SUBJECT: INSTRUMENT REQUIREMENTS DOCUMENT

PREPARED BY: Bruce Swinyard (Custodian)

Ken King

**DOCUMENT No: 0034** 

**CHECKED BY:** Berend Winter (MSSL) Date: ..... **Dominique Pouliquen (LAM)** Date: ..... Peter Hargrave (QMW) Date: ..... **Lionel Duband (CEA)** Date: ..... Jamie Bock (JPL) Date: ..... Jean-Louis Augueres (CEA) Date: ..... Riccardo Cerulli-Irelli (IFSI) Date: ..... Gary Davis (USK) **Date:** ..... Hans-Goran Floren (Stockholm) Date: ..... **APPROVED BY: Matt Griffin Date:** ..... Ken King Date: ..... **Laurent Vigroux** Date: ..... **Colin Cunningham** Date: .....

Date: .....

**Project Document** 

INSTRUMENT REQUIREMENTS DOCUMENT

**Ref:** SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: ii

#### **Distribution**

Matt Griffin Principal Investigator (QMW)
Laurent Vigroux Co-Principal Investigator (CEA)

Walter Gear Project Scientist Jean-Paul Baluteau Project Scientist

Ken KingProject Manager (RAL)Bruce SwinyardInstrument Scientist (RAL)Colin CunninghamFPU Systems Engineer (ATC)

Jean-Louis Augueres CEA(Saclay)
Lionel Duband CEA (Grenoble)

Don Jennings GSFC

Jamie Bock JPL/Caltech

Jason Glenn University of Colorado

Dominique PouliquenLAMBerend WinterMSSLKjetil DohlenLAMPeter HargraveQMWGary DavisUSKDavid SmithRALHans-Goran FlorenStockholm

Riccardo Cerulli-Irelli IFSI Anna Di Giorgio IFSI

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: iii

### **Change Record**

| ISSUE | DATE           |                                                                                                 |
|-------|----------------|-------------------------------------------------------------------------------------------------|
| 1     | 2 July 1999    | First proper issue just prior to PDR                                                            |
| 2     | September 1999 | Radically re-arranged separate instrument and sub-system reqs.                                  |
| 2-1   | November 1999  | Updated following comments from Berend Winter – this issue sent out for Warm Electronics Review |
| 3     | May 2000       | Revised following detector selection.                                                           |
|       | ·              | Removed extraneous information that is better covered in other documents.                       |
|       |                | Revised organisation of document and removed redundant                                          |
|       |                | requirements and renumbered some of the sub-systems                                             |
|       |                | requirements.                                                                                   |
|       |                | Added simulator requirements                                                                    |
|       |                | Re-integrated Warm Electronics requirements                                                     |
| 31    | 25 May 2000    | Official release following comments on version 3.                                               |
|       |                | Changes made to requirements on WE testing to bring into line with development plans.           |
|       |                | Block diagram changed to put shutter electronics into DRCU                                      |
|       |                | Change made to cooler requirements to include parasitic load                                    |
|       |                | from 4-2 K via structure and heat switches.                                                     |

## Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 1

### **Table of Contents**

| 1. Int       | troduction                                                    | 3  |
|--------------|---------------------------------------------------------------|----|
| 1.1          | Purpose                                                       | 3  |
| 1.2          | Scope                                                         | 3  |
| 1.3          | Glossary                                                      | 3  |
| 1.4          | References                                                    |    |
| 1.4          | 4.1 Applicable Documents                                      |    |
| 1.4          | 4.2 Reference Documents                                       |    |
| 1.5          | Document Overview                                             |    |
| 2. Ins       | strument and Satellite Level Requirements                     |    |
| 2.1          |                                                               |    |
| 2.1          | •                                                             |    |
|              | 1.2 Mission Context                                           |    |
|              | 1.3 Definition of Instrument Elements and Instrument Location |    |
|              | 2.1.3.1 Satellite Level Constraints and Assumptions           |    |
|              | 2.1.3.2 FIRST Cryostat.                                       |    |
|              | 2.1.3.3 Warm Electronics Power                                |    |
|              | 2.1.3.4 Telemetry Rates.                                      |    |
|              | 2.1.3.5 FIRST Telescope                                       |    |
|              | 2.1.3.6 Pointing                                              |    |
|              | 2.1.3.7 Launch Environment.                                   |    |
|              | 2.1.3.8 Orbit                                                 |    |
|              | 2.1.3.9 Mission Lifetime                                      |    |
|              | 2.1.3.10 Radiation environment                                |    |
|              | 2.1.3.11 Operational Environment                              |    |
| 2.2          | •                                                             |    |
|              | 2.1 Photometer Requirements                                   |    |
| 2.2          | •                                                             |    |
| 2.3          | 1                                                             |    |
| 2.3          | *                                                             |    |
|              | 3.2 Operating Modes                                           |    |
| 2.3          |                                                               |    |
|              | nirement ID                                                   |    |
| •            | 3.4 Telemetry Requirements                                    |    |
|              | 3.5 Data Handling Requirements                                |    |
| 2.4          | Instrument Model Philosophy                                   |    |
| 2.5          | Instrument level Qualification                                |    |
| 2.6          | Verification                                                  |    |
| 2.7          | Safety                                                        |    |
| 2.8          | Autonomy                                                      |    |
| 2.9          | Reliability and Redundancy                                    |    |
| 2.10         | EMC                                                           |    |
|              | bsystems Requirements                                         |    |
| 3. Su<br>3.1 | Assumptions                                                   |    |
| 3.1          | Scope                                                         |    |
| 3.3          | Subsystem Qualification Requirements                          |    |
| 3.3          | Subsystem Quantication Requirements                           | 34 |

## Project Document

INSTRUMENT REQUIREMENTS

DOCUMENT

## Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 2

| 3.4 Assumptions for the Focal Plane Unit                                 | 35         |
|--------------------------------------------------------------------------|------------|
| 3.4.1 Plate Scale                                                        |            |
| 3.4.2 Vacuum                                                             |            |
| 3.4.3 Mass                                                               |            |
| 3.5 Sub-system requirements                                              |            |
| 3.5.1 Structure                                                          | 36         |
| 3.5.1.1 Common Structure                                                 | 36         |
| 3.5.1.2 Photometer Structure                                             | 38         |
| 3.5.1.3 Spectrometer Structure                                           | 39         |
| <sup>3.5.2</sup> <sup>3</sup> He Cooler and detector temperature control | 40         |
| 3.5.3 Shutter                                                            | 43         |
| Performance Requirements                                                 | 43         |
| 3.5.4 Harness                                                            | 44         |
| 3.5.5 Optics and Filters                                                 | 45         |
| 3.5.5.1 Photometer Optics and Filters                                    | 45         |
| 3.5.5.2 Spectrometer Optics and Filters                                  | 46         |
| 3.5.6 Detectors                                                          | 47         |
| 3.5.6.1 Photometer Detectors                                             | 47         |
| 3.5.6.2 Spectrometer Detectors                                           | 48         |
| 3.5.7 Beam Steering Mechanism                                            | 50         |
| 3.5.8 Spectrometer Mirror Mechanism and Position Measurement System      | 52         |
| 3.5.9 Calibration Sources                                                | 54         |
| 3.5.9.1 Photometer Calibration Source                                    | 54         |
| 3.5.9.2 Spectrometer Calibration Source                                  | 55         |
| 3.5.10 JFET Box                                                          | 57         |
| 3.5.11 RF Filter Modules                                                 | 58         |
| 3.5.12 Instrument Simulators                                             |            |
| 3.5.12.1 FPU Simulator                                                   | 59         |
| 3.5.12.2 DRCU Simulator                                                  | 59         |
| 2.6 Warm Electronics                                                     | <b>6</b> 1 |

Project Document

# INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 3

#### 1. Introduction

#### 1.1 Purpose

This document describes the capabilities required of the SPIRE instrument and the constraints placed upon its design and operation in the context of the FIRST mission.

The instrument requirements are derived from the scientific requirements placed on the instrument in the SPIRE Science Requirements Document (SRD); the constraints imposed upon the instrument design by the satellite interface specification as detailed in the Instrument Interface Document parts A and B (IID-A and IID-B) and the operational constraints on the instrument design given in the FIRST/Planck Operations Interface Requirements Document (OIRD).

This document goes beyond the general instrument level requirements to place specific requirements on individual sub-systems within the context of the instrument design specification. It thus forms the starting point for the SPIRE sub-system specification documents that will be written for each SPIRE sub-system.

The requirements set out in this document will be used to verify the performance of the instrument during instrument level Assembly, Integration and Verification (AIV). The sub-system requirements will be used as the bench mark for sub-system acceptance at instrument level.

#### 1.2 Scope

This documents deals with the requirements on the SPIRE instrument hardware and software from the optical input from the FIRST telescope through to the interfaces with the spacecraft. It does not deal with the requirements on the SPIRE Instrument Control Centre or any other part of the instrument ground segment.

#### 1.3 Glossary

| AIV  | Assembly Integration and Verification   |
|------|-----------------------------------------|
| AOCS | Attitude and Orbit Control System       |
| ASIC | Application Specific Integrated Circuit |

AVM Avionics Model

BSM Beam Steering Mechanism

CDMS Command and Data Management System (on Spacecraft)

CQM Cryogenic Qualification Model CVV Cryostat Vacuum Vessel

DCRU Detector Control and Readout Unit

DPU Digital Processing Unit EMC Electromagnetic Compatibility

EMI Electromagnetic Interference

FINDAS FIRST Integrated Network and Data Archive System

FOV Field of View FPU Focal Plane Unit FS Flight Spare

FTS Fourier Transform Spectrometer

### Project Document

# INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 4

| HIFI  |                                           |
|-------|-------------------------------------------|
| IID-A | Instrument Interface Document part A      |
| IID-B | Instrument Interface Document part B      |
| JFET  | Junction Field Effect Transistor          |
| MGSE  | Mechanical Ground Support Equipment       |
| NEP   | Noise Equivalent Power                    |
| OBDH  | On Board Data Handling (on Spacecraft)    |
| OGSE  | Optical Ground Support Equipment          |
| OPD   | Optical Path Difference                   |
| PACS  |                                           |
| PDU   | Power Distribution Unit (on spacecraft)   |
| PFM   | Proto-Flight Model                        |
| PLM   | Payload Module                            |
| QLF   | Quick Look Facility                       |
| S/C   | Space Craft                               |
| SPIRE | Spectral and Photometric Imaging Receiver |
| SRD   | Science Requirements Document             |
| SVM   | Service Module                            |
| TBD   | To Be Determined                          |
| TBC   | To Be Confirmed                           |
|       |                                           |

Table A: Glossary of acronyms and abbreviations

#### 1.4 References

Where there are differences in requirements or specification details, the applicable and reference documents enumerated here take precedence over the Instrument Requirements Document. This is particularly the case with the IID-A and IID-B which will contain the interface specification between the SPIRE instrument and the FIRST satellite.

### 1.4.1 Applicable Documents

| Document  | Name                                              | Number/version/date        |
|-----------|---------------------------------------------------|----------------------------|
| Reference |                                                   |                            |
| AD1       | FIRST/Planck Instrument Interface Document Part A | PT-IID-A-04624 Issue-      |
|           | (IID-A)                                           | Version 0-2 (working copy) |
|           |                                                   | 15 February 2000           |
|           |                                                   | SPIRE-ESA-DOC-000178       |
| AD2       | SPIRE Scientific Requirements Document            | Version 0.2                |
|           | (SRD)                                             | 29 March 1999              |
|           |                                                   | SPIRE-UCF-DOC-000064       |
| AD3       | FIRST/PLANCK Operations Interface Requirements    | SCI-PT-RS-07360 Draft 5    |
|           | Document (FOIRD)                                  | 03 May 2000                |
|           |                                                   | SPIRE-ESA-DOC-000188       |
| AD4       | FIRST Science Operations Implementation           | PT-03646 Draft 3           |
|           | Requirements Document (SIRD)                      | 30 September 1997          |
|           | <del>-</del>                                      | SPIRE-ESA-DOC-000198       |
| AD5       | FIRST/Planck Instrument Interface Document Part B | PT-SPIRE-02124 Issue-Rev.  |

### Project Document

# INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 5

(IID-B) Instrument "SPIRE"

No. 0-2

01 August 1999

SPIRE-ESA-DOC-000275

#### **Table B: Applicable Documents**

The abbreviations in brackets are used throughout the present document.

#### 1.4.2 Reference Documents

| Document  | Name                                              | Number/version           |
|-----------|---------------------------------------------------|--------------------------|
| Reference |                                                   |                          |
| RD1       | FIRST L-2 Radiation Environment                   | esa/estec/wma/he/FIRST/3 |
|           |                                                   | 04 March 1997            |
|           |                                                   | SPIRE-ESA-NOT-000401     |
| RD2       | FIRST Telescope Specification                     | PT-RQ-04761              |
|           |                                                   | Issue 1/A                |
|           |                                                   | January 1998             |
|           |                                                   | SPIRE-ESA-DOC-000195     |
| RD3       | ESA Packet Utilisation Standard                   | ESA-PSS-07-101 Issue 1   |
|           |                                                   | May 1994                 |
|           |                                                   | SPIRE-ESA-DOC-000243     |
| RD4       | FIRST Satellite System Specification              | PT-SP-00211 Issue 2      |
|           |                                                   | 11 June 1997             |
|           |                                                   | SPIRE-ESA-DOC-000277     |
| RD5       | The document that describes the FIRST Orbit if    | ??                       |
|           | this isnt the one above                           |                          |
| RD6       | Fax from T. Passvogel 5/10/1998 – I think this is | PT-05908                 |
|           | now in the IID-A                                  |                          |
| RD7       | SPIRE Optics Alignment Requirements (title TBD    |                          |
|           | – not written)                                    |                          |
| RD8       | FIRST Instrument I/F Study Final Report           | FIRST-GR-B0000.009 Issue |
|           |                                                   | 1                        |
|           |                                                   | 02 February 2000         |
|           |                                                   | SPIRE-REF-DOC-000417     |
| RD9       | SPIRE Instrument AIV Plan                         | SPIRE-RAL-DOC-000410     |
|           |                                                   | Draft, 25 May 2000       |
|           |                                                   |                          |

#### **Table C: Reference documents**

The abbreviations in brackets are used throughout the present document.

#### 1.5 Document Overview

The context within which the SPIRE instrument is to be operated and for which it is designed is outlined in section 2.1 together with an outline description of the conceptual design of the instrument. The requirements placed on the instrument performance in the Science Requirements Document are enumerated in section 2.2 and the requirements placed on the operation of the instrument in order to meet the scientific requirements are described in section 2.3. Sections 2.4-2.7 give the requirements placed upon the instrument design by the satellite launch and operations environments.

Project Document

# INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 6

In chapter 3 the specific requirements placed on each sub-system of the SPIRE instrument are detailed. This starts from the generic requirements on all sub-systems for qualification and verification in sections 3.1 and 3.2. Each sub-system is then taken in turn, starting with the cold focal plane unit and ending with the warm electronics.

The details of various aspects of the qualification tests and the expected mass, power and thermal dissipation budgets available for the various sub-systems are given in the appendices.

**Project Document** 

# INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 7

### 2. Instrument and Satellite Level Requirements

### 2.1 General Description

#### 2.1.1 Instrument Description

SPIRE (Spectral & Photometric Imaging REceiver) is a bolometer instrument comprising a three-band imaging photometer covering the 200-600  $\mu$ m range and an imaging Fourier Transform Spectrometer (FTS) with a spectral resolution of at least 0.4 cm<sup>-1</sup> (corresponding to  $\lambda/\Delta\lambda=100$  at 250  $\mu$ m), covering wavelengths between 200 and 670  $\mu$ m. The detectors are bolometer arrays cooled to 300 mK using a <sup>3</sup>He refrigerator. The photometer is optimised for deep photometric surveys, and can observe simultaneously the same field of view of at least 4 x 4 arcminutes in all three bands.

#### 2.1.2 Mission Context

SPIRE is one of three instruments to be placed on board the ESA Far InfraRed and Submillimetre Telescope (FIRST) satellite. This mission is dedicated to astronomical observations in the 85 to 700  $\mu m$  waveband.

The FIRST satellite provides a 3.5 m telescope for receiving and imaging the FIR and submillimetre radiation from astronomical sources. The three instrument Focal Plane Units (FPUs) share the 0.25 degree focal plane of the FIRST telescope and each instrument provides re-imaging optics to take its the portion of the focal plane onto its detectors. The signals from the SPIRE instrument are, after suitable conditioning and conversion to digital format, sent to the ground via the spacecraft Command and Data Management System (CDMS).

In order to prevent the instrument detectors being swamped by self emission, the FPUs are located in the FIRST cryostat. This is a liquid helium (LHe) cryostat providing various temperature levels, the lowest of these is the super-fluid LHe tank at 1.7 K. There are also two cold gas vent lines – the actual temperatures these provide are dependent on the details of the instrument thermal dissipation and the cryostat design (see section 2.1.4.1). The three instrument FPUs mechanically interface to the cryostat via a common optical bench with separate thermal straps to the cryostat. The signal conditioning "warm electronics" units will be placed on the satellite service module (SVM). The electrical connections between the warm electronics and the cold FPU are made through a cryo-harness that will be provided as part of the satellite system.

The FIRST mission will be controlled from the Mission Operations Centre (MOC) via a remote ground station. The SPIRE instrument will be controlled from the SPIRE Instrument Control Centre (ICC) which communicates to the MOC via the FIRST Integrated Network and Data Archive System (FINDAS). The FIRST observers will interface to the mission via the FIRST Science Centre (FSC) which also communicates to the MOC via FINDAS.

SPIRE Project Document

# INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 8

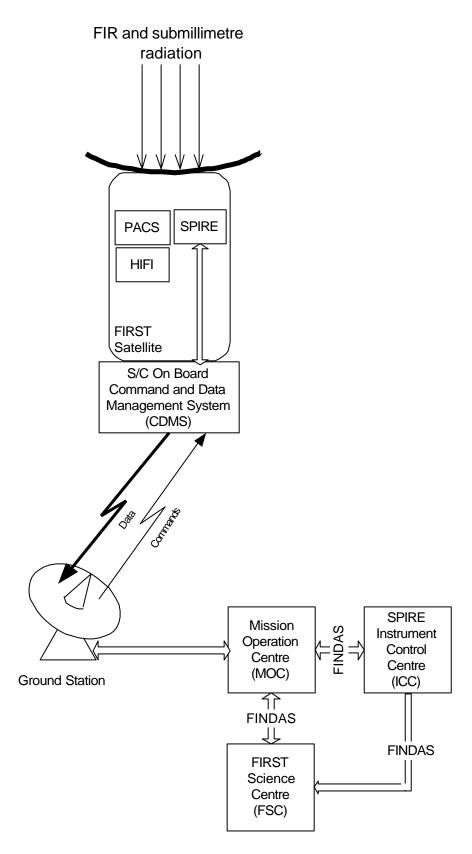



Figure 2-1: The FIRST Mission showing the communication between the various elements

### Project Document

# INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 9

### 2.1.3 Definition of Instrument Elements and Instrument Location

The SPIRE instrument consists of several "units" as defined in the IID-B and recapitulated in table 2.1-1 together with brief descriptions of their functions and their locations on the FIRST satellite. These are subject to revision as the detailed design of the instrument proceeds but are given here for reference.

| Instrument unit      | Function                         | ESA   | Location               |
|----------------------|----------------------------------|-------|------------------------|
|                      |                                  | code  |                        |
| Cold Focal Plane     | Contains the optics;             | FSFPU | On FIRST optical bench |
| Unit (FPU)           | mechanisms and detectors.        |       | inside cryostat        |
| Focal plane JFET box | This unit contains the cold      | FSFTB | On FIRST optical bench |
| (FTB)                | read-out electronics for the     |       | inside cryostat        |
|                      | NTD germanium bolometers.        |       |                        |
| Detector Read-out    | This warm electronics unit       | FSDRC | On spacecraft service  |
| and Control Unit     | contains the circuitry necessary |       | module (SVM)           |
| (DRCU)               | to read-out the detectors;       |       |                        |
|                      | control the various mechanisms   |       |                        |
|                      | and provide instrument control   |       |                        |
|                      | and data handling functions      |       |                        |
| Digital Processing   | This warm electronics unit       | FSDPU | On SVM                 |
| Unit (DPU)           | provides the instrument          |       |                        |
|                      | interface to the S/C CDMS        |       |                        |
|                      | sub-system; receives and         |       |                        |
|                      | interprets instrument            |       |                        |
|                      | commands and formats the         |       |                        |
|                      | instrument data for telemetry to |       |                        |
|                      | the ground                       |       |                        |
| Warm interconnect    | This connects the warm           | FSHAR | On SVM                 |
| harnesses            | electronics units.               |       |                        |
| (HARNESS)            |                                  |       |                        |

Table 2.1-1: Definition and location of the elements of the SPIRE instrument.

Project Document

# INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 10

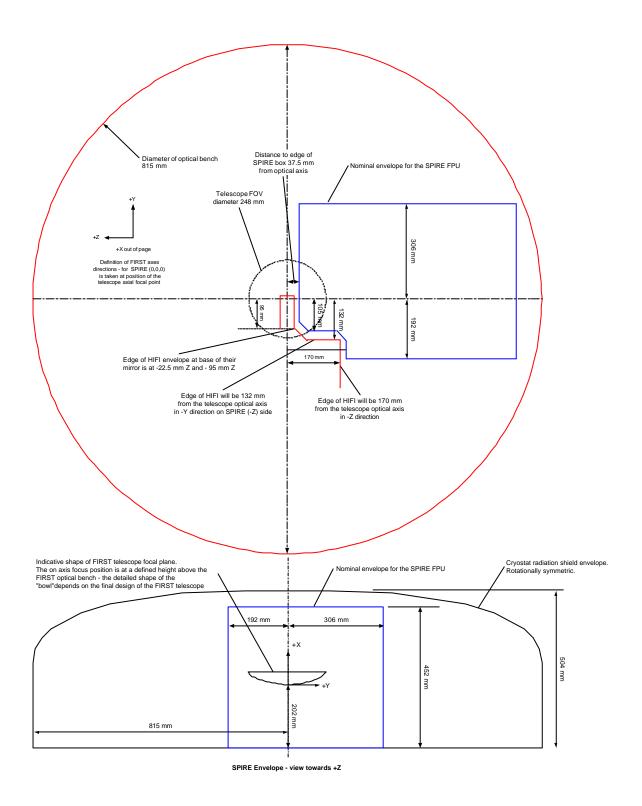



Figure 2-2: Cold FPU location and envelope constraints in the FIRST cryostat. The cryostat cover is rotationally symmetric and defines the X-Z envelope of the instrument box as well (not shown). The details of the box shape are subject to revision as the design evolves and the instrument dimensions are for illustrative purposes only.

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 11

#### 2.1.3.1 Satellite Level Constraints and Assumptions

The specification and capabilities of the FIRST satellite are given in RD5 and the IID-A. As these two documents are under review and are unlikely to be finalised in the near term, the assumptions that should be made about the FIRST satellite for the purposes of the SPIRE instrument requirements are described in this section.

#### 2.1.3.2 FIRST Cryostat

The thermal behaviour of the FIRST cryostat will be complex and depends both on its final design and that of the instruments. The results of a study into the expected temperatures that will be provided by the FIRST cryostat (RD8) shows that the temperatures of the three thermal interfaces are as given in table 2-2.

| Description                | Description Cooling Method and Comments                                                                                                                               |       |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| LHe tank "Level 0"         | The pumped LHe will be super-fluid and provide a very large thermal sink                                                                                              | 1.7 K |
| Helium Vent Line "Level 1" | Cooled by cryostat boil off gas – temperature will depend on rate of boil off and instrument dissipation                                                              | 5.2 K |
| Helium Vent Line "Level 2" | Strapped to helium gas vent line after level 1 connection. That is the temperature of the gas will depend on the thermal dissipation from the instruments at level 1. | 11 K  |

Table 2-2: Temperature stages available from the FIRST cryostat.

The permissible dissipation from the FPU at the various temperatures is TBD but is likely to be no more than a few 10's mW total. An illustration of the expected levels of dissipation is given in the SPIRE Sub-system Budget Allocation (AD5).

The FIRST cryostat defines the available space envelope for the instruments. The SPIRE envelope is further restricted by the neighbouring HIFI instrument. Figure 2-2 shows the approximate location of the SPIRE instrument, the definition of the spacecraft axes and the available space envelope. The shape of the FIRST cryostat cover that defines the cold FPU space envelope is given in RD6 and repeated in table 2-3 for completeness.

SPIRE INSTRU

### Project Document

# INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 12

| X (mm) | Y (mm) | Z (mm) |
|--------|--------|--------|
| 0      | 0      | 815    |
| 271    | 0      | 815    |
| 315    | 0      | 807    |
| 350    | 0      | 787    |
| 379    | 0      | 758    |
| 431    | 0      | 662    |
| 461    | 0      | 563    |
| 497    | 0      | 337    |
| 504    | 0      | 135    |

Table 2-3: Dimensions of the FIRST cryostat shield that defines the envelope for the instruments. The shield is rotationally symmetric and, when this definition was provided, the hole in the top had a radius of 135 mm. This is subject to revision depending on the detailed design of the telescope.

#### 2.1.3.3 Warm Electronics Power

The SPIRE instrument has requested up to 181 W total (see IID-B). How much power is actually available for the instruments is not defined at present.

#### 2.1.3.4 Telemetry Rates

The average telemetry rate available to each instrument over the operational cycle of the FIRST satellite is 100 kbps.

### 2.1.3.5 FIRST Telescope

The FIRST telescope defines the optical "environment" in which the SPIRE instrument has to operate. In particular the field of view; the plate scale and speed of the beam. The current specification for the FIRST telescope is given in the 'FIRST Telescope Specification' (RD3). It is base lined as having the following optical specification:

Primary mirror diameter: 3.5 m

Focal length: 28.5 m Focal Ratio: f/8.68

Back focal length: 975 mm – defined from the primary vertex

Field of view: circular - radius 0.25 degrees

Height of on-axis focus above optical bench: 202 mm

Plate scale: 7.237 arcsec/mm

Diameter of unvignetted field of view at the focal plane: 248.7 mm

The f/number of the primary and, therefore, the size of the secondary have not been finally decided. The telescope design is under review and the precise optical description is not finalised. I think this is finished – where is it documented? May 2000

**Project Document** 

# INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

Issue: .30

**Date:** 10-MAY-1999

Page: 13

#### **2.1.3.6** Pointing

The pointing capabilities of the FIRST satellite are given in AD1 and RD5. The satellite has a requirement to "blind point" to within 3.7 arcsec and a goal to do this within 1.5 arcsec. Both these figures are 1-sigma values and are referred to the optical axis. If the goal is not achieved then a "peakup" operation mode may be required.

The satellite has the ability to perform both pointed raster observations and fast scans across the sky. For the raster mode the relative accuracy between pointings will be better than 0.5 arcsec. In scan mode the satellite can be scanned over a large angular range from 0.1 arcsec/sec to 60 arcsec/sec with a resolution of 0.1 arcsec/sec. The satellite can be scanned from 1 arcmin to 110 degrees with a resolution of 1 arcmin. This mode can be used in "line scan" to build up maps of large areas of the sky.

The satellite can be nodded from one position to another with a duty cycle of at least 80% for a throw of 5 arcmin with a dwell time of 72 seconds at each position. The details of any actual SPIRE specific requirement on the nodding capability of the satellite are to be determined.

#### 2.1.3.7 Launch Environment

The satellite will be launched on an Ariane V from Kourou. The expected environment is specified in the IID-A.

The cold FPU and JFET box (FTB) will be launched in vacuum and at cryogenic temperatures. The warm electronics units will be launched at ambient temperatures and atmospheric pressure.

#### 2.1.3.8 Orbit

The FIRST satellite will be placed into a Lissajous orbit around the L2 libation point  $1.5 \times 10^6$  km from the Earth on the Earth-Sun line. (Reference document?- May 2000)

#### 2.1.3.9 Mission Lifetime

The expected mission lifetime is 4.25 years. This should be the figure used for estimation of number of operations and reliability of SPIRE sub-systems and the corresponding life tests that will be required.

#### 2.1.3.10 Radiation environment

RD2 gives calculated fluence and doses for the mission. The integrated dose for silicon behind 2 mm of aluminium is estimated at 12 kRad and behind 5 mm of aluminium as 3.5 kRad. These figures will be taken as the radiation tolerance for components in the warm electronics boxes and inside the cryostat respectively (TBC).

#### 2.1.3.11 Operational Environment

In normal operations the satellite is expected to have a 24-hour operational cycle with data being collected autonomously for 21 hours and a 3 hour ground contact period – the Data Transfer and Commanding Period (DTCP). During the DTCP the data will be telemetered to the ground and the commands for the next 24-hour period will be uplinked.

**Project Document** 

# INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 14

This operational environment requires the instrument to undertake autonomous health and safety monitoring and to be capable of reacting to safety critical situations in real time to prevent damage to the instrument. It is expected that some health and safety tasks will be undertaken by the satellite CDMS.

It is expected that the observing schedule will be carried out as a series of fixed time operations. It is also expected that the satellite CDMS will store the instrument commands and provide the commands at the appropriate time intervals to the instrument to carry out the fixed time observation schedule. This implies that the instrument does not need to store a large number of commands or to know the absolute time a command should be executed.

Project Document

# INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 15

### 2.2 Instrument Level Requirements

### 2.2.1 Photometer Requirements

The basic scientific requirements for the SPIRE photometer are described in the SRD (AD2). The predicted instrument sensitivities, based on the current instrument design assumptions, and which are compatible with the scientific requirements, are given in Table 2.2-1. The assumptions used in the calculation of the sensitivities are given in the IID-B (RD1) Chapter 4.

|               |                           | Wavelength Range |                |                |              |
|---------------|---------------------------|------------------|----------------|----------------|--------------|
| Requirement   | Description               | 250 <b>m</b> m   | 350 <b>m</b> m | 500 <b>m</b> m | Reference    |
| ID            |                           |                  |                |                |              |
| IRD-PHOT-R01  | Nominal passband          | 3                | 3              | 3              | IID B Chap 4 |
| IKD-FIIO1-K01 | $(\lambda/\Delta\lambda)$ |                  |                |                |              |
| IRD-PHOT-R02  | Field of View             |                  |                |                | IID B Chap 4 |
| IKD-11101-K02 | (Arcmin) Req.             | 4 x 4            | 4 x 4          | 4 x 4          |              |
|               | Goal                      | 4 x 8            | 4 x 8          | 4 x 8          |              |
| IRD-PHOT-R03  | Beam FWHM (Arcsec)        | 18               | 25             | 36             | IID B Chap 4 |
| IKD-F1101-K03 |                           | (TBC)            | (TBC)          | (TBC)          |              |
| IRD-PHOT-R04  | Point source sensitivity  |                  |                |                | IID B Chap 4 |
| IKD-11101-K04 | 1 σ -1 sec (mJy)          | 34 (TBC)         | 35 (TBC)       | 41 (TBC)       |              |
|               | 1 σ -1 hr (mJy)           | 0.6 (TBC)        | 0.6 (TBC)      | 0.7 (TBC)      |              |
| IRD-PHOT-R05  | Mapping sensitivity for   |                  |                |                | IID B Chap 4 |
| IKD-F1101-K03 | one FOV                   |                  |                |                |              |
|               | 1 σ -1 hr (mJy)           | 1.4 (TBC)        | 1.5 (TBC)      | 1.9 (TBC)      |              |

Table 2.2-1: Summary of Photometer scientific requirements and sensitivities

In addition to the basic requirements, the SRD specifies "design" drivers and goals for the photometer design – these are described in Table 2.2-2.

| Requirement ID | Description                                                     | Reference    |
|----------------|-----------------------------------------------------------------|--------------|
| IRD-PHOT-R06   | Maximising 'mapping speed' at which confusion limit is          | SRD Appendix |
| IKD-11101-K00  | reached over a large area of sky is the primary science driver. | item A1      |
|                | This means maximising sensitivity and field-of-view (FOV) but   |              |
|                | NOT at the expense of spatial resolution.                       |              |
| IRD-PHOT-R07   | Filling the FOV at three wavebands is more important than       | SRD Appendix |
| IKD-FIIO1-K07  | having more wavelength channels                                 | item A2      |
| IRD-PHOT-R08   | Chopping is highly undesirable for confusion-limited deep       | SRD Appendix |
| IKD-11101-K08  | survey observations                                             | item A3      |
| IRD-PHOT-R09   | Small-scale "jiggling" or "micro-stepping" is essential.        | SRD Appendix |
| IKD-11101-K09  |                                                                 | item A4      |
| IRD-PHOT-R10   | Field distortion must be <10% across the FOV                    | SRD Appendix |
| IKD-FIIO1-KIU  |                                                                 | item A5      |
| IRD-PHOT-R11   | Electrical crosstalk should be <0.4% between nearest-           | SRD Appendix |
| 1KD-11101-K11  | neighbour pixels and <0.05% between all other pixels.           | item A6      |
|                | Achieving this goal would result in crosstalk being dominated   |              |
|                | by the telescope surface errors. This may not be achievable     |              |

SPIRE INSTRUMENT REQUIREMENTS

Ref: SPIRE/RAL/N/ 0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 16

| Requirement ID | Description                                                                                                                                | Reference             |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                | in practice.                                                                                                                               |                       |
| IRD-PHOT-R12   | NEP variation should be < 10% across each array.                                                                                           | SRD Appendix item A7  |
| IRD-PHOT-R13   | Instantaneous dynamic range should be > 12 bits.                                                                                           | SRD Appendix item A8  |
| IRD-PHOT-R14   | Absolute photometric accuracy should be ~10%.                                                                                              | SRD Appendix item A9  |
| IRD-PHOT-R15   | Detector linearity should be less than or calibratable to less than 10% across the full dynamic range of SPIRE, including any gain ranges. | SRD Appendix item A10 |
| IRD-PHOT-R16   | If the feedhorn arrays are selected then the three arrays need to be co-aligned to within 1 arcsecond.                                     | SRD Appendix item A11 |

**DOCUMENT** 

Table 2.2-2: Summary of Photometer design drivers from the SPIRE Science Requirements Document.

### 2.2.2 Spectrometer Requirements

The basic scientific requirements for the SPIRE FTS are described in the SRD. The predicted instrument sensitivities, based on the current instrument design assumptions, and which are compatible with the scientific requirements, are given in Table 2.2-3. The assumptions used in the calculation of the sensitivities are given in the IID-B Chapter 4.

| Requirement<br>ID | Description                      | Value                                     | Reference    |
|-------------------|----------------------------------|-------------------------------------------|--------------|
| IDD CDEC DO1      | Wavelength range:                |                                           | IID B Chap 4 |
| IRD-SPEC-R01      | Band A                           | 200 – 300 μm (TBC)                        | 1            |
|                   | Band B                           | 300 – 700 μm (TBC)                        |              |
| IRD-SPEC-R02      | Maximum Resolution               | •                                         | IID B Chap 4 |
| IKD-SPEC-KUZ      | (cm <sup>-1</sup> ) Req.         | 0.4                                       |              |
|                   | Goal                             | 0.04                                      |              |
| IRD-SPEC-R03      | Minimum Resolution               |                                           | IID B Chap 4 |
| IKD-SI EC-K03     | (cm <sup>-1</sup> ) Req.         | 2                                         |              |
|                   | Goal                             | 4                                         |              |
| IRD-SPEC-R04      | Field of View (Arcmin)           |                                           | IID B Chap 4 |
| IKD-51 EC-K04     |                                  | 2.6 diameter circular for feedhorns       |              |
| IRD-SPEC-R05      | Beam FWHM (Arcsec)               |                                           | IID B Chap 4 |
| IKD-51 EC-K03     | Band A (250 ? m)                 | 18 (TBC)                                  |              |
|                   | Band B (350 ? m)                 | 25 (TBC)                                  |              |
| IRD-SPEC-R06      | Point source continuum           |                                           | IID B Chap 4 |
| IND SI LE ROO     | sensitivity                      | Band A 200-300 μm 47 (TBC)                |              |
|                   | (mJy; 1 σ -1 hr;                 | Band B 300-400 μm 43 (TBC)                |              |
|                   | 0.4 cm <sup>-1</sup> resolution) | Band B 400-700 μm TBD                     |              |
|                   |                                  |                                           |              |
|                   | Point source unresolved          | Band A 200-300 μm 5.6 x 10 <sup>-18</sup> |              |
|                   | line sensitivity                 | (TBC)                                     |              |

SPIRE Project Document

INSTRUMENT REQUIREMENTS

Ref: SPIRE/RAL/N/ 0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 17

| Requirement ID | Description                                                                          | Value                                                       |                                                 | Reference    |
|----------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------|--------------|
|                | (W m <sup>-2</sup> ; 1 σ -1 hr)                                                      | Band B 300-400 μm<br>(TBC)<br>Band B 400-700 um             | 5.1 x 10 <sup>-18</sup><br>TBD                  |              |
| IRD-SPEC-R07   | Map continuum<br>sensitivity<br>(mJy; 1 σ -1 hr;<br>0.4 cm <sup>-1</sup> resolution) | Band A 200-300 μm<br>Band B 300-400 μm<br>Band B 400-700 μm | 108 (TBC)<br>104 (TBC)<br>TBD                   | IID B Chap 4 |
|                | Map line sensitivity (W m <sup>-2</sup> ; 1 $\sigma$ -1 hr)                          | Band A 200-300 μm<br>(TBC)<br>Band B 300-400 μm<br>(TBC)    | 1.3 x 10 <sup>-17</sup> 1.3 x 10 <sup>-17</sup> |              |
|                |                                                                                      | Band B 400-700 μm                                           | TBD                                             |              |

**DOCUMENT** 

Table 2.2-3: Summary of Spectrometer scientific requirements and sensitivities.

In addition to the basic requirements, RD2 specifies "design" drivers and goals for the photometer design – these are given in Table 2.2-4.

| Requirement     | Description                                                                                                                                                                                                                                   | Reference                  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| ID IRD-SPEC-R08 | Sensitivity is the primary science driver for the spectrometer, so that the maximum number of survey sources can be followed-up as rapidly as possible.                                                                                       | SRD<br>Appendix<br>item B1 |
| IRD-SPEC-R11    | The effective resolution should not vary more than 10% across the FOV of the spectrometer.                                                                                                                                                    | SRD<br>Appendix<br>item B4 |
| IRD-SPEC-R12    | Extending the short wavelength coverage of the FTS would be scientifically very useful and also assist cross calibration of SPIRE and PACS data.                                                                                              | SRD<br>Appendix<br>item B5 |
| IRD-SPEC-R13    | The telescope background should be compensated for using a calibration source in the second input port. This compensation should be as near to perfect as possible given the constraints of the knowledge of the telescope emission spectrum. | SRD<br>Appendix<br>item B6 |
| IRD-SPEC-R14    | Fringe contrast shall be greater than 80% for any point in the field of view for a resolution of 0.4 cm <sup>-1</sup> .                                                                                                                       | ?                          |

Table 2.2-4: Summary of Spectrometer design drivers from the SPIRE Science Requirements Document.

#### **Project Document**

# INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 18

#### 2.3 Instrument Operations Requirements

### 2.3.1 Instrument Operations

| Requirement ID | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Source |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| IRD-OPS-R01    | It shall be possible to calculate the execution time of an instrument command to within 1 sec (TBC).  This will allow the calculation of the time taken to execute any observation to be made, for example, when generating a timeline.                                                                                                                                                                                                                            |        |
| IRD-OPS-R02    | The instrument shall be capable of limiting the average data rate to the CDMS, during a 24hr period, to 100kbps (TBC)  The on-board software should provide functionality to allow observing sequences to be generated that will keep the data rate within this limit. This functionality will include, general purpose data compression, data reduction by integration of science data over time and selection of subsets of science data (i.e. selected pixels). |        |
| IRD-OPS-R03    | The SPIRE instrument shall be identified as a single subsystem within the satellite.  That is, the instrument will utilise a single APID (to be defined by the FIRST Project) to identify both telecommands to the instrument and telemetry from the instrument.                                                                                                                                                                                                   | OIRD   |

Table 2.3-1: Requirements on the instrument operations

#### 2.3.2 Operating Modes

This section describes the expected operating modes for the SPIRE instrument.

| Requirement ID | Description                                                                                                         | Source |
|----------------|---------------------------------------------------------------------------------------------------------------------|--------|
| IRD-MODE-R01   | The instrument shall be capable executing all operating modes described in the SPIRE Operating Modes Document (RD8) |        |

Table 2.3-2: Requirements on the instrument operating modes.

#### 2.3.3 Commanding Requirements

Instrument operations will be controlled by commands passed from the CDMS to the instrument in the form of telecommand packets (see RD4). The CDMS will be responsible for handling the command timeline uplinked from the ground and issuing the commands to the instrument at the appropriate time. The instrument, therefore, is normally expected to execute the commands it receives from the CDMS (or CDMS simulator) in the order in which it receives them. Commands will be provided to modify the order of execution if required.

## Project Document

# INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

Issue: .30 Date: 10-MAY-1999

Page: 19

| Requirement ID | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Source |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| IRD-CMD-R01    | The instrument shall be capable of accepting telecommand packets from the CDMS at speeds up to the maximum rate delivered by the CDMS, without loss.  This implies that the instrument should be able to buffer a number of telecommands received from the CDMS while a command is being executed. However, it may be assumed that the timing of command distribution to the instrument will be managed so that the maximum number of commands in the buffer will be limited. |        |
| IRD-CMD-R02    | The instrument shall validate each telecommand packet as it is received.  Telecommand packets will contain a checksum to allow validation. Invalid commands should be rejected                                                                                                                                                                                                                                                                                                |        |
| IRD-CMD-R03    | The instrument shall verify execution of the telecommands in each packet.  Normally, each telecommand packet will contain only one instrument command  Commands which take a long time to execute (longer than ~5 secs, TBC) should have their progress verified also.                                                                                                                                                                                                        |        |
| IRD-CMD-R04    | The instrument shall report the result of all telecommand validation/verification in telemetry  The format of these telecommand report packets are defined in RD4                                                                                                                                                                                                                                                                                                             |        |
| IRD-CMD-R05    | The instrument shall provide commands to allow control of all individual devices (e.g. switch, latch) within the instrument.                                                                                                                                                                                                                                                                                                                                                  |        |
| IRD-CMD-R06    | All commands to individual devices shall explicitly set the state of the device  I.e. there shall be no commands to 'toggle' the state of a switch or commands to step to the next location.                                                                                                                                                                                                                                                                                  |        |
| IRD-CMD-R07    | The action of all commands affecting an individual device shall be verifiable by an independent parameter available in the nominal housekeeping packet.  For example the change of state of a switch shall be verified by the change in voltage at the output of the switch rather than the status of the latch controlling the switch                                                                                                                                        |        |
| IRD-CMD-R08    | The instrument shall provide commands to execute the functions required to implement the instrument operating modes  These functions are defined in the SPIRE Operating Modes document (RD8). They usually invoke one or more device                                                                                                                                                                                                                                          |        |

Project Document

# INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 20

| Requirement ID | Description                                                                                                                                                                                                                                                                                                                                                                                                  | Source |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|                | control actions in order to perform their function.                                                                                                                                                                                                                                                                                                                                                          |        |
| IRD-CMD-R09    | The instrument shall provide the facility to define and execute procedure commands.  These commands will invoke stored sequences of commands with appropriate control steps to allow a given task to be performed. They will be invoked with supplied parameters to modify the actions performed. The intention is to minimise the number of telecommand words required to execute a given command sequence. |        |
| IRD-CMD-R10    | The instrument shall provide commands to modify the execution sequence of commands.  Normally, commands are executed in the order in which they are received. These commands should provide the facilty to interrupt the currently executing command, modify the command queue and continue execution of commands in the queue.                                                                              |        |
| IRD-CMD-R11    | The instrument shall provide commands to allow identification of the steps within an observation.  For processing of the data from the instrument it will be necessary to be able to identify the observation/step from which the data has come. These commands should modify software parameters onboard so that this information is reported in the telemetry                                              |        |
| IRD-CMD-R12    | The instrument shall provide commands to modify data values/tables held in the instrument memory.  The on-board software will use data tables to control the operations onboard. These tables may need to be maintained.                                                                                                                                                                                     |        |
| IRD-CMD-R13    | The instrument shall provide commands to enable on-board software maintenance  It should be possible to update the on-board software code either as a whole, or replace a single subroutine/function.                                                                                                                                                                                                        |        |

**Table 2.3-3: Instrument level requirements on telecommanding** 

### 2.3.4 Telemetry Requirements

All data generated by the instrument will be transmitted from the instrument to the satellite CDMS in the form of telemetry packets. These packets will be store onboard by the CDMS, until the opportunity arises to transmit them to the ground.

| Requirement ID Description | on Source |
|----------------------------|-----------|
|----------------------------|-----------|

## Project Document

# INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

Issue: .30 Date: 10-MAY-1999

Page: 21

| Requirement ID | Description                                                                                                                                                                                                                                                                                                                                                                                                           | Source |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| IRD-TLM-R01    | The instrument shall be capable of transferring telemetry packets to the CDMS (or simulator) at up to the maximum rate allowed by the telemetry interface.  This is approximately 1Mbps                                                                                                                                                                                                                               |        |
| IRD-TLM-R02    | The instrument shall be able to buffer telemetry packets until they are requested by the CDMS  The CDMS will poll each subsystem on the satellite in turn for data. The instrument should be able to buffer sufficient packets to not lose data waiting for the CDMS.                                                                                                                                                 |        |
| IRD-TLM-R03    | It shall be possible to validate the content of each telemetry packet.  The telemetry packet standard identifies the location of a checksum of the data contained within the packet. This checksum may be used to validate the packet                                                                                                                                                                                 |        |
| IRD-TLM-R04    | All telemetry packets shall contain information identifying the observation/step being executed.  This will allow data processing software to identify significant steps in an observation in order to apply the appropriate processing                                                                                                                                                                               |        |
| IRD-TLM-R05    | The instrument shall generate housekeeping data packets in all operating modes.  These data packets contain the values of both hardware and software parameters internal to the instrument.                                                                                                                                                                                                                           |        |
| IRD-TLM-R06    | It shall be possible to define TBC alternative housekeeping packet structures with different rates of generation.  The normal housekeeping packet will be generated once per second (TBC) and contain, at the least, all hardware parameters.  Housekeeping packets generated at higher rates (up to 1000 per second (TBC) may contain a subset of the instrument parameters                                          |        |
| IRD-TLM-R07    | The instrument shall generate science data packets in all observing modes.  These packets shall contain data from the detector arrays associated with the observing mode, plus all instrument parameters that may be required to enable the processing of the detector data (e.g mechanism positions, temperatures of units which may affect the detector data, monitoring parameters for the subsystems being used). |        |

SPIRE

Project Document

INSTRUMENT REQUIREMENTS

DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30 **Date:** 10-MAY-1999

Page: 22

| Requirement ID | Description                                                                                                                                                                                                                                                                                                                                                                          | Source |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| IRD-TLM-R07    | It shall be possible to define TBC alternative science data packets structures.  This will allow the set of detector data and instrument parameters included in the science data to be optimised for different observation modes.                                                                                                                                                    |        |
| IRD-TLM-R08    | The instrument shall generate event packets in all operating modes.  These packets notify the CDMS and/or ground monitoring equipment of instrument anomalies and significant actions taken by the instrument. The ESA packet Utilisation Standard identifies many of thesereport packet types.  These packets should identify the type of anomaly and the data used to identify it. |        |

Table 2.3-4: Instrument level requirements on the data packets

### 2.3.5 Data Handling Requirements

| Requirement ID | Description                                                        | Source |
|----------------|--------------------------------------------------------------------|--------|
| IRD-DATA-R01   | All data transferred between the CDMS and the instrument shall     | OIRD   |
| IKD-DATA-K01   | be contained in packets conforming to the ESA Packet Utilisation   |        |
|                | Standard (RD4)                                                     |        |
|                | It is assumed that in the interests of commonality with other      |        |
|                | spacecraft systems and scientific instruments the data             |        |
|                | handling of the SPIRE instrument will follow this standard.        |        |
|                | The detailed definition of the contents of each packet will        |        |
|                | formally be defined in a FIRST Space/Ground Interface              |        |
|                | Document to be written and agreed later.                           |        |
| IRD-DATA-R02   | The instrument shall provide all mandatory packet handling         | OIRD   |
| IKD-DITIT-K02  | services defined for the mission.                                  |        |
|                | The OIRD (AD3) defines the list of mandatory services              |        |
| IRD-DATA-R03   | The instrument shall be capable of buffering data generated during |        |
| IND DITTI NOS  | an observation.                                                    |        |
|                | It is possible that data will be generated during an               |        |
|                | observation, at a rate greater than that which can be              |        |
|                | transferrred to the CDMS. The instrument should buffer this        |        |
|                | data and transfer it to the CDMS at a later time (even if a new    |        |
|                | observation has begun). The size of the buffer is TBD              |        |
| IRD-DATA-R04   | The instrument shall be capable of reducing the average data rate  |        |
| IKD-DATA-K04   | to the CDMS to 20kbps.                                             |        |
|                | This may be required to cope with a reduced telemetry              |        |
|                | downlink rate or 'partner mode' observations. The science          |        |
|                | content of the telemetry may be degraded.                          |        |

### **Project Document**

# INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 23

### IRD-DATA-R05

The packing of science data into science data packets shall minimise loss of information if packet is lost or corrupted. Science data packets could include data from one or more detectors over a given time period (or for a single interferogram) rather than one sample from all detectors. In this way if a data packet is lost the impact on the science is reduced.

Table 2.3-5: Instrument level data handling requirements

#### **Project Document**

# INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 24

#### 2.4 Instrument Model Philosophy

The instrument models to be built are as follows:

STM – Structural Thermal Model. This will be used to give early verification of the structural design of the instrument. It will consist of the CQM structure with mass dummies for the sub-systems. It is intended that it will be vibrated warm as a test of the frequency response of the structure and to verify the FEA analysis.

AVM – Avionics Model. The IID-A states that this is: "...to validate electronics and software for its interface with the S/C, including anything that exchanges information with, for example, the AOCS. In addition all tasks relevant to SPIRE autonomy shall be verified." We have interpreted this as being a DPU plus a simulator of the DRCU and the cold FPU – the latter is termed the DRCU Simulator.

CQM - Cryogenic Qualification Model. For both the cold FPU and the warm electronics it is assumed that this is built to flight standards, but not necessarily using flight quality electronic components. The performance capabilities of the instrument may be less than the proto-flight model - i.e. fewer pixels in the focal plane arrays, but it will mimic as exactly as possible the thermal, electrical and mechanical properties of the flight instrument and will be capable of under going the full environmental qualification programme.

PFM – Proto-Flight Model. This will be the instrument model that is intended for flight. It will be built to full flight standards and will only have minor differences in thermal, electrical and mechanical properties to the CQM. It will have the same mechanical, thermal and electrical interfaces to the satellite as the CQM but, may, however, have minor internal design changes compared to the CQM. For instance the bolometer arrays may have many more pixels. The PFM will therefore undergo environmental test to qualification levels for acceptance times (TBD) - this applies to both the warm electronics boxes and the cold FPU.

FS – Flight Spare. The flight spare cold FPU will be made from the refurbished CQM (TBC). The flight spare warm electronics will consist of spare electronics cards.

| Requirement ID | Description                                                 | Source |
|----------------|-------------------------------------------------------------|--------|
| IRD-INST-R14   | The SPIRE instrument shall provide the instrument models as | IID-A  |
|                | specified in the IID-A                                      |        |

Table 2.4-1: Instrument level model requirements.

Project Document

# INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 25

#### 2.5 Instrument level Qualification

It is required that the instrument be qualified at unit level - i.e. the cold FPU; warm electronics boxes etc must undergo individual qualification testing and be shown to be flight worthy. The tests that are required for each model and unit are outlined in Table 2.5-1 and described in more detail in the SPIRE Instrument AIV Plan (RD9).

#### **Test Matrix**

|                        | CQM Cold Focal<br>Plane Units | QM Warm Electronics<br>Units | PFM Cold Focal Plane<br>Units | PFM Warm<br>Electronics Units | FS Cold Focal Plane<br>Units | FS Warm Electronics<br>Cards |
|------------------------|-------------------------------|------------------------------|-------------------------------|-------------------------------|------------------------------|------------------------------|
| Vibration:             | Q                             | Q                            | QA                            | A                             | A                            | A                            |
| Thermal cycle:         | Q                             | Q                            | QA                            | A                             | A                            | A                            |
| Vacuum cycle           | X                             | X                            | X                             | X                             | X                            | X                            |
| Thermal range:         | X                             | X                            | X                             | X                             | -                            | -                            |
| EMC (Instrument Level) | X                             | X                            | X                             | X                             | -                            | -                            |
| EMC (Satellite Level): | -                             | -                            | X                             | X                             | -                            | -                            |

Table 2.5-1: Test matrix for the instrument level testing.

Q indicates a test carried out at qualification level for qualification times; QA a test carried out at qualification levels for acceptance test times and A a test carried out at acceptance level for acceptance times. An x indicates that this test is carried out and is a characterisation type test or the level is irrelevant. A dash indicates that no test will be done on this model/unit.

| Requirement ID | Description                                                    | Source |
|----------------|----------------------------------------------------------------|--------|
| IRD-INST-R15   | The instrument units are required to undergo an environmental  |        |
|                | test programme that demonstrates the design and build          |        |
|                | standard of the flight model is compatible with the launch and |        |
|                | operational environment of the FIRST satellite.                |        |

Table 2.5-1: Instrument level qualification requirements.

Project Document

# INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 26

#### 2.6 Verification

For the purposes of verification requirements, the instrument models consist of the units specified in section 2.4. It is also assumed that there will be present some form of EGSE to allow testing of the instrument models in the absence of the spacecraft and that there will be some computer hardware and software to allow the receipt; storage and analysis of the test data.

| Requirement ID | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Source |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| IRD-VER-01     | The STM verification testing shall demonstrate that the proposed structure design is capable of meeting the environmental conditions specified for the FIRST launch. The STM vibration shall be used to verify the FEA model of the instrument.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| IRD-VER-R02    | The AVM verification testing shall demonstrate that the instrument will fulfil the requirements on the following:  1. Communication between the satellite CDMS and the DPU.  2. Correct transfer and receipt of instrument commands from the satellite  3. Correct transfer and receipt of instrument data packets form the instrument to the satellite  4. Correct execution of instrument commands  5. Correct transfer of instrument data from the FPU simulator to the DPU  6. Correct execution of DPU on-board software for any data compression algorithms and packet generation for all instrument data packet types.                                                                                                                  |        |
| IRD-VER-R03    | The CQM verification testing shall, in addition to the requirements on the AVM verification, demonstrate the following:  1. Correct operation of all FPU sub-systems at cryogenic temperatures for all instrument operation modes for both prime and redundant systems.  2. Correct operation of all instrument sub-systems with warm electronics units operating over a range of temperatures  3. The instrument cold FPU and JFET box thermal dissipation is within requirements for all instrument operation modes.  4. The warm electronics thermal dissipation at room temperature is within requirements.  5. Correct operation of CQM version of all onboard software.  6. The instrument straylight environment is within requirements |        |

## Project Document

# INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 27

| Requirement | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Source |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| ID          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
| ID          | <ol> <li>The instrument optics performance is within requirements</li> <li>The performance of the instrument meets the scientific requirements expected for the CQM for all instrument observing modes</li> <li>Development and test of all functional test sequences required for Integrated Systems Testing (IST) at satellite level.</li> <li>The correct functioning of the instrument for all Astronomical Observing Templates (AOTs) and calibration sequences.</li> <li>Development and test of all in-flight functional and performance test sequences</li> </ol>                                                                                                                                                                                                                                                                                |        |
| IRD-VER-R04 | The PFM and FS verification testing shall, in addition to the requirements on the CQM and AVM verification, demonstrate the following:  1. The performance of the flight and flight spare instruments meets the scientific requirements for all instrument observing modes.  2. Correct operation of flight version of all onboard software.  3. The characterisation of the PFM and FS instrument performance for all instrument observing modes – including generation of data for instrument calibration and functional testing both during IST and in-flight.  4. The characterisation of the instrument performance with the warm electronics operating over a range of temperatures  5. Final test of all functional test sequences for IST.  6. Final test of all AOTs  7. Final test of all in-flight functional and performance test sequences. |        |

Table 2.6-1: Requirements on the instrument level verification.

Project Document SPIRE

INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

Issue: .30 Date: 10-MAY-1999

Page: 28

## 2.7 Safety

| Requirement ID | Description                                                                                               | Source |
|----------------|-----------------------------------------------------------------------------------------------------------|--------|
| IRD-SAFE-R01   | During all mission phases, there shall be no requirement for                                              |        |
|                | commands to be sent from the ground to the instrument                                                     | CTRL-1 |
|                | with an immediate response time (i.e. less than 2 minutes                                                 |        |
|                | TBC). Any such situations must be handled on board.                                                       | _      |
| IRD-SAFE-R02   | Situations which require response from the ground within a                                                | OIRD-  |
|                | short time (i.e. less than 30 mins) shall be reduced to a                                                 | CTRL-2 |
|                | minimum, be well identified and agreed by ESA                                                             | OIDD   |
| IRD-SAFE-R03   | Situations which require response from the ground within a                                                | OIRD-  |
|                | short time (i.e. less than 30 mins) shall be unambiguously                                                | CTRL-3 |
|                | recognisable in the instrument housekeeping telemetry,                                                    |        |
|                | without complex processing  Housekeeping telemetry shall be generated during all                          | OIRD-  |
| IRD-SAFE-R04   | nominal modes of the instrument. <i>This includes any</i>                                                 | CTRL-4 |
|                | instrument Safe Modes                                                                                     | CTKL-4 |
| TDD (1.77.7.2. | The instrument shall be able to accept all telecommand                                                    | OIRD-  |
| IRD-SAFE-R05   | packets sent to it at the nominal transfer rate from the                                                  | CTRL-5 |
|                | CDMS                                                                                                      | OIRD-  |
|                |                                                                                                           | CTRL-6 |
| IRD-SAFE-R06   | It shall not be possible by command, or lack of command,                                                  |        |
| IKD-SAI'E-K00  | to place the instrument into a configuration that will, or is                                             |        |
|                | likely to cause damage to any subsystem                                                                   |        |
| IRD-SAFE-R07   | All telecommands received by the instrument shall be                                                      |        |
|                | checked to be correctly formatted and complete before                                                     |        |
|                | execution. Incorrect telecommands will be rejected by                                                     |        |
|                | the instrument                                                                                            |        |
| IRD-SAFE-R08   | Failure of any sub-system, or one of its components, shall                                                |        |
|                | not affect the health of any other subsystem, the                                                         |        |
|                | instrument or the interface with the satellite.  Failure of any component in a subsystem shall not damage |        |
| IRD-SAFE-R09   | any redundant or backup component designed to replace                                                     |        |
|                | that component in the subsystem                                                                           |        |
|                | No electronics sub-unit shall be capable of affecting                                                     |        |
| IRD-SAFE-R10   | instrument operations until it is in a defined state. This                                                |        |
|                | state shall be confirmed in the housekeeping telemetry.                                                   |        |
| IDD CAPE D11   | No commands shall be sent to an electronics sub-unit until                                                |        |
| IRD-SAFE-R11   | they are in a defined state confirmed by the on-board                                                     |        |
|                | software                                                                                                  |        |

 $\ \, \textbf{Table 2.7-1: Instrument level safety requirements.} \\$ 

| CDIDE | Project Document        | Ref:   | SP  |
|-------|-------------------------|--------|-----|
| SPIRE |                         |        | 00. |
|       | INSTRUMENT REQUIREMENTS | Issue: | .30 |
|       | DOCUMENT                | Date:  | 10- |
|       | DOCUMENT                | D      | 20  |

Ref: SPIRE/RAL/N/ 0034 Issue: .30

**Date:** 10-MAY-1999

Page: 29

### 2.8 Autonomy

The instrument is required to be "autonomous" when not in ground contact. This implies that the warm electronics must monitor critical housekeeping parameters to ensure that any sub-system failure is detected and the appropriate action taken. It is assumed that the basic action will be to switch the instrument to a safe mode with only the DPU on and housekeeping telemetry.

| <b>Requirement ID</b> | Description                                                    | Source |
|-----------------------|----------------------------------------------------------------|--------|
| IRD-AUT-R01           | The SPIRE instrument shall have a defined safe mode.           |        |
| IKD-AUT-KUT           | The configuration of this mode shall be agreed with ESA        |        |
| IRD-AUT-R02           | The SPIRE instrument shall define housekeeping parameters      |        |
| IKD-AU1-K02           | to be used for autonomous health and safety monitoring         |        |
| IRD-AUT-R03           | The SPIRE instrument shall provide a method of monitoring      |        |
| IKD-AU1-K03           | the defined housekeeping parameters and taking appropriate     |        |
|                       | action in the case of error or failure.                        |        |
| IRD-AUT-R04           | The SPIRE instrument shall provide a method of alerting the    |        |
| IKD-AU1-K04           | S/C CDMS of any failure requiring the instrument to be         |        |
|                       | controlled by the CDMS (e.g. switched off).                    |        |
|                       | Actions to be taken in the case of failure will b defined by   |        |
|                       | the instrument and stored as procedures in the CDMS            |        |
| IRD-AUT-R05           | The instrument shall continuously monitor the integrity of the |        |
| IKD-AUT-KUS           | on-board software and take appropriate action in case of       |        |
|                       | error.                                                         |        |
|                       | The on-board software can itself calculate a checksum          |        |
|                       | over the OBS code and compare this to a stored value.          |        |
| IRD-AUT-R06           | The instrument shall monitor the operational status of the     |        |
| IKD-AUT-KOO           | instrument on-board computers and take appropriate action in   |        |
|                       | case of error.                                                 |        |
|                       | A watchdog function will be implemented to identify if the     |        |
|                       | on-board computer(s) have crashed.                             |        |

Table 2.8-1: Requirements for autonomous health and safety monitoring.

| SPIRE | Project Document        | Ref:   | SPIRE/RAL/N/<br>0034 |
|-------|-------------------------|--------|----------------------|
|       | INSTRUMENT REQUIREMENTS | Issue: | .30                  |
|       | DOCUMENT                |        | 10-MAY-1999          |
|       | DOGGNEI (1              | Page:  | 30                   |

### 2.9 Reliability and Redundancy

It is assumed that reliability will be maintained by use of a combination of hardware redundancy and flexibility in the onboard software such that a failure of a single hardware device will not lead to a loss of instrument capability, although it may lead to loss of instrument performance.

| <b>Requirement ID</b> | Description                                                    | Source |
|-----------------------|----------------------------------------------------------------|--------|
| IRD-REL-R01           | As far as possible the total failure of a single sub-system    |        |
| IKD-KEL-KUI           | shall not lead to the total loss of instrument operations.     |        |
| IRD-REL-R02           | Backup modes of operation should be available for all          |        |
| IKD-KEL-KU2           | nominal observing modes. These shall be designed to allow      |        |
|                       | the continued use of that mode, albeit with degraded           |        |
|                       | performance or efficiency.                                     |        |
| IRD-REL-R03           | Cold redundant hardware shall be provided wherever             |        |
| IND-NEL-NUS           | practicable within the instrument design.                      |        |
| IRD-REL-R04           | As far as possible all control loops shall be implemented      |        |
| IKD-KLL-K04           | through the use of on-board software.                          |        |
| IRD-REL-R05           | It shall be possible to break all control loops implemented in |        |
| IND-NEL-NUS           | hardware.                                                      |        |
|                       | This will allow the control of the loop through the on         |        |
|                       | board software (this may be a degraded mode of                 |        |
|                       | operation)                                                     |        |

Table 2.9-1: Instrument level reliability and redundancy requirements.

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999 Page: 31

### 2.10 EMC

To be written

The EMC environment – and hence the requirements – will be the subject of a joint study between the instrument teams and ESA at some future date (30/11/99)

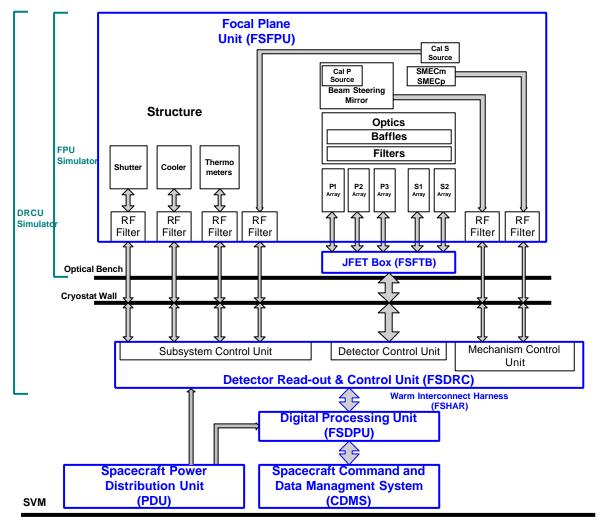
SPIRE Project Document

# INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

**0034** .30

**Date:** 10-MAY-1999


Page: 32

**Issue:** 

### 3. Subsystems Requirements

#### 3.1 Assumptions

The SPIRE instrument will consist of the sub-systems indicated in figure 3.1-1 and table 3.1-1. Figure



3.1-1 also shows the interface relationship between the SPIRE sub-systems; harnesses etc.

Figure 3.1-1: SPIRE sub-system block diagram

| Subsystem Name | Description                                                  | Unit  | Number |
|----------------|--------------------------------------------------------------|-------|--------|
| Structure      | Focal plane unit structure to hold all cold sub-systems in   | FSFPU | 1.1    |
|                | the focal unit. This includes all thermometers necessary to  |       |        |
|                | monitor the instrument during cool down and operation.       |       |        |
| Optics         | All mirrors for the photometer and spectrometer channels     | FSFPU | 1.2    |
| Filters        | All filters; beam splitters and dichroics for the photometer | FSFPU | 1.2.1  |
|                | and spectrometer channels                                    |       |        |
|                | The requirements on these are included with those for the    |       |        |

Project Document SPIRE INSTRUMENT REQUIREMENTS DOCUMENT Ref: SPIRE/RAL/N/

0034

Issue: .30 Date: 10-MAY-1999

Page: 33

|                                     | optics.                                                                                                                                                                                                  |       |       |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| Baffles                             | Straylight control baffles for the photometer and spectrometer channels                                                                                                                                  | FSFPU | 1.2.2 |
| Cooler                              | <sup>3</sup> He cooler unit cools the photometer and spectrometer detector arrays to 300 mK                                                                                                              | FSFPU | 1.3   |
| Detector Arrays                     | Bolometer array modules for the photometer and spectrometer                                                                                                                                              | FSFPU | 1.4   |
| Beam Steering<br>Mechanism          | This mechanism allows the photometer and spectrometer fields of view to be stepped or chopped across the sky.                                                                                            | FSFPU | 1.5.1 |
| FTS Mechanism (SMECm)               | The FTS moving mirrors drive mechanism and position measurement system. SMECm designates the mechanism and position encoder                                                                              | FSFPU | 1.5.2 |
| FTS encoder<br>amplifier<br>(SMECp) | SMECp the cold pre-amplifier that may be required for the encoder detectors.                                                                                                                             | FSFPU | 1.5.3 |
| Shutter Mechanism                   | A shutter is required in the instrument for ground test to allow the detectors to see the correct radiation environment.                                                                                 | FSFPU | 1.5.4 |
| Photometer<br>Calibration Source    | Calibration source for photometer                                                                                                                                                                        | FSFPU | 1.6.1 |
| Spectrometer Calibration Source     | Calibration source for the spectrometer                                                                                                                                                                  | FSFPU | 1.6.2 |
| RF Filter Modules                   | Each sub-system harness into the cold FPU must have an electrical RF filter to prevent EMI problems with the bolometers. These will be mounted in standard RF filter modules on the wall of the FPU box. | FSFPU | 1.7   |
| JFET Box                            | JFET pre-amplifiers for NTD germanium bolometers.<br>This box will also contain the RF filters required for all detector options.                                                                        | FSFTB | 1.8   |
| Detector Read-out & Control         | Detector amplifier and digitisation chain and instrument control electronics.                                                                                                                            | FSDRC | 2.2   |
| Digital Processing<br>Unit          | Instrument on board computer – forms interface to CDMS                                                                                                                                                   | FSDPU | 2.3   |
| Warm Interconnect<br>Harness        | Harness between warm boxes                                                                                                                                                                               | FSHAR | 2.4   |
| On Board Software                   | All on board software that controls the function of the instrument. This is all contained in the DPU                                                                                                     | FSOBS | 2.5   |
| FPU Simulator                       | A set of electronic components, either passive or active, that mimics the analogue response of the FPU subsystems to the warm electronics.                                                               | FSFPS | 3.1   |
| DRCU Simulator                      | A set of interface hardware and computer software that mimics the response of the DRCU and FPU to the DPU and on board software.                                                                         | FSDRS | 3.2   |

Table 3.1-1: Listing of SPIRE sub-systems.

Project Document

## INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 34

The unit column refers to the ESA designation for the unit in which the sub-system is located. The sub-system number is that allocated for the purposes of interface control. (Do the simulators need acronyms – are these o.k.? May 2000)

#### 3.2 Scope

This chapter details the requirements on the cold focal plane unit sub-systems; the JFET box and the instrument simulators.

#### 3.3 Subsystem Qualification Requirements

#### **Assumptions**

It is assumed that all sub-systems will have been through a type approval programme of one or more models before the Cryogenic Qualification version of the sub-system is delivered for the instrument AIV. This implies:

- 1. The testing carried out on the CQM instrument should <u>NOT</u> be considered to be the qualification test for each individual sub-system. The tests carried out on the instrument CQM will be neither exhaustive nor at the correct level for sub-system qualification.
- 2. It is intended that the tests listed here be carried out on a specific type approval model or models. It is expected that acceptance tests will be done on each delivered model (CQM, Flight and Flight Spare) as part of the general instrument AIV these will be detailed in the instrument AIV plan. The type approval test programme does not replace the need for acceptance testing of each model.

#### **Test Matrix:**

|                      | Structure | Optics | FTS Mechanism | Shutter | BSM | Detector arrays | Cooler | Filters/grids/dichroics | Calibration Sources | DCRU | DPU |
|----------------------|-----------|--------|---------------|---------|-----|-----------------|--------|-------------------------|---------------------|------|-----|
| Vibration:           | X         | X      | X             | X       | X   | X               | X      | X                       | X                   | X    | X   |
| Thermal cycle:       | X         | X      | X             | X       | X   | X               | X      | X                       | X                   |      |     |
| Vacuum cycle         |           |        | X             | X       | X   | X               | X      | X                       | X                   | X    | X   |
| Lifetime:            |           | P      | X             | P       | X   | X               | X      | X                       | X                   | X    | X   |
| Soak/cycle:          |           |        | X             | P       | X   | X               | X      |                         | X                   | X    | X   |
| Radiation tolerance: |           |        | P             | P       | P   | X               | P      | X                       | X                   | X    | X   |
| Thermal range:       |           |        | X             | P       | X   | X               | X      | X                       | X                   | X    | X   |
| Thermal stability:   |           | P      | X             | P       | X   | X               | X      | P                       | X                   | X    | X   |
| Microphonics:        |           | P      | X             | X       | X   | X               | X      | P                       | P                   |      |     |
| Ionising radiation:  |           |        |               |         |     | X               |        |                         |                     |      |     |
| EMI:                 |           |        | X             | X       | X   | X               | P      |                         | P                   | X    | X   |

#### **Project Document**

## INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 35

| EMC: |  | X | X | X | X | P | P | X | X |
|------|--|---|---|---|---|---|---|---|---|
|      |  |   |   |   |   | _ | - |   |   |

#### Table 3.3-1: Test matrix for the SPIRE sub-systems qualification programme.

Tests marked with an X are mandatory, those marked with a P are possibly required depending on the detailed design of the sub-system and/or the new of novel materials. A full description of each test is given in the SPIRE Instrument AIV Plan (RD9). For some sub-systems the qualification and lifetime testing will be more appropriately carried out at component or test item level rather than at the level of the integrated sub-system. At what stage and under what conditions the tests are to be carried out is a matter for detailed consideration by the groups responsible for the sub-systems delivery.

| Requirement ID | Description                                                  | Source |
|----------------|--------------------------------------------------------------|--------|
| IRD-SUBS-R01   | All subsystems are required to undergo an environmental test |        |
|                | programme that demonstrates the design and build standard of |        |
|                | the sub-system models will be compatible with the            |        |
|                | environmental test programme to be carried out on the        |        |
|                | appropriate integrated instrument model.                     |        |
| IRD-SUBS-R02   | All sub-systems are required to demonstrate that they will   |        |
|                | operate successfully over the 4.25 years of expected mission |        |
|                | operations.                                                  |        |

#### 3.4 Assumptions for the Focal Plane Unit

#### 3.4.1 Plate Scale

The nominal optical design of the SPIRE optics for both the photometer and spectrometer has a final focal ratio onto the detectors of f/5. This implies, given the design of the FIRST telescope (see section 2.1.4.4), that the nominal plate scale at the SPIRE focal plane is 12.564 arcsec/mm. This value will be used throughout this section to determine the required size of the focal plane arrays.

#### **3.4.2 Vacuum**

The cold focal plane unit will be launched and operated in a vacuum of TBD mBar.

#### 3.4.3 Mass

Requirements are not directly placed on the mass of each sub-system in this document (issue 3) as this is felt to be unnecessarily prescriptive. However, the mass of the focal plane units is of deep concern and all sub-systems are required to be as mass efficient as possible. A mass allocation for each sub-system in set out in AD5.

| Requirement ID | Description                                                  | Source |
|----------------|--------------------------------------------------------------|--------|
| IRD-SUBS-R03   | All subsystems are required to be within the mass allocation |        |
|                | given in AD5                                                 |        |

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 36

### 3.5 Sub-system requirements

#### 3.5.1 Structure

#### 3.5.1.1 Common Structure

**Performance Requirements** 

| Requirement ID | Description       | Value                                     | Source |
|----------------|-------------------|-------------------------------------------|--------|
| IDD CEDC DOL   | Alignment of the  | The SPIRE common structure shall          |        |
| IRD-STRC-R01   | instrument w.r.t. | allow the alignment of the instrument and |        |
|                | the FIRST optical | telescope optical axes to within +-2.5    |        |
|                | axis              | (TBC) mm lateral and +- TBD arcmin        |        |
|                |                   | rotational about any axis.                |        |
| IDD CEDC DOS   | Attenuation of RF | The covers as fitted on the instrument    |        |
| IRD-STRC-R02   | by 4-K Common     | will attenuate all frequencies lower than |        |
|                | Structure covers  | 8 GHz by TBD dB. (Needs confirmation      |        |
|                |                   | May 2000)                                 |        |
| IRD-STRC-R03   | Items requiring   | Photometer and common sub-                |        |
| IKD-STRC-R03   | support from the  | systems                                   |        |
|                | 4-K Common        | Photometer 4-K optics                     |        |
|                | Structure         | Photometer filters                        |        |
|                |                   | 4-K Thermal Strap                         |        |
|                |                   | <sup>3</sup> He Cooler                    |        |
|                |                   | 4-K Baffles                               |        |
|                |                   | All sub-system harnesses                  |        |
|                |                   | BSM Mechanism and structure               |        |
|                |                   | Shutter mechanism and mount               |        |
|                |                   | Photometer 2-K enclosure                  |        |
|                |                   | Spectrometer                              |        |
|                |                   | All spectrometer optics                   |        |
|                |                   | Beam splitters                            |        |
|                |                   | Mechanism structure                       |        |
|                |                   | Mechanism motor                           |        |
|                |                   | Calibration source and mount              |        |
|                |                   | Spectrometer 2-K enclosure                |        |
| IRD-STRC-R04   | Optics and        | The common structure shall be capable     |        |
| IKD-51KC-K04   | associated sub-   | of maintaining the alignment of the       |        |
|                | system alignment  | photometer and spectrometer optics and    |        |
|                |                   | associated components (i.e. filters; 2-K  |        |
|                |                   | enclosures; BSM etc) to within the        |        |
|                |                   | specifications given in RD7 both at room  |        |
|                |                   | temperature and during cryogenic          |        |
|                |                   | operation.                                |        |
| IRD-STRC-R05   | Surface finish of | The inside and outside of the box shall   |        |
| IVD-91VC-V03   | the 4-K Common    | have a finish with a low emissivity. At   |        |

### Project Document

## INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 37

| Requirement<br>ID | Description     | Value                                                 | Source |
|-------------------|-----------------|-------------------------------------------------------|--------|
| <u>ID</u>         | Structure cover | least $\varepsilon$ =0.2. Some parts of the structure |        |
|                   | Structure cover | walls may be blackened as part of the                 |        |
|                   |                 | straylight control.                                   |        |
| IDD CIDC DOC      | Pumping port    | The total effective pumping conductance               |        |
| IRD-STRC-R06      | 1 01            | of the 4-K enclosure must be greater                  |        |
|                   |                 | than or equal to 7.8 l/s (TBC)                        |        |
| IRD-STRC-R07      | Thermometry     | The structure subsystem shall provide                 |        |
| IKD-STRC-RU/      |                 | thermistors and associated wiring to                  |        |
|                   |                 | allow the temperature of critical parts to            |        |
|                   |                 | be monitored during in-flight operations.             |        |
| IRD-STRC-R08      | Attenuation of  | Requirement <2x10 <sup>-5</sup> (TBC)                 |        |
| IKD-STKC-K06      | radiation from  | To illustrate this, the requirement is the            |        |
|                   | cryostat        | equivalent of a ~4 mm diameter hole in a              |        |
|                   | environment     | total area of the box cover of 1 m <sup>2</sup>       |        |
|                   |                 | (TBC)                                                 |        |

Table 3.5-1: Performance requirements for the instrument common structural elements.

| Requirement  | Description          | Value                                       | Source |
|--------------|----------------------|---------------------------------------------|--------|
| ID           |                      |                                             |        |
| IRD-STRC-R09 | First natural        | The first eigenfrequency of the             |        |
| IND-STRC-RO  | frequency of the     | integrated instrument assembly shall be     |        |
|              | instrument           | greater than 100 Hz (TBC) with a goal       |        |
|              | assembly             | of greater than 120 Hz                      |        |
| IRD-STRC-R10 | Instrument           | The mechanical interface of the             |        |
| IKD-STRC-KIO | mechanical           | instrument will be directly to the FIRST    |        |
|              | interface            | optical bench and the instrument will be    |        |
|              |                      | in direct thermal contact at that           |        |
|              |                      | interface.                                  |        |
| IRD-STRC-R12 | Grounding            | All parts of the SPIRE structure shall be   |        |
| IKD-STRC-K12 |                      | electrically connected one to another.      |        |
|              |                      | Resistance to be no more than               |        |
|              |                      | $0.1 \Omega$ (TBC) between any two parts of |        |
|              |                      | the structure                               |        |
| IRD-STRC-R13 | Electrical isolation | All parts of the SPIRE structure shall be   |        |
| IKD-STRC-KIS | from FIRST           | electrically isolated from the FIRST        |        |
|              |                      | optical bench and cryostat. Resistance to   |        |
|              |                      | be greater than TBD $\Omega$ .              |        |
| IRD-STRC-R14 | Thermal isolation    | The conductance from the level 2 to         |        |
| IND-911C-N14 |                      | level 1 stage is required to be no more     |        |
|              |                      | than 6 mW (TBC) assuming level 2 is 9       |        |
|              |                      | K and level 1 is 4 K.                       |        |

**Table 3.5-2:** System requirements on the instrument common structural elements

SPIRE Project Document

## INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 38

#### 3.5.1.2 Photometer Structure

#### **Performance Requirements**

| Requirement ID | Description        | Value                                                             | Source |
|----------------|--------------------|-------------------------------------------------------------------|--------|
| IRD-STRP-R01   | Items requiring    | The photometer 2-K structure shall support:                       |        |
| IKD-51K1-K01   | support            | Photometer 2-K optics; dichroics and filters                      |        |
|                |                    | Detector array modules; Detector thermal                          |        |
|                |                    | straps                                                            |        |
| IRD-STRP-R02   | Optics and filters | The 2-K photometer structure shall be                             |        |
| IKD-51Kt -K02  | alignment          | capable of maintaining the alignment of the                       |        |
|                |                    | photometer 2-K optics; filters and dichroics to                   |        |
|                |                    | within the requirements set out in RD7 at                         |        |
|                |                    | room temperature and during cryogenic                             |        |
|                |                    | operation.                                                        |        |
| IRD-STRP-R03   | Array module       | The 2-K photometer structure shall be                             |        |
| IKD-51Kt-K05   | alignment          | capable of maintaining the position of the                        |        |
|                |                    | detector array modules to within the                              |        |
|                |                    | requirements set in RD7 about any axis                            |        |
|                |                    | during cryogenic operation of the instrument.                     |        |
| IRD-STRP-R04   | Surface finish     | The outside of the box shall have a finish with                   |        |
| IND STRE ROT   |                    | a low emissivity. At least $\varepsilon$ =0.2                     |        |
|                |                    | The inside of the box shall have a low                            |        |
|                |                    | reflectivity finish on all non-optical surfaces.                  |        |
| IRD-STRP-R05   | Pumping port       | The total effective pumping conductance of                        |        |
| IKD-51K1-K05   |                    | the 2-K box must be greater than or equal to                      |        |
|                |                    | 5.6 l/s (TBC)                                                     |        |
| IRD-STRP-R06   | Attenuation of     | Requirement 5x10 <sup>-7</sup> ; goal is 5x10 <sup>-8</sup> (TBC) |        |
| IKD-51K1-K00   | radiation from 4-K | To illustrate this, the requirement is the                        |        |
|                | environment        | equivalent of a 0.5 mm diameter hole in a                         |        |
|                |                    | total area of the box cover of 0.5 m <sup>2</sup>                 |        |
|                |                    | This, of course, excludes the hole that lets                      |        |
|                |                    | the beam in.                                                      |        |

Table 3.5-3: Performance requirements on the photometer 2-K structure.

| Requirement ID | Description       | Value                                        | Source |
|----------------|-------------------|----------------------------------------------|--------|
| IRD-STRP-R07   | First natural     | The first eigenfrequency of the photometer   |        |
| IKD-STKF-KU/   | frequency         | 2-K structure on its mounts shall be greater |        |
|                |                   | than 100 Hz (TBC) with a gaol of > 150 Hz    |        |
| IRD-STRP-R09   | Thermal isolation | The conductance of from the 4-K to 2-K       |        |
| IKD-51Kr-K09   |                   | stage shall be no more than 0.75 mW (TBC)    |        |

Table 3.5-4: System requirements on the photometer 2-K structure

Project Document

## INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 39

### 3.5.1.3 Spectrometer Structure

### **Performance Requirements**

| Requirement ID | Description        | Value                                                             | Source |
|----------------|--------------------|-------------------------------------------------------------------|--------|
| IRD-STRS-R01   | Items requiring    | The spectrometer 2-K structure shall support:                     |        |
| 1KD-81K8-K01   | support            | Cold Stop filters                                                 |        |
|                |                    | Fold mirrors                                                      |        |
| IRD-STRS-R02   | Optics alignment   | The spectrometer 2-K structure shall be                           |        |
| IND-31 N3-NU2  | requirements       | capable of maintaining the alignment of the                       |        |
|                |                    | spectrometer 2-K optical components to                            |        |
|                |                    | within the requirements set out in RD7                            |        |
| IRD-STRS-R03   | Surface finish     | The outside of the box shall have a finish with                   |        |
| IND-81 K8-KU3  |                    | a low emissivity. At least $\varepsilon$ =0.2                     |        |
|                |                    | The inside of the box shall have a low                            |        |
|                |                    | reflectivity finish on all non-optical surfaces.                  |        |
| IRD-STRS-R04   | Pumping port       | The total effective pumping conductance of                        |        |
| IKD-31K3-K04   |                    | the 2-K box must be greater than or equal to                      |        |
|                |                    | 5.6 l/s (TBC)                                                     |        |
| IRD-STRS-R05   | Attenuation of     | Requirement 5x10 <sup>-7</sup> ; goal is 5x10 <sup>-8</sup> (TBC) |        |
| IKD-81K8-K03   | radiation from 4-K | To illustrate this, the requirement is the                        |        |
|                | environment        | equivalent of a 0.5 mm diameter hole in a total                   |        |
|                |                    | area of the box cover of 0.5 m <sup>2</sup>                       |        |
|                |                    | This, of course, excludes the holes that let                      |        |
|                |                    | the beams in.                                                     |        |

Table 3.5-5: Performance requirements on the spectrometer 2-K structure.

| Requirement ID | Description       | Value                                        | Source |
|----------------|-------------------|----------------------------------------------|--------|
| IRD-STRS-R06   | First natural     | The first eigenfrequency of the spectrometer |        |
|                | frequency         | 2-K structure on its mounts shall be greater |        |
|                |                   | than 100 Hz (TBC) with a gaol of > 150 Hz    |        |
| IRD-STRS-R08   | Thermal isolation | The conductance of from the 4-K to 2-K       |        |
| IRD-\$1R5-R08  |                   | stage shall be no more than 0.25 mW (TBC)    |        |

Table 3.5-6: System requirements on the spectrometer 2-K structure.

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

**0034 Issue:** .30

**Date:** 10-MAY-1999

Page: 40

## 3.5.2 <sup>3</sup>He Cooler and detector temperature control

#### **Performance Requirements**

| Requirement ID | Description                                                                                | Value                                                                                                                                                                                                                                                                                                                           | Source |
|----------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| IRD-COOL-R01   | Temperature at the detectors                                                               | Nominal 300 mK                                                                                                                                                                                                                                                                                                                  |        |
| IRD-COOL-R02   | Operating temperature control                                                              | Desirable to be able to vary the temperature of the detectors up to 320 mK and below 300 mK if this is permitted by the temperature drop across the thermal link.  The evaporator cold tip temperature can be varied by heating the sorption cooler. Electronic control shall be provided to do this in the flight electronics. |        |
| IRD-COOL-R03   | Temperature drop<br>across thermal link<br>between detectors<br>and evaporator cold<br>tip | Maximum of 25 mK                                                                                                                                                                                                                                                                                                                |        |
| IRD-COOL-R04   | Temperature drift                                                                          | The temperature of the evaporator cold tip should not drift by more than 10 mK/h                                                                                                                                                                                                                                                |        |
| IRD-COOL-R05   | Temperature fluctuations at the evaporator cold tip                                        | No more than 150 nK Hz <sup>-1/2</sup> in a frequency band from 0.1-100 Hz.                                                                                                                                                                                                                                                     |        |
| IRD-COOL-R06   | System low<br>frequency<br>temperature<br>stability with active<br>temperature control     | $150 \text{ nK}$ at $0.015 \text{ Hz}$ at a maximum power dissipation of $1 \mu\text{W}$                                                                                                                                                                                                                                        |        |
| IRD-COOL-R07   | Heat lift at evaporator cold tip                                                           | Minimum of 10 μW at 300 mK                                                                                                                                                                                                                                                                                                      |        |
| IRD-COOL-R08   | Hold time                                                                                  | Minimum 46 hours                                                                                                                                                                                                                                                                                                                |        |
| IRD-COOL-R09   | Recycle time                                                                               | Maximum 2 hours                                                                                                                                                                                                                                                                                                                 |        |

Table 3.5-7: Performance requirements on the sorption cooler.

| Requirement ID   | Description                           | Value                                                                    | Source |
|------------------|---------------------------------------|--------------------------------------------------------------------------|--------|
| IRD-COOL-<br>R10 | Mechanical interface                  | Preferred interface is with the instrument 4-K structure                 |        |
| IRD-COOL-<br>R11 | Thermal Interface with FIRST cryostat | Pumped liquid helium tank at 1.8 K for both sorption pump and evaporator |        |

## Project Document

# INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

Issue: .30 Date: 10-MAY-1999

Page: 41

| Requirement<br>ID | Description                                               | Value                                                                                                                                                                                                                                                                                                                                                | Source |
|-------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| IRD-COOL-<br>R12  | Parasitic thermal load onto He bath during cold           | Maximum 1.2 mW is allowed for the conduction from 4 K to 2 K through the support structure                                                                                                                                                                                                                                                           |        |
|                   | operation                                                 | and heat switches.                                                                                                                                                                                                                                                                                                                                   |        |
| IRD-COOL-<br>R13  | Time averaged thermal load onto He bath for 48 hour cycle | Maximum 3 mW (includes 20% margin)                                                                                                                                                                                                                                                                                                                   |        |
| IRD-COOL-<br>R15  | Maximum envelope                                          | 200x100x100 mm                                                                                                                                                                                                                                                                                                                                       |        |
| IRD-COOL-<br>R17  | Sorption pump<br>heater                                   | The baseline design has a heater resistance of 400 $\Omega$ implying a current of up to 20 mA for recycling. It is desirable that this heater resistance is increased so that the allowable resistance of the cryoharness wiring can, in turn, be increased. The maximum resistance of the heater that can be driven by 28 V is about 5 k $\Omega$ . |        |
| IRD-COOL-<br>R18  | Thermometers                                              | Thermometers shall be provided on the cooler as necessary to monitor its behaviour and operation. The absolute temperature measurement on the evaporator cold tip shall be 0.5% (<1.5 mK) with a resolution of TBD mK. Thermometers of the same specification shall also be provided on each detector array ( <i>q.v.</i> ).                         |        |
| IRD-COOL-<br>R19  | Gas gap heat switches                                     | It is noted that these are a potential single point failure in the instrument operation. Provision of some redundancy (i.e. doubling them up) is desirable but not at the expense of severe limitations on the cooler performance.                                                                                                                   |        |
| IRD-COOL-<br>R20  | Ground Operation                                          | The cooler must be capable of full operation on the ground, including recycling, when the instrument is in its normal orientation in the test facility. This will be arranged so that the evaporator is below the pump. The cooler must be capable of operating with the instrument rotated to up to 90° about either the S/C Y or Z axes.           |        |

## Project Document

# INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

Issue: .30 Date: 10-MAY-1999

Page: 42

| Requirement<br>ID | Description | Value                                                                     | Source |
|-------------------|-------------|---------------------------------------------------------------------------|--------|
| IRD-COOL-<br>R21  |             | Less than TBD W during cold operation<br>Less than TBD W during recycling |        |

Table 3.5-8: Systems requirements on the sorption cooler

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 43

#### **3.5.3** Shutter

All specifications and requirements on the shutter are under review. (30/11/99)

## **Performance Requirements**

| Requirement ID   | Description         | Value                                                                                                                                                                                  | Source |
|------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| IRD-SHUT-<br>R01 | Beam blanking       | When the shutter vane is in place the throughput of the photometer optics shall be no more than 0.5% (TBD) of the nominal throughput. Goal is to provide the same for the spectrometer |        |
| IRD-SHUT-<br>R02 | Vane<br>temperature | The temperature of the shutter vane shall be variable between 5 and 20 K                                                                                                               |        |

 Table 3.5-9:
 Performance requirements on the shutter

| Requirement ID   | Description                                  | Value                                                                      | Source |
|------------------|----------------------------------------------|----------------------------------------------------------------------------|--------|
| IRD-SHUT-<br>R03 | Failure mode                                 | Any failure of the shutter mechanism must be with the vane out of the beam |        |
| IRD-SHUT-<br>R04 | Operating temperature                        | Maximum 300 K<br>Minimum 4 K                                               |        |
| IRD-SHUT-<br>R05 | Thermal dissipation of actuator in operation | < 1 mW                                                                     |        |
| IRD-SHUT-<br>R06 | Electrical resistance of heater              | Of order $10 \text{ k}\Omega$                                              |        |
| IRD-SHUT-<br>R07 | Max. thermal dissipation of heater < 5 mW    | <5 mW                                                                      |        |
| IRD-SHUT-<br>R08 | Nominal envelope for actuator                | TBD                                                                        |        |

**Table 3.5-10:** System requirements on the shutter

### Project Document

## INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 44

#### 3.5.4 Harness

#### **Performance Requirements**

All harness requirements are under review and TBW (30/1199)

| Requirement ID | Description    | Value                                          | Source |
|----------------|----------------|------------------------------------------------|--------|
| IRD-FPHR-R01   | Generic        | All sub-system electrical connections shall be |        |
| IKD-ITTIK-KUI  | implementation | routed through an RF filter module mounted     |        |
|                |                | on the outside cover of the FPU. The           |        |
|                |                | detector harnesses will be routed through the  |        |
|                |                | JFET box which will form part of the Faraday   |        |
|                |                | cage.                                          |        |

Table 3.5-11: Requirements for the internal SPIRE harnesses.

Project Document

## INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 45

## 3.5.5 Optics and Filters

## 3.5.5.1 Photometer Optics and Filters

**Performance Requirements** 

| <b>Requirement ID</b> | Description         | Value                                            | Source |
|-----------------------|---------------------|--------------------------------------------------|--------|
| IRD-OPTP-R00          | Compatibility with  | The optical design of the photometer fore-       |        |
| IKD-OF IT-K00         | FIRST telescope     | optics shall be compatible with the FIRST        |        |
|                       |                     | telescope optical design.                        |        |
| IRD-OPTP-R01          | Nominal final focal | As close to F/5 as practical                     |        |
| IKD-OF IF-KUI         | ratio               |                                                  |        |
| IRD-OPTP-R02          | Variation in focal  | The focal ratio at any point in the must be      |        |
| IKD-OPTP-K02          | ratio               | within 20% (TBC) of that of the on-axis          |        |
|                       |                     | point.                                           |        |
| IRD-OPTP-R03          | Distortion          | The image of the telescope field of view is      |        |
| IKD-OPTP-R05          |                     | nominally rectangular. The position of any       |        |
|                       |                     | point within the image of the FOV at the         |        |
|                       |                     | detectors must be within 10% (TBC) of the        |        |
|                       |                     | actual position of the point at the telescope    |        |
|                       |                     | focal plane.                                     |        |
| IDD OPTD DO4          | Anamorphism         | The anamorphic ratio of the image of a point     |        |
| IRD-OPTP-R04          | 1                   | source at the detectors must be no more than     |        |
|                       |                     | 6:5 (TBC) in any pair of orthogonal directions   |        |
|                       |                     | at any point in the FOV.                         |        |
|                       | Throughput          | The throughput of the photometer mirrors,        |        |
| IRD-OPTP-R05          | 8 T                 | filters, dichroics and baffles shall be greater  |        |
|                       |                     | than 0.27 (TBC) over the instrument              |        |
|                       |                     | waveband. This includes losses due to            |        |
|                       |                     | manufacturing defects; surface finish and        |        |
|                       |                     | alignment tolerances.                            |        |
|                       | Image quality       | The photometer optics shall give a Strehl ratio  |        |
| IRD-OPTP-R06          | mage quality        | of greater than 0.9 (TBC) over the 4x8           |        |
|                       |                     | arcmin FOV at 250 µm including all losses        |        |
|                       |                     | due to alignment; mirror quality etc             |        |
|                       | Out of band         | The end to end filtering of the photometer       |        |
| IRD-OPTP-R07          | radiation           | shall control the out of band radiation to be no |        |
|                       | Tadamon             | more than                                        |        |
|                       |                     | 10 <sup>-3</sup> for 40 cm-1 to 200 cm-1         |        |
|                       |                     | 10 <sup>-6</sup> for 200 cm-1 to 1000 cm-1       |        |
|                       |                     | 10 <sup>-9</sup> for 1000 cm-1 to 100000 cm-1    |        |
|                       |                     | of the in-band telescope background              |        |
|                       |                     | radiation.                                       |        |
|                       | In-band straylight  | The background power falling on the              |        |
| IRD-OPTP-R08          | in band suayiigiit  | detectors with the optical beam blocked shall    |        |
|                       |                     | be no more than 5% (TBC) of the in-band          |        |
|                       |                     | background power from the telescope over         |        |
|                       |                     | ouckground power from the telescope over         |        |

### Project Document

## INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 46

| Requirement ID | Description | Value                                      | Source |
|----------------|-------------|--------------------------------------------|--------|
|                |             | the 200-300 µm band; 5% (TBC) over the     |        |
|                |             | $300-400 \mu m$ band and 5% (TBC) over the |        |
|                |             | 400-670 μm band.                           |        |

Table 3.5-12: Performance requirements on the photometer optics.

### 3.5.5.2 Spectrometer Optics and Filters

Performance requirement

Requirement ID Description Value

| Requirement ID | Description               | Value                                            | Source |
|----------------|---------------------------|--------------------------------------------------|--------|
| IRD-OPTS-R01   | Nominal final focal ratio | As close to F/5 as practical                     |        |
| IRD-OPTS-R02   | Variation in focal        | The focal ratio at any point in the must be      |        |
| IKD-01 15-K02  | ratio                     | within 20% (TBC) of that of the on-axis          |        |
|                |                           | point.                                           |        |
| IRD-OPTS-R03   | Distortion                | The position of any point within the image of    |        |
| IKD-01 15-K03  |                           | the FOV at the detectors must be within 10%      |        |
|                |                           | (TBC) of the actual position of the point at     |        |
|                |                           | the telescope focal plane.                       |        |
| IRD-OPTS-R04   | Anamorphism               | The anamorphic ratio of the image of a point     |        |
| IKD-01 15-K04  |                           | source at the detectors must be no more than     |        |
|                |                           | 6:5 (TBC) in any pair of orthogonal              |        |
|                |                           | directions.                                      |        |
| IRD-OPTS-R05   | Theoretical               | The theoretical throughput of the                |        |
| IKD-01 15-K05  | throughput                | spectrometer mirrors; filters; beam splitters    |        |
|                |                           | and baffles shall be greater than 0.2 (TBC)      |        |
|                |                           | over the total instrument waveband (TBC)         |        |
|                |                           | including all losses due to manufacturing        |        |
|                |                           | defects; surface finish and alignment            |        |
|                |                           | tolerances.                                      |        |
| IRD-OPTS-R06   | Image quality             | The spectrometer optics shall give a Strehl      |        |
| 112 01 12 1100 |                           | ratio of greater than 0.9 (TBC) over the 2.6     |        |
|                |                           | arcmin FOV at 250 µm including all losses        |        |
|                |                           | due to alignment; mirror quality etc             |        |
| IRD-OPTS-R07   | Balancing of ports        | In order that the two output ports shall have    |        |
| 110 01 15 1107 |                           | the same performance and to facilitate           |        |
|                |                           | accurate compensation of the zero path           |        |
|                |                           | difference maximum, the beam splitters shall     |        |
|                |                           | have 2RT equal to $R^2+T^2$ to within 90%        |        |
|                |                           | (TBC) over the waveband of the instrument.       |        |
| IRD-OPTS-R08   | Out of band               | The end-to-end filtering of the spectrometer     |        |
| ~              | radiation                 | shall control the out of band radiation to be no |        |
|                |                           | more than                                        |        |
|                |                           | 10 <sup>-3</sup> for 40 cm-1 to 200 cm-1         |        |
|                |                           | 10 <sup>-6</sup> for 200 cm-1 to 1000 cm-1       |        |
|                |                           | 10 <sup>-9</sup> for 1000 cm-1 to 100000 cm-1    |        |
|                |                           |                                                  |        |

### Project Document

## INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 47

| Requirement ID | Description         | Value                                          | Source |
|----------------|---------------------|------------------------------------------------|--------|
|                |                     | of the in band telescope background radiation. |        |
| IRD-OPTS-R09   | In band straylight  | The background power falling on the            |        |
| IKD-01 15-K09  |                     | detectors with the optical beam blocked shall  |        |
|                |                     | be no more than 5% (TBC) of the in band        |        |
|                |                     | background power from the telescope over       |        |
|                |                     | the 200-400 µm band and 5% (TBC) over the      |        |
|                |                     | 400-670 μm band.                               |        |
| IRD-OPTS-R10   | Off axis resolution | The FWHM of the resolution element at any      |        |
| IKD-01 15-K10  |                     | point in the FOV shall be no more than 10%     |        |
|                |                     | greater than the on-axis value for a nominal   |        |
|                |                     | resolution of 0.4 cm <sup>-1</sup> .           |        |

**Table 3.5-13: Performance requirements for the spectrometer optics. 3.5.6** 

### 3.5.6 Detectors

#### 3.5.6.1 Photometer Detectors

**Performance Requirements** 

| Requirement ID | Description                                                           | Value                                                                                                                                                     | Source |
|----------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| IRD-DETP-R01   | Detective Quantum Efficiency at 2 Hz at nominal incident power levels | > 0.6                                                                                                                                                     |        |
| IRD-DETP-R02   | Time constant                                                         | 16 milliseconds (Equivalent to 10 Hz)                                                                                                                     |        |
| IRD-DETP-R03   | Uniformity                                                            | NEP spec. shall be met over the whole array<br>Responsivity variations shall be lass than 10%<br>across the array and calibrated to an<br>accuracy of <1% |        |
| IRD-DETP-R04   | Yield (good pixels)                                                   | ≥90% for each array                                                                                                                                       |        |
| IRD-DETP-R05   | Electrical crosstalk for near neighbour pixels.                       | Less than the optical cross talk at the output of the cold JFET amplifiers.                                                                               |        |
| IRD-DETP-R06   | Electrical crosstalk any pair of pixels                               | Requirement is less than 0.1% (TBC) at the output of the cold JFET preamplifiers.  Goal is to be less than the optical cross talk.                        |        |
| IRD-DETP-R07   | Detector angular response                                             | 2Fλ Feedhorns : Single moded                                                                                                                              |        |
| IRD-DETP-R08   | Spectral response                                                     | $\geq$ 90% at the nominal edge frequencies of the appropriate passband                                                                                    |        |

Table 3.5-14: Performance requirements on the photometer detectors.

| Requirement ID Description Value Refers to: | Refers to: |
|---------------------------------------------|------------|
|---------------------------------------------|------------|

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 48

| Requirement ID | Description                       | Value                                                                                                             | Refers to: |
|----------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------|------------|
| IRD-DETP-R09   | Microphonic susceptibility        | TBD                                                                                                               |            |
| IRD-DETP-R10   | EMI susceptibility                | TBD                                                                                                               |            |
| IRD-DETP-R11   | Sensitivity to ionising radiation | TBD                                                                                                               |            |
| IRD-DETP-R12   | Volume envelope                   | The detector modules shall fit within a cylinder of diameter 75 mm (goal 60 mm) and length 100 mm.                |            |
| IRD-DETP-R13   | 300 mK thermal load               | The thermal dissipation and parasitic load at 300 mK shall be no more than $1.6\mu\text{W}$ for each array module |            |
| IRD-DETP-R14   | Mechanical interface              | The detector modules shall mechanically interface to the photometer 2-K structure                                 |            |

System requirements on the photometer detectors.

### 3.5.6.2 Spectrometer Detectors

**Performance Requirements** 

| Requirement ID | Description                                     | Value                                                                                                                                                                                                   | Source |
|----------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| IRD-DETP-R01   | Detective Quantum                               | SW 200-300 $\mu$ m > 0.6                                                                                                                                                                                |        |
|                | Efficiency at 20 Hz                             | LW 300-400 $\mu$ m > 0.6                                                                                                                                                                                |        |
|                | at nominal incident power levels                | LW >400 μm as large as possible                                                                                                                                                                         |        |
| IRD-DETP-R02   | Time constant                                   | 8 milliseconds (Equivalent to 20 Hz)                                                                                                                                                                    |        |
| IRD-DETP-R03   | Uniformity                                      | NEP spec. shall be met over the whole array<br>Responsivity variations shall be lass than 10%<br>across the array and calibrated to an<br>accuracy of <1% (TBC)                                         |        |
| IRD-DETP-R04   | Yield (good pixels)                             | ≥90% for each array                                                                                                                                                                                     |        |
| IRD-DETP-R05   | Electrical crosstalk for near neighbour pixels. | Less than the optical cross talk at the output of the cold JFET amplifiers.                                                                                                                             |        |
| IRD-DETP-R06   | Electrical crosstalk any pair of pixels         | Requirement is less than 0.1% (TBC) at the output of the cold JFET preamplifiers.  Goal is to be less than the optical cross talk.                                                                      |        |
| IRD-DETP-R07   | Detector angular response                       | SW array: single mode 2Fλ horns LW array: 2Fλ aperture size at 350 μm with oversized wave guide to allow use up to 670 μm. Over-moding is permitted at 350 μm: single mode at 670 μm with 1Fλ aperture. |        |
| IRD-DETP-R08   | Spectral response                               | SW 200-300 $\mu$ m $\geq$ 90%<br>LW 300-400 $\mu$ m $\geq$ 90%<br>LW>400 $\mu$ m as large as possible.                                                                                                  |        |

### Project Document

## INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 49

| Requirement ID | Description        | Value                                         | Source |
|----------------|--------------------|-----------------------------------------------|--------|
| IRD-DETS-R01   | Sampling frequency | The spectrometer bolometer pixels shall be    |        |
|                |                    | capable of being readout at the rate required |        |
|                |                    | by the FTS mechanism and position control     |        |
|                |                    | system – nominally 80 Hz (TBC)                |        |

 Table 3.5-15:
 Spectrometer detectors performance requirements

| Requirement ID | Description        | Value                                         | Source |
|----------------|--------------------|-----------------------------------------------|--------|
| IRD-DETS-R02   | Microphonic        | TBD                                           |        |
| MD DETO ROZ    | susceptibility     |                                               |        |
| IRD-DETS-R03   | EMI susceptibility | TBD                                           |        |
| IRD-DETS-R04   | Sensitivity to     | TBD                                           |        |
| IKD-DE13-K04   | ionising radiation |                                               |        |
| IRD-DETS-R06   | Volume envelope    | The detector modules shall fit within a       |        |
| IKD-DE13-K00   |                    | cylinder of diameter 75 mm (goal 60 mm) and   |        |
|                |                    | length 100 mm.                                |        |
| IRD-DETS-R07   | 300 mK thermal     | The thermal dissipation and parasitic load at |        |
| IKD-DE13-KU/   | load               | 300 mK shall be no more than 1.6 µW per       |        |
|                |                    | module                                        |        |
| IRD-DETS-R08   | Mechanical         | The detector modules shall mechanically       |        |
|                | interface          | interface to the spectrometer 2-K structure.  |        |

 Table 3.5-16:
 Spectrometer detectors system requirements

### Project Document

## INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 50

### 3.5.7 Beam Steering Mechanism

**Performance Requirements** 

| Requirement    | Description               | Value                                            | Source |
|----------------|---------------------------|--------------------------------------------------|--------|
| ID             |                           |                                                  |        |
| IRD-BSMP-R01   | Maximum throw             | The BSM shall move the imaged field of           |        |
|                | in chop axis              | view of the detectors by a maximum of            |        |
|                |                           | $\pm$ 2 arcmin on the sky in the $\pm$ Y axis of |        |
|                |                           | the satellite                                    |        |
| VDD DG1 (D D02 | Maximum throw             | The BSM shall move the imaged field of           |        |
| IRD-BSMP-R02   | in jiggle axis            | view of the detectors by a maximum of            |        |
|                | 111 118810 111113         | $\pm 30$ arcsec (TBC) in the $\pm Z$ axis of the |        |
|                |                           | satellite                                        |        |
|                | Minimum etan in           |                                                  |        |
| IRD-BSMP-R03   | Minimum step in both axis | The minimum step size in either chop or          |        |
|                |                           | jiggle axes shall be 2 arcsec                    |        |
| IRD-BSMP-R04   | Frequency of              | The chop frequency in the chop axis              |        |
|                | chop                      | shall be continuously variable or                |        |
|                |                           | selectable in 16 steps from 0 to 2 Hz for        |        |
|                |                           | nominal operation and power dissipation.         |        |
|                |                           | The chop frequency should be capable             |        |
|                |                           | of reaching 5 Hz with increased power            |        |
|                |                           | dissipation and settling time.                   |        |
| IRD-BSMP-R05   | Frequency of              | Goal of 1 Hz. Requirement of at least            |        |
| Down 100       | jiggle                    | 0.5 Hz                                           |        |
| IRD-BSMP-R06   | Holding Position          | The BSM shall be capable of moving to            |        |
| IKD DOWN KOO   |                           | and holding indefinitely at any                  |        |
|                |                           | commanded position within its range of           |        |
|                |                           | movement                                         |        |
| IRD-BSMP-R07   | Stability                 | The angle on the sky must not vary by            |        |
| IKD-DSWIF-KU/  |                           | more than 0.2 arcsec r.m.s (TBC) over            |        |
|                |                           | 60 sec at the commanded mirror position          |        |
|                |                           | in the frequency range 0.03 to 25 Hz.            |        |
| IRD-BSMP-R08   | Repeatability in          | 0.2 arcsec                                       |        |
| IKD-DSWIP-KU8  | successive                |                                                  |        |
|                | positions                 |                                                  |        |
| IDD DCMD DOO   | Position                  | The absolute knowledge of the mirror             |        |
| IRD-BSMP-R09   | Measurement               | position shall be equivalent to less then        |        |
|                |                           | 0.1 arcsec (TBC).                                |        |
| IDD DOLED DIO  | Duty Cycle                | The mirror shall settle to within 1 arcsec       |        |
| IRD-BSMP-R10   |                           | of its commanded position in less than 25        |        |
|                |                           | milliseconds in the chop axis. (90% duty         |        |
|                |                           | cycle for 2 Hz)                                  |        |
|                |                           | Goal is 50 milliseconds for the jiggle axis      |        |
|                |                           | equivalent to 90% duty cycle.                    |        |
|                |                           | equivalent to 30% unity cycle.                   |        |

Table 3.5-17: Performance requirements on the beam steering mirror.

## Project Document

# INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

Issue: .30 Date: 10-MAY-1999

Page: 51

**System Requirements** 

| Requirement ID   | Description            | Value                                                                                                                                                                                         | Source |
|------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| IRD-BSMP-<br>R11 | Volume envelope        | The BSM shall fit within a volume of 130x130x30 mm (TBC) not including its bracket.                                                                                                           |        |
| IRD-BSMP-<br>R12 | Operating temperature  | Nominal operating 4 K. The mechanism shall be capable of operating in a temperature range of 4-300 K                                                                                          |        |
| IRD-BSMP-<br>R13 | Thermal isolation      | The beam steering mirror structure or mirror temperature shall rise by no more than 1 K (TBC) from the nominal temperature of the surrounding structure after one hour operation in any mode. |        |
| IRD-BSMP-<br>R14 | Cold power dissipation | The power dissipation at 4 K shall be no more than 4 mW (TBC) in any operating mode.                                                                                                          |        |
| IRD-BSMP-<br>R15 | Warm power dissipation | The power dissipation in the warm electronics shall be no more than TBD W when chopping at 2 Hz in any operating mode.                                                                        |        |

Table 3.5-18: System requirements on the beam steering mirror.

Project Document

## INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

**0034 Issue:** .30

**Date:** 10-MAY-1999

Page: 52

## 3.5.8 Spectrometer Mirror Mechanism and Position Measurement System

#### **Performance Requirements**

To illustrate the maximum requirements on the systems design, the goal resolution of 0.04 cm<sup>-1</sup> is used throughout the rest of this section.

| Requirement ID   | Description        | Value                                                                                      | Source |
|------------------|--------------------|--------------------------------------------------------------------------------------------|--------|
| IRD-SMEC-R01     | Linear Travel      | Assumed folding factor of 4 for baseline                                                   |        |
| nd bivile nor    |                    | design and single sided interferograms                                                     |        |
|                  |                    | with short travel beyond zero path                                                         |        |
|                  |                    | difference for phase correction.                                                           |        |
|                  |                    | Total OPD required 14 cm.                                                                  |        |
|                  |                    | Maximum mirror travel required (wrt ZPD                                                    |        |
|                  |                    | position): $-0.32$ to $+3.2$ cm                                                            |        |
| IRD-SMEC-R02     | Minimum            | Short wavelength band minimum                                                              |        |
|                  | movement sampling  | measurement interval of 5 µm is required                                                   |        |
|                  | interval           | (equivalent to 20 µm OPD)                                                                  |        |
|                  |                    | For long wavelength band the requirement is                                                |        |
|                  |                    | 7.5 μm (equivalent to 30 μm OPD)                                                           |        |
| IRD-SMEC-R03     | Sampling step      | The measurement interval must be variable                                                  |        |
|                  | control            | between 5 and 25 µm.                                                                       |        |
| IRD-SMEC-R04     | Scan length        | The system shall be capable of starting and                                                |        |
| nd bille not     |                    | stopping a scan at any position within the                                                 |        |
|                  |                    | required scan range                                                                        |        |
| IRD-SMEC-R05     | Dead-time          | A goal is to have a dead-time of no more than                                              |        |
| 1100 211120 1100 |                    | 10% per scan when taking data at resolution                                                |        |
|                  |                    | of 0.4 cm <sup>-1</sup>                                                                    |        |
| IRD-SMEC-R06     | Mirror velocity    | For assumed detector response of 20 Hz the                                                 |        |
|                  |                    | maximum required rate of change of the                                                     |        |
|                  |                    | OPD is 0.4 cm s <sup>-1</sup> .                                                            |        |
|                  |                    | Required max. mirror velocity 0.1 cm s <sup>-1</sup> .                                     |        |
|                  |                    | A capability to have mirror velocity of 0.2 cm                                             |        |
|                  | 37.1 % 1           | s <sup>-1</sup> is desirable and is set as a goal.                                         |        |
| IRD-SMEC-R07     | Velocity control   | The mirror velocity should be selectable from                                              |        |
|                  |                    | 0.02 to 0.1 cm s <sup>-1</sup> – or 0.2 cm s <sup>-1</sup> if the goal                     |        |
|                  | V-1                | performance is achieved.                                                                   |        |
| IRD-SMEC-R08     | Velocity stability | The mirror velocity shall be within 0.001 cm/s r.m.s. within a band width of 0.03 to 25 Hz |        |
|                  |                    |                                                                                            |        |
|                  |                    | over the entire scan range.                                                                |        |
|                  |                    | The velocity from scan to scan shall not vary                                              |        |
|                  |                    | by more than 1% over a period of 24 hours                                                  |        |
|                  |                    | under nominal operating conditions.                                                        |        |
|                  | Position           | Required OPD position accuracy is 1/50 of                                                  |        |
| IRD-SMEC-R09     | measurement        | the smallest step size. Simulation confirms                                                |        |
|                  |                    | that this adds minimal system noise to the                                                 |        |
|                  |                    | system noise to the                                                                        |        |

Project Document

## INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 53

| Requirement ID | Description        | Value                                        | Source |
|----------------|--------------------|----------------------------------------------|--------|
|                |                    | resultant interferogram.                     |        |
|                |                    | Required mirror position measurement         |        |
|                |                    | accuracy 0.1 µm over +- 0.32 scan range and  |        |
|                |                    | 0.3 μm thereafter.                           |        |
| IRD-SMEC-R10   | Sampling frequency | The position is sampled at the frequency     |        |
| IND-SNIEC-KIU  |                    | required for the short wavelength array –    |        |
|                |                    | i.e.(mirror velocity)/(measurement step size |        |
|                |                    | for short wavelength array)                  |        |

Table 3.5-19: Performance requirements on the FTS mirror mechanism. System Level Requirements

| Requirement ID | Description             | Value                                             | Source |
|----------------|-------------------------|---------------------------------------------------|--------|
| IRD-SMEC-R11   | Maximum thermal         | Under zero-g maximum TBD mW                       |        |
| IKD-SMIEC-KII  | load onto 4 K           | Under 1-g maximum TBD mW                          |        |
|                | during cold             |                                                   |        |
|                | operation –             |                                                   |        |
|                | mechanism and           |                                                   |        |
|                | cold position           |                                                   |        |
|                | measurement             |                                                   |        |
|                | system.                 |                                                   |        |
| IRD-SMEC-R12   | Maximum envelope        | TBD                                               |        |
| IRD-SMEC-R13   | Thermometers            | At least one thermometer shall be provided        |        |
| IKD-SWILC-KIS  |                         | on the FTS mechanism. The temperature             |        |
|                |                         | range of the thermometer shall be 2 to 20 K       |        |
|                |                         | (TBC). The absolute temperature                   |        |
|                |                         | measurement accuracy shall be 5% (TBC)            |        |
|                |                         | with a resolution of TBD mK.                      |        |
| IRD-SMEC-R14   | <b>Ground Operation</b> | The mechanism and position measurement            |        |
|                |                         | system must be capable of full operation on       |        |
|                |                         | the ground when the instrument is in its          |        |
|                |                         | normal orientation in the test facility cryostat. |        |

Table 3.5-20: System requirements on the FTS mirror mechanism

### Project Document

## INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 54

#### 3.5.9 Calibration Sources

#### 3.5.9.1 Photometer Calibration Source

**Performance Requirements** 

| Requirement ID | Description       | Value                                 | Source |
|----------------|-------------------|---------------------------------------|--------|
| IRD-CALP-R01   | Nominal operating | Equivalent to εT=40 K for             |        |
| IKD-CALI-K01   | output            | 200<λ<700 μm                          |        |
| IRD-CALP-R02   | Operating range   | 4-80 K for 200<λ<700 μm               |        |
| IKD-CALI-K02   |                   | commandable in 256 (TBC) steps.       |        |
| IRD-CALP-R03   | Equivalent        | <0.2%. Actual size is referred to the |        |
| IND-CALI-NOS   | obscuration of    | telescope secondary mirror image at   |        |
|                | aperture through  | the position of the beam steering     |        |
|                | BSM mirror        | mirror.                               |        |
| IRD-CALP-R04   | Speed of response | Requirement 150 ms                    |        |
| IKD-CALI -K04  |                   | Goal 30 ms                            |        |
| IRD-CALP-R05   | Repeatability     | RMS better than 1% over 20            |        |
| IND-CHEF-NOS   |                   | operations                            |        |
|                |                   | Drift less than 10% over lifetime of  |        |
|                |                   | the mission.                          |        |
| IRD-CALP-R06   | Operation         | Nominally once per hour for no more   |        |
|                |                   | than 10 seconds                       |        |
| IRD-CALP-R07   | Frequency         | Continuously or pseudo continuously   |        |
| IND-CALF-NU/   |                   | variable between 0 and 5 Hz.          |        |

Table 3.5-21: Performance requirements for photometer calibration source

| Requirement ID | Description            | Value                                                                                                                                                                                                  | Source |
|----------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| IRD-CALP-R08   | Interface              | The calibrator will be integrated into the beam steering mechanism.                                                                                                                                    |        |
| IRD-CALP-R09   | Volume<br>envelope     | 30 x 15 x 10 mm                                                                                                                                                                                        |        |
| IRD-CALP-R10   | Thermal isolation      | The temperature of the surrounding structure (including the beam steering mirror) shall rise by no more than 1 K after 10 seconds when the calibrator is operated unmodulated at nominal power output. |        |
| IRD-CALP-R11   | Operating temperature  | 4-K                                                                                                                                                                                                    |        |
| IRD-CALP-R12   | Cold power dissipation | Less than 2 mW when operated unmodulated at nominal power output.                                                                                                                                      |        |
| IRD-CALP-R13   | Warm power dissipation | Less than TBD W when operated unmodulated at nominal power output                                                                                                                                      |        |

Project Document

## INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 55

| Requirement ID | Description | Value                                  | Source |
|----------------|-------------|----------------------------------------|--------|
| IRD-CALP-R14   | Operating   | Less than 28 V at input power level of |        |
|                | voltage     | 5 mW                                   |        |
| IRD-CALP-R15   | Redundancy  | Cold redundancy for the thermal source |        |

Table 3.5-22: System Requirements for the photometer calibration source

## **3.5.9.2** Spectrometer Calibration Source

**Performance Requirements** 

| Requirement      | Description       | Value                                                                      | Source |
|------------------|-------------------|----------------------------------------------------------------------------|--------|
| ID               |                   |                                                                            |        |
| IRD-CALS-        | Radiated          | Null the central maximum to accuracy of                                    |        |
| R01              | spectrum:         | 5% (goal 2%) [TBC]                                                         |        |
|                  |                   | Replicate the dilute spectrum of the                                       |        |
|                  |                   | telescope to an accuracy of better than                                    |        |
|                  |                   | 20% (goal 5%) [TBC] over 200-400 μm.                                       |        |
| IRD-CALS-        | Beam pattern      | Replicate the appropriate beam pattern                                     |        |
| R02              |                   | at the second input port pupil image                                       |        |
| IRD-CALS-        | Adjustability:    | Zero - maximum in 256 steps                                                |        |
| R03              |                   |                                                                            |        |
| IRD-CALS-        | Uniformity        | The uniformity of the intensity from the                                   |        |
| R04              |                   | calibration source across the second                                       |        |
|                  |                   | input port pupil image shall be better than                                |        |
|                  |                   | TBD%                                                                       |        |
| IRD-CALS-        | Repeatability and | The output intensity of the calibration                                    |        |
| R05              | drift             | source shall drift by no more than 1%                                      |        |
|                  |                   | over one hour of continuous operation.                                     |        |
|                  |                   | The absolute change in the output intensity of the source shall be no more |        |
|                  |                   | than 15% over the mission lifetime                                         |        |
|                  | Operation         | The calibration source shall be capable                                    |        |
| IRD-CALS-        | Operation         | of continuous operation for periods of up                                  |        |
| R06              |                   | to 2 hours with no loss of operational                                     |        |
|                  |                   | performance.                                                               |        |
| IDD CALC         | Number of         | The calibration source shall be capable                                    |        |
| IRD-CALS-<br>R07 | operations        | of up to 12000 operational cycles                                          |        |

**Table 3.5-23: Spectrometer calibrator performance requirements** 

| Requirement<br>ID | Description          | Value                | Source |
|-------------------|----------------------|----------------------|--------|
| IRD-CALS-         | Operating<br>Voltage | No more than 28 V DC |        |

Project Document SPIRE

# INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

Issue: .30 Date: 10-MAY-1999

Page: 56

| R08              |                                      |                                                                                                                                    |
|------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| IRD-CALS-<br>R09 | Power dissipation in the focal plane | No more than 5 mW with a goal of 2 mW                                                                                              |
| IRD-CALS-<br>R11 | Envelope                             | 50x50x70 mm (TBC)                                                                                                                  |
| IRD-CALS-<br>R12 | Thermal Isolation                    | The surrounding structure of the calibrator shall rise in temperature by no more than TBD K after one hour of continuous operation |
| IRD-CALS-<br>R13 | Operating<br>Temperature             | 4 K                                                                                                                                |
| IRD-CALS-<br>R14 | Redundancy                           | Fully redundant systems shall be provided for the active elements.                                                                 |

**Table 3.5-24: Spectrometer calibrator systems requirements** 

### Project Document

## INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30 **Date:** 10-MAY-1999

Page: 57

#### **3.5.10 JFET Box**

**Performance Requirements** 

| Requirement ID | Description     | Value                                                   | Source |
|----------------|-----------------|---------------------------------------------------------|--------|
| IRD-FTB-R01    | Amplifier noise | Requirement better than 10 nV Hz <sup>-1/2</sup> over a |        |
| IKD-I I D-KUI  |                 | bandwidth of 100 to 1400 Hz                             |        |
|                |                 | Goal 7 nV Hz <sup>-1/2</sup>                            |        |
| IRD-FTB-R02    | RF rejection    | The RF filters, as fitted in the box and with           |        |
| IKD-I I D-K02  |                 | the correct harness, connectors and back-               |        |
|                |                 | shells; shall reject all frequencies from 500           |        |
|                |                 | MHz to $10 \text{ GHz}$ at $-60 \text{ dB}$ .           |        |

**Table 3.5-25: JFET box performance requirements** 

| Requirement ID | Description       | Value                                         | Source |
|----------------|-------------------|-----------------------------------------------|--------|
| IRD-FTB-R04    | Envelope          | The JFET/Filter box shall be no more then     |        |
| IKD-I I D-K04  |                   | 300x100x100 mm (TBD)                          |        |
| IRD-FTB-R05    | Dissipation       | The dissipation of JFET amplifiers shall be   |        |
| IKD-I I D-K03  |                   | heat sunk to the level 2 cryostat stage.      |        |
|                |                   | The dissipation shall be no more than 33 mW   |        |
|                |                   | (TBC) average for all operating modes with    |        |
|                |                   | the level 2 temperature at 11 K.              |        |
|                |                   | Any change in the system design – i.e.        |        |
|                |                   | changes in the cryostat specification - will  |        |
|                |                   | lead to a revision of this requirement.       |        |
| IKD-FIB-KUD *  | Operating         | The JFET amplifiers and RF filters shall be   |        |
|                | temperature range | capable of operating in with the temperature  |        |
|                |                   | of the mounting point of the box in the range |        |
|                |                   | 4 to 300-K                                    |        |
| IRD-FTB-R07    | Mechanical        | The FTB shall mount directly to the FIRST     |        |
| IKD-I ID-K07   | Interface         | optical bench.                                |        |
| IRD-FTB-R08    | Nominal operating | The JFET amplifier and RF filter              |        |
| IKD-I I D-K00  | temperature       | performance requirements shall be             |        |
|                |                   | maintained with the temperature of the        |        |
|                |                   | mounting point of the box within the range 4  |        |
|                |                   | to 20 K.                                      |        |
| IRD-FTB-R09    | First natural     | The first eigenfrequency of the FTB on its    |        |
| IND'I ID'NO)   | frequency         | mounts shall be greater than 100 Hz (TBC)     |        |
|                |                   | with a gaol of > 150 Hz                       |        |

**Table 3.5-26: JFET box system requirements** 

### Project Document

# INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 58

#### 3.5.11 RF Filter Modules

**Performance Requirements** 

| - 01101111011100 210 qu  |              |                                               |        |
|--------------------------|--------------|-----------------------------------------------|--------|
| Requirement ID           | Description  | Value                                         | Source |
| IRD-RFM-R01 RF rejection | RF rejection | The RF filters, as fitted in the box and with |        |
|                          |              | the correct harness, connectors and back-     |        |
|                          |              | shells; shall reject all frequencies from 500 |        |
|                          |              | MHz to 10 GHz at -60 dB.                      |        |

**Table 3.5-27: RF Module performance requirements** 

| Requirement ID | Description                   | Value                                                                                                                         | Source |
|----------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------|
| IRD-RFM-R02    | Envelope                      | The filter modules shall be no more than TBD                                                                                  |        |
| IRD-RFM-R03    | Dissipation                   | The RF filters will be passive components with no dissipation.                                                                |        |
| IRD-RFM-R04    | Operating temperature range   | The RF filters shall be capable of operating in with the temperature of the mounting point of the box in the range 4 to 300-K |        |
| IRD-RFM-R05    | Nominal operating temperature | 4 K                                                                                                                           |        |
| IRD-RFM-R06    | Mechanical interface          | The RF modules shall be mounted from the 4-K common structure.                                                                |        |
| IRD-RFM-R07    | First natural frequency       | The first eigenfrequency of the filter modules shall be greater than 200 Hz (TBC) with a gaol of > 300 Hz                     |        |

**Table 3.5-28: RF Module system requirements** 

### Project Document

## INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 59

#### 3.5.12 Instrument Simulators

#### **3.5.12.1 FPU Simulator**

**Performance Requirements** 

| Requirement ID | Description      | Value                                         | Source |
|----------------|------------------|-----------------------------------------------|--------|
| IRD-FSIM-R01   | Function         | The FPU simulator shall allow the Warm        |        |
| IKD-I SIMI-KUI |                  | Electronics to be switched on and operated in |        |
|                |                  | the absence of the cold FPU unit.             |        |
| IRD-FSIM-R02   | Analogue Outputs | The simulator shall return to the Warm        |        |
| IKD-I SIM-K02  |                  | Electronics analogue signals within the range |        |
|                |                  | expected for each signal channel to allow the |        |
|                |                  | basic function of the analogue Warm           |        |
|                |                  | Electronics and the instrument commanding     |        |
|                |                  | to the verified                               |        |
| IRD-FSIM-R03   | Control loops    | The simulator shall return to the Warm        |        |
| IKD-FSHVI-KUS  |                  | Electronics the appropriate signals to allow  |        |
|                |                  | the basic function of any control loops to be |        |
|                |                  | verified.                                     |        |

Table 3.5-29: FPU simulator performance requirements

**System Requirements** 

| System Requirements |             |                                             |        |  |
|---------------------|-------------|---------------------------------------------|--------|--|
| Requirement ID      | Description | Value                                       | Source |  |
| IRD-FSIM-R04        | Harness     | The FPU simulator shall provide a dedicated |        |  |
| IKD-1/31101-IKU4    |             | harness that interfaces directly to the     |        |  |
|                     |             | appropriate Warm Electronics unit           |        |  |
| IRD-FSIM-R05        | Prime and   | The FPU simulator shall provide simulation  |        |  |
| IKD-I SIMI-KUS      | Redundant   | and interfaces to both the prime and        |        |  |
|                     | Interfaces  | redundant channels of the Warm Electronics. |        |  |

**Table 3.5-30: FPU simulator system requirements** 

### 3.5.12.2 DRCU Simulator

**Performance Requirements** 

| Requirement ID   | Description | Value                                         | Source |
|------------------|-------------|-----------------------------------------------|--------|
| IRD-DSIM-R01     | Function    | The DRCU simulator shall allow the DPU to     |        |
| IKD-DSIM-KUI     |             | be operated in the absence of the DRCU and    |        |
|                  |             | cold FPU.                                     |        |
| IRD-DSIM-R02 Out | Outputs     | The simulator shall return to the DPU the     |        |
| IKD-DSIWI-KUZ    |             | appropriate digital responses to allow the    |        |
|                  |             | verification of the instrument commanding     |        |
|                  |             | and all on board software functions including |        |
|                  |             | autonomy modes.                               |        |

Table 3.5-31: DRCU simulator performance requirements

SPIRE INSTR

## Project Document

# INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

**Issue:** .30

**Date:** 10-MAY-1999

Page: 60

| Requirement ID | Description | Value                                         | Source |
|----------------|-------------|-----------------------------------------------|--------|
| IRD-DSIM-R03   | Harness     | The DRCU simulator shall provide a            |        |
| IKD-DSIWI-KUS  |             | dedicated harness that interfaces directly to |        |
|                |             | the DPU                                       |        |
| IRD-DSIM-R04   | Prime and   | The DRCU simulator shall provide simulation   |        |
| IKD-DSIM-K04   | Redundant   | and interfaces to both the prime and          |        |
|                | Interfaces  | redundant channels of the DPU.                |        |

Table 3.5-32: DRCU simulator system requirements

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE/RAL/N/

0034

Issue: .30 Date: 10-MAY-1999

Page: 61

#### 3.6 Warm Electronics

To Be Written