SUBJECT: INSTRUMENT REQUIREMENTS DOCUMENT

PREPARED BY: Bruce Swinyard (Custodian) **Ken King DOCUMENT No: SPIRE-RAL-PRJ-000034** ISSUE: .20 Date: 15 September 1999 **30 November 1999** .21 .30 May 2000 .31 25 May 2000 **July 2000** .32 1.0 **23 November 2000 10 January 2002** 1.1 **CHECKED BY: Berend Winter (MSSL)** Date: **Dominique Pouliquen (LAM)** Date: Peter Hargrave (QMW) Date: **Lionel Duband (CEA)** Date: Jamie Bock (JPL) Date: Jean-Louis Augueres (CEA) Date: Riccardo Cerulli-Irelli (IFSI) Date: Gary Davis (USK) Date: Hans-Gustav Floren (Stockholm) Date: **APPROVED BY: Matt Griffin** Date: **Eric Sawyer** Date:

Date:

Laurent Vigroux

Project Document

INSTRUMENT REQUIREMENTS
DOCUMENT

Ref: SPIRE-RAL-PRJ-

1.1 000034 1.1

Date: 2 January 2002

Page: ii

Distribution

Matt Griffin Principal Investigator (Cardiff

University)

Laurent Vigroux Co-Principal Investigator (CEA)

Walter Gear Project Scientist Jean-Paul Baluteau Project Scientist

Ken King Project Manager (RAL)
Bruce Swinyard Instrument Scientist (RAL)

Colin CunninghamFPU Systems Engineer (ATC)Eric SawyerInstrument Manager (RAL)John DelderfieldSystems Engineer (RAL)Doug GriffinSystems Engineer (RAL)

Jean-Louis AugueresCEA(Saclay)Lionel DubandCEA (Grenoble)

Lionel DubandCEA (Grenoble)Jamie BockJPL/CaltechDominique PouliquenLAM

Berend WinterMSSLKjetil DohlenLAMPeter HargraveCardiffGary DavisUSKDavid SmithRAL

Hans-Gustav Floren Stockholm Riccardo Cerulli-Irelli IFSI

Anna Di Giorgio IFSI

Project Document

INSTRUMENT REQUIREMENTS **DOCUMENT**

 Ref:
 SPIRE-RAL-PRJ-000034

 Issue:
 1.1

Date: 2 January 2002

Page: iii

Change Record

ISSUE	DATE	
0.1	2 July 1999	First proper issue just prior to PDR
0.2	September 1999	Radically re-arranged separate instrument and sub-system reqs.
0.21	November 1999	Updated following comments from Berend Winter – this issue sent out for Warm Electronics Review
0.3	May 2000	Revised following detector selection.
0.0	1.1 4. 5 2 000	Removed extraneous information that is better covered in other
		documents.
		Revised organisation of document and removed redundant
		requirements and renumbered some of the sub-systems requirements.
		Added simulator requirements
		Re-integrated Warm Electronics requirements
0.31	25 May 2000	Official release following comments on version 3.
	•	Changes made to requirements on WE testing to bring into line with
		development plans.
		Block diagram changed to put shutter electronics into DRCU
		Change made to cooler requirements to include parasitic load from 4-
		2 K via structure and heat switches.
0.32	July	Working version – changes to detector and JFET box requirements to
		clarify for specification document.
1.0	23 November 2000	First configuration controlled issue
	23 November 2001	Change requests submitted against issue 1:
		HR-SP-CDF-ECR-1 Changes to Calibrator Specs (section 3.5.9.1
		and section 3.5.9.2)
		HR-SP-CSA-ECR-1 Changes to Shutter Specs (section 3.5.3)
		HR-SP-IFSI-ECR-1 IRD-OPS-R02, IRD-WE-R07
		HR-SP-IFSI-ECR-2 IRD-TLM-R02, IRD-DATA-R03
		HR-SP-IFSI-ECR-3 IRD-TLM-R06
		HR-SP-IFSI-ECR-4 IRD-WE-R29
		HR-SP-IFSI-ECR-5 IRD-WE-R30
		HR-SP-IFSI-ECR-6 IRD-WE-R31 HR- SP- RAL- ECR-16 IRD-BSMP-R01
		HR- SP- RAL- ECR-10 IRD-DETP-R09; IRD-DETS-R10HR- SP-
		RAL- ECR-18 IRD-DETP-R10; IRD-DETS-R11
		HR- SP- RAL- ECR-19 IRD-DETP-R11; IRD-DETS-R12
		HR- SP- RAL- ECR-20 IRD-RFM-R02
		HR- SP- RAL- ECR-21 IRD-RFM-R08
		HR- SP- RAL- ECR-22 Section 2.10 EMC Requirement inserted
		HR- SP- RAL- ECR-23 Section 3.5.12 Updated thermistor list
		HR- SP- RAL- ECR-24 IRD-SMEC-R07
		HR- SP- RAL- ECR-25 IRD-SMEC-R08
		HR- SP- RAL- ECR-26 IRD-SMEC-R12
		HR- SP- RAL- ECR-27 IRD-STRC-R01
		HR- SP- RAL- ECR-28 IRD-STRC-R02
		Non-ECD shares
		Non-ECR changes AD and BD list brought up to data
		AD and RD list brought up to date Hersehal for EIRST everywhere through decument
		Herschel for FIRST everywhere through document Correctly numbered and name list edited
		Correctly numbered and name list edited

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

 Ref:
 SPIRE-RAL-PRJ-000034

 Issue:
 1.1

Date: 2 January 2002

Page: 1

Table of Contents

1.	INTRODUCTION	3
	1.1 Purpose	3
	1.2 Scope	
	1.3 GLOSSARY	
	1.4 References	4
	1.4.1 Applicable Documents	
	1.4.2 Reference Documents	
	1.5 DOCUMENT OVERVIEW	
2.	INSTRUMENT LEVEL REQUIREMENTS	_
	2.1 GENERAL DESCRIPTION	_
•	2.1 General Description	_
	•	
	2.1.2 Mission Context	_
		_
	2.1.4 Satellite Level Constraints and Assumptions 2.1.4.1 Herschel Cryostat	
	2.1.4.1 <u>Pressurer</u> Cryostat 2.1.4.2 Warm Electronics Power	
	2.1.4.3 Telemetry Rates	
	2.1.4.4 <u>Herschel</u> Telescope	
	2.1.4.5 Pointing	
	2.1.4.6 Launch Environment	
	2.1.4.7 Orbit	
	2.1.4.8 Mission Lifetime	
	2.1.4.9 Radiation environment	
,	2.1.4.10 Operational Environment	
•	2.2.1 Photometer Requirements	
,	2.2.2 Spectrometer Requirements	
•	2.3.1 Instrument Operations	
	2.3.2 Operating Modes	
	2.3.3 Commanding Requirements	
1	REQUIREMENT ID.	
,	2.3.4 Telemetry Requirements	_
	2.3.5 Data Handling Requirements	
,	2.4 Instrument Model Philosophy	
	2.5 Instrument level Qualification	
_	2.6 VERIFICATION	
_	2.7 Safety	
	2.8 AUTONOMY	
_	2.9 RELIABILITY AND REDUNDANCY	
	2.10 EMC	_
3.	SUBSYSTEMS REQUIREMENTS	_
	3.1 ASSUMPTIONS	_
	3.2 SCOPE	_
	3.3 SUBSYSTEM QUALIFICATION REQUIREMENTS	
	3.4 ASSUMPTIONS FOR THE FOCAL PLANE UNIT	
	3.4.1 Plate Scale	
	3.4.2 Vacuum	
	3.4.3 Mass	
	3.5 COLD UNITS SUB-SYSTEM REQUIREMENTS	
	3.5.1 Structure	36

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE-RAL-PRJ-000034 Issue: 1.1

2 January 2002 Date:

Page: 2

3.5.1	.1 Common Structure	36
3.5.1		
3.5.1		
$3.5.2^{3}H$	He Cooler and 300 mK architecture	$\overline{40}$
3.5.3	Shutter	
3.5.4	Harness	
3.5.5	Optics and Filters	
3.5.5	1	
3.5.5		
3.5.6	Detectors	
3.5.6		
3.5.6		
3.5.7	Beam Steering Mechanism	. <u>51</u>
3.5.8	Spectrometer Mirror Mechanism and Position Measurement System	.53
3.5.9	Calibration Sources	.55
3.5.9		
3.5.9	.2 Spectrometer Calibration Source	<u>56</u>
3.5.10	JFET Boxes	. <u>58</u>
3.5.11	RF Filter Modules	. <u>59</u>
3.5.12	Instrument thermometry	
3.6 Waf	RM ELECTRONICS	.62
3.6.1	Functional Requirements	
3.6.1	4	
3.6.1		
3.6.2	Interface Requirements	
3.6.3	Performance Requirements	.64
3.6.4	Autonomy Requirements	
3.6.5	Reliability Requirements	
3.6.6	Safety Requirements	
3.6.7	Budgets	
3.6.8	Compatibility Requirements	
3.6.9	Quality Requirements	
	RUMENT SIMULATORS	_
3.7.1	FPU Simulator	
3.7.2	DRCU Simulator	
3.7.4	DRGO 9//// 1	. 07

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE-RAL-PRJ-

000034

Issue: 1.<u>1</u>

Date: 2 January 2002

Page: 3

1. Introduction

1.1 Purpose

This document describes the capabilities required of the SPIRE instrument and the constraints placed upon its design and operation in the context of the Herschel mission.

The instrument requirements are derived from the scientific requirements placed on the instrument in the SPIRE Science Requirements Document (SRD); the constraints imposed upon the instrument design by the satellite interface specification as detailed in the Instrument Interface Document parts A and B (IID-A and IID-B) and the operational constraints on the instrument design given in the Herschel/Planck Operations Interface Requirements Document (OIRD).

This document goes beyond the general instrument level requirements to place specific requirements on individual sub-systems within the context of the instrument design specification. It thus forms the starting point for the SPIRE sub-system specification documents that will be written for each SPIRE sub-system.

The requirements set out in this document will be used to verify the performance of the instrument during instrument level Assembly, Integration and Verification (AIV). The sub-system requirements will be used as the bench mark for sub-system acceptance at instrument level. If there is an outside source for the requirements on the instrument it will be referenced, if not this document in the source.

1.2 Scope

This documents deals with the requirements on the SPIRE instrument hardware and software from the optical input from the Herschel telescope through to the interfaces with the spacecraft. It does not deal with the requirements on the SPIRE Instrument Control Centre or any other part of the instrument ground segment.

1.3 Glossary

AIV	Assembly Integration and Verification
AOCS	Attitude and Orbit Control System
ASIC	Application Specific Integrated Circuit

AVM Avionics Model

BSM Beam Steering Mechanism

CDMS Command and Data Management System (on Spacecraft)

CQM Cryogenic Qualification Model

CVV Cryostat Vacuum Vessel

DCRU Detector Control and Readout Unit

DPU Digital Processing Unit

EMC Electromagnetic Compatibility EMI Electromagnetic Interference

FOV Field of View FPU Focal Plane Unit FS Flight Spare

FTS Fourier Transform Spectrometer FWHM Full Width Half Maximum

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE-RAL-PRJ-

000034

Issue: 1.<u>1</u> **Date:** 2 January 2002

Page: 4

HCSS	Herschel Common Science System
HIFI	Heterodyne Instrument For Infrared
IID-A	Instrument Interface Document part A
IID-B	Instrument Interface Document part B
JFET	Junction Field Effect Transistor
MGSE	Mechanical Ground Support Equipment
NEP	Noise Equivalent Power
OBDH	On Board Data Handling (on Spacecraft)
OGSE	Optical Ground Support Equipment
OIRD	Operations Interface Requirements Document
OPD	Optical Path Difference
PACS	Photodetector Array Camera and Spectrometer
PDU	Power Distribution Unit (on spacecraft)
PFM	Proto-Flight Model
PLM	Payload Module
QLF	Quick Look Facility
S/C	Space Craft
SPIRE	Spectral and Photometric Imaging Receiver
SRD	Science Requirements Document
STM	Structural Thermal Model
SVM	Service Module
TBD	To Be Determined
TBC	To Be Confirmed
	ggary of paranyms and abbraviations

Table A: Glossary of acronyms and abbreviations

1.4 References

Where there are differences in requirements or specification details, the applicable and reference documents enumerated here take precedence over the Instrument Requirements Document. This is particularly the case with the IID-A and IID-B which will contain the interface specification between the SPIRE instrument and the Herschel satellite.

1.4.1 Applicable Documents

Document Reference	Name	Number/version/date
AD1	Herschel/Planck Instrument Interface Document Part A (IID-A)	PT-IID-A-04624 Issue <u>2.0</u> <u>January 2002</u> SPIRE-ESA-DOC-000178
AD2	SPIRE Scientific Requirements Document (SRD)	Version 2.0 14 June 2000 SPIRE-UCF-DOC-000064
AD3	FIRST/PLANCK Operations Interface Requirements Document (FOIRD)	SCI-PT-RS-07360 Draft 5 03 May 2000 SPIRE-ESA-DOC-000188
AD4	Herschel Science Operations Implementation Requirements Document (SIRD)	PT-03646 SPIRE-ESA-DOC-000198
AD5	Herschel/Planck Instrument Interface Document Part B (IID-B) Instrument "SPIRE"	PT-SPIRE-02124 Issue-Rev. No. <u>2</u> -0 <u>January 2002</u>

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE-RAL-PRJ-

000034 **Issue:** 1.1

Date: 2 January 2002

Page: 5

SPIRE-ESA-DOC-000275

Table B: Applicable Documents

The abbreviations in brackets are used throughout the present document.

1.4.2 Reference Documents

Document	Name	Number/version
Reference		
RD1	FIRST L-2 Radiation Environment	esa/estec/wma/he/FIRST/3
		04 March 1997
		SPIRE-ESA-NOT-000401
	<u>Deleted</u>	
RD3	ESA Packet Utilisation Standard	ESA-PSS-07-101 Issue 1
		May 1994
		SPIRE-ESA-DOC-000243
	<u>Deleted</u>	
RD5	SPIRE Optics Error Budgets	SPIRE-LAM-DOC-000446
RD6	FIRST_Instrument I/F Study Final Report	FIRST-GR-B0000.009 Issue
		1
		02 February 2000
		SPIRE-REF-DOC-000417
RD7	SPIRE Instrument AIV Plan	SPIRE-RAL-DOC-000410
RD8	SPIRE Systems Budgets	SPIRE-ATC-PRJ-000450
RD9	Draft Pumping Speed Requirements for the SPIRE	Not issued
	Structure	
<u>RD10</u>	Beam Steering Mirror Specification Document	SPIRE-ATC-PRJ-000460
<u>RD11</u>	SPIRE ICD Structure – Mechanical I/F	SPIRE-MSSL-PRJ-000617
<u>RD12</u>	SPIRE Harness Definition Document	SPIRE-RAL-PRJ-000608
<u>RD13</u>	SPIRE Instrument Grounding Philosophy	SPIRE-RAL-PRJ-000624

Table C: Reference documents

The abbreviations in brackets are used throughout the present document. Where version numbers are not supplied the latest issues should be obtained from the configured documents list.

1.5 Document Overview

The context within which the SPIRE instrument is to be operated and for which it is designed is outlined in section 2.1 together with an outline description of the conceptual design of the instrument. The requirements placed on the instrument performance in the Science Requirements Document are enumerated in section 2.2 and the requirements placed on the operation of the instrument in order to meet the scientific requirements are described in section 2.3. Sections 2.4-2.7 give the requirements placed upon the instrument design by the satellite launch and operations environments.

In chapter 3 the specific requirements placed on each sub-system of the SPIRE instrument are detailed. This starts from the generic requirements on all sub-systems for qualification and verification in sections 3.1 and 3.2. Each sub-system is then taken in turn, starting with the cold focal plane unit and ending with the warm electronics.

The details of various aspects of the qualification tests and the expected mass, power and thermal dissipation budgets available for the various sub-systems are given in the appendices.

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Ref: $\frac{\text{SPIRE-RAL-PRJ-}}{000034}$

Issue: 1.1

Date: 2 January 2002

Page: 6

2. Instrument Level Requirements

2.1 General Description

2.1.1 Instrument Description

SPIRE (Spectral & Photometric Imaging REceiver) is a bolometer instrument comprising a three-band imaging photometer covering the 200-600 μ m range and an imaging Fourier Transform Spectrometer (FTS) with a spectral resolution of at least 0.4 cm⁻¹ (corresponding to $\lambda/\Delta\lambda=100$ at 250 μ m), covering wavelengths between 200 and 670 μ m. The detectors are bolometer arrays cooled to 300 mK using a ³He refrigerator. The photometer is optimised for deep photometric surveys, and can observe simultaneously the same field of view of at least 4 x 4 arcminutes in all three bands.

2.1.2 Mission Context

SPIRE is one of three instruments to be placed on board the ESA Far InfraRed and Submillimetre Telescope ($\underline{\text{Herschel}}$) satellite. This mission is dedicated to astronomical observations in the 85 to 700 μm waveband.

The <u>Herschel</u> satellite provides a 3.5 m telescope for receiving and imaging the FIR and submillimetre radiation from astronomical sources. The three instrument Focal Plane Units (FPUs) share the 0.25 degree focal plane of the <u>Herschel</u> telescope and each instrument provides re-imaging optics to take its the portion of the focal plane onto its detectors. The signals from the SPIRE instrument are, after suitable conditioning and conversion to digital format, sent to the ground via the spacecraft Command and Data Management System (CDMS).

In order to prevent the instrument detectors being swamped by self emission, the FPUs are located in the Herschel cryostat. This is a liquid helium (LHe) cryostat providing various temperature levels, the lowest of these is the super-fluid LHe tank at 1.7 K. There are also two cold gas vent lines – the actual temperatures these provide are dependent on the details of the instrument thermal dissipation and the cryostat design (see section 2.1.4.1). The three instrument FPUs mechanically interface to the cryostat via a common optical bench with separate thermal straps to the cryostat. The signal conditioning "warm electronics" units will be placed on the satellite service module (SVM). The electrical connections between the warm electronics and the cold FPU are made through a cryo-harness that will be provided as part of the satellite system.

The <u>Herschel</u> mission will be controlled from the Mission Operations Centre (MOC) via a remote ground station. The SPIRE instrument will be controlled from the SPIRE Instrument Control Centre (ICC) which communicates to the MOC via the <u>Herschel Common Science System (HCSS)</u>The <u>Herschel</u> observers will interface to the mission via the <u>Herschel</u> Science Centre (<u>H</u>SC) which also communicates to the MOC via FINDAS.

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Ref: $\frac{\text{SPIRE-RAL-PRJ-}}{000034}$

Issue: 1.1

Date: 2 January 2002

Page: 7

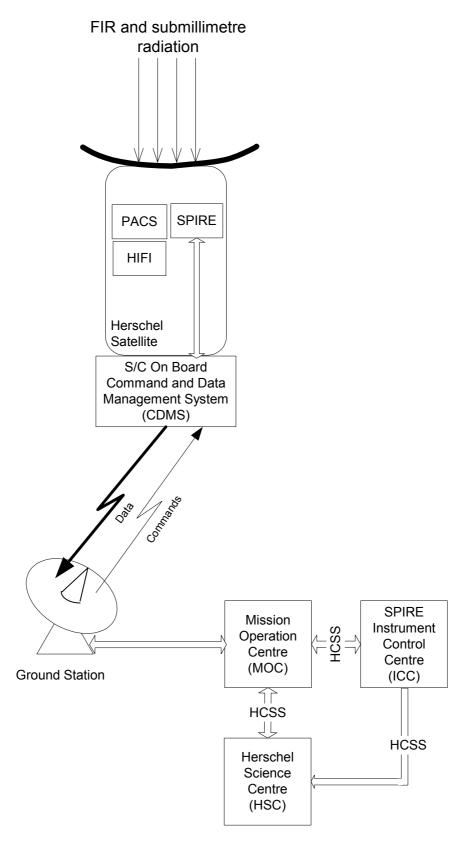


Figure 2-1: The Herschel Mission showing the communication between the various elements

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE-RAL-PRJ-

1.1 000034 1.1 1.1

Date: 2 January 2002

Page: 8

2.1.3 Definition of Instrument Elements and Instrument Location

The SPIRE instrument consists of several "units" as defined in the IID-B and recapitulated in table 2.1-1 together with brief descriptions of their functions and their locations on the Herschel satellite. These are subject to revision as the detailed design of the instrument proceeds but are given here for reference.

Instrument unit	Function	ESA code	Location
Cold Focal Plane	Contains the optics;	<u>H</u> SFPU	On <u>Herschel</u> optical
Unit (FPU)	mechanisms and detectors.		bench inside cryostat
Focal plane JFET	These units contains the cold	<u>H</u> S <u>JFP</u>	On <u>Herschel</u> optical
boxes (<u>JFP</u> and <u>JFS</u>)	read-out electronics for the	FS <u>JFS</u>	bench inside cryostat
	NTD germanium bolometers.		
	There will be one each for the		
	spectrometer (JFS) and		
	photometer channels (JFP) in		
	the SPIRE instrument		
Detector Read-out	These warm electronics units	<u>HSFCU</u>	On spacecraft service
and Control Unit	contains the circuitry	<u>HSDCU</u>	module (SVM)
(DRCU)	necessary to read-out the		
	detectors; control the various		
	mechanisms and provide		
	instrument control and data		
	handling functions. The FCU		
	contains the power supply unit;		
	mechanism control unit and		
	the sub-system control unit		
	which conditions thermistors		
	and heaters. The DCU		
	contains the electronics to		
	<u>drive the detectors and JFETS</u>		
	and condition the detector		
	signals.		
Digital Processing	This warm electronics unit	<u>H</u> SDPU	On SVM
Unit (DPU)	provides the instrument		
	interface to the S/C CDMS		
	sub-system; receives and		
	interprets instrument		
	commands and formats the		
	instrument data for telemetry		
XX :	to the ground	HOWHI	O CVIV
Warm interconnect	This connects the warm	<u>H</u> SWIH	On SVM
harnesses	electronics units.		
(HARNESS)			

Table 2.1-1: Definition and location of the elements of the SPIRE instrument.

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE-RAL-PRJ-

000034

Issue: 1.1

Date: 2 January 2002

Page: 9

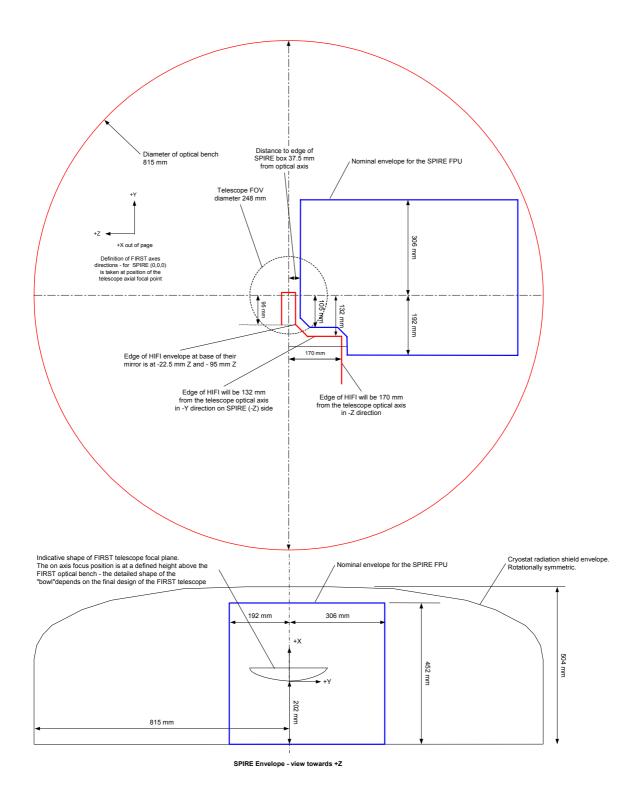


Figure 2-2: Cold FPU location and envelope constraints in the <u>Herschel</u> cryostat. The cryostat cover is rotationally symmetric and defines the X-Z envelope of the instrument box as well (not shown). The details of the box shape are subject to revision as the design evolves and the instrument dimensions are for illustrative purposes only.

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE-RAL-PRJ-

000034 1.1

Date: 2 January 2002

Page: 10

Issue:

Satellite Level Constraints and Assumptions

The specification and capabilities of the <u>Herschel</u> satellite are given in the IID-A. As this document is under review and unlikely to be finalised in the near term, the assumptions that should be made about the <u>Herschel</u>

satellite for the purposes of the SPIRE instrument requirements are described in this section.

2.1.4.1 Herschel Cryostat

The thermal behaviour of the <u>Herschel</u> cryostat will be complex and depends both on its final design and that of the instruments. The results of a study into the expected temperatures that will be provided by the <u>Herschel</u> cryostat (RD6) shows that the temperatures of the three thermal interfaces are as given in table 2-2.

Description Cooling Method and Comments		Nominal
		Temperature
LHe tank	The pumped LHe will be super-fluid and provide a very	1.7 K
"Level 0"	large thermal sink	
Helium Vent Line	Cooled by cryostat boil off gas – temperature will	5.2 K
"Level 1"	depend on rate of boil off and instrument dissipation	
Helium Vent Line	Strapped to helium gas vent line after level 1	11 K
"Level 2"	connection. That is the temperature of the gas will	
	depend on the thermal dissipation from the instruments	
	at level 1.	

Table 2-2: Temperature stages available from the **Herschel** cryostat.

The permissible dissipation from the FPU at the various temperatures is TBD but is likely to be no more than a few 10's mW total. An illustration of the expected levels of dissipation is given in the SPIRE Sub-system Budget Allocation (AD5).

The <u>Herschel</u> cryostat defines the available space envelope for the instruments. The SPIRE envelope is further restricted by the neighbouring HIFI instrument. Figure 2-2 shows the approximate location of the SPIRE instrument, the definition of the spacecraft axes and the available space envelope. The shape of the <u>Herschel</u> cryostat cover that defines the cold FPU space envelope is given in the IID-A and repeated in table 2-3 for completeness.

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE-RAL-PRJ-

000034

Issue: 1.<u>1</u>
Date: 2 January 2002

Page: 11

X (mm)	Y (mm)	Z (mm)
0	0	815
271	0	815
315	0	807
350	0	787
379	0	758
431	0	662
461	0	563
497	0	337
504	0	135

Table 2-3: Dimensions of the <u>Herschel</u> cryostat shield that defines the envelope for the instruments. The shield is rotationally symmetric and, when this definition was provided, the hole in the top had a radius of 135 mm. This is subject to revision depending on the detailed design of the telescope.

2.1.4.2 Warm Electronics Power

The SPIRE instrument has requested up to 181 W total (see IID-B). How much power is actually available for the instruments is not defined at present.

2.1.4.3 Telemetry Rates

The average telemetry rate available to each instrument over the operational cycle of the <u>Herschel</u> satellite is 100 kbps.

2.1.4.4 Herschel Telescope

The <u>Herschel</u> telescope defines the optical "environment" in which the SPIRE instrument has to operate. In particular the field of view; the plate scale and speed of the beam. The current specification for the <u>Herschel</u> telescope is given in the IID-A section 4.3.1. It is base lined as having the following optical specification:

Primary mirror diameter: 3.5 m

Focal length: 28.5 m Focal Ratio: f/8.68

Back focal length: 975 mm – defined from the primary vertex

Field of view: circular - radius 0.25 degrees

Height of on-axis focus above optical bench: 202 mm

Plate scale: 7.237 arcsec/mm

Diameter of unvignetted field of view at the focal plane: 245 mm

2.1.4.5 Pointing

The pointing capabilities of the <u>Herschel</u> satellite are given in the IID-A. The satellite has a requirement to "blind point" to within 3.7 arcsec and a goal to do this within 1.5 arcsec. Both these figures are 1-sigma values and are referred to the optical axis. If the goal is not achieved then a "peakup" operation mode may be required.

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE-RAL-PRJ-

000034

Issue: 1.<u>1</u>

Date: 2 January 2002

Page: 12

The satellite has the ability to perform both pointed raster observations and fast scans across the sky. For the raster mode the relative accuracy between pointings will be better than 0.5 arcsec. In scan mode the satellite can be scanned over a large angular range from 0.1 arcsec/sec to 60 arcsec/sec with a resolution of 0.1 arcsec/sec. The satellite can be scanned from 1 arcmin to 110 degrees with a resolution of 1 arcmin. This mode can be used in "line scan" to build up maps of large areas of the sky.

The satellite can be nodded from one position to another with a duty cycle of at least 80% for a throw of 5 arcmin with a dwell time of 72 seconds at each position. The details of any actual SPIRE specific requirement on the nodding capability of the satellite are to be determined.

2.1.4.6 Launch Environment

The satellite will be launched on an Ariane V from Kourou. The expected environment is specified in the IID-A.

The cold FPU and JFET box (FTB) will be launched in vacuum and at cryogenic temperatures. The warm electronics units will be launched at ambient temperatures and atmospheric pressure.

2.1.4.7 Orbit

The <u>Herschel</u> satellite will be placed into a Lissajous orbit around the L2 libation point 1.5x10⁶ km from the Earth on the Earth-Sun line

2.1.4.8 Mission Lifetime

The baseline mission lifetime is 3.5 years (IID-A); the expected lifetime of the cryogen is nearer 4.25 years. This should be the figure used for estimation of number of operations and reliability of SPIRE sub-systems and the corresponding life tests that will be required.

2.1.4.9 Radiation environment

RD2 gives calculated fluence and doses for the mission. The integrated dose for silicon behind 2 mm of aluminium is estimated at 12 kRad and behind 5 mm of aluminium as 3.5 kRad. These figures will be taken as the radiation tolerance for components in the warm electronics boxes and inside the cryostat respectively (TBC).

2.1.4.10 Operational Environment

In normal operations the satellite is expected to have a 24-hour operational cycle with data being collected autonomously for 21 hours and a 3 hour ground contact period – the Data Transfer and Commanding Period (DTCP). During the DTCP the data will be telemetered to the ground and the commands for the next 24-hour period will be uplinked.

This operational environment requires the instrument to undertake autonomous health and safety monitoring and to be capable of reacting to safety critical situations in real time to prevent damage to the instrument. It is expected that some health and safety tasks will be undertaken by the satellite CDMS.

It is expected that the observing schedule will be carried out as a series of fixed time operations. It is also expected that the satellite CDMS will store the instrument commands and provide the commands at the appropriate time intervals to the instrument to carry out the fixed time observation schedule.

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Ref:

SPIRE-RAL-PRJ-000034 1.<u>1</u> 2 January 2002 Issue: Date:

Page: 13

This implies that the instrument does not need to store a large number of commands or to know the absolute time a command should be executed.

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE-RAL-PRJ-

000034 1.<u>1</u>

Issue: 1.<u>1</u>
Date: 2 January 2002

Page: 14

2.2 Instrument Performance Requirements

2.2.1 Photometer Requirements

The basic scientific requirements for the SPIRE photometer are described in the SRD (AD2). The predicted instrument sensitivities, based on the current instrument design assumptions, and which are compatible with the scientific requirements, are given in Table 2.2-1. The assumptions used in the calculation of the sensitivities are given in the IID-B (RD1) Chapter 4.

			Wavelength Range			
Requirement ID	Descri	ption	250 μm	350 μm	500 μm	Reference
IRD-PHOT-R01	Nominal pas	sband	3	3	3	SRD section
IKD-FHOT-KUI	$(\lambda/\Delta\lambda)$					1.2
IRD-PHOT-R02	Field of View	V				SRD R7
IKD-F1101-K02	(Arcmin)	Req.	4 x 4	4 x 4	4 x 4	
		Goal	4 x 8	4 x 8	4 x 8	
IRD-PHOT-R03	Beam FWHN	M (Arcsec)	18	25	36	SRD R1
IKD-11101-K03			(TBC)	(TBC)	(TBC)	
IRD-PHOT-R04	Point source	sensitivity				SRD R1
1101-104	1σ -1 sec (n	nJy)	34 (TBC)	35 (TBC)	41 (TBC)	
	1 σ -1 hr (m.	Jy)	0.6 (TBC)	0.6 (TBC)	0.7 (TBC)	
IRD-PHOT-R05	Mapping sen	sitivity for				SRD R2
IKD-FHOT-KUS	one FOV					
	1 σ -1 hr (m.	Jy)	1.4 (TBC)	1.5 (TBC)	1.9 (TBC)	

Table 2.2-1: Summary of Photometer scientific requirements and sensitivities

In addition to the basic requirements, the SRD specifies "design" drivers and goals for the photometer design – these are described in Table 2.2-2.

Requirement ID	Description	Reference
IRD-PHOT-R06	Maximising 'mapping speed' at which confusion limit is	SRD R3
1110 1 1100	reached over a large area of sky is the primary science driver.	
	This means maximising sensitivity and field-of-view (FOV)	
	but NOT at the expense of spatial resolution.	
IRD-PHOT-R07	Removed version 1.0	
IRD-PHOT-R08	Removed version 1.0	
IRD-PHOT-R09	Removed version 1.0	
IRD-PHOT-R10	Field distortion must be <10% across the FOV	SRD R6
IRD-PHOT-R11	Electrical crosstalk should be <1% (goal 0.5%) between	SRD R8
	nearest-neighbour pixels and <0.1 % (gaol 0.05%) between all other pixels in the same array.	
IRD-PHOT-R12	NEP variation should be < 20% across each array.	SRD R10
IRD-PHOT-R13	The photometer dynamic range for astronomical signals shall	SRD R11
1101 113	be > 12 bits.	
IRD-PHOT-R14	Absolute photometric accuracy should be <15% at all	SRD R12
IKD THOT KIT	wavelengths with a goal of <10%	

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE-RAL-PRJ-

000034 1.<u>1</u>

Date: 2 January 2002

Page: 15

Issue:

Requirement ID	Description	Reference
IRD-PHOT-R15	The relative photometric accuracy shall be <10% with a gaol of <5%	SRD R13
IRD-PHOT-R16	The three arrays need to be co-aligned to within 1 arcsecond.	SRD R15
IRD-PHOT-R17	The maximum available chop throw shall be at least 4 arcminutes; the minimum shall be 10 arcsecs or less	SRD R9
IRD-PHOT-R18	SPIRE Photometeric measurements shall be linear to 5% over a dynamic range of 4000 for astronomical signals	SRD R14

Table 2.2-2: Summary of Photometer performance requirements from the SPIRE Science Requirements Document.

2.2.2 Spectrometer Requirements

The basic scientific requirements for the SPIRE FTS are described in the SRD. The predicted instrument sensitivities, based on the current instrument design assumptions, and which are compatible with the scientific requirements, are given in Table 2.2-3. The assumptions used in the calculation of the sensitivities are given in the IID-B Chapter 4.

Requirement	Description	Value	Reference
ID			
IRD-SPEC-R01	Wavelength range:		SRD R16
IND SI LC ROI	Band A	200 – 300 μm	
	Band B	300 – 700 μm	
IRD-SPEC-R02	Maximum Resolution		SRD R22
IKD-SI EC-K02	(cm ⁻¹) Req.	0.4	
	Goal	0.04	
IRD-SPEC-R03	Minimum Resolution		SRD R20
IKD-SI LC-K03	(cm ⁻¹) Req.	2	
	Goal	4	
IRD-SPEC-R04	Field of View (Arcmin)		SRD R16
IKD-SI LC-K04		2.6 diameter circular for feedhorns	
IRD-SPEC-R05	Beam FWHM (Arcsec)		SRD R16
IKD-SI LC-K03	Band A (250 µm)	18	
	Band B (350 μm)	25	
IRD-SPEC-R06	Point source continuum		SRD section 1.2
IKD-SI LC-K00	sensitivity	Band A 200-300 μm 47 (TBC)	
	(mJy; 1 σ -1 hr;	Band B 300-400 μm 43 (TBC)	
	0.4 cm ⁻¹ resolution)	Band B 400-700 μm TBD	
	Point source unresolved line sensitivity	Band A 200-300 μm 5.6 x 10 ⁻¹⁸ (TBC)	
	$(W \text{ m}^{-2}; 1 \sigma - 1 \text{ hr})$	Band B 300-400 μm 5.1 x 10 ⁻¹⁸ (TBC)	;
		Band B 400-700 um TBD	
IRD-SPEC-R07	Map continuum		SRD section 1.2
III DI LE ROT	sensitivity	Band A 200-300 μm 108 (TBC)
	(mJy; 1 σ -1 hr;	Band B 300-400 μm 104 (TBC)

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE-RAL-PRJ-

Issue: $1.\underline{1}$

Date: 2 January 2002

Page: 16

Requirement	Description	Value		Reference
ID				
	0.4 cm ⁻¹ resolution)	Band B 400-700 μm	TBD	
	Map line sensitivity (W m ⁻² ; 1 σ -1 hr)	Band A 200-300 μm (TBC)	1.3 x 10 ⁻¹⁷	
		Band B 300-400 μm (TBC)	1.3×10^{-17}	
		Band B 400-700 μm	TBD	

Table 2.2-3: Summary of Spectrometer scientific requirements and sensitivities.

In addition to the basic requirements, RD2 specifies "design" drivers and goals for the photometer design – these are given in Table 2.2-4.

Requirement	Description	Reference
ID		
IRD-SPEC-R08	The spectrometer design shall be optimised for sensitivity to	SRD R16
	point sources	
IRD-SPEC-R11	The width of the FTS instrument response function shall be	SRD R21
IKD-SI EC-KI I	uniform to within 10% across the FOV for resolution	
	$<0.4 \text{ cm}^{-1}$	
IRD-SPEC-R12	Removed issue 1.0	
IKD-51 LC-K12	D 1: 10	
IRD-SPEC-R13	Removed issue 1.0	
IRD-SPEC-R14	Fringe contrast shall be greater than 80% for any point in the	SRD R21
IRD-SPEC-R14	field of view for a resolution of 0.4 cm ⁻¹ .	
IDD CDEC D15	The spectrometer dynamic range for astronomical signals shall	SRD R18
IRD-SPEC-R15	be 12 bits or higher	
IDD CDEC D16	The FTS absolute photometric accuracy at the required	SRD R19
IRD-SPEC-R16	resolution shall <15% at all wavelengths with a goal of <10%	
IDD CDEC D17	The sensitivity of the FTS at any spectral resolution up to the	SRD R17
IRD-SPEC-R17	goal value shall be limited by the photon noise from the	
	Herschel telescope within the chosen passband	

Table 2.2-4: Summary of Spectrometer performance requirements from the SPIRE Science Requirements Document.

Project Document **SPIRE**

INSTRUMENT REQUIREMENTS **DOCUMENT**

SPIRE-RAL-PRJ-000034 1.1 Ref:

Issue: 2 January 2002 Date:

Page: 17

2.3 Instrument Operations Requirements

2.3.1 Instrument Operations

Requirement ID	Description	Source
IRD-OPS-R01	It shall be possible to calculate the execution time of an instrument command to within 1 sec (TBC).	
	This will allow the calculation of the time taken to execute any observation to be made, for example, when generating a timeline.	
IRD-OPS-R02	The instrument shall be capable of limiting the average data rate to the CDMS, during a 24hr period, to 100kbps. This is primarily achieved by design of the nominal instrument observing modes to generate data at a rate that meets this requirement. However, the on-board software shall be required to provide for the selection of subsets of science data (i.e. selected pixels from a detector array).	IID A
IRD-OPS-R03	The SPIRE instrument shall be identified as a single subsystem within the satellite. That is, the instrument will utilise a single APID (to be defined by the Herschel Project) to identify both telecommands to the instrument and telemetry from the instrument.	OIRD
IRD-OPS-R04	The photometer observing modes should provide a mechanism for telemetering undifferenced samples to the ground	SRD R4
IRD-OPS-R05	The photometer should have an observing mode that permits accurate measurement of the point spread function	SRD R5
IRD-OPS-R06	The SPIRE photometer shall have an observing mode capable of implementing a 64-point jiggle map to produce a fully sampled image of a 4x4 arc minute region	SRD R23
IRD-OPS-R07	The photometer observing modes shall include provision for 5-point or 7-point jiggle maps for accurate point source photomometry	SRD R24
IRD-OPS-R08	The photometer shall have a "peak-up" observing mode capable of being implemented without using satellite pointing	SRD R25

Table 2.3-1: Requirements on the instrument operations

2.3.2 Operating Modes

This section describes the expected operating modes for the SPIRE instrument.

Requirement ID	Description	Source
IRD-MODE-R01	The instrument shall be capable executing all operating modes described in the SPIRE Operating Modes Document (RD8)	

Table 2.3-2: Requirements on the instrument operating modes.

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE-RAL-PRJ-

000034 1.<u>1</u>

Issue: 1.<u>1</u>
Date: 2 January 2002

Page: 18

2.3.3 Commanding Requirements

Instrument operations will be controlled by commands passed from the CDMS to the instrument in the form of telecommand packets (see RD4). The CDMS will be responsible for handling the command timeline uplinked from the ground and issuing the commands to the instrument at the appropriate time. The instrument, therefore, is normally expected to execute the commands it receives from the CDMS (or CDMS simulator) in the order in which it receives them. Commands will be provided to modify the order of execution if required.

Requirement ID	Description	Source
IRD-CMD-R01	The instrument shall be capable of accepting telecommand packets from the CDMS at speeds up to the maximum rate delivered by the CDMS, without loss. This implies that the instrument should be able to buffer a number of telecommands received from the CDMS while a command is being executed. However, it may be assumed that the timing of command distribution to the instrument will be managed so that the maximum number of commands in the buffer will be limited.	
IRD-CMD-R02	The instrument shall validate each telecommand packet as it is received. Telecommand packets will contain a checksum to allow validation. Invalid commands should be rejected	
IRD-CMD-R03	The instrument shall verify execution of the telecommands in each packet. Normally, each telecommand packet will contain only one instrument command Commands which take a long time to execute (longer than ~5 secs, TBC) should have their progress verified also.	
IRD-CMD-R04	The instrument shall report the result of all telecommand validation/verification in telemetry The format of these telecommand report packets are defined in RD4	
IRD-CMD-R05	The instrument shall provide commands to allow control of all individual devices (e.g. switch, latch) within the instrument.	
IRD-CMD-R06	All commands to individual devices shall explicitly set the state of the device I.e. there shall be no commands to 'toggle' the state of a switch or commands to step to the next location.	
IRD-CMD-R07	The action of all commands affecting an individual device shall be verifiable by an independent parameter available in the nominal housekeeping packet.	

Project Document

INSTRUMENT REQUIREMENTS **DOCUMENT**

SPIRE-RAL-PRJ-000034 Ref:

Issue: 1.<u>1</u> 2 January 2002 Date:

Page: 19

Requirement ID	Description	Source
	For example the change of state of a switch shall be verified by the change in voltage at the output of the switch rather than the status of the latch controlling the switch	
IRD-CMD-R08	The instrument shall provide commands to execute the functions required to implement the instrument operating modes These functions are defined in the SPIRE Operating Modes document (RD8). They usually invoke one or more device control actions in order to perform their function.	
IRD-CMD-R09	The instrument shall provide the facility to define and execute procedure commands. These commands will invoke stored sequences of commands with appropriate control steps to allow a given task to be performed. They will be invoked with supplied parameters to modify the actions performed. The intention is to minimise the number of telecommand words required to execute a given command sequence.	
IRD-CMD-R10	The instrument shall provide commands to modify the execution sequence of commands. Normally, commands are executed in the order in which they are received. These commands should provide the facilty to interrupt the currently executing command, modify the command queue and continue execution of commands in the queue.	
IRD-CMD-R11	The instrument shall provide commands to allow identification of the steps within an observation. For processing of the data from the instrument it will be necessary to be able to identify the observation/step from which the data has come. These commands should modify software parameters onboard so that this information is reported in the telemetry	
IRD-CMD-R12	The instrument shall provide commands to modify data values/tables held in the instrument memory. The on-board software will use data tables to control the operations onboard. These tables may need to be maintained.	
IRD-CMD-R13	The instrument shall provide commands to enable on-board software maintenance It should be possible to update the on-board software code either as a whole, or replace a single subroutine/function.	

Table 2.3-3: Instrument level requirements on telecommanding

2.3.4 Telemetry Requirements

All data generated by the instrument will be transmitted from the instrument to the satellite CDMS in the form of telemetry packets. These packets will be store onboard by the CDMS, until the opportunity arises to transmit them to the ground.

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

 Ref:
 SPIRE-RAL-PRJ-000034

 Issue:
 1.1

 Date:
 2 January 2002

 Page:
 20

Requirement ID	Description	Source
IRD-TLM-R01	The instrument shall be capable of transferring telemetry packets to the CDMS (or simulator) at up to the maximum rate allowed by the telemetry interface. This is approximately 1Mbps	
IRD-TLM-R02	The instrument shall be able to buffer up to 10 seconds (TBC) worth of telemetry packets. The CDMS will poll each subsystem on the satellite in turn for data. The instrument should be able to buffer sufficient packets to not lose data waiting for the CDMS.	
IRD-TLM-R03	It shall be possible to validate the content of each telemetry packet. The telemetry packet standard identifies the location of a checksum of the data contained within the packet. This checksum may be used to validate the packet	
IRD-TLM-R04	All telemetry packets shall contain information identifying the observation/step being executed. This will allow data processing software to identify significant steps in an observation in order to apply the appropriate processing	
IRD-TLM-R05	The instrument shall generate housekeeping data packets in all operating modes. These data packets contain the values of both hardware and software parameters internal to the instrument.	
IRD-TLM-R06	It shall be possible to define TBC alternative housekeeping packet structures with different rates of generation. The normal housekeeping packet will be generated once per second (TBC) and contain, at the least, all hardware parameters. Housekeeping packets generated at higher rates (up to 500 per second (TBC) may contain a subset of the instrument parameters	
IRD-TLM-R07	The instrument shall generate science data packets in all observing modes. These packets shall contain data from the detector arrays associated with the observing mode, plus all instrument parameters that may be required to enable the processing of the detector data (e.g mechanism positions, temperatures of units which may affect the detector data, monitoring parameters for the subsystems being used).	
IRD-TLM-R0 <u>8</u>	It shall be possible to define TBC alternative science data packets structures.	

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

SPIRE-RAL-PRJ-000034 1.1 Ref:

Issue: 2 January 2002 Date:

Page: 21

Requirement ID	Description	Source
	This will allow the set of detector data and instrument parameters included in the science data to be optimised for different observation modes.	
IRD-TLM-R09	The instrument shall generate event packets in all operating modes. These packets notify the CDMS and/or ground monitoring equipment of instrument anomalies and significant actions taken by the instrument. The ESA packet Utilisation Standard identifies many of these report packet types. These packets should identify the type of anomaly and the data used to identify it.	

Table 2.3-4: Instrument level requirements on the data packets

2.3.5 Data Handling Requirements

Requirement ID	Description	Source
IRD-DATA-R01	All data transferred between the CDMS and the instrument shall	OIRD
IKD-DATA-KUI	be contained in packets conforming to the ESA Packet Utilisation	
	Standard (RD4)	
	It is assumed that in the interests of commonality with other	
	spacecraft systems and scientific instruments the data handling of	
	the SPIRE instrument will follow this standard. The detailed	
	definition of the contents of each packet will formally be defined	
	in a <u>Herschel</u> Space/Ground Interface Document to be written	
	and agreed later.	
IRD-DATA-R02	The instrument shall provide all mandatory packet handling	OIRD
IKD-DATA-K02	services defined for the mission.	
	The OIRD (AD3) defines the list of mandatory services	
IRD-DATA-R03	The instrument shall be capable of buffering up to 10 seconds	
IKD-DATA-K03	(TBC) of data generated during an observation.	
	It is possible that data will be generated during an observation, at	
	a rate greater than that which can be instantly transferred to the	
	<u>CDMS</u> . The instrument should buffer this data and transfer it to	
	the CDMS at a later time (even if a new observation has begun).	
	<u>The size of the buffer is TBD</u>	
IRD-DATA-R04	The instrument shall be capable of reducing the average data rate	
IND DITTI NOT	to the CDMS to 20kbps.	
	This may be required to cope with a reduced telemetry downlink	
	rate or 'partner mode' observations. The science content of the	
	telemetry may be degraded.	
IRD-DATA-R05	The packing of science data into science data packets shall	
Heb Billin Roo	minimise loss of information if packet is lost or corrupted.	
	Science data packets could include data from one or more	
	detectors over a given time period (or for a single interferogram)	
	rather than one sample from all detectors. In this way if a data	

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

 Ref:
 SPIRE-RAL-PRJ-000034

 ssue:
 1.1

 Date:
 2 January 2002

Issue:

Date:

Page: 22

packet is lost the impact on the science is reduced.

Table 2.3-5: Instrument level data handling requirements

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE-RAL-PRJ-

000034 1.1

Date: 2 January 2002

Page: 23

Issue:

2.4 Instrument Model Philosophy

The instrument models to be built are as follows:

AVM – Avionics Model. This is an electrical model of the SPIRE instrument and will consist of the AVM DPU and a DRCU simulator. It will allow the electrical and software interfaces between the SPIRE instrument and the spacecraft to be validated. This will include the capability of testing the SPIRE autonomy functions and any exchange of information required between the spacecraft and SPIRE for any SPIRE operational mode. This model is delivered to ESA.

STM – Structural Thermal Model. This is a model of the cold FPU and JFET boxes that will be used to verify the vibration levels that will be experienced by the cold sub-systems during launch and to verify that the thermal design of the instrument meets the instrument level performance requirements. This model will consist of the CQM structure, thermal hardware and optics, the CQM cooler and mass/thermal models of the cold sub-systems. In order to test the real vibration levels and thermal environment that will be experienced at the sub-system interfaces it will be necessary to have some of the sub-system STMs as mechanically representative as possible although there is no requirement that they should actually function. The FPU harnesses for the cold sub-systems and between the JFET boxes and the FPU should also be present to allow early test of the integration procedures and environmental robustness of the harness design. This model will be vibrated to full qualification levels at ambient temperature and, if possible, at cryogenic temperature. The model will be placed in the instrument test cryostat and full thermal characterisation will be carried out. This model is not delivered to ESA.

CQM - Cryogenic Qualification Model. This is a model of the instrument that will be used to characterise and verify the instrument scientific performance with functionally representative cold subsystems and warm electronics units. The structure, optics, cooler and FPU harnesses will be those used for the STM. All other cold FPU units need to function and have close to the expected flight performance, but do not need to be capable of withstanding the launch environment; have the full reliability and redundancy or necessarily be flight like in terms of power dissipation or speed of response. The purpose of the CQM is to verify that the design of the PFM will be capable of meeting the instrument level performance requirements and that the instrument is compatible with integration into the Herschel satellite. The requirements on the SPIRE CQM sub-systems will be judged against these criteria on a case by case basis.

This model is delivered to ESA.

PFM – Proto-Flight Model. This will be the instrument model that is intended for flight. It will be built to full flight. It will be the only fully integrated instrument model that has the full flight like performance characteristics. The PFM cold FPU and JFET boxes will therefore undergo environmental test to qualification levels for acceptance times (TBC). The SPIRE warm electronics units will have full qualification models built and tested, therefore the PFM warm electronics units will only undergo acceptance testing.

This model is delivered to ESA.

FS – Flight Spare. The flight spare cold FPU and JFET boxes will be constructed from the refurbished CQM (TBC). The flight spare warm electronics will consist of spare electronics cards.

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

 Ref:
 SPIRE-RAL-PRJ-000034

 ssue:
 1.1/2

 Date:
 2 January 2002

 Page:
 24

Issue:

Date:

Page:

Requirement ID	Description	Source
IRD-INST-R14	The SPIRE instrument shall provide the instrument models as specified	

Table 2.4-1: Instrument level model requirements.

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE-RAL-PRJ-

000034

Issue: 1.<u>1</u>

Date: 2 January 2002

Page: 25

2.5 Instrument level Qualification

It is required that the instrument be qualified at unit level – i.e. the cold FPU; warm electronics boxes etc must undergo individual qualification testing and be shown to be flight worthy. The tests that are required for each model and unit are outlined in Table 2.5-1 and described in more detail in the SPIRE Instrument AIV Plan (RD9).

Test Matrix

	STM Cold Focal Plane Units	CQM Cold Focal Plane Units	QM Warm Electronics Units	PFM Cold Focal Plane Units	PFM Warm Electronics Units	FS Cold Focal Plane Units	FS Warm Electronics Cards
Vibration:	Q	X	Q	QA	A	TBC	A
Thermal cycle:	Q	Q	Q	QA	A	TBC	A
Vacuum cycle	X	X	X	X	X	X	X
Thermal range:	X	X	X	X	X	-	-
EMC (Instrument Level)	X	X	X	X	X	-	-
EMC (Satellite Level):	-	-	-	X	X	-	-

Table 2.5-1: Test matrix for the instrument level testing.

Q indicates a test carried out at qualification level for qualification times; QA a test carried out at qualification levels for acceptance test times and A a test carried out at acceptance level for acceptance times. An x indicates that this test is carried out and is a characterisation type test or the level is irrelevant. A dash indicates that no test will be done on this model/unit.

Requirement ID	Description	Source
IRD-INST-R15	The instrument units are required to undergo an	
	environmental test programme that demonstrates the design	
	and build standard of the flight model is compatible with the	
	launch and operational environment of the <u>Herschel</u> satellite.	

Table 2.5-1: Instrument level qualification requirements.

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE-RAL-PRJ-

000034 1.<u>1</u>

Date: 2 January 2002

Page: 26

Issue:

2.6 Verification

For the purposes of verification requirements, the instrument models consist of the units specified in section 2.4. It is also assumed that there will be present some form of EGSE to allow testing of the instrument models in the absence of the spacecraft and that there will be some computer hardware and software to allow the receipt; storage and analysis of the test data.

Requirement ID	Description	Source
IRD-VER-01	The STM verification testing shall demonstrate that the proposed structure design is capable of meeting the mechanical environmental conditions specified for the Herschel launch.	
	The STM vibration shall be used to verify the stiffness and strength of the structure and verify the mechanical and thermal transfer functions between the various parts of the cold focal plane units and the Herschel satellite.	
IRD-VER-R02	The AVM verification testing shall demonstrate that the instrument will fulfil the requirements on the following: Communication between the satellite CDMS and the DPU. Correct transfer and receipt of instrument commands from the satellite	
	Correct transfer and receipt of instrument data packets form the instrument to the satellite Correct execution of instrument commands Correct transfer of instrument data from the FPU simulator to the DPU	
	Correct execution of DPU on-board software for any data compression algorithms and packet generation for all instrument data packet types.	
IRD-VER-R03	The CQM verification testing shall demonstrate that the following conditions are met or are likely to be met on the PFM: Correct operation of all FPU sub-systems at cryogenic temperatures for all instrument operation modes for both prime and redundant systems. The instrument cold FPU and JFET box thermal dissipation is within requirements for all instrument operation modes. The warm electronics thermal dissipation at room temperature is within requirements. Correct operation of all on-board software. The instrument straylight environment is within requirements The instrument optics performance is within requirements The performance of the instrument meets the scientific requirements expected for the CQM for all instrument observing modes Development and test of all functional test sequences required for Integrated Systems Testing (IST) at satellite	

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

 Ref:
 SPIRE-RAL-PRJ-000034

 ssue:
 1.1/2

 Date:
 2 January 2002

 Page:
 27

Issue: Date:

Page:

Requirement	Description	Source
ID		
	level.	
	The correct functioning of the instrument for all observing	
	modes and calibration sequences.	
	Development and test of all in-flight functional and	
	performance test sequences	
IRD-VER-R04	The PFM verification testing shall, in addition to the	
IND-VEN-NU4	requirements on the CQM and AVM verification,	
	demonstrate the following:	
	The performance of the flight instrument meets the	
	scientific requirements for all instrument observing modes.	
	Correct operation of flight version of all on-board software.	
	The characterisation of the PFM instrument performance	
	for all instrument observing modes – including generation	
	of data for instrument calibration and functional testing	
	both during IST and in-flight.	
	The characterisation of the instrument performance with the	
	warm electronics operating over a range of temperatures	
	Final test of all functional test sequences for IST.	
	Final test of all observing modes	
	Final test of all in-flight functional and performance test	
	sequences.	

Table 2.6-1: Requirements on the instrument level verification.

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

 Ref:
 SPIRE-RAL-PRJ-000034

 Issue:
 1.1

 Date:
 2 January 2002

Page: 28

2.7 Safety

Requirement ID	Description	Source
IRD-SAFE-R01	During all mission phases, there shall be no requirement for commands to be sent from the ground to the instrument with an immediate response time (i.e. less than 2 minutes TBC). Any such situations must be handled on	OIRD- CTRL-1
IRD-SAFE-R02	Situations which require response from the ground within a short time (i.e. less than 30 mins) shall be reduced to a minimum, be well identified and agreed by ESA	OIRD- CTRL-2
IRD-SAFE-R03	Situations which require response from the ground within a short time (i.e. less than 30 mins) shall be unambiguously recognisable in the instrument housekeeping telemetry, without complex processing	OIRD- CTRL-3
IRD-SAFE-R04	Housekeeping telemetry shall be generated during all nominal modes of the instrument. This includes any instrument Safe Modes	OIRD- CTRL-4
IRD-SAFE-R05	The instrument shall be able to accept all telecommand packets sent to it at the nominal transfer rate from the CDMS	OIRD- CTRL-5 OIRD- CTRL-6
IRD-SAFE-R06	It shall not be possible by command, or lack of command, to place the instrument into a configuration that will, or is likely to cause damage to any subsystem	
IRD-SAFE-R07	All telecommands received by the instrument shall be checked to be correctly formatted and complete before execution. <i>Incorrect telecommands will be rejected by the instrument</i>	
IRD-SAFE-R08	Failure of any sub-system, or one of its components, shall not affect the health of any other subsystem, the instrument or the interface with the satellite.	
IRD-SAFE-R09	Failure of any component in a subsystem shall not damage any redundant or backup component designed to replace that component in the subsystem	
IRD-SAFE-R10	No electronics sub-unit shall be capable of affecting instrument operations until it is in a defined state. This state shall be confirmed in the housekeeping telemetry.	
IRD-SAFE-R11	No commands shall be sent to an electronics sub-unit until they are in a defined state confirmed by the on-board software	

Table 2.7-1: Instrument level safety requirements.

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE-RAL-PRJ-000034

Issue: $1.\underline{1}$

Date: 2 January 2002

Page: 29

2.8 Autonomy

The instrument is required to be "autonomous" when not in ground contact. This implies that the warm electronics must monitor critical housekeeping parameters to ensure that any sub-system failure is detected and the appropriate action taken. It is assumed that the basic action will be to switch the instrument to a safe mode with only the DPU on and housekeeping telemetry.

Requirement ID	Description	Source
IRD-AUT-R01	The SPIRE instrument shall have a defined safe mode.	
IKD-AUT-KUT	The configuration of this mode shall be agreed with ESA	
IRD-AUT-R02	The SPIRE instrument shall define housekeeping parameters	
IKD-AU1-K02	to be used for autonomous health and safety monitoring	
IRD-AUT-R03	The SPIRE instrument shall provide a method of monitoring	
IKD-AU1-KU3	the defined housekeeping parameters and taking appropriate	
	action in the case of error or failure.	
IRD-AUT-R04	The SPIRE instrument shall provide a method of alerting the	
IKD-AU1-K04	S/C CDMS of any failure requiring the instrument to be	
	controlled by the CDMS (e.g. switched off).	
	Actions to be taken in the case of failure will b defined by the	
	instrument and stored as procedures in the CDMS	
IRD-AUT-R05	The instrument shall continuously monitor the integrity of the	
1107-1107-103	on-board software and take appropriate action in case of	
	error.	
	The on-board software can itself calculate a checksum over	
	the OBS code and compare this to a stored value.	
IRD-AUT-R06	The instrument shall monitor the operational status of the	
IKD-AUT-KOO	instrument on-board computers and take appropriate action in	
	case of error.	
	A watchdog function will be implemented to identify if the on-	
	board computer(s) have crashed.	

Table 2.8-1: Requirements for autonomous health and safety monitoring.

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE-RAL-PRJ-

000034 1.<u>1</u>

Date: 2 January 2002

Page: 30

Issue:

2.9 Reliability and Redundancy

It is assumed that reliability will be maintained by use of a combination of hardware redundancy and flexibility in the onboard software such that a failure of a single hardware device will not lead to a loss of instrument capability, although it may lead to loss of instrument performance.

Requirement ID	Description	Source
IRD-REL-R01	As far as possible the total failure of a single sub-system	
IKD-KLL-K01	shall not lead to the total loss of instrument operations.	
IRD-REL-R02	Backup modes of operation should be available for all	
IKD-KEL-K02	nominal observing modes. These shall be designed to allow	
	the continued use of that mode, albeit with degraded	
	performance or efficiency.	
IRD-REL-R03	Cold redundant hardware shall be provided wherever	
IKD-KEL-KU3	practicable within the instrument design.	
IRD-REL-R04	As far as possible all control loops shall be implemented	
IKD-KEL-K04	through the use of on-board software.	
IRD-REL-R05	It shall be possible to break all control loops implemented	
IKD-KEL-KU3	in hardware.	
	This will allow the control of the loop through the on board	
	software (this may be a degraded mode of operation)	

Table 2.9-1: Instrument level reliability and redundancy requirements.

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE-RAL-PRJ-

000034 **Issue:** 1.1

Date: 2 January 2002

Page: 31

2.10 EMC

<u>Protecting the bolometer system from EMI disturbance is critical to the performance of the SPIRE instrument. The philosophy for the grounding and RF protection of the detectors is briefly given here for information and is formulated from the warm electronics "towards" the instrument FPU.</u>

The HSDPU shall be a conventional secondary power driven unit, locally grounded and self contained

The HSFCU shall be similar except that it interfaces to non-bolometer sub-systems in the HSFPU which are electrically isolated from the HSFPU except for 2200pF pi filters on each wire entry contact. This means that in order not to drive noise into the HSFPU box, all these HSFCU drives shall be balanced. The HSFCU shall also source isolated secondary voltages to the HSDCU.

The HSDCU shall have redundant digital sections locally grounded as in the DPU. These will digitally interface to the HSDPU but are powered from the HSFCU. The HSDCU shall also have a very low noise analogue system to be able to handle the bolometer signals, i.e. low power supply noise, low ground noise and low r.f. e.m.c. noise, in both differential and common mode.

The HSFPU and JFET racks shall form an isolated Faraday cage around the detectors, with all bolometer signal wires entering or leaving it filtered at the JFET racks via 6700pF pi filters on each wire contact.

The analogue ground for the detection system is split into photometer and spectrometer branches because physical routing causes them to be separated via different JFET racks which would otherwise cause a major ground loop at a sensitive point. These grounds join to two separate analogue grounds in the HSDCU. The 300mK detector sections are joined to this system, meaning that the electronics associated with the sorption cooler shall be particularly quiet and well isolated. The point where this analogue ground is joined to chassis will be proven by test. An initial choice will be made by modelling between placing the star point in the HSDCU; in the JFET filters or in the 2K detector boxes.

Requirement ID	Description	Source
IRD-EMC-R01	The Spire instrument grounding shall comply with the Spire	
	<u>Instrument Grounding Philosophy document (RD13).</u>	

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE-RAL-PRJ-

1.1 000034 1.1

Date: 2 January 2002

Page: 32

3. Subsystems Requirements

3.1 Assumptions

The SPIRE instrument will consist of the sub-systems indicated in figure 3.1-1 and table 3.1-1. Figure 3.1-1 also shows the interface relationship between the SPIRE sub-systems; harnesses etc.

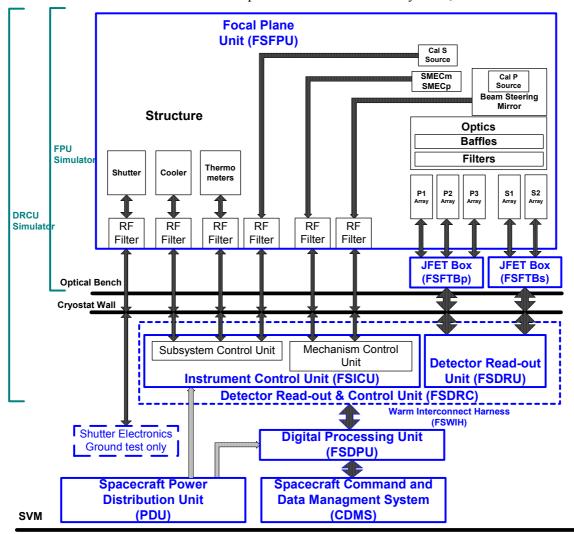


Figure 3.1-1: SPIRE sub-system block diagram

Subsystem Name	Description	Unit	Number
Structure	Focal plane unit structure to hold all cold sub-systems in the focal unit. This includes all thermometers necessary to monitor the instrument during cool down and operation.	FSFPU	1.1
Optics	All mirrors for the photometer and spectrometer channels	FSFPU	1.2
Filters	All filters; beam splitters and dichroics for the photometer and spectrometer channels	FSFPU	1.2.1

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

 Ref:
 SPIRE-RAL-PRJ-000034

 Issue:
 1.1

 Date:
 2 January 2002

Page: 33

	The requirements on these are included with those for the		
	optics.		
Baffles	Straylight control baffles for the photometer and spectrometer channels	FSFPU	1.2.2
Cooler	³ He cooler unit cools the photometer and spectrometer detector arrays to 300 mK	FSFPU	1.3
Detector Arrays	Bolometer array modules for the photometer and spectrometer	FSFPU	1.4
Beam Steering Mechanism	This mechanism allows the photometer and spectrometer fields of view to be stepped or chopped across the sky.	FSFPU	1.5.1
FTS Mechanism (SMECm)	The FTS moving mirrors drive mechanism and position measurement system. SMECm designates the mechanism and position encoder	FSFPU	1.5.2
FTS encoder amplifier (SMECp)	SMECp the cold pre-amplifier that may be required for the encoder detectors.	FSFPU	1.5.3
Shutter Mechanism	A shutter is required in the instrument for ground test to allow the detectors to see the correct radiation environment.	FSFPU	1.5.4
Photometer Calibration Source	Calibration source for photometer	FSFPU	1.6.1
Spectrometer Calibration Source	Calibration source for the spectrometer	FSFPU	1.6.2
RF Filter Modules	Each sub-system harness into the cold FPU must have an electrical RF filter to prevent EMI problems with the bolometers. These will be mounted in standard RF filter modules on the wall of the FPU box.	FSFPU	1.7
Photometer JFET Box	JFET pre-amplifiers for photometer NTD germanium bolometers.	FSFTBp	1.8.1
Spectrometer JFET Box	JFET pre-amplifiers for spectrometer NTD germanium bolometers.	FSFTBs	1.8.2
Detector Read-out & Control Unit	Detector amplifier and digitisation chain and instrument control electronics. Conceptually this is a single unit – as indicated in figure 3.1-1 – however for accommodation reasons it will be split into two physical units	FSDRC	2.2
Instrument Control Unit	Contains the electronics for the power conversion and distribution to the DRCU; for the control and read-out of the thermometers; cooler; calibration sources and the cold mechanisms	FSICU	2.2.1
Detector Readout Unit	Contains the bias conditioning electronics for the bolometers arrays and JFET units and the lock in amplifiers and readout electronics for all the detector arrays.	FSDRU	2.2.2
Digital Processing Unit	Instrument on board computer – forms interface to CDMS	FSDPU	2.3
Warm Interconnect Harness	Harness between warm boxes	FSWIH	2.4
On Board Software	All on board software that controls the function of the	FSOBS	2.5

SPIRE	

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE-RAL-PRJ-000034

Issue: 1.1

Date: 2 January 2002

Page: 34

	instrument. This is all contained in the DPU		
FPU Simulator	A set of electronic components, either passive or active,	FSFPS	3.1
	that mimics the analogue response of the FPU sub-		
	systems to the warm electronics.		
DRCU Simulator	A set of interface hardware and computer software that	FSDRS	3.2
	mimics the response of the DRCU and FPU to the DPU		
	and on board software.		

Table 3.1-1: Listing of SPIRE sub-systems.

The unit column refers to the ESA designation for the unit in which the sub-system is located. The sub-system number is that allocated for the purposes of interface control.

3.2 Scope

This chapter details the requirements on the cold focal plane unit sub-systems; the JFET box and the instrument simulators.

3.3 Subsystem Qualification Requirements

Assumptions

It is assumed that all sub-systems will have been through a qualification programme of one or more models before the Proto-flight version of the sub-system is delivered for the instrument AIV. This implies:

- 1. Any testing carried out on the STM and CQM instruments should <u>NOT</u> be considered to be the qualification test for each individual sub-system. The tests carried out on the instrument will be neither exhaustive nor at the correct level for sub-system qualification.
- 2. It is intended that the tests listed here be carried out on a specific qualification model. It is expected that acceptance tests will be done on each delivered model (Proto-Flight and Flight Spare) as part of the general instrument AIV these will be detailed in the instrument AIV plan. The qualification test programme does not replace the need for acceptance testing of each model.

Test Matrix:

	Structure	Optics	FTS Mechanism	Shutter	BSM	Detector arrays	Cooler	Filters/grids/dichroics	Calibration Sources	DCRU	DPU
Vibration:	X	X	X	X	X	X	X	X	X	X	X
Thermal cycle:	X	X	X	X	X	X	X	X	X		
Vacuum cycle			X	X	X	X	X	X	X	X	X
Lifetime:		P	X	P	X	X	X	X	X	X	X
Soak/cycle:			X	P	X	X	X		X	X	X
Radiation tolerance:			P	P	P	X	P	X	X	X	X
Thermal range:			X	P	X	X	X	X	X	X	X

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE-RAL-PRJ-

000034 Issue: 1.1

Date: 2 January 2002

Page: 35

Thermal stability:		P	X	P	X	X	X	P	X	X	X
Microphonics:		P	X	X	X	X	X	P	P		
Ionising radiation:						X					
EMI:			X	X	X	X	P		P	X	X
EMC:	•		X	X	X	X	P		P	X	X

Table 3.3-1: Test matrix for the SPIRE sub-systems qualification programme.

Tests marked with an X are mandatory, those marked with a P are possibly required depending on the detailed design of the sub-system and/or the new of novel materials. A full description of each test is given in the SPIRE Instrument AIV Plan (RD9). For some sub-systems the qualification and lifetime testing will be more appropriately carried out at component or test item level rather than at the level of the integrated sub-system. At what stage and under what conditions the tests are to be carried out is a matter for detailed consideration by the groups responsible for the sub-systems delivery.

Requirement ID	Description	Source
IRD-SUBS-R01	All subsystems are required to undergo an environmental test programme that demonstrates the design and build standard of the sub-system models will be compatible with the environmental test programme to be carried out on the appropriate integrated instrument model.	
IRD-SUBS-R02	All sub-systems are required to demonstrate that they will operate successfully over the 4.25 years of expected mission operations following launch.	

3.4 Assumptions for the Focal Plane Unit

3.4.1 Plate Scale

The nominal optical design of the SPIRE optics for both the photometer and spectrometer has a final focal ratio onto the detectors of f/5. This implies, given the design of the <u>Herschel</u> telescope (see section 2.1.4.4), that the nominal plate scale at the SPIRE focal plane is 12.564 arcsec/mm. This value will be used throughout this section to determine the required size of the focal plane arrays.

3.4.2 Vacuum

The cold focal plane unit will be launched and operated in a vacuum of $<10^{-3}$ mBar.

3.4.3 Mass

Requirements are not directly placed on the mass of each sub-system in this document (issue 3) as this is felt to be unnecessarily prescriptive. However, the mass of the focal plane units is of deep concern and all sub-systems are required to be as mass efficient as possible. A mass allocation for each sub-system in set out in RD8..

Requirement ID	Description	Source
IRD-SUBS-R03	All subsystems are required to be within the mass allocation given in RD8	IID B

Project Document

INSTRUMENT REQUIREMENTS **DOCUMENT**

 Ref:
 SPIRE-RAL-PRJ-000034

 ssue:
 1.1/2

Issue: 2 January 2002 Date:

36 Page:

3.5 Cold Units Sub-system requirements

3.5.1 Structure

3.5.1.1 Common Structure

Performance Requirements

Requirement ID	Description	Value	Source
IRD-STRC-R01	Alignment of the instrument w.r.t. the Herschel optical axis	The SPIRE common structure shall allow the alignment of the instrument and telescope optical axes to within ± 2.6 mm lateral and ± 3.5 arcmin rotational about any axis.	RD5
IRD-STRC-R02	Attenuation of RF by Common Structure covers	All joints of the external covers shall form EMC tight joints via the use of a stepped interface and a bolt spacing of no more than 30 mm. This is deemed sufficient for EMC tightness and no oring type seal is required	
IRD-STRC-R03	Items requiring support from the Common Structure	Photometer and common sub-systems Photometer optics Photometer filters Level 1 Thermal Strap 3He Cooler Optical Baffles All sub-system harnesses BSM Mechanism and structure Shutter mechanism and mount Photometer 2-K enclosure Spectrometer Spectrometer Spectrometer optics Beam splitters Mirror Mechanism (SMEC) Calibration source and mount Spectrometer detector box	
IRD-STRC-R04	Optics and associated subsystem alignment	The common structure shall be capable of maintaining the alignment of the photometer and spectrometer optics and associated components (i.e. filters; detector boxes; BSM etc) to within the specifications given in RD5 both at room temperature; during cryogenic operation and following launch	RD5
IRD-STRC-R05	Surface finish of the Common Structure cover	The inside and outside of the box shall have a finish with a low emissivity. At least ε =0.2. Some parts of the structure walls may be blackened as part of the	RD8

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

<u>SPIRE-RAL-PRJ-000034</u> 1.<u>1</u> Ref:

Issue:

2 January 2002 Date:

37 Page:

Requirement ID	Description	Value	Source
-		straylight control.	_
IRD-STRC-R06	Pumping port	The total effective pumping conductance of the common structure enclosure must be greater than or equal to 7.8 l/s (TBC)	RD9
IRD-STRC-R07	Thermometry	The structure subsystem shall provide thermistors and associated wiring to allow the temperature of critical parts to be monitored during in-flight operations – see section 3.5.12	
IRD-STRC-R08	Attenuation of radiation from cryostat environment	Requirement $<2x10^{-5}$ (TBC) To illustrate this, the requirement is the equivalent of a \sim 4 mm diameter hole in a total area of the box cover of 1 m ² (TBC)	IRD-PHOT- 04 IRD-PHOT- 05 IRD-SPEC- R17

Table 3.5-1: Performance requirements for the instrument common structural elements.

Requirement ID	Description	Value	Source
IRD-STRC-R09	First natural frequency of the instrument assembly	The first eigenfrequency of the integrated instrument assembly shall be greater than 100 Hz (TBC) with a goal of greater than 120 Hz	IID A
IRD-STRC-R10	Instrument mechanical interface	The mechanical interface of the instrument will be directly to the Herschel optical bench and the instrument will be in direct thermal contact at that interface.	IID A
IRD-STRC-R12	Grounding	All parts of the SPIRE structure shall be electrically connected one to another. Resistance to be no more than $0.1~\Omega$ (TBC) between any two parts of the structure	?
IRD-STRC-R13	Electrical isolation from Herschel	All parts of the SPIRE structure shall be electrically isolated from the <u>Herschel</u> optical bench and cryostat. Resistance to be greater than $\underline{5}$ <u>M</u> Ω .	?
IRD-STRC-R14	Thermal isolation	The conductance from the level 2 to level 1 stage shall be within the specification given in RD8.	IID B

System requirements on the instrument common structural elements **Table 3.5-2:**

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

SPIRE-RAL-PRJ-000034 1.1 Ref:

Issue: 2 January 2002 Date:

Page: 38

3.5.1.2 Photometer Structure

Performance Requirements

Requirement ID	Description	Value	Source
IRD-STRP-R01	Items requiring support	The photometer detector box shall support: Photometer optics; dichroics and filters	
		Detector array modules; Detector thermal straps	
IRD-STRP-R02	Optics and filters alignment	The photometer detector box shall be capable of maintaining the alignment of the photometer optics; filters and dichroics to within the requirements set out in RD5 at room temperature; during cryogenic	RD5
IRD-STRP-R03	Array module alignment	operation and following launch The photometer detector box shall be capable of maintaining the position of the detector array modules to within the requirements set out in RD5 about any axis during cryogenic operation of the instrument and following launch.	RD5
IRD-STRP-R04	Surface finish	The outside of the box shall have a finish with a low emissivity. At least ε =0.2 The inside of the box shall have a low reflectivity finish on all non-optical surfaces.	
IRD-STRP-R05	Pumping port	The total effective pumping conductance of the photometer detector box must be greater than or equal to 5.6 l/s (TBC)	RD9
IRD-STRP-R06	Attenuation of radiation from common structure environment	Requirement 5x10 ⁻⁷ ; goal is 5x10 ⁻⁸ (TBC) To illustrate this, the requirement is the equivalent of a 0.5 mm diameter hole in a total area of the box cover of 0.5 m ² This, of course, excludes the hole that lets the beam in.	IRD-PHOT- R04 IRD-PHOT- R05

Table 3.5-3: Performance requirements on the photometer detector box.

Requirement ID	Description	Value	Source
IRD-STRP-R07	First natural	The first eigenfrequency of the photometer	IID A
IKD-51Kr-K0/	frequency	detector box on its mounts shall be greater	
		than 100 Hz (TBC) with a gaol of > 150 Hz	
IRD-STRP-R09	Thermal isolation	The conductance along the photometer	IID B
IND-31 KF-KU9		detector box mechanical support from level 1	
		to level 0 shall be within the specification set	
		in RD8	

System requirements on the photometer 2-K structure **Table 3.5-4:**

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

 Ref:
 SPIRE-RAL-PRJ-000034

 ssue:
 1.1/2

Issue:

2 January 2002 Date:

39 Page:

3.5.1.3 Spectrometer Structure

Performance Requirements

Requirement ID	Description	Value	Source
IRD-STRS-R01	Items requiring support	The spectrometer detector box shall support spectrometer cold filters; spectrometer optics	
	0.4:1:	and spectrometer detector modules.	DD5
IRD-STRS-R02	Optics alignment requirements	The spectrometer detector boxes shall be capable of maintaining the alignment of the	RD5
		spectrometer optical components to within	
		the requirements set out in RD5	
IRD-STRS-R03	Array module	The spectrometer detector box shall be	RD5
110 5116 103	alignment	capable of maintaining the position of the	
		detector array modules to within the	
		requirements set out in RD5 about any axis	
		during cryogenic operation of the instrument	
		and following launch	
IRD-STRS-R04	Surface finish	The outside of the box shall have a finish	
IKD-BTK5-K04		with a low emissivity. At least ε =0.2	
		The inside of the box shall have a low	
		reflectivity finish on all non-optical surfaces.	
IRD-STRS-R05	Pumping port	The total effective pumping conductance of	RD9
IKD-81 K8-K03		the spectrometer detector box must be greater	
		than or equal to 5.6 l/s (TBC)	
IRD-STRS-R06	Attenuation of	Requirement 5x10 ⁻⁷ ; goal is 5x10 ⁻⁸ (TBC)	IRD-SPEC-
IKD-51 K5-K00	radiation from 4-K	To illustrate this, the requirement is the	R17
	environment	equivalent of a 0.5 mm diameter hole in a	
		total area of the box cover of 0.5 m ²	
		This, of course, excludes the holes that let the	
		beams in.	

Table 3.5-5: Performance requirements on the spectrometer detector box.

Requirement ID	Description	Value	Source
IRD-STRS-R07	First natural	The first eigenfrequency of the spectrometer	IID A
IND-81 N3-N0/	frequency	detector box on its mounts shall be greater	
		than 100 Hz (TBC) with a gaol of > 150 Hz	
IRD-STRS-R08	Thermal isolation	The conductance along the spectrometer	IID B
		detector box mechanical support from level 1	
		to level 0 shall be within the specification set	
		in RD8	

Table 3.5-6: System requirements on the spectrometer detector box.

Project Document

INSTRUMENT REQUIREMENTS **DOCUMENT**

Ref:

<u>SPIRE-RAL-PRJ-000034</u> 1.<u>1</u>

Issue: 2 January 2002 Date:

40 Page:

3.5.2 ³He Cooler and 300 mK architecture

Performance Requirements

These performance requirements are set to allow the top level performance requirements of the photometer and spectrometer to be met.

Requirement ID	Description	Value	Source
IRD-COOL-R01	Temperature at the detectors	The ³ He cooler, in conjunction with the associated 300 mK architecture, shall maintain all bolometer detector assemblies at less than 310 mK – gaol 300 mK.	
IRD-COOL-R02	Operating temperature control	Desirable to be able to vary the temperature of the detectors up to 320 mK and below 300 mK if this is permitted by the temperature drop across the thermal link. The evaporator cold tip temperature can be varied by heating the sorption cooler. Electronic control shall be provided to do this in the flight electronics.	
IRD-COOL-R03	Temperature drop across thermal link between detectors and evaporator cold tip	Maximum of 20 mK	
IRD-COOL-R04	Temperature drift	The temperature of the evaporator cold tip should not drift by more than 0.1 mK/h under active temperature control.	
IRD-COOL-R05	Temperature fluctuations at the evaporator cold tip	10 µK Hz ^{-1/2} in a 0.1-10 Hz band Assumes the 300 mK architecture and detector structures form a low pass thermal filter	
IRD-COOL-R06	System low frequency temperature stability	Removed issue $1.0 - it$ is assumed that this is achieved with a low pass thermal filter	
IRD-COOL-R07	Heat lift at evaporator cold tip	Minimum of 10 μW at 290 mK	
IRD-COOL-R08	Hold time	Minimum 46 hours	IID B
IRD-COOL-R09	Recycle time	Maximum 2 hours	IID B

Table 3.5-7: Performance requirements on the sorption cooler.

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

 Ref:
 SPIRE-RAL-PRJ-000034

 Issue:
 1.1/2

2 January 2002 Date:

Page: 41

Requirement ID	Description	Value	Source
IRD-COOL- R10	Mechanical interface	Preferred interface is with the instrument common structure	
IRD-COOL- R11	Thermal Interface with Herschel cryostat	Pumped liquid helium tank at 1.8 K for both sorption pump and evaporator	
IRD-COOL- R12	Parasitic thermal load onto He bath during cold operation	The conducted load from level 1 to level 0 during cold operation shall be within the specification given in RD8	IID B
IRD-COOL- R13	Time averaged thermal load onto He bath for 48 hour cycle	The average load over the operational cycle shall be within the specification given in RD8	IID B
IRD-COOL- R15	Maximum envelope	200x100x100 mm	
IRD-COOL- R17	Sorption pump heater	Removed issue 1.0	
IRD-COOL- R18	Thermometers	Thermometers shall be provided on the cooler as necessary to monitor its behaviour and operation (see section 3.5.12). The absolute temperature measurement on the evaporator cold tip shall be 1% (<3 mK) with a resolution of 1 mK	
IRD-COOL- R19	Gas gap heat switches	It is noted that these are a potential single point failure in the instrument operation. Provision of some redundancy (i.e. doubling them up) is desirable but not at the expense of severe limitations on the cooler performance.	
IRD-COOL- R20	Ground Operation	The cooler must be capable of full operation on the ground, including recycling, when the instrument is in its normal orientation in the test facility. This will be arranged so that the evaporator is below the pump. The cooler must be capable of operating with the instrument rotated to up to 90° about either the S/C Y or Z axes.	
IRD-COOL- R21	Warm electronics power dissipation	Removed issue 1.0 – see warm electronics requirements	

Table 3.5-8: Systems requirements on the sorption cooler

Project Document

INSTRUMENT REQUIREMENTS **DOCUMENT**

 Ref:
 SPIRE-RAL-PRJ-000034

 ssue:
 1.1/2

Issue:

Date: 2 January 2002

Page: 42

3.5.3 Shutter

Version 1.1 All requirements renumbered as in HR-SP-CSA-ECR-1

Performance Requirements

Requirement ID	Description	Value	Source
IRD-SHUT-R01	Beam blanking	The shutter vane must physically prevent thermal radiation from the Herschel	
		cryostat	
		lid from directly entering the instrument.	
IRD-SHUT-R02	Rejection of	The seal of the shutter vane shall be	
110 5110 1 1102	indirect flux	designed so as to reduce stray light	
		entering the	
		instrument to an acceptable level	
		Any straylight seal design is to be	
		evaluated by the project team to assess	
	Management of the	its efficacy	
IRD-SHUT-R03	Vane emissivity	The emissivity of the instrument side of	
		the vane at SPIRE wavelengths shall be	
		greater than 0.9.	
	Vana aminaivity	The emissivity of the instrument side of	
IRD-SHUT-R04	Vane emissivity uniformity	the vane at SPIRE wavelengths shall be	
	urmormity	uniform	
		to within 2% (rms)	
	<u>Vane</u>	The temperature of the instrument side	
IRD-SHUT-R05	temperature	of the vane shall be controllable over the	
	tomporataro	range	
		9-25 K.	
	Vane	There shall be at least 16 set points over	
IRD-SHUT-R06	temperature	the temperature range specified in IRD-	
	control	SHUT-R05.	
IDD CHUIT DOS	<u>Vane</u>	The temperature of the instrument side	
IRD-SHUT-R07	temperature	of the vane shall be uniform to within	
	uniformity	<u>0.1K (rms).</u>	
IDD CHUT DAG	<u>Vane</u>	The average temperature of the	
IRD-SHUT-R08	temperature	instrument side of the vane shall be	
	<u>repeatability</u>	repeatable to within	
		< 0.040K.	

Table 3.5-9: Performance requirements on the shutter

Requirement ID	Description	Value	Source
IRD-SHUT-R09	Reliability	The shutter shall be designed to a reliability requirement of 0.9999.	

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

 Ref:
 SPIRE-RAL-PRJ-000034

 Issue:
 1.1

 Date:
 2 January 2002

Page: 43

Requirement	Description	Value	Source
ID			
IRD-SHUT-R10	FPU thermal	The temperature of the instrument	
IKD-5110 1-K <u>10</u>	<u>dissipation</u>	structure in the vicinity of the shutter	
		shall rise by	
		no more than 2 K after 30 minutes when	
		the shutter subsystem is energised	
IRD-SHUT-R11	<u>Structure</u>	The subsystem design shall conform to	
IKD-8110 1-K <u>11</u>	<u>interface</u>	the structure interface specification in	
		<u>RD11.</u>	
IRD-SHUT-R12	Harness interface	The subsystem design shall conform to	
IKD-5110 1-K <u>12</u>		the harness interface specification in	
		<u>RD12.</u>	
IRD-SHUT-R13	<u>Operating</u>	The shutter mechanism (actuator and	
IKD-8110 1-K <u>15</u>	temperature	vane position sensor) shall be capable of	
		<u>operation</u>	
		at instrument temperature and at room	
		temperature. The vane heater and all	
		thermometry need only function at	
		instrument temperature.	
IRD-SHUT-R14	<u>Operating</u>	The shutter shall be capable of operation	
IKD-5110 1-K <u>1+</u>	<u>orientation</u>	in any orientation	
IRD-SHUT-R15	Transition time	The time required to move the vane into	
IKD-5110 1-K1 <u>5</u>		the beam on command shall be less	
		than the thermal stabilisation time	
IRD-SHUT-R16	Thermal	The time required to increase the vane	
1KD-5110 1-K1 <u>0</u>	stabilisation time	temperature by 5K and stabilize to within	
		the repeatability in R1I, assuming that	
		the vane is	
		initially at its minimum (unpowered)	
		temperature, shall be less than 10	
Table 2.5.10. Ca		minutes	

Table 3.5-10: System requirements on the shutter

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

 Ref:
 SPIRE-RAL-PRJ-000034

 ssue:
 1.1/2

Issue: Date: 2 January 2002

Page: 44

3.5.4 Harness

Performance Requirements

Requirement ID	Description	Value	Source
IRD-FPHR-R01	Detector harness	The wire-to-wire capacitance of the cables	
	capacitance	running from the detector arrays to the JFET	
		modules will be < 50 pF (TBC).	
IRD-FPHR-R02	Detector harness	The detector harness cables routed inside the	
IKD-FFHK-KU2	mechanical support	structure shall be affixed to have a	
		mechanical resonant frequency > 1 kHz	
		(TBC).	

Table 3.5-11: Detector harness requirements

Requirement ID	Description	Value	Source
IRD-FPHR-R03	Generic	All sub-system electrical connections shall	
	implementation	be routed through an RF filter module	
		mounted on the outside cover of the FPU.	
		The detector harnesses will be routed	
		through the JFET boxes which will form part	
		of the Faraday cage.	

Table 3.5-11: Requirements for the internal SPIRE harnesses.

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

SPIRE-RAL-PRJ-000034 1.1 Ref:

Issue: 2 January 2002 Date:

45 Page:

3.5.5 Optics and Filters

3.5.5.1 Photometer Optics and Filters

Performance Requirements

These requirements are set to allow the top level performance requirements of the photometer to be achieved

Requirement ID	Description	Value	Source
IRD-OPTP-R00	Compatibility with	The optical design of the photometer fore-	
IKD-01 11-K00	Herschel telescope	optics shall be compatible with the <u>Herschel</u>	
		telescope optical design.	
IRD-OPTP-R01	Nominal final focal	As close to F/5 as practical	
IKD-01 11-K01	ratio		
IRD-OPTP-R02	Variation in focal	The focal ratio at any point in the must be	
IKD-01 11-K02	ratio	within 20% (TBC) of that of the on-axis	
		point.	
IRD-OPTP-R03	Distortion	The image of the telescope field of view is	
IKD-01 11-K03		nominally rectangular. The position of any	
		point within the image of the FOV at the	
		detectors must be within 10% (TBC) of the	
		actual position of the point at the telescope	
		focal plane.	
IRD-OPTP-R04	Anamorphism	The anamorphic ratio of the image of a point	
IKD-01 11-K04		source at the detectors must be no more than	
		6:5 (TBC) in any pair of orthogonal	
		directions at any point in the FOV.	
IRD-OPTP-R05	Throughput	The throughput of the photometer mirrors,	_
IND-OF IF-NUS		filters, dichroics and baffles shall be greater	
		than 0.27 (TBC) over the instrument	
		waveband. This includes losses due to	
		manufacturing defects; surface finish and	
		alignment tolerances.	
IRD-OPTP-R06	Image quality	The photometer optics shall give a Strehl	
IKD-01 11-K00		ratio of greater than 0.9 (TBC) over the full	
		FOV at 250 µm including all losses due to	
		alignment; mirror quality etc	
IRD-OPTP-R07	Out of band	The end to end filtering of the photometer	
IKD-01 11 -K0/	radiation	shall control the out of band radiation to be	
		no more than	
		10 ⁻³ for 40 cm-1 to 200 cm-1	
		10 ⁻⁶ for 200 cm-1 to 1000 cm-1	
		10 ⁻⁹ for 1000 cm-1 to 100000 cm-1	
		of the in-band telescope background	
		radiation.	
IRD-OPTP-R08	In-band straylight	The background power falling on the	
IKD-OF 11-K00		detectors with the optical beam blocked shall	
		be no more than 5% (TBC) of the in-band	

Project Document

INSTRUMENT REQUIREMENTS **DOCUMENT**

<u>SPIRE-RAL-PRJ-000034</u> 1.<u>1</u> Ref:

Issue:

2 January 2002 Date:

Page: 46

Requirement ID	Description	Value	Source
		background power from the telescope over	
		the 200-300 µm band; 5% (TBC) over the	
		300-400 μm band and 5% (TBC) over the	
		400-670 μm band.	

Table 3.5-12: Performance requirements on the photometer optics.

3.5.5.2 Spectrometer Optics and Filters

Performance requirement

These requirements are set to allow the top level performance requirements of the spectrometer to be achieved

Requirement ID	Description	Value	Source
IRD-OPTS-R01	Nominal final focal	As close to F/5 as practical	
	ratio		
IRD-OPTS-R02	Variation in focal	The focal ratio at any point in the must be	
110 01 10 102	ratio	within 20% (TBC) of that of the on-axis	
		point.	
IRD-OPTS-R03	Distortion	The position of any point within the image of	
110 01 10 1005		the FOV at the detectors must be within 10%	
		(TBC) of the actual position of the point at	
		the telescope focal plane.	
IRD-OPTS-R04	Anamorphism	The anamorphic ratio of the image of a point	
IKD-01 15-K0 4		source at the detectors must be no more than	
		6:5 (TBC) in any pair of orthogonal	
		directions.	
IRD-OPTS-R05	Theoretical	The theoretical throughput of the	
IKD-OF 13-K03	throughput	spectrometer mirrors; filters; beam splitters	
		and baffles shall be greater than 0.2 (TBC)	
		over the total instrument waveband (TBC)	
		including all losses due to manufacturing	
		defects; surface finish and alignment	
		tolerances.	
IRD-OPTS-R06	Image quality	The spectrometer optics shall give a Strehl	
IKD-OF 13-K00		ratio of greater than 0.9 (TBC) over the as	
		much of the FOV as possible at 250 μm	
		including all losses due to alignment; mirror	
		quality etc	
IRD-OPTS-R07	Balancing of ports	In order that the two output ports shall have	
IND-OF 1 5-NU/		the same performance and to facilitate	
		accurate compensation of the zero path	
		difference maximum, the beam splitters shall	
		have 2RT equal to R ² +T ² to within 90%	
		(TBC) over the waveband of the instrument.	
IRD-OPTS-R08	Out of band	The end-to-end filtering of the spectrometer	
IND-UP 1 3-KU8	radiation	shall control the out of band radiation to be	
		no more than	

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

 Ref:
 SPIRE-RAL-PRJ-000034

 Issue:
 1.1

 Date:
 2 January 2002

Page: 47

Requirement ID	Description	Value	Source
		10 ⁻³ for 40 cm-1 to 200 cm-1	
		10 ⁻⁶ for 200 cm-1 to 1000 cm-1	
		10 ⁻⁹ for 1000 cm-1 to 100000 cm-1	
		of the in band telescope background	
		radiation.	
IRD-OPTS-R09	In band straylight	The background power falling on the	
IKD-OF 1 5-K09		detectors with the optical beam blocked shall	
		be no more than 5% (TBC) of the in band	
		background power from the telescope over	
		the 200-400 µm band and 5%(TBC) over the	
		400-670 μm band.	
IDD ODTS D10	Off axis resolution	The FWHM of the resolution element at any	
IRD-OPTS-R10		point in the FOV shall be no more than 10%	
		greater than the on-axis value for a nominal	
		resolution of 0.4 cm ⁻¹ .	

Table 3.5-13: Performance requirements for the spectrometer optics.

Project Document

INSTRUMENT REQUIREMENTS **DOCUMENT**

<u>SPIRE-RAL-PRJ-000034</u> 1.<u>1</u> Ref:

Issue: 2 January 2002 Date:

Page: 48

3.5.6 Detectors

3.5.6.1 Photometer Detectors

Performance Requirements

These requirements are set to allow the top level performance requirements of the photometer to be achieved

Requirement ID	Description	Value	Source
IRD-DETP-R01	Detective Quantum	> 0.6	
IKD-DL11-K01	Efficiency at 2 Hz		
	at nominal incident		
-	power levels		
IRD-DETP-R02	Time constant	16 milliseconds (Equivalent to 10 Hz)	
IRD-DETP-R03	Uniformity	NEP spec. shall be met over the whole array	
IKD-DL11-K03		Responsivity variations shall be lass than	
		10% across the array and calibrated to an	
		accuracy of <1%	
IRD-DETP-R04	Yield (good pixels)	≥90% for each array	
IRD-DETP-R05	Electrical crosstalk	Requirement is less than 1% with a gaol to	
IKD-DL11-K03	for near neighbour	be less than the optical cross talk at the	
	pixels.	output of the cold JFET amplifiers.	
IRD-DETP-R06	Electrical crosstalk	Requirement is less than 0.1% (TBC) at the	
IKD-DL11-K00	any pair of pixels	output of the cold JFET preamplifiers.	
		Goal is to be less than the optical cross talk.	
IRD-DETP-R07	Detector angular	2Fλ Feedhorns : Single moded	
	response		
IRD-DETP-R08	Spectral response	\geq 90% at the nominal edge frequencies of the	
1KD-DE11-K00		appropriate passband	

Table 3.5-14: Performance requirements on the photometer detectors.

Requirement ID	Description	Value	Refers to:
IDD DETER DOG	Microphonic	The design of the detector structural support and	
IRD-DETP-R09	susceptibility	the detector harnessing shall be such as to	
	susceptionity	minimise the impact of any microvibration induced	
		in the instrument by internal or external sources	
IDD DEED DAG	EMI susceptibility	The design of any harnesses associated with the	
IRD-DETP-R10		detectors that form part of the instrument RF	
		shield shall be such as to minimise the influence	
		of any potential EMI. All metalwork surrounding	
		the detectors at 300 mK is electrically isolated	
		from local chassis ground due to its Kevlar	
		suspension. So that it can be grounded, the 300-	
		mK metalwork shall be wired to the 1.7K	
		connector PCB through the 300-mK to 1.7 K	
		harness. Here it shall be possible to connect it to	
		Bias Ground and/or local chassis	
IDD DEED DAA	Sensitivity to	The design of the detectors and associated	
IRD-DETP-R11	ionising radiation	electronics shall be such as to minimise the	
	ionising radiation	effects of hits by ionising radiation	

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

<u>SPIRE-RAL-PRJ-000034</u> 1.<u>1</u> Ref:

2 January 2002 Date:

49 Page:

Issue:

Requirement ID	Description	Value	Refers to:
IRD-DETP-R12	Volume envelope	The detector modules shall fit within a	
IKD-DETT-KIZ		cylinder of diameter 75 mm (goal 60 mm)	
		and length 100 mm.	
IRD-DETP-R13	300 mK thermal	The thermal dissipation and parasitic load at	
IKD-DETT-KI3	load	300 mK shall be within the specification	
		given in RD8	
IRD-DETP-R14	Mechanical	The detector modules shall mechanically	
IKD-DETP-K14	interface	interface to the photometer detector box	
IRD-DETP-R15	Eigenfrequency of	The first natural frequency of the detector	
IKD-DETT-KI3	the detector array	array structure shall be > 200 Hz (TBC),	
	structure	with a goal of > 250 Hz.	

System requirements on the photometer detectors.

3.5.6.2 Spectrometer Detectors

Performance Requirements

These requirements are set to allow the top level performance requirements of the spectrometer to be achieved

Requirement ID	Description	Value	Source
IRD-DETS-R01	Detective Quantum	SW 200-300 μ m > 0.6	
IKD-DL15-K01	Efficiency at 20 Hz	LW 300-400 μ m > 0.6	
	at nominal incident	LW >400 μm as large as possible	
	power levels		
IRD-DETS-R02	Time constant	8 milliseconds (Equivalent to 20 Hz)	
IRD-DETS-R03	Uniformity	NEP spec. shall be met over the whole array	
IKD-DL15-K03		Responsivity variations shall be lass than	
		10% across the array and calibrated to an	
		accuracy of <1%	
IRD-DETS-R04	Yield (good pixels)	≥90% for each array	
IRD-DETS-R05	Electrical crosstalk	Requirement is less than 1% at the output of	
IKD-DE15-K03	for near neighbour	the cold JFET amplifiers.	
	pixels.	Goal of less than the optical cross talk	
IRD-DETS-R06	Electrical crosstalk	Requirement is less than 0.1% at the output	
THE BETS TOO	any pair of pixels	of the cold JFET preamplifiers.	
		Goal is to be less than the optical cross talk.	
IRD-DETS-R07	Detector angular	SW array: single mode 2Fλ horns	
	response	LW array : 2Fλ aperture size at 350 μm with	
		oversized wave guide to allow use up to	
		670 μm.	
		Over-moding is permitted at 350 µm: single	
		mode at 670 μm with 1Fλ aperture.	
IRD-DETS-R08	Spectral response	SW 200-300 μ m $\geq 90\%$	
		LW 300-400 μ m \geq 90%	
		LW>400 μm as large as possible.	
IRD-DETS-R09	Sampling	The spectrometer bolometer pixels shall be	
	frequency	capable of being readout at the rate required	

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

 Ref:
 SPIRE-RAL-PRJ-000034

 ssue:
 1.1/2

Issue: 2 January 2002 Date:

Page: 50

Requirement ID	Description	Value	Source
		by the FTS mechanism and position control	
		system – nominally 80 Hz (TBC)	

 Table 3.5-15:
 Spectrometer detectors performance requirements

Requirement ID	Description	Value	Source
IDD DETECTION	Microphonic	The design of the detector structural support and	
IRD-DETS-R10	susceptibility	the detector harnessing shall be such as to	
	susceptionity	minimise the impact of any microvibration induced	
		in the instrument by internal or external sources	
IDD DETC D11	EMI susceptibility	The design of any harnesses associated with the	
IRD-DETS-R11	•	detectors that form part of the instrument RF	
		shield shall be such as to minimise the influence	
		of any potential EMI. All metalwork surrounding	
		the detectors at 300 mK is electrically isolated	
		from local chassis ground due to its Kevlar	
		suspension. So that it can be grounded, the 300-	
		mK metalwork shall be wired to the 1.7K connector PCB through the 300-mK to 1.7 K	
		harness. Here it shall be possible to connect it to	
		Bias Ground and/or local chassis	
	Sensitivity to	The design of the detectors and associated	
IRD-DETS-R12	•	electronics shall be such as to minimise the	
	ionising radiation	effects of hits by ionising radiation	
IDD DETC D12	Volume envelope	The detector modules shall fit within a	
IRD-DETS-R13	1	cylinder of diameter 75 mm (goal 60 mm)	
		and length 100 mm.	
IDD DETEC D14	300 mK thermal	The thermal dissipation and parasitic load at	
IRD-DETS-R14	load	300 mK shall be within the specification	
	1044	given in RD8	
		<u> </u>	
IRD-DETS-R15	Mechanical	The detector modules shall mechanically	
nd bero no	interface	interface to the spectrometer detector box.	
IDD DETD D16	Eigenfrequency of	The first natural frequency of the detector	
IRD-DETP-R16	the detector array	array structure shall be > 200 Hz (TBC),	
	structure	•	
T. 1.1. 2.7.16 C	structure	with a goal of > 250 Hz.	

 Table 3.5-16:
 Spectrometer detectors system requirements

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

SPIRE-RAL-PRJ-000034 1.1 Ref:

Issue: 2 January 2002 Date:

51 Page:

3.5.7 Beam Steering Mechanism

Performance Requirements

Requirement ID	Description	Value	Source
IRD-BSMP-R01	Maximum throw in chop axis	The BSM shall move the imaged field of view of the detectors by a maximum of ± 130 arcsec on the sky in the $\pm Y$ axis of the satellite	IRD-PHOT- R17
IRD-BSMP-R02	Maximum throw in jiggle axis	The BSM shall move the imaged field of view of the detectors by a maximum of ± 30 arcsec (TBC) in the $\pm Z$ axis of the satellite	IRD-OPS- R06 IRD-OPS- R07 IRD-OPS- R08
IRD-BSMP-R03	Minimum step in both axis	The minimum step size in either chop or jiggle axes shall be 2 arcsec	
IRD-BSMP-R04	Frequency of chop	The chop frequency in either axis shall be continuously variable or selectable in 16 steps from 0 to 2 Hz for nominal operation and power dissipation. The chop frequency should be capable of reaching 5 Hz with increased power dissipation and settling time.	
IRD-BSMP-R05	Holding Position	The BSM shall be capable of moving to and holding indefinitely at any commanded position within its range of movement	
IRD-BSMP-R06	Stability	The angle on the sky must not vary by more than 0.1 arcsec (TBC) over 60 sec at the commanded mirror position. The mirror position shall also have a stability equivalent to 0.2 arcsec rms in the 0.03 to 25 Hz frequency band	
IRD-BSMP-R07	Position Measurement	The knowledge of the mirror position shall be equivalent to a stability of <u>0.2</u> arcsec rms in the <u>0.03</u> to <u>25 Hz</u> frequency band The absolute knowledge of the mirror position shall be equivalent to less then <u>0.01</u> arcsec (TBC).	
IRD-BSMP-R08	Duty Cycle	The mirror shall settle to within 1 arcsec of its commanded position in less than 20 milliseconds.	

Table 3.5-17: Performance requirements on the beam steering mirror.

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Issue:

 Ref:
 SPIRE-RAL-PRJ-000034

 ssue:
 1.1

 Date:
 2 January 2002
 Date:

Page: 52

Requirement ID	Description	Value	Source
IRD-BSMP-	Volume envelope	The BSM shall fit within a volume of 130x130x30 mm (TBC) not including	
R09		its bracket.	
IRD-BSMP-	Operating	Nominal operating <6 K. The	
R10	temperature	mechanism shall be capable of operating	
		in a temperature range of 4-300 K	
IRD-BSMP-	Thermal isolation	The beam steering mirror structure or	
R11		mirror temperature shall rise by no more	
KII		than 1 K (TBC) from the nominal	
		temperature of the surrounding structure	
		after one hour operation in any mode.	
IRD-BSMP-	Cold power	The power dissipation into level 1 shall	IID B
R12	dissipation	be within the specification in RD8	
IRD-BSMP-	Warm power	Removed issue 1.0 – see warm	
R13	dissipation	electronics requirements.	

Table 3.5-18: System requirements on the beam steering mirror.

Project Document

INSTRUMENT REQUIREMENTS **DOCUMENT**

<u>SPIRE-RAL-PRJ-000034</u> 1.<u>1</u> Ref:

Issue: 2 January 2002 Date:

53 Page:

3.5.8 Spectrometer Mirror Mechanism and Position Measurement System

Performance Requirements

These requirements are set to allow the top level performance requirements of the spectrometer to be achieved

'

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

 Ref:
 SPIRE-RAL-PRJ-000034

 ssue:
 1.1/2

Issue:

2 January 2002 Date:

Page: 54

Requirement ID	Description	Value	Source
		accuracy 0.1 µm over +- 0.32 scan range and	
		0.3 µm thereafter.	
IRD-SMEC-R10	Sampling	The position is sampled at the frequency	
	frequency	required for the short wavelength array –	
		i.e.(mirror velocity)/(measurement step size	
		for short wavelength array)	

Table 3.5-19: Performance requirements on the FTS mirror mechanism. **System Level Requirements**

Requirement ID	Description	Value	Source
IRD-SMEC-R11	Maximum thermal load onto level 1 during cold operation – mechanism and cold position measurement system.	Dissipation shall be within the specification given in RD8	IID B
IRD-SMEC-R12	Maximum envelope	The envelope of the mechanism shall be compatible with avoidance of the optical beams defined by the FTS optics and accommodation on the spectrometer side of the SPIRE optical bench	
IRD-SMEC-R13	Thermometers	The SMEC shall provide thermometers as detailed in section 3.5.12	
IRD-SMEC-R14	Ground Operation	The mechanism and position measurement system must be capable of full operation on the ground when the instrument is in its normal orientation in the test facility cryostat.	

Table 3.5-20: System requirements on the FTS mirror mechanism

Project Document

INSTRUMENT REQUIREMENTS **DOCUMENT**

<u>SPIRE-RAL-PRJ-000034</u> 1.<u>1</u> Ref:

Issue:

2 January 2002 Date:

Page: 55

3.5.9 Calibration Sources

3.5.9.1 Photometer Calibration Source

Performance Requirements

These requirements are set to allow the top level performance requirements of the photometer to be achieved

Requirement ID	Description	Value	Source
IRD-CALP-R01	Nominal	Equivalent to εT=40 K for	_
IND-CALI-RUI	operating output	200<λ<700 μm	
IRD-CALP-R02	Operating range	. : Commandable in 256 steps with at	_
IND-CALF-NU2		least 124 steps covering the range	
		from zero output to $\varepsilon T = 40 \text{ K}$.	
IRD-CALP-R03	Equivalent	The outside envelope of the	
IKD-CALI -K03	obscuration of	calibrator housing shall not foul on	
	aperture through	any part of the BSM for any	
	BSM mirror	operational angular position of the	
		BSM	
IRD-CALP-R04	Speed of response	In response to a step change in	
IND CHEF ROT		applied electrical power, the 90%	
		settling time of the radiant power	
		output shall be less than 350 ms	
		(requirement); 70 ms (goal).	
IRD-CALP-R05	Repeatability	RMS of output signal better than 1%	
		over 20 cycles on to off during a	
		calibration operation of less than 2	
		minutes Distance 100% 115 (i.e., f., i.e., f., f., i.e., f., f., f., f., f., f., f., f., f., f	
		Drift less than 10% over lifetime of	
		the mission.	
		Repeatability of signal 1% for 12	
		calibration operations equi-spaced	
		over a period of 12 hours, with uniform base temperature and drive	
		current	
	Operation	Nominally once per hour for no more	
IRD-CALP-R06	Operation	than 10 seconds	
	Frequency	Continuously or pseudo continuously	
IRD-CALP-R07	requericy	variable between 0 and 2 Hz.	
		variable between v and <u>4</u> 112.	

Table 3.5-21: Performance requirements for photometer calibration source

Requirement ID	Description	Value	Source
IRD-CALP-R08	Interface	The calibrator will be integrated into the beam steering mechanism.	

Project Document

INSTRUMENT REQUIREMENTS **DOCUMENT**

<u>SPIRE-RAL-PRJ-000034</u> 1.<u>1</u> Ref:

Issue:

2 January 2002 Date:

Page: 56

Requirement ID	Description	Value	Source
IRD-CALP-R09	Volume envelope	This shall be compatible with the space available within the BSM enclosure as described in the BSM specification document (RD.	
IRD-CALP-R10	Thermal isolation	The thermal conductance between the calibrator body and the SPIRE optical bench shall be > 2 mW/K	
IRD-CALP-R11	Operating temperature	<6 K	
IRD-CALP-R12	Cold power dissipation	Shall be within the specification given in RD8	IID B
IRD-CALP-R13	Warm power dissipation	Removed issue 1.0 – see warm electronics requirements	
IRD-CALP-R14	Operating voltage	Less than 28 V at input power level of 5 mW	
IRD-CALP-R15	Redundancy	Cold redundancy for the thermal source	
IRD-CALP-R16	Lifetime	The calibration source shall be capable of up to 250,000 operational cycles at the nominal electrical power.	

Table 3.5-22: System Requirements for the photometer calibration source

3.5.9.2 Spectrometer Calibration Source

Performance Requirements

These requirements are set to allow the top level performance requirements of the spectrometer to be achieved

Requirement ID	Description	Value	Source
IRD-CALS-R01	Radiated	Null the central maximum to accuracy	
IKD-CALS-K01	spectrum:	of 5% (goal 2%) [TBC]	
		Replicate the dilute spectrum of the	
		telescope to an accuracy of better than	
		20% (goal 5%) [TBC] over 200-400 μm.	
	<u>Requirement</u>		
	<u>Deleted</u>		
IRD-CALS-R03	Adjustability:	Zero - maximum in 256 steps	
IRD-CALS-R04	Uniformity	The uniformity of the intensity from the	
IKD-CALS-K04		calibration source across the <u>field image</u>	
		at the detector shall be better than 5%	
IRD-CALS-R05	Repeatability and	The output intensity of the calibration	
IKD-CALS-K03	drift	source shall drift by no more than 1%	
		over one hour of continuous operation.	
		The absolute change in the output	
		intensity of the source shall be no more	
		than 15% over the mission lifetime	

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

 Ref:
 SPIRE-RAL-PRJ-000034

 ssue:
 1.1/2

Issue:

2 January 2002 Date:

57 Page:

Requirement ID	Description	Value	Source
IRD-CALS-R06	Operation	The calibration source shall be capable of continuous operation for periods of up to 2 hours with no loss of operational performance.	
IRD-CALS-R07	Number of operations	The calibration source shall be capable of up to 12000 operational cycles	

Table 3.5-23: Spectrometer calibrator performance requirements

Requirement	Description	Value	Source
ID			
IRD-CALS-R08	Operating Voltage	No more than 28 V DC	
IRD-CALS-R09	Power dissipation in the focal plane	shall be within the specification given in RD8	IID B
IRD-CALS-R11	Envelope	Cylinder of 70 mm diamater and 100 mm length	
IRD-CALS-R12	Thermal Isolation	The SCAL enclosure shall include an attachment point for a thermal strap in case this is necessary to prevent the SCAL thermal load from warming up its environment. A corresponding attachment point for the other end of the strap shall be provided at a suitable place on the structure.	
IRD-CALS-R13	Operating Temperature	<6 K	
IRD-CALS-R14	Redundancy	Fully redundant systems shall be provided for the active elements.	
IRD-CALS-R15	Thermometry	Thermometers shall be provided on the spectrometer calibrator as specified in section 3.5.12	
IRD-CALS-R16	<u>Time response</u>	Warm-up time: Stable nominal operating temperature to be reached in less than 30 min (req.); 15 min (goal)	
		Cool-down time from nominal operating temperature to < 10 K: 3 hrs (requirement); 30 min (goal)	

Table 3.5-24: Spectrometer calibrator systems requirements

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

 Ref:
 SPIRE-RAL-PRJ-000034

 Issue:
 1.1

Date: 2 January 2002

Page: 58

3.5.10 JFET Boxes

Performance Requirements

Requirement ID	Description	Value	Source
IRD-FTB-R01	Amplifier noise	Requirement better than 10 nV Hz ^{-1/2} over a	
IKD-F I D-KUI		bandwidth of 100 to 1400 Hz	
		Goal 7 nV Hz ^{-1/2}	
IRD-FTB-R02	RF rejection	The RF filters, as fitted in the box and with	
IKD-1 1 D-K02		the correct harness, connectors and back-	
		shells; shall reject all frequencies from 500	
		MHz to 10 GHz at –60 dB.	

Table 3.5-25: JFET box performance requirements

Requirement ID	Description	Value	Source
IRD-FTB-R04	Envelope	Each JFET/Filter box shall be no more then	
IKD-I I D-K04		300x100x100 mm (TBD)	
IRD-FTB-R05	Dissipation	The dissipation of JFET amplifiers shall be	IID B
IKD-1 1 D-K03		heat sunk to the level 2 cryostat stage.	
		The dissipation shall be within the	
		specification given in RD8.	
IRD-FTB-R06	Operating	The JFET amplifiers and RF filters shall be	
IND-F I D-NU0	temperature range	capable of operating in with the temperature	
		of the mounting point of the box in the range	
		4 to 300-K	
IRD-FTB-R07	Mechanical	The JFET boxes shall mount directly to the	IID B
IKD-I I D-KU/	Interface	Herschel optical bench.	
IRD-FTB-R08	Nominal operating	The JFET amplifier and RF filter	
IKD-I I D-K00	temperature	performance requirements shall be	
		maintained with the temperature of the	
		mounting point of the box within the range 4	
		to 20 K.	
IRD-FTB-R09	First natural	The first eigenfrequency of the JFET boxes	IID A
IKD-F I D-KU9	frequency	on their mounts shall be greater than 100 Hz	
		(TBC) with a gaol of $> 150 \text{ Hz}$	
IRD-FTB-R10	Thermometers	Thermometers shall be provided on the JFET	
IVD-L 1 D-V 10		boxes as specified in section 3.5.12	

Table 3.5-26: JFET box system requirements

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

 Ref:
 SPIRE-RAL-PRJ-000034

 ssue:
 1.1/2

Issue:

2 January 2002 Date:

59 Page:

3.5.11 **FPU**RF Filter Modules

Performance Requirements

Requirement ID	Description	Value	Source
IRD-RFM-R01	RF rejection	The FPU RF filters, as fitted in the box and	
IKD-KI WI-KUI		with the correct harness, connectors and	
		back-shells; shall reject all frequencies from	
		500 MHz to 10 GHz at -60 dB.	

Table 3.5-27: RF Module performance requirements

Requirement ID	Description	Value	Source
IRD-RFM-R02	Envelope	The FPU RF filters shall be housed in a	
IKD-KI WI-KUZ		single unit of no more than 30x90x230 mm	
IRD-RFM-R03	Dissipation	The RF filters will be passive components	
IKD-KI WI-KU3		with no dissipation.	
IRD-RFM-R04	Operating	The RF filters shall be capable of operating	
IKD-KI WI-K04	temperature range	in with the temperature of the mounting point	
		of the box in the range 4 to 300-K	
IRD-RFM-R05	Nominal operating	<6 K	
IKD-KI WI-KO3	temperature		
IRD-RFM-R06	Mechanical	The RF modules shall be mounted from the	
IKD-KI WI-KOO	interface	FPU common structure.	
IRD-RFM-R07	First natural	The first eigenfrequency of the filter modules	
IKD-KI WI-KU/	frequency	shall be greater than 200 Hz (TBC) with a	
		gaol of $> 300 \text{ Hz}$	
IRD-RFM-R08	<u>Capacitance</u>	The capacitance to chassis of the FPU RF	
11XD-1X1-1VI-1XU0		filters shall be 2200 pF ±20%	

Table 3.5-28: RF Module system requirements

Project Document

INSTRUMENT REQUIREMENTS **DOCUMENT**

<u>SPIRE-RAL-PRJ-000034</u> 1.<u>1</u> Ref:

Issue: 2 January 2002 Date:

Page: 60

3.5.12 Instrument thermometry

Table 3.5-29 details the number and locations for the thermometers for the SPIRE cold units. Prime and redundant refers to which of the cold redundant electronics systems will be used to power and read-out the thermistors.

<u>Unit</u>	Location	Acronym	Sensor Type	Nominal Temp. Range	Required Resolution /Accuracy over Range	Prime /Rednt
HSFPU	<u>SOB</u>	T_SOB_1	CX-1030	3 K>100 K	25/50 mK	<u>P</u>
<u>HSFPU</u>	SOB	T SOB 1	CX-1030	3 K>100 K	25/50 mK	<u>R</u>
<u>HSFPU</u>	SPEC Level 0 box	T_SL0_1	<u>CX-1030</u>	1 K>10 K	<u>2/2 mK</u>	<u>P</u>
<u>HSFPU</u>	SPEC Level 0 box	T_SL0_1	<u>CX-1030</u>	1 K>10 K	<u>2/2 mK</u>	<u>R</u>
<u>HSFPU</u>	PHOT Level 0 box	T_PL0_1	<u>CX-1030</u>	1 K>10 K	<u>2/2 mK</u>	<u>P</u>
<u>HSFPU</u>	PHOT Level 0 box	T_PL0_1	<u>CX-1030</u>	1 K>10 K	<u>2/2 mK</u>	<u>R</u>
<u>HSFPU</u>	Optics sub- bench	T_SUB_1	<u>CX-1030</u>	3 K>100 K	<u>25/50 mK</u>	<u>P</u>
<u>HSFPU</u>	Optics sub- bench	T_SUB_2	<u>CX-1030</u>	3 K>100 K	<u>25/50 mK</u>	<u>R</u>
<u>HSFPU</u>	Input Baffle	T BAF 1	<u>CX-1030</u>	3 K>100 K	<u>10/10 mK</u>	<u>P</u>
<u>HSFPU</u>	Input Baffle	T BAF 2	<u>CX-1030</u>	3 K>100 K	<u>10/10 mK</u>	<u>R</u>
<u>HSFPU</u>	FPU SOB/BSM I/F	T_SOB_1	<u>CX-1030</u>	3 K>100 K	<u>10/10 mK</u>	<u>P</u>
<u>HSFPU</u>	FPU SOB/BSM I/F	T_SOB_2	<u>CX-1030</u>	3 K>100 K	<u>10/10 mK</u>	<u>R</u>
<u>HSFPU</u>	SPEC Calibrator Structure	T_SCST_1	<u>CX-1030</u>	10 K>100 K	<u>10/10 mK</u>	<u>P</u>
<u>HSFPU</u>	SPEC Calibrator Structure	T_SCST_2	<u>CX-1030</u>	10 K>100 K	<u>10/10 mK</u>	<u>R</u>
<u>HSFPU</u>	Cooler Pump	T_CPMP_1	<u>CX-1030</u>	3 K>100 K	<u>25/25 mK</u>	<u>P</u>
<u>HSFPU</u>	Cooler Pump	T_CPMP_2	<u>CX-1030</u>	<u>3 K>100 K</u>	<u>25/25 mK</u>	<u>R</u>
<u>HSFPU</u>	Cooler Evaporator	T_CEV_1	<u>CX-1030</u>	0.2 K>5 K	<u>1/1 mK</u>	<u>P</u>
<u>HSFPU</u>	Cooler Evaporator	T_CEV_1	<u>CX-1030</u>	<u>0.2 K>5 K</u>	<u>1/1 mK</u>	<u>R</u>
<u>HSFPU</u>	Cooler Pump heat switch	T_CPHS_1	<u>CX-1030</u>	1 K>50 K	<u>5/5 mK</u>	<u>P</u>
<u>HSFPU</u>	Cooler Pump heat switch	T_CPHS_2	<u>CX-1030</u>	1 K>50 K	<u>5/5 mK</u>	<u>R</u>

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

 Ref:
 SPIRE-RAL-PRJ-000034

 Issue:
 1.1

 Date:
 2 January 2002

Page: 61

<u>Unit</u>	Location	Acronym	Sensor Type	Nominal Temp. Range	Required Resolution /Accuracy over Range	Prime /Rednt
<u>HSFPU</u>	Cooler Evap. Heat switch	T_CEHS_1	<u>CX-1030</u>	1 K>50 K	<u>5/5 mK</u>	<u>P</u>
<u>HSFPU</u>	Cooler Evap. Heat switch	T_CEHS_2	<u>CX-1030</u>	1 K>50 K	<u>5/5 mK</u>	<u>R</u>
HSFPU	Cooler Shunt	T CSHT 1	CX-1030	0.2 K>5 K	<u>1/1 mK</u>	<u>P</u>
HSFPU	Cooler Shunt	T CSHT 2	CX-1030	0.2 K>5 K	<u>1/1 mK</u>	<u>R</u>
<u>HSFPU</u>	SPEC Calibrator 4%	T_SCL4_1	<u>CX-1030</u>	10 K>80 K	<u>5/5 mK</u>	<u>P</u>
HSFPU	SPEC Calibrator 4%	T_SCL4_2	<u>CX-1030</u>	10 K>80 K	<u>5/5 mK</u>	<u>R</u>
<u>HSFPU</u>	SPEC Calibrator 2%	T_SCL2_1	<u>CX-1030</u>	10 K>80 K	<u>5/5 mK</u>	<u>P</u>
<u>HSFPU</u>	SPEC Calibrator 2%	T_SCL2_2	<u>CX-1030</u>	10 K>80 K	<u>5/5 mK</u>	<u>R</u>
<u>HSFPU</u>	BSM Mechanism	T_BSM_1	<u>CX-1030</u>	3 K>20 K	<u>10/10 mK</u>	<u>P</u>
<u>HSFPU</u>	BSM Mechanism	T_BSM_2	<u>CX-1030</u>	3 K>20 K	<u>10/10 mK</u>	<u>R</u>
<u>HSFPU</u>	SMEC Mechanism	<u>T_FTS_1</u>	<u>CX-1030</u>	3 K>20 K	<u>10/10 mK</u>	<u>P</u>
<u>HSFPU</u>	SMEC Mechanism	<u>T_FTS_2</u>	<u>CX-1030</u>	3 K>20 K	<u>10/10 mK</u>	<u>R</u>
<u>HSFPU</u>	SMEC/SOB Interface	<u>T_FTS_3</u>	<u>CX-1030</u>	3 K>100 K	25/50 mK	<u>P</u>
<u>HSFPU</u>	SMEC/SOB Interface	<u>T_FTS_4</u>	<u>CX-1030</u>	3 K>100 K	25/50 mK	<u>R</u>

Table 3.5-29: Required thermometers for the SPIRE cold units.

Project Document

INSTRUMENT REQUIREMENTS **DOCUMENT**

SPIRE-RAL-PRJ-000034 1.1 Ref:

2 January 2002 Date:

Page: 62

Issue:

3.6 Warm Electronics

3.6.1 Functional Requirements

3.6.1.1 External Functional Requirements

These requirements describe the functionality of the warm electronics as seen by external (satellite) systems.

Requirement ID	Description	Value	Source
IRD-WE-R01	Packet Services	The Warm Electronics shall provide all the	FPOIRD
IND WE ROT		mandatory Packet Services.	
		These services are described in the Packet	
		Utilisation Standard (ESA-PSS-07-101)	
IRD-WE-R02	Telecommands	The Warm electronics shall receive and	
IKD-WE-K02		execute instrument commands	
		These commands are transferred to the	
		instrument as telecommand source packets	
IRD-WE-R03	Telemetry	The Warm Electronics shall generate	
IKD-WE-KO3		telemetry data	
		These data are transferred from the	
		instrument as telemetry source packets	
IRD-WE-R04	Housekeeping	The Warm Electronics shall generate	_
IKD-WE-K04		housekeeping data	
		These data are transferred from the	
		instrument as telemetry source packets	
IRD-WE-R05	Operating Modes	The Warm Electronics shall be able to	
IKD-WE-K03		execute all the instrument operating modes	
		These modes are described in 'Operating	
		Modes of the SPIRE Instrument'	
IRD-WE-R06	Command Services	The Warm Electronics shall provide the	
IKD-WE-KOO		following command types:	
		Atomic Commands - setting of individual	
		parameters of a subsystem	
		Function Commands - execution of a	
		predefined sequence of control actions	
		determined by parameters	
		Command Sequences (TBC) - execution of a	
		sequence of atomic or function commands	
IRD-WE-R07	Data Handling	The Warm Electronics shall manage the data	
IKD-WL-KU/		handling requirements of the instrument	
		This will include data buffering and	
		manipulation necessary to meet the	
		instrument data requirements	

Project Document

INSTRUMENT REQUIREMENTS **DOCUMENT**

<u>SPIRE-RAL-PRJ-000034</u> 1.<u>1</u> Ref:

Issue: 2 January 2002 Date:

63 Page:

3.6.1.2 Internal Functional Requirements

These requirements describe the functionality of the warm electronics as required for operation and control of other SPIRE subsystems

Requirement ID	Description	Value	Source
IRD-WE-R08	Photometer	The Warm Electronics shall be able to read	
IKD-WE-KUO	detector readout	the data from the photometer detector arrays	
		with the required time accuracy and	
		synchronisation, and within the required	
		accuracy and error	
		This includes data from the detector	
		subsystem (e.g. bias values and	
		temperatures)	
		necessary to the processing of the detector	
		data	
IRD-WE-R09	Spectrometer	The Warm Electronics shall be able to read	
IND-WE-NU9	detector readout	the data from the spectrometer detector	
		arrays with the required time accuracy and	
		synchronisation, and within the required	
		accuracy and error	
		This includes data from the detector	
		subsystem (e.g. bias values and	
		temperatures)	
		necessary to the processing of the detector	
		data	
IRD-WE-R10	Spectrometer	The Warm Electronics shall be able to read	
IKD-WE-KIU	Position Readout	the data from the spectrometer control	
		circuitry with the required time accuracy and	
		synchronisation, and within the required	
		accuracy and error to allow the science data	
		to be processed	
IRD-WE-R11	FTS Control	The Warm Electronics shall be able to	
IKD-WE-KTT		control the operations of the FTS subsystem	
IRD-WE-R12	BSM Control	The Warm Electronics shall be able to	
IKD-WE-K12		control the operations of the BSM subsystem	
IRD-WE-R13	PCAL Control	The Warm Electronics shall be able to	
IKD-WE-KI3		control the operations of the Photometer	
		Calibrator subsystem	
IRD-WE-R14	SCAL Control	The Warm Electronics shall be able to	
IKD-WE-K14		control the operations of the Spectrometer	
		Calibrator subsystem	
IRD-WE-R15	Cooler Control	The Warm Electronics shall be able to	
IND-WE-KIS		control the operations of the Cooler	
		subsystem	
IRD-WE-R16	Shutter Control	The Warm Electronics shall provide for	
IND-WE-K10		control of the Shutter subsystem	
		This will utilise external electronics, which	
		shall not be flown (TBC)	

Project Document

INSTRUMENT REQUIREMENTS **DOCUMENT**

 Ref:
 SPIRE-RAL-PRJ-000034

 ssue:
 1.1/2

Issue:

Date: 2 January 2002

Page: 64

Requirement ID	Description	Value	Source
IRD-WE-R17	Housekeeping	The Warm electronics shall be able to collect	
		housekeeping data from all subsystems at	
		both the nominal and maximum diagnostic	
		rates	

3.6.2 Interface Requirements

Requirement ID	Description	Value	Source
IRD-WE-R18	S/C Interface	The Warm Electronics shall conform to the	
IND-WE-NIO		S/C - instrument interface	
		This is defined in the IID Part A, and the	
		Packet Structure ICD	
IRD-WE-R19	Subsystem	The Warm Electronics shall provide	
	Interface	interfaces to all the instrument subsystems	

3.6.3 Performance Requirements

Requirement ID	Description	Value	Source
IRD-WE-R20	Subsystem Control	The Warm Electronics shall conform to the	
IND-WE-NZU	Loops	real -time constraints on the subsystem	
		control loops	
IRD-WE-R21	Subsystem Data	The Warm Electronics shall be able to	
IND-WE-N21	Acquisition	acquire subsystem data without loss or delay	
		to the instrument operations	
IRD-WE-R22	Data Processing	The Warm electronics shall be able to	
IND-WE-N22		process the instrument data without loss or	
		delay to the instrument operations	
IRD-WE-R23	Communication	The Warm Electronics shall be able to meet	
IND-WE-N23		the S/C communication constraints	
		(telecommand acceptance and telemetry	
		generation) without loss or delay to	
		instrument operations	

3.6.4 Autonomy Requirements

Requirement ID	Description	Value	Source
IRD-WE-R24	WE anomalies	The Warm Electronics shall provide	
IND-WE-N24		functions for determining its own health and	
		safety	
		Instrument telemetry should contain	
		sufficient information to allow health and	
		safety checking of the Warm Electronics by	
		the Spacecraft	
IRD-WE-R25	Subsystem	The Warm Electronics shall handle	
	anomalies	subsystem anomalies	
		The WE shall be able to recognise anomalies	

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

 Ref:
 SPIRE-RAL-PRJ-000034

 Issue:
 1.1

Date: 2 January 2002

Page: 65

Requirement ID	Description	Value	Source
		and take a predefined action based on the anomaly	
IRD-WE-R26	Anomaly Management	The Warm Electronics shall provide facilities to manage the reporting and response to anomalies. The WE shall prevent multiple reporting of anomalies and provide for disabling of anomaly reporting and execution of response actions.	

3.6.5 Reliability Requirements

Requirement ID	Description	Value	Source
IRD-WE-R27	Failure resiliance	The Warm Electronics shall minimise	
IND-WE-N2/		through design and hot or cold hardware	
		redundancy the likelihood of failure	
IRD-WE-R28	Lifetime	The Warm Electronics shall be designed to	
IKD-WE-K26		operate for 5 years in the space environment	
IRD-WE-R29	External Stress	All warm electronics units shall not be	
<u>IKD-WE-K29</u>		damaged or degraded by either a short circuit	
		in any electrical connection to other units or	
		the instantaneous unplugging of a connection	
		to any other unit.	

3.6.6 Safety Requirements

Requirement ID	Description	Value	Source
IRD-WE-R30	S/C Safety	The Warm Electronics shall prevent failure	
		of any part of the instrument propagating to	
		the S/C.	
		This may be carried out by monitoring	
		housekeeping data and self-checking	
IRD-WE-R31	Instrument Safety	The Warm Electronics shall prevent harm of	<u>n of</u>
IKD-WE-KJI		the instrument from failure in the S/C.	
		This may be carried out by checking	
		telecommands and monitoring supply levels	
IRD-WE-R32	Failure Propagation	The instrument shall be immune to failure	
IKD-WE-K32		propagation	
		Failure of any component shall not have a	
		safety impact on the instrument, another	
		instrument, or on the spacecraft	

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

 Ref:
 SPIRE-RAL-PRJ-000034

 Issue:
 1.1

Date: 2 January 2002

Page: 66

3.6.7 Budgets

Requirement ID	Description	Value	Source
IRD-WE-R33	Mass	The Warm Electronics shall conform to the	
IKD-WE-K33		allocated mass budget in RD8	
IRD-WE-R34	Volume	The Warm electronics shall conform to the	
		allocated volume envelope in RD8	
IRD-WE-R35	Power	The Warm Electronics shall conform to the	
		allocated power budget in RD8	

3.6.8 Compatibility Requirements

Requirement ID	Description	Value	Source
IRD-WE-R36	EMC	The Warm Electronics shall not provoke any	
		perturbation at spacecraft level or in any	
		other instrument when operating	

3.6.9 Quality Requirements

Requirement ID	Description	Value	Source
IRD-WE-R37	Quality Plan	The Warm Electronics development shall be compliant to the SPIRE Quality Plan	

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

Ref: SPIRE-RAL-PRJ-

1.1 000034 1.1 1.1

Date: 2 January 2002

Page: 67

3.7 Instrument Simulators

3.7.1 FPU Simulator

Performance Requirements

Requirement ID	Description	Value	Source
IRD-FSIM-R01	Function	The FPU simulator shall allow the Warm	
IKD-FSIWI-KUI		Electronics to be switched on and operated in	
		the absence of the cold FPU unit.	
RD-FSIM-R02	Analogue Outputs	The simulator shall return to the Warm	
IKD-FSIM-KUZ		Electronics analogue signals within the range	
		expected for each signal channel to allow the	
		basic function of the analogue Warm	
		Electronics and the instrument commanding	
		to the verified	
IRD-FSIM-R03	Control loops	The simulator shall return to the Warm	
	•	Electronics the appropriate signals to allow	
		the basic function of any control loops to be	
		verified.	

Table 3.7-1: FPU simulator performance requirements

System Requirements

Requirement ID	Description	Value	Source
IRD-FSIM-R04	Harness	The FPU simulator shall provide a dedicated	
		harness that interfaces directly to the	
		appropriate Warm Electronics unit	
IRD-FSIM-R05	Prime and	The FPU simulator shall provide simulation	
	Redundant	and interfaces to both the prime and	
	Interfaces	redundant channels of the Warm Electronics.	

Table 3.7-2: FPU simulator system requirements

3.7.2 DRCU Simulator

Performance Requirements

Requirement ID	Description	Value	Source
IRD-DSIM-R01	Function	The DRCU simulator shall allow the DPU to	
		be operated in the absence of the DRCU and	
		cold FPU.	
IRD-DSIM-R02	Outputs	The simulator shall return to the DPU the	
		appropriate digital responses to allow the	
		verification of the instrument commanding	
		and all on board software functions including	
		autonomy modes.	

Table 3.7-3: DRCU simulator performance requirements

Requirement ID	Description	Value	Source
IRD-DSIM-R03	Harness	The DRCU simulator shall provide a	
		dedicated harness that interfaces directly to	

Project Document

INSTRUMENT REQUIREMENTS DOCUMENT

 Ref:
 SPIRE-RAL-PRJ-000034

 Issue:
 1.1

 Date:
 2 January 2002

Page: 68

		the DPU
IRD-DSIM-R04	Prime and Redundant Interfaces	The DRCU simulator shall provide simulation and interfaces to both the prime and redundant channels of the DPU.

Table 3.7-4: DRCU simulator system requirements