     |            |
| N   | CR/    | ECR:                        |                    |                                |            |            |          |                     |            |
| Μ   | lodi   | fication De                 | scripti            | on:                            |            |            |          |                     |            |
|     | 1.     | Harness re-<br>Reference to | outed to<br>note 6 | o show clearance req<br>added. | uired to a | ccess co   | nnectors | s on the rear of th | e JFETS.   |
|     | 2.     | Harness tie                 | down p             | pints added.                   |            |            |          |                     |            |
|     | 3.     | Note 8 adde<br>harness.     | d conce            | rning the pre-fitting          | of the M4  | fastene    | rs prior | to the assembly o   | of the     |
|     |        |                             |                    |                                |            |            |          |                     |            |
|     |        |                             |                    |                                |            |            |          |                     |            |
|     |        |                             |                    |                                |            |            |          |                     |            |
|     |        |                             |                    |                                |            |            |          |                     |            |
|     |        |                             |                    |                                |            |            |          |                     |            |
|     |        |                             |                    |                                |            |            |          |                     |            |
|     |        |                             |                    |                                |            |            |          |                     |            |
|     |        |                             |                    |                                |            |            |          |                     |            |
|     |        |                             |                    |                                |            |            |          |                     |            |
|     |        |                             |                    |                                |            |            |          |                     |            |
|     |        |                             |                    |                                |            |            |          |                     |            |
|     |        |                             |                    |                                |            |            |          |                     |            |
|     |        |                             |                    |                                |            |            |          |                     |            |
|     |        |                             |                    |                                |            |            |          |                     |            |
|     |        |                             |                    |                                |            |            |          |                     |            |
|     |        |                             |                    |                                |            | $\gamma$ . | TA       | Delde Leld          | 2003.11.12 |
|     |        |                             |                    |                                |            | ā          | Jam      |                     | 10.10.212  |
| Is  | sue    | raised to:                  | J                  |                                | By:        | Dav        | e Smar   | t                   |            |
|     |        | SUDEDSET                    | ED ISS             | UES OF ALL DPA                 | WING H     | AND CC     | DIEST    | O BE DESTRO         | /FD        |
|     | • •    | SUPERSEL                    | ED 155             | UES UF ALL DRA                 | wing HA    | IKD CC     | ries I   | O BE DESIRU         | ED         |
| Œ   | -29    | 52                          |                    |                                |            |            |          |                     |            |

| ace Product Assura                                     | nce Form             | Doc.No. :ISO9:FORM/MECH/006        |
|--------------------------------------------------------|----------------------|------------------------------------|
| Mechanical Design                                      | Office               | Issue : 2                          |
|                                                        |                      | Date : 21/12/2001<br>Page : 3 of 6 |
| MODIFICA                                               | TION SI              | HEET                               |
| RATORY OF THE RESEARCH                                 | COUNCILS R           | UTHERFORD APPLETON LABORATORY      |
| KE-0104-360                                            |                      |                                    |
| 2 JFET RACK INTER                                      | RFACE DRAV           | VING                               |
|                                                        |                      |                                    |
| 3                                                      |                      |                                    |
|                                                        |                      |                                    |
| on:                                                    |                      |                                    |
| onal dimensions change                                 | d to basic dim       | ensions.                           |
| dimensions added                                       |                      |                                    |
| ify that stud is set to dep                            | th then nut is       | torqued to 2.1Nm.                  |
| mension added.                                         |                      |                                    |
| the protrusion and trimi                               | ning of the pa       | rylene coating                     |
| t to balloon) stating that<br>engths of parylene coati | the KE-0104-<br>ng). | 357 and 358 should not be confused |
| and positional accuracy                                | added                |                                    |
|                                                        |                      |                                    |
| I                                                      | By: Iain             | Gilmour                            |
|                                                        |                      |                                    |



| 1  | 19  | •           | 20           | 21               | 22               |    |
|----|-----|-------------|--------------|------------------|------------------|----|
|    |     |             |              |                  |                  |    |
|    | QTY | MASS/ITEM   | TOTAL MASS   | COMMENTS         |                  |    |
|    | 2   | 260.00      | 520.00       | JPL SUPPLY       |                  | ,  |
|    | 1   | 216.95      | 216.95       | JPL SUPPLY       |                  |    |
|    | 2   |             |              |                  |                  |    |
|    | 4   | 1.70        | 6.80         |                  |                  | -  |
|    | 4   | 0.87        | 3.47         |                  |                  |    |
| m) | 2   | 4.70        | 9.39         |                  |                  |    |
|    | 1   | 48.01       | 48.01        |                  |                  | ١. |
|    | 1   | 33.50       | 33.50        |                  |                  | ľ  |
|    | 1   | 8.53        | 8.53         |                  |                  |    |
|    | 2   | 5.08        | 10.16        |                  |                  |    |
|    | 4   | 0.39        | 1.55         |                  |                  |    |
|    | 1   | 23.28       | 23.28        |                  |                  |    |
|    | 2   | 1.31        | 2.62         |                  |                  | 6  |
|    | 1   | 64.18       | 64.18        |                  |                  | ì  |
|    | 4   | 0.94        | 3.76         |                  |                  |    |
|    | 4   | 0.14        | 0.55         |                  |                  |    |
|    | 4   | 0.34        | 1.35         |                  |                  | 1  |
|    | 1   | N/A         |              | HERSCHEL SUPPLY  |                  |    |
|    | 8   | 0.11        | 0.86         | S/STEEL BS970/15 | 0  304\$   / 5/3 | ١. |
|    | 12  | 0.58        | 6.93         | S/STEEL BS3506-1 | :1998 A2-70      | ľ  |
|    | 8   | 0.74        | 5.95         | S/STEEL BS3506-1 | :1998 A2-70      |    |
|    | ASS | SEMBLY MAS. | SI967 84 GRA | MS               |                  | i. |

|                                     | Τι                      | D CRYOHARNI                                                               |                                        |                                                                                | TTALLY EXPLOSED                                                                            | ODED 3D VIE<br>STRAP INTE<br>CLAMPS I        | NEW<br>REFACE<br>REMOVED                              |         |
|-------------------------------------|-------------------------|---------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------|---------|
| R ACTUAL<br>WN AS<br>ILL ALSO<br>RE | 2                       | TO HSFPU<br>HOLES M4x(C<br>FAST<br>TOROUE<br>S STRAP 2 ,<br>SUI<br>(BLOCK | 7 1.5C<br>ENER TC<br>NOT TO<br>SHOWN I |                                                                                | G HELICOIL-<br>IGAGE 1.50<br>IEED 2.5Nm<br>THRO 4mm<br>IN SUB-ASS<br>IREFRAME 1<br>VIEW OF | STRAP TO-<br>EMBLY 13<br>0 PERMIT<br>BUSHES) |                                                       |         |
| SE THIS                             | J                       | 2 - N o v - 0 3                                                           | KE-295                                 | 2.                                                                             | D. SMART                                                                                   |                                              |                                                       | ISSUED  |
|                                     | ISSUE<br>TOLER<br>MATER | DATE<br>ANCES UNLESS<br>±0.2 mm<br>±0.3<br>IAL & SPEC.                    | MOD. N                                 | IO. DRN. BY CHKD.<br>FINISH<br>CLEAN<br>REMOVE ALL BURRS<br>SURFACE TEXTURE JM |                                                                                            | СНКD.<br>I<br>Burrs<br>JRE ји                | APPD. STATUS<br>ORIGINAL SCALE<br>I:I<br>DO NOT SCALE |         |
| WING                                |                         | SEE DETAT                                                                 | LS                                     |                                                                                | ✓ UNLESS S                                                                                 | TATED                                        | č                                                     |         |
| PROVED                              | USE                     | D ON                                                                      |                                        |                                                                                |                                                                                            |                                              | ©C                                                    | LRC 200 |
|                                     | CEN                     | TRAL LAB                                                                  | ORATOF                                 | ₹Y                                                                             | OF THE R                                                                                   | ESEARCH                                      | COUNCILS                                              | 5       |
|                                     | SPI                     | RE                                                                        | 2<br>NTE                               | r<br>RF                                                                        | JFET<br>Face [                                                                             | RACK<br>)RAWI                                | NG                                                    |         |
|                                     | Α                       | 0 - K E -                                                                 | 010                                    | 4                                                                              | - 360-                                                                                     | J                                            | I OF I                                                |         |
|                                     |                         |                                                                           |                                        |                                                                                | FO                                                                                         | RM_MECH                                      | _009_ ss                                              | _SSTD_A |

| SSTD<br>Rutherford App<br>Laboratory                                  | eton                           | Space Product Ass<br>Mechanical Des                            | urance Fo<br>ign Office        | orm<br>?          | Doc.No<br>Issue    | 0. :ISO9:FORM/N<br>: 2            | AECH/006                         |
|-----------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------|--------------------------------|-------------------|--------------------|-----------------------------------|----------------------------------|
|                                                                       |                                |                                                                |                                |                   | Page               | : 2 of 5                          |                                  |
|                                                                       |                                | MODIFIC                                                        | CATION                         | N SF              | IEE'               | Г                                 |                                  |
| тне СС                                                                | CENTRA                         | L LABORATORY OF THE RESEA                                      | RCH COUNCIL:                   | . <b>S</b> RU     | UTHERFC            | RD APPLETON LAI                   | BORATORY                         |
|                                                                       | NUM                            | BER: KE-0104-350                                               |                                |                   |                    |                                   |                                  |
| ✓ DRAWING                                                             | TITL                           | E: 6 JFET RACK IN                                              | FERFACE I                      | DRAW              | /ING               |                                   |                                  |
| Date: 7                                                               | -Feb-2                         | 2003                                                           |                                |                   |                    |                                   |                                  |
| NCR/ECR:                                                              |                                |                                                                |                                |                   |                    |                                   |                                  |
| Modification                                                          | Desc                           | cription:                                                      |                                |                   |                    |                                   |                                  |
| 1. Swop com                                                           | ector p                        | pairs (MSW)                                                    |                                |                   |                    |                                   |                                  |
| 2. move conr                                                          | ector la                       | abels (MSW)                                                    |                                |                   |                    |                                   |                                  |
| 3. make back                                                          | harnes                         | ss into parts (MSW)                                            |                                |                   |                    |                                   |                                  |
| 4. Dimensior                                                          | and la                         | bel thread lengths                                             |                                |                   |                    |                                   |                                  |
| 5. add colum                                                          | ı to pai                       | rts list showing drawing nu                                    | umbers (also                   | o create          | e repea            | t region BOM                      | table)                           |
| 6. replace thermal strap part as an assembly                          |                                |                                                                |                                |                   |                    |                                   |                                  |
| <ol> <li>change not</li> <li>with "pa</li> <li>before fast</li> </ol> | e 2 – "<br>ls on it<br>eners a | dimension and to competent 3 will also need machine tightened" | ensate for ac<br>ning if trial | ctual jf<br>assem | et mod<br>bly of 1 | ule sizes," a<br>rack on flat sur | nd append note<br>face shows gap |
| 8. add note 5                                                         | " Heat                         | capacity = $\{0.9 \text{ x mass}\}$ jo                         | oules / Kelvi                  | in"               |                    |                                   |                                  |
| 9. show insul                                                         | ation a                        | dditions to feet (kapton tap                                   | e washers)                     |                   |                    |                                   |                                  |
| 10. add note to                                                       | sectio                         | n view showing that fasten                                     | ers are coat                   | ted wit           | h paryl            | ene C                             |                                  |
| 11. put m2.5 v                                                        | ashers                         | under various screws                                           |                                |                   |                    |                                   |                                  |
| 12. change not                                                        | e 3 to s                       | say "items 8 to be torqued                                     | to 2.1Nm ab                    | bove lo           | cking              | insert running                    | torque                           |
| 13. add note 6                                                        | " fitted                       | back harness to afford op                                      | en access to                   | o to 51           | ways a             | s shown"                          |                                  |
| 14. add note 7                                                        | " kapto                        | on tape insulators shall be o                                  | cut to fit anr                 | nuls of           | therma             | al standoff to v                  | vithin +/- 1"                    |
| Issue raised                                                          | :0:                            | D                                                              | By:                            | Iain              | Gilmo              | our                               |                                  |
|                                                                       |                                |                                                                |                                |                   |                    |                                   |                                  |
| SUPE                                                                  | SEDE                           | D ISSUES OF ALL DRA'                                           | WING HAR                       | KD CO             | PIES T             | IO BE DESTR                       | KOYED                            |

| VF             | 2052 |
|----------------|------|
| - <b>N</b> Γ/- | 2955 |

|                                   | SSTD                  | Space Product Ass          | urance F    | orm Doc.                | No. :ISO9:FORM/MECH/006                         |  |
|-----------------------------------|-----------------------|----------------------------|-------------|-------------------------|-------------------------------------------------|--|
| Kutherford Appleton<br>Laboratory |                       | Mechanical Design Office   |             | e Issue<br>Date<br>Page | Issue : 2<br>Date : 21/12/2001<br>Page : 3 of 5 |  |
|                                   |                       | MODIFIC                    | CATIO       | N SHEF                  | <b>T</b>                                        |  |
| )53                               | THE CENTRAL           | LABORATORY OF THE RESEA    | RCH COUNCI  | LS RUTHERF              | FORD APPLETON LABORATORY                        |  |
| E-29                              | DRAWING NUMB          | BER: KE-0104-350           |             |                         |                                                 |  |
| Κ                                 | DRAWING TITLE         | 6 JFET RACK IN             | TERFACE     | DRAWING                 |                                                 |  |
| Г                                 | Date: 12-Mar-         | -2003                      |             |                         |                                                 |  |
|                                   |                       |                            |             |                         |                                                 |  |
| N                                 | NCR/ECK:              |                            |             |                         |                                                 |  |
| N                                 | Aodification Descr    | ription:                   |             |                         |                                                 |  |
| 1                                 | . Thermal standoff p  | oositional dimensions cha  | unged to ba | sic dimensior           | 15.                                             |  |
| 2                                 | . Thermal strap inter | rface dimensions added     |             |                         |                                                 |  |
| 3                                 | . Note 8 added regar  | rding the protrusion and t | rimming of  | f the parylene          | coating                                         |  |
| 4                                 | . Typos fixed         |                            |             |                         |                                                 |  |
| 5                                 | . 2 off thermal strap | standard washers replace   | ed with Bel | leville washe           | rs, BOM updated to this e                       |  |
| 6                                 | . Unit mounting hole  | size and positional accur  | acy added   |                         |                                                 |  |
|                                   |                       |                            |             |                         |                                                 |  |
|                                   |                       |                            |             |                         |                                                 |  |
|                                   |                       |                            |             |                         |                                                 |  |
|                                   |                       |                            |             |                         |                                                 |  |
|                                   |                       |                            |             |                         |                                                 |  |
|                                   |                       |                            |             |                         |                                                 |  |
|                                   |                       |                            |             |                         |                                                 |  |
|                                   |                       |                            |             |                         |                                                 |  |
|                                   |                       |                            |             |                         |                                                 |  |
|                                   |                       |                            |             |                         |                                                 |  |
|                                   |                       |                            |             |                         |                                                 |  |
| -                                 | any a raiged to:      | F                          | Dur         | Jain Gilm               | NOUT.                                           |  |
|                                   |                       |                            |             | 1 - 4 - 1 - 1 - 1 I'''  |                                                 |  |

SUPERSEDED ISSUES OF ALL DRAWING HARD COPIES TO BE DESTROYED KE-2953

| SSTD Sp<br>Rutherford Appleton<br>Laboratory Sp              |                             | Space Product Assurance Form<br>Mechanical Design Office | Doc.No. :ISO9:FORM/MECH/006<br>Issue : 2<br>Date : 21/12/2001<br>Page : 4 of 5 |  |
|--------------------------------------------------------------|-----------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------|--|
|                                                              |                             | <b>MODIFICATION SI</b>                                   | HEET                                                                           |  |
| THE CENTRAL LABORATORY OF THE RESEARCH COUNCILS RUTHERFORD A |                             |                                                          | UTHERFORD APPLETON LABORATORY                                                  |  |
| E-29                                                         | DRAWING NUMBER: KE-0104-350 |                                                          |                                                                                |  |
| K                                                            | DRAWING TITLE:              | 6 JFET RACK INTERFACE DRAV                               | VING                                                                           |  |

#### Date: 20-May-2003

### NCR/ECR:

KE-2953

Modification Description:

1. Note Associated with tapped holes in the Thermal Strap Interface, first line modified for clarity to read: 2 HOLES M4x0.7 1.5D LG HELICOIL

| SSTD                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Space Product Assurance Form                                                                     | Doc.No. :ISO9:FORM/MECH/006                                                          |  |  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|
|                             | Rutherford Appleton<br>Laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mechanical Design Office                                                                         | Issue : 2<br>Date : 21/12/2001<br>Page : 5 of 5                                      |  |  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>MODIFICATION SI</b>                                                                           | HEET                                                                                 |  |  |
| 53                          | THE CENTRAL LABORATORY OF THE RESEARCH COUNCILS RUTHERFORD APPLETON LABORATORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  |                                                                                      |  |  |
| DRAWING NUMBER: KE-0104-350 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                  |                                                                                      |  |  |
| $\mathbf{\overline{A}}$     | DRAWING TITLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | : 6 JFET RACK INTERFACE DRAV                                                                     | WING                                                                                 |  |  |
| N                           | ICR/ECR:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                  |                                                                                      |  |  |
| N                           | ICR/ECR:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                  |                                                                                      |  |  |
| N                           | Iodification Descr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ription:                                                                                         |                                                                                      |  |  |
|                             | 1. Reflects new therm<br>dimensions in X direction<br>dimensions dimensions di di di di d | al standoff design with additional bush and up<br>rection updated to new interface plane. New pa | per and lower feet washers. Subsequent arts added to Parts List.                     |  |  |
|                             | <ol> <li>Reflects new harner<br/>harness representation Mass of harnesses in</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ton. Micro-D 37 way elliptical entry backshell ncreased from 165g to 270g.                       | at. Micro-D 15 way connector added to<br>s replace standard circular entry versions. |  |  |
|                             | <ol> <li>L3 strap and interfa<br/>hole definition.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ce assembly added. Views updated and added                                                       | to show interface details and L3 strap                                               |  |  |

4. Mass of JFET modules reduced from 305g to 260g.

8. Kapton tape note removed from L3 interface area.

6. Moments of inertia updated along with C of G position.

| Issue raised to:                                             | F | By: | Kevin Burke |  |
|--------------------------------------------------------------|---|-----|-------------|--|
| SUPERSEDED ISSUES OF ALL DRAWING HARD COPIES TO BE DESTROYED |   |     |             |  |

- 11. Distance between S/C connector I/F and rear of JFET harness increased due to addition of 15-way connectors to JFET harness. Dimension between S/C connector plane and rear face of JFET module added.

10. Temperature sensor interface shown on both sides of the L3 interface sub-assembly.

5. Kapton tape removed from fastener and stand-off interfaces (note 7 deleted).

7. Fastener for thermal strap assembly changed to non parylene coated M4 x 45mm long.

- 12. New dimensions applied to L3 interface area.
- 13. Connector fasteners and nuts added to spacecraft connectors.

G Issue raised to: By: Dave Smart

9. Incorrectly specified M2.5 x 8 long fasteners used to fasten JFET modules to front plate replaced with M3 x

### SUPERSEDED ISSUES OF ALL DRAWING HARD COPIES TO BE DESTROYED

KE-2953

8 long.

7 Jan Delder Reld 2003.11.05 15:12:23 Z



|            | QTY                                       | MASS/ITEM                                                                                                                                         | TOTAL MA                                                                                                                               | SS COMMEN                                                                                                 | ITS                                                                                                                                                                                                                                                                                                                                                        |                   |                                                                                                                      |        |
|------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------|--------|
|            | 6                                         | 128 66                                                                                                                                            | 128 66                                                                                                                                 | JPL SU                                                                                                    | IPPLY                                                                                                                                                                                                                                                                                                                                                      |                   |                                                                                                                      | -      |
|            | I                                         | 69.55                                                                                                                                             | 69.55                                                                                                                                  |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                      | -      |
|            | 1                                         | 32.56                                                                                                                                             | 32.56                                                                                                                                  |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                      | _      |
|            | 5                                         | 0.87                                                                                                                                              | 4.34                                                                                                                                   | _                                                                                                         |                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                      | +      |
|            | 1                                         | 265.65                                                                                                                                            | 265.65                                                                                                                                 | JPL SU                                                                                                    | IPPLY                                                                                                                                                                                                                                                                                                                                                      |                   |                                                                                                                      |        |
| ED 26.5mm) | 4                                         | 4.70                                                                                                                                              | 18.78                                                                                                                                  | _                                                                                                         |                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                      | _      |
|            | 5                                         | 0.39                                                                                                                                              | 1.94                                                                                                                                   | _                                                                                                         |                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                      | -      |
|            | 24                                        | 0.11                                                                                                                                              | 2.57                                                                                                                                   | S/STEE                                                                                                    | L BS97                                                                                                                                                                                                                                                                                                                                                     | 0/1501            | 3045   / 5/3                                                                                                         | _      |
|            | 36                                        | 0.58                                                                                                                                              | 20.79                                                                                                                                  | S/STEE                                                                                                    | L BS35                                                                                                                                                                                                                                                                                                                                                     | 06-1:1            | 998 A2-70                                                                                                            | -      |
|            | 2                                         | 0.48                                                                                                                                              | 0.97                                                                                                                                   | S/STEE                                                                                                    | LBS61                                                                                                                                                                                                                                                                                                                                                      | 05 A2-            | 50 DIN 912                                                                                                           | 5      |
|            | 2                                         | 1.26                                                                                                                                              | 2.52                                                                                                                                   | S/STEE                                                                                                    | L BS35                                                                                                                                                                                                                                                                                                                                                     | 06-1:1            | 998 A2-70                                                                                                            | -      |
|            | 1                                         | 267.70                                                                                                                                            | 267.70                                                                                                                                 | JPL SU                                                                                                    | IPPLY                                                                                                                                                                                                                                                                                                                                                      |                   |                                                                                                                      | _      |
|            | 1                                         | 64.18                                                                                                                                             | 64.18                                                                                                                                  | _                                                                                                         |                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                      |        |
|            | 5                                         | 0.94                                                                                                                                              | 4.70                                                                                                                                   | _                                                                                                         |                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                      | ł      |
|            | 5                                         | 0.34                                                                                                                                              | 1.69                                                                                                                                   |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                      | -      |
|            | 1                                         | N/A                                                                                                                                               |                                                                                                                                        | HERSCH                                                                                                    | IEL SUP                                                                                                                                                                                                                                                                                                                                                    | PLY               |                                                                                                                      |        |
|            | 24                                        | 0.74                                                                                                                                              | 17.86                                                                                                                                  | S/STEE                                                                                                    | L BS35                                                                                                                                                                                                                                                                                                                                                     | 06-1:1            | 998 A2-70                                                                                                            | _      |
|            | AS                                        | <u>ISTS</u><br>SEMBLY MAS:                                                                                                                        | S 2502.88                                                                                                                              | GRAMS                                                                                                     | L D300                                                                                                                                                                                                                                                                                                                                                     | 00-1:1            | 990 AZ-10                                                                                                            | -      |
|            |                                           |                                                                                                                                                   |                                                                                                                                        |                                                                                                           | CC<br>LABEL<br>JI                                                                                                                                                                                                                                                                                                                                          | TYPE              | FUNCTION                                                                                                             |        |
|            |                                           |                                                                                                                                                   | 8<br>4                                                                                                                                 |                                                                                                           | J2<br>J3<br>J4<br>J5<br>J6<br>J7<br>J8<br>J9<br>J10<br>J11<br>J12<br>J13<br>J14<br>J15<br>J16<br>J17<br>J18<br>J17<br>J18<br>J19<br>J20<br>J22<br>J22<br>J22<br>J22<br>J22                                                                                                                                                                                 | ALL NDW25P        | ALL SIGNAL<br>FEEDS TO<br>CRYOHARNESS                                                                                | -      |
|            |                                           |                                                                                                                                                   |                                                                                                                                        |                                                                                                           | J25<br>J26<br>J27<br>J28                                                                                                                                                                                                                                                                                                                                   | MDM37S            | BIAS WIRES<br>FROM CRYOHARNESS                                                                                       | _      |
|            |                                           | D SURFACE<br>DED AREA                                                                                                                             |                                                                                                                                        |                                                                                                           | J29<br>J30<br>J31<br>J32<br>J33<br>J34<br>J35<br>J36                                                                                                                                                                                                                                                                                                       | ALL MDM51P        | SIGNALS IN<br>FROM<br>DETECTORS                                                                                      | -      |
|            | 10.0                                      | 05                                                                                                                                                |                                                                                                                                        |                                                                                                           | J37<br>J38<br>J39<br>J40                                                                                                                                                                                                                                                                                                                                   |                   |                                                                                                                      |        |
|            | 10.01                                     | 25                                                                                                                                                |                                                                                                                                        |                                                                                                           | J37<br>J38<br>J39<br>J40<br>J41<br>J42<br>J43<br>J44<br>J45<br>J46<br>J47<br>J46<br>J47<br>J48<br>J49<br>J50<br>J51<br>J52                                                                                                                                                                                                                                 | ALL WDW15P        | BIAS FEEDS<br>INTO MODULES                                                                                           | -      |
|            | 6                                         | 13-007-03                                                                                                                                         | КЕ-2953.                                                                                                                               | D. SMART                                                                                                  | J37<br>J38<br>J39<br>J40<br>J41<br>J42<br>J43<br>J44<br>J45<br>J46<br>J47<br>J48<br>J49<br>J50<br>J51<br>J52                                                                                                                                                                                                                                               | ALL MDW15P        | BIAS FEEDS<br>INTO MODULES                                                                                           |        |
|            | 6                                         | 13-0CT-03                                                                                                                                         | <u>КЕ-2953.</u><br>W(Л) м-                                                                                                             | D. SMART                                                                                                  | J37<br>J38<br>J39<br>J40<br>J41<br>J42<br>J43<br>J44<br>J45<br>J46<br>J47<br>J46<br>J47<br>J48<br>J49<br>J50<br>J51<br>J52                                                                                                                                                                                                                                 | ALL MOWISP        | BIAS FEEDS<br>INTO MODULES                                                                                           |        |
|            | G                                         | 13-0CT-03<br>DATE<br>IANCES UNLESS                                                                                                                | КЕ-2953.<br>MOD. No.<br>TATED I                                                                                                        | D. SMART<br>DRN. BY                                                                                       | J37<br>J38<br>J39<br>J40<br>J41<br>J42<br>J43<br>J44<br>J45<br>J44<br>J45<br>J46<br>J47<br>J48<br>J49<br>J50<br>J51<br>J52<br>CH                                                                                                                                                                                                                           | dSINOW THE        | BIAS FEEDS<br>INTO MODULES<br>INTO STATU<br>ORIGINAL SCAIF                                                           | D S    |
|            | GISSUE                                    | 13-0CT-03<br>DATE<br>TANCES UNLESS<br>±0.2 mm<br>±0.3 mm                                                                                          | KE-2953.<br>MOD. No.<br>STATED                                                                                                         | D. SMART<br>DRN. BY<br>Finis                                                                              | J37<br>J38<br>J39<br>J40<br>J41<br>J42<br>J43<br>J44<br>J45<br>J44<br>J45<br>J46<br>J46<br>J47<br>J48<br>J49<br>J50<br>J51<br>J52<br>CH                                                                                                                                                                                                                    | dsinon 114<br>KD. | BIAS FEEDS<br>INTO MODULES<br>APPD. STATU<br>ORIGINAL SCALE                                                          |        |
|            | G                                         | 13-0CT-03<br>DATE<br>ANCES UNLESS<br>±0.2 mm<br>±0.3<br>IAL & SPF                                                                                 | KE-2953.<br>MOD. No.<br>STATED                                                                                                         | D. SMART<br>DRN. BY<br>FINI<br>CLE<br>SUBFACE TO:                                                         | J37<br>J38<br>J39<br>J40<br>J41<br>J42<br>J43<br>J44<br>J45<br>J44<br>J45<br>J46<br>J47<br>J48<br>J49<br>J50<br>J51<br>J50<br>J51<br>J52<br>CH<br>SH<br>AN<br>L BURRS<br>KTURF                                                                                                                                                                             | dsiwOw Tive       | BIAS FEEDS<br>INTO MODULES<br>APPD. STATU<br>ORIGINAL SCALE<br>I: I<br>DO NOT SCALE                                  |        |
|            | G<br>ISSUE<br>TOLEF                       | 13-0CT-03<br>DATE<br>LANCES ±0.2 mm<br>±0.3<br>TAL & SPEC.<br>SEE DTAL                                                                            | KE-2953.<br>MOD. No.<br>STATED                                                                                                         | D. SMART<br>DRN. BY<br>CLE<br>REMOVE AL<br>SURFACE TEZ<br>SURFACE TEZ<br>SURFACE TEZ                      | 333<br>338<br>339<br>340<br>341<br>342<br>344<br>344<br>344<br>344<br>344<br>344<br>344<br>344<br>345<br>350<br>351<br>350<br>351<br>352<br>352<br>351<br>352<br>352<br>351<br>352<br>351<br>352<br>351<br>352<br>351<br>352<br>353<br>353<br>353<br>353<br>353<br>353<br>353<br>353<br>353                                                                | dsinon            | BIAS FEEDS<br>INTO MODULES<br>APPD. STATU<br>ORIGINAL SCALE<br>DO NOT SCALE<br>Q.,, 59                               |        |
|            | G                                         | 13-0CT-03       DATE       ±0.2 mm       ±0.3 mm       ±10.2 mm       ±0.3 mm                                                                     | KE - 2953.<br>MOD. No.<br>STATED                                                                                                       | D. SMART<br>DRN. BY<br>CLE<br>REMOVE AL<br>SURFACE TEJ<br>SEE DE<br>✓ UNLESS                              | 333<br>338<br>339<br>340<br>341<br>342<br>343<br>344<br>343<br>344<br>344<br>345<br>344<br>345<br>344<br>345<br>350<br>351<br>351<br>352<br>48<br>84<br>84<br>84<br>84<br>84<br>85<br>84<br>84<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85                                                                               | dsinon            | BIAS FEEDS<br>INTO MODULES<br>APPD. STATU<br>ORIGINAL SCALE<br>DO NOT SCALE<br>Q , , , 50                            |        |
|            | GISSUE                                    | I3-OCT-03<br>DATE<br>HANCES UNLESS<br>±0.2 mm<br>±0.3 mm<br>tal & SPEC.<br>SEE DETAII<br>D ON                                                     | KE-2953.<br>MOD. No.<br>STATED                                                                                                         | D. SMART<br>DRN. BY<br>FINIS<br>SURFACT FEI<br>SURFACT FEI<br>SEC T<br>✓ UNLESS                           | J33<br>J38<br>J39<br>J40<br>J41<br>J42<br>J43<br>J43<br>J44<br>J45<br>J44<br>J45<br>J47<br>J48<br>J45<br>J47<br>J50<br>J51<br>J52<br>CH<br>SH<br>AN<br>L BURRS M<br>CHERS<br>STATED                                                                                                                                                                        | dsinkon in kd.    | BIAS FEEDS<br>INTO MODULES<br>APPD. STATU<br>ORIGINAL SCALE<br>DO NOT SCALE<br>Q.,                                   |        |
|            | G<br>ISSUE<br>TOLEF<br>USE<br>CEN         | I3-OCT-03<br>DATE<br>LANCES UNLESS<br>±0.3 gr<br>TAL & SPEC.<br>SEE DETATI<br>D ON<br>ITRAL LAB                                                   | KE - 2953.<br>MOD. No.<br>STATED<br>LS<br>ORATORY                                                                                      | D. SMART<br>DRN. BY<br>FINIS<br>SURFACT FE<br>SURFACT FE<br>✓ UNLESS<br>OF THE                            | 333<br>338<br>339<br>340<br>341<br>342<br>342<br>343<br>344<br>344<br>345<br>346<br>347<br>348<br>346<br>347<br>348<br>349<br>350<br>351<br>352<br>351<br>352<br>40<br>55<br>552<br>552<br>553<br>554<br>555<br>553<br>553<br>553<br>553<br>553<br>553<br>553                                                                                              | dsinon the        | BIAS FEEDS<br>INTO MODULES<br>APPD. STATU<br>ORIGINAL SCALE<br>DO NOT SCALE<br>Q.,,,50<br>COLRC 20<br>COUNCILS       |        |
|            | G<br>ISSUE<br>TOLEF<br>USE<br>CEN         | I 3-OCT-03<br>DATE<br>IANCES UNLESS<br>±0.3 mm<br>±0.3 mm<br>TIAL & SPEC.<br>SEE DETAI<br>D ON<br>ITRAL LAB<br>E                                  | КЕ - 2953.<br>MOD. No.<br>STATED<br>LS<br>ORATORY                                                                                      | D. SMART<br>DRN. BY<br>CLE<br>SERMOVE AL<br>SURFACE TEI<br>SEE DE<br>✓ UNLESS<br>OF THE                   | 333<br>338<br>339<br>340<br>341<br>342<br>342<br>343<br>344<br>344<br>345<br>344<br>344<br>345<br>344<br>345<br>347<br>348<br>347<br>348<br>347<br>348<br>347<br>348<br>347<br>348<br>347<br>348<br>347<br>348<br>347<br>348<br>347<br>348<br>347<br>348<br>347<br>348<br>347<br>348<br>347<br>347<br>347<br>347<br>347<br>347<br>347<br>347<br>347<br>347 | KD.               | BIAS FEEDS<br>INTO MODULES<br>INTO MODULES<br>APPD. STATU<br>ORIGINAL SCALE<br>1 :<br>1 :<br>1 :<br>0 NOT SCALE<br>2 | D<br>0 |
|            | G<br>ISSUE<br>TOLEF<br>USE<br>CEN         | I 3-OCT-03<br>DATE<br>IANCES UNLESS<br>±0.2 mm<br>±0.3 mm<br>±0.3 mm<br>±0.3 mm<br>±0.4 mm<br>TAL & SPEC.<br>SEE DETAII<br>D ON<br>ITRAL LAB<br>E | ке-2953.<br>мод. No.<br>STATED<br>LS<br>ORATORY<br>6                                                                                   | D. SMART<br>DRN. BY<br>FINIS<br>CLE<br>REMOVE AL<br>SURFACE TE)<br>SEE DE<br>✓ UNLESS<br>OF THE<br>JFET   | 333<br>338<br>339<br>340<br>341<br>342<br>342<br>343<br>344<br>344<br>345<br>344<br>344<br>345<br>347<br>347<br>347<br>347<br>351<br>351<br>352<br>351<br>40<br>85<br>40<br>85<br>40<br>85<br>40<br>85<br>40<br>85<br>80<br>85<br>81<br>81<br>81<br>81<br>81<br>81<br>81<br>81<br>81<br>81<br>81<br>81<br>81                                               | KD.               | BIAS FEEDS<br>INTO MODULES<br>APPD. STATU<br>ORIGINAL SCALE<br>DO NOT SCALE<br>QSQ<br>@ CLRC 20<br>COUNCILS          |        |
|            | G<br>ISSUE<br>TOLEF<br>USE<br>CEN<br>TITL | I 3-0CT-03<br>DATE<br>IANCES UNLESS<br>±0.2 mgm<br>±0.3 mgm<br>±0.3 mgm<br>TIAL & SPEC.<br>SEE DETAII<br>D ON<br>ITRAL LAB<br>E                   | ке-2953.<br>мод. No.<br>STATED<br>LS<br>ORATORY<br>6<br>I N T E I                                                                      | D. SMART<br>DRN. BY<br>FINIS<br>REMOVE AL<br>SURFACE TES<br>SEE DE<br>✓ UNLESS<br>OF THE<br>JFET<br>RFACE | 333<br>338<br>339<br>340<br>341<br>342<br>342<br>344<br>343<br>344<br>344<br>345<br>344<br>347<br>347<br>347<br>350<br>352<br>352<br>352<br>352<br>352<br>352<br>352<br>352<br>352<br>352                                                                                                                                                                  | KD.               | BIAS FEEDS<br>INTO MODULES<br>APPD. STATU<br>ORIGINAL SCALE<br>DO NOT SCALE<br>Q.,                                   |        |
|            | G<br>ISSUE<br>TOLEF<br>USE<br>CEN<br>TITL | I 3-0CT-03<br>DATE<br>IANCES UNLESS<br>±0.2 mgm<br>±0.3 mgm<br>TIAL & SPEC.<br>SEE DETAII<br>D ON<br>ITRAL LAB<br>E<br>R E_                       | KE-2953.<br>MOD. No.<br>STATED<br>LS<br>ORATORY<br>6<br>I N T E I                                                                      | D. SMART<br>DRN. BY<br>FINIS<br>CLE<br>SURFACE TED<br>SEE DE<br>✓ UNLESS<br>OF THE<br>JFET<br>RFACE       | 333<br>339<br>340<br>341<br>342<br>343<br>344<br>343<br>344<br>344<br>344<br>344<br>344<br>347<br>347                                                                                                                                                                                                                                                      | dSINDU TIY        | BIAS FEEDS<br>INTO MODULES<br>APPD. STATU<br>ORIGINAL SCALE<br>DO NOT SCALE<br>Q.,., 50<br>COUNCILS                  |        |
|            | G<br>ISSUE<br>TOLEF<br>USE<br>CEN<br>TITL | I 3-OCT-03<br>DATE<br>LAUCES SWLESS<br>±0.2 mgm<br>±0.3 mgm<br>±0.3 mgm<br>TAL & SPEC.<br>SEE DETAII<br>D ON<br>ITRAL LAB<br>E<br>RE<br>O - K F - | KE-2953.           MOD.           NO.           STATED           LS           ORATORY           6           INTEI           - O.I. O.A | D. SMART<br>DRN. BY<br>FINIS<br>SURFACE TES<br>SEE DE<br>✓ UNLESS<br>OF THE<br>JFET<br>RFACE<br>- 3.5.0   | 333<br>338<br>339<br>340<br>341<br>343<br>343<br>344<br>344<br>344<br>344<br>344<br>344<br>344                                                                                                                                                                                                                                                             | ASINGN TIT        | BIAS FEEDS<br>INTO MODULES<br>APPD. STATU<br>ORIGINAL SCALE<br>1:1<br>DO NOT SCALE<br>0                              |        |

# Annex 2

# **SPIRE Reduced T.M.M.**

Issue 2.3

# **SPIRE Reduced T.M.M.**

The SPIRE reduced TMM diagram is given by the figure here under:



SPIRE reduced TMM diagram

# SPIRE Interface Thermal Model # # # # Filename: spirntrm23.d # # Author: AS Goizel # Email: a.goizel@rl.ac.uk # # Issue: 2.3 # Created: 20.01.2003 # Esatan Version: 8.7.1 # # # # Before pre-processing the SPIRE ITMM, select the following options: # - Select the level of margin to be applied on the mechanisms internal # dissipation with the variable "margin fac" in the \$CONSTANTS Block # (1.2 is default value) # # # Please Note: # # For average case, the power on SCAL is applied to the FPU node (#803) to # remove instabilities linked to temperature dependant material properties . # List of Changes: # # 06.12.02 - Issue 2 - Baseline SPIRE ITMM. # 20.01.03 - Issue 2.1 - Change in SPIRE external and flexible L0 Strap Dimensions (Overall condutance of L0 straps changed # # from 200 mW/K to 150 mW/K. # 03.03.03 - Issue 2.2 - SCAL (node 808) dissipation applied to FPU (node 803) for average mode. - Few GL links declared in VARS1 rather than in GL Block # # to allow for esatan Sun/PC platforms compatibility. # - Changes in VARS to allow better setup of the evaporator, # node (819) and heat-switches status according to the # type of analysis (no need to select the analysis mode # anymore). # 27.03.03 - Issue 2.3 - SCAL dissipation down to 2 mW - busbar update # # - BDA update # - vespel on L1 foot supports for elec iso # - L1 additional IF node for double L1 strap - 2 additional nodes for L3 strap attachment # - L3 JFETs isolation supports updated # - L0 strap conductances updated # Changes by K. Wagner: # 17.02.03 For transient calculations following capacities set # to zero in eplmntdm.d (instability problem): 805, 806, 807, 808, 811, 812, 813, 814, 815, 816, 818 # to be included in spirntrm instead? # 19.02.03 \$VARIABLES1/timeline analysis: selection of dissipation profiles done via control variable "SPSUBMD" (no longer # via TIMEN), to have access from within HERSCHEL mainmodel # avg. dissipation call introduced within timeline # 07.03.03 # This file has been formatted as a deliverable for Astrium 

\$MODEL SPIRNTRM
#=====

A2-3/26

SNODES #\_\_\_\_ #Level 2 D801 = 'PH JFET ENCLOSURE', T = 10.0D0, C = SHCAL(T801) \* 2.348D0; D802 = 'SP\_JFET\_ENCLOSURE', T = 10.0D0, C = SHCAL(T802) \* 0.81342D0; #Level 1 D800 = 'L1 Strap IF1 @ SOB', T = 5.0D0, C = 0.0; # assumption T = 4.0D0, C = SHCAL(T803)\*26.75D0 T = 4.0D0, C = SHCAL(T804)\*1.465D0 T = 4.0D0, C = SHCAL(T805)\*1.1D0; T = 4.0D0, C = SHCAL(T805)\*1.1D0;C = SHCAL(T803) \* 26.75D0;D803 = 'FPU OPTICAL BENCH', D804 = 'RF\_FILTER\_BOXES', C = SHCAL(T804) \* 1.465D0; $D805 = 'BS\overline{M}'$ D806 = 'SMECm', T = 4.0D0, C = SHCAL(T806) \* 1.043D0; T = 4.0D0, C = SHCAL(T807)\*0.03D0; T = 4.0D0, C = SHCAL(T808)\*0.0002041D0; D807 = 'PH CALIB', D808 = 'SPEC CALIB', #Level 0 D809 = 'PH DETECTOR ENCLOSURE', T = 1.8D0, C = (SHCAL (T809) \*3.56D0) + (SHCSS (T809) \*0.114) + (SHCINV (T809) \*0.192D0) + (SHCSI (T809) \*0.048D0); D810 = 'SP DETECTOR ENCLOSURE', T = 1.8D0, C = (SHCAL(T810) \*1.468D0) + (SHCSS(T810) \*0.076) + (SHCINV(T810) \*0.128D0) + (SHCSI(T810) \*0.032D0); T = 1.8D0, C = SHCAL(T811)\*6.16D-3; T = 1.8D0, C = SHCAL(T812)\*6.16D-3; T = 1.8D0, C = SHCAL(T812)\*6.16D-3; C = SHCAL(T813)\*6.16D-3; D811 = ' L0 Enclosure Flexible Strap', D812 = ' L0 Pump Flexible Strap', D813 = ' LO Evap Flexible Strap', T = 1.8D0, C = SHCAL (T814) \*45.4D-3;T = 1.8D0, C = SHCAL (T815) \*52.3D-3;T = 1.8D0, C = SHCAL (T816) \*65.3D-3;D814 = ' L0 Enclosure External Strap', D815 = ' LO Pump External Strap', D816 = ' L0 Evaporator External Strap', T = 1.8D0, C = SHCAL(T816) \* 65.3D - 3;D817 = 'COOLER\_PUMP', T = 1.8D0, C = SHCTI(T817)\*0.150D0; D818 = 'COOLER\_SHUNT', T = 1.8D0, C = SHCTI(T818) \* 0.01D0;B819 = 'COOLER EVAP', T = 0.29D0, C = SHCTI(T819) \* 0.084D0; T = 1.8D0, C = SHCTI(T820)\*0.074D0; T = 1.8D0, C = SHCTI(T821)\*0.074D0; D820 = 'COOLER EVAP HS', D821 = 'COOLER PUMP HS', # 300 mK Level D822 = 'PH DETECTORS', T = 0.3D0, C = (SHCINV(T822) \* 0.435D0)+ (SHCCU(T822)\*0.709D0); D823 = 'SP DETECTORS', T = 0.3D0, C = (SHCINV(T823) \* 0.281D0)+ (SHCCU(T823)\*0.254D0); # New L1 and L3 interface nodes  $\begin{array}{rcl} T &=& 5.0D0\,, & C &=& 0.0D0\,; \mbox{ \# assumption} \\ T &=& 0.3D0\,, & C &=& 0.0D0\,; \\ T &=& 0.3D0\,, & C &=& 0.0D0\,; \end{array}$ D830 = 'L1 Strap IF2 @ SOB', D831 = 'PH L3 IF',D832 = 'SPL3 IF',SCONDUCTORS #===== \*\*\*\*\*\*\*\*\*\*\*\* \*\*\*\* # SPIRE Interface Definition with HERSCHEL #

A2-4/26

\*\*\*\*\*\*\*\*\*\*\* # # The following conductive links need to be integrated into HERSCHEL with the appropriate node numbers # HERSCHEL, SPIRE ----- MATERIAL ----- X-SECTION ------ LENGTH # # = 0.00504; #GL( HOB , 801 ) #GL( CVV , 801 ) = Harness to CVV; #GL( L3 Ventline, 831 ) L3 strap; = 0.00405; #GL( HOB , 802 ) = #GL( CVV , 802 ) = Harness to CVV; #GL(L3 Ventline, 832) = L3 strap; # #L1 Cone Support (effective xsect) #GL( HOB , 803 ) = 1.0 / (1.0/(CNDFNC(3,SPIRE:K SSTEEL) \* 53.154D-06 / 0.0334D0) +1.0D0/(4.0D0\*151.0D-6\*CNDFNC(3,SPIRE:K VES)/0.001D0); #L1 A-Frame Supports with correl factor #GL( HOB , 803 ) = 1.0 / (1.0/(CNDFNC(3,SPIRE:K SSTEEL)\*0.65D0\*2.0D0\*34.0D-06 /0.027D0)+2.0D0/(4.0D0\*151.0D-6\*CNDFNC(3.SPIRE:K VES)/0.001D0)); #GL( HOB , 804 ) = HERSCHEL RF Filter Harness; # #GL( HeII Flexible IF, 814 ) = HERSCHEL L0 Interface at HeII Tank; #GL( HeII Flexible IF, 815 ) = HERSCHEL L0 Interface at HeII Tank; #GL( HeII Flexible IF, 816 ) = HERSCHEL L0 Interface at HeII Tank; #GL( L1Ventline IF1 , 800 ) = HERSCHEL L1 strap1; #GL( L1Ventline IF2 , 830 ) = HERSCHEL L1 strap2; # # The following files includes the radiative couplings of SPIRE with HERSCHEL # \$INCLUDE "spire gr.d" # \*\*\*\*\*\*\*\*\*\*\* \*\*\*\* # SPIRE INTERNAL CONDUCTIVE COUPLINGS # # SPIRE Level 3 Strap Interface #-----GL(801, 831) = 0.138;GL(802, 832) = 0.138;# Level 2 to 1 Harness #-----# Photometer ------ 12 axs ------ STT ------------RF screen -----803 ) = CNDFNC(3,K MANGANIN) \* (5.47D-8 \* 473.06D0 + 1.37D-8 \* 78.84D0) ; GL ( 801, 803 ) = CNDFNC(3,K\_TEF) \* (4.38D-7 \* 473.06D0 + 1.1D-7 \* 78.84D0) ; 803 ) = CNDFNC(3,K\_SSTEEL) \* (1.95D-7 \* 473.06D0 + 1.95D-7 \* 78.84D0 + GL ( 801, GL ( 801, 192.0D0 \* 5.027D-9 \* 78.84D0) ; GL(801, 803) = CNDFNC(3, K TEF)\* (7.54D-7 \* 473.06D0 + 7.54D-7 \* 78.84D0); # Harness Supports - 7.5 supports / JFET enclosure - assumption GL( 801, 803 ) = CNDFNC(3,K VES) \* 7.5D0 \* 5.0E-06 / 0.080D0; # Spectrometer ------ 12 axs ------ STT -----------RF screen -----

A2-5/26

803 ) = CNDFNC(3,K\_MANGANIN) \* (5.47D-8 \* 98.48D0 + 1.37D-8 \* 17.26D0); GL ( 802, 

 803
 ) = CNDFNC(3,K\_TEF)
 \* (4.38D-7 \* 98.48D0 + 1.1D-7 \* 17.26D0);

 803
 ) = CNDFNC(3,K\_SSTEEL)
 \* (1.95D-7 \* 98.48D0 + 1.95D-7 \* 17.26D0 +

 GL ( 802, GL( 802, 192.0D0\*5.027D-9 \* 17.26D0); GL( 802, 803 ) = CNDFNC(3,K TEF) \* (7.54D-7 \* 98.48D0 + 7.54D-7 \* 17.26D0); # Harness Supports - 7.5 supports / JFET enclosure - assumption GL( 802, 803 ) = CNDFNC(3,K\_VES) \* 7.5D0 \* 5.0E-06 / 0.080D0; # Level 1 #----GL( 803, 804 ) = 6.0D0\*CNDFNC(3, M4COND up); #Mechanisms and Calib sources to Level 1 SOB GL ( 803, 805 ) = 4.0D0\*CNDFNC(3,M4COND\_up); 806 ) = 4.0D0\*CNDFNC(3,M4COND\_up); 808 ) = CNDFNC(3,K\_TOR) \* 5.30D-06 GL ( 803. 803, / 0.02D0 ; #single SCAL GL ( source GL(805, 807) = 4.0D0\*CNDFNC(3, M4COND up);# Level 1 to Level 0 #-----# Photometer  $GL(803, 809) = CNDFNC(3, K_SSTEEL) * 45.96D-06 / 0.0346D0; #L1-$ L0 ph enclosure Cone supports effective A GL( 803, 809 ) = CNDFNC(3,K\_SSTEEL) \* 2.0D0\*25.0D-06 / 0.0362D0; #L1-L0 ph enclosure A-Frame supports # ------- 12 axs ------ STT ------GL( 803, 809 ) = CNDFNC(3,K\_MANGANIN) \* (5.47D-8 \* 1208.39D0 + 1.37D-8 \* 201.4D0) 809 ) = CNDFNC(3,K\_TEF) \* (4.38D-7 \* 1208.39D0 + 1.1D-7 \* 201.4D0) GL ( 803 GL ( 803, 809 ) = CNDFNC(3,K SSTEEL) \* (1.95D-7 \* 1208.39D0 + 1.95D-7 \* 201.4D0) ; 803, 809 ) = CNDFNC(3,K TEF) \* (7.54D-7 \* 1208.39D0 + 7.54D-7 \* 201.4D0) GL ( ; # Harness Supports - assumption GL( 803, 809 ) = CNDFNC(3,K\_VES) \* 9.0D0 \* 5.0E-06 / 0.080D0; # Spectrometer GL( 803, 810 ) = CNDFNC(3,K SSTEEL) \* 3.0D0\*10.38D-06 / 0.0346D0; #L1-L0 sp enclosure supports effective A/L # ----- 12 axs ------ STT ------# Harness Supports - assumption GL( 803, 810 ) = CNDFNC(3,K VES) \* 6.0D0 \* 5.0E-06 / 0.080D0; # 300mK System #-----# Photometer GL(809, 822) = CNDFNC(3, K KEV29)\* 0.00029 \* 3.0; #Ph BDA Supports GL(809, 822) = 12.0 \* 0.286D-06;#L0 to 300mK ph harness GL(809, 822) = CNDFNC(3, K KEV29)\* 7.07D-06 / 0.025D0; #ph enclosure busbar feedthru # Spectrometer GL ( 810, 823 ) = CNDFNC (3, K\_KEV29) \* 0.00029 \* 2.0; #Sp BDA Supports

A2-6/26

| <pre>GL( 810, 823 ) = 3.0 * 0.286D-06;<br/>300mK sp harness<br/>GL( 810, 823 ) = CNDFNC(3,K_KEV29)<br/>enclosure busbar feedthru</pre> | * 2.36D-06                           | / 0.025D0; | #L0 to<br>#sp  |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------|----------------|
| # 3He COOLER<br>#                                                                                                                      |                                      |            |                |
| # Shunt                                                                                                                                |                                      |            |                |
| GL( 817, 818 ) = CNDFNC(3,K_TI6AL4V)<br>shunt tube                                                                                     | * 6.41D-06                           | / 0.038D0; | #pump-         |
| $GL(818, 819) = CNDFNC(3, K_TI6AL4V)$                                                                                                  | * 6.41D-06                           | / 0.06D0;  | #shunt-        |
| GL(818, 820) = CNDFNC(3,K_HPCU1)<br>strap                                                                                              | * 5.00D-06                           | / 0.05D0;  | #shunt         |
| GL( 819, 803 ) = CNDFNC(3,K_KEV29)                                                                                                     | * 3.1416D-06                         | / 0.031D0; | #evap          |
| GL( 817, 803 ) = CNDFNC(3,K_KEV29)<br>conducted parasitic                                                                              | * 3.1416D-06                         | / 0.037D0; | #pump          |
| <pre># Evap GL( 819, 820 ) = CNDFNC(3,K_TI6AL4V) heat switch conducted parasitic</pre>                                                 | * 2.2305D-06                         | / 0.05D0;  | #evap          |
| GL( 819, 820 ) = HS_EVAP_GAS;                                                                                                          |                                      |            | #evap          |
| GR( 819, 820 ) = 0.1D0<br>radiation parasitic                                                                                          | * 0.6619D-03;                        |            | #evap HS       |
| GL( 820, 803 ) = CNDFNC(3,K_TI6AL4V)<br>heat switch support from L1                                                                    | * 1.16D-05                           | / 0.027D0; | #evap          |
| <pre># Pump GL( 821, 817 ) = CNDFNC(3,K_TI6AL4V) heat switch conducted parasitic GL( 821, 817 ) = HS_PUMP_GAS;</pre>                   | * 2.2305D-06                         | / 0.05D0;  | #pump<br>#pump |
| heat switch He cond<br>GR( 821, 817 ) = 0.1D0<br>radiation parasitic                                                                   | * 0.6619D-03;                        |            | #pump HS       |
| GL( 821, 803 ) = CNDFNC(3,K_TI6AL4V)<br>heat switch support from L1                                                                    | * 1.16D-05                           | / 0.027D0; | #pump          |
| # SPIRE Level 0 Straps Architecture<br>#                                                                                               |                                      |            |                |
| GL(814, 811) = 0.15D0; # SPIRE L0 enc<br>GL(815, 812) = 0.15D0; # SPIRE L0 pu<br>GL(816, 813) = 0.30D0; # SPIRE L0 ev                  | losure strap<br>mp strap<br>ap strap |            |                |

# L0 Strap Supports off SOB - 3 Straps with 2 supp each, with 2 foot per support
GL( 811 , 803 ) = 2.0D0 \* CNDFNC(3,K\_VES)\*2.0D0\*0.005D0\*0.005D0/0.030D0;
GL( 812 , 803 ) = 2.0D0 \* CNDFNC(3,K\_VES)\*2.0D0\*0.005D0\*0.005D0/0.030D0;
GL( 813 , 803 ) = 2.0D0 \* CNDFNC(3,K\_VES)\*2.0D0\*0.005D0\*0.005D0/0.030D0;

# SPIRE Internal L0 Flexible Straps
GL( 811 , 810 ) = 0.15D0; #L0 enclosure
GL( 812 , 821 ) = 0.15D0; #L0 pump
GL( 813 , 820 ) = 0.30D0; #L0 evaporator

# SPIRE Internal L0 Strap between the spectrometer and the photometer enclsoures GL( 810, 809 ) = U;

A2-7/26

GL( 822, 819) = U; GL( 823, 819) = U; #cooler-ph detector strap effective A #cooler-sp detector strap effective A

# SPIRE Level 1 Strap Interface #------# Level 1 strap electrical insulation joint conductance - Copper/Epoxy/Copper Joint with 13 cm2 contact area # The 0.425 factor has been added to achieve a sensible SOB mean Temperature 

#### \$CONSTANTS

```
#=====
```

#### \$CHARACTER

GPLTO = '0'; # initialize switch for phase to be run (global constant) For integratin within HERSCHEL

| MOI | DE   |       | = | 'SWITCH_ | _OFF'; |
|-----|------|-------|---|----------|--------|
| HS  | EVAP | STATE | = | 'OFF';   |        |

|         |       |   |       | ' |
|---------|-------|---|-------|---|
| HS_PUMP | STATE | = | 'OFF' | ; |

#### \$INTEGER

IMODE = 0;# initialize switch for dissipation mode (global constant) For integratin within HERSCHEL #

SPSUBMD = 0; # kw: initialize switch for dissipation sub-mode for SPIRE timeline

#### \$REAL

```
# To Be Selected by the user before pre-processing the model
# Margin factor applied on the SPIRE Mechanisms Internal dissipation
#
margin_fac = 1.2D0;
PI = 3.141592654D0;
#POWERS
q_jfet_phot = 0.0420D0;
q_jfet_spec
                   = 0.0141D0;
q_peak_phot_calib = 0.004D0;
q_mean_phot_calib = 0.000033D0;
q_peak_spec_calib = 0.0072D0;
q_mean_spec_calib = 0.00525D0;
q_hold_spec_calib = 0.004D0;
q peak phot bsm = 0.003D0;
q mean phot bsm = 0.0019D0;
q_peak_phot_bsm2 = 0.0002D0;
q_mean_phot_bsm2 = 0.0002D0;
q peak spec mech = 0.0032D0;
q_mean_spec_mech = 0.00205D0;
q_min_spec_mech = 0.0009D0;
```

```
q cooler hs
                         = 0.0002D0;
                          = 0.00579D0;
     q_evap_rc
                      = 0.0000054D0;
      q_shunt_nom
     q_shunt_rc1
q_shunt_rc2
                          = 0.0578D0;
                          = 0.0069D0;
     q_pump_nom = 0.0015D0;
q_pump_add = 0.0D0;
                         = 0.200D0;
     q_pump1
q_pump2
                          = 0.025D0;
     q_pump_rc
q_pump_cd
                          = 0.0579D0;
                        = 0.01707D0;
      # Average Load Definition
      #
     q_pump_avr = 0.001106D0;
      q_shunt_avr = 0.000222D0;
     q_evap_avr = 0.000040D0;
     q_evap_avr = 0.000040D0;
q_evap_hs_avr = 0.000001D0;
q_pump_hs_avr = 0.000065D0;
q_pcal = 0.000011D0;
q_bsm = 0.000424D0;
q_smecm = 0.000328D0;
q_scal = 0.000840D0;
     q_scal = 0.000840D0;
q_pjfet_avr = 0.006722D0;
q_sjfet_avr = 0.002257D0;
      #Heat Switch Gas Conductance - Calculated in $VARIABLES1
      #
     HS PUMP GAS
     HS_PUMP_GAS = 0.0D0;
HS_EVAP_GAS = 0.0D0;
                          = 0.0D0;
      # Cooler Heat Loads - Calculated in $VARIABLES1
      #
     "
"
Photo_load = 0.0D0;
Spectro_load = 0.0D0;
Parasitic_load = 0.0D0;
Tot_Cooler_load = 0.0D0;
Tot_Cooler_Energy = 0.0D0;
                                                     # in microwatts
                                                     # in microwatts
                                                     # in microwatts - Evap only
                                                     # in microwatts
      # Cooler Hold Time Routine - Calculated in $VARIABLES2
      #
     Latent_evap = 0.0D0;
He_Mend_Minit = 0.0D0;
Mass_He_Final = 0.0D0;
Cooler_hold = 0.0D0;
                                                     # In J/q
                                                   # in hrs
$ARRAYS
#=====
$REAL
##########
# SPIRE Material Specific Heat (J/kg/K)
**********
##########
```

```
# SPECIFIC HEAT - Aluminium
#
SHCAL1(2,19) =
```

```
1.1, 0.1332,
```

#

2.0D0, 0.1148, 4.0D0, 0.2830, 10.D0, 1.40D0, 15.D0, 3.84D0, 18.D0, 6.49D0, 19.D0, 7.62D0, 8.90D0, 20.D0, 21.D0, 10.30D0, 22.D0, 11.90D0, 23.D0, 13.70D0, 24.D0, 15.70D0, 25.D0, 17.80D0, 27.D0, 22.60D0, 30.D0, 31.50D0, 50.D0, 142.00D0, 100.D0, 481.00D0, 200.D0, 797.00D0, 300.D0, 902.00D0; # # SPECIFIC HEAT - Copper # SHCCU1(2, 10) =0.2D0, 0.0006D0, 0.3D0, 0.0006D0, 1.0D0, 0.012D0, 0.091D0, 4.0D0, 10.0D0, 0.86D0, 7.7D0, 20.0D0, 99.0D0, 50.0D0, 100.0D0, 250.0D0, 200.0D0, 360.0D0, 300.0D0, 390.0D0; # # SPECIFIC HEAT - Invar # SHCIN1(2, 10) =0.2D0, 0.096D0, 0.3D0, 0.096D0, 0.24D0, 1.0D0, 4.0D0, 0.57D0, 10.0D0, 3.1D0, 12.0D0, 20.0D0, 50.0D0, 120.0D0, 100.0D0, 310.0D0, 200.0D0, 440.0D0, 300.0D0, 470.0D0; # # SPECIFIC HEAT - Silicon # SHCSI1(2, 10) =0.2D0, 0.000001D0, 0.3D0, 0.000001D0, 1.0D0, 0.000066D0, 0.017D0, 4.0D0, 10.0D0, 0.28D0, 8.5D0, 20.0D0, 50.0D0, 79.0D0, 100.0D0, 260.0D0, 200.0D0, 560.0D0, 300.0D0, 710.0D0; ± # SPECIFIC HEAT - Titanium # SHCTI1(2,10) = 0.2D0, 0.0071D0, 0.3D0, 0.0071D0, 1.0D0, 0.071D0, 4.0D0, 0.317D0, 10.0D0, 1.26D0, 20.0D0, 7.0D0, 50.0D0, 99.2D0,

```
100.0D0,
         300.0D0,
200.0D0,
         465.0D0,
300.0D0, 522.0D0;
#
 SPECIFIC HEAT - Stainless Steel
#
#
SHCSS1(2, 10) =
0.2D0,
        0.02D0.
0.3D0,
        0.020D0,
1.0D0,
        0.090D0,
4.0D0,
         0.382D0,
10.0D0,
         1.24D0,
20.0D0,
         4.5D0,
50.0D0,
         55.0D0,
100.0D0,
        216.0D0,
200.0D0, 384.0D0,
300.0D0,
        447.0D0;
#
#
###########
# SPIRE Material Thermal Conductivity (W/mK)
##########
#
#
# Brass
K BRASS(2, 15) =
0.1D0, 0.065D0,
0.2D0,
       0.13D0,
0.3D0,
       0.20D0,
0.4D0,
       0.28D0,
0.5D0,
       0.32D0,
0.6D0,
       0.39D0,
       0.43D0,
0.7D0,
0.8D0,
       0.50D0,
1.0D0,
       0.7D0,
4.0D0,
       3.0D0,
10.0D0, 10.0D0,
40.0D0, 37.0D0,
80.0D0, 65.0D0,
150.0D0, 85.0D0,
300.0D0, 120.0D0;
#
# Constantan - 60% Cu - 40% Ni&55% Cu - 45% Ni
#
K \text{ CONSTANTAN}(2, 26) =
      0.006D0,
0.1D0,
0.4D0,
        0.02D0,
1.0D0,
        0.1D0,
4.0D0,
        0.8D0,
5.0D0,
        1.2D0,
6.0D0,
        1.6D0,
7.0D0,
        2.0D0,
8.0D0,
        2.5D0,
        3.0D0,
9.0D0.
10.0D0,
        3.5D0,
15.0D0,
        6.3D0,
20.0D0,
        8.5D0,
30.0D0,
        12.0D0,
        14.0D0.
40.0D0.
        15.0D0,
50.0D0,
60.0D0,
        16.0D0,
70.0D0,
        16.5D0,
80.0D0,
        17.0D0,
       17.5D0,
140.0D0,
150.0D0, 17.8D0,
160.0D0, 18.0D0,
180.0D0, 18.2D0,
190.0D0, 18.5D0,
200.0D0, 19.0D0,
```

```
250.0D0, 21.0D0,
300.0D0, 22.5D0;
#
# Copper - CG-OFC ultra high purity
#
K HPCU1(2, 10) =
0.2D0,
         100.0D0,
0.3D0,
         100.0D0,
         400.0D0,
1.0D0,
4.0D0,
          1500.0D0,
10.0D0,
          3600.0D0,
20.0D0,
          4400.0D0,
50.0D0,
          1300.0D0,
100.0D0, 550.0D0,
200.0D0, 420.0D0,
300.0D0, 420.0D0;
#
# Helium 3
He3(2,24) =
0.3D0, 0.003D0,
1.0D0, 0.0075D0,
2.0D0,
       0.0117D0,
3.0D0, 0.0128D0,
4.0D0, 0.0135D0,
5.0D0, 0.016132188D0,
10.0D0, 0.022801491D0,
15.0D0, 0.028331647D0,
20.0D0, 0.033272474D0,
25.0D0, 0.037823528D0,
30.0D0, 0.042087113D0,
35.0D0, 0.046125065D0,
40.0D0, 0.049978604D0,
45.0D0, 0.053677057D0,
50.0D0, 0.057242285D0,
55.0D0, 0.060691168D0,
60.0D0, 0.064037101D0,
65.0D0, 0.067290951D0,
70.0D0, 0.070461696D0,
75.0D0, 0.073556864D0,
80.0D0, 0.076582854D0,
100.0D0,0.088094754D0,
200.0D0,0.136670461D0,
300.0D0,0.176908476D0;
#
# Kapton
#
K_KAPT(2, 9) =
0.30D0, 0.00037D0,
1.0D0,
         0.00110D0,
        0.0047D0,
4.0D0,
10.0D0, 0.015D0,
20.0D0, 0.031D0,
50.0D0, 0.064D0,
100.0D0, 0.100D0,
200.0D0, 0.150D0,
300.0D0, 0.170D0;
#
# KEVLAR 29 THREAD
#
K KEV29(2, 40) =
0.1D0, 0.0000760D0,
0.2D0,
         0.000249D0,
0.3D0,
         0.000498D0,
0.4D0,
         0.000814D0,
         0.00119D0,
0.5D0,
0.6D0,
         0.00163D0,
0.7D0,
         0.00212D0,
0.8D0,
         0.00266D0,
0.9D0,
       0.00326D0,
1.0D0,
         0.00390D0,
1.1D0,
         0.00459D0,
```

| 1.2D0,         | 0.00533D0, |
|----------------|------------|
| 1.3D0,         | 0.00611D0, |
| 1.4D0,         | 0.00693D0, |
| 1.5D0,         | 0.00780D0, |
| 1.6D0,         | 0.00871D0, |
| 1.700.         | 0.00966D0. |
| 1 800          | 0 010700   |
| 1.0D0,         | 0.0117D0   |
| 1.9D0,         | 0.011700,  |
| 2.0D0,         | 0.0128D0,  |
| 3.0D0,         | 0.0165D0,  |
| 3.5D0,         | 0.0209D0,  |
| 4.0D0,         | 0.0256D0,  |
| 4.5D0,         | 0.0307D0,  |
| 5.0D0,         | 0.0361D0,  |
| 6.0D0,         | 0.0478D0,  |
| 7.0D0.         | 0.0607D0.  |
| 8 000          | 0 0745D0   |
| 9 000          | 0 089300   |
| 10 000,        | 0.1051D0   |
| 10.0D0,        | 0.1003100, |
| 15.0D0,        | 0.1962D0,  |
| 20.0D0,        | 0.3055D0,  |
| 30.0D0,        | 0.45D0,    |
| 40.0D0,        | 0.60D0,    |
| 50.0D0,        | 0.72D0,    |
| 60.0D0,        | 0.80D0,    |
| 70.0D0,        | 1.00D0,    |
| 100.0D0,       | 1.20D0,    |
| 200.0D0.       | 3.50D0.    |
| 300 00         | 10 0000.   |
| #              | 10.0000,   |
| #<br># MANCANT | NT         |
| # MANGANI      | IN         |
| #              | ( )        |
| K_MANGANI      | N(2, 16) = |
| 0.1D0,         | 0.00143D0, |
| 0.4D0,         | 0.0122D0,  |
| 1.0D0,         | 0.0503D0,  |
| 2.0D0,         | 0.147D0,   |
| 3.0D0,         | 0.275D0,   |
| 4.0D0.         | 0.429D0.   |
| 6 0D0          | 0 80300    |
| 8 0D0          | 1 25300    |
| 0.000,         | 1 5000     |
| 9.3D0,         | 1.566D0,   |
| 10.0D0,        | 1.727D0,   |
| 20.0D0,        | 3.71D0,    |
| 40.0D0,        | 7.02D0,    |
| 50.0D0,        | 8.39D0,    |
| 100.0D0,       | 13.18D0,   |
| 200.0D0,       | 17.81D0,   |
| 300.0D0,       | 22.13D0;   |
| #              |            |
| # ALL to A     | L CONTACT  |
| #              |            |
| MACOND 110     | (2 19) -   |
|                | (2, 1) = 0 |
| 0.0D0,         | 0.000,     |
| 2.0D0,         | 0.0019D0,  |
| 4.0D0,         | 0.0045D0,  |
| 6.0D0,         | 0.0075D0,  |
| 8.0D0,         | 0.0108D0,  |
| 10.0D0,        | 0.0142D0,  |
| 20.0D0,        | 0.0338D0,  |
| 30.0D0.        | 0.0562D0.  |
| 40 000         | 0 0805D0   |
| 50 0D0         | 0 1064D0   |
| 50.0D0,        | 0 133600   |
| 50.0D0,        | U.ISSODO,  |
| /U.UDU,        | U.162UDU,  |
| 80.0D0,        | U.1914D0,  |
| 90.0D0,        | 0.2218D0,  |
| 102.5D0,       | 0.26D0,    |
| 150.0D0,       | 0.26D0,    |
| 200.0D0,       | 0.26D0,    |
| ,<br>250.0D0,  | 0.26D0,    |
| 300.0D0,       | 0.26D0;    |
|                | •          |

| #<br># STAINLESS STEEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre># STAINLESS STEEL # K_SSTEEL(2,35) = 0.1D0, 0.01D0, 0.2D0, 0.03D0, 0.3D0, 0.04D0, 0.5D0, 0.08D0, 0.7D0, 0.11D0, 1.0D0, 0.24D0, 5.0D0, 0.24D0, 5.0D0, 0.40D0, 7.0D0, 0.48D0, 8.0D0, 0.58D0, 9.0D0, 0.66D0, 10.0D0, 0.77D0, 15.0D0, 1.30D0, 20.0D0, 1.90D0, 30.0D0, 3.25D0, 40.0D0, 4.50D0, 50.0D0, 5.75D0, 60.0D0, 6.75D0, 60.0D0, 8.25D0, 90.0D0, 9.00D0, 100.0D0, 9.50D0, 110.0D0, 10.00D0, 120.0D0, 10.50D0, 130.0D0, 11.50D0, 140.0D0, 11.50D0, 150.0D0, 12.5D0, 160.0D0, 12.5D0, 190.0D0, 12.50D0, 200.0D0, 12.50D0, 200.0D0, 12.50D0, 20.0D0, 13.00D0, 20.0D0, 20.0D0, 13.00D0, 20.0D0, 20.0D0,</pre> |
| 250.0D0, 14.00D0,<br>300.0D0, 15.00D0;<br>#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <pre># Teflon # K_TEF(2,8)= 0.1D0, 0.00002D0, 0.4D0, 0.00040D0, 1.0D0, 0.00400D0, 2.0D0, 0.02000D0, 4.0D0, 0.05000D0, 10.0D0, 0.10000D0, 40.0D0, 0.20000D0, 400.0D0, 0.266D0; #</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <pre># Torlon # K_TOR(2,19) = 0.1D0,</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

```
200.0D0, 0.3213D0,
293.0D0, 0.4000D0;
# Ti6Al4V
#
K TI6AL4V(2, 17) =
0.2D0,
       0.006D0,
0.3D0,
        0.006D0,
        0.014D0,
0.5D0,
1.0D0,
        0.043D0,
1.5D0,
        0.082D0,
2.0D0,
        0.130D0,
3.0D0,
        0.197D0,
4.0D0,
        0.253D0,
10.0D0,
        0.68D0,
20.0D0,
        1.32D0,
35.0D0,
        2.12D0,
50.0D0,
        2.75D0,
100.0D0, 4.00D0,
150.0D0, 5.00D0,
200.0D0, 5.80D0,
250.0D0, 6.60D0,
300.0D0, 7.60D0;
#
# Vespel
#
K_VES(2,15) =
0.1D0, 0.0001D0,
0.3D0,
       0.00045D0,
1.0D0,
       0.0018D0,
2.0D0,
      0.0042D0,
4.0D0,
       0.0096D0,
5.0D0,
       0.0126D0,
8.0D0,
       0.0223D0,
10.0D0, 0.0292D0,
15.0D0, 0.0477D0,
117.0D0, 0.047D0,
144.0D0, 0.06D0,
200.0D0, 0.085D0,
255.0D0, 0.11D0,
297.0D0, 0.129D0,
311.0D0, 0.136D0;
#
#
# Interfaces Conductance Arrays (W/K)
K Cooler IF(2,11) =
0.3D0, 0.037378921D0,
0.35D0, 0.050501804D0,
0.4D0,
       0.065540111D0,
0.45D0, 0.082481565D0,
0.5D0,
       0.101315412D0,
5.0D0,
       0.4D0,
6.0D0,
       0.5D0,
10.0D0, 0.8D0,
15.0D0, 1.0D0,
50.0D0, 1.0D0,
300.0D0, 1.0D0;
K RClamp IF(2, 11) =
0.3D0, 0.045499027D0,
       0.05423604D0,
0.35D0,
0.4D0,
       0.063149483D0,
0.45D0, 0.072220102D0,
0.5D0, 0.081432686D0,
5.0D0,
      0.4D0,
6.0D0,
       0.5D0,
6.0D0, 0.5D0,
10.0D0, 0.8D0,
```

```
15.0D0, 1.0D0,
50.0D0, 1.0D0,
300.0D0, 1.0D0;
#
K_CuCu_IF(2, 14) =
0.0D0, 0.0D0,
        0.08D0,
1.0D0,
2.0D0,
        0.16D0,
3.0D0,
       0.24D0,
4.0D0,
        0.32D0,
5.0D0,
        0.40D0,
6.0D0,
         0.48D0,
7.0D0,
        0.56D0,
8.0D0,
        0.64D0,
9.0D0,
        0.72D0,
10.0D0, 0.8D0,
15.0D0, 1.0D0,
50.0D0, 1.0D0,
300.0D0, 1.0D0;
K_Cu_Sty_Cu_IF(2,5) =
0.3D0, 0.002051712D0,
0.35D0, 0.002919785D0,
0.4D0, 0.003963589D0,
0.45D0, 0.005190051D0,
0.5D0, 0.006605504D0;
#
Cu E Cu (2, 3) =
1.5D0, 0.0045D0,
2.0D0, 0.0055D0,
4.0D0, 0.009D0;
#
*****
##########
$SUBROUTINES
#=====
        DOUBLE PRECISION FUNCTION SHCAL(X)
        DOUBLE PRECISION X
        SHCAL = INTRP1 (X, SHCAL1, 1)
        RETURN
        END
        DOUBLE PRECISION FUNCTION SHCCU(X)
        DOUBLE PRECISION X
        SHCCU = INTRP1 (X, SHCCU1, 1)
        RETURN
        END
        DOUBLE PRECISION FUNCTION SHCINV(X)
        DOUBLE PRECISION X
        SHCINV = INTRP1 (X, SHCIN1, 1)
        RETURN
        END
        DOUBLE PRECISION FUNCTION SHCSI(X)
        DOUBLE PRECISION X
        SHCSI = INTRP1 (X, SHCSI1, 1)
        RETURN
        END
        DOUBLE PRECISION FUNCTION SHCTI(X)
        DOUBLE PRECISION X
        SHCTI = INTRP1 (X, SHCTI1, 1)
        RETURN
        END
        DOUBLE PRECISION FUNCTION SHCSS(X)
```

```
A2-16/26
```

```
DOUBLE PRECISION X
       SHCSS = INTRP1 (X, SHCSS1, 1)
       RETURN
       END
     SUBROUTINE SSOPMD (ISWITCH) LANG = MORTRAN
#
     _____
     INTEGER ISWITCH
#
     SELECT CASE ISWITCH
        CASE -1 # PACS Off, SPIRE and HIFI off
           MODE = 'SWITCH OFF'
           QI801 = 0.0
                              # Photometer JFET
           QI802 = 0.0
                              # Spectrometer JFET
           QI805 = 0.0
                             # BSM
           QI806 = 0.0
                             # SMECm
           QI807 = 0.0
                             # PCAL
                             # SCAL
           QI808 = 0.0
           QI817 = 0.0
                              # PUMP
           QI818 = 0.0
                             # SHUNT
                             # EVAP
           QI819 = 0.0
           QI820 = 0.0
                             # HS EVAP
           QI821 = 0.0
                             # HS PUMP
        CASE 0
                # Average Power dissipation for Steady State
           MODE = 'SWITCH_ON'
           QI801 = q pjfet avr
                                     # Photometer JFET
           QI802 = q_sjfet_avr
                                     # Spectrometer JFET
           QI805 = q bsm
                                     # BSM
           QI806 = q\_smecm
                                     # SMECm
                                      # PCAL
           QI807 = q pcal
           # Please note that due to instability problem the power dissipation has been set
to zero
           # for the following node 808 - Spectrometer Calibration Source
           QI803 = q_scal  # Heat dissipation applied to SOB instead
           QI817 = q_pump_avr
                                     # PUMP
           QI818 = q_shunt_avr
                                     # SHUNT
           QI819 = q_evap_avr
                                     # EVAP
                                     # HS EVAP
           QI820 = q_evap_hs_avr
           QI821 = q_pump_hs_avr
                                     # HS PUMP
        CASE 1
                # PACS in Spectrometer Mode, SPIRE and HIFI off
           MODE = 'SWITCH OFF'
           OI801 = 0.0
                             # Photometer JFET
           QI802 = 0.0
                             # Spectrometer JFET
           QI805 = 0.0
                             # BSM
                             # SMECm
           QI806 = 0.0
           QI807 = 0.0
                              # PCAL
                             # SCAL
           QI808 = 0.0
           QI817 = 0.0
                             # PUMP
                             # SHUNT
           QI818 = 0.0
           QI819 = 0.0
                             # EVAP
           QI820 = 0.0
                              # HS EVAP
                              # HS PUMP
           QI821 = 0.0
        CASE 2
                # PACS in Photometer mode, HIFI and SPIRE off
           MODE = 'SWITCH_OFF'
```

```
OI801 = 0.0
                        # Photometer JFET
   OI802 = 0.0
                        # Spectrometer JFET
   QI805 = 0.0
                       # BSM
   QI806 = 0.0
                        # SMECm
                       # PCAL
# SCAL
   QI807 = 0.0
  QI808 = 0.0
   QI817 = 0.0
                        # PUMP
   QI818 = 0.0
                       # SHUNT
   QI819 = 0.0
                       # EVAP
   QI820 = 0.0
                        # HS EVAP
   QI821 = 0.0
                        # HS PUMP
       # PACS off, SPIRE Photometer mode, HIFI off
CASE 3
  MODE = 'SWITCH ON'
   QI801 = q_{jfet_{phot}}
                                 # Photometer JFET
   OI802 = 0.0
                                 # Spectrometer JFET
                               # BSM
   QI805 = q_peak_phot_bsm
                                # SMECm
   QI806 = 0.0
   QI817 = q_pump_nom
                                 # SCAL
                                # PUMP
   QI818 = q_shunt_nom
                                # SHUNT
   QI819 = 0.0
                                # EVAP
                                # HS EVAP
   QI820 = 0.0
   QI821 = q cooler hs
                                # HS PUMP
CASE 4 # PACS off, SPIRE Spectrometer mode, HIFI off
  MODE = 'SWITCH ON'
   OI801 = 0.0
                                # Photometer JFET
  QI801 = 0.0# Photometer JFETQI802 = q_jfet_spec# Spectrometer JFETQI805 = q_mean_phot_bsm2# BSMQI806 = q_peak_spec_mech# SMECmQI807 = q_mean_phot_calib# PCALQI808 = q_mean_spec_calib# SCALQI808 = q_mean_spec_calib# DIMP
   QI817 = q_pump_nom
                                # PUMP
   QI818 = q_shunt_nom
                                # SHUNT
                                # EVAP
   QI819 = 0.0
   QI820 = 0.0
                                 # HS EVAP
   QI821 = q_cooler_hs
                                 # HS PUMP
CASE 5 # PACS off, SPIRE off, HIFI on
   MODE = 'SWITCH OFF'
   OI801 = 0.0
                       # Photometer JFET
                   # Spectrometer JFET
# BSM
   QI802 = 0.0
                       # BSM
   QI805 = 0.0
                       # SMECm
# PCAL
   QI806 = 0.0
   QI807 = 0.0
                       # SCAL
   QI808 = 0.0
   QI817 = 0.0
                       # PUMP
   QI818 = 0.0
                       # SHUNT
   QI819 = 0.0
                        # EVAP
   QI820 = 0.0
                        # HS EVAP
   QI821 = 0.0
                        # HS PUMP
CASE 6 # PACS in Photometer mode, SPIRE in Photometer Mode, HIFI off
   MODE = 'SWITCH ON'
  QI801 = q_jfet_phot
                                # Photometer JFET
   QI802 = 0.0
                                 # Spectrometer JFET
                              # 555
# BSM
   QI805 = q_peak_phot_bsm
   QI806 = 0.0
                                 # SMECm
```

A2-18/26

```
      QI807 = q_mean_phot_calib
      # PCAL

      QI808 = 0.0
      # SCAL

      QI817 = q_pump_nom
      # PUMP

      QI818 = q_shunt_nom
      # SHUNT

      QI819 = 0.0
      # EVAP

      QI820 = 0.0
      # HS EVAP

      QI821 = q_cooler_hs
      # HS PUMP
```

#

#

```
CASE ELSE
WRITE (*,*) 'Illegal dissipation mode: ', ISWITCH
STOP
END SELECT
```

RETURN END

## \$INITIAL

#=====

| # Apply margin fact                                         | tor to internal mechar                                                         | nism dissipation                                  |
|-------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------|
| q_jfet_phot<br>q_jfet_spec                                  | = q_jfet_phot<br>= q_jfet_spec                                                 | * margin_fac<br>* margin_fac                      |
| q_peak_phot_calib<br>q_mean_phot_calib                      | = q_peak_phot_calib<br>= q_mean_phot_calib                                     | * margin_fac<br>* margin_fac                      |
| q_peak_spec_calib<br>q_mean_spec_calib<br>q_hold_spec_calib | <pre>= q_peak_spec_calib<br/>= q_mean_spec_calib<br/>= q_hold_spec_calib</pre> | <pre>* margin_fac * margin_fac * margin_fac</pre> |
| q_peak_phot_bsm<br>q_mean_phot_bsm                          | = q_peak_phot_bsm<br>= q_mean_phot_bsm                                         | * margin_fac<br>* margin_fac                      |
| q_peak_phot_bsm2<br>q_mean_phot_bsm2                        | = q_peak_phot_bsm2<br>= q_mean_phot_bsm2                                       | * margin_fac<br>* margin_fac                      |
| q_peak_spec_mech<br>q_mean_spec_mech<br>q_min_spec_mech     | <pre>= q_peak_spec_mech<br/>= q_mean_spec_mech<br/>= q_min_spec_mech</pre>     | * margin_fac<br>* margin_fac<br>* margin_fac      |
| q_cooler_hs<br>q_shunt_nom                                  | = q_cooler_hs<br>= q_shunt_nom                                                 | * margin_fac<br>* margin_fac                      |
| q_pump_avr<br>q_shunt_avr<br>q_evap_avr                     | = q_pump_avr<br>= q_shunt_avr<br>= q_evap_avr                                  | <pre>* margin_fac * margin_fac * margin_fac</pre> |
| q_evap_hs_avr                                               | = q_evap_hs_avr                                                                | * margin_fac                                      |
| q_pump_ms_avr                                               | = q_pump_ms_avr                                                                | * margin fac                                      |
| a bsm                                                       | = q_pcar<br>= a bsm                                                            | * margin fac                                      |
| g smecm                                                     | = q smecm                                                                      | * margin fac                                      |
| q_scal                                                      | = q scal                                                                       | * margin fac                                      |
| <br>q_pjfet_avr                                             | = q_pjfet_avr                                                                  | * margin_fac                                      |
| q_sjfet_avr                                                 | = q_sjfet_avr                                                                  | * margin_fac                                      |

\$VARIABLES1

#========

#### SPIRE IIDB Issue 3.1 - ANNEX 2 A2-19/26

```
# kw: GLs defined here because of PC-ESATAN restrictions for "long" lines in
$CONDUCTORS
         GL( 810, 809 ) = 1.0D0/((1.0D0/( CNDFN3(T810,T809,K HPCU1)*9.0E-06/
                          0.198D0))+(1.0D0/(6.0D0*CNDFN3(T810,T809,Cu E Cu)))+
     &
                          (1.0D0/CNDFN3(T810,T809,K_CuCu_IF)))
     &
         GL( 822, 819 ) = 1.0D0/((1.0D0/(CNDFN3(T822,T819,K HPCU1)*PI*
     &
                          (0.0015D0**2.0D0)/0.130D0))+(1.0D0/CNDFN3(T822,T819,
                          K_RClamp_IF))+(1.0D0/(CNDFN3(T822,T819,K_Cu_Sty_Cu_IF
     &
                          )))+(1.0D0/CNDFN3(T822,T819,K Cooler IF)))
                                                                                  #cooler-ph
     &
detector strap effective A
         GL( 823, 819 ) = 1.0D0/((1.0D0/(CNDFN3(T823,T819,K HPCU1)*PI*
     &
                          (0.0015D0**2.0D0)/0.244D0))+(1.0D0/CNDFN3(T823,T819,
                          K_RClamp_IF))+(1.0D0/(CNDFN3(T823,T819,K_Cu_Sty_Cu_IF
     &
                          )))+(1.0D0/CNDFN3(T823,T819,K Cooler IF)))
     &
                                                                                  #cooler-sp
detector strap effective A
         # Cooler instrument loads (in microwatts)
         #
         Photo load
                          = ((GL(822,819)*(T822-T819)) * 1000000.0D0)
         Spectro load
                          = ((GL(823,819)*(T823-T819)) * 1000000.0D0)
         Parasitic load = ((GL(803,819)*(T803-T819) + GL(820,819)*(T820-T819) +
GL(818,819)*(T818-T819))*1000000.0D0)
         Tot_Cooler_load = (Photo_load + Spectro_load + Parasitic_load)
         # "Missing" Pump Internal Power Dissipation
         q pump add = ((50.0D0 * Tot Cooler load ) / 1000000.0D0) - q pump nom
      # Update the Heat Switches and Evaporator Status according to SPIRE Mode ON or OFF
      #
      IF (MODULE.EQ.'SOLVIT' .OR. MODULE.EQ.'SOLVT2' .OR. MODULE.EQ.'SOLVSM' .OR.
MODULE.EQ.'SOLVFM')
                     THEN
         IF (MODE.EQ.'SWITCH_ON') THEN
            # During SPIRE Operation :
            # - The evaporator node 819 is always a boundary node at 0.29K
            # - The pump HS is ON
            # - The evaporator HS is OFF
            CALL STATST('N819','B')
            T819 = 0.29D0
            HS EVAP STATE = 'OFF'
            HS PUMP STATE = 'ON'
            # No power dissipation is currently defined for the node 812 within the ISWITCH
Function because this
            # node is used as an "arithmetic" node to compensate for the "missing" power
dissipation of the pump.
            # QI812 is updated at each iteration according to the current total cooler load
(ie - only when SPIRE is in
            # operation).
            # The next two lines are used to update QI8012 during the Steady-State Analysis,
but a similar approach
            # is used in Transient Analysis.
            #
            QI812 = q pump add
         ELSE
```

# SPIRE in OFF Mode : # - The evaporator node 819 is always a diffuse node # - The pump HS is OFF # - The evaporator HS is OFF CALL STATST('N819','D') HS EVAP STATE = 'OFF' HS PUMP STATE = 'OFF' QI812 = 0.0ENDIF GOTO 199 ELSE IF (MODULE.EQ.'SLFWBK' .OR. MODULE.EQ.'SLFRWD' .OR. MODULE.EQ.'SLGEAR' .OR. MODULE.EQ.'SLGRDJ') THEN ##kw # Start Transient Analysis with 48 hrs of PACS Operation ##kw # SPIRE in OFF Mode ##kw # IF (TIMEN.LT.(48.0D0\*3600.0D0)) THEN ##kw ##kw: TIMEN control replaced by SPSUBMD control IF (SPSUBMD.EQ.-1) THEN CALL STATST('N819','D') HS EVAP STATE = 'OFF' HS\_PUMP\_STATE = 'OFF' QI801 = 0.0D0# Photometer JFET OI802 = 0.0D0# Spectrometer JFET QI805 = 0.0D0# BSM QI806 = 0.0D0# SMECm # PCAL QI807 = 0.0D0 QI808 = 0.0D0# SCAL QI812 = 0.0D0# Additional "Pump" Power Dissipation QI817 = 0.0D0# PUMP QI818 = 0.0D0# SHUNT # EVAP QI819 = 0.0D0# HS EVAP QI820 = 0.0D0QI821 = 0.0D0# HS PUMP ##kw GOTO 140 ##kw for simulating transient run with average dissipation: ELSE IF (SPSUBMD.EQ.0) THEN CALL STATST('N819','B') T819 = 0.29D0HS\_EVAP\_STATE = 'OFF' HS\_PUMP\_STATE = 'ON'  $QI812 = q_pump_add$ CALL SSOPMD(0) ##kw # Start SPIRE Recycling after 48 hrs of PACS Operation ##kw # ##kw ELSE IF (TIMEN.LT. (48.0D0\*3600.0D0+5.0D0)) THEN ELSE IF (SPSUBMD.EQ.1) THEN HS EVAP STATE = 'ON' HS PUMP STATE = 'OFF' QI801 = 0.0D0# Photometer JFET QI802 = 0.0D0# Spectrometer JFET QI805 = 0.0D0 # BSM

QI806 = 0.0D0# SMECm QI807 = 0.0D0# PCAL OI808 = 0.0D0# SCAL QI812 = 0.0D0# Additional "Pump" Power Dissipation # PUMP # SHUNT # EVAP QI817 = 0.0D0 QI818 = 0.0D0 QI819 = 0.0D0 Q1819 = 0.0D0 # EVAP Q1820 = q\_cooler\_hs # HS EVAP QI821 = 0.0D0# HS PUMP GOTO 140 ##kw ##kw ELSE IF (TIMEN.LT. (48.0D0\*3600.0D0+1500.0D0)) THEN ELSE IF (SPSUBMD.EQ.2) THEN HS EVAP STATE = 'ON' HS PUMP STATE = 'OFF' QI801 = 0.0D0# Photometer JFET QI802 = 0.0D0 # Spectrometer JFET QI805 = 0.0D0 # BSM # SMECm QI806 = 0.0D0 # PCAL QI807 = 0.0D0 QI808 = 0.0D0# SCAL QI812 = 0.0D0# Additional "Pump" Power Dissipation QI817 = q\_pump1 - q\_pump\_rc # PUMP QI818 = q\_shunt\_rc1 # SHUNT # EVAP # HS EVAP QI819 = q\_evap\_rc  $QI820 = q_cooler_hs$ # HS PUMP QI821 = 0.0D0##kw GOTO 140 ##kw ELSE IF (TIMEN.LT. (48.0D0\*3600.0D0+3300.0D0)) THEN ELSE IF (SPSUBMD.EQ.3) THEN HS EVAP STATE = 'ON' HS PUMP STATE = 'OFF' QI801 = 0.0D0 # Photometer JFET QI802 = 0.0D0# Spectrometer JFET QI805 = 0.0D0 # BSM # SMECm QI806 = 0.0D0 QI807 = 0.0D0 # PCAL QI808 = 0.0D0 QI812 = 0.0D0 QI817 = q\_pump2 # SCAL
# Additional "Pump" Power Dissipation
# PUMP
# SHUNT QI817 = q\_pump2 QI818 = q\_shunt\_rc2 ~ evap rc # EVAP  $QI820 = q_cooler_hs$ # HS EVAP OI821 = 0.0D0# HS PUMP ##kw GOTO 140 ELSE IF (TIMEN.LT. (48.0D0\*3600.0D0+3301.0D0)) THEN ##kw ELSE IF (SPSUBMD.EQ.4) THEN HS EVAP STATE = 'ON' HS\_PUMP\_STATE = 'OFF' QI801 = 0.0D0# Photometer JFET QI802 = 0.0D0# Spectrometer JFET # BSM OI805 = 0.0D0# SMECm # PCAL QI806 = 0.0D0QI807 = 0.0D0 # PCAL # SCAL # Additional "Pump" Power Dissipation # PUMP # SHUNT QI808 = 0.0D0QI812 = 0.0D0QI817 = 0.0D0 QI818 = 0.0D0# EVAP 

 QI819 = 0.0D0
 # EVAP

 QI820 = q\_cooler\_hs
 # HS EVAP

 QI821 = 0.00D0
 # HS PUMP

 QI819 = 0.0D0##kw GOTO 140

A2-22/26

##kw ELSE IF (TIMEN.LT. (48.0D0\*3600.0D0+3302.0D0)) THEN ELSE IF (SPSUBMD.EQ.5) THEN HS EVAP STATE = 'OFF' HS\_PUMP\_STATE = 'ON' QI801 = 0.0D0# Photometer JFET QI802 = 0.0D0 # Spectrometer JFET QI805 = 0.0D0 # BSM # BSM # SMECm # PCAL # SCAL # Additional "Pump" Power Dissipation # PUMP # SHUNT # SHUNT QI806 = 0.0D0 QI807 = 0.0D0 QI808 = 0.0D0QI812 = 0.0D0 QI817 = 0.0D0QI818 = 0.0D0 # EVAP QI819 = 0.0D0##kw GOTO 140 ##kw ELSE IF (TIMEN.LT. (48.0D0\*3600.0D0+5400.0D0)) THEN ELSE IF (SPSUBMD.EQ.6) THEN CALL STATST('N819','B') IF (T819.GT.0.29D0) THEN T819 = T819 - (DTIMEU\*0.00175D0) # 0.00175K/sec is the evaporator approximated cooldown rate during recycling QI817= q\_pump\_cd # PUMP QI818= 0.0D0 # SHUNT QI819= 0.0D0 # EVAP ELSE T819 = 0.29D0QI817= q\_pump\_nom # PUMP QI818= q\_shunt\_nom # SHUNT QI819= 0.0D0 # EVAP END IF HS EVAP STATE = 'OFF' HS\_PUMP\_STATE = 'ON' # Photometer JFET
# Spectrometer JFET
# BSM
# SMECm
# PCAL QI801 = 0.0D0 QI802 = 0.0D0QI805 = 0.0D0 OI806 = 0.0D0QI807 = 0.0D0# SCAL # Additional "Pump" Power Dissipation # HS EVAP QI808 = 0.0D0 QI812 = 0.0D0QI820 = 0.0D0QI821 = q\_cooler\_hs # HS PUMP ##kw GOTO 140 # End of SPIRE Recycling - Evaporator Node is now a Boundary Node at 0.29K # Start of SPIRE Operation in Spectrometer MODE - 12 hrs in SMECm R=1000 # ##kw ELSE IF (TIMEN.LT.221400.0) THEN ELSE IF (SPSUBMD.EQ.7) THEN CALL STATST('N819','B') T819 = 0.29D0HS\_EVAP\_STATE = 'OFF' HS\_PUMP\_STATE = 'ON'

```
QI801 = 0.0
                                   # Photometer JFET
        QI802 = q_jfet_spec
                                   # Spectrometer JFET
                                # BSM
# SMECm
        QI805 = q_mean_phot_bsm2
        QI806 = q peak spec mech
        QI817 = q_pump_nom
OI819
                              # •••
# PUMP
        QI818 = q\_shunt\_nom
                                  # SHUNT
        QI819 = 0.0D0
                                  # EVAP
        QI820 = 0.0D0
                                   # HS EVAP
        QI821 = q_cooler_hs
                                   # HS PUMP
##kw
           GOTO 140
        # Spectrometer Mode - 12 hrs in SMECm R=10
        #
##kw
            ELSE IF (TIMEN.LT.264600.0) THEN
        ELSE IF (SPSUBMD.EQ.8) THEN
        CALL STATST('N819','B')
        T819 = 0.29D0
        HS EVAP STATE = 'OFF'
        HS_PUMP_STATE = 'ON'
        QI801 = 0.0
                                   # Photometer JFET
        QI802 = q_jfet_spec
                                   # Spectrometer JFET
                                # Spect:
# BSM
# SMECm
        QI805 = q_mean_phot_bsm2
        QI806 = q_min_spec_mech
        QI807 = q mean phot calib # PCAL
        QI812 = q_pump_add# Additional "Pump" Power DissipationQI817 = q_pump_nom# PUMPQI818 = q_shunt_nom# SHUNT
        QI818 = q_shunt_nom
        QI819 = 0.0D0
                                  # EVAP
        QI820 = 0.0D0
                                  # HS EVAP
                                  # HS PUMP
        QI821 = q_cooler_hs
##kw
            GOTO 140
        # Change of Operation Mode for Photometer Mode - 11.5 hrs with BSM in chopping mode
        #
##kw
           ELSE IF (TIMEN.LT.306000.0) THEN
        ELSE IF (SPSUBMD.EQ.9) THEN
        CALL STATST('N819','B')
        T819 = 0.29D0
        HS EVAP STATE = 'OFF'
        HS PUMP STATE = 'ON'
        QI801 = q jfet phot
                                   # Photometer JFET
        QI802 = 0.0
                                  # Spectrometer JFET
        QI805 = q_mean_phot_bsm
                                   # BSM
        QI806 = 0.0
                                   # SMECm
        QI808 = 0.0
                                  # SCAL
                                # Additional "Pump" Power Dissipation
        QI812 = q_pump_add
                                  # PUMP
# SHUNT
        QI817 = q_pump_nom
        QI818 = q_shunt_nom
        QI819 = 0.0D0
                                  # EVAP
        QI820 = 0.0D0
                                  # HS EVAP
        QI821 = q_cooler_hs
                                  # HS PUMP
           GOTO 140
##kw
        # SPIRE Operation
        # Photometer Mode - 11 hrs with BSM in scanning mode
        #
##kw
            ELSE IF (TIMEN.LT.345600.0) THEN
        ELSE IF (SPSUBMD.EQ.10) THEN
```

```
A2-24/26
```

```
CALL STATST('N819','B')
         T819 = 0.29D0
         HS_EVAP_STATE = 'OFF'
         HS PUMP STATE = 'ON'
         QI801 = q_{jfet_phot}
                                      # Photometer JFET
         QI802 = 0.0
                                     # Spectrometer JFET
                                    # BSM
         QI805 = q_peak_phot_bsm
         QI806 = 0.0
                                     # SMECm
         QI807 = q_mean_phot_calib
                                    # PCAL
         QI808 = 0.0
                                     # Additional "Pump" Power Dissipation
         QI812 = q_pump_add
         QI817 = q_pump_nom
                                     # PUMP
                                     # SHUNT
         QI818 = q_shunt_nom
         QI819 = 0.0D0
                                      # EVAP
         QI820 = 0.0D0
                                     # HS EVAP
                                    # HS PUMP
         QI821 = q_cooler_hs
##kw
            GOTO 140
##kw
            # SPIRE End of Operation after nominal 48 hrs
            # SPIRE in OFF Mode - Evaporator Node is now diffuse again
##kw
##kw
            #
##kw
            ELSE IF (TIMEN.GT.345600.0) THEN
##kw
##kw
##kw
           CALL STATST('N819','D')
##kw
##kw
           HS_EVAP_STATE = 'OFF'
            HS_PUMP_STATE = 'OFF'
##kw
##kw
##kw
            OI801 = 0.0D0
                                      # Photometer JFET
           QI802 = 0.0D0
                                     # Spectrometer JFET
##kw
##kw
            QI805 = 0.0D0
                                     # BSM
                                     # SMECm
# PCAL
# SCAL
##kw
            QI806 = 0.0D0
            QI807 = 0.0D0
##kw
            QI808 = 0.0D0
##kw
##kw
            QI812 = 0.0D0
                                     # Additional "Pump" Power Dissipation
##kw
            QI817 = 0.0D0
                                     # PUMP
                                    # SHUNT
# EVAP
# HS EVAP
# HS PUMP
            QI818 = 0.0D0
##kw
##kw
            QI819 = 0.0D0
##kw
            QI820 = 0.0D0
            OI821 = 0.0D0
##kw
##kw
            GOTO 140
         END IF
##kw 140 CONTINUE
     ENDIF
 199 CONTINUE
         # Set 3He Cooler Heat Switch Conductance according to their Status - ON or OFF
         #
         IF (HS PUMP STATE.EQ.'ON') THEN
           HS PUMP GAS = 0.00061D0 * INTRP1( ((T821+T817)/2.0D0),He3,1 ) / 0.0001D0
         ELSE IF (HS_PUMP_STATE.EQ.'OFF') THEN
           HS PUMP \overline{G}AS = 0.0D0
         ENDIF
         #
         IF (HS EVAP STATE.EQ.'ON') THEN
           HS EVAP GAS = 0.00061D0 * INTRP1( ((T819+T820)/2.0D0),He3,1 ) / 0.0001D0
         ELSE IF (HS EVAP STATE.EQ.'OFF') THEN
           HS EVAP GAS = 0.0D0
         ENDIF
```

\$VARIABLES2

GENMOR

\$EXECUTION

#=======

\$OUTPUTS #======

\$ENDMODEL #=====

# Annex 3

# Summary of SPIRE cryoharness wiring functions



| Name         | 128 Way<br>Connector | Connector<br>Label | Connector<br>Type | Harness<br>Connector<br>Label | Harness<br>Connector<br>Type | Description                                                                                         | Conductors excl.<br>shields | Number of*<br>inner Shields | Implementation                    | Max.<br>R (W)                  | C(pF) L(uH)                                                      | per Conductor                                 | per Conductor                                 | Max. Volts           |
|--------------|----------------------|--------------------|-------------------|-------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------------|--------------------------------|------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------|
| C1<br>Type 3 | CVV 1                | HSJFS J5           | MDM 25 P          | HSJFS P5                      | MDM 25 S                     | Bolometer signals from JFS (SLW 1-12)<br>Anti-cross talk ground wires.                              | 24<br>12                    | 3<br>NA                     | DS 12-ax                          | 500<br>500                     | 1000pF 0.08uH<br>1000pF 0.08uH                                   | 1.0E-09<br>0.0E+00                            | 5.0E-10<br>0.0E+00                            | 0.1<br>0.1           |
|              |                      | HSJFS J6           | MDM 25 P          | HSJFS P6                      | MDM 25S                      | Bolometer signals from JFS (SLW 13-24)<br>Anti-cross talk ground wires.                             | 24<br>12                    | 3<br>NA                     | DS 12-ax                          | 500<br>500                     | 1000pF 0.08uH<br>1000pF 0.08uH                                   | 1.0E-09<br>0.0E+00                            | 5.0E-10<br>0.0E+00                            | 0.1<br>0.1           |
|              |                      | HSJFS J9           | MDM 37 S          | HSJFS P9                      | MDM 37P                      | PTC Bias<br>PTC Ground wire<br>PTC IEET Bias                                                        | 2 1 2                       | 1<br>0<br>1                 | DSTP<br>S<br>DSTP                 | 200<br>50                      | 1000pF 0.08<br>1000pF 0.08ub                                     | 3.2E-08<br>0<br>5.0E-03                       | 8.0E-09<br>0<br>2.0E-04                       | 10<br>10<br>10       |
|              |                      |                    |                   |                               |                              | SLW Bolometer Bias<br>SLW JFET Bias<br>SLW JFET Bias                                                | 4<br>4<br>1                 | 2 2 0                       | DSTP<br>DSTP<br>S                 | 200<br>100<br>50               | 1000pF 0.08uH<br>1000pF 0.08uH<br>1000pF 0.08uH                  | 9.6E-08<br>2.5E-03                            | 2.4E-08<br>6.0E-04                            | 10<br>10<br>10       |
|              |                      |                    |                   |                               |                              | SSW Bolometer Bias<br>SSW JFET Bias<br>SSW JFET Bias                                                | 4<br>4<br>1                 | 2 2 0                       | DSTP<br>DSTP<br>S                 | 200<br>100<br>50               | 1000pF 0.08uH<br>1000pF 0.08uH<br>1000pF 0.08uH                  | 1.2E-03<br>5.0E-03                            | 4.8E-08<br>1.2E-03                            | 10<br>10<br>10       |
|              |                      |                    |                   |                               |                              | PTC JFET Heater<br>SLW JFET Heater<br>SSW JFET Heater                                               | 2<br>2<br>2                 | 1<br>1<br>1                 | DSTP<br>DSTP<br>DSTP              | 200<br>200<br>200              | 1000pF 0.08uH<br>1000pF 0.08uH<br>1000pF 0.08uH                  | 1.9E-03<br>3.3E-03<br>6.7E-03                 | 4.8E-04<br>8.3E-04<br>1.7E-03                 | 10<br>10<br>10       |
|              |                      | HSJFS J10          | MDM 37 S          | HSJFS P10                     | MDM 37P                      | Cable Level Shields†<br>PTC Bias<br>PTC Ground wire                                                 | 0<br>2<br>1                 | 13<br>1<br>0                | >80%<br>DSTP<br>S                 | 200<br>50                      | 1000pF 0.08<br>1000pF 0.08uH                                     | 3.2E-08                                       | 8.0E-09<br>0                                  | 10<br>10             |
|              |                      |                    |                   |                               |                              | PTC JFET Bias<br>SLW Bolometer Bias<br>SLW JFET Bias                                                | 2<br>4<br>4                 | 1<br>2<br>2                 | DSTP<br>DSTP<br>DSTP              | 100<br>200<br>100              | 1000pF 0.08uH<br>1000pF 0.08uH<br>1000pF 0.08uH                  | I 5.0E-03<br>I 9.6E-08<br>I 2.5E-03           | 2.0E-04<br>2.4E-08<br>6.0E-04                 | 10<br>10<br>10       |
|              |                      |                    |                   |                               |                              | SLW Ground wire<br>SSW Bolometer Bias<br>SSW JFET Bias                                              | 1<br>4<br>4                 | 0<br>2<br>2                 | S<br>DSTP<br>DSTP                 | 50<br>200<br>100               | 1000pF 0.08uH<br>1000pF 0.08uH<br>1000pF 0.08uH                  | 0<br>1.2E-03<br>5.0E-03                       | 0<br>4.8E-08<br>1.2E-03                       | 10<br>10<br>10       |
|              |                      |                    |                   |                               |                              | SSW Ground Wire<br>PTC JFET Heater<br>SLW JFET Heater<br>SSW JFET Heater                            | 1<br>2<br>2<br>2            | 0<br>1<br>1<br>1            | S<br>DSTP<br>DSTP<br>DSTP         | 200<br>200<br>200              | 1000pF 0.08uF<br>1000pF 0.08uF<br>1000pF 0.08uF<br>1000pF 0.08uF | 1 0<br>1 1.9E-03<br>1 3.3E-03<br>1 6.7E-03    | 4.8E-04<br>8.3E-04<br>1.7E-03                 | 10<br>10<br>10<br>10 |
| C2           | CVV 2                | HSJFS J7           | MDM 25 P          | HSJFS P7                      | MDM 25S                      | Cable Level Shields†<br>Bolometer signals from JFS (300-mK TC 1-3)<br>Anti-cross talk ground wires. | 0<br>8<br>4                 | 13<br>1<br>NA               | >80%<br>DS 12-ax                  | 500<br>500                     | 1000pF 0.08ul<br>1000pF 0.08ul                                   | 1.0E-09<br>0.0E+00                            | 5.0E-10<br>0.0E+00                            | 0.1<br>0.1           |
| Туре4        |                      | HSJFS J1           | MDM 25 P          | HSJFS P1                      | MDM 25S                      | Cable Level Shields†<br>Bolometer signals from JFS (SSW 1-12)<br>Anti-cross talk ground wires.      | 0<br>24<br>12               | 1<br>3<br>NA<br>2           | >80%<br>DS 12-ax                  | 500<br>500                     | 1000pF 0.08uH<br>1000pF 0.08uH                                   | 1.0E-09<br>0.0E+00                            | 5.0E-10<br>0.0E+00                            | 0.1<br>0.1           |
|              |                      | HSJFS J2           | MDM 25 P          | HSJFS P2                      | MDM 25S                      | Bolometer signals from JFS (SSW 13-24)<br>Anti-cross talk ground wires.<br>Cable Level Shieldst     | 24<br>12<br>0               | 3<br>NA<br>3                | DS 12-ax                          | 500<br>500                     | 1000pF 0.08uH<br>1000pF 0.08uH                                   | 1.0E-09<br>0.0E+00                            | 5.0E-10<br>0.0E+00                            | 0.1<br>0.1           |
|              |                      | HSJFS J3           | MDM 25 P          | HSJFS P3                      | MDM 25S                      | Bolometer signals from JFS (SSW 25-36)<br>Anti-cross talk ground wires.<br>Cable Level Shields†     | 24<br>12<br>0               | 3<br>NA<br>3                | DS 12-ax<br>>80%                  | 500<br>500                     | 1000pF 0.08uH<br>1000pF 0.08uH                                   | 1.0E-09<br>0.0E+00                            | 5.0E-10<br>0.0E+00                            | 0.1<br>0.1           |
|              |                      | HSJFS J4           | MDM 25 P          | HSJFS P4                      | MDM 25S                      | Bolometer signals from JFS (SSW 37-42)<br>Anti-cross talk ground wires.<br>Cable Level Shields†     | 16<br>8<br>0                | 2<br>NA<br>2                | DS 12-ax<br>>80%                  | 500<br>500                     | 1000pF 0.08uH<br>1000pF 0.08uH                                   | 1.0E-09<br>0.0E+00                            | 5.0E-10<br>0.0E+00                            | 0.1<br>0.1           |
| C3           |                      | HSJFP J25          | MDM 37 S          | JFP P25                       | MDM 37P                      | PSW JFET Bias<br>PSW Ground<br>PSW Bolometer Bias<br>PSW Heater<br>Cable Level Shieldst             | 12<br>1<br>6<br>0           | 6<br>0<br>3<br>3<br>12      | DSTP<br>S<br>DSTP<br>DSTP<br>>80% | 100<br>50<br>200<br>200        | 1000pF 0.08uH<br>1000pF 0.08uH<br>1000pF 0.08uH<br>1000pF 0.08uH | 5.0E-03<br>0<br>3.8E-07<br>3.8E-03            | 1.2E-03<br>0<br>9.6E-08<br>9.6E-04            | 10<br>10<br>10<br>10 |
|              |                      | HSJFP J27          | MDM 37 S          | JFP P27                       | MDM 37P                      | PMW JFET Bias<br>PMW Bolometer Bias<br>PMW Ground<br>PMW JET Hootor                                 | 8<br>4<br>1                 | 4<br>2<br>0                 | DSTP<br>DSTP<br>S<br>DSTP         | 100<br>200<br>50               | 1000pF 0.08uH<br>1000pF 0.08uH<br>1000pF 0.08uH<br>1000pF 0.08uH | 5.0E-03<br>3.8E-07<br>0                       | 1.2E-03<br>9.6E-08<br>0                       | 10<br>10<br>10       |
|              |                      |                    |                   |                               |                              | PLW JFET Heater<br>PLW JFET Heater<br>PLW JFET Bias<br>PLW Bolometer Bias<br>PLW Ground             | 4<br>2<br>4<br>4<br>1       | 1<br>2<br>2<br>0            | DSTP<br>DSTP<br>DSTP<br>S<br>S    | 200<br>200<br>100<br>200<br>50 | 1000pF 0.08ul<br>1000pF 0.08ul<br>1000pF 0.08ul<br>1000pF 0.08ul | 3.8E-03<br>3.8E-03<br>5.0E-03<br>1.9E-07<br>0 | 9.6E-04<br>9.6E-04<br>1.2E-03<br>4.8E-08<br>0 | 10<br>10<br>10<br>10 |
|              |                      | HSJFP J26          | MDM 37 S          | JFP P26                       | MDM 37P                      | PSW JFET Bias<br>PSW Ground<br>PSW Bolometer Bias<br>PSW Heater                                     | 12<br>1<br>6<br>6           | 6<br>0<br>3<br>3            | DSTP<br>S<br>DSTP<br>DSTP<br>DSTP | 100<br>50<br>200<br>200        | 1000pF 0.08uH<br>1000pF 0.08uH<br>1000pF 0.08uH<br>1000pF 0.08uH | 5.0E-03<br>0<br>3.8E-07<br>3.8E-03            | 1.2E-03<br>0.0E+00<br>9.6E-08<br>9.6E-04      | 10<br>10<br>10<br>10 |
|              |                      | HSJFP J28          | MDM 37 S          | JFP P28                       | MDM 37P                      | Cable Level Shields†<br>PMW JFET Bias<br>PMW Bolometer Bias<br>PMW Ground                           | 0<br>8<br>4<br>1            | 12<br>4<br>2<br>0           | >80%<br>DSTP<br>DSTP<br>S         | 100<br>200<br>50               | 1000pF 0.08uH<br>1000pF 0.08uH<br>1000pF 0.08uH                  | 5.0E-03<br>3.8E-07                            | 1.2E-03<br>9.6E-08<br>0.0E+00                 | 10<br>10<br>10       |
|              |                      |                    |                   |                               |                              | PMW JFET Heater<br>PLW JFET Heater<br>PLW JFET Bias                                                 | 4<br>2<br>4                 | 2<br>1<br>2                 | DSTP<br>DSTP<br>DSTP              | 200<br>200<br>100              | 1000pF 0.08ul<br>1000pF 0.08ul<br>1000pF 0.08ul                  | 3.8E-03<br>3.8E-03<br>5.0E-03                 | 9.6E-04<br>9.6E-04<br>1.2E-03                 | 10<br>10<br>10       |
|              |                      |                    |                   |                               |                              | PLvv Bolometer Blas<br>PLW Ground<br>Cable Level Shields†                                           | 4<br>1<br>0                 | 2<br>0<br>13                | DSTP<br>S<br>>80%                 | 200<br>50                      | 1000pF 0.08uH<br>1000pF 0.08uH                                   | 1.9E-07<br>0.0E+00                            | 4.8E-08<br>0.0E+00                            | 10<br>10             |

| Name  | 128 Way<br>Connector | FPU/JFS/JFP<br>Connector | Unit<br>Connector<br>Type | Harness<br>Connector | Harness<br>Connector<br>Type | Description                                                                                       | Number of<br>Conductors excl.<br>shields | Number of*<br>inner Shields | Implementation   | Max<br>R (W) | . Impedan<br>C(pF) | ice<br>L(uH)     | Max.Current in A<br>per Conductor | . Av. Current in A<br>per Conductor | Max. Volts |
|-------|----------------------|--------------------------|---------------------------|----------------------|------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------|------------------|--------------|--------------------|------------------|-----------------------------------|-------------------------------------|------------|
| C4    | CVV 4                | HSJFP J21                | MDM 25 P                  | HSJFP P21            | MDM 25S                      | Bolometer signals from JFP (PMW 1-12)<br>Anti-cross talk ground wires.                            | 24<br>12                                 | 3<br>NA                     | DS 12-ax         | 500<br>500   | 1000pF<br>1000pF   | 0.08uH<br>0.08uH | 1.0E-09<br>0.0E+00                | 5.0E-10<br>0.0E+00                  | 0.1<br>0.1 |
| Type1 |                      | HSJFP J22                | MDM 25 P                  | HSJFP P22            | MDM 25S                      | Cable Level Shields†<br>Bolometer signals from JFP (PMW 13-24)<br>Anti-cross talk ground wires.   | 0<br>24<br>12                            | 3<br>3<br>NA                | >80%<br>DS 12-ax | 500<br>500   | 1000pF<br>1000pF   | 0.08uH<br>0.08uH | 1.0E-09<br>0.0E+00                | 5.0E-10<br>0.0E+00                  | 0.1<br>0.1 |
|       |                      | HSJFP J23                | MDM 25 P                  | HSJFP P23            | MDM 25S                      | Cable Level Shields†<br>Bolometer signals from JFP (PMW 25-36)<br>Anti-cross talk ground wires.   | 0<br>24<br>12                            | 3<br>3<br>NA                | >80%<br>DS 12-ax | 500<br>500   | 1000pF<br>1000pF   | 0.08uH<br>0.08uH | 1.0E-09<br>0.0E+00                | 5.0E-10<br>0.0E+00                  | 0.1<br>0.1 |
|       |                      | HSJFP J24                | MDM 25 P                  | HSJFP P24            | MDM 25S                      | Cable Level Shields†<br>Bolometer signals from JFP (PMW 37-48)<br>Anti-cross talk ground wires.   | 0<br>24<br>12                            | 3<br>3<br>NA                | >80%<br>DS 12-ax | 500<br>500   | 1000pF<br>1000pF   | 0.08uH<br>0.08uH | 1.0E-09<br>0.0E+00                | 5.0E-10<br>0.0E+00                  | 0.1<br>0.1 |
| C5    | CVV 5                | HSJFP J17                | MDM 25 P                  | HSJFP P17            | MDM 25S                      | Cable Level Shields†<br>Bolometer signals from JFP (PMW 49-60)<br>Anti-cross talk ground wires.   | 0<br>24<br>12                            | 3<br>3<br>NA                | >80%<br>DS 12-ax | 500<br>500   | 1000pF<br>1000pF   | 0.08uH<br>0.08uH | 1.0E-09<br>0.0E+00                | 5.0E-10<br>0.0E+00                  | 0.1<br>0.1 |
| Type1 |                      | HSJFP J18                | MDM 25 P                  | HSJFP P18            | MDM 25S                      | Cable Level Shields†<br>Bolometer signals from JFP (PMW 61-72)<br>Anti-cross talk ground wires.   | 0<br>24<br>12                            | 3<br>3<br>NA                | >80%<br>DS 12-ax | 500<br>500   | 1000pF<br>1000pF   | 0.08uH<br>0.08uH | 1.0E-09<br>0.0E+00                | 5.0E-10<br>0.0E+00                  | 0.1<br>0.1 |
|       |                      | HSJFP J19                | MDM 25 P                  | HSJFP J19            | MDM 25S                      | Cable Level Shields†<br>Bolometer signals from JFP (PMW 73-84)<br>Anti-cross talk ground wires.   | 0<br>24<br>12                            | 3<br>3<br>NA                | >80%<br>DS 12-ax | 500<br>500   | 1000pF<br>1000pF   | 0.08uH<br>0.08uH | 1.0E-09<br>0.0E+00                | 5.0E-10<br>0.0E+00                  | 0.1<br>0.1 |
|       |                      | HSJFP J20                | MDM 25 P                  | HSJFP J20            | MDM 25S                      | Cable Level Shields†<br>Bolometer signals from JFP (PMW 85-96)<br>Anti-cross talk ground wires.   | 24<br>12                                 | 3<br>3<br>NA                | >80%<br>DS 12-ax | 500<br>500   | 1000pF<br>1000pF   | 0.08uH<br>0.08uH | 1.0E-09<br>0.0E+00                | 5.0E-10<br>0.0E+00                  | 0.1<br>0.1 |
| C6    | CVV 6                | HSJFP J13                | MDM 25 P                  | HSJFP P13            | MDM 25S                      | Bolometer signals from JFP (PLW 1-12)<br>Anti-cross talk ground wires.                            | 24<br>12                                 | 3<br>3<br>NA                | DS 12-ax         | 500<br>500   | 1000pF<br>1000pF   | 0.08uH<br>0.08uH | 1.0E-09<br>0.0E+00                | 5.0E-10<br>0.0E+00                  | 0.1<br>0.1 |
| Type1 |                      | HSJFP J14                | MDM 25 P                  | HSJFP P14            | MDM 25S                      | Bolometer signals from JFP (PLW 13-24)<br>Anti-cross talk ground wires.                           | 24<br>12                                 | 3<br>NA                     | DS 12-ax         | 500<br>500   | 1000pF<br>1000pF   | 0.08uH<br>0.08uH | 1.0E-09<br>0.0E+00                | 5.0E-10<br>0.0E+00                  | 0.1<br>0.1 |
|       |                      | HSJFP J15                | MDM 25 P                  | HSJFP P15            | MDM 25S                      | Bolometer signals from JFP (PLW 25-36)<br>Anti-cross talk ground wires.                           | 24<br>12                                 | 3<br>NA<br>2                | DS 12-ax         | 500<br>500   | 1000pF<br>1000pF   | 0.08uH<br>0.08uH | 1.0E-09<br>0.0E+00                | 5.0E-10<br>0.0E+00                  | 0.1<br>0.1 |
|       |                      | HSJFP J16                | MDM 25 P                  | HSJFP P16            | MDM 25S                      | Bolometer signals from JFP (PLW 37-48)<br>Anti-cross talk ground wires.                           | 24<br>12                                 | 3<br>NA<br>2                | DS 12-ax         | 500<br>500   | 1000pF<br>1000pF   | 0.08uH<br>0.08uH | 1.0E-09<br>0.0E+00                | 5.0E-10<br>0.0E+00                  | 0.1<br>0.1 |
| C7    | CVV 7                | HSJFP J9                 | MDM 25 P                  | HSJFP P9             | MDM 25S                      | Bolometer signals from JFP (PSW 1-12)<br>Anti-cross talk ground wires.                            | 24<br>12                                 | 3<br>NA<br>2                | DS 12-ax         | 500<br>500   | 1000pF<br>1000pF   | 0.08uH<br>0.08uH | 1.0E-09<br>0.0E+00                | 5.0E-10<br>0.0E+00                  | 0.1<br>0.1 |
| Type1 |                      | HSJFP J10                | MDM 25 P                  | HSJFP P10            | MDM 25S                      | Bolometer signals from JFP (PSW 13-24)<br>Anti-cross talk ground wires.<br>Cable Level Shieldst   | 24<br>12                                 | 3<br>NA<br>3                | DS 12-ax         | 500<br>500   | 1000pF<br>1000pF   | 0.08uH<br>0.08uH | 1.0E-09<br>0.0E+00                | 5.0E-10<br>0.0E+00                  | 0.1<br>0.1 |
|       |                      | HSJFP J11                | MDM 25 P                  | HSJFP P11            | MDM 25S                      | Bolometer signals from JFP (PSW 25-36)<br>Anti-cross talk ground wires.<br>Cable Level Shieldst   | 24<br>12<br>0                            | 3<br>NA<br>3                | DS 12-ax         | 500<br>500   | 1000pF<br>1000pF   | 0.08uH<br>0.08uH | 1.0E-09<br>0.0E+00                | 5.0E-10<br>0.0E+00                  | 0.1<br>0.1 |
|       |                      | HSJFP J12                | MDM 25 P                  | HSJFP P12            | MDM 25S                      | Bolometer signals from JFP (PSW 37-48)<br>Anti-cross talk ground wires.<br>Cable Level Shieldst   | 24<br>12<br>0                            | 3<br>NA<br>3                | DS 12-ax         | 500<br>500   | 1000pF<br>1000pF   | 0.08uH<br>0.08uH | 1.0E-09<br>0.0E+00                | 5.0E-10<br>0.0E+00                  | 0.1<br>0.1 |
| C8    | CVV 8                | HSJFP J5                 | MDM 25 P                  | HSJFP P5             | MDM 25S                      | Bolometer signals from JFP (PSW 49-60)<br>Anti-cross talk ground wires.<br>Cable Level Shieldst   | 24<br>12<br>0                            | 3<br>NA<br>3                | DS 12-ax         | 500<br>500   | 1000pF<br>1000pF   | 0.08uH<br>0.08uH | 1.0E-09<br>0.0E+00                | 5.0E-10<br>0.0E+00                  | 0.1<br>0.1 |
| Type1 |                      | HSJFP J6                 | MDM 25 P                  | HSJFP P6             | MDM 25S                      | Bolometer signals from JFP (PSW 61-72)<br>Anti-cross talk ground wires.<br>Cable Level Shieldst   | 24<br>12<br>0                            | 3<br>NA<br>3                | DS 12-ax<br>>80% | 500<br>500   | 1000pF<br>1000pF   | 0.08uH<br>0.08uH | 1.0E-09<br>0.0E+00                | 5.0E-10<br>0.0E+00                  | 0.1<br>0.1 |
|       |                      | HSJFP J7                 | MDM 25 P                  | HSJFP P7             | MDM 25S                      | Bolometer signals from JFP (PSW 73-84)<br>Anti-cross talk ground wires.<br>Cable Level Shields†   | 24<br>12<br>0                            | 3<br>NA<br>3                | DS 12-ax<br>>80% | 500<br>500   | 1000pF<br>1000pF   | 0.08uH<br>0.08uH | 1.0E-09<br>0.0E+00                | 5.0E-10<br>0.0E+00                  | 0.1<br>0.1 |
|       |                      | HSJFP J8                 | MDM 25 P                  | HSJFP P8             | MDM 25S                      | Bolometer signals from JFP (PSW 85-96)<br>Anti-cross talk ground wires.<br>Cable Level Shields†   | 24<br>12<br>0                            | 3<br>NA<br>3                | DS 12-ax<br>>80% | 500<br>500   | 1000pF<br>1000pF   | 0.08uH<br>0.08uH | 1.0E-09<br>0.0E+00                | 5.0E-10<br>0.0E+00                  | 0.1<br>0.1 |
| C9    | CVV 9                | HSJFP J1                 | MDM 25 P                  | HSJFP P1             | MDM 25S                      | Bolometer signals from JFP (PSW 97-108)<br>Anti-cross talk ground wires.<br>Cable Level Shields†  | 24<br>12<br>0                            | 3<br>NA<br>3                | DS 12-ax<br>>80% | 500<br>500   | 1000pF<br>1000pF   | 0.08uH<br>0.08uH | 1.0E-09<br>0.0E+00                | 5.0E-10<br>0.0E+00                  | 0.1<br>0.1 |
| Type1 |                      | HSJFP J2                 | MDM 25 P                  | HSJFP P2             | MDM 25S                      | Bolometer signals from JFP (PSW 109-120)<br>Anti-cross talk ground wires.<br>Cable Level Shields† | 24<br>12<br>0                            | 3<br>NA<br>3                | DS 12-ax<br>>80% | 500<br>500   | 1000pF<br>1000pF   | 0.08uH<br>0.08uH | 1.0E-09<br>0.0E+00                | 5.0E-10<br>0.0E+00                  | 0.1<br>0.1 |
|       |                      | HSJFP J3                 | MDM 25 P                  | HSJFP P3             | MDM 25S                      | Bolometer signals from JFP (PSW 121-132)<br>Anti-cross talk ground wires.<br>Cable Level Shields† | 24<br>12<br>0                            | 3<br>NA<br>3                | DS 12-ax<br>>80% | 500<br>500   | 1000pF<br>1000pF   | 0.08uH<br>0.08uH | 1.0E-09<br>0.0E+00                | 5.0E-10<br>0.0E+00                  | 0.1<br>0.1 |
|       |                      | HSJFP J4                 | MDM 25 P                  | HSJFP P4             | MDM 25S                      | Bolometer signals from JFP (PSW 133-144)<br>Anti-cross talk ground wires.<br>Cable Level Shields† | 24<br>12<br>0                            | 3<br>NA<br>3                | DS 12-ax<br>>80% | 500<br>500   | 1000pF<br>1000pF   | 0.08uH<br>0.08uH | 1.0E-09<br>0.0E+00                | 5.0E-10<br>0.0E+00                  | 0.1<br>0.1 |
|       |                      |                          |                           |                      |                              |                                                                                                   |                                          |                             |                  |              |                    |                  |                                   |                                     |            |



| Name    | 128 Way<br>Connector | FPU/JFS/JFP<br>Connector<br>Label | Unit<br>Connector<br>Type | Harness<br>Connector<br>Label | Harness<br>Connector<br>Type | Description                         | Number of<br>Conductors excl.<br>shields | Number of*<br>inner Shields | Implementation | Max.<br>R (W) | Impedance<br>C(pF) L(uH) | Max.Current in A.<br>per Conductor | Av. Current in A<br>per Conductor | Max. Volts |
|---------|----------------------|-----------------------------------|---------------------------|-------------------------------|------------------------------|-------------------------------------|------------------------------------------|-----------------------------|----------------|---------------|--------------------------|------------------------------------|-----------------------------------|------------|
| C10     | CVV 10               | HSFPU J19                         | MDM 37 S                  | HSFPU P19                     | MDM 37P                      | Sorption Pump Heater                | 4                                        | 0                           | TQ             | 10            |                          | 2.5E-02                            | 6.3E-03                           |            |
|         |                      |                                   |                           |                               |                              | Evaporator HS Heater                | 4                                        | 0                           | TQ             | 50            |                          | 1.5E-03                            | 3.8E-04                           |            |
| Aux-P   |                      |                                   |                           |                               |                              | Sorption Pump HS heater             | 4                                        | 0                           | TQ             | 50            |                          | 1.5E-03                            | 3.8E-04                           |            |
|         |                      |                                   |                           |                               |                              | Various cooler thermistors          | 20                                       | 10                          | STQ            | 1000          |                          | 1.0E-06                            | 1.0E-06                           |            |
|         |                      | HSEPU J21                         | MDM 37 S                  | HSEPU P21                     | MDM 37P                      | Spectrometer Stimulus Thermistors   | 12                                       | 6                           | SIQ            | 1000          |                          | 1.0E-06                            | 1.0E-06                           |            |
|         |                      |                                   |                           |                               |                              | Spectrometer Stimulus Heater 2%     | 4                                        | 0                           | TO             | 30            |                          | 9.0E-03<br>7.0E-03                 | 2.3E-03<br>1.8E-03                |            |
|         |                      | HSFPU J23                         | MDM 37 S                  | HSFPU P23                     | MDM 37P                      | FPU Thermometry                     | 24                                       | 12                          | STQ            | 1000          |                          | 1.0E-06                            | 1.0E-06                           |            |
|         |                      |                                   |                           |                               |                              | 300mK Thermal Control Heater        | 4                                        | 2                           | STQ            | 30            |                          | 2.0E-03                            | 5.0E-04                           |            |
| C11     | CVV 11               | HSFPU J25                         | MDM 37 S                  | HSFPU P25                     | MDM 37P                      | BSM Chopper Sensors                 | 3                                        | 1                           | STT            | 1000          |                          | 1.0E-06                            | 1.0E-06                           | 0.4        |
| Drivo-P |                      |                                   |                           |                               |                              | BSM Lingle Sensors                  | 2                                        | 1                           | SIP            | 1000          |                          | 1.0E-06                            | 1.0E-06                           |            |
| Dilve-i |                      |                                   |                           |                               |                              | BSM Jiggle Sensors                  | 2                                        | 1                           | STP            | 1000          |                          | 1.0E-06                            | 1.0E-06                           |            |
|         |                      |                                   |                           |                               |                              | BSM Temperature                     | 4                                        | 2                           | STQ            | 1000          |                          | 1.0E-06                            | 1.0E-06                           |            |
|         |                      |                                   |                           |                               |                              | Photometer Stimulus Heater          | 4                                        | 2                           | STQ            | 10            |                          | 7.0E-03                            | 1.8E-03                           |            |
|         |                      |                                   |                           |                               |                              | BSM Launch latch sense              | 2                                        | 1                           | STP            | 1000          |                          | 1.00E-03                           | 0                                 |            |
|         |                      |                                   |                           |                               |                              | BSM Launch latch solehold           | 2                                        | 2                           | STO            | 10            |                          | 3.5E-02<br>4.0E-02                 | 2 0E-02                           |            |
|         |                      |                                   |                           |                               |                              | BSM Jiggle motor drive              | 4                                        | 2                           | STQ            | 10            |                          | 4.0E-02                            | 5.0E-02                           |            |
|         |                      | HSFPU J27                         | MDM 37 S                  | HSFPU P27                     | MDM 37P                      | SMEC Thermometry                    | 8                                        | 4                           | STQ            | 1000          |                          | 1.0E-06                            | 1.0E-06                           |            |
|         |                      |                                   |                           |                               |                              | SMEC LVDT Primary                   | 2                                        | 1                           | STP            | 5             |                          | 5.0E-03                            | 2.5E-03                           | 5          |
|         |                      |                                   |                           |                               |                              | SMEC LVD1 Secondary                 | 4                                        | 2                           | SIP            | 50            |                          | 5.0E-05                            | 5.0E-02                           | 15<br>15   |
|         |                      |                                   |                           |                               |                              | SMEC Launch Latch (Rob.)            | 4                                        | 2                           | STP            | 5             |                          | 4.0E-01                            | 0.0E+00                           | 15         |
|         |                      |                                   |                           |                               |                              | SMEC Launch Latch Confirm           | 4                                        | 2                           | STP            | 5             |                          | 1.0E-03                            | 0.0E+00                           | 15         |
|         |                      | HSFPU J29                         | MDM 37 S                  | HSFPU P29                     | MDM 37P                      | SMEC Drive Coil                     | 2                                        | 1                           | STP            | 5             |                          | 1.0E-01                            | 8.0E-02                           | 15         |
|         |                      |                                   |                           |                               |                              | SMEC Drive (Rob.)                   | 2                                        | 1                           | STP            | 5             |                          | 1.0E-01                            | 0.0E+00                           | 15         |
|         |                      |                                   |                           |                               |                              | SMEC Drive coll voltage sensor      | 2                                        | 1                           | STP            | 500           |                          | 1.0E-05<br>1.0E-03                 | 1.0E-05<br>1.0E-03                | 15         |
|         |                      |                                   |                           |                               |                              | SMEC LED Power                      | 2                                        | 1                           | STP            | 100           |                          | 1.0E-03                            | 8.0E-04                           | 5          |
|         |                      |                                   |                           |                               |                              | SMEC Position sensor photodiodes    | 6                                        | 3                           | STP            | 1000          |                          | 2.0E-05                            | 2.0E-05                           | 5          |
|         |                      |                                   |                           |                               |                              | SMEC Position sensor photodiodes FB | 6                                        | 3                           | STP            | 1000          |                          | 1.0E-05                            | 1.0E-05                           | 5          |
| C12     | CVV 12               | HSEPU J20                         | MDM 37 S                  | HSEPU P20                     | MDM 37P                      | Sorption Pump Heater                | 4                                        | 0                           | TQ             | 10            |                          | 2.5E-02                            | 0                                 |            |
| Aux-R   |                      |                                   |                           |                               |                              | Various cooler thermistors          | 20                                       | 10                          | STO            | 1000          |                          | 1.5E-03                            | 0                                 |            |
|         |                      | HSFPU J22                         | MDM 37 S                  | HSFPU P22                     | MDM 37P                      | Spectrometer Stimulus Thermistors   | 12                                       | 6                           | STQ            | 1000          |                          | 1.0E-06                            | õ                                 |            |
|         |                      |                                   |                           |                               |                              | Spectrometer Stimulus Heater 4%     | 4                                        | 0                           | TQ             | 30            |                          | 9.0E-03                            | 0                                 |            |
|         |                      |                                   | MDM 07.0                  |                               | MDN 07D                      | Spectrometer Stimulus Heater 2%     | 4                                        | 0                           | TQ             | 30            |                          | 7.0E-03                            | 0                                 |            |
|         |                      | HSFPU J24                         | NIDINI 37 5               | HSFPU P24                     | IVIDIVI 37P                  | 300mK Thermal Control Heater        | 24                                       | 12                          | STO            | 30            |                          | 1.0E-06<br>2.0E-03                 | 0                                 |            |
| C13     | CVV13                | HSFPU J26                         | MDM 37 S                  | HSFPU P26                     | MDM 37P                      | BSM Chopper Sensors                 | 3                                        | 1                           | STT            | 1000          |                          | 1.0E-06                            | 0                                 | 0.4        |
| _       |                      |                                   |                           |                               |                              | BSM Chopper Sensors                 | 2                                        | 1                           | STP            | 1000          |                          | 1.0E-06                            | 0                                 |            |
| Drive-R |                      |                                   |                           |                               |                              | BSM Jiggle Sensors                  | 3                                        | 1                           | STT            | 1000          |                          | 1.0E-06                            | 0                                 |            |
|         |                      |                                   |                           |                               |                              | BSM Jiggle Sensors                  | 2                                        | 1                           | SIP            | 1000          |                          | 1.0E-06                            | 0                                 |            |
|         |                      |                                   |                           |                               |                              | Photometer Stimulus Heater          | 4                                        | 2                           | STO            | 1000          |                          | 7.0E-00                            | 0                                 |            |
|         |                      |                                   |                           |                               |                              | BSM Launch latch sense              | 2                                        | 1                           | STP            | 1000          |                          | 1.00E-03                           | ŏ                                 |            |
|         |                      |                                   |                           |                               |                              | BSM Launch latch solenoid           | 2                                        | 1                           | STP            | 10            |                          | 3.5E-02                            | 0                                 |            |
|         |                      |                                   |                           |                               |                              | BSM Chop motor drive                | 4                                        | 2                           | STQ            | 10            |                          | 4.0E-02                            | 0                                 |            |
|         |                      |                                   | MDM 27 S                  |                               | MDM 27D                      | BSM Jiggle motor drive              | 4                                        | 2                           | STQ            | 10            |                          | 4.0E-02                            | 0                                 |            |
|         |                      | 11011 0 320                       | WIDWI 57 G                | 110110120                     | NIDIW 371                    | SMEC LVDT Primary                   | 2                                        | 1                           | STP            | 5             |                          | 5.0E-03                            | õ                                 | 5          |
|         |                      |                                   |                           |                               |                              | SMEC LVDT Secondary                 | 4                                        | 2                           | STP            | 50            |                          | 5.0E-05                            | 0                                 | 15         |
|         |                      |                                   |                           |                               |                              | SMEC Launch Latch                   | 4                                        | 2                           | STP            | 5             |                          | 4.0E-01                            | 0                                 | 15         |
|         |                      |                                   |                           |                               |                              | SMEC Launch Latch (Rob.)            | 4                                        | 2                           | SIP            | 5             |                          | 4.0E-01                            | U                                 | 15<br>15   |
|         |                      | HSEPU J30                         | MDM 37 S                  | HSEPU P30                     | MDM 37P                      | SMEC Drive Coil                     | 2                                        | <u> </u>                    | STP            | 5             |                          | 1.0E-03                            | 0                                 | 15         |
|         |                      |                                   |                           |                               |                              | SMEC Drive (Rob.)                   | 2                                        | 1                           | STP            | 5             |                          | 1.0E-01                            | ŏ                                 | 15         |
|         |                      |                                   |                           |                               |                              | SMEC Drive coil voltage sensor      | 2                                        | 1                           | STP            | 500           |                          | 1.0E-05                            | 0                                 | 15         |
|         |                      |                                   |                           |                               |                              | SMEC Position sensor supplies       | 2                                        | 1                           | STP            | 100           |                          | 1.0E-03                            | 0                                 | 5          |
|         |                      |                                   |                           |                               |                              | SMEC LED POWEr                      | 2                                        | 1<br>3                      | STP            | 100           |                          | 1.0E-03<br>2.0E-05                 | 0                                 | 5          |
|         |                      |                                   |                           |                               |                              | SMEC Position sensor photodiodes FB | 6                                        | 3                           | STP            | 1000          |                          | 1.0E-05                            | ŏ                                 | 5          |

\* Inner shields are joined to 0V in the DRCU and are wired through these harnesses on pins, although they are often commoned/daisy chained. †Cable Level Shields are joined to FPU/JFS/JFP backshells, are wired through the CVV wall connectors around their outer ring of pins, and correspond to the "D"s in the implementation cable types.

esa

| Name           | 128 Way    | DRCU               | DRCU              | Harness            | Harness           | Description                                          | Number of                 | Number of*       | Implementa     | Max. Impedance |                  | се               | Max.Current in       | Av. Current           | Max.       |
|----------------|------------|--------------------|-------------------|--------------------|-------------------|------------------------------------------------------|---------------------------|------------------|----------------|----------------|------------------|------------------|----------------------|-----------------------|------------|
|                | Connector  | Connector<br>Label | Connector<br>Type | Connector<br>Label | Connector<br>Type |                                                      | Conductors<br>excl. shids | inner<br>Shields | tion           | R (W)          | C(pF)            | L(uH)            | A.per<br>Conductor   | in A per<br>Conductor | Volts      |
| I1/S1<br>Type3 | CVV 1      | DCU J27            | DCMA37 P          | DCU P27            | DCMA 37S          | Bolometer signals from JFS (SLW 1-12)<br>SLW Ground  | 24<br>1                   | 12<br>0          | STP<br>S       | 500<br>50      | 1500pF<br>1500pF | 0.08uH<br>0.08uH | 1.00E-09<br>0        | 5.00E-10<br>0         | 0.1<br>0.1 |
|                |            | DCU J28            | DCMA37 P          | DCU P28            | DCMA 37 S         | Bolometer signals from JFS (SLW 13-24)<br>SLW Ground | 24<br>1                   | 12<br>0          | STP<br>S       | 500<br>50      | 1500pF<br>1500pF | 0.08uH<br>0.08uH | 1.00E-09<br>0        | 5.00E-10<br>0         | 0.1<br>0.1 |
|                |            | DCU J31            | DCMA 37S          | DCU P31            | DCMA 37 P         | PTC Bias                                             | 2                         | 2                | STP            | 100            | 1500pF           | 0.08uH           | 3.20E-08             | 8.00E-09              | 10         |
|                |            |                    |                   |                    |                   | PTC Ground wire                                      | 1                         | 0                | S              | 50             | 1500pF           | 0.08uH           |                      |                       | 10         |
|                |            |                    |                   |                    |                   | SI W Bolometer Bias                                  | 4                         | 4                | STP            | 100            | 1500pF           | 0.08uH           | 9.60E-03             | 2.00E-04<br>2.40E-08  | 10         |
|                |            |                    |                   |                    |                   | SLW JFET Bias                                        | 4                         | 4                | STP            | 100            | 1500pF           | 0.08uH           | 2.50E-03             | 6.00E-04              | 10         |
|                |            |                    |                   |                    |                   | SLW Ground wire                                      | 1                         | 0                | S              | 50             | 1500pF           | 0.08uH           | 0                    | 0                     | 10         |
|                |            |                    |                   |                    |                   | SSW Bolometer Bias                                   | 4                         | 4                | STP            | 100            | 1500pF           | 0.08uH           | 1.20E-03             | 4.80E-08              | 10         |
|                |            |                    |                   |                    |                   | SSW JFET Blas                                        | 4                         | 4                | SIP            | 100            | 1500pF<br>1500pF | 0.08uH           | 5.00E-03             | 1.20E-03              | 10         |
|                |            |                    |                   |                    |                   | PTC JFET Heater                                      | 2                         | 2                | STP            | 200            | 1500pF           | 0.08uH           | 1.92E-03             | 4.81E-04              | 10         |
|                |            |                    |                   |                    |                   | SLW JFET Heater                                      | 2                         | 2                | STP            | 200            | 1500pF           | 0.08uH           | 3.33E-03             | 8.33E-04              | 10         |
|                |            |                    |                   |                    |                   | SSW JFET Heater                                      | 2                         | 2                | STP            | 200            | 1500pF           | 0.08uH           | 6.67E-03             | 1.67E-03              | 10         |
|                |            | DCU J32            | DCMA 37S          | DCU P32            | DCMA 37 P         | PTC Bias                                             | 2                         | 2                | STP            | 100            | 1500pF           | 0.08uH           | 3.20E-08             | 8.00E-09              | 10         |
|                |            |                    |                   |                    |                   | PTC Glound wire                                      | 2                         | 2                | STP            | 50<br>100      | 1500pF<br>1500pF | 0.08uH           | 5 00E-03             | 2 00F-04              | 10         |
|                |            |                    |                   |                    |                   | SLW Bolometer Bias                                   | 4                         | 4                | STP            | 100            | 1500pF           | 0.08uH           | 9.60E-08             | 2.40E-08              | 10         |
|                |            |                    |                   |                    |                   | SLW JFET Bias                                        | 4                         | 4                | STP            | 100            | 1500pF           | 0.08uH           | 2.50E-03             | 6.00E-04              | 10         |
|                |            |                    |                   |                    |                   | SLW Ground wire                                      | 1                         | 0                | S              | 50             | 1500pF           | 0.08uH           | 0                    | 0                     | 10         |
|                |            |                    |                   |                    |                   | SSW Bolometer Blas                                   | 4                         | 4                | SIP            | 100            | 1500pF           | 0.08uH           | 1.20E-03             | 4.80E-08              | 10         |
|                |            |                    |                   |                    |                   | SSW Ground Wire                                      | 4                         | 4                | SIP            | 50             | 1500pF<br>1500pF | 0.08uH           | 5.00E-03             | 1.20E-03              | 10         |
|                |            |                    |                   |                    |                   | PTC JFET Heater                                      | 2                         | 2                | STP            | 200            | 1500pF           | 0.08uH           | 1.92E-03             | 4.81E-04              | 10         |
|                |            |                    |                   |                    |                   | SLW JFET Heater                                      | 2                         | 2                | STP            | 200            | 1500pF           | 0.08uH           | 3.33E-03             | 8.33E-04              | 10         |
|                | 01 · · · · |                    |                   |                    |                   | SSW JFET Heater                                      | 2                         | 2                | STP            | 200            | 1500pF           | 0.08uH           | 6.67E-03             | 1.67E-03              | 10         |
| 12/82          | Shield     | IOINED TO All bai  |                   |                    |                   | RF Overshield                                        | 24                        | 12               | <u>&gt;80%</u> | 500            | 1500pE           | 0.01uH           | 1.005.00             | 5 00E 10              | 0.1        |
| 12/32          | CVV 2      | DCU J23            | DCMA37 P          | DCU P23            | DCMA 37 S         | Bolometer signals from JES (SSW 13-24)               | 24                        | 12               | STP            | 500            | 1500pF           | 0.08uH           | 1.00E-09             | 5.00E-10              | 0.1        |
|                |            | 000021             | Bonnior           | 000121             | Domitor           | SSW Ground Wire                                      | 1                         | 0                | Single         | 50             | 1500pF           | 0.08uH           | 0.0                  | 0.0                   | 0.1        |
|                |            | DCU J25            | DCMA37 P          | DCU P25            | DCMA 37 S         | Bolometer signals from JFS (SSW 25-36)               | 24                        | 12               | STP            | 500            | 1500pF           | 0.08uH           | 1.00E-09             | 5.00E-10              | 0.1        |
|                |            | DCU J26            | DCMA37 P          | DCU P26            | DCMA 37 S         | Bolometer signals from JFS (SSW 37-42)               | 12                        | 6                | SIP            | 500            | 1500pF           | 0.08uH           | 1.00E-09             | 5.00E-10              | 0.1        |
|                | Shield     | ioined to all ba   | ckeholle          |                    |                   | RE Overshield                                        | I                         | 0                | Single         | 50             | TSUUPF           | 0.080H           | 0.0                  | 0.0                   | 0.1        |
| 13/\$3         | CVV 3      | DCU 129            | DDMA 78S          | DCU P29            | DDMA 78 P         | PSW JEET Bias                                        | 12                        | 12               | STP            | 100            | 1500nF           | 0.08uH           | 5.00E-03             | 1 20E-03              | 10         |
| Type2          |            | 000 020            | DDM/(100          | 000120             | DDM/(/01          | PSW Ground                                           | 1                         | 0                | S              | 50             | 1500pF           | 0.08uH           | 0.002 00             | 0                     | 10         |
|                |            |                    |                   |                    |                   | PSW Bolometer Bias                                   | 6                         | 6                | STP            | 100            | 1500pF           | 0.08uH           | 3.84E-07             | 9.60E-08              | 10         |
|                |            |                    |                   |                    |                   | PSW Heater                                           | 6                         | 6                | STP            | 200            | 1500pF           | 0.08uH           | 3.85E-03             | 9.62E-04              | 10         |
|                |            |                    |                   |                    |                   | PMW JFET Bias                                        | 8                         | 8                | STP            | 100            | 1500pF           | 0.08uH           | 5.00E-03             | 1.20E-03              | 10         |
|                |            |                    |                   |                    |                   | PMW Bolometer Blas                                   | 4                         | 4                | SIP            | 100            | 1500pF           | 0.080H           | 3.84E-07             | 9.60E-08              | 10         |
|                |            |                    |                   |                    |                   | PMW Ground<br>PMW IEET Heater                        | 1                         | 0                | STP            | 200            | 1500pF<br>1500pF | 0.08uH           | 3.85E-03             | 9.62E-04              | 10         |
|                |            |                    |                   |                    |                   | PLW JFET Heater                                      | 2                         | 2                | STP            | 200            | 1500pF           | 0.08uH           | 3.85E-03             | 9.62E-04              | 10         |
|                |            |                    |                   |                    |                   | PLW JFET Bias                                        | 4                         | 4                | STP            | 100            | 1500pF           | 0.08uH           | 5.00E-03             | 1.20E-03              | 10         |
|                |            |                    |                   |                    |                   | PLW Bolometer Bias                                   | 4                         | 4                | STP            | 100            | 1500pF           | 0.08uH           | 1.92E-07             | 4.80E-08              | 10         |
|                |            | DOLL 100           | DDMA 700          |                    | DDMA 70 D         | PLW Ground                                           | 1                         | 0                | <u>S</u>       | 50             | 1500pF           | 0.08uH           | 0                    | 0                     | 10         |
|                |            | DC0 J30            | DDMA 785          | DC0 P30            | DDMA 78 P         | PSW JFET Blas                                        | 12                        | 12               | SIP            | 100            | 1500pF<br>1500pF | 0.080H           | 5.00E-03             | 1.20E-03              | 10         |
|                |            |                    |                   |                    |                   | PSW Bolometer Bias                                   | 6                         | 6                | STP            | 100            | 1500pF           | 0.08uH           | 0.002+00             | 0.002+00              | 10         |
|                |            |                    |                   |                    |                   | PSW Heater                                           | 6                         | 6                | STP            | 200            | 1500pF           | 0.08uH           | 3.85E-03             | 9.62E-04              | 10         |
|                |            |                    |                   | 1                  |                   | PMW JFET Bias                                        | 8                         | 8                | STP            | 100            | 1500pF           | 0.08uH           | 5.00E-03             | 1.20E-03              | 10         |
|                |            |                    |                   | 1                  |                   | PMW Bolometer Bias                                   | 4                         | 4                | STP            | 100            | 1500pF           | 0.08uH           | 3.84E-07             | 9.60E-08              | 10         |
|                |            |                    |                   | 1                  |                   | PMW Ground                                           | 1                         | 0                | S              | 50             | 1500pF           | 0.08uH           |                      |                       | 10         |
|                |            |                    |                   | 1                  |                   | PIVIV JELI HEATER                                    | 4                         | 4                | STP            | 200            | 1500pF           | 0.080H           | 3.85E-U3<br>3.85E-03 | 9.02E-04<br>9.62E-04  | 10         |
|                |            |                    |                   | 1                  |                   | PLW JEFT Bias                                        | 2<br>4                    | 2<br>4           | STP            | 100            | 1500pF           | 0.0000           | 5.00E-03             | 1 20F-03              | 10         |
|                |            |                    |                   |                    |                   | PLW Bolometer Bias                                   | 4                         | 4                | STP            | 100            | 1500pF           | 0.08uH           | 1.92E-07             | 4.80E-08              | 10         |
|                |            |                    |                   |                    |                   | PLW Ground                                           | 1                         | 0                | S              | 50             | 1500pF           | 0.08uH           | 0                    | 0                     | 10         |
| 1              | Chield     | iainad ta all ha   | akaballa          |                    |                   | DE Overshield                                        |                           |                  | >000/          |                |                  | 0.01             |                      |                       |            |


| Name    | 128 Way    | DRCU               | DRCU              | Harness            | Harness           | Description                     | Number of                 | Number of*       | Implementa | Ма    | x. Impedano | ce     | Max.Current in     | Av. Current           | Max.  |
|---------|------------|--------------------|-------------------|--------------------|-------------------|---------------------------------|---------------------------|------------------|------------|-------|-------------|--------|--------------------|-----------------------|-------|
|         | Connector  | Connector<br>Label | Connector<br>Type | Connector<br>Label | Connector<br>Type |                                 | Conductors<br>excl. shids | inner<br>Shields | tion       | R (W) | C(pF)       | L(uH)  | A.per<br>Conductor | in A per<br>Conductor | Volts |
| I4/S4   | CVV 4      | DCU J20            | DDMA 50 P         | DCU P20            | DDMA 50 S         | 16 ch. PMW (1-16)               | 32                        | 16               | STP        | 500   | 1500pF      | 0.08uH | 1.00E-09           | 5E-10                 | 0.1   |
| Type1   |            |                    |                   |                    |                   | Ground Wire                     | 1                         | 0                | S          | 50    | 1500pF      | 0.08uH | 0                  | 0                     | 0.1   |
|         |            | DCU J21            | DDMA 50 P         | DCU P21            | DDMA 50 S         | 16 ch. PMW (17-32)              | 32                        | 16               | STP        | 500   | 1500pF      | 0.08uH | 1.00E-09           | 5E-10                 | 0.1   |
|         |            |                    |                   |                    |                   | Ground Wire                     | 1                         | 0                | S          | 50    | 1500pF      | 0.08uH | 0                  | 0                     | 0.1   |
|         |            | DCU J22            | DDMA 50 P         | DCU P22            | DDMA 50 S         | 16 ch. PMW (33-48)              | 32                        | 16               | STP        | 500   | 1500pF      | 0.08uH | 1.00E-09           | 5E-10                 | 0.1   |
|         |            |                    |                   |                    |                   | Ground Wire                     | 1                         | 0                | S          | 50    | 1500pF      | 0.08uH | 0                  | 0                     | 0     |
|         | Shield     | joined to all ba   | ckshells          |                    |                   | RF Overshield                   |                           |                  | >80%       | =     |             | 0.01uH |                    |                       |       |
| 15/S5   | CVV 5      | DCU J17            | DDMA 50 P         | DCU P17            | DDMA 50 S         | 16 ch. PMW (49-64)              | 32                        | 16               | SIP        | 500   | 1500pF      | 0.08uH | 1.00E-09           | 5E-10                 | 0.1   |
| Type1   |            |                    |                   |                    |                   | Ground Wire                     | 1                         | 0                | S          | 50    | 1500pF      | 0.08uH | 0                  | 0                     | 0.1   |
|         |            | DCU J18            | DDMA 50 P         | DCU P18            | DDMA 50 S         | 16 ch. PMW (65-80)              | 32                        | 16               | SIP        | 500   | 1500pF      | 0.08uH | 1.00E-09           | 5E-10                 | 0.1   |
|         |            |                    |                   |                    |                   | Ground Wire                     | 2                         | 0                | S          | 50    | 1500pF      | 0.08uH | 0                  | 0                     | 0.1   |
|         |            | DCU J19            | DDMA 50 P         | DCU P19            | DDMA 50 S         | 16 ch. PMW (81-96)              | 32                        | 16               | SIP        | 500   | 1500pF      | 0.08uH | 1.00E-09           | 5E-10                 | 0.1   |
|         |            |                    |                   |                    |                   | Ground Wire                     | 1                         | 0                | S          | 50    | 1500pF      | 0.08uH | 0                  | 0                     | 0     |
| 10/00   | Shield     | joined to all ba   | ckshells          |                    |                   | RF Overshield                   |                           |                  | >80%       | =     |             | 0.01uH |                    |                       |       |
| 16/S6   | CVV 6      | DCU J14            | DDMA 50 P         | DCU P14            | DDMA 50 S         | 16 ch. PLW (1-16)               | 32                        | 16               | STP        | 500   | 1500pF      | 0.08uH | 1.00E-09           | 5E-10                 | 0.1   |
| Type1   |            |                    |                   |                    |                   | Ground Wire                     | 1                         | 0                | S          | 50    | 1500pF      | 0.08uH | 0                  | 0                     | 0.1   |
|         |            | DCU J15            | DDMA 50 P         | DCU P15            | DDMA 50 S         | 16 ch. PLW (17-32)              | 32                        | 16               | SIP        | 500   | 1500pF      | 0.08uH | 1.00E-09           | 5E-10                 | 0.1   |
|         |            |                    |                   |                    |                   | Ground Wire                     | 1                         | 0                | S          | 50    | 1500pF      | 0.08uH | 0                  | 0                     | 0.1   |
|         |            | DCU J16            | DDMA 50 P         | DCU P16            | DDMA 50 S         | 16 ch. PLW (33-48)              | 32                        | 16               | STP        | 500   | 1500pF      | 0.08uH | 1.00E-09           | 5E-10                 | 0.1   |
|         |            |                    |                   |                    |                   | Ground Wire                     | 1                         | 0                | S          | 50    | 1500pF      | 0.08uH | 0                  | 0                     | 0.1   |
|         | Shield     | joined to all ba   | ckshells          |                    |                   | RF Overshield                   |                           |                  | >80%       | =     |             | 0.01uH |                    |                       |       |
| 17/S7   | CVV 7      | DCU J11            | DDMA 50 P         | DCU P11            | DDMA 50 S         | 16 ch. PSW (1-16)               | 32                        | 16               | SIP        | 500   | 1500pF      | 0.08uH | 1.00E-09           | 5E-10                 | 0.1   |
| Type1   |            |                    |                   |                    |                   | Ground Wire                     | 1                         | 0                | S          | 50    | 1500pF      | 0.08uH | 0                  | 0                     | 0.1   |
|         |            | DCU J12            | DDMA 50 P         | DCU P12            | DDMA 50 S         | 16 ch. PSW (17-32)              | 32                        | 16               | STP        | 500   | 1500pF      | 0.08uH | 1.00E-09           | 5E-10                 | 0.1   |
|         |            |                    |                   |                    |                   | Ground Wire                     | 1                         | 0                | S          | 50    | 1500pF      | 0.08uH | 0                  | 0                     | 0.1   |
|         |            | DCU J13            | DDMA 50 P         | DCU P13            | DDMA 50 S         | 16 ch. PSW (33-48)              | 32                        | 16               | STP        | 500   | 1500pF      | 0.08uH | 1.00E-09           | 5E-10                 | 0.1   |
|         |            |                    |                   |                    |                   | Ground Wire                     | 1                         | 0                | S          | 50    | 1500pF      | 0.08uH | 0                  | 5E-10                 | 0.1   |
|         | Shield     | joined to all ba   | ckshells          |                    |                   | RF Overshield                   |                           |                  | >80%       | =     |             | 0.01uH |                    |                       |       |
| 18/58   | CVV 8      | DCU J8             | DDMA 50 P         | DCU P8             | DDMA 50 S         | 16 ch. PSW (49-64)              | 32                        | 16               | SIP        | 500   | 1500pF      | 0.08uH | 1.00E-09           | 5E-10                 | 0.1   |
| Type1   |            |                    |                   |                    |                   | Ground Wire                     | 1                         | 0                | S          | 50    | 1500pF      | 0.08uH | 0                  | 0                     | 0.1   |
|         |            | DCO 18             | DDMA 50 P         | DCU P9             | DDMA 50 S         | 16 ch. PSW (65-80)              | 32                        | 16               | SIP        | 500   | 1500pF      | 0.08uH | 1.00E-09           | 5E-10                 | 0.1   |
|         |            |                    |                   |                    |                   | Ground Wire                     | 1                         | 0                | S          | 50    | 1500pF      | 0.08uH | 0                  | 0                     | 0.1   |
|         |            | DCU J10            | DDMA 50 P         | DCU P10            | DDMA 50 S         | 16 ch. PSW (81-96)              | 32                        | 16               | SIP        | 500   | 1500pF      | 0.08uH | 1.00E-09           | 5E-10                 | 0.1   |
|         |            |                    |                   |                    |                   | Ground Wire                     | 1                         | 0                | S          | 50    | 1500pF      | 0.08uH | 0                  | 0                     | 0.1   |
| 10/00   | Shield     | joined to all ba   | ckshells          |                    |                   | RF Overshield                   |                           |                  | >80%       | =     |             | 0.01uH |                    |                       |       |
| 19/59   | CVV 9      | DCU 5              | DDMA 50 P         | DCU P5             | DDMA 50 S         | 16 cn. PMW (97-112)             | 32                        | 16               | SIP        | 500   | 1500pF      | 0.08uH | 1.00E-09           | 5E-10                 | 0.1   |
| Type1   |            | - DOLLIO           |                   | DOLL DO            | <b>DDMA 50.0</b>  | Ground Wire                     | 1                         | 0                | S          | 50    | 1500pF      | 0.08uH | 0                  | 0                     | 0.1   |
|         |            | DCU J6             | DDMA 50 P         | DCU P6             | DDMA 50 S         | 16 cn. PMW (113-128)            | 32                        | 16               | SIP        | 500   | 1500pF      | 0.08uH | 1.00E-09           | 5E-10                 | 0.1   |
|         |            |                    |                   |                    |                   | Ground Wire                     | 1                         | 0                | S          | 50    | 1500pF      | 0.08uH | 0                  | 0                     | 0.1   |
|         |            | DCU J7             | DDMA 50 P         | DCU P7             | DDMA 50 S         | 16 ch. PMW (129-144)            | 32                        | 16               | SIP        | 500   | 1500pF      | 0.08uH | 1.00E-09           | 5E-10                 | 0.1   |
|         | 01 · · · · |                    |                   |                    |                   | Ground Wire                     | 1                         | 0                | S          | 50    | 1500pF      | 0.08uH | 0                  | 0                     | 0.1   |
| 140/040 | Shield     | joined to all ba   | CKSNEIIS          | 5011 544           | <b>DD111</b> 05 D | RF Overshield                   |                           |                  | >80%       | 10    |             | 0.01uH | 0.505.00           | 0.055.00              |       |
| 110/510 | CVV 10     | FCU J11            | DBMA 25 S         | FCU P11            | DRMA 25 P         | Sorption Pump Heater            | 4                         | U                |            | 10    |             |        | 2.50E-02           | 0.25E-03              |       |
| AUX-P   |            |                    |                   |                    |                   | Evaporator HS Heater            | 4                         | U                |            | 50    |             |        | 1.50E-03           | 3.75E-04              |       |
|         |            |                    |                   |                    |                   | Solption Pump HS neater         | 4                         | 0                |            | 50    |             |        | 1.50E-03           | 3.75E-04              |       |
|         |            |                    |                   |                    |                   | Suburine Thermal Control Heater | 4                         | 1                | SIQ        | 100   |             |        | 2.00E-03           | 3.00E-04              |       |
|         |            |                    |                   |                    |                   | Spectrometer Stimulus Heater 4% | 4                         | 0                |            | 30    |             |        | 9.00E-03           | 2.20E-U3              |       |
|         |            | FCI U23            |                   | FCI P22            |                   | FPUT Thermometry A              | 4<br>///                  | 11               | STO        | 1000  |             |        |                    | 1.750-03              |       |
|         |            | FCU.125            | DAMA 15 S         | FCU P25            | DAMA 15 P         | FPU Thermometry R               | 12                        | 3                | STO        | 1000  |             |        | 1.00E-06           | 1.00E-00              |       |
|         | Shield     | ioined to all ba   | ckshells          |                    | 2                 | RF Overshield                   | 12                        | Ŭ                | >80%       |       |             | 0.01uH |                    |                       |       |

-

esa

| Name    | 128 Way   | DRCU               | DRCU              | Harness            | Harness           | Description                         | Number of                 | Number of*       | Implementa | a Max | k. Impedanc | e       | Max.Current in     | Av. Current           | Max.  |
|---------|-----------|--------------------|-------------------|--------------------|-------------------|-------------------------------------|---------------------------|------------------|------------|-------|-------------|---------|--------------------|-----------------------|-------|
|         | Connector | Connector<br>Label | Connector<br>Type | Connector<br>Label | Connector<br>Type |                                     | Conductors<br>excl. shids | inner<br>Shields | tion       | R (W) | C(pF)       | L(uH)   | A.per<br>Conductor | in A per<br>Conductor | Volts |
| I11/S11 | CVV 11    | FCU J21            | DAMA 15 S         | FCU P21            | DAMA 15 P         | FPU Thermometry C                   | 12                        | 3                | STQ        | 1000  |             |         | 1.00E-06           | 0.000001              |       |
| Drive-P |           | FCU J19            | DCMA 37 S         | FCU P19            | DCMA 37 P         | BSM Chop/Jiggle Sensors             | 4                         | 2                | STP        | 1000  |             |         | 1.00E-06           | 1.00E-06              | 0.4   |
|         |           |                    |                   |                    |                   | BSM Chop/Jiggle Sensors             | 6                         | 2                | STT        | 1000  |             |         | 1.00E-06           | 1.00E-06              |       |
|         |           |                    |                   |                    |                   | BSM Launch latch sense              | 2                         | 1                | STP        | 1000  |             |         | 0.001              | 0                     |       |
|         |           |                    |                   |                    |                   | BSM Launch latch solenoid           | 2                         | 1                | STP        | 10    |             |         | 0.035              | 0                     |       |
|         |           |                    |                   |                    |                   | BSM Chop motor drive                | 4                         | 1                | STQ        | 10    |             |         | 0.04               | 0.02                  |       |
|         |           |                    |                   |                    |                   | BSM Jiggle motor drive              | 4                         | 1                | STQ        | 10    |             |         | 0.04               | 0.005                 |       |
|         |           | FCU J29            | DCMA 37 P         | FCU P29            | DCMA 37 S         | SMEC LVDT Primary                   | 2                         | 1                | STP        | 5     |             |         | 0.005              | 0.0025                | 0     |
|         |           |                    |                   |                    |                   | SMEC LVDT Secondary                 | 4                         | 2                | STP        | 5     |             |         | 0.00005            | 0.00005               | 0     |
|         |           |                    |                   |                    |                   | SMEC Launch Latch1                  | 4                         | 2                | STP        | 5     |             |         | 0.4                |                       | 0     |
|         |           |                    |                   |                    |                   | SMEC Launch Latch1 Confirm          | 2                         | 1                | STP        | 5     |             |         | 0.001              |                       | 0     |
|         |           |                    |                   |                    |                   | SMEC Launch Latch2                  | 4                         | 2                | STP        | 5     |             |         | 0.4                |                       | 0     |
|         |           | 5011.147           | D0144.07.0        | 5011547            | DOM 107 D         | SMEC Launch Latch2 Confirm          | 2                         | 1                | SIP        | 5     |             |         | 0.001              |                       | 0     |
|         |           | FCU J17            | DCMA 37 S         | FCU P17            | DCMA 37 P         | SMEC Drive Coll                     | 2                         | 1                | SIP        | 5     |             |         | 0.1                | 0.08                  | 0     |
|         |           |                    |                   |                    |                   | SMEC Drive Coll (Rob.)              | 2                         | 1                | SIP        | 5     |             |         | 0.1                | 0                     | 0     |
|         |           |                    |                   |                    |                   | SMEC Drive coll voltage sensor      | 2                         | 1                | SIP        | 500   |             |         | 0.00001            |                       |       |
|         |           |                    |                   |                    |                   | SMEC Position sensor supplies       | 4                         | 2                | SIP        | 100   |             |         | 0.001              |                       |       |
|         |           |                    |                   |                    |                   | SMEC Position sensor photodiodes    | 0                         | 3                | STP        | 1000  |             |         | 0.00002            |                       |       |
|         |           | ID                 | 11/25             | Planki             | na covor          | Mochanisms Launch Lock Confirm      | 6                         | 3                | STP        | 1000  |             |         | 0.00001            | 0                     |       |
|         |           | FCIL 113           |                   | FCU P13            |                   |                                     | 0                         | 1                | STO        | 1000  |             |         | 0.007              | 0.00175               |       |
|         | Shield    | inined to all ba   | ckshells          | 100110             | DEMAG             | RF Overshield                       | т                         | 1                | >80%       | 10    |             | 0.01uH  | 0.007              | 0.00170               |       |
| 112/S12 | CVV 12    | FCU J12            | DBMA 25 S         | FCU P12            | DBMA 25 P         | Sorption Pump Heater                | 4                         | 0                | TQ         | 10    |             | 0.01011 | 2 50E-02           | 0.00E+00              |       |
| Aux-R   |           |                    | 00000             |                    | 00000000          | Heat switch heaters                 | 8                         | 0                | TO         | 50    |             |         | 1.50E-03           | 0.00E+00              |       |
| Auxin   |           |                    |                   |                    |                   | 300mK Thermal Control Heater        | 4                         | 1                | STO        | 100   |             |         | 2 00E-03           | 0.00E+00              |       |
|         |           |                    |                   |                    |                   | Spectrometer Stimulus Heater 4%     | 4                         | 0                | TO         | 30    |             |         | 9.00E-03           | 0.00E+00              |       |
|         |           |                    |                   |                    |                   | Spectrometer Stimulus Heater 2%     | 4                         | 0                | TO         | 30    |             |         | 7.00E-03           | 0.00E+00              |       |
|         |           | ECI1124            |                   | ECU P24            |                   | EPI I Thermometry A                 | 4                         | 11               | STO        | 1000  |             |         | 1.00E-06           | 0.00E+00              |       |
|         |           | FCU126             | DAMA 15 S         | FCU P26            | DAMA 15 P         | EPU Thermometry B                   | 12                        | 3                | STO        | 1000  |             |         | 1.00E-06           | 0.00E+00              |       |
|         | Shield    | inined to all bar  | ckshells          | 100120             | DAMA 131          | RE Overshield                       | 12                        | 5                | >80%       | 1000  |             | 0.01uH  | 1.002-00           | 0.002.000             |       |
| 113/513 | CVV 13    | FCIL 122           |                   | FCILP22            | DAMA 15 P         | EPU Thermometry C                   | 12                        | 3                | STO        | 1000  |             | 0.01011 | 1.00E-06           | 0                     |       |
| Drive-R | 0000      | FCU 120            |                   | FCU P20            | DCMA 37 P         | BSM Chop/ liggle Sensors            | 4                         | 2                | STP        | 1000  |             |         | 1.00E-06           | 0.00E+00              | 0.4   |
| Directo |           | 100 020            | DOWNOTO           | 100120             | DOMAGN            | BSM Chop/liggle Sensors             | 6                         | 2                | STT        | 1000  |             |         | 1.00E-06           | 0.00E+00              | 0.4   |
|         |           |                    |                   |                    |                   | BSM Launch latch sense              | 2                         | 1                | STP        | 1000  |             |         | 0.001              | 0.002.00              |       |
|         |           |                    |                   |                    |                   | BSM Launch latch solenoid           | 2                         | 1                | STP        | 10    |             |         | 0.035              | Ő                     |       |
|         |           |                    |                   |                    |                   | BSM Chop motor drive                | 4                         | 1                | STO        | 10    |             |         | 0.04               | 0                     |       |
|         |           |                    |                   |                    |                   | BSM Jiggle motor drive              | 4                         | 1                | STQ        | 10    |             |         | 0.04               | 0                     |       |
|         |           | FCU J30            | DCMA 37 P         | FCU P30            | DCMA 37 S         | SMEC LVDT Primary                   | 2                         | 1                | STP        | 5     |             |         | 0.005              | 0                     | 0     |
|         |           |                    |                   |                    |                   | SMEC LVDT Secondary                 | 4                         | 2                | STP        | 5     |             |         | 0.00005            | 0                     | 0     |
|         |           |                    |                   |                    |                   | SMEC Launch Latch1                  | 4                         | 2                | STP        | 5     |             |         | 0.4                | 0                     | 0     |
|         |           |                    |                   |                    |                   | SMEC Launch Latch1 Confirm          | 2                         | 1                | STP        | 5     |             |         | 0.001              | 0                     | 0     |
|         |           |                    |                   |                    |                   | SMEC Launch Latch2                  | 4                         | 2                | STP        | 5     |             |         | 0.4                | 0                     | 0     |
|         |           |                    |                   |                    |                   | SMEC Launch Latch2 Confirm          | 2                         | 1                | STP        | 5     |             |         | 0.001              | 0                     | 0     |
|         |           | FCU J18            | DCMA 37 S         | FCU P18            | DCMA 37 P         | SMEC Drive Coil                     | 2                         | 1                | STP        | 5     |             |         | 0.1                | 0                     | 0     |
|         |           |                    |                   |                    |                   | SMEC Drive Coil (Rob.)              | 2                         | 1                | STP        | 5     |             |         | 0.1                | 0                     | 0     |
|         |           |                    |                   |                    |                   | SMEC Drive coil voltage sensor      | 2                         | 1                | STP        | 500   |             |         | 0.00001            | 0                     |       |
|         |           |                    |                   |                    |                   | SMEC Position sensor supplies       | 4                         | 2                | STP        | 100   |             |         | 0.001              | 0                     |       |
|         |           |                    |                   |                    |                   | SMEC Position sensor photodiodes    | 6                         | 3                | STP        | 1000  |             |         | 0.00002            | 0                     |       |
|         |           |                    | 11/05             |                    |                   | SMEC Position sensor photodiodes FB | 6                         | 3                | STP        | 1000  |             |         | 0.00001            | 0                     |       |
|         |           | JD                 | 11/35             | Blanki             | ng cover          | Mechanisms Launch Lock Confirm      | 6                         | 3                | SIP        | 1000  |             |         | 0 007              | 0                     |       |
|         | Chield    | inipad to all ba   | DEIVIA 95         |                    | DEIVIA 9P         |                                     | 4                         | ۷.               | 517        | 10    |             | 0.01    | 0.007              | 0                     |       |
| 1       | Silield   | IOITIEU LO All Da  | CURRINE           |                    |                   |                                     |                           |                  | -00%       |       |             | U.UIUH  |                    |                       |       |

\* Inner shields are joined to 0V in the DRCU and are wired through these harnesses on pins, although they are often commoned/daisy chained.

Page 6

# **SPIRE IIDB 3.1 - ANNEX**

# Annex 4

# Description of the Operation of the <sup>3</sup>He Sorption Cooler

### Description of the Operation of the <sup>3</sup>He Sorption Cooler

The 3He cooler is produced for Spire and PACS by SBT/CEA, Grenoble, who own the intellectual information in this annex. The cooler is specified in SBT documents HSO-SBT-SP-001-3-3 and HSO-SBT-TNS-2; its interfaces internal to Spire are controlled via HSO-SBT-ICD-012-1-3.

The cooler's internal thermal configuration is as follows:



#### Figure 1: SPIRE Sorption cooler

The cooler is hermetically closed and does not have a lifetime limited by its cryogen boil-off. However it cannot cool continuously but rather it needs to be re-generated regularly. This regeneration energy cycle is a small but significant contribution to the total dissipation within the Herschel cryostat.

When operational, Spire runs a 48 hour 3He cooler cycle, 46 hours with Spire's detectors cooled to "300mK" and 2 hours recycling. This fits in with Herschel ground commanding periods.

When at "300mK", the temperature at the cooler's evaporator is to a very good approximation a single valued function of gross applied load on its evaporator, i.e. available/net cooling power PLUS the cooler's internal parasitics. The cooling is simply due to the physical process of evaporation along the cooler's "pumping line" geometry(see above figure). The function is shown below in figure 2) which is derived by offsetting curves of tip temperature v. load that have been measured at different L1 and hence parasistics. A puzzling factor is that the TRP 4 litre contract showed this characteristic to be independent of attitude but under test the function for the 6 litre units shows some dependency on attitude.



Figure 2: Evaporator temperature vs total load





Figure 3: Cooler parasitic loads vs level 1 temperature

The baseline parasitic of 280mK shown in figure 2 of 12microwatts for L1 = 2K is indirectly derived, but the data plotted in figure 3 are the shifts needed to superimpose the curves at different L1 in 2a, They suggest a stronger dependence of cooler parasitics on L1 temperature than is often assumed.

Contributions to the cooler's internal evaporator parasitics are heat-switch off-state leakage to L0, tube conduction to the thermal shunt, wiring conduction, and Kevlar suspension leakage to L1, presuming the lack of unwanted effects inside the cooler. For details see Annex 3.

In the 46hr. operating/observing mode only the sorption pump sieve heat-switch heater is on. The following confirms a sieve switch-over temperature of 12-13K.



Figure 4: Heat switch "switching temperature" (vs switch pump temperature)

The power needed to raise the switch's sieve to  $\sim$ 14K is  $\sim$ 200 W. To have margin,  $\sim$ 400 W has been demonstrated to run the pump switch and to speed up the switch-over phase the sieve is heated at 800 W for an initial limited time.

As helium evaporates, heat is pumped. There is an amplification factor between the heat load at the evaporator and the resulting adsorption heat load on the pump which is sunk down the turned-on pump switch and its strap. The following curves are from an experiment to measure this.



#### Figure 5 : Measurement of adsorption heat on pump vs heat applied on evaporator

A ratio between these heat loads of 46-49 is typical for <sup>3</sup>He coolers, and such a test result shows that the cooler is pumping properly according to the expected thermodynamics.

In practise the whole system must be able to cope with the 2 hour recycling heat mode. This is in many respects is more demanding than the 46hour hold-time.

During the first phase of recycling, i.e. condensation, the evaporator heat-switch is closed and the pump's switch opened. The evaporator strap needs extremely low thermal impedance and 800W heat-switch sieve power is baselined. The cooler's sorption pump is heated to 40-45K and a lower power is then used to keep it hot. Condensation occurs in the evaporator. Almost all the cooler's 3He charge needs to be condensed so Spire can meet the hold-time for its subsequent 46 hours at 300mK. The temperature of the evaporator itself at the end of condensation is critical. This is a parameter internal to Spire, even being internal to one of its subsystems, and it needs to be <2K for the last few minutes of this phase. We may need to apply 1mW to the evaporator's heat-switch sieve the end of the condensation phase to help to achieve this <2K

During this condensation phase the shunt has to extract nearly all the heat from the hot gas travelling from the pump to the evaporator; it should typically stay below 6K. More than >80% of the enthalpy of the hot gas should be thus removed. throughout the condensation phase. The overall shunt strap actually needs a tuned conductance because during the condensation phase its temperature needs to go and stay above Tevap to avoid 3He condensing on it instead of in the evaporator.

At the end of the condensation phase there is a cooling phase when and the cooler heat switches are swapped over to their normal (operating) positions: the pump switch is on and the evaporator's off. Timings for this have to be optimised by test. This cooler requires that its pump and evaporator have separate straps back to Herschell's main 4Hell because otherwise the heat-pulse that occurs at this switch-over could heat the evaporator and waste much of the available 3He liquid charge.

Recycling of a flight type 6 litre coolers is schown below, but with a warning that it has been obtained at unit level with 200mW/K conductances for both the straps from the cooler heatswitch interfaces (which are not Spire/Herschel Interfaces) to the 4HeII (at <1.7K). When later results with flight type conductances are available, these results will need updating. For instance when the cooler is accommodated inside Spire the 350J pump power spike is likely to peak at only  $\sim$ 500mW and of course therefore to last longer.



Figure 6: Cooler Recycling: Characteristics above and estimated heat-flows below

We see that during test, and probably in flight also, the cooler's titanium frame alters temperature during recycling. This is even with the cooler chassis fixed all along one side (PACS style) to the L1 test plate.

Generally the faster the whole regeneration process the better, both in terms of the minimising the total single recycle energy and in terms of the fraction of time available for science. By searching for efficient operation, in Spire we have set the initial pump heater power to 300mW. If the heat shunt and evaporator strap could take the load as a high flow-rate of warm 3He leaves the pump, we could heat the pump with some 600mW to 40K very quickly, keep it there for just a few minutes, turn off and let everything cool down again, which would achieve a very energy efficient regeneration. In practise, strap impedance both limits the initial power that can be applied and causes us to need to wait an appreciable time before the evaporator comes back down to <2K, the point at which "cool down" can be commenced.

The time taken for the 6 litre flight cooler's sorption pump to be heated up to  $\sim$ 40-45K is expected to be  $\sim$ 30minutes. SBT/CEA have put considerable effort into developing the heat straps inside the cooler to cut down the wait time for evaporator itself to get back down to <2K at the end of the condensation phase.

The shunt and the evaporator share an LO strap, the latter via a heat-switch. The energy to be transported during recycling from the evaporator itself is expected to be 50 Joules with the profile shown, peaking at a power of

#### **SPIRE IIDB 3.1 - ANNEX 4**

A4-5/6

45mW. However the total energy through this strap per cycle is ~205 Joules when the shunt's contribution is also added in, peaking at 75mW. Although evaporator power may drop to <2mW at the end of the condensation phase, there is still ~13mW from the shunt added into the strap to give a total power along it of ~15mW.

Achieving the 46 hours lifetime requires a minimised total load on the 300mK evaporator, and also on the cooler achieving its full 6 litre latent heat energy rating. Spire should only place an external load on the cooler such that the total load remains below  $\sim$ 29 Watts

Not achieving an evaporator temperature of < 2K at the end of the condensation phase would cause an unacceptable reduction in the amount of condensed helium in the evaporator available for next operation phase. This is computed to be:



Figure 7 : Estimated Condensation efficiency (% <sup>3</sup>He liquefied) vs evaporator temperature

A fraction of the 3He charge is expended cooling both itself and the evaporator/detectors down to 300mK, which is taken as the end of recycling. This leaves an amount of 3He available to keep the Spire 300mK section cooled for the next 46 hrs. The evaporator temperature at the end of the previous phase is again critical to minimising He usage for this pre-cooling process, and <2K is required.



Figure 8 : Cooler hold time ve evaporator temperature at end of condensation, and average total load on evaporator.

Figure 8 is the same as one from the IHDR but with the above condensation efficiencies also included.

These curves are an approximation in that they ignore the small extra demands on the cooler from all loads during the 2K to 300mK cooldown and the heat capacity during this period of all 300mK components besides that of the helium itself. However, these effects are small and the approximation is good.

#### Note:

There is one cooler variation still under consideration by **Spire**. The requirement that the evaporator itself be <2K at the end of the condensation phase [typically 1.85K at the cooler's heat-switch interface inside the instrument] is sufficiently challenging to achieve that we were considering putting the shunt on the pump's strap rather than on the evaporator's, see thermal overview drawing at the start of this section. This would avoid ~15mWatts from the shunt travelling down the evaporator strap at this stage in the recycling, thus avoiding its contribution to the

#### SPIRE IIDB 3.1 - ANNEX 4

A4-6/6

temperature drop along the strap. Caveat: it's not clear yet if this alteration has other significant disadvantageous side-effects, and the project has seriously run out of time to put such a change into the programme.

**SPIRE IIDB issue 3.1 - ANNEX** 

Annex 5

# **SPIRE HDD 1.1 Deltas**

SPIRE-RAL-NOT-001819 , Issue 3 , 23/10/03



Issue 3.0 of this document incorporates the decision reached on the polarity of the pins on the 128-way for the "SMEC Position Sensor Power Spply"

Subject:

### HDD 1.1 DELTAS

The sheets that follow show the pinout & wire name changes compared to the Spire Harness Definition Document version 1.1 that are needed to build the PFM harness. They will be issued within HDD version 1.2.



| Number | Pages and section<br>from HDD 1.1 | Description of correction                                                            | Notes                                                                                                                                                                                                         | Comparison with EICD, Issue 2.6                                                                                                                                                                                                                                              |
|--------|-----------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | Page 58-60, S4                    | Corrected assignment of Channel numbers in column 2 to pixels column 3               | No hardware<br>implications.<br>Nomenclature only                                                                                                                                                             |                                                                                                                                                                                                                                                                              |
| 2      |                                   | Pixels PMW-F8, PMW-E9 corrected 128-way<br>pin assignments                           |                                                                                                                                                                                                               | Compliant (See Page 22, 23 and 24 of this doc)                                                                                                                                                                                                                               |
| 3      | Pages 67-69, S6                   | Corrected sequence of Pixel names.                                                   | No hardware<br>implications.<br>Nomenclature only                                                                                                                                                             |                                                                                                                                                                                                                                                                              |
| 4      | Page 172, C11                     | Polarity error on 128-way "SMEC Position<br>Sensor Power Supply and Return"          | Swapped 4 and 11.<br><u>After telecon clarification</u><br><u>- Pin 11 on the 128-way</u><br><u>is to be positive and Pin</u><br><u>4 is to be negative as</u><br><u>per Astrium EICD Issue</u><br><u>2.6</u> | The polarity of the signals on the 12-way<br>connectors in the HDD 1.2 is opposite to that<br>adopted in EADS 2.6. This is not a S/C<br>problem as the interfaces to the FCU and the<br>FPU are correct in the EADS doc<br>- See pages 25, 26, 27 and 28 of this<br>document |
| 5      | Page 118, 120, C1                 | "Channel 1 gnd shld" should be Channel 14 gnd<br>shld" in column 2, row 2, page 119  |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                              |
| 6      | Page 119, C1                      | "SLW_JFETV_A2_shld" should go to pin 26 not<br>6                                     | Pins 26 and 6 are both<br>on a busbar and<br>therefore this is an<br>academic correction                                                                                                                      | Compliant- See page 29 of this document.                                                                                                                                                                                                                                     |
| 7      | Page 131, C3                      | Reference to D2 and D4 removed. Changed to B2 / B4                                   |                                                                                                                                                                                                               | EADS implementation not as SPIRE intended<br>– however the EADS design is compliant with<br>SPIRE requirements                                                                                                                                                               |
| 8      | Page 132, C3                      | Reference to D2 changed to B2                                                        |                                                                                                                                                                                                               | idem                                                                                                                                                                                                                                                                         |
| 9      | Page 134, C3                      | References to D4 changed to B4                                                       |                                                                                                                                                                                                               | Idem                                                                                                                                                                                                                                                                         |
| 10     | Page 146, C6                      | "Channel 1 gnd shld" should be Channel 14 gnd<br>shld" in column 2, row 24, page 146 |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                              |
| 11     | Page 151, C8                      | Colum headers should be P05, P06, P07 and P08 not J05, J06, J07 and J08              |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                              |
| 12     | Page 152, C8                      | "Channel 1 gnd shld" should be Channel 14 gnd<br>shld" in column 2, row 19, page 152 |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                              |
| 13     | Page 155, C9                      | "Channel 1 gnd shld" should be Channel 14 gnd<br>shld" in column 2, row 27, page 155 |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                              |
| 14     | Page 95                           | Second table should be labelled with FCU P29<br>not FCU P27                          | This page was in Isssue<br>1.0 of this doc, but no<br>mention of it was made<br>in this table                                                                                                                 |                                                                                                                                                                                                                                                                              |



#### **Contact Details**

Notes:

- The shields of the STP cables carrying, the ground wires (GND\_WIRE) and Pins 36(A1), 4(A2), 128(A3) and 47(A4) of the 128-way connector are all joined to form a ground reference plane. Pin numbers for connector PE assume the use of a DEMA 9 connector.
- Refer to Annex 7 PTC Cryo-harnessing that indicates graphically the means by which these signals are wired.

| Cable ID  |               | Pixel   | 128 Way #4 | DCU P20 | DCU P21 | DCU P22 | PE J22 Link<br>(I/F S2/S4) |
|-----------|---------------|---------|------------|---------|---------|---------|----------------------------|
|           | Signal Ground |         | 47 (A4)    |         |         |         |                            |
|           | Channel 1+    |         | 26         | 1       |         |         |                            |
| S4-STP-A1 | Channel 1-    | PMW-F10 | 37         | 18      |         |         |                            |
|           | Channel 1 GND |         | 36 (A1)    | 34      |         |         |                            |
|           | Channel 2+    |         | 38         | 2       |         |         |                            |
| S4-STP-A2 | Channel 2-    | PMW-E11 | 49         | 19      |         |         |                            |
|           | Channel 2 GND |         | 36 (A1)    | 35      |         |         |                            |
|           | Channel 3+    |         | 48         | 3       |         |         |                            |
| S4-STP-A3 | Channel 3-    | PMW-G11 | 60         | 20      |         |         |                            |
|           | Channel 3 GND |         | 36 (A1)    | 36      |         |         |                            |
|           | Channel 4+    |         | 59         | 4       |         |         |                            |
| S4-STP-A4 | Channel 4-    | PMW-F11 | 71         | 21      |         |         |                            |
|           | Channel 4 GND |         | 36 (A1)    | 37      |         |         |                            |
|           | Channel 5+    |         | 50         | 5       |         |         |                            |
| S4-STP-B1 | Channel 5-    | PMW-E12 | 61         | 22      |         |         |                            |
|           | Channel 5 GND |         | 36 (A1)    | 38      |         |         |                            |
|           | Channel 6+    |         | 62         | 6       |         |         |                            |
| S4-STP-B2 | Channel 6-    | PMW-G12 | 51         | 23      |         |         |                            |
|           | Channel 6 GND |         | 36 (A1)    | 39      |         |         |                            |
|           | Channel 7+    |         | 63         | 7       |         |         |                            |
| S4-STP-B3 | Channel 7-    | PMW-F12 | 75         | 24      |         |         |                            |
|           | Channel 7 GND |         | 36 (A1)    | 40      |         |         |                            |
| S4-STP-B4 | Channel 8+    | PMW-G13 | 74         | 8       |         |         |                            |
|           | Channel 8-    |         | 73         | 25      |         |         |                            |





| Cable ID   |                | Pixel       | 128 Way #4     | DCU P20 | DCU P21  | DCU P22 | PE J22 Link<br>(I/F S2/S4) |
|------------|----------------|-------------|----------------|---------|----------|---------|----------------------------|
|            | Channel 8 GND  |             | 36 (A1)        | 41      |          |         |                            |
|            | Signal Ground  |             | 36 (A1)        | 9       |          |         |                            |
|            | Channel 9+     |             | 83             | 26      |          |         |                            |
| S4-STP-C1  | Channel 9-     | PMW-DK2     | 72             | 10      |          |         |                            |
|            | Channel 9 GND  |             | 36 (A1)        | 43      |          |         |                            |
| S4-STP-D1  | Channel 13-    | PMW-E7      | 80             | 11      |          |         |                            |
| 51511 51   | Channel 13 GND | 1           | 36 (A1)        | 44      |          |         |                            |
|            | Channel 14+    |             | 97             | 28      |          |         |                            |
| S4-STP-D2  | Channel 14-    | PMW-D7      | 98             | 12      |          |         |                            |
|            | Channel 14 GND |             | 36 (A1)        | 45      |          |         |                            |
| CA CTD D2  | Channel 15+    | DMU F7      | 108            | 29      |          |         |                            |
| S4-S1P-D3  | Channel 15 GND | PMW-F/      | 109<br>36 (A1) | 13      |          |         |                            |
|            | Channel 16+    |             | 116            | 30      |          |         |                            |
| S4-STP-D4  | Channel 16-    | PMW-E8      | 117            | 14      |          |         |                            |
|            | Channel 16 GND |             | 36 (A1)        | 47      |          |         |                            |
|            | Channel 17+    |             | 55             | 31      |          |         |                            |
| S4-STP-E1  | Channel 17-    | PMW-G8      | 66             | 15      |          |         |                            |
|            | Channel 17 GND |             | 128 (A3)       | 48      |          |         |                            |
| CA CTD E2  | Channel 18+    | DMW E9      | 67             | 32      |          |         |                            |
| 34-31F-E2  | Channel 18 GND | F1VI W -F8  | /8<br>128 (A3) | 10      |          |         |                            |
|            | Channel 19     |             | 76             | 33      |          |         |                            |
| S4-STP-E3  | Channel 19-    | PMW-E9      | 77             | 17      |          |         |                            |
|            | Channel 19 GND |             | 128 (A3)       | 50      |          |         |                            |
|            | Channel 20+    |             | 88             |         | 1        |         |                            |
| S4-STP-E4  | Channel 20-    | PMW-G9      | 89             |         | 18       |         |                            |
|            | Channel 20 GND |             | 128 (A3)       |         | 34       |         |                            |
| SA STD E1  | Channel 21+    | DMW D0      | 99             |         | 2        |         |                            |
| 54-511-11  | Channel 21 GND | F WI W-D9   | 128 (A3)       |         | 35       |         |                            |
|            | Channel 22+    |             | 110            |         | 3        |         |                            |
| S4-STP-F2  | Channel 22-    | PMW-F9      | 111            |         | 20       |         |                            |
|            | Channel 22 GND |             | 128 (A3)       |         | 36       |         |                            |
|            | Channel 23+    |             | 118            |         | 4        |         |                            |
| S4-STP-F3  | Channel 23-    | PMW-E10     | 119            |         | 21       |         |                            |
|            | Channel 23 GND |             | 128 (A3)       |         | 5        |         |                            |
| S4-STP-F4  | Channel 24+    | PMW-G10     | 112            |         | 22       |         |                            |
| 54 511 14  | Channel 24 GND |             | 128 (A3)       |         | 38       |         |                            |
|            | Channel 25+    |             | 90             |         | 6        |         |                            |
| S4-STP-G1  | Channel 25_    | PMW-C4      | 79             |         | 23       |         |                            |
|            | Channel 25 GND |             | 128 (A3)       |         | 39       |         |                            |
| CA CTD CO  | Channel 26+    | DMUV D2     | 102            |         | 7        |         |                            |
| S4-S1P-G2  | Channel 26-    | PMW-B3      | 101            |         | 24       |         |                            |
|            | Channel 27+    |             | 92.            |         | 8        |         |                            |
| S4-STP-G3  | Channel 27-    | PMW-C3      | 91             |         | 25       |         |                            |
|            | Channel 27 GND |             | 128 (A3)       |         | 41       |         |                            |
|            | Signal Ground  |             | 128 (A3)       | -       | 9        |         |                            |
|            | Channel 28+    |             | 103            |         | 26       |         |                            |
| S4-STP-G4  | Channel 28-    | PMW-B2      | 113            |         | 10       |         |                            |
|            | Channel 28 GND |             | 128 (A3)       |         | 43       |         |                            |
| GA OTD III | Channel 29+    | DMW DA      | 58             |         | 27       |         |                            |
| S4-STP-H1  | Channel 29-    | PMW-D2      | 46             |         | 11       |         |                            |
|            | Channel 30+    |             | 120 (A3)<br>68 |         | 28       |         |                            |
| S4-STP-H2  | Channel 30-    | PMW-A3      | 57             |         | 12       |         |                            |
|            | Channel 30 GND |             | 128 (A3)       |         | 45       |         |                            |
|            | Channel 31+    |             | 69             |         | 29       |         |                            |
| S4-STP-H3  | Channel 31-    | PMW-A2      | 80             |         | 13       |         |                            |
|            | Channel 31 GND |             | 128 (A3)       |         | 46       |         |                            |
| SA STD 114 | Channel 32+    | DMW CO      | ·/0<br>• • 1   |         | 30<br>14 |         |                            |
| 54-51F-H4  | Channel 32 GND | F IVI W -C2 | οι<br>128 (Δ3) |         | 14<br>47 |         |                            |
| <u> </u>   | Channel 33+    |             | 23             |         | 31       |         |                            |
| S4-STP-I1  | Channel 33-    | PMW-B1      | 34             |         | 15       |         |                            |
|            | Channel 33 GND |             | 4 (A2)         |         | 48       |         |                            |





| Cable ID    |                  | Pixel   | 128 Way #4 | DCU P20   | DCU P21   | DCU P22   | PE J22 Link<br>(I/F S2/S4) |
|-------------|------------------|---------|------------|-----------|-----------|-----------|----------------------------|
|             | Channel 34+      |         | 33         |           | 32        |           |                            |
| S4-STP-I2   | Channel 34-      | PMW-A1  | 45         |           | 16        |           |                            |
|             | Channel 34 GND   |         | 4 (A2)     |           | 49        |           |                            |
|             | Channel 35+      |         | 44         |           | 33        |           |                            |
| S4-STP-I3   | Channel 35-      | PMW-DK1 | 56         |           | 17        |           |                            |
|             | Channel 35 GND   |         | 4 (A2)     |           | 50        |           |                            |
|             | Channel 36+      |         | 22         |           |           | 1         |                            |
| S4-STP-I4   | Channel 36-      | PMW-C1  | 32         |           |           | 18        |                            |
|             | Channel 36 GND   |         | 4 (A2)     |           |           | 34        |                            |
|             | Channel 37+      |         | 13         |           |           | 2         |                            |
| S4-STP-J1   | Channel 37-      | PMW-A7  | 12         |           |           | 19        |                            |
|             | Channel 37 GND   |         | 4 (A2)     |           |           | 35        |                            |
|             | Channel 38+      |         | 21         |           |           | 3         |                            |
| S4-STP-J2   | Channel 38-      | PMW-A6  | 20         |           |           | 20        |                            |
|             | Channel 38 GND   |         | 4 (A2)     |           |           | 36        |                            |
|             | Channel 39+      |         | 31         |           |           | 4         |                            |
| S4-STP-J3   | Channel 39-      | PMW-B6  | 43         |           |           | 21        |                            |
|             | Channel 39 GND   |         | 4 (A2)     |           |           | 37        |                            |
|             | Channel 40+      |         | 42         |           |           | 5         |                            |
| S4-STP-J4   | Channel 40-      | PMW-C7  | 54         |           |           | 22        |                            |
|             | Channel 40 GND   |         | 4 (A2)     |           |           | 38        |                            |
|             | Channel 41+      |         | 10         |           |           | 6         |                            |
| S4-STP-K1   | Channel 41-      | PMW-A5  | 11         |           |           | 23        |                            |
|             | Channel 41 GND   |         | 4 (A2)     |           |           | 39        |                            |
|             | Channel 42+      |         | 19         |           |           | 7         |                            |
| S4-STP-K2   | Channel 42-      | PMW-B5  | 29         |           |           | 24        |                            |
|             | Channel 42 GND   |         | 4 (A2)     |           |           | 40        |                            |
|             | Channel 43+      |         | 41         |           |           | 8         |                            |
| S4-STP-K3   | Channel 43-      | PMW-C6  | 30         |           |           | 25        |                            |
|             | Channel 43 GND   |         | 4 (A2)     |           |           | 41        |                            |
|             | Signal Ground    |         | 4 (A2)     |           |           | 9         |                            |
|             | Channel 44+      |         | 53         |           |           | 26        |                            |
| S4-STP-K4   | Channel 44-      | PMW-D6  | 52         |           |           | 10        |                            |
|             | Channel 44 GND   |         | 4 (A2)     |           |           | 43        |                            |
|             | Channel 45+      |         | 9          |           |           | 27        |                            |
| S4-STP-L1   | Channel 45-      | PMW-B4  | 17         |           |           | 11        |                            |
|             | Channel 45 GND   |         | 4 (A2)     |           |           | 44        |                            |
|             | Channel 46+      |         | 18         |           |           | 28        |                            |
| S4-STP-L2   | Channel 46-      | PMW-C5  | 28         |           |           | 12        |                            |
|             | Channel 46 GND   |         | 4 (A2)     |           |           | 45        |                            |
|             | Channel 47+      |         | 16         |           |           | 29        |                            |
| S4-STP-L3   | Channel 47-      | PMW-D4  | 27         |           |           | 13        |                            |
|             | Channel 47 GND   |         | 4 (A2)     |           |           | 46        |                            |
|             | Channel 48+      |         | 40         |           |           | 30        |                            |
| S4-STP-L4   | Channel 48-      | PMW-A4  | 39         |           |           | 14        |                            |
|             | Channel 48 GND   |         | 4 (A2)     |           |           | 47        |                            |
|             | PTC Channel 1 +  |         | N.C.       |           |           | 31        | 1                          |
| S4-STP-PTC1 | PTC Channel 1 -  | PTC-1   | N.C.       |           |           | 15        | 6                          |
| ~~~~~       | PTC Channel 1gnd |         | N.C.       |           |           | 48        | 2 (A)                      |
|             | PTC Channel 2 +  |         | N.C.       |           |           | 32        | 3                          |
| S4-STP-PTC2 | PTC Channel 2 -  | PTC-2   | NC         |           |           | 16        | 7                          |
|             | PTC Channel 2gnd |         | N.C.       |           | 1         | 49        | 8(A)                       |
|             | PTC Channel 3 +  |         | N.C.       |           |           | 33        | 4                          |
| S4-STP-PTC3 | PTC Channel 3 -  | PTC-3   | N.C.       |           | 1         | 17        | 5                          |
| 5.5111105   | PTC Channel 3gnd |         | N C        |           |           | 50        | 8(A)                       |
|             |                  |         | FMC        | FMC       | FMC       | FMC       | ( <b>1</b> )               |
|             |                  |         | Backshell  | Backshell | Backshell | Backshell | EMC Backshell              |

| FPU Fa | FPU Faraday Shield Link Pins |     |     |     |     |     |     |     |     |     |     |     |
|--------|------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1      | 2                            | 3   | 5   | 6   | 7   | 8   | 14  | 15  | 24  | 25  | 35  | 82  |
| 93     | 94                           | 104 | 105 | 114 | 115 | 121 | 122 | 123 | 124 | 125 | 126 | 127 |



### 4.2.6 S6 SVM-CB 6 – DRCU (Type 1) PLW



#### **Connector/Backshell Details**

| DDMA50S+Glenair557-B-357-M-5- | TBD | toDCUJ14 | DCU-JFP |
|-------------------------------|-----|----------|---------|
| DDMA50S+Glenair557-E-359-M-5- | TBD | toDCUJ15 | DCU-JFP |
| DDMA50S+Glenair557-B-357-M-5- | TBD | toDCUJ16 | DCU-JFP |

### Harness Layup

As S5 except Tail A = HSDCU P14 Tail B = HSDCU P15 Tail C = HSDCU P16

#### **Contact details**

|           | Name              | Pixel  | 128Way #6 | DCU J14 | DCU J15 | DCU J16 |
|-----------|-------------------|--------|-----------|---------|---------|---------|
|           | Ground Pin        |        | 47 (A4)   |         |         |         |
|           | Channel 1 +       |        | 26        | 1       |         |         |
| S6-STP-A1 | Channel 1 -       | PLW-R1 | 37        | 18      |         |         |
|           | Channel 1gnd shld |        | 36 (A1)   | 34      |         |         |
|           | Channel 2 +       |        | 38        | 2       |         |         |
| S6-STP-A2 | Channel 2 -       | PLW-A8 | 49        | 19      |         |         |
|           | Channel 2gnd shld |        | 36 (A1)   | 35      |         |         |
|           | Channel 3 +       |        | 48        | 3       |         |         |
| S6-STP-A3 | Channel 3 -       | PLW-A7 | 60        | 20      |         |         |
|           | Channel 3gnd shld |        | 36 (A1)   | 36      |         |         |
|           | Channel 4 +       |        | 59        | 4       |         |         |
| S6-STP-A4 | Channel 4 -       | PLW-A6 | 71        | 21      |         |         |
|           | Channel 4gnd shld |        | 36 (A1)   | 37      |         |         |
|           | Channel 5 +       |        | 50        | 5       |         |         |
| S6-STP-B1 | Channel 5 -       | PLW-A9 | 61        | 22      |         |         |
|           | Channel 5gnd shld |        | 36 (A1)   | 38      |         |         |
|           | Channel 6 +       |        | 62        | 6       |         |         |
| S6-STP-B2 | Channel 6 -       | PLW-C9 | 51        | 23      |         |         |
|           | Channel 6gnd shld |        | 36 (A1)   | 39      |         |         |





|           | Name                | Pixel     | 128Way #6      | DCU J14  | DCU J15 | DCU J16 |
|-----------|---------------------|-----------|----------------|----------|---------|---------|
|           | Channel 7 +         |           | 63             | 7        |         |         |
| S6-STP-B3 | Channel 7 -         | PLW-B8    | 75             | 24       |         |         |
|           | Channel 7gnd shld   |           | 36 (A1)        | 40       |         |         |
|           | Channel 8 +         | DI W D7   | 74             | 8        |         |         |
| S0-S1P-B4 | Channel 8 -         | PLW-B/    | 73<br>26 (A 1) | 25       |         |         |
|           | GND WIRE            |           | 36 (A1)        | 41       |         |         |
|           | Channel 9 +         |           | 83             | 26       |         |         |
| S6-STP-C1 | Channel 9 -         | PLW-C7    | 72             | 10       |         |         |
|           | Channel 9gnd shld   |           | 36 (A1)        | 43       |         |         |
|           | Channel 10 +        |           | 95             | 27       |         |         |
| S6-STP-C2 | Channel 10 -        | PLW-B5    | 84             | 11       |         |         |
|           | Channel 10gnd shld  |           | 36 (A1)        | 44       |         |         |
|           | Channel 11 +        | DI UL D   | 96             | 28       |         |         |
| S6-S1P-C3 | Channel 11 -        | PLW-B6    | 85             | 12       |         |         |
|           | Channel 12 +        |           | 30 (A1)        | 45       |         |         |
| S6-STP-C4 | Channel 12 -        | PLW-A5    | 100            | 13       |         |         |
| 50 511 01 | Channel 12gnd shld  | 120010    | 36 (A1)        | 46       |         |         |
|           | Channel 13 +        |           | 86             | 30       |         |         |
| S6-STP-D1 | Channel 13 -        | PLW-T1    | 87             | 14       |         |         |
|           | Channel 13gnd shld  |           | 36 (A1)        | 47       |         |         |
|           | Channel 14 +        |           | 97             | 31       |         |         |
| S6-STP-D2 | Channel 14 -        | PLW-B4    | 98             | 15       |         |         |
|           | Channel 14gnd shid  |           | 36 (A1)        | 48       |         |         |
| S6 STP D3 | Channel 15 +        | PI W C4   | 108            | 32       |         |         |
| 50-511-05 | Channel 15gnd shid  | 11.00-04  | 36 (A1)        | 49       |         |         |
|           | Channel 16 +        |           | 116            | 33       |         |         |
| S6-STP-D4 | Channel 16 -        | PLW-B3    | 117            | 17       |         |         |
|           | Channel 16gnd shld  |           | 36 (A1)        | 50       |         |         |
|           | Channel 17 +        |           | 55             |          | 1       |         |
| S6-STP-E1 | Channel 17 -        | PLW-C2    | 66             |          | 18      |         |
|           | Channel 17gnd shld  |           | 128 (A2)       |          | 34      |         |
| CA OTD ED | Channel 18 +        | DI W D2   | 67             |          | 2       |         |
| 50-51P-E2 | Channel 18 -        | PLW-B2    | /8             |          | 19      |         |
|           | Channel 19 +        |           | 128 (A2)       |          | 33      |         |
| S6-STP-E3 | Channel 19 -        | PLW-B1    | 70             |          | 20      |         |
|           | Channel 19gnd shld  |           | 128 (A2)       |          | 36      |         |
|           | Channel 20 +        |           | 88             |          | 4       |         |
| S6-STP-E4 | Channel 20 -        | PLW-A3    | 89             |          | 21      |         |
|           | Channel 20gnd shld  |           | 128 (A2)       |          | 37      |         |
|           | Channel 21 +        | DI NU A A | 99             |          | 5       |         |
| 56-51P-F1 | Channel 21 -        | PLW-A4    | 100            |          | 22      |         |
|           | Channel 22 +        |           | 128 (A2)       |          | 58      |         |
| S6-STP-F2 | Channel 22 -        | PLW-A1    | 111            |          | 23      |         |
|           | Channel 22gnd shld  |           | 128 (A2)       |          | 39      |         |
|           | Channel 23 +        |           | 118            |          | 7       |         |
| S6-STP-F3 | Channel 23 -        | PLW-DK1   | 119            |          | 24      |         |
|           | Channel 23gnd shld  |           | 128 (A2)       |          | 40      |         |
| SC STD EA | Channel 24 +        |           | 112            |          | 8       |         |
| 50-511-14 | Channel 24 -        | PLW-A2    | 120            | -        | 41      |         |
|           | GND WIRE            |           | 128 (A2)       |          | 9       |         |
|           | Channel 25 +        |           | 90             |          | 26      |         |
| S6-STP-G1 | Channel 25 -        | PLW-E1    | 79             |          | 10      |         |
|           | Channel 25gnd shld  |           | 128 (A2)       |          | 43      |         |
|           | Channel 26 +        |           | 102            |          | 27      |         |
| S6-STP-G2 | Channel 26 -        | PLW-E2    | 101            |          | 11      |         |
|           | Channel 26gnd shld  |           | 128 (A2)       |          | 44      |         |
| SG STD C2 | Channel 27 +        | DI W E2   | 92             |          | 28      |         |
| 50-517-05 | Channel 27 ond shid | FLW-ES    | 128 (Δ2)       |          | 45      |         |
|           | Channel 28 +        |           | 103            | 1        | 29      |         |
| S6-STP-G4 | Channel 28 -        | PLW-E4    | 113            |          | 13      |         |
|           | Channel 28gnd shld  |           | 128 (A2)       | <u> </u> | 46      |         |
|           | Channel 29 +        |           | 58             |          | 30      |         |
| S6-STP-H1 | Channel 29 -        | PLW-D1    | 46             |          | 14      |         |
|           | Channel 29gnd shld  |           | 128 (A2)       |          | 47      |         |





|            | Name                | Pixel    | 128Way #6     | DCU J14       | DCU J15       | DCU J16       |
|------------|---------------------|----------|---------------|---------------|---------------|---------------|
|            | Channel 30 +        | I IACI   | 68            | DCC 014       | 31            | DCC 910       |
| S6-STP-H2  | Channel 30 -        | PLW-D2   | 57            |               | 15            |               |
| 50 511 112 | Channel 30gnd shld  | 120 02   | 128 (A2)      |               | 48            |               |
|            | Channel 31 +        |          | 69            |               | 32            |               |
| S6-STP-H3  | Channel 31 -        | PLW-D3   | 80            |               | 16            |               |
| 50 511 115 | Channel 31 gnd shld | 12, 20   | 128 (A2)      |               | 49            |               |
|            | Channel 32 +        |          | 70            |               | 33            |               |
| S6-STP-H4  | Channel 32 -        | PI W-D4  | 81            |               | 17            |               |
| 50 511 111 | Channel 32grid shid |          | 128 (A2)      |               | 50            |               |
|            | Channel 33 +        |          | 23            |               |               | 1             |
| S6-STP-I1  | Channel 33 -        | PLW-C1   | 34            |               |               | 18            |
| 50 511 11  | Channel 33gnd shld  | 12.0.01  | 4 (A3)        |               |               | 34            |
|            | Channel 34 +        |          | 33            |               |               | 2             |
| S6-STP-I2  | Channel 34 -        | PLW-C3   | 45            |               |               | 19            |
| 50 511 12  | Channel 34gnd shld  | 12.0.05  | 4 (A3)        |               |               | 35            |
|            | Channel 35 +        |          | 44            |               |               | 3             |
| S6-STP-13  | Channel 35 -        | PLW-C5   | 56            |               |               | 20            |
| 50 511 15  | Channel 35ond shid  | 12.0.05  | 4 (A3)        |               |               | 36            |
|            | Channel 36 +        |          | 22            |               |               | 4             |
| S6-STP-I4  | Channel 36 -        | PLW-T2   | 32            |               |               | 21            |
| 50 511 11  | Channel 36gnd shld  | 12,012   | 4 (A3)        |               |               | 37            |
|            | Channel 37 +        |          | 13            |               |               | 5             |
| S6-STP-I1  | Channel 37 -        | PLW-E5   | 12            |               |               | 22            |
| 50 511 01  | Channel 37ond shid  | 12,120   | 4 (A3)        |               |               | 38            |
|            | Channel 38 +        |          | 21            |               |               | 6             |
| S6-STP-J2  | Channel 38 -        | PLW-C6   | 20            |               |               | 23            |
|            | Channel 38gnd shld  |          | 4 (A3)        |               |               | 39            |
|            | Channel 39 +        |          | 31            |               |               | 7             |
| S6-STP-J3  | Channel 39 -        | PLW-C8   | 43            |               |               | 24            |
|            | Channel 39gnd shld  |          | 4 (A3)        |               |               | 40            |
|            | Channel 40 +        |          | 42            |               |               | 8             |
| S6-STP-J4  | Channel 40 -        | PLW-D5   | 54            |               |               | 25            |
|            | Channel 40gnd shld  |          | 4 (A3)        |               |               | 41            |
|            | GND WIRE            |          | 4 (A3)        |               |               | 9             |
|            | Channel 41 +        | -        | 10            |               |               | 26            |
| S6-STP-K1  | Channel 41 -        | PLW-D6   | 11            |               |               | 10            |
|            | Channel 41gnd shld  |          | 4 (A3)        |               |               | 43            |
|            | Channel 42 +        |          | 19            |               |               | 27            |
| S6-STP-K2  | Channel 42 -        | PLW-D7   | 29            |               |               | 11            |
|            | Channel 42gnd shld  |          | 4 (A3)        |               |               | 44            |
|            | Channel 43 +        | DI UL DA | 41            |               |               | 28            |
| S6-S1P-K3  | Channel 43 -        | PLW-D8   | 30            |               |               | 12            |
|            | Channel 43gnd shid  |          | 4 (A3)        |               |               | 45            |
| SC STD VA  | Channel 44 +        |          | 53            |               |               | 12            |
| 50-51F-K4  | Channel 44 -        | PLW-E/   | 52            |               |               | 15            |
|            | Channel 44gnd shid  |          | 4 (A3)        |               |               | 40            |
| S6 STP I 1 | Channel 45 +        | DI W E6  | 17            |               |               | 14            |
| 50-511-L1  | Channel 45 -        | ILW-LO   | 4 (43)        |               |               | 47            |
|            | Channel 46 +        |          | 18            |               |               | 31            |
| S6-STP-L2  | Channel 46 -        | PLW-E8   | 28            |               |               | 15            |
|            | Channel 46gnd shld  |          | 4 (A3)        | 1             |               | 48            |
|            | Channel 47 +        |          | 16            | 1             |               | 32            |
| S6-STP-L3  | Channel 47 -        | PLW-DK2  | 27            |               |               | 16            |
|            | Channel 47gnd shld  | 1        | 4 (A3)        |               |               | 49            |
|            | Channel 48 +        |          | 40            |               |               | 33            |
| S6-STP-L4  | Channel 48 -        | PLW-E9   | 39            |               |               | 17            |
| <u> </u>   | Channel 48gnd shld  |          | 4 (A3)        |               |               | 50            |
|            | Harness Overshield  |          | EMC Backshell | EMC Backshell | EMC Backshell | EMC Backshell |

| FPU Fa | FPU Faraday Shield Link Pins |     |     |     |     |     |     |     |     |     |     |     |
|--------|------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1      | 2                            | 3   | 5   | 6   | 7   | 8   | 14  | 15  | 24  | 25  | 35  | 82  |
| 93     | 94                           | 104 | 105 | 114 | 115 | 121 | 122 | 123 | 124 | 125 | 126 | 127 |



### SMEC Control Tail Listing (FPU J29)

| Function                                  | 37way<br>J29 | Max.<br>current | Wire<br>lay-up | Max<br>Ohms | 128Way #11 |
|-------------------------------------------|--------------|-----------------|----------------|-------------|------------|
| SMEC Drive Coil I+                        | 1            | 100mA           | Insulated      | 5           | 12         |
| SMEC Drive Coil I-                        | 2            | 100mA           | screened       | 5           | 5          |
| SMEC Drive Coil shld                      | 20           | N/A             | twisted pair   | N/A         | A (13)     |
| SMEC Drive Coil (Rob) I+                  | 21           | 100mA           | Insulated      | 5           | 22         |
| SMEC Drive Coil (Rob) I-                  | 22           | 100mA           | screened       | 5           | 7          |
| SMEC Drive Coil (Rob) shld                | 3            | N/A             | twisted pair   | N/A         | A (13)     |
| SMEC Drive Coil Sense+                    | 4            | 10 µA           | Insulated      | 500         | 14         |
| SMEC Drive Coil Sense-                    | 5            | 10 µA           | screened       | 500         | 24         |
| SMEC Drive Coil shld                      | 23           | N/A             | twisted pair   | N/A         | 23         |
| SMEC position sensor Led power supply     | 7            | 1mA             | Insulated      | 100         | 9          |
| SMEC position sensor Led power return     | 8            | 1mA             | screened       | 100         | 2          |
| SMEC position sensor Led power Shield     | 26           | N/A             | twisted pair   | N/A         | 3          |
| SMEC position sensor power supply         | 27           | 1mA             | Insulated      | 100         | 11         |
| SMEC position sensor power return         | 28           | 1mA             | screened       | 100         | 4          |
| SMEC position sensor power Shield         | 9            | N/A             | twisted pair   | N/A         | 10         |
| SMEC position sensor photodiode #1 I+     | 10           | 20 µA           | Insulated      | 1000        | 18         |
| SMEC position sensor photodiode #1 I-     | 11           | 20 µA           | screened       | 1000        | 19         |
| SMEC position sensor photodiode Shield    | 29           | N/A             | twisted pair   | N/A         | B (29)     |
| SMEC pos. sensor photodiode #1 feedback + | 30           | 10 µA           | Insulated      | 1000        | 56         |
| SMEC pos. sensor photodiode #1 feedback - | 31           | 10 µA           | screened       | 1000        | 55         |
| SMEC pos. sensor photodiode feedback Shld | 12           | N/A             | twisted pair   | N/A         | C (44)     |
| SMEC position sensor photodiode #2 I+     | 13           | 20 µA           | Insulated      | 1000        | 42         |
| SMEC position sensor photodiode #2 I-     | 14           | 20 µA           | screened       | 1000        | 41         |
| SMEC position sensor photodiode Shield    | 32           | N/A             | twisted pair   | N/A         | B (30)     |
| SMEC pos. sensor photodiode #2 feedback + | 33           | 10 µA           | Insulated      | 1000        | 34         |
| SMEC pos. sensor photodiode #2 feedback - | 34           | 10 µA           | screened       | 1000        | 33         |
| SMEC pos. sensor photodiode feedback Shld | 15           | N/A             | twisted pair   | N/A         | C (45)     |
| SMEC position sensor photodiode #3 I+     | 16           | 20 µA           | Insulated      | 1000        | 20         |
| SMEC position sensor photodiode #3 I-     | 17           | 20 µA           | screened       | 1000        | 21         |
| SMEC position sensor photodiode Shield    | 35           | N/A             | twisted pair   | N/A         | B (31)     |
| SMEC pos. sensor photodiode #3 feedback + | 36           | 10 µA           | Insulated      | 1000        | 58         |
| SMEC pos. sensor photodiode #3 feedback - | 37           | 10 µA           | screened       | 1000        | 57         |
| SMEC pos. sensor photodiode feedback Shld | 18           | N/A             | twisted pair   | N/A         | C (46)     |

29 contacts used.

SMEC above based on "Cryo\_harness\_010906.doc".

| FPU Faraday Shield Link Pins (C11, I11 and S11) |     |     |     |     |     |     |     |            |  |
|-------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|------------|--|
| 1                                               | 6   | 8   | 35  | 47  | 70  | 82  | 94  | 104        |  |
| 107                                             | 109 | 110 | 122 | 123 | 124 | 125 | 126 | $\searrow$ |  |





#### **Contact details**

| 1          | Name               | Pixel   | JFS P05 | JFS P06 | 37-Way C | 37-Way D | CVV        |
|------------|--------------------|---------|---------|---------|----------|----------|------------|
|            |                    |         |         |         | JFS P09  | JFS P10  | 128-Way #1 |
|            | Channel 1 +        |         | 1       |         |          |          | 26         |
|            | Channel 1 -        | SLW-R1  | 14      |         |          |          | 37         |
|            | Channel 1gnd shld  |         | 13 (A)  |         |          |          | 115 (A1)   |
|            | Channel 2 +        |         | 2       |         |          |          | 38         |
| K-A        | Channel 2 -        | SLW-T1  | 15      |         |          |          | 49         |
| 2a         | Channel 2gnd shld  |         | 13 (A)  |         |          |          | 115 (A1)   |
| 1-1        | Channel 3 +        |         | 3       |         |          |          | 48         |
| 0          | Channel 3 -        | SLW-C1  | 16      |         |          |          | 60         |
|            | Channel 3gnd shld  |         | 13 (A)  |         |          |          | 115 (A1)   |
|            | Channel 4 +        |         | 4       |         |          |          | 59         |
|            | Channel 4 -        | SLW-DK1 | 17      |         |          |          | 71         |
|            | Channel 4gnd shld  |         | 13 (A)  |         |          |          | 115 (A1)   |
|            | Channel 5 +        |         | 5       |         |          |          | 50         |
|            | Channel 5 -        | SLW-B1  | 18      |         |          |          | 61         |
|            | Channel 5gnd shld  |         | 13 (A)  |         |          |          | 115 (A1)   |
|            | Channel 6 +        |         | 6       |         |          |          | 62         |
| x-B        | Channel 6 -        | SLW-D1  | 19      |         |          |          | 51         |
| 2a         | Channel 6gnd shld  |         | 13 (A)  |         |          |          | 115 (A1)   |
| 1-1        | Channel 7 +        |         | 20      |         |          |          | 63         |
| 0          | Channel 7 -        | SLW-E1  | 7       |         |          |          | 75         |
|            | Channel 7gnd shld  |         | 13 (A)  |         |          |          | 115 (A1)   |
|            | Channel 8 +        |         | 21      |         |          |          | 74         |
|            | Channel 8 -        | SLW-A1  | 8       |         |          |          | 73         |
|            | Channel 8gnd shld  |         | 13 (A)  |         |          |          | 115 (A1)   |
|            | Channel 9 +        |         | 22      |         |          |          | 83         |
|            | Channel 9 -        | SLW-C2  | 9       |         |          |          | 72         |
|            | Channel 9gnd shld  |         | 13 (A)  |         |          |          | 115 (A1)   |
| <b>T</b> \ | Channel 10 +       |         | 23      |         |          |          | 95         |
| -v-        | Channel 10 -       | SLW-D2  | 10      |         |          |          | 84         |
| 2a         | Channel 10gnd shld |         | 13 (A)  |         |          |          | 115 (A1)   |
| 1-1        | Channel 11 +       |         | 24      |         |          |          | 96         |
| 0          | Channel 11 -       | SLW-B2  | 11      |         |          |          | 85         |
|            | Channel 11gnd shld |         | 13 (A)  |         |          |          | 115 (A1)   |
|            | Channel 12 +       |         | 25      |         |          |          | 106        |
|            | Channel 12 -       | SLW-E2  | 12      |         |          |          | 107        |
|            | Channel 12gnd shld |         | 13 (A)  |         |          |          | 115 (A1    |
| Q          | Channel 13 +       |         |         | 1       |          |          | 86         |
| ax-        | Channel 13 -       | SLW-A2  |         | 14      |          |          | 87         |
| -12        | Channel 1gnd shld  |         |         | 13 (A)  |          |          | 122 (A2)   |
| CI         | Channel 14 +       | SLW-C3  |         | 2       |          |          | 97         |
|            | Channel 14 -       |         |         | 15      |          |          | 98         |



|          | Name                                | Pixel   | JFS P05  | JFS P06     | 37-Way C | 37-Way D | CVV<br>128 Way #1  |
|----------|-------------------------------------|---------|----------|-------------|----------|----------|--------------------|
|          | Channel 149nd shid                  |         |          | 13 (A)      | JFS P09  | JFS PIU  | 128-way #1         |
|          | Channel 15 +                        |         |          | 3           |          |          | 108                |
|          | Channel 15 -                        | SLW-D3  |          | 16          |          |          | 109                |
|          | Channel 15gnd shld                  |         |          | 13 (A)      |          |          | 122 (A2)           |
|          | Channel 16 +                        | CI W D2 |          | 4           |          |          | 116                |
|          | Channel 16gnd shld                  | 5L W-D5 |          | 13 (A)      |          |          | 122 (A2)           |
|          | Channel 17 +                        |         |          | 5           |          |          | 55                 |
|          | Channel 17 -                        | SLW-E3  |          | 18          |          |          | 66                 |
|          | Channel 17gnd shld                  |         |          | 13 (A)      |          |          | 122 (A2)           |
| ш        | Channel 18 +                        | SI W CA |          | 6           |          |          | 67                 |
| 2ax-     | Channel 18 -<br>Channel 18 and shid | 5L W-C4 |          | 13 (A)      |          |          | 122 (A2)           |
| 1-12     | Channel 19 +                        |         |          | 20          |          |          | 76                 |
| C        | Channel 19 -                        | SLW-DK2 |          | 7           |          |          | 77                 |
|          | Channel 19 gnd shld                 |         |          | 13 (A)      |          |          | 122 (A2)           |
|          | Channel 20 +                        | SI W D4 |          | 21          |          |          | 88                 |
|          | Channel 20 and shid                 | 3L W-D4 |          | 0<br>13 (A) |          |          | 122 (A2)           |
|          | Channel 21 +                        |         |          | 22          |          |          | 99                 |
|          | Channel 21 -                        | SLW-C5  |          | 9           |          |          | 100                |
|          | Channel 21gnd shld                  |         |          | 13 (A)      |          |          | 122 (A2)           |
| ц        | Channel 22 +                        | SI W-B4 |          | 23          |          |          | 110                |
| 2ax-     | Channel 22gnd shld                  | SEW-D4  |          | 13 (A)      |          |          | 122 (A2)           |
| 1-1      | Channel 23 +                        |         |          | 24          |          |          | 118                |
| C        | Channel 23 -                        | SLW-A3  |          | 11          |          |          | 119                |
|          | Channel 23gnd shld                  |         |          | 13 (A)      |          |          | 122 (A2)           |
|          | Channel 24 +                        | SI W-T2 |          | 25          |          |          | 112                |
|          | Channel 24gnd shld                  | 52.0 12 |          | 13 (A)      |          |          | 122 (A2)           |
| ĿP.      | PTC Bias_A +ve                      |         |          |             | 1        |          | 7                  |
| LS       | PTC Bias_A -ve                      |         |          |             | 20       |          | 14                 |
| S        | PTC Ground A                        |         |          |             | 2(A3)    |          | 46 (A3)<br>46 (A3) |
|          | PTC JFETV Bias A +ve                |         |          |             | 21       |          | 24                 |
| ST       | PTC JFETV Bias_A -ve                |         |          |             | 3        |          | 35                 |
|          | PTC JFETV Bias_A Shield             |         |          |             | 2 (A3)   |          | 46 (A3)            |
| TP       | SLW_BIAS_A1+ve                      |         |          |             | 22       |          | 121                |
| S        | SLW BIAS A1 shld                    |         |          |             | 6(B3)    |          | 104(B3)            |
| Ь        | SLW_BIAS_A2 +ve                     |         |          |             | 5        |          | 102                |
| ST       | SLW_BIAS_A2 -ve                     |         |          |             | 24       |          | 101                |
|          | SLW_BIAS_A2 shld                    |         |          |             | 23(B3)   |          | 104(B3)            |
| dT.      | SLW_JFETV_A1+ve                     |         |          |             | 25       |          | 92                 |
| S        | SLW_JFETV_A1 shld                   |         |          |             | 6(B3)    |          | 104(B3)            |
| ĿP.      | SLW_JFETV_A2 +ve                    |         |          |             | 8        |          | 103                |
| IS       | SLW_JFETV_A2 -ve                    |         |          |             | 27       |          | 113                |
| - C      | SLW_JFETV_A2 shld                   |         |          |             | 26(B3)   |          | 104(B3)            |
| 5        | SSW BIAS1 A +ve                     |         |          |             | 28       |          | 90                 |
| STI      | SSW_BIAS1_A -ve                     |         | -        |             | 10       |          | 79                 |
|          | SSW_BIAS1_A shld                    |         |          |             | 9(C3)    |          | 93(C3)             |
| ET .     | SSW_JFETV1_A +ve                    |         |          |             | 11       |          | 68                 |
| S        | SSW_JFETV1_A -ve                    |         |          |             | 30       |          | 57<br>02(C2)       |
| S        | SSW GND WIRE A                      |         |          |             | 12(C3)   |          | 93(C3)             |
| Ь        | SSW_BIAS2_A +ve                     |         |          |             | 13       |          | 69                 |
| ST       | SSW_BIAS2_A -ve                     |         |          |             | 32       |          | 80                 |
| <u> </u> | SSW_BIAS2_A shid                    |         | <u> </u> |             | 31(C3)   |          | 93(C3)<br>70       |
| STP      | SSW_JFETV2_A -ve                    |         |          |             | 15       |          | 81                 |
|          | SSW_JFETV2_A shld                   |         |          |             | 14(C3)   |          | 93(C3)             |
| S        | S_HEATER GROUND A                   |         |          |             | NC       |          | 22(D3)             |
| ΥTΡ      | SLW JFET HEATER A +ve               |         |          | +           | 36       |          | 34                 |
|          | SLW_JFET_HEATER_A shld              |         |          | 1           | 18(D3)   |          | 22(D3)             |
| ST<br>P  | SSW_JFET_HEATER_A +ve               |         |          |             | 37       |          | 33                 |
|          | SSW_JFET_HEATER_A -ve               |         |          |             | 19       |          | 45                 |



|              | Name                    | Pixel | JFS P05   | JFS P06   | 37-Way C       | 37-Way D  | CVV<br>129 Way #1 |
|--------------|-------------------------|-------|-----------|-----------|----------------|-----------|-------------------|
|              | COW HEET HEATED A -111  |       |           |           | <b>JFS P09</b> | JFSF10    | 120-way #1        |
|              | SSW_JFE1_HEATER_A shid  |       |           |           | 18(D3)         |           | 22(D3)            |
| ΓP           | PIC_JFEI_HEATER_A +ve   |       |           |           | 16             |           | 44                |
| Ň            | PIC_JFEI_HEATER_A -ve   |       |           | -         | 35             |           | 56                |
|              | PIC_JFET_HEATER_A shid  |       |           |           | NC             | 1         | 22 (D3)           |
| LP           | PTC Bias_B+ve           |       |           |           |                | 1         | 1                 |
| S            | PTC Bias_B -ve          |       |           |           |                | 20        | 8                 |
| ~            | PTC Bias_B Shield       |       |           |           |                | 2 (A4)    | 4(A4)             |
| S            | PTC Ground_B            |       |           |           |                | 2 (A4)    | 4(A4)             |
| LP           | PTC JFETV Bias_B+ve     |       |           |           |                | 21        | 3                 |
| $\mathbf{S}$ | PTC JFETV Bias_B -ve    |       |           |           |                | 3         | 2                 |
|              | PTC JFETV Bias_B Shield |       |           |           |                | 2 (A4)    | 4(A4)             |
| Ъ            | SLW_BIAS_B1+ve          |       |           |           |                | 22        | 13                |
| S            | SLW_BIAS_B1-ve          |       |           |           |                | 4         | 12                |
|              | SLW_BIAS_B1 shld        |       |           |           |                | 6(B4)     | 32(B4)            |
| Ч            | SLW_BIAS_B2 +ve         |       |           |           |                | 5         | 21                |
| LS           | SLW_BIAS_B2 -ve         |       |           |           |                | 24        | 20                |
|              | SLW_BIAS_B2 shld        |       |           |           |                | 23(B4)    | 32(B4)            |
| Ъ            | SLW_JFETV_B1 +ve        |       |           |           |                | 25        | 31                |
| LS           | SLW_JFETV_B1 -ve        |       |           |           |                | 7         | 43                |
|              | SLW_JFETV_B1 shld       |       |           |           |                | 6(B4)     | 32(B4)            |
| Ъ            | SLW_JFETV_B2 +ve        |       |           |           |                | 8         | 42                |
| ST           | SLW_JFETV_B2 -ve        |       |           |           |                | 27        | 54                |
|              | SLW_JFETV_B2 shld       |       |           |           |                | 6(B4)     | 32(B4)            |
| S            | SLW GND WIRE_B          |       |           |           |                | 6(B4)     | 32(B4)            |
| S            | SSW GND WIRE_B          |       |           |           |                | 12(C4)    | 40(C4)            |
| Р            | SSW_BIAS1_B +ve         |       |           |           |                | 28        | 10                |
| ST           | SSW_BIAS1_B -ve         |       |           |           |                | 10        | 11                |
|              | SSW_BIAS1_B shld        |       |           |           |                | 9(C4)     | 40(C4)            |
| Ь            | SSW_JFETV1_B +ve        |       |           |           |                | 11        | 19                |
| ST           | SSW_JFETV1_B -ve        |       |           |           |                | 30        | 29                |
|              | SSW_JFETV1_B shld       |       |           |           |                | 29(C4)    | 40(C4)            |
| Р            | SSW_BIAS2_B +ve         |       |           |           |                | 13        | 41                |
| ST           | SSW_BIAS2_B -ve         |       |           |           |                | 32        | 30                |
|              | SSW_BIAS2_B shld        |       |           |           |                | 31(C4)    | 40(C4)            |
| Р            | SSW_JFETV2_B +ve        |       |           |           |                | 33        | 53                |
| ST           | SSW_JFETV2_B -ve        |       |           |           |                | 15        | 52                |
|              | SSW_JFETV2_B shld       |       |           |           |                | 14(C4)    | 40 (C4)           |
| S            | S_HEATER GROUND _B      |       |           |           |                | NC        | 39(D4)            |
| Ρ            | SLW_HEATER_B +ve        |       |           |           |                | 17        | 18                |
| ST           | SLW_HEATER_B -ve        |       |           |           |                | 36        | 28                |
|              | SLW_HEATER_B shld       |       |           |           |                | 18(D4)    | 39(D4)            |
| Р            | SSW_HEATER_B +ve        |       |           |           |                | 37        | 9                 |
| ST           | SSW_HEATER_B -ve        |       |           |           |                | 19        | 17                |
|              | SSW_HEATER_B shld       |       |           |           |                | 18(D4)    | 39(D4)            |
| Ρ            | PTC_JFET_HEATER_A +ve   |       |           |           |                | 16        | 16                |
| ST           | PTC_JFET_HEATER_A -ve   |       |           |           |                | 35        | 27                |
|              | PTC_JFET_HEATER_A shld  |       |           |           |                | NC        | 39(D4)            |
|              | Harness Overshield      |       | EMC       | EMC       | EMC            | EMC       |                   |
|              |                         |       | Backshell | Backshell | Backshell      | Backshell |                   |

| FPU Farada | FPU Faraday Shield Link Pins S1/I1/C1 |     |     |     |     |     |     |     |  |
|------------|---------------------------------------|-----|-----|-----|-----|-----|-----|-----|--|
| 5          | 6                                     | 15  | 22  | 25  | 36  | 39  | 47  | 58  |  |
| 82         | 94                                    | 105 | 123 | 124 | 125 | 126 | 127 | 128 |  |









#### **Contact Details**

| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37-way P25    | 37-way P27       | 37-Way P26   | 37-Way P28       | 128-Way #3      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|--------------|------------------|-----------------|
| DSW IEETV1 A +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (PSW Bias A)  | (PMW/PLW Bias A) | (PSW Bias B) | (PMW/PLW Bias B) | 26              |
| PSW_JFETV1_A +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20            |                  |              |                  | 20              |
| PSW_JETV1_A shid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 (A1)        |                  |              |                  | 36 (A1)         |
| PSW_JFETV2 A+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3             |                  |              |                  | 38              |
| PSW JFETV2 A -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22            |                  |              |                  | 49              |
| PSW JFETV2 A shld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21 (A1)       |                  |              |                  | 36 (A1)         |
| PSW_JFETV3_A +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23            |                  |              |                  | 48              |
| PSW_JFETV3_A -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5             |                  |              |                  | 60              |
| PSW_JFETV3_A shld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 (A1)        |                  |              |                  | 36 (A1)         |
| PSW_JFETV4_A +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6             |                  |              |                  | 59              |
| PSW_JFETV4_A -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25            |                  |              |                  | 71              |
| PSW_JFETV4_A shld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24 (A1)       |                  |              |                  | 36 (A1)         |
| PSW_JFETV5_A+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20            |                  |              |                  | 50              |
| PSW_JFETV5_A shid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ο<br>7 (Δ1)   |                  |              |                  | 36 (A1)         |
| PSW_JFETV6_A +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9             |                  |              |                  | 62              |
| PSW_JFETV6 A -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28            |                  |              |                  | 51              |
| PSW JFETV6 A shld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27 (A1)       |                  |              |                  | 36 (A1)         |
| PSW GRND_A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 (A1)       |                  |              |                  | 36 (A1)         |
| PSW_BIAS1/2_A +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11            |                  |              |                  | 63              |
| PSW_BIAS1/2_A -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29            |                  |              |                  | 75              |
| PSW_BIAS1/2_A shld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30 (A1)       |                  |              |                  | 36 (A1)         |
| PSW_BIAS3/4_A +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31            |                  |              |                  | 74              |
| PSW_BIAS3/4_A -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12            |                  |              |                  | 73              |
| PSW_BIAS3/4_A shid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13 (A1)       |                  |              |                  | 36 (A1)         |
| PSW_BIAS5/6_A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14            |                  |              |                  | 83              |
| PSW BIAS5/6 A shid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33 (A1)       |                  |              |                  | 36 (A1)         |
| PSW_BHA56/0_11 Shid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34            |                  |              |                  | 95              |
| PSW HEATER A1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15            |                  |              |                  | 84              |
| PSW_HEATER_A1 shld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16 (B1)       |                  |              |                  | 105 (B1)        |
| PSW_HEATER_A2 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17            |                  |              |                  | 96              |
| PSW_HEATER_A2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35            |                  |              |                  | 85              |
| PSW_HEATER_A2 shld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36 (B1)       |                  |              |                  | 105 (B1)        |
| PSW_HEATER_A3 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 37            |                  |              |                  | 106             |
| PSW_HEATER_A3 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18<br>2( (D1) |                  |              |                  | 107             |
| PSW_HEATER_A3 shid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36 (B1)       | 20               |              |                  | 105 (B1)        |
| PMW IFFTV1 A -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | 20               |              |                  | 87              |
| PMW JFETV1 A shld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 1 (A2)           |              |                  | 64 (A2)         |
| PMW JFETV2 A +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | 3                |              |                  | 97              |
| PMW JFETV2 A -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | 22               |              |                  | 98              |
| PMW_JFETV2_A shld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 21 (A2)          |              |                  | 64 (A2)         |
| PMW_JFETV3_A +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | 23               |              |                  | 108             |
| PMW_JFETV3_A -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | 5                |              |                  | 109             |
| PMW_JFETV3_A shld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 4 (A2)           |              |                  | 64 (A2)         |
| PMW_JFETV4_A +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | 6                |              |                  | 116             |
| PMW_JFETV4_A -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | 25               |              |                  | 117             |
| PMW_JFE1V4_A Shid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 24 (A2)<br>26    |              |                  | 04 (A2)<br>76   |
| $\frac{PWW}{BIAS1/2} = \frac{PWW}{A} = \frac{PWW}{BIAS1/2} = \frac{PWW}{A} = PW$ |               | 8                |              |                  | 70              |
| PMW BIAS1/2 A shid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 7 (A2)           |              |                  | 64 (A2)         |
| PMW BIAS3/4 A +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | 27               |              |                  | 88              |
| PMW BIAS3/4 A -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | 9                |              |                  | 89              |
| PMW_BIAS3/4_A shld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 28 (A2)          |              |                  | 64(A2)          |
| PMW GND WIRE_A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | 28 (A2)          |              |                  | 64 (A2)         |
| PMW HEATER A1 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u>      | 29               |              |                  | 103             |
| PMW HEATER A1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | 10               |              |                  | 113             |
| PMW HEATER A1 shld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 11(B2)           |              |                  | 114 (B2)        |
| PIVIW HEATER A2 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 12               |              |                  | 102             |
| PMW HEATER A2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +             | 30<br>11(R2)     |              |                  | 101<br>114 (R2) |
| PLW HEATER A +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | 13               |              |                  | 97              |
| PLW HEATER A -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1             | 31               |              |                  | 104             |
| PLW HEATER A shld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1             | 11(B2)           |              |                  | 93 (B2)         |



| Name                                      | 37-way P25<br>(PSW Bias A) | 37-way P27<br>(PMW/PI W Bias A) | 37-Way P26<br>(PSW Bias B) | 37-Way P28<br>(PMW/PL W Bias B) | 128-Way #3    |
|-------------------------------------------|----------------------------|---------------------------------|----------------------------|---------------------------------|---------------|
| PLW JFETV1 A+                             | (15 W Dias N)              | 14                              | (15 W Dias D)              |                                 | 99            |
| PLW JFETV1 A -                            |                            | 32                              |                            |                                 | 100           |
| PLW_JFETV1_A shld                         |                            | 33 (C2)                         |                            |                                 | 128 (C2)      |
| PLW_JFETV2_A +                            |                            | 34                              |                            |                                 | 110           |
| PLW_JFETV2_A -                            |                            | 15                              |                            |                                 | 111           |
| PLW_JFETV2_A shld                         | -                          | 16 (C2)                         |                            |                                 | 128 (C2)      |
| PLW_BIASI_A+                              |                            | 17                              |                            |                                 | 118           |
| PLW_DIASI_A -                             |                            | 35<br>36 (C2)                   |                            |                                 | 119           |
| PLW BIAS2 A +                             |                            | 30 (C2)                         |                            |                                 | 1128 (C2)     |
| PLW BIAS2 A -                             |                            | 18                              |                            |                                 | 120           |
| PLW BIAS2 A shld                          |                            | 19 (C2)                         |                            |                                 | 128 (C2)      |
| PLW GROUND WIRE A                         |                            | 19 (C2)                         |                            |                                 | 128 (C2)      |
| PSW_JFETV1_B +                            |                            |                                 | 20                         |                                 | 42            |
| PSW_JFETV1_B -                            |                            |                                 | 2                          |                                 | 54            |
| PSW_JFETV1_B shld                         |                            |                                 | 1 (A3)                     |                                 | 1 (A3)        |
| PSW_JFETV2_B +                            |                            |                                 | 3                          |                                 | 53            |
| PSW_JFETV2_B -                            |                            |                                 | 22                         |                                 | 52<br>1 (A 3) |
| PSW_IFFTV3_B+                             |                            |                                 | 21 (A3)<br>23              |                                 | 41            |
| PSW JFETV3 B -                            |                            |                                 | 5                          |                                 | 30            |
| PSW_JFETV3_B shld                         |                            |                                 | 4 (A3)                     |                                 | 1 (A3)        |
| PSW_JFETV4_B +                            |                            |                                 | 6                          |                                 | 10            |
| PSW_JFETV4_B -                            |                            |                                 | 25                         |                                 | 11            |
| PSW_JFETV4_B shld                         |                            |                                 | 24 (A3)                    |                                 | 1 (A3)        |
| PSW_JFETV5_B +                            |                            |                                 | 26                         |                                 | 19            |
| PSW_JFETV5_B -                            |                            |                                 | 8                          |                                 | 29            |
| PSW_JFETV6_B +                            |                            |                                 | (A3)                       |                                 | 1 (A3)<br>16  |
| PSW_JFETV6_B -                            |                            |                                 | 28                         |                                 | 27            |
| PSW JFETV6 B shld                         |                            |                                 | 27 (A3)                    |                                 | 1 (A3)        |
| PSW GRND B                                |                            |                                 | 10 (A3)                    |                                 | 1 (A3)        |
| PSW_BIAS1/2_B +                           |                            |                                 | 11                         |                                 | 40            |
| PSW_BIAS1/2_B -                           |                            |                                 | 29                         |                                 | 39            |
| PSW_BIAS1/2_B shld                        |                            |                                 | 30 (A3)                    |                                 | 1 (A3)        |
| PSW_BIAS3/4_B +                           |                            |                                 | 31                         |                                 | 18            |
| PSW_BIAS3/4_B -                           |                            |                                 | 12                         |                                 | 28            |
| PSW_BIAS5/6_B +                           |                            |                                 | 13 (A3)<br>14              |                                 | 9<br>9        |
| PSW BIAS5/6 B -                           |                            |                                 | 32                         |                                 | 17            |
| PSW BIAS5/6 B shld                        |                            |                                 | 33 (A3)                    |                                 | 1 (A3)        |
| PSW_HEATER_B1 +                           |                            |                                 | 34                         |                                 | 13            |
| PSW_HEATER_B1 -                           |                            |                                 | 15                         |                                 | 12            |
| PSW_HEATER_B1 shld                        |                            |                                 | 16 (B3)                    |                                 | 5 (B3)        |
| PSW_HEATER_B2 +                           |                            |                                 | 17                         |                                 | 21            |
| PSW_HEATER_B2 -                           |                            |                                 | 35<br>26 (P2)              |                                 | 20<br>5 (P2)  |
| PSW_HEATER_B3 +                           |                            |                                 | 30 (B3)                    |                                 | 31            |
| PSW_HEATER_B3 -                           |                            |                                 | 18                         |                                 | 43            |
| PSW_HEATER_B3 shld                        |                            |                                 | 36 (B3)                    |                                 | 5 (B3)        |
| PMW_JFETV1_B +                            |                            |                                 |                            | 20                              | 7             |
| PMW_JFETV1_B -                            |                            |                                 |                            | 2                               | 14            |
| PMW_JFETV1_B shld                         |                            |                                 |                            | 1 (A4)                          | 6 (A4)        |
| PMW_JFETV2_B+                             |                            |                                 |                            | 3                               | 24            |
| PWIW JFEIV2 B -<br>DMW IFETV2 D ab14      |                            |                                 |                            | 22                              | 55            |
| PMW IFETV3 R +                            |                            |                                 | L                          | 21 (A4)<br>23                   | 0 (A4)<br>23  |
| PMW JFETV3 B -                            |                            |                                 |                            | 5                               | 34            |
| PMW JFETV3 B shld                         |                            |                                 |                            | 4 (A4)                          | 6 (A4)        |
| PMW_JFETV4_B +                            |                            |                                 |                            | 6                               | 33            |
| PMW_JFETV4_B -                            |                            |                                 |                            | 25                              | 45            |
| PMW_JFETV4_B shld                         |                            |                                 |                            | 24 (A4)                         | 6 (A4)        |
| PMW_BIAS1/2_B +                           |                            |                                 |                            | 26                              | 44            |
| PMW_BIAS1/2_B -                           |                            |                                 |                            | 8                               | 56            |
| $\frac{PWW}{PIAS3/4} \xrightarrow{P} \pm$ |                            |                                 |                            | / (A4)                          | 0 (A4)        |
| PMW BIAS3/4 B -                           |                            |                                 |                            | <u> </u>                        | 32            |
| PMW BIAS3/4 B shld                        |                            |                                 |                            | 28 (A4)                         | 6 (A4)        |
| PMW GND WIRE_B                            |                            |                                 |                            | 28 (A4)                         | 6 (A4)        |
| PMW HEATER B1 +                           |                            |                                 |                            | 29                              | 55            |



| N                   | 05 D05       |                  | 25 11/ DA(   | 25 NV - D20      | 100 337 1/2 |
|---------------------|--------------|------------------|--------------|------------------|-------------|
| Name                | 37-way P25   | 37-way P27       | 37-Way P26   | 37-Way P28       | 128-Way #3  |
|                     | (PSW Bias A) | (PMW/PLW Bias A) | (PSW Bias B) | (PMW/PLW Bias B) |             |
| PMW HEATER B1 -     |              |                  |              | 10               | 66          |
| PMW HEATER B1 shld  |              |                  |              | 11 (B4)          | 65 (B4)     |
| PMW HEATER B2 +     |              |                  |              | 12               | 67          |
| PMW HEATER B2 -     |              |                  |              | 30               | 78          |
| PMW HEATER B2 shld  |              |                  |              | 11 (B4)          | 65 (B4)     |
| PLW HEATER B +      |              |                  |              | 13               | 90          |
| PLW HEATER B -      |              |                  |              | 31               | 79          |
| PLW HEATER B shld   |              |                  |              | 11 (B4)          | 65 (B4)     |
| PLW_JFETV1_B +      |              |                  |              | 14               | 70          |
| PLW_JFETV1_B -      |              |                  |              | 32               | 81          |
| PLW_JFETV1_B shld   |              |                  |              | 33 (C4)          | 91 (C4)     |
| PLW_JFETV2_B+       |              |                  |              | 34               | 69          |
| PLW_JFETV2_B -      |              |                  |              | 15               | 80          |
| PLW_JFETV2_B shld   |              |                  |              | 16 (C4)          | 91 (C4)     |
| PLW_BIAS1_B +       |              |                  |              | 17               | 68          |
| PLW_BIAS1_B -       |              |                  |              | 35               | 57          |
| PLW_BIAS1_B shld    |              |                  |              | 36 (C4)          | 91 (C4)     |
| PLW_BIAS2_B+        |              |                  |              | 37               | 58          |
| PLW_BIAS2_B -       |              |                  |              | 18               | 46          |
| PLW_BIAS2_B shld    |              |                  |              | 19 (C4)          | 91 (C4)     |
| PLW GROUND WIRE B   |              |                  |              | 19 (C4)          | 91 (C4)     |
| Harness Over-shield | EMC          | EMC Backshell    | EMC          | EMC Backshell    | EMC         |
|                     | Backshell    |                  | Backshell    |                  | Backshell   |

| FPU Far | aday Shield I | Link Pins |     |     |     |     |     |     |     |        |        |       |
|---------|---------------|-----------|-----|-----|-----|-----|-----|-----|-----|--------|--------|-------|
| 2       | 3             | 4         | 5   | 7   | 8   | 15  | 25  | 47  | 65  | 82     | 93     | 94    |
| 105     | 114           | 115       | 121 | 122 | 123 | 124 | 125 | 126 | 127 | $\geq$ | $\geq$ | $\ge$ |



|            | Name           | Pixel    | JFP P13       | JFP P14       | JFP P15      | JFP P16 | 128Way #6                  |
|------------|----------------|----------|---------------|---------------|--------------|---------|----------------------------|
|            | Channel 7 -    |          | 7             |               |              |         | 75                         |
|            | Channel 7gnd   |          | 13 (A1)       |               |              |         | 36 (A1)                    |
|            | Channel 8 +    |          | 21            |               |              |         | 74                         |
|            | Channel 8 -    | PLW-B7   | 8             |               |              |         | 73                         |
|            | Channel 9 +    |          | 13 (A1)<br>22 |               |              |         | 30 (A1)                    |
|            | Channel 9 -    | PI W-C7  | 9             |               |              |         | 72                         |
|            | Channel 9gnd   | 112.0-07 | 13 (A1)       |               |              |         | 36 (A1)                    |
|            | Channel 10 +   |          | 23            |               |              |         | 95                         |
| ç          | Channel 10 -   | PLW-B5   | 10            |               |              |         | 84                         |
| 2ax        | Channel 10gnd  |          | 13 (A1)       |               |              |         | 36 (A1)                    |
| 6-1        | Channel 11 +   |          | 24            |               |              |         | 96                         |
| 0          | Channel 11 -   | PLW-B6   | 11            |               |              |         | 85                         |
|            | Channel 11gnd  |          | 13 (A1)       |               |              |         | 36 (A1)                    |
|            | Channel 12 +   |          | 25            |               |              |         | 106                        |
|            | Channel 12 -   | PLW-A5   | 12            |               |              |         | 10/                        |
|            | Channel 13 +   |          | 15 (A1)       | 1             |              |         | 30 (A1)                    |
|            | Channel 13 -   | PLW-T1   |               | 14            |              |         | 87                         |
|            | Channel 13gnd  | 120 11   |               | 13 (A2)       |              |         | 128 (A2)                   |
|            | Channel 14 +   |          |               | 2             |              |         | 97                         |
| C-D        | Channel 14 -   | PLW-B4   |               | 15            |              |         | 98                         |
| 2a)        | Channel 14gnd  |          |               | 13 (A2)       |              |         | 128 (A2)                   |
| 6-1        | Channel 15 +   |          |               | 3             |              |         | 108                        |
| 0          | Channel 15 -   | PLW-C4   |               | 16            |              |         | 109                        |
|            | Channel 15gnd  |          |               | 13 (A2)       |              |         | 128 (A2)                   |
|            | Channel 16 +   |          |               | 4             |              |         | 116                        |
|            | Channel 16gnd  | PLW-D5   |               | 17<br>13 (A2) |              |         | 11/                        |
|            | Channel 17 +   |          |               | 5             |              |         | 55                         |
|            | Channel 17 -   | PLW-C2   |               | 18            |              |         | 66                         |
|            | Channel 17gnd  |          |               | 13 (A2)       |              |         | 128 (A2)                   |
|            | Channel 18 +   |          |               | 6             |              |         | 67                         |
| x-E        | Channel 18 -   | PLW-B2   |               | 19            |              |         | 78                         |
| l2a        | Channel 18gnd  |          |               | 13 (A2)       |              |         | 128 (A2)                   |
| -9-        | Channel 19 +   |          |               | 20            |              |         | 76                         |
| <u> </u>   | Channel 19 -   | PLW-BI   | -             | 12 (42)       |              |         | 77                         |
|            | Channel 19gnd  |          |               | 13 (A2)       |              |         | 128 (A2)                   |
|            | Channel 20 +   | PI W-A3  |               | 8             |              |         | 80                         |
|            | Channel 20gnd  | 12,0713  |               | 13 (A2)       |              |         | 128 (A2)                   |
|            | Channel 21 +   |          |               | 22            |              |         | 99                         |
|            | Channel 21 -   | PLW-A4   |               | 9             |              |         | 100                        |
|            | Channel 21gnd  |          |               | 13 (A2)       |              |         | 128 (A2)                   |
| <b>F</b> * | Channel 22 +   |          |               | 23            |              |         | 110                        |
| Ix-I       | Channel 22 -   | PLW-A1   |               | 10            |              |         | 111                        |
| 128        | Channel 22gnd  |          |               | 13 (A2)       |              |         | 128 (A2)                   |
| C6-        | Channel 23 +   |          |               | 24            |              |         | 118                        |
|            | Channel 23 -   | FLW-DKI  |               | 13 (A2)       |              |         | 119                        |
|            | Channel 24 +   |          |               | 25            |              |         | 1120 (112)                 |
|            | Channel 24 -   | PLW-A2   |               | 12            |              |         | 120                        |
|            | Channel 24gnd  | 1        |               | 13 (A2)       |              |         | 128 (A2)                   |
|            | Channel 25 +   |          |               |               | 1            |         | 90                         |
|            | Channel 25 -   | PLW-E1   |               | <b></b>       | 14           |         | 79                         |
|            | Channel 25gnd  |          |               |               | 13 (A3)      |         | 47 (A3)                    |
| Ċ          | Channel 26 +   |          |               |               | 2            |         | 102                        |
| ax-        | Channel 26 -   | PLW-E2   |               |               | 15           |         | 101                        |
| -12        | Channel 27 +   |          |               |               | 15 (AS)<br>3 |         | 4/ (A3)<br>92              |
| C6         | Channel 27 -   | PLW-E3   |               |               | 16           |         | 91                         |
|            | Channel 27gnd  | 12.1 20  |               | 1             | 13 (A3)      |         | 47 (A3)                    |
|            | Channel 28 +   |          |               |               | 4            |         | 103                        |
|            | Channel 28 -   | PLW-E4   |               |               | 17           |         | 113                        |
|            | Channel 28gnd  |          |               |               | 13 (A3)      |         | 47 (A3)                    |
| Ŧ          | Channel 29 +   |          |               |               | 5            |         | 58                         |
| I-X        | Channel 29 -   | PLW-D1   |               | ļ             | 18           |         | 46                         |
| 12a        | Channel 29gnd  |          |               |               | 13 (A3)      |         | 47 (A3)                    |
| -92        | Channel 30 +   |          |               |               | 6            |         | 68                         |
|            | Channel 30grd  | PLW-D2   |               |               | 19           |         | )<br>)<br>)<br>)<br>)<br>) |
| L          | Channel Jogliu | l        | L             | 1             | 13 (13)      | 1       | +/(A3)                     |



### 4.4.8 C8 CVV8 to HSJFP Type1



| Connector/Dackshen Details | MDM25S+Clensir507-T-139-M-37 to | IED 15 | PSW/ Signals |  |
|----------------------------|---------------------------------|--------|--------------|--|
|                            | MDM25S+Glenair507-T-139-M-37 to | JFP.16 | PSW Signals  |  |
|                            | MDM25S+Glenair507-T-139-M-37 to | JFPJ7  | PSW Signals  |  |
|                            | MDM25S+Glenair507-T-139-M-37 to | JFPJ8  | PSW Signals  |  |
|                            |                                 |        | 0            |  |

#### Harness Layup

As C4.

|       | Name         |        | JFP P05 | JFP P06 | JFP P07 | JFP P08 | 128Way #8 |
|-------|--------------|--------|---------|---------|---------|---------|-----------|
|       | Channel 1 +  |        | 1       |         |         |         | 26        |
|       | Channel 1 -  | PSW-D6 | 14      |         |         |         | 37        |
|       | Channel 1gnd |        | 13 (A1) |         |         |         | 36 (A1)   |
| 2ax-A | Channel 2 +  |        | 2       |         |         |         | 38        |
|       | Channel 2 -  | PSW-B6 | 15      |         |         |         | 49        |
| 2ay   | Channel 2gnd |        | 13 (A1) |         |         |         | 36 (A1)   |
| 8-1   | Channel 3 +  |        | 3       |         |         |         | 48        |
| 0     | Channel 3 -  | PSW-C5 | 16      |         |         |         | 60        |
|       | Channel 3gnd |        | 13 (A1) |         |         |         | 36 (A1)   |
|       | Channel 4 +  |        | 4       |         |         |         | 59        |
|       | Channel 4 -  | PSW-A5 | 17      |         |         |         | 71        |
|       | Channel 4gnd |        | 13 (A1) |         |         |         | 36 (A1)   |
|       | Channel 5 +  |        | 5       |         |         |         | 50        |
|       | Channel 5 -  | PSW-E5 | 18      |         |         |         | 61        |
|       | Channel 5gnd |        | 13 (A1) |         |         |         | 36 (A1)   |
|       | Channel 6 +  |        | 6       |         |         |         | 62        |
| K-B   | Channel 6 -  | PSW-B5 | 19      |         |         |         | 51        |
| 2a:   | Channel 6gnd |        | 13 (A1) |         |         |         | 36 (A1)   |
| 8-1   | Channel 7 +  |        | 20      |         |         |         | 63        |
| C     | Channel 7 -  | PSW-D5 | 7       |         |         |         | 75        |
| -     | Channel 7gnd |        | 13 (A1) |         |         |         | 36 (A1)   |
|       | Channel 8 +  |        | 21      |         |         |         | 74        |
|       | Channel 8 -  | PSW-C4 | 8       |         |         |         | 73        |
|       | Channel 8gnd |        | 13 (A1) |         |         |         | 36 (A1)   |



|            | Name                           |          | JFP P05 | JFP P06       | JFP P07       | JFP P08  | 128Way #8      |
|------------|--------------------------------|----------|---------|---------------|---------------|----------|----------------|
|            | Channel 9 +                    |          | 22      |               |               |          | 83             |
|            | Channel 9 -                    | PSW-A4   | 9       |               |               |          | 72             |
|            | Channel 9gnd                   |          | 13 (A1) |               |               |          | 36 (A1)        |
| Ņ          | Channel 10 +                   | PSW-D4   | 23      |               |               |          | 95             |
| cax-       | Channel 10 -                   | 1300-04  | 13 (A1) |               |               |          | 36 (A1)        |
| 3-12       | Channel 11 +                   |          | 24      |               |               |          | 96             |
| ũ          | Channel 11 -                   | PSW-B4   | 11      |               |               |          | 85             |
|            | Channel 11gnd                  |          | 13 (A1) |               |               |          | 36 (A1)        |
|            | Channel 12 +                   |          | 25      |               |               |          | 106            |
|            | Channel 12 -                   | PSW-C3   | 12      |               |               |          | 107            |
|            | Channel 12gnd                  |          | 15 (A1) | 1             |               |          | 30 (A1)        |
|            | Channel 13 -                   | PSW-B3   |         | 14            |               |          | 87             |
|            | Channel 13gnd                  |          |         | 13 (A2)       |               |          | 128 (A2)       |
|            | Channel 14 +                   |          |         | 2             |               |          | 97             |
| x-D        | Channel 14 -                   | PSW-A3   |         | 15            |               |          | 98             |
| 12a        | Channel 14gnd                  |          |         | 13 (A2)       |               |          | 128 (A2)       |
| 80         | Channel 15 +                   | DCW A2   |         | 3             |               |          | 108            |
|            | Channel 15 -                   | PSW-A2   |         | 10 13 (A2)    |               |          | 109            |
|            | Channel 16 +                   |          |         | 4             |               |          | 128 (A2)       |
|            | Channel 16 -                   | PSW-D3   |         | 17            |               |          | 117            |
|            | Channel 16gnd                  |          |         | 13 (A2)       |               |          | 128 (A2)       |
|            | Channel 17 +                   |          |         | 5             |               |          | 55             |
|            | Channel 17 -                   |          |         | 18            |               |          | 66             |
|            | Channel 1/gnd                  |          |         | 13 (A2)       |               |          | 128 (A2)       |
| н          | Channel 18 -                   | PSW-B2   |         | 19            |               |          | 78             |
| 2ax-       | Channel 18gnd                  | 1500 02  |         | 13 (A2)       |               |          | 128 (A2)       |
| 8-12       | Channel 19 +                   |          |         | 20            |               |          | 76             |
| Ü          | Channel 19 -                   | PSW-D2   |         | 7             |               |          | 77             |
|            | Channel 19gnd                  |          |         | 13 (A2)       |               |          | 128 (A2)       |
|            | Channel 20 +                   | DOM: 4.1 |         | 21            |               |          | 88             |
|            | Channel 20 -                   | PSW-A1   |         | 8             |               |          | 89             |
|            | Channel 20glid<br>Channel 21 + |          |         | 13 (A2)<br>22 |               |          | 128 (A2)<br>99 |
|            | Channel 21 -                   | PSW-C1   |         | 9             |               |          | 100            |
|            | Channel 21gnd                  |          |         | 13 (A2)       |               |          | 128 (A2)       |
| <b>1</b> - | Channel 22 +                   |          |         | 23            |               |          | 110            |
| Ix-F       | Channel 22 -                   | PSW-B1   |         | 10            |               |          | 111            |
| -128       | Channel 22gnd                  |          |         | 13 (A2)       |               |          | 128 (A2)       |
| Š          | Channel 23 -                   | PSW-DK1  |         | 24            |               |          | 110            |
|            | Channel 23gnd                  | 15W DRI  |         | 13 (A2)       |               |          | 128 (A2)       |
|            | Channel 24 +                   |          |         | 25            |               |          | 112            |
|            | Channel 24 -                   | PSW-D1   |         | 12            |               |          | 120            |
|            | Channel 24gnd                  |          |         | 13 (A2)       |               |          | 128 (A2)       |
|            | Channel 25 +                   | DOW D12  |         |               | 1             |          | 90             |
|            | Channel 25 -<br>Channel 25 and | PSW-F12  |         |               | 14<br>13 (A3) |          | /9<br>47 (A3)  |
|            | Channel 26 +                   |          |         |               | 2             |          | 102            |
| Ģ          | Channel 26 -                   | PSW-J11  | }       |               | 15            |          | 101            |
| 2ax        | Channel 26gnd                  |          |         |               | 13 (A3)       |          | 47 (A3)        |
| 8-1        | Channel 27 +                   |          |         |               | 3             |          | 92             |
| 0          | Channel 27 -                   | PSW-E12  |         |               | 16            |          | 91             |
|            | Channel 27gnd                  |          |         |               | 13 (A3)       |          | 47 (A3)        |
|            | Channel 28 -                   | PSW-H12  |         |               | 4             |          | 103            |
|            | Channel 28gnd                  | 15, 1112 |         |               | 13 (A3)       |          | 47 (A3)        |
|            | Channel 29 +                   | 1        |         |               | 5             |          | 58             |
|            | Channel 29 -                   | PSW-G12  |         | <u> </u>      | 18            | <u> </u> | 46             |
| <b>—</b>   | Channel 29gnd                  |          |         |               | 13 (A3)       |          | 47 (A3)        |
| x-F        | Channel 30 +                   |          | ļ       |               | 6             |          | 68             |
| 12a        | Channel 30 -                   | PSW-F13  |         |               | 19            |          | 57             |
| C8-        | Channel 30gnd                  |          |         |               | 13 (A3)       |          | 47 (A3)        |
|            | Channel 31 -                   | PSW-E13  |         |               | 20            |          | 80             |
|            | Channel 31gnd                  | 15,, 115 | }       |               | ,<br>13 (A3)  |          | 47 (A3)        |
|            | Channel 32 +                   | PSW-J12  |         |               | 21            |          | 70             |



#### **Photometer Stimulus Heater P13**

| Function                           | P13        | Max. Current | Wire Lay-up      | MaxOhms | 128Way #11 |
|------------------------------------|------------|--------------|------------------|---------|------------|
| Photometer Point Stim. Heater I+_A | 2          | 7 mA         |                  | 10      | 48         |
| Photometer Point Stim.Heater I+_B  | 3          | 7 mA         | Screened twisted | 10      | 71         |
| Photometer Point Stim.Heater IA    | 7          | 7 mA         | quad             | 10      | 60         |
| Photometer Point Stim.Heater I-B   | 8          | 7 mA         |                  | 10      | 59         |
| Screen                             | 4          |              |                  |         | 36         |
| Harness Overshield                 | EMC Backsł | nell         |                  |         |            |

4 pins used

### SMEC Launch Tail Listing (FCU P29)

| Function                                   | Signal Name      | 37-Way P29  | Max. Current  | Wire<br>lay-up | Max<br>Ohms | 128Way #11 |
|--------------------------------------------|------------------|-------------|---------------|----------------|-------------|------------|
| SMEC launch latch #1 power supply A        | S_LL#1_Coil_P    | 1           | 400 mA / 50ms | Insulated      | 5           | 67         |
| SMEC launch latch #1 power return A        | S_LL#1_Coil_N    | 2           | 400 mA / 50ms | screened       | 5           | 66         |
| SMEC launch latch #1 power Shield A        | S_LL#1_Coil_ Shd | 20          | N/A           | twisted pair   | N/A         | 78         |
| SMEC launch latch #1 power supply B        |                  | 21          | 400 mA / 50ms | Insulated      | 5           | 69         |
| SMEC launch latch #1 power return B        |                  | 22          | 400 mA / 50ms | screened       | 5           | 68         |
| SMEC launch latch #1 power Shield B        |                  | 3           | N/A           | twisted pair   | N/A         | 80         |
| SMEC launch latch #2 power supply A        |                  | 4           | 400 mA / 50ms | Insulated      | 5           | 90         |
| SMEC launch latch #2 power return A        |                  | 5           | 400 mA / 50ms | screened       | 5           | 91         |
| SMEC launch latch #2 power Shield A        |                  | 23          | N/A           | twisted pair   | N/A         | 79         |
| SMEC launch latch #2 power supply B        | S_LL#2_Coil_P    | 24          | 400 mA / 50ms | Insulated      | 5           | 92         |
| SMEC launch latch #2 power return B        | S_LL#2_Coil_N    | 25          | 400 mA / 50ms | screened       | 5           | 93         |
| SMEC launch latch #2 power Shield B        | S_LL#2_Coil_ Shd | 6           | N/A           | twisted pair   | N/A         | 81         |
| SMEC LVDT primary coil power supply (P)    | LVDT_PRIM_P      | 13          | 5 mA          | Insulated      | 5           | 101        |
| SMEC LVDT primary coil power supply (N)    | LVDT_PRIM_N      | 14          | 5 mA          | screened       | 5           | 102        |
| SMEC LVDT primary coil power supply Shld   | LVDT_PRIM_Shd    | 32          | N/A           | twisted pair   | N/A         | 112        |
| SMEC LVDT secondary coil # 1signal (P)     | LVDT_SECA_P      | 15          | 50 µA         | Insulated      | 5           | 127        |
| SMEC LVDT secondary coil # 1 signal (N)    | LVDT_SECA_N      | 16          | 50 µA         | screened       | 5           | 120        |
| SMEC LVDT secondary coil # 1 signal Shield | LVDT_SECA_Shd    | 34          | N/A           | twisted pair   | N/A         | 128        |
| SMEC LVDT secondary coil # 2 signal (P)    | LVDT_SECB_P      | 17          | 50 µA         | Insulated      | 5           | 114        |
| SMEC LVDT secondary coil # 2 signal (N)    | LVDT_SECB_N      | 18          | 50 µA         | screened       | 5           | 113        |
| SMEC LVDT secondary coil # 2 signal Shield | LVDT_SECB_ Shd   | 36          | N/A           | twisted pair   | N/A         | 121        |
| Harness Overshield                         |                  | EMC Backshe | 11            |                |             |            |



|                 | Name          | Pixel   | JFP P01 | JFP P02 | JFP P03 | JFP P04 | 128Way #9 |
|-----------------|---------------|---------|---------|---------|---------|---------|-----------|
|                 | Channel 6 -   |         | 19      |         |         |         | 51        |
|                 | Channel 6gnd  |         | 13 (A1) |         |         |         | 36 (A1)   |
|                 | Channel 7 +   |         | 20      |         |         |         | 63        |
|                 | Channel 7 -   | PSW-D15 | 7       |         |         |         | 75        |
|                 | Channel 7gnd  |         | 13 (A1) |         |         |         | 36 (A1)   |
|                 | Channel 8 +   |         | 21      |         |         |         | 74        |
|                 | Channel 8 -   | PSW-B15 | 8       |         |         |         | 73        |
|                 | Channel 8gnd  |         | 13 (A1) |         |         |         | 36 (A1)   |
|                 | Channel 9 +   |         | 22      |         |         |         | 83        |
|                 | Channel 9 -   | PSW-C14 | 9       |         |         |         | 72        |
|                 | Channel 9gnd  |         | 13 (A1) |         |         |         | 36 (A1)   |
|                 | Channel 10 +  |         | 23      |         |         |         | 95        |
|                 | Channel 10 -  | PSW-D14 | 10      |         |         |         | 84        |
|                 | Channel 10gnd |         | 13 (A1) |         |         |         | 36 (A1)   |
|                 | Channel 11 +  |         | 24      |         |         |         | 96        |
| 0               | Channel 11 -  | PSW-A14 | 11      |         |         |         | 85        |
| )-XI            | Channel 11gnd |         | 13 (A1) |         |         |         | 36 (A1)   |
| 12a             | Channel 12 +  |         | 25      |         |         |         | 106       |
| -62             | Channel 12 -  | PSW-A13 | 12      |         |         |         | 107       |
| 0               | Channel 12gnd |         | 13 (A1) |         |         |         | 36 (A1)   |
|                 | Channel 13 +  |         |         | 1       |         |         | 86        |
|                 | Channel 13 -  | PSW-B14 |         | 14      |         |         | 87        |
|                 | Channel 13gnd |         |         | 13 (A2) |         |         | 128 (A2)  |
|                 | Channel 14 +  |         |         | 2       |         |         | 97        |
|                 | Channel 14 -  | PSW-C13 |         | 15      |         |         | 98        |
|                 | Channel 14gnd |         |         | 13 (A2) |         |         | 128 (A2)  |
|                 | Channel 15 +  |         |         | 3       |         |         | 108       |
| 0               | Channel 15 -  | PSW-B13 |         | 16      |         |         | 109       |
| I-xı            | Channel 15gnd |         |         | 13 (A2) |         |         | 128 (A2)  |
| 12a             | Channel 16 +  |         |         | 4       |         |         | 116       |
| -6              | Channel 16 -  | PSW-D13 |         | 17      |         |         | 117       |
| 0               | Channel 16gnd |         |         | 13 (A2) |         |         | 128 (A2)  |
|                 | Channel 17 +  |         |         | 5       |         |         | 55        |
|                 | Channel 17 -  | PSW-A12 |         | 18      |         |         | 66        |
|                 | Channel 17gnd |         |         | 13 (A2) |         |         | 128 (A2)  |
|                 | Channel 18 +  |         |         | 6       |         |         | 67        |
|                 | Channel 18 -  | PSW-C12 |         | 19      |         |         | 78        |
|                 | Channel 18gnd |         |         | 13 (A2) |         |         | 128 (A2)  |
|                 | Channel 19 +  |         |         | 20      |         |         | 76        |
| [1]             | Channel 19 -  | PSW-D12 |         | 7       |         |         | 77        |
| I-xi            | Channel 19gnd |         |         | 13 (A2) |         |         | 128 (A2)  |
| 12a             | Channel 20 +  |         |         | 21      |         |         | 88        |
| -62             | Channel 20 -  | PSW-B12 |         | 8       |         |         | 89        |
| 0               | Channel 20gnd |         |         | 13 (A2) |         |         | 128 (A2)  |
|                 | Channel 21 +  |         |         | 22      |         |         | 99        |
|                 | Channel 21 -  | PSW-E11 |         | 9       |         |         | 100       |
|                 | Channel 21gnd |         |         | 13 (A2) |         |         | 128 (A2)  |
|                 | Channel 22 +  |         |         | 23      |         |         | 110       |
|                 | Channel 22 -  | PSW-A11 |         | 10      |         |         | 111       |
|                 | Channel 22gnd |         |         | 13 (A2) |         |         | 128 (A2)  |
|                 | Channel 23 +  |         |         | 24      |         |         | 118       |
| [T_             | Channel 23 -  | PSW-C11 |         | 11      |         |         | 119       |
| [-XI            | Channel 23gnd |         |         | 13 (A2) |         |         | 128 (A2)  |
| 12a             | Channel 24 +  |         |         | 25      |         |         | 112       |
| -62             | Channel 24 -  | PSW-B11 |         | 12      |         |         | 120       |
| 0               | Channel 24gnd |         |         | 13 (A2) |         |         | 128 (A2)  |
|                 | Channel 25 +  |         |         |         | 1       |         | 90        |
|                 | Channel 25 -  | PSW-E1  |         |         | 14      |         | 79        |
|                 | Channel 25gnd |         |         |         | 13 (A3) |         | 47 (A3)   |
|                 | Channel 26 +  |         |         |         | 2       |         | 102       |
|                 | Channel 26 -  | PSW-F1  |         |         | 15      |         | 101       |
|                 | Channel 26gnd |         |         |         | 13 (A3) |         | 47 (A3)   |
|                 | Channel 27 +  |         |         |         | 3       |         | 92        |
| C               | Channel 27 -  | PSW-T2  |         |         | 16      |         | 91        |
| 1X-(            | Channel 27gnd |         |         |         | 13 (A3) |         | 47 (A3)   |
| 12              | Channel 28 +  |         |         |         | 4       |         | 103       |
| -60             | Channel 28 -  | PSW-H1  |         |         | 17      |         | 113       |
| <u> </u>        | Channel 28gnd |         |         |         | 13 (A3) |         | 47 (A3)   |
| -9-<br>2a<br>⊢H | Channel 29 +  | PSW-G1  |         |         | 5       |         | 58        |
| x I C           | Channel 29 -  |         |         |         | 18      |         | 46        |

| A        | Astrium GmbH                              |                | Pi        | n Allo        | cation L                     | ist                                                   |                  | Doc.I         | No.: HP-2-ASE                                     | ED-IC-00 | 001 |
|----------|-------------------------------------------|----------------|-----------|---------------|------------------------------|-------------------------------------------------------|------------------|---------------|---------------------------------------------------|----------|-----|
| Proje    | <sup>ct:</sup> HERSCHEL                   | (Harness)      |           |               |                              |                                                       |                  |               | Issue: 2.6 Date: 20.09.2003   Sheet: PAL-3 (of 8) |          |     |
| Coni     | nector: 312100 P03                        | I              | Function: | SPIRE SVM     | 1 CB1 (SPIRE Bu              | ConnType: MS27484T24F-35S (PI+ShI)                    |                  |               |                                                   |          |     |
| Item     | HSSVMCB1                                  | I              | _ocation: | 27 / I/F CB a | ab. SVM Panel 7              | Backs                                                 | <b>hell:</b> 380 | FS 007 M24 05 | 5                                                 |          |     |
| EMC      | -Category: 2S/Sig H fr SVMCB to W. Units  |                | I         |               | - ·                          | 1                                                     |                  |               |                                                   |          | 1   |
| Din      | Signal Designation                        | Interface-Code | Ch ID     | Wiring        | Grouping:<br>Shd Cable Twist | Comment                                               | Target-Item      | Location      | Connector                                         | Pin      | New |
| 078      | SPIRE PMW Ch17 to 19 18-                  | SPB 5 -        | S073      | 02100-28      | 5                            |                                                       | HSDCU            | 17            | 122300 P20                                        | 016      | new |
| 128      | SPIRE PMW Ch17 to 19 . 18gnd              | SPB.5 -        | S073      | 021CC-28      | 5                            | Daisy ch to Pin 128 (A3)                              | HSDCU            | 17            | 122300 P20                                        | 049      |     |
| 076      | SPIRE PMW Ch17 to 19 . 19+                | SPB.5 -        | S073      | 021CC-28      | 5                            | PMW-E9                                                | HSDCU            | 17            | 122300 P20                                        | 033      |     |
| 077      | SPIRE PMW Ch17 to 19 . 19-                | SPB.5 -        | S073      | 021CC-28      | 5                            |                                                       | HSDCU            | 17            | 122300 P20                                        | 017      |     |
| 128      | SPIRE PMW Ch17 to 19 . 19gnd              | SPB.5 -        | S073      | 021CC-28      | 5                            | Daisy ch to Pin 128 (A3)                              | HSDCU            | 17            | 122300 P20                                        | 050      |     |
| _        | P20 Cable Faraday shd These two correport | ctions are as  |           |               |                              | Cable P20 Faraday Shd con to<br>Busbar                |                  |               |                                                   |          |     |
| -        | P20 Insulating Jacket                     |                |           |               |                              | Cable P20 Insulating Jacket tbd                       |                  |               |                                                   |          |     |
| -        | P20 Cable Overall Shd                     |                |           |               |                              | Cable P20 Overall Shd not forseen, may be added later |                  |               |                                                   |          |     |
| -        |                                           |                |           |               |                              |                                                       |                  |               |                                                   |          |     |
| 088      | SPIRE PMW Ch 20 . 20+                     | SPB.3 -        | S73A      | 021CC-28      | 5                            | PMW-G9                                                | HSDCU            | 17            | 122300 P21                                        | 001      |     |
| 089      | SPIRE PMW Ch 20 . 20-                     | SPB.3 -        | S73A      | 021CC-28      | 5                            |                                                       | HSDCU            | 17            | 122300 P21                                        | 018      |     |
| 128<br>- | SPIRE PMW Ch 20 . 20gnd                   | SPB.3 -        | S73A      | 021CC-28      | 5                            | Daisy ch to Pin 128 (A3)                              | HSDCU            | 17            | 122300 P21                                        | 034      |     |
| 099      | SPIRE PMW Ch21 to 24 . 21+                | SPB.S -        | S074      | 021CC-28      | 6                            | PMW-D9                                                | HSDCU            | 17            | 122300 P21                                        | 002      |     |
| 100      | SPIRE PMW Ch21 to 24 . 21-                | SPB.S -        | S074      | 021CC-28      | 6                            |                                                       | HSDCU            | 17            | 122300 P21                                        | 019      |     |
| 128      | SPIRE PMW Ch21 to 24 . 21gnd              | SPB.S -        | S074      | 021CC-28      | 6                            | Daisy ch to Pin 128 (A3)                              | HSDCU            | 17            | 122300 P21                                        | 035      |     |
| 110      | SPIRE PMW Ch21 to 24 . 22+                | SPB.S -        | S074      | 021CC-28      | 6                            | PMW-F9                                                | HSDCU            | 17            | 122300 P21                                        | 003      |     |
| 111      | SPIRE PMW Ch21 to 24 . 22-                | SPB.S -        | S074      | 021CC-28      | 6                            |                                                       | HSDCU            | 17            | 122300 P21                                        | 020      |     |
| 128<br>- | SPIRE PMW Ch21 to 24 . 22gnd              | SPB.S -        | S074      | 021CC-28      | 6                            | Daisy ch to Pin 128 (A3)                              | HSDCU            | 17            | 122300 P21                                        | 036      |     |
| -<br>118 | SPIRE PMW Ch21 to 24 . 23+                | SPB.S -        | S074      | 021CC-28      | 6                            | PMW-E10                                               | HSDCU            | 17            | 122300 P21                                        | 004      |     |
| 119      | SPIRE PMW Ch21 to 24 . 23-                | SPB.S -        | S074      | 021CC-28      | 6                            |                                                       | HSDCU            | 17            | 122300 P21                                        | 021      |     |
| 128      | SPIRE PMW Ch21 to 24 . 23gnd              | SPB.S -        | S074      | 021CC-28      | 6                            | Daisy ch to Pin 128 (A3)                              | HSDCU            | 17            | 122300 P21                                        | 037      |     |
| -<br>112 | SPIRE PMW Ch21 to 24 . 24+                | SPB.S -        | S074      | 021CC-28      | 6                            | PMW-G10                                               | HSDCU            | 17            | 122300 P21                                        | 005      |     |
| 120      | SPIRE PMW Ch21 to 24 . 24-                | SPB.S -        | S074      | 021CC-28      | 6                            |                                                       | HSDCU            | 17            | 122300 P21                                        | 022      |     |
| 128<br>- | SPIRE PMW Ch21 to 24 . 24gnd              | SPB.S -        | S074      | 021CC-28      | 6                            | Daisy ch to Pin 128 (A3)                              | HSDCU            | 17            | 122300 P21                                        | 038      |     |
| -<br>090 | SPIRE PMW Ch25 to 28 . 25+                | SPB.S -        | S076      | 021CC-28      | 8                            | PMW-C4                                                | HSDCU            | 17            | 122300 P21                                        | 006      |     |

| A        | Astrium GmbH                                     |                | Pi       | in Allo                               | cation L                        | .ist                                                  |             | Doc.      | No.: HP-2-ASI | ED-IC-00            | 001 |  |
|----------|--------------------------------------------------|----------------|----------|---------------------------------------|---------------------------------|-------------------------------------------------------|-------------|-----------|---------------|---------------------|-----|--|
| Proje    |                                                  |                | Issue    | Issue: 2.6 Date: 20.09.2003           |                                 |                                                       |             |           |               |                     |     |  |
|          | HEROOHEE                                         |                |          |                                       |                                 |                                                       |             |           |               | Sheet. PAL-3 (01 8) |     |  |
| Con      | nector: 312100 P03                               | F              | Type: MS | / <b>pe:</b> MS27484T24F-35S (PI+ShI) |                                 |                                                       |             |           |               |                     |     |  |
| Item     | HSSVMCB1                                         | L              | ocation: | 27 / I/F CB a                         | ab. SVM Panel 7                 | (SPI/CCU CB)                                          | Backs       | hell: 380 | FS 007 M24 0  | 5                   |     |  |
| EMC      | <b>C-Category:</b> 2S/Sig H fr SVMCB to W. Units |                | 1        |                                       | <b>C</b> ara and <b>i</b> a set |                                                       | 1           |           |               |                     | I   |  |
| Pin      | Signal Designation                               | Interface-Code | Ch ID    | Wiring                                | Grouping:<br>Shd Cable Twist    | Comment                                               | Target-Item | Location  | Connector     | Pin                 | New |  |
| 078      | SPIRE PMW Ch17 to 19 18-                         | SPB 5 -        | S073     | 02100-28                              | 5                               |                                                       |             | 17        | 122300 P20    | 016                 | new |  |
| 28       | SPIRE PMW Ch17 to 19 . 18gnd                     | SPB.5 -        | S073     | 021CC-28                              | 5                               | Daisy ch to Pin 128 (A3)                              | HSDCU       | 17        | 122300 P20    | 049                 |     |  |
| 076      | SPIRE PMW Ch17 to 19 . 19+                       | SPB.5 -        | S073     | 021CC-28                              | 5                               | PMW-E9                                                | HSDCU       | 17        | 122300 P20    | 033                 |     |  |
| 077      | SPIRE PMW Ch17 to 19 . 19-                       | SPB.5 -        | S073     | 021CC-28                              | 5                               |                                                       | HSDCU       | 17        | 122300 P20    | 017                 |     |  |
| 128      | SPIRE PMW Ch17 to 19 . 19gnd                     | SPB.5 -        | S073     | 021CC-28                              | 5                               | Daisy ch to Pin 128 (A3)                              | HSDCU       | 17        | 122300 P20    | 050                 |     |  |
| -        | P20 Cable Faraday shd                            | 4              |          |                                       |                                 | Cable P20 Faraday Shd con to                          |             |           |               |                     |     |  |
| -        | Compliant with                                   |                | 1        |                                       |                                 |                                                       | I           |           |               |                     |     |  |
| -        | P20 Insulating Jacket SPIRE HDD 1.2              |                |          |                                       |                                 | Cable P20 Insulating Jacket tbd                       |             |           |               |                     |     |  |
| -        | P20 Cable Overall Shd                            | <b>+1</b>      |          |                                       |                                 | Cable P20 Overall Shd not forseen, may be added later |             |           |               |                     |     |  |
| -        |                                                  |                |          |                                       |                                 |                                                       |             |           |               |                     |     |  |
| -        |                                                  |                |          |                                       |                                 |                                                       |             |           |               |                     |     |  |
| 088      | SPIRE PMW Ch 20 . 20+                            | SPB.3 -        | S73A     | 021CC-28                              | 5                               | PMW-G9                                                | HSDCU       | 17        | 122300 P21    | 001                 |     |  |
| 089      | SPIRE PMW Ch 20 . 20-                            | SPB.3 -        | S73A     | 021CC-28                              | 5                               |                                                       | HSDCU       | 17        | 122300 P21    | 018                 |     |  |
| 128      | SPIRE PMW Ch 20 . 20ghd                          | SPB.3 -        | S73A     | 021CC-28                              | 5                               | Daisy ch to Pin 128 (A3)                              | HSDCU       | 17        | 122300 P21    | 034                 |     |  |
| -<br>099 | SPIRE PMW Ch21 to 24 . 21+                       | SPB.S -        | S074     | 021CC-28                              | 6                               | PMW-D9                                                | HSDCU       | 17        | 122300 P21    | 002                 |     |  |
| 100      | SPIRE PMW Ch21 to 24 . 21-                       | SPB.S -        | S074     | 021CC-28                              | 6                               |                                                       | HSDCU       | 17        | 122300 P21    | 019                 |     |  |
| 128      | SPIRE PMW Ch21 to 24 . 21gnd                     | SPB.S -        | S074     | 021CC-28                              | 6                               | Daisy ch to Pin 128 (A3)                              | HSDCU       | 17        | 122300 P21    | 035                 |     |  |
| -<br>110 | SPIRE PMW Ch21 to 24 . 22+                       | SPB.S -        | S074     | 021CC-28                              | 6                               | PMW-F9                                                | HSDCU       | 17        | 122300 P21    | 003                 |     |  |
| 111      | SPIRE PMW Ch21 to 24 . 22-                       | SPB.S -        | S074     | 021CC-28                              | 6                               |                                                       | HSDCU       | 17        | 122300 P21    | 020                 |     |  |
| 128      | SPIRE PMW Ch21 to 24 . 22gnd                     | SPB.S -        | S074     | 021CC-28                              | 6                               | Daisy ch to Pin 128 (A3)                              | HSDCU       | 17        | 122300 P21    | 036                 |     |  |
| -<br>118 | SPIRE PMW Ch21 to 24 . 23+                       | SPB.S -        | S074     | 021CC-28                              | 6                               | PMW-E10                                               | HSDCU       | 17        | 122300 P21    | 004                 |     |  |
| 119      | SPIRE PMW Ch21 to 24 . 23-                       | SPB.S -        | S074     | 021CC-28                              | 6                               |                                                       | HSDCU       | 17        | 122300 P21    | 021                 |     |  |
| 128      | SPIRE PMW Ch21 to 24 . 23gnd                     | SPB.S -        | S074     | 021CC-28                              | 6                               | Daisy ch to Pin 128 (A3)                              | HSDCU       | 17        | 122300 P21    | 037                 |     |  |
| -<br>112 | SPIRE PMW Ch21 to 24 . 24+                       | SPB.S -        | S074     | 021CC-28                              | 6                               | PMW-G10                                               | HSDCU       | 17        | 122300 P21    | 005                 |     |  |
| 120      | SPIRE PMW Ch21 to 24 . 24-                       | SPB.S -        | S074     | 021CC-28                              | 6                               |                                                       | HSDCU       | 17        | 122300 P21    | 022                 |     |  |
| 128<br>- | SPIRE PMW Ch21 to 24 . 24gnd                     | SPB.S -        | S074     | 021CC-28                              | 6                               | Daisy ch to Pin 128 (A3)                              | HSDCU       | 17        | 122300 P21    | 038                 |     |  |
| -<br>090 | SPIRE PMW Ch25 to 28 . 25+                       | SPB.S -        | S076     | 021CC-28                              | 8                               | PMW-C4                                                | HSDCU       | 17        | 122300 P21    | 006                 |     |  |

| A        | Astrium GmbH                   |                        | Р          | in Allo                                                    | cation L        | .ist                                |             | Doc.I     | No.: HP-2-ASI           | ED-IC-00                           | 001    |  |  |  |
|----------|--------------------------------|------------------------|------------|------------------------------------------------------------|-----------------|-------------------------------------|-------------|-----------|-------------------------|------------------------------------|--------|--|--|--|
| Proje    |                                | =                      |            | (Ha                                                        | arness)         |                                     |             | Issue     | : 2.6 D                 | ate: 20.0                          | 9.2003 |  |  |  |
|          | HERSCHEL                       |                        |            |                                                            |                 |                                     |             | Shee      | Sheet: PAL-3 (of 8)     |                                    |        |  |  |  |
| Con      | nector: 211121 J22             |                        | Function   | Function: UFThr 193.0° (SPIRE XS-04JFP21,22,23,24) ConnTyp |                 |                                     |             |           |                         | <b>pe:</b> 197-011P24-35P (Junct.) |        |  |  |  |
| ltem     | CVVUCR                         |                        | Location   | : 33 / CVV I/F                                             | CB Top PFM (C   | VVUCR)                              | Backs       | hell: HEI | RSKT 58-0050            |                                    |        |  |  |  |
| EMC      | -Category: 2C/Sig H in Cryo    | ostat                  |            |                                                            |                 | 1                                   |             |           |                         |                                    | 1      |  |  |  |
|          |                                | Interface-Code         |            |                                                            | Grouping:       |                                     |             |           |                         |                                    |        |  |  |  |
| Pin      | Signal Designation             | Circuit Signal P       | os. Ch. ID | Wiring                                                     | Shd Cable Twist | Comment                             | Target-Item | Location  | Connector               | Pin                                | New    |  |  |  |
| 108      | SPIRE PMW Ch 13 to 16 . 15+    | SPB                    | S072       | 12AXD-38                                                   | 4 D             | PMW-F7                              | HSJFP       | 75        | 121210 P23              | 003                                |        |  |  |  |
| 109      | SPIRE PMW Ch 13 to 16 . 15-    | SPB                    | S072       | 12AXD-38                                                   | 4 D             |                                     | HSJFP       | 75        | 121210 P23              | 016                                |        |  |  |  |
| 128      | SPIRE PMW Ch 13 to 16 . 15gnd  | SPB                    | S072       | 12AXD-38                                                   | 4 D             | Daisy ch to Pin 128 (A2)            | HSJFP       | 75        | 121210 P23              | 013                                |        |  |  |  |
| -<br>116 |                                | SDB                    | \$072      | 12420 20                                                   |                 |                                     |             | 75        | 101010 000              | 004                                |        |  |  |  |
| 117      | SPIRE PMW Ch 13 to 16 16-      | SPB                    | S072       | 12AXD-38                                                   | 4 D             |                                     |             | 75        | 121210 F23              | 004                                |        |  |  |  |
| 128      | SPIRE PMW Ch 13 to 16, 16and   | SPB                    | S072       | 12AXD-38                                                   | 4 D             | Daisy ch to Pin 128 (A2)            | HSJEP       | 75        | 121210123<br>121210 P23 | 013                                |        |  |  |  |
| 128      | SPIRE PMW Ch 13 to 16 . SHD01  | SPB                    | S072       | 12AXD-38                                                   | 4 D             | Cable S072 inner Shd daisy ch       | HSJFP       | 75        | 121210 P23              | 013                                |        |  |  |  |
|          |                                | 1                      | 1          |                                                            |                 | to Pin 128 (A2)                     | 1           |           |                         |                                    | 1      |  |  |  |
| -        | Cable S072 12 AXD Outer Shield |                        |            |                                                            |                 | Cable S072 outer Shd con to         |             |           |                         | I                                  |        |  |  |  |
|          |                                |                        | 1          |                                                            |                 | Busbar (Faraday)                    | 1           |           |                         |                                    | 1      |  |  |  |
| -        | r                              | No worries - compliant |            |                                                            |                 |                                     |             |           |                         | l                                  |        |  |  |  |
| -<br>055 | SPIRE PMW Ch17 to 19 17+       | vith SPIRE HDD 1.2     | \$072      | 12420 20                                                   | 5 E             | DMM/ C9                             |             | 75        | 101010 000              | 005                                |        |  |  |  |
| 000      | SPIRE PMW Ch17 to 19 17-       | SPB                    | S073       | 12AXD-38                                                   | 5 E             | FIMW-Go                             |             | 75        | 121210 F23              | 005                                |        |  |  |  |
| 128      | SPIRE PMW Ch17 to 19 . 17 and  | SPB                    | S073       | 12AXD-38                                                   | 5 E             | Daisy ch to Pin 128 (A2)            | HSJEP       | 75        | 121210123<br>121210 P23 | 013                                |        |  |  |  |
| $\sim$   | j.                             |                        |            | 12,002,000                                                 | 0 2             |                                     |             | 10        |                         | 010                                |        |  |  |  |
| 067      | SPIRE PMW Ch17 to 19 . 18+     | SPB                    | S073       | 12AXD-38                                                   | 5 E             | PMW-F8                              | HSJFP       | 75        | 121210 P23              | 006                                |        |  |  |  |
| 078      | SPIRE PMW Ch17 to 19 . 18-     | SPB                    | S073       | 12AXD-38                                                   | 5 E             |                                     | HSJFP       | 75        | 121210 P23              | 019                                | Ì      |  |  |  |
| 128      | SPIRE PMW Ch17 to 19 . 18gnd   | SPB                    | S073       | 12AXD-38                                                   | 5 E             | Daisy ch to Pin 128 (A2)            | HSJFP       | 75        | 121210 P23              | 013                                | ļ      |  |  |  |
| <u> </u> |                                |                        |            |                                                            |                 |                                     |             |           |                         | l                                  |        |  |  |  |
| 076      | SPIRE PMW Ch17 to 19 . 19+     | SPB                    | S073       | 12AXD-38                                                   | 5 E             | PMW-E9                              | HSJFP       | 75        | 121210 P23              | 020                                |        |  |  |  |
| 077      | SPIRE PMW Ch17 to 19 . 19-     | SPB                    | S073       | 12AXD-38                                                   | 5 E             | $\mathbf{D}$ at the Dire (100 (10)) | HSJFP       | 75<br>75  | 121210 P23              | 007                                |        |  |  |  |
| 128      | SFIRE FINW CITTY to 19. 19ghd  | 5PB                    | 5073       | 12AXD-38                                                   | 5 E             | Daisy ch to Pin 128 (A2)            | HSJFP       | 75        | 121210 P23              | 013                                |        |  |  |  |
| -<br>088 | SPIRE PMW Ch 20 . 20+          | SPB                    | S73A       | 12AXD-38                                                   | 5 F             | PMW-G9                              | HSJEP       | 75        | 121210 P23              | 021                                |        |  |  |  |
| 089      | SPIRE PMW Ch 20 . 20-          | SPB                    | S73A       | 12AXD-38                                                   | 5 E             |                                     | HSJEP       | 75        | 121210 P23              | 008                                |        |  |  |  |
| 128      | SPIRE PMW Ch 20 . 20gnd        | SPB                    | S73A       | 12AXD-38                                                   | 5 E             | Daisy ch to Pin 128 (A2)            | HSJFP       | 75        | 121210 P23              | 013                                |        |  |  |  |
| 128      | SPIRE PMW Ch17 to 19 . SHD02   | SPB                    | S073       | 12AXD-38                                                   | 5 E             | Cable S073 inner Shd daisy ch       | HSJFP       | 75        | 121210 P23              | 013                                | ĺ      |  |  |  |
|          |                                |                        |            |                                                            |                 | to Pin 128 (A2)                     |             |           |                         |                                    |        |  |  |  |
| -        | Cable S073 12 AXD Outer Shield |                        |            |                                                            |                 | Cable S063 outer Shd con to         |             |           |                         |                                    |        |  |  |  |
|          |                                | 1                      | 1          |                                                            |                 | Busbar (Faraday)                    | 1           |           |                         |                                    | 1      |  |  |  |
| -        |                                |                        |            |                                                            |                 |                                     |             |           |                         |                                    |        |  |  |  |
| -<br>099 | SPIRE PMW Ch21 to 24 . 21+     | SPB                    | S074       | 12AXD-38                                                   | 6 F             | PMW-D9                              | HSJEP       | 75        | 121210 P23              | 022                                |        |  |  |  |
| 100      | SPIRE PMW Ch21 to 24 . 21-     | SPB                    | S074       | 12AXD-38                                                   | 6 F             |                                     | HSJFP       | 75        | 121210 P23              | 009                                |        |  |  |  |
| 128      | SPIRE PMW Ch21 to 24 . 21gnd   | SPB                    | S074       | 12AXD-38                                                   | 6 F             | Daisy ch to Pin 128 (A2)            | HSJFP       | 75        | 121210 P23              | 013                                |        |  |  |  |
| -        | C C                            | ĺ                      | Ì          |                                                            |                 |                                     | İ           |           |                         | :                                  | Ì      |  |  |  |
| 110      | SPIRE PMW Ch21 to 24 . 22+     | SPB                    | S074       | 12AXD-38                                                   | 6 F             | PMW-F9                              | HSJFP       | 75        | 121210 P23              | 023                                |        |  |  |  |

| Astriur<br>Project: HEF                                | n GmbH<br>RSCHEL                                                               | Pin Allocation List<br>(Harness) |                        |                                  |                                    |                |                                                                    |                       |                                                 | Doc.No.: HP-2-ASED-IC-0001<br>Issue: 2.6 Date: 20.09.2003<br>Sheet: PAL-2 (of 8) |     |  |  |  |
|--------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------|------------------------|----------------------------------|------------------------------------|----------------|--------------------------------------------------------------------|-----------------------|-------------------------------------------------|----------------------------------------------------------------------------------|-----|--|--|--|
| Connector:<br>Item:<br>EMC-Category                    | 312300 P04<br>HSSVMCB3                                                         |                                  | Function:<br>Location: | : SPIRE SVN<br>: 27 / I/F CB     | 1 CB3 (SPIRE Bu<br>ab. SVM Panel 7 | Conn.<br>Backs | ConnType: MS27484T24F-35S (PI+ShI)<br>Backshell: 380 FS 007 M24 05 |                       |                                                 |                                                                                  |     |  |  |  |
| Pin Signal De                                          | esignation                                                                     | Interface-Code<br>Circuit Signal | Pos. Ch. ID            | Wiring                           | Grouping:<br>Shd Cable Twist       | Comment        | Target-Item                                                        | Location              | Connector                                       | Pin                                                                              | New |  |  |  |
| -<br>014 SPIRE SM<br>024 SPIRE SM<br>023 SPIRE SM<br>- | EC Drv Sense (N) . Sen+<br>EC Drv Sense (N) . Sen-<br>EC Drv Sense (N) . SHD03 | SMG.S -<br>SMG.S -<br>SMG.S -    | S278<br>S278<br>S278   | 021CC-28<br>021CC-28<br>021CC-28 | 24<br>24<br>24                     | Cable S278 Shd | HSFCU<br>HSFCU<br>HSFCU                                            | 17<br>17<br>17        | 122200 P17<br>122200 P17<br>122200 P17          | 004<br>005<br>023                                                                |     |  |  |  |
| -<br>009 SPIRE SM<br>002 SPIRE SM<br>003 SPIRE SM<br>- | EC PosSeLEDPwr(N) . S<br>EC PosSeLEDPwr(N) . R<br>EC PosSeLEDPwr(N) . SHD04    | SMH.S -<br>SMH.S -<br>SMH.S -    | S279<br>S279<br>S279   | 021CC-28<br>021CC-28<br>021CC-28 | 25<br>25<br>25                     | Cable S279 Shd | HSFCU<br>HSF <u>CU</u><br>HSI                                      | 17<br>17<br>natches 1 | 122200 P17<br>122200 P17<br>the                 | 007<br>008<br>026                                                                |     |  |  |  |
| 011<br>004<br>010<br>SPIRE SM<br>SPIRE SM<br>SPIRE SM  | EC PosSensPwr(N) . S<br>EC PosSensPwr(N) . R<br>EC PosSensPwr(N) . SHD05       | SMH.S -<br>SMH.S -<br>SMH.S -    | S280<br>S280<br>S280   | 021CC-28<br>021CC-28<br>021CC-28 | 26<br>26<br>26                     | Cable S280 Shd | HSFCU<br>HSFCU<br>HSFCU                                            | 17<br>17<br>17<br>17  | 2 FPU<br>122200 P17<br>122200 P17<br>122200 P17 | 027<br>028<br>009                                                                |     |  |  |  |
| -<br>018 SPIIS/C<br>019 SPIImat<br>029 SPII            | 128-way connectors all<br>ch                                                   | SMJ.S -<br>SMJ.S -<br>SMJ.S -    | S281<br>S281<br>S281   | 021CC-28<br>021CC-28<br>021CC-28 | 27<br>27<br>27                     | Cable S281Shd  | HSFCU<br>HSFCU<br>HSFCU                                            | 17<br>17<br>17        | 122200 P17<br>122200 P17<br>122200 P17          | 010<br>011<br>029                                                                |     |  |  |  |
| -<br>056 SPIRE SM<br>055 SPIRE SM<br>044 SPIRE SM<br>- | EC PosPhDi#1FB(N) . S<br>EC PosPhDi#1FB(N) . R<br>EC PosPhDi#1FB(N) . SHD09    | SMK.S -<br>SMK.S -<br>SMK.S -    | S282<br>S282<br>S282   | 021CC-28<br>021CC-28<br>021CC-28 | 30<br>30<br>30                     | Cable S282 Shd | HSFCU<br>HSFCU<br>HSFCU                                            | 17<br>17<br>17        | 122200 P17<br>122200 P17<br>122200 P17          | 030<br>031<br>012                                                                |     |  |  |  |
| -<br>042 SPIRE SM<br>041 SPIRE SM<br>030 SPIRE SM<br>- | EC PosPhDi#2(N) . I+<br>EC PosPhDi#2(N) . I-<br>EC PosPhDi#2(N) . SHD07        | SMJ.S -<br>SMJ.S -<br>SMJ.S -    | S283<br>S283<br>S283   | 021CC-28<br>021CC-28<br>021CC-28 | 28<br>28<br>28                     | Cable S283 Shd | HSFCU<br>HSFCU<br>HSFCU                                            | 17<br>17<br>17        | 122200 P17<br>122200 P17<br>122200 P17          | 013<br>014<br>032                                                                |     |  |  |  |
| -<br>034 SPIRE SM<br>033 SPIRE SM<br>045 SPIRE SM<br>- | EC PosPhDi#2FB(N) . S<br>EC PosPhDi#2FB(N) . R<br>EC PosPhDi#2FB(N) . SHD10    | SMK.S -<br>SMK.S -<br>SMK.S -    | S284<br>S284<br>S284   | 021CC-28<br>021CC-28<br>021CC-28 | 31<br>31<br>31                     | Cable S284 Shd | HSFCU<br>HSFCU<br>HSFCU                                            | 17<br>17<br>17        | 122200 P17<br>122200 P17<br>122200 P17          | 033<br>034<br>015                                                                |     |  |  |  |
| -<br>020 SPIRE SM<br>021 SPIRE SM<br>031 SPIRE SM<br>- | EC PosPhDi#3(N) . I+<br>EC PosPhDi#3(N) . I-<br>EC PosPhDi#3(N) . SHD08        | SMJ.S -<br>SMJ.S -<br>SMJ.S -    | S285<br>S285<br>S285   | 021CC-28<br>021CC-28<br>021CC-28 | 29<br>29<br>29                     | Cable S285 Shd | HSFCU<br>HSFCU<br>HSFCU                                            | 17<br>17<br>17        | 122200 P17<br>122200 P17<br>122200 P17          | 016<br>017<br>035                                                                |     |  |  |  |

| Α                           | Astrium GmbH                                                                                                          |             |                                                                                                              | Pi                   | n Allo                           | cation L        | .ist                                                        |                         | Doc.I                 | No.: HP-2-AS                                 | ED-IC-00          | 01<br>2003 |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------|-----------------|-------------------------------------------------------------|-------------------------|-----------------------|----------------------------------------------|-------------------|------------|
| Proje                       | HERSCHEL                                                                                                              |             | (Harness) Sh                                                                                                 |                      |                                  |                 |                                                             |                         |                       |                                              |                   | 9.2003     |
| Conr<br>Item:               | ector: 211121 J30<br>CVVUCR                                                                                           |             | Function:UFThr. 283.0° (SPIRE XS-11 FPU 25,27,29)ConnTypeLocation:33 / CVV I/F CB Top PFM (CVVUCR)Backshell: |                      |                                  |                 |                                                             |                         |                       | e: 197-011P24-35P (Junct.)<br>HERSKT 58-0050 |                   |            |
| EMC                         | -Category: 2C/Sig H in Cryos                                                                                          | stat        | Interface Code                                                                                               |                      |                                  | Grouping        |                                                             |                         |                       |                                              | 1                 |            |
| Pin                         | Signal Designation                                                                                                    |             | Circuit Signal Pos                                                                                           | . Ch. ID             | Wiring                           | Shd Cable Twist | Comment                                                     | Target-Item             | Location              | Connector                                    | Pin               | New        |
| -                           |                                                                                                                       |             |                                                                                                              | -                    | 5                                |                 |                                                             |                         |                       |                                              |                   |            |
| -<br>011<br>004<br>010<br>- | SPIRE SMEC PosSensPwr(N).S<br>SPIRE SMEC PosSensPwr(N).R<br>SPIRE <u>SMEC PosSensPwr(N).SHD</u><br>The pin allocation | ns on the   | SMH<br>SMH<br>SMH                                                                                            | S280<br>S280<br>S280 | 021BS-38<br>021BS-38<br>021BS-38 | 26<br>26<br>26  | Cable S280 Shd                                              | HSFPU<br>HSFPU<br>HSFPU | 70<br>70<br>70        | 121100 P29<br>121100 P29<br>121100 P29       | 027<br>028<br>009 |            |
| -<br>018<br>019<br>029<br>- | SPIRE S/C 128-way con<br>SPIRE match<br>SPIRE                                                                         | nectors all | SMJ<br>SMJ<br>SMJ                                                                                            | S281<br>S281<br>S281 | 021SS-38<br>021SS-38<br>021SS-38 | 27<br>27<br>27  | Cable S281, 283,285 Shd con<br>together (B) (Pin 29, 30,31) | HSFPU<br>HSFPU<br>HSFPU | 70<br>70 Thi<br>70 FC | s matches<br>U                               | the I/F to        | o the      |
| -<br>056<br>055<br>044      | SPIRE SMEC PosPhDi#1FB(N) . S<br>SPIRE SMEC PosPhDi#1FB(N) . R<br>SPIRE SMEC PosPhDi#1FB(N) . SH                      | D09         | SMK<br>SMK<br>SMK                                                                                            | S282<br>S282<br>S282 | 021SS-38<br>021SS-38<br>021SS-38 | 30<br>30<br>30  | Cable S282, 284,286 Shd con<br>together (C) (Pin 44,45,46)  | HSFPU<br>HSFPU<br>HSFPU | 70<br>70<br>70        | 121100 P29<br>121100 P29<br>121100 P29       | 030<br>031<br>012 |            |
| -<br>-<br>042<br>041<br>030 | SPIRE SMEC PosPhDi#2(N) . I+<br>SPIRE SMEC PosPhDi#2(N) . I-<br>SPIRE SMEC PosPhDi#2(N) . SHD0                        | 7           | SMJ<br>SMJ<br>SMJ                                                                                            | S283<br>S283<br>S283 | 021SS-38<br>021SS-38<br>021SS-38 | 28<br>28<br>28  | Cable S281, 283,285 Shd con<br>together (B) (Pin 29,30,31)  | HSFPU<br>HSFPU<br>HSFPU | 70<br>70<br>70        | 121100 P29<br>121100 P29<br>121100 P29       | 013<br>014<br>032 |            |
| -<br>034<br>033<br>045<br>- | SPIRE SMEC PosPhDi#2FB(N) . S<br>SPIRE SMEC PosPhDi#2FB(N) . R<br>SPIRE SMEC PosPhDi#2FB(N) . SH                      | D10         | SMK<br>SMK<br>SMK                                                                                            | S284<br>S284<br>S284 | 021SS-38<br>021SS-38<br>021SS-38 | 31<br>31<br>31  | Cable S282, 284,286 Shd con<br>together (C) (Pin 44,45,46)  | HSFPU<br>HSFPU<br>HSFPU | 70<br>70<br>70        | 121100 P29<br>121100 P29<br>121100 P29       | 033<br>034<br>015 |            |
| -<br>020<br>021<br>031      | SPIRE SMEC PosPhDi#3(N) . I+<br>SPIRE SMEC PosPhDi#3(N) . I-<br>SPIRE SMEC PosPhDi#3(N) . SHD0                        | 8           | SMJ<br>SMJ<br>SMJ                                                                                            | S285<br>S285<br>S285 | 021SS-38<br>021SS-38<br>021SS-38 | 29<br>29<br>29  | Cable S281, 283,285 Shd con<br>together (B) (Pin 29,30,31)  | HSFPU<br>HSFPU<br>HSFPU | 70<br>70<br>70        | 121100 P29<br>121100 P29<br>121100 P29       | 016<br>017<br>035 |            |
| -<br>-<br>058<br>057        | SPIRE SMEC PosPhDi#3FB(N) . S<br>SPIRE SMEC PosPhDi#3FB(N) . R                                                        |             | SMK<br>SMK                                                                                                   | S286<br>S286         | 021SS-38<br>021SS-38             | 32<br>32        |                                                             | HSFPU<br>HSFPU          | 70<br>70              | 121100 P29<br>121100 P29                     | 036<br>037        |            |

Г
| Astrium GmbH Project: HERSCHEL |                                   |                     | Pin Allocation List<br>(Harness)                   |          |                 |                             |             |          |                                 | Doc.No.: HP-2-ASED-IC-0001<br>Issue: 2.6 Date: 20.09.2003<br>Sheet: PAL-5 (of 7) |     |  |  |  |
|--------------------------------|-----------------------------------|---------------------|----------------------------------------------------|----------|-----------------|-----------------------------|-------------|----------|---------------------------------|----------------------------------------------------------------------------------|-----|--|--|--|
|                                |                                   | _                   |                                                    |          |                 |                             |             |          |                                 |                                                                                  |     |  |  |  |
| Con                            | nector: 211121 P30                | F                   | Function: UFThr. 283.0° (SPIRE XS-11 FPU 25,27,29) |          |                 |                             |             |          | ConnType: 197-012P24-35S (Plug) |                                                                                  |     |  |  |  |
| EMC                            | Category: 21/Sig H fr CV//ET to S | SVMCB               |                                                    |          |                 |                             |             |          |                                 |                                                                                  |     |  |  |  |
|                                | -Category. 2001g rin ovvi 100     | Interface-Code      | Interface-Code                                     |          |                 | Grouping:                   |             |          |                                 |                                                                                  |     |  |  |  |
| Pin                            | Signal Designation                | Circuit Signal Pos. | Ch. ID                                             | Wiring   | Shd Cable Twist | Comment                     | Target-Item | Location | Connector                       | Pin                                                                              | New |  |  |  |
|                                |                                   |                     |                                                    |          |                 |                             |             |          |                                 |                                                                                  |     |  |  |  |
| -<br>011                       | SPIRE SMEC PosSensPwr(N) . S      | SMH                 | S280                                               | 021BS-38 | 26              |                             | HSSVMCB3    | 27       | 312300 J04                      | 011                                                                              |     |  |  |  |
| 004                            | SPIRE SMEC PosSensPwr(N) . R      | SMH                 | S280                                               | 021BS-38 | 26              |                             | HSSVMCB3    | 27       | 312300 J04                      | 004                                                                              |     |  |  |  |
| 010                            | PIRE SMEC PosSensPwr(N) . SHD05   | SMH                 | S280                                               | 021BS-38 | 26              | Cable S280 Shd              | HSSVMCB3    | 27       | 312300 J04                      | 010                                                                              |     |  |  |  |
| <u> </u>                       |                                   |                     |                                                    |          |                 |                             |             |          |                                 |                                                                                  |     |  |  |  |
| -<br>018                       | SPIRE SMEC PosPhDi#1(N) . I+      | SMJ                 | S281                                               | 02155-38 | 27              |                             | HSSVMCB3    | 27       | 312300 .104                     | 018                                                                              |     |  |  |  |
| 019                            | SPIRE SMEC PosPhDi#1(N) . I-      | SMJ                 | S281                                               | 021SS-38 | 27              |                             | HSSVMCB3    | 27       | 312300 J04                      | 019                                                                              |     |  |  |  |
| 029                            | SPIRE SMEC PosPhDi#1(N) . SHD06   | SMJ                 | S281                                               | 021SS-38 | 27              | Cable S281, 283,285 Shd con | HSSVMCB3    | 27       | 312300 J04                      | 029                                                                              |     |  |  |  |
|                                |                                   |                     | 1                                                  |          |                 | together (B)                |             |          |                                 |                                                                                  | I   |  |  |  |
| -                              |                                   |                     |                                                    |          |                 |                             |             |          |                                 |                                                                                  |     |  |  |  |
| -<br>056                       | SPIRE SMEC PosPhDi#1FB(N) . S     | SMK                 | S282                                               | 021SS-38 | 30              |                             | HSSVMCB3    | 27       | 312300 J04                      | 056                                                                              |     |  |  |  |
| 055                            | SPIRE SMEC PosPhDi#1FB(N) . R     | SMK                 | S282                                               | 021SS-38 | 30              |                             | HSSVMCB3    | 27       | 312300 J04                      | 055                                                                              |     |  |  |  |
| 044                            | SPIRE SMEC PosPhDi#1FB(N) . SHD09 | SMK                 | S282                                               | 021SS-38 | 30              | Cable S282, 284,286 Shd con | HSSVMCB3    | 27       | 312300 J04                      | 044                                                                              |     |  |  |  |
|                                |                                   |                     | 1                                                  |          |                 | together (C)                | 1           |          |                                 |                                                                                  | I   |  |  |  |
| -                              |                                   |                     |                                                    |          |                 |                             |             |          |                                 |                                                                                  |     |  |  |  |
| 042                            | SPIRE SMEC PosPhDi#2(N) . I+      | SMJ                 | S283                                               | 021SS-38 | 28              |                             | HSSVMCB3    | 27       | 312300 J04                      | 042                                                                              |     |  |  |  |
| 041                            | SPIRE SMEC PosPhDi#2(N) . I-      | SMJ                 | S283                                               | 021SS-38 | 28              |                             | HSSVMCB3    | 27       | 312300 J04                      | 041                                                                              |     |  |  |  |
| 030                            | SPIRE SMEC PosPhDi#2(N) . SHD07   | SMJ                 | S283                                               | 021SS-38 | 28              | Cable S281, 283,285 Shd con | HSSVMCB3    | 27       | 312300 J04                      | 030                                                                              |     |  |  |  |
| _                              |                                   | 1                   | 1                                                  |          |                 | together (B)                | 1           |          |                                 |                                                                                  | 1   |  |  |  |
| -                              |                                   |                     |                                                    |          |                 |                             |             |          |                                 |                                                                                  |     |  |  |  |
| 034                            | SPIRE SMEC PosPhDi#2FB(N) . S     | SMK                 | S284                                               | 021SS-38 | 31              |                             | HSSVMCB3    | 27       | 312300 J04                      | 034                                                                              |     |  |  |  |
| 033                            | SPIRE SMEC PosPhDi#2FB(N) . R     | SMK                 | S284                                               | 021SS-38 | 31              |                             | HSSVMCB3    | 27       | 312300 J04                      | 033                                                                              |     |  |  |  |
| 045                            | SPIRE SMEC PosPhDi#2FB(N) . SHD10 | SMK                 | S284                                               | 021SS-38 | 31              | Cable S282, 284,286 Shd con | HSSVMCB3    | 27       | 312300 J04                      | 045                                                                              |     |  |  |  |
| -                              |                                   |                     | 1                                                  |          |                 |                             | 1           |          |                                 |                                                                                  |     |  |  |  |
| -                              |                                   |                     |                                                    |          |                 |                             |             |          |                                 |                                                                                  |     |  |  |  |
| 020                            | SPIRE SMEC PosPhDi#3(N) . I+      | SMJ                 | S285                                               | 021SS-38 | 29              |                             | HSSVMCB3    | 27       | 312300 J04                      | 020                                                                              |     |  |  |  |
| 021                            | SPIRE SMEC PosPhDi#3(N) . I-      | SMJ                 | S285                                               | 021SS-38 | 29              |                             | HSSVMCB3    | 27       | 312300 J04                      | 021                                                                              |     |  |  |  |
| 031                            | SPIRE SMEC PosPhDi#3(N) . SHD08   | SMJ                 | S285                                               | 021SS-38 | 29              | Cable S281, 283,285 Shd con | HSSVMCB3    | 27       | 312300 J04                      | 031                                                                              |     |  |  |  |
| _                              |                                   |                     | 1                                                  |          |                 |                             | 1           |          |                                 |                                                                                  |     |  |  |  |
| -                              |                                   |                     |                                                    |          |                 |                             |             |          |                                 |                                                                                  |     |  |  |  |
| 058                            | SPIRE SMEC PosPhDi#3FB(N) . S     | SMK                 | S286                                               | 021SS-38 | 32              |                             | HSSVMCB3    | 27       | 312300 J04                      | 058                                                                              |     |  |  |  |
| 057                            | SPIRE SMEC PosPhDi#3FB(N) . R     | SMK                 | S286                                               | 021SS-38 | 32              |                             | HSSVMCB3    | 27       | 312300 J04                      | 057                                                                              |     |  |  |  |

| Astrium GmbH   |                                |            | Pin Allocation List                                |        |          |                 |                             |              | Doc.No.: HP-2-ASED-IC-0001        |            |            |              |  |  |
|----------------|--------------------------------|------------|----------------------------------------------------|--------|----------|-----------------|-----------------------------|--------------|-----------------------------------|------------|------------|--------------|--|--|
|                |                                |            |                                                    |        |          |                 |                             |              | Issue                             | : 2.6      | Date: 20.0 | 9.2003       |  |  |
|                | HERSCHEL                       |            |                                                    |        |          |                 |                             |              | Sheet: PAL-5 (of 7)               |            |            |              |  |  |
| Con            | nector: 312300 J04             |            | Function: SPIRE SVM CB3 (SPIRE Bundle 11)          |        |          |                 |                             |              | ConnType: MS27497T24-35P (Jun.Sh) |            |            |              |  |  |
| Item: HSSVMCB3 |                                |            | Location: 27 / I/F CB ab. SVM Panel 7 (SPI/CCU CB) |        |          |                 |                             |              | Backshell: 440 FS 110 M 24 03     |            |            |              |  |  |
| EMC            | C-Category: 2I/Sig H fr CVVF   | T to SVMCB |                                                    | 1      |          |                 | 1                           | 1            |                                   |            |            | I.           |  |  |
|                |                                |            | Interface-Code                                     |        |          | Grouping:       | 0                           |              |                                   | •          |            |              |  |  |
| Pin            | Signal Designation             |            | Circuit Signal Pos.                                | Cn. ID | wiring   | Shd Cable Twist | Comment                     | l arget-item | Location                          | Connector  | Pin        | New          |  |  |
| -              |                                |            |                                                    |        |          |                 |                             |              |                                   |            |            |              |  |  |
| 011            | SPIRE SMEC PosSensPwr(N) . S   |            | SMH                                                | S280   | 021BS-38 | 26              |                             | CVVUCR       | 33                                | 211121 P30 | 011        |              |  |  |
| 004            | SPIRE SMEC PosSensPwr(N) . R   |            | SMH                                                | S280   | 021BS-38 | 26              |                             | CVVUCR       | 33                                | 211121 P30 | 004        | $\backslash$ |  |  |
| 010            | SPIRE SMEC PosSensPwr(N) . SHI | 005        | SMH                                                | S280   | 021BS-38 | 26              | Cable S280 Shd              | CVVUCR       | 33                                | 211121 P30 | 010        |              |  |  |
| -              | /                              |            |                                                    |        |          |                 |                             |              |                                   |            |            |              |  |  |
| 018            | SPIRE SMEC PosPhDi#1(N) . I+   |            | SMJ                                                | S281   | 021SS-38 | 27              |                             | CVVUCR       | 33                                | 211121 P30 | 018        |              |  |  |
| 019            | SPIRE SMEC PosPhDi#1(N) . I-   |            | SMJ                                                | S281   | 021SS-38 | 27              |                             | CVVUCR       | 33                                | 211121 P30 | 019        |              |  |  |
| 029            | SPIRE SMEC PosPhDi#1(N) . SHD  | 06         | SMJ                                                | S281   | 021SS-38 | 27              | Cable S281, 283,285 Shd con | CVVUCR       | 33                                | 211121 P30 | 029        |              |  |  |
|                |                                | I          |                                                    | 1      |          |                 | together (B)                | 1            |                                   |            |            | 1            |  |  |
| -              |                                |            |                                                    |        |          |                 |                             |              |                                   |            |            |              |  |  |
| -<br>056       | SPIRE SMEC PosPhDi#1FB(N) . S  |            | SMK                                                | S282   | 021SS-38 | 30              |                             | CVVUCR       | 33                                | 211121 P30 | 056        |              |  |  |
| 055            | SPIRE SMEC PosPhDi#1FB(N) . R  |            | SMK                                                | S282   | 021SS-38 | 30              |                             | CVVUCR       | 33                                | 211121 P30 | 055        |              |  |  |
| 044            | SPIRE SMEC PosPhDi#1FB(N) . SH | ID09       | SMK                                                | S282   | 021SS-38 | 30              | Cable S282, 284,286 Shd con | CVVUCR       | 33                                | 211121 P30 | 044        |              |  |  |
|                |                                | 1          |                                                    | I      |          |                 | together (C)                | 1            |                                   |            |            | I            |  |  |
| -              |                                |            |                                                    |        |          |                 |                             |              |                                   |            |            |              |  |  |
| -<br>042       | SPIRE SMEC PosPhDi#2(N) . I+   |            | SMJ                                                | S283   | 021SS-38 | 28              |                             | CVVUCR       | 33                                | 211121 P30 | 042        |              |  |  |
| 041            | SPIRE SMEC PosPhDi#2(N) . I-   |            | SMJ                                                | S283   | 021SS-38 | 28              |                             | CVVUCR       | 33                                | 211121 P30 | 041        |              |  |  |
| 030            | SPIRE SMEC PosPhDi#2(N) . SHD0 | 70         | SMJ                                                | S283   | 021SS-38 | 28              | Cable S281, 283,285 Shd con | CVVUCR       | 33                                | 211121 P30 | 030        |              |  |  |
|                |                                | 1          |                                                    | I      |          |                 | together (B)                | 1            |                                   |            |            | 1            |  |  |
| -              |                                |            |                                                    |        |          |                 |                             |              |                                   |            |            |              |  |  |
| 034            | SPIRE SMEC PosPhDi#2FB(N) . S  |            | SMK                                                | S284   | 021SS-38 | 31              |                             | CVVUCR       | 33                                | 211121 P30 | 034        |              |  |  |
| 033            | SPIRE SMEC PosPhDi#2FB(N) . R  |            | SMK                                                | S284   | 021SS-38 | 31              |                             | CVVUCR       | 33                                | 211121 P30 | 033        |              |  |  |
| 045            | SPIRE SMEC PosPhDi#2FB(N) . SH | ID10       | SMK                                                | S284   | 021SS-38 | 31              | Cable S282, 284,286 Shd con | CVVUCR       | 33                                | 211121 P30 | 045        |              |  |  |
|                |                                | ĺ          |                                                    | I      |          |                 | together (C)                | 1            |                                   |            |            | 1            |  |  |
| -              |                                |            |                                                    |        |          |                 |                             |              |                                   |            |            |              |  |  |
| 020            | SPIRE SMEC PosPhDi#3(N) . I+   |            | SMJ                                                | S285   | 021SS-38 | 29              |                             | CVVUCR       | 33                                | 211121 P30 | 020        |              |  |  |
| 021            | SPIRE SMEC PosPhDi#3(N) . I-   |            | SMJ                                                | S285   | 021SS-38 | 29              |                             | CVVUCR       | 33                                | 211121 P30 | 021        |              |  |  |
| 031            | SPIRE SMEC PosPhDi#3(N) . SHD  | 08         | SMJ                                                | S285   | 021SS-38 | 29              | Cable S281, 283,285 Shd con | CVVUCR       | 33                                | 211121 P30 | 031        |              |  |  |
| _              |                                |            |                                                    |        |          |                 | logether (B)                |              |                                   |            |            |              |  |  |
| -              |                                |            |                                                    |        |          |                 |                             |              |                                   |            |            |              |  |  |
| 058            | SPIRE SMEC PosPhDi#3FB(N) . S  |            | SMK                                                | S286   | 021SS-38 | 32              |                             | CVVUCR       | 33                                | 211121 P30 | 058        |              |  |  |
| 057            | SPIRE SMEC PosPhDi#3FB(N) . R  |            | SMK                                                | S286   | 021SS-38 | 32              |                             | CVVUCR       | 33                                | 211121 P30 | 057        |              |  |  |

| Astrium GmbH Project: HERSCHEL |                                                     | Pin Allocation List |                                                                             |                      |                 |                                                              |             | Doc.N      | Doc.No.: HP-2-ASED-IC-0001<br>Issue: 2.6 Date: 20.09.2003 |                             |  |  |  |  |
|--------------------------------|-----------------------------------------------------|---------------------|-----------------------------------------------------------------------------|----------------------|-----------------|--------------------------------------------------------------|-------------|------------|-----------------------------------------------------------|-----------------------------|--|--|--|--|
|                                |                                                     |                     |                                                                             |                      |                 |                                                              |             |            |                                                           |                             |  |  |  |  |
|                                |                                                     |                     | (Harness)                                                                   |                      |                 |                                                              |             |            |                                                           | Sheet: PAL-5 (of 10)        |  |  |  |  |
| Con                            | nector: 211121 J32                                  | F                   | Function:         UFThr. 305.7° (SPIRE XS-01 JFS 5,6,9,10)         ConnType |                      |                 |                                                              |             |            |                                                           | pe: 197-011P24-35P (Junct.) |  |  |  |  |
| Item                           | : CVVUCR                                            | L                   | Location: 33 / CVV I/F CB Top PFM (CVVUCR)                                  |                      |                 |                                                              |             |            | ₹SKT 58-0050                                              |                             |  |  |  |  |
| EMC                            | -Category: 2C/Sig H in Cryos                        | stat                |                                                                             |                      |                 |                                                              |             |            |                                                           |                             |  |  |  |  |
|                                |                                                     | Interface-Code      |                                                                             |                      | Grouping:       |                                                              |             |            |                                                           |                             |  |  |  |  |
| Pin                            | Signal Designation                                  | Circuit Signal Pos. | Ch. ID                                                                      | Wiring               | Shd Cable Twist | Comment                                                      | Target-Item | Location   | Connector                                                 | Pin New                     |  |  |  |  |
| 104                            | SPIRE SLW Bias A1 . SHD03                           | SSD                 | S025                                                                        | 022BS-38             | 25              | Cable S025 inner Shd daisy ch<br>to Pin 104 at CVV side (B3) | HSJFS       | 76         | 121220 P09                                                | 006                         |  |  |  |  |
| -                              | Cable S025 outer Shield                             |                     |                                                                             |                      |                 | Cable S025 outer Shd con to<br>Busbar (Faraday)              |             |            |                                                           |                             |  |  |  |  |
| -                              |                                                     | 005                 | 0000                                                                        |                      |                 |                                                              |             | 70         |                                                           | 005                         |  |  |  |  |
| 102                            | SPIRE SLW Bias A2 . +ve                             | SSD                 | S026                                                                        | 02285-38             | 26              |                                                              | HSJFS       | 76<br>76   | 121220 P09                                                | 005                         |  |  |  |  |
| 101                            | SPIRE SLW Bias A2 SHD04                             | SSD                 | S020                                                                        | 02285-30             | 20              | Cable S026 inner Shd daisy ch                                | HS IFS      | 76         | 121220 P09                                                | 024                         |  |  |  |  |
| 104                            |                                                     |                     | 0020                                                                        | 02200-00             | 20              | to Pin 104 at CVV side (B3)                                  | 11001 0     | 10         | 1212201 05                                                | 020                         |  |  |  |  |
| -                              | Cable S026 outer Shield                             |                     |                                                                             |                      |                 | Cable S026 outer Shd con to<br>Busbar (Faraday)              |             |            |                                                           |                             |  |  |  |  |
| -                              |                                                     |                     |                                                                             |                      |                 |                                                              |             |            |                                                           |                             |  |  |  |  |
| -<br>104                       | SPIRE SLW GND WIRE B3                               | SSX                 | S405                                                                        | 010B0-38             |                 | SLW GND Wire B3 con to cable 25,26,11,12 Shd                 | HSJFS       | 76         | 121220 P09                                                | 006                         |  |  |  |  |
| -                              |                                                     | 005                 | 0044                                                                        |                      |                 |                                                              |             |            |                                                           |                             |  |  |  |  |
| 092                            | SPIRE SLW JFETV A1 . +ve                            | SSF                 | S011                                                                        | 02285-38             | 11              |                                                              | HSJFS       | This is co | moliant with                                              |                             |  |  |  |  |
| 104                            | SPIRE SLW JFETV A1 Ve<br>SPIRE SLW JEETV A1 . SHD05 | 55F<br>99E          | S011                                                                        | 02203-30             | 11              | Cable S011 inner Shd daisy ch                                |             |            |                                                           |                             |  |  |  |  |
| 104                            |                                                     |                     | 3011                                                                        | 02203-30             | 11              | to Pin 104 at CVV side (B3)                                  | 11551-5     | HUD 1.2    |                                                           |                             |  |  |  |  |
| -                              | Cable S011 outer Shield                             |                     |                                                                             |                      |                 | Cable S011 outer Shd con to<br>Busbar (Faraday)              | L           |            |                                                           |                             |  |  |  |  |
| -                              |                                                     |                     |                                                                             |                      |                 |                                                              |             |            |                                                           |                             |  |  |  |  |
| 103                            | SPIRE SLW JFETV A2 . +ve                            | SSF                 | S012                                                                        | 022BS-38             | 12              |                                                              | HSJFS       | 76         | 121220 P09                                                | 008                         |  |  |  |  |
| 113                            | SPIRE SLW JEETV A2ve                                | SSF                 | S012                                                                        | 022BS-38             | 12              | Cable C012 imper Chd deiny ab                                | HSJES       | 76<br>70   | 121220 P09                                                | 027                         |  |  |  |  |
| 104                            | SPIRE SLW JFETV AZ . SHDUO                          | 55F                 | 5012                                                                        | 02285-38             | 12              | to Pin 104 at CVV side (B3)                                  | HSJFS       | 76         | 121220 P09                                                | 026                         |  |  |  |  |
| -                              | Cable S012 outer Shield                             |                     |                                                                             |                      |                 | Cable S012 outer Shd con to<br>Busbar (Faraday)              |             |            |                                                           |                             |  |  |  |  |
| -                              |                                                     |                     |                                                                             |                      |                 |                                                              |             |            |                                                           |                             |  |  |  |  |
| -                              |                                                     |                     |                                                                             |                      |                 |                                                              |             |            |                                                           |                             |  |  |  |  |
| 090                            | SPIRE SSW Bias A1 . +ve                             | SSC                 | S029                                                                        | 022BS-38             | 29              |                                                              | HSJFS       | 76         | 121220 P09                                                | 028                         |  |  |  |  |
| 079                            | SPIRE SSW Bias A1ve                                 | SSC                 | S029                                                                        | 022BS-38             | 29              |                                                              | HSJFS       | 76         | 121220 P09                                                | 010                         |  |  |  |  |
| 093                            | SPIRE SSW BIAS AT . SHDU7                           | SSC                 | S029                                                                        | 02288-38             | 29              | to Pin 093 at CVV/ side (C3)                                 | HSJFS       | 76         | 121220 P09                                                | 009                         |  |  |  |  |
| -                              | Cable S029 outer Shield                             |                     |                                                                             |                      |                 | Cable S029 outer Shd con to<br>Busbar (Faraday)              |             |            |                                                           |                             |  |  |  |  |
| -                              |                                                     | 205                 | 0040                                                                        | 00000 00             | 40              |                                                              |             | 70         | 101000 000                                                | 011                         |  |  |  |  |
| 068                            | SPIRE SSW JFETV A1ve                                | SSE                 | S016<br>S016                                                                | 022BS-38<br>022BS-38 | 16              |                                                              | HSJFS       | 76<br>76   | 121220 P09<br>121220 P09                                  | 030                         |  |  |  |  |