JPL Hardware Requirements Certification Review (HRCR)-Proto-Flight Model (PFM) Photometer Long Wavelength (PLW) Bolometer Detector Assembly (BDA) 10209800-1 S/N 014

SPIRE Element Herschel Space Observatory Project

February 23, 2005

CONTENTS

SEC	TION
Hardware Requirements Certification Review (HRCR) Form	1
Final Inspection Report (IR)	2
Issues M. Herman 15 May 2003 memo (fasteners for vibe. tests)	3
Top Level Assembly Drawings	4
ECRs / NCRs HR-SP-JPL-ECR-003 (Spectrometer BDA envelope height) HR-SP-JPL-ECR-005 (Kapton Cable routing design error) HR-SP-JPL-NCR-006 (PMW and PSW focal position shift)	5
Waivers HR-SP-JPL-RFW-005 (Sine Vibe Omission) HR-SP-JPL-RFW-006 (Vibration Test Levels)	6
Open Problem / Failure Reports (PFR) This Hardware: (None) Similar Hardware: (None)	7
Handling Documents General / Unpacking Electronic	8
Environmental Requirements Verification Matrix	9
Performance Data Matrix	10
Qualification Status	11
Connector Mate and Operation Logs	12
Mechanical & Electrical ICDs	13
Other Data Detector Backshort Data Alignment Measurement Summary Feedhorn Data 300mK Spectrometer Filter EIDP	14

RAL EIDP Table Of Contents Vs. HRCR Contents

EIDP	FIDP	HRCR	Comments/Notebook Section
Section		Box #	
1	Shipping Documents		Shipper and Final IR
2	Transportation, Packing, Handling & Integration Procedures	20	Section 8
3	Certificate of Conformance / Delivery Review Board MoM		HRCR form is the CofC
4	As Built Configuration Status List	1	
5	List of Waivers	16	Section 6
6	Copies of Waivers	16	Section 6
7	List of Non-Conformance Reports	17, 18	Section 5
8	Copies of Non-Conformance Reports	17, 18	
9	Cleanliness Statement	10	Final IR includes inspection for conformance with cleanliness requirement (particulates)
10	Operational Manual	20	
11	Top Level Drawings (inc. Family Tree)	14	Section 4
12	Interface Drawings	26	Section 13
13	Functional, Block & Mechanical Drawings	14	Section 4
14	Electrical Circuit Drawings		See Electrical Handling Doc.
15	Serialized Components List		In the build books – not shipped
16	Mass Properties/ Power Budget		Mass found in header of HRCR
17	Qualification Status List / Test Matrix	22	Qual. Report to be supplied later, Summary in Section 11
18	Test Reports		To be supplied later, Summaries in Sections 9 and 10
19	Open Work / Deferred Work / Open Tests	5	
20	Calibration Data		Section 10
21	Historical Record		Section 12
22	Manufacturing Logbook(s)		To be retained at JPL
23	Operating Time / Cycle Record	24	Section 12
24	Connector Mating Record	24	Section 12
25	Age Sensitive Items Record		NA for BDA
26	Pressure Vessels – History/Test Record		NA
27	Temporary Installation Record		Section 12
28	Reference List of EIDPs (Lower level)	1	300mK Filter EIDP - Section 14
29	Other Useful Information		Section 14

JPL Hardware Requirements Certification Review – SPIRE Element

#D-31447

Assembly/Subsystem			PE	M				Phone		Section		Date	e			
SPIRE			Ма	irtin I	Herm	an		(818) 354-8541		386	386 23 Fe			05		
Drawing/ Part No.	Dwg. Rev.	Nomencl	ature	9		Seri	al No.	Model	Туре	9	Final IR No. 923809			Mass (grams) As Meas. / Req.		
10209800-1	В	Bolomete Assembl	er De y	etecto	or	014		PFM	PLW					602 g / 632 g		
Check applicable answer and give r remarks column	ecessary exp	lanation in	Y N N e o / s A					Remarks		Data Attachments (Package Sec. #			Signature & Date	Approval		
1. Are all drawings and specifications released and frozen?	roved,	x							14. Latest Top Asse	embly Draw	vings Sec. 4)	Cog E				
Do the released drawings and spec approved changes?	2. Do the released drawings and specifications reflect all approved changes?									15. List of open ECR	s] None (S	Sec. 5)	PEM			
3. Is hardware identical to other hardware provide difference list.	ardware identical to other hardware delivered? If no, e difference list. X Previous Hardware was CQM PLW. See difference list attached 16. Waivers Image: Second] None (S	Sec. 6)	QA Engineer						
4 Does the hardware meet the requirement of its functional requirements, specifications, waivers and/or ICDs ? If no, provide difference list.						See Issues performance	iee Issues (section 3). See section 11 for detector 17. Open MRBs Environments/Rel ierformance matrix. Image: Attached ima							ents/Reliability		
 Have all IR discrepancies and MRE agreed to by Engineering/ QA ? 	x							18. Open P/FRs on t	his H/W None (S	Sec. 7)	Mission A	ssurance Mgr.				
6. Is complete as-built list information	included in the	build book?	x							19. Open P/FRs on s	similar H/W	/ Sec. 7)				
 Have all required environmental tes completed? 	sts & analyses I	been	x							20. Handling Docum	ents] None (S	Sec. 8)	PI			
8. Is all required assembly and/or sub testing complete?	system level fu	nctional	x							21. Shortage List	None (N	N/A)				
 Have all piece parts, processes and by JPL? 	d materials bee	n approved	x							22. Requirements Ve	erification M	Aatrix Sec. 9)				
10. Does this hardware meet all conta requirements?	mination contro	bl	x							23. Qualification Stat	tus] None (S	Sec. 11)				
11. Are all required shipping contained and special handling procedures ready	rs, shipping pro ?	cedures,	x							24. Connector Mate	/ Demate L] None (S	.og Sec. 12)				
12. Is additional work required to bring readiness?	this hardware	to flight		x						25. Operation Log]None (S	Sec. 12)				
13. Is this hardware acceptable for flig	jnt ?		x							26. ICDs] None (S	Sec. 13)				

difforance list:			
difference list.	· · · ·		
part	previous hardware:	current hardware	notes:
	10209800-1 CQM PLW SN 006	10209800-1 PFM PLW SN014	
10209860 suspension	chamfered pullies per redlined dwg	Fullly rounded & polished pulleys	change on qual and subsequent units to address CQM PLW
assy.	5/2/03	per released dwgs	fraying
10209860 suspension	prelim kevlar routing	final (Qual BDA type) kevlar	change on qual and subsequent units to address CQM PLW
assy.		routing	fraying
10209860 suspension	no side screws into invar spacers	side spacer screws were used	screws had been eliminated in error when the vespel safety
assy.			spacer was eliminated from the design.
10209890 middle ring	suspension Ring-A is pinned to flexure	suspension Ring-A is pinned to	Old pins were partially machined away after assembly in early
assy (part of	mounting plate with both old pins and	flexure mounting plate only new	suspension units. Final design used only the new pins.
suspension)	smaller new invar pins.	invar pins.	
10209860 suspension	no epoxy on capstan-1	versamid epoxy at capstan-1 end	epoxy added to final design to strengthen tie-off at capstan-1
assy.		of kevlar.	

Part Number

10209800-1

HSO-PLANCK

WEILERT, MARK A.

REFERS TO:

Nomenclature: Prgm/Project:

COGE:

*** INSPECTION REPORT *** Printed Copies are for Reference Only - Please check with PDMS for official version

Dash Number

(with part number)

BOLOMETER DETECTOR ARRAY

Revision

B

Inspection Date:

ECO/ECI:

ber	Action
9	BROWSE

Latest Rev

B

20-SEP-2004

Status "IR & IRDI Initiated"	IR Instructions
Serial Number 014	Quantity 1

QAE:	HUGHES, SCOTT P.	Reference Designator:	SPIRE
PL/Mfr:	JPL	Lot No.:	
Type of Inspection:	Final-Ship	Insp. Std / Spec No.:	
Гуре of Item:	Flight	AIDS No.:	
Location:	JPL	Work Order No.:	
Manufacturer:	JPL	CAGE Code:	
Supplier:	JPL	Receipt No.:	
Parts received by:		Property / ID:	
Received date:		PO/CT No.:	
Qty Accepted:		Line No.:	
Qty Rejected:	0	Rel / Mod No.:	
QA Alert?		CAN Required?	
MTE Code:	None	IMTE Number:	
MTE Code No. 2:	None	IMTE Number No. 2:	
MTE Code No. 3:	None	IMTE Number No. 3:	
MTE Code No. 4:	None	IMTE Number No. 4:	
Orig Nomenclature:			

DISCREPANT ITEMS:

Item	Discre	<u>p Code</u>	Qty	Zone	S/N	De	scription	R	Re-Work	Files		
	This IR has No Discrepant Items											
Item		Dis	sposition		Root Cause Code	Disp Code	o <u>Disp.</u> e <u>Appr.</u>	<u>Stamp</u> <u>Date</u>				
Inspection Rep	This IR has No Discrepant Items											
HARDWARE INTERGRAT CHILTON, D	HARDWARE LISTED ABOVE HAS BEEN COMPLETED INSPECTIONS AND TESTING AND ACCEPTABLE TO DELIVER TO NEXT INTERGRATION RUTHERFORD APPLETON LABORATORY SPACE & SCIENCE TECHNOLOGY DEPT. CHILTON, DIDCOT OXFORD, ENGLAND UNITED KINGDOM OX11 OQX ATTN: ERIC SAWYER PH#1235 44 6385											
		Initiated by		Signed by C	<u>OGE</u>	Sign	ed by QAE	(Closed by			
Number of	Files Attached <u>0</u>	Date		Date		Date	:	I	Date			
Reserved by	Res	served on	Reaso	n								

Issues PFM PSW BDA 10209800-1 S/N 014

Configuration / Processing:

Several ECRs related to this hardware have been incorporated into released drawings. These do not apply directly to the PLW BDA type, but they affect the same drawings. They are included for reference:

- The maximum height of 300 mK stage exceeds ICD drawing 10209721 allowed range by 1.0 mm due to changes in 300 mK filter stack thickness which were not incorporated into the drawing. See attached ECR: HR-SP-JPL-ECR-003 in section 5. This change has been incorporated into Rev-C of the ICD.
- A focus position shift caused by an internal mechanical interference fix was incorporated into ICD drawing 10209721 Rev C per HR-SP-JPL-NCR-006 (attached in in section 5).
- A pixel map modification was incorporated into electrical schematic 10209725 Rev C per HR-SP-JPL-ECR-005 (attached in section 5). This drawing revision also incorporated JPL ECR 1026751.

Environmental Test:

- Shake tests were performed with non-flight-like 8-32 mounting screws, instead of 6-32. See attached email regarding this issue: (M. Herman, 15 May 2003) --This same issue applied to the previous CQM-PLW and PFM-SLW BDAs.
- Shake tests were performed in accordance with open waivers HR-SP-JPL-RFW-005 (Sine Vibration Omission) and HR-SP-JPL-RFW-006 (Vibration Test Levels). See Waiver List (section 6).

Date: Mon, 11 Aug 2003 16:34:04 -0700 From: Martin Herman <Martin.I.Herman@jpl.nasa.gov> Subject: Waiver Request (vibration fastners) X-Sender: miherman@pop.jpl.nasa.gov To: Mark.A.Weilert@jpl.nasa.gov Cc: Henry.Abakians@jpl.nasa.gov

Date: Thu, 15 May 2003 11:41:18 -0700 To: Matt Griffin </br/>Matt.Griffin@astro.cf.ac.uk>, Eric Sawyer <e.c.sawyer@rl.ac.uk>, Chris Brockley-Blatt <cbb@mssl.ucl.ac.uk>, Berend Winter <bw@mssl.ucl.ac.uk> From: Martin Herman </br/>Martin.I.Herman@jpl.nasa.gov> Subject: Waiver Request (vibration fastners) Cc: Ben.A.Parvin@jpl.nasa.gov, Jamie Bock <jjb@astro.caltech.edu>, Gary Parks <Gary.S.Parks@jpl.nasa.gov>, kalyani@squid.jpl.nasa.gov Bcc: X-Attachments:

Dear Matt and SPIRE Team,

To refresh everyone's memory. We requested the following information:

What type of fasteners will be used in Europe to mount the BDA? In our ICD, 6-32 fasteners are called for. However, the current test hardware uses 8-32 fasteners. We are looking to be consistent with the flight implementation.

The answer (Thanks Chris) was 6-32. Our current test fixture uses 8-32 and we are getting ready for vibration testing of the CQM next week. Therefore, we had a mechanical engineer look into this issue. His (Paul MacNeal) response was:

It will acceptable to use four #8-32 fasteners for the vibration tests at JPL. The reasons are....

1) The test fixture has already been built using #8-32 tapped holes,

2) The use of #6-32 fasteners torqued to full value should be able to resist over 200 G's of lateral force before allowing slippage, and therefore is not a critical component of the vibration test, and

3) The test is primarily performed to verify integrity of the flexures, braid, and other components, and not the interface fasteners.

Based on this information, we are requesting a waiver for the CQM PLW vibration and for future QM, CQM, PFM and FS tests. The change for future test is small, but the fiscal situation is extremely challenging and no technical risk to the program is evident with the existing approach.

Thanks, Marty

H	14) ALTERNAT USED FOR APPROVAL 13. SEAL SHI LID, 30, S PLUG, TOF PLUS RUN	E OR EQUIVALENT ITEMS THIS ITEM WITH PRIOR -' PPING CONTAINER USING SCREWS, 31, O-RING, ANI RQUE ITEM 30, SCREWS INING TORQUE PER JPL S	S MAY BE ENGINEERING ITEMS 28, D ITEM 32, TO 1.9 N*M SPEC			
G	PLUS RUN SPEC ES5 12. SECURE F ITEM 26, HALF TUR 11. INSTALL I SHIPPING RUNNING	INING TORQUE PER JPL 17040. LEXURE RING OF ITEM 1 USING ITEM 29, NUTS. T N PAST FINGER TIGHT. TEMS 26, MOUNT, INTO I BASE. TORQUE TO 200 N TORQUE PER JPL SPEC E	OR 2, TO TIGHTEN NUTS ITEM 27, N*MM PLUS ES517040.			
F	10, FOR -7 C UNION NU USING ITE ADHESIVE SPEC ES5 ACCELERO TORQUE T SPEC ES5 9, FOR -6, - ITEM 10, OI ITEM 43, A 9 OR 35, M SCREW, T	ONFIGURATION, SECURE I T, TO ITEM 35, MASS SI M 40, SET SCREW, AND TORQUE TO 1.7-2.2 N 17040. SECURE ITEM 33, METER, TO ITEM 39, UNI O 1.7-2.2 N*M PER JPL 17040. AND -9 CONFIGURATIO R 36, ACCELEROMETER M ACCELEROMETER SIMULATIO MASS SIMULATOR USING I ORQUE TO 200 N*MM PLU	ITEM 39, MULATOR ITEM 25 *M PER JPL ION NUT AND ION NUT AND ION TO ITEM ITEM 22, IS RUNNING			
E	TORQUE PE 8. FOR -7 CO ACCELEROM MOUNT. TO 1.7-2.2 N*N ITEM 34, CO 7. FOR -6 CO ACCELEROM MOUNT US	R JPL SPEC ES517040, INFIGURATION, SECURE I IETER, TO ITEM 36, ACCE IRQUE ITEM 33, ACCELER PER JPL SPEC ES5170, ABLE, TO ITEM 33, ACCI INFIGURATION, BOND ITER IETER, TO ITEM 10, ACCE	TEM 33, Elerometer Rometer, to 40. connect Elerometer. M 37, Elerometer			
D	G, FOR ALL C -9, INSTAL CAN. TORQU 5, FOR ALL C SECURE IT LIGHT SEAL USING ITEN	CONFIGURATIONS EXCEPT L ITEM 17, SCREW, INTE JE TO 425 N*MM PER JF CONFIGURATIONS EXCEPT EM 11, 42, OR 49, CAN A L TO FLEXURE RING OF 4 24, SCREW, AND ITEM	-6, -7, AND I ITEM 11 OR 49, PL SPEC ES517040. -6 AND -7, AND ITEM 45, ITEM 1 OR 2, 21, SPRING			
	WASHER, SPEC ES51 (4,) FOR ALL (AND -9, SE FILTER, TE SCREW, ITE WASHER, TE SPEC ES51	TORQUE TO 200 N*MM PE 7040, ECURE ITEM 12, 13, 14, 1 I ITEM 1 OR 2, USING IT EM 19, NUT, AND ITEM 21 ORQUE TO 200 N*MM PER 7040,	-6, -7, -8, 15, OR 16, Tem 23 OR 48, 1, Spring 2 JPL			
С	3, FOR ALL 0 -9, BEND 7, OR 8 AN CONFIGURA STRAP SIM STRAP, USE WASHER AN INSTALLAT	CONFIGURATIONS EXCEPT THERMAL STRAP ON ITEM ND FASTEN TO ITEM 1 OI TION SECURE ITEM 44, 1 ULATOR IN PLACE OF TH E ITEM 22, SCREW, AND ND TORQUE TO 100 N*MM ION ONLY.	-6, -7, AND 1 3, 4, 5, 6, R 2. FOR -9 Thermal Hermal ITEM 46, FOR TEMPORARY			
В	ZA SECURE IT ITEM 1 OR CONFIGURA OR 41 TO USING ITEN WASHER. TI ES517040. ITEM 25, E -6 AND -7	LM 3, 4, 5, 6, 7, 8, 9, 2 USING ITEM 19, NUT, TIONS EXCEPT -6 AND - BRACKET OF ITEM 3, 4 FLEXURE RING OF ITEM 4 18, SCREW, AND ITEM ORQUE TO 200 N*MM PER SPOT BOND ITEM 19, N POXY ON ALL CONFIGUR	UR 35, TO FOR ALL 7, SECURE 5, 6, 7, 8, 1 OR 2, 21, SPRING 21, SPRING 3 JPL SPEC NUT USING ATIONS EXCEPT	\wedge		
A	1. FOR CONFIN ITEM 33, A MASS SIMUN ALLOW CAN SIMULATOR, AGAINST IT 1.7-2.2 N*N ITEM 34, C NOTES: UNLESS	GURATIONS -7 AND -9, 3 ACCELEROMETER, TO ITEM LATOR, ROTATING CONNER BLE TO EXIT TOWARD TO TORQUE ITEM 38, SET TEM 33, ACCELEROMETER, A PER JPL SPEC ES5170 CABLE, TO ITEM 33, ACCI S OTHERWISE SPECIFIED	SECURE 1 35, CTOR TO JP OF MASS SCREW, , TO 40, CONNECT ELEROMETER,	<u>/16</u> , <u>15</u> ,	FOR -2 AND -3 CONFIGU BRACKETS OF ITEM 5 OF ITEM 50, SCREW. TORQU SPEC ES517040. FOR CONFIGURATIONS EX MARK AS SHOWN WITH I USE APPROPRIATE DASH AND TYPE (P/LW, S/LW,	JRATIONS, SEC ? 6, TO ITEM JE TO 180 N*1 :CEPT -6, -7, TEM 47, EPOX NO., S/N, MOI , ETC.).

Released on DEC-09-2004 by Richard G Bannister and signed by Richard S Mcnabb CHK, Paul D Macheal STRU, Michael D Knopp MATP, Dustin J Crumb DEGN, Mark A Weiler COGE, Richard G Bannister

				5		LIC2CO2CC3 1						
		LTR	ZONE			DESCRIPTION						
		А				INITIAL RELEASE						
		В			ADDED	ITEM 51, ADDED VIEW SH4, MOVED VIEW F						
		L	1 1									
	1	1		51		10209903-1						
	4	4		50		NA0070-016004						
	1	1		49		10209805-2						
 6				48		NA0068A016012						
AR	AR	AR	AR	47								
2	2	2	2	46		ST12259-020						
1	1	1	1	45		10209807-1						
				44		10000047 1						

						4	4		50			NA0070-016004
						1	1		49			10209805-2
				6	6				48			NA0068A016012
	AR			AR	AR	AR	AR	AR	47			
	2			2	2	2	2	2	46			ST12259-020
	1			1	1	1	1	1	45			10209807-1
1									44			10209847-1
1									43			10209744-1
1									42			10217688-1
1									41			10217680-1
		1							40		0E328	92313A829
		1							39		0E328	90977A021
1		1							38		0E328	92313A824
			1						37			
		1							36			10209746-2
1		1							35			10209745-2
1		.3							.34			6011 A10
1		3							33			3031 85
1	1	1	1	1	1	1	1	1	32		SE027	2 P50N
						ļ	I				JLUZ/	
1	1	1	1	1	1	1	1	1	31		05328	02628331
												92021001
8	8	8	8	8	8	8	8	8	30			MS5197-50
						4	4	4	29			
												114003+00+0
1	1	1	1	1	1	1	1	1	28			10209809-1
		1	1	1	1	1	1	1	27			10209808-1
4	4	4	4	4	4	4	4	4	26		OF 328	9217K32
	AR	AR	AR	AR	AR	AR	AR	AR	25			FC 2216 A/B
4				4	4	4	4	4	20			NA0069-016010
						6	6	6	23			NA0068A016010
6	2		4	2	2	2	2	2	20			NA0069-020010
20	20			20	20	20	20	20	21			B0187-010-S
20				20	20	20	20	20	20			
4		4		6	6	6	6	6	10			934 - 42 M1 6 X 0 35
4	4	4	4						19			934-A2 M1.0 X 0.33
				4	4	4	4	4				NA0089-018004
	2			2	2	2	2	2	17			
												NA0089-040008
				1					16			
					1							5/SW FILIER
						A						5/LW FILIER
									4			P/SW FILTER
									13			P/MW FILTER
											_	P/LW FILTER
	1			1	1			1	11			10209805-1
			1						10			10209746-1
			1						9			10209745-1
				1					8			10209850-1
					1				7			10209840-1
1	1	1	1	1	i i	1	1	1	1	1	1	1

-2-1ITEMQTY REQDNO PART OR IDENTIFYING NO REF DES CAGE NO MATERIAL UNLESS OTHERWISE SPECIFIED CONT DIMENSIONS ARE IN MILLIMETERS LINEAR TOLERANCES: $\begin{array}{cccccccc} 0-6 & \pm & 0.1 \\ 0 \ \mbox{VER} & 6-30 & \pm & 0.2 \\ 0 \ \mbox{VER} & 30-120 & \pm & 0.3 \\ 0 \ \mbox{VER} & 120-315 & \pm & 0.5 \\ 0 \ \mbox{VER} & 315-1000 & \pm & 0.8 \\ 0 \ \mbox{VER} & 1000 & \pm & 1.2 \\ \end{array}$ APPD DWN CHK STRU MATL THRM CONT METRIC THIRD ANGLE PROJECTION ANGULAR TOLERANCES: ± 0.5° SPIRE MACHINE FINISH 3.2 (MICROMETERS) ____ NEXT ASSEMBLY USED ON DO NOT SCALE DRAWING ENGR INTERPRET DWG PER ASME Y14.100M APPLICATION 5 4

6

5

4

1 3

1 2

| 1

1

1 1 1

1

-9 -8 -7 -6 -5 -4 -3

10209830-1

10209820-1

10209810-2

10209810-1

10209860-2

10209860-1

ECURE CONNECTOR M 49, CAN, USING *MM PER JPL

7, AND -9,]XY INK, DDEL (CQM/PFM)

6

3				2					1						
REVISIONS		DWN	снк	STRUCT	MATL	THRM CONT			ENGR	DSGN SUPV	DATA MGT	RELE	ASE DATE		
ROM SH2 TO SH4	<u> </u>				SEE -	TITLE E	BLOCK				RGB	03.	/15/04	-	
												<u> </u>			
												<u> </u>			
RING, SPACER SCREW, MACHI	NF FLUS	SH HI	-AD	N/	007)									
CAN, LIGHT															
SCREW, MACHI EPOXY INK, BI	NE PAN _ACK	HEA)		40068	3		A	A-286 CRES						
WASHER, COUN	NTERSUN	NK,		ST	1225	59		A	A-286 CRES						
SEAL, LIGHT															
SIMULATOR, TH		STRA	5												
ACCELEROMETE	JR, IR														
CAN, LIGHT, S	TM														
SET SCREW, 1	0-32 L	JNF X	1/2	2"				M		STER	CAR	R⁄14		-	
UNION NUT, 1)-32 U	NF						N		STER	CAR	R <u>/1</u> 4			
3/16"	0-32 C									SIEN	CAR				
	R, THRI	EE AX FR	(IS												
MASS SIMULAT	OR														
CABLE, ACCELE	EROMETE	ER	VIS					D		N				F	
PLUG, O-RING			X13					P		ER FL				-	
0-RING 114 F	imm ID	X 3	mm						CONNECTORS (14)						
WIDTH											CAN				
SCREW, #8-32	2 UNC 2	X 1.2 HFX	5"		5519 0034	7			-28	$\frac{1}{6}$	FS			-	
EXTENDED WAS	SHER, 1	100	MPa		.000	т 			~ 20						
CONTAINER, SE	HPPING,	LID												-	
MOUNT, NATUR	MOUNT, NATURAL RUBBER,							M	ICMA:	STER	CAR	R			
FPOXY	SANDWICH, M4 X 0.7									<u>/14</u>				E	
SCREW, CAP, 1	SOCKET	HEAD).	NA	0069	9		A	-28	6 CR	ES			-	
FULL THREAD,	NF PAN	ЛРа ————————————————————————————————————	<u>ר</u>	N/	0068	3			-28	6 CR	FS			-	
SCREW, CAP, 1	SOCKET	HEAD).	N/	0069	9		A	-28	6 CR	ES				
BELLEVILLE SP	RING W	ASHEF	2												
NUT SCREW, CAP, 1	SOCKET	HEAD).	DI NA	N 93	54 9		A A	-28 -28	6 CR 6 CR	ES ES			-	
FULL THREAD,	1100 N	/Pa				_									
FULL THREAD,	1100 N	неац ИРа).		40068	J			-28	6 CR	ES				
S/SW FILTER															
P/SW FILTER														-	
P/MW FILTER															
CAN, LIGHT															
MOUNT, ACCEL	EROMET	ER													
DETECTOR ASS	EMBLY,													Ь М	
DETECTOR ASS	SHORI	WAV	Έ												
SPECTROMETER	R LONG	WAVE													
DETECTOR ASS	EMBLY, Short V	VAVE													
DETECTOR ASS	EMBLY,													Ì	
DETECTOR ASS	EMBLY,														
PHOTOMETER L SIMULATOR	ONG W	AVE													
DETECTOR ASS	EMBLY,													-	
SUSPENSION A	LONG W	4VE Y												B	
SUSPENSION A	SSEMBL	Y													
NOMENCLATUR	E OR DESCI	RIPTION			SPEC	CIFICATI	ON			MATERI OR NO	AL TE		ZONE		
PARTS LIST			- 1	חר	וחר								11/	-	
		JŁ			JYL DRNIA		IUTE (N L	_AE		AI	Uk	Ϋ́		
2D DATE					RE		D THR	OUGH	EDMG						
D. CRUMB 0 R MCNABB 0	3/11/04 3/11/04				R	$\square $	ΠМ	FΤ	-	Ś					
RUCT P MACNEAL 0	3/11/04		ŢηΓ	<u> </u>			LII D	$ \land \land$	ц СГ	` Т NЛ Т	$\sum $	\checkmark		RATE.	
<u>м</u> Т	., 10/ 04	0	ןת דר				Ι <u>Σ</u>	<u>н</u>	JC (_ ' _				JENEF	
			2	UAGE	^{№0}		1	02	200	981	00			CAD (
R M WEILERT 0	3/11/04 s	CALE N				l ICLA	- SSI	FIEI		SHEET	-	OF 4		NutoC	
3	I									1		RE	CV 2/00	- <	

Released on DEC-09-2004 by Richard G Bannister and signed by Richard S Mcnabb CHK, Paul D Macheal STRU, Michael D Knopp MATE, Dustin J Crumb DEGN, Mark A Weile

-4 CONFIGURATION SHOWN -1 AND -5 CONFIGURATIONS ARE SIMILAR -8 CONFIGURATION SIMILAR WITHOUT FILTER

OGE, Richard G Bannister						5	4

		ENERATED
	REV	5
	В	oCAD
		Jut
REV	2/00	

ΙP

SIZE	CAGE N	10			R
A 1	2383	35	10209	9800	
SCALE NO	DNE		CLASSIFIED	SHEET OF 4	

Released on DEC-09-2004 by Richard & Bannister and signed by Richard S Mcnabb CHK, Paul D Macheal STRU, Michael D Knopp MATE, Dustin J Crumb DEGN, Mark A Weile

	7		6	5	4
		38 1		REF	
GENERAL REFERENC SCALE: 7 CONFIG ACCELERE S SIMULA	VIEW E ONLY NONE URATION, IMETERS AND TOR SHOWN				8 36
				REF	
		-7 CONFIGUE	ATION	2	

ג								5	Λ
COGE, Richard G Ba	nnister			_				5	4

-2 CONFIGURATION SHOWN -3 CONFIGURATION IS SIMILAR

COGE, Richard G Bannister 5	

0

0

4

 \bigcirc

ECR/NCR List PFM PLW BDA 10209800-1 S/N 014

NOTE: None of these apply directly to the PLW BDA type, but they represent changes to the applicable ICDs and top level drawing so they are included here for reference. All of these have been incorporated into released drawings.

- 1. HR-SP-JPL-ECR-003 Spectrometer BDA Envelope Height
- 2. HR-SP-JPL-ECR-005 300mK Stage Assembly BDA Kapton cable routing design error.
- 3. HR-SP-JPL-NCR-006 PMW and PSW focal position shift

DOCUMENT / ENGINEERING CHANGE REQUEST (ECR)

PRODUCT ASSURANCE Space Science and Technology Department

DCR / ECR Number:

HR-SP-JPL-ECR-003

Spacecraft / Project	HERSCHEL	Originator's Name	Martin Herman	
System / Experiment / Model	SPIRE /	Signature		
Sub-System		Date	November 20,2	003
Assembly		Classification	Urgent	Routine
Sub-Assembly		Ref. Doc. / Drwg No.	JPL dwg 10209	721
Item	Bolometer Detector Assembly (BDA)	Reference		

ECR/DCR Title

Spectrometer BDA Envelope Height

ECR Description

On the ICD Drawing 10209721 sheet 2, zone H4, the current maximum height dimension is 42.5 mm from the BDA mounting plate. This dimension needs to be changed to 43.6 to encompass the two spectrometer BDA types, SLW and SSW. Photometer BDA types do not require this change. The current dimension will be replaced with a note giving the two BDA type dependent values. The allowed 300mK stage shift given in note 9 will remain.

Need / Justification For Change

The Spectrometer BDA (types SLW and SSW) 300mK filter stacks were at some point increased in thickness due to the addition of a lens. This change was not flowed down into the BDA ICD. The SLW BDA S/N008 maximum height was measured at 44.04 mm from the mounting plate, which is 1.04 mm higher than the current allowed ICD range. The nominal 42.5 mm height plus the 0.5mm allowed displacement of the 300mK stage (see ICD note 9) gives the current 43.0 mm max height.

Affected Items / Work package (Title, Number, Issue, Para)

ICD drawing 10209721 rev B

Related Factors (Highlight as applicable)								
Spacecraft	Performance	Power	Others (Specify)					
Ground Segment	Elect. Interfaces	Weight						
Launch Vehicle	Mech. Interfaces	Schedule						
Payload	Test/Verification	Cost						

Attachments	Distribution

Change Approved Project	Change Approved Customer	
Project Closure	Customer Closure	

DOCUMENT / ENGINEERING CHANGE REQUEST (ECR)

PRODUCT ASSURANCE Space Science and Technology Department

DCR / ECR Number:

HR-SP-JPL-ECR-005

Spacecraft / Project	HERSCHEL	Originator's Name	Anthony Turner	•
System / Experiment / Model	SPIRE /	Signature		
Sub-System		Date	<mark>1/19/2004</mark>	
Assembly	10209800 -2 and -3	Classification	Urgent	Routine
Sub-Assembly	10209820 and 10209830	Ref. Doc. / Drwg No.	10209775	
Item	Kapton cables assemblies, 10217706 and 10209825	Reference		

ECR/DCR Title

300mk Stage Assembly-BDA Kapton cable routing design error

ECR Description

Kapton cable right (10217705) was designed for a length of 73.93mm and Kapton cable left (10209824) was designed for a length of 68.87mm. This length designation forces the shorter cable to route into connector positions J01 and J02 on the 10209820 and 10209830 Detector Assembly-BDA builds while the longer cable will route into the J03 and J04 connector positions. This routing will cause a swap in the pixel maps for each connector denoted in wiring schematic 10209725-A under the 10209800-2 and 10209800-3 columns. Below is the correct switch in pixel maps for each column (only the first pixel of the original column is denoted for all connectors but the entire column should be switched accordingly):

10209800-2 P/MW: J01 – first pixel A7, J02 – first pixel E7, J03- first pixel A13, J04 – first pixel R1

10209800-3 P/SW: J01 – first pixel D6, J02 – first pixel F12, J03- first pixel R1, J04 – first pixel E1

Need / Justification For Change

The current flex cable assembly/routing will not correctly map to the pixel locations denoted in 10209725-A wiring schematic, SPIRE. The current schedule/budget will not allow for an acquisition of replacement cables which may have at least a 12-20 week lead from the manufacture. All sub-assembly builds (10209820 and 10209830) would have to be placed on hold until the new cables arrive. The schedule impact could be up to 6 months. The above pixel map designation change would have a minimal effect on the software side, save from rebuilding flex kapton cables and keep the project on its current schedule.

Affected Items / Work package (Title, Number, Issue, Para)

All 10209820 and 10209830 sub assemblies. Drawing 10209775-A

Related Factors (Highlight as applicable)								
Spacecraft	Performance	Power	Others (Specify)					
Ground Segment	Elect. Interfaces	Weight						
Launch Vehicle	Mech. Interfaces	Schedule						
Payload	Test/Verification	Cost						

Attachments	Distribution

Change Approved Project	Change Approved Customer	
Project Closure	Customer Closure	

NON-CONFORMANCE REPORT (NCR)

PRODUCT ASSURANCE Space Science and Technology Department

NCR Number:

HR-SP-JPL-NCR-006

Spacecraft / Project	Herschel		Originate	or's Name	Martin Herm	an
Experiment / Model						
	SPIRE / PFIN	1+5				
Sub-System			Date		July 1, 2004	
Assembly					Major	Minor
Sub-Assembly			Level (Hig	gniight if applicable) iviajoi	WILLOT
Item	PMW and PSW BD	4				
	(10209800 -2 and -3	3)	INKD Kei	erence		
Serial Number	11, 12, 14,15 (TBC)					
NCR Occurred During	Manufacture	Inspe	ection	Test	Integration	Other
(Highlight if applicable)	Manalaotaro	порс		1000	integration	Othor
NCR Title	PMW and PSW foc	al positior	n shift			
		NCR D	escription	I		
An internal mechanical interference problem discovered during the manufacture of the PMW BDA has required a shift of the feedhorn and detector position with respect to the exterior envelope of the BDA. The exterior BDA envelope is unchanged. This NCR applies to PFM and FS models of the PMW and PSW BDAs.						
This problem causes a nor zone G3, and values tabula	n-conformance with the ated on sheets 5-7).	e focus pos The PMW	sition speci nominal fo	fied in the ICD d	rawing 10209721 hanged by 1.0mr	(see sheet 2, n from 33.2mm to

32.2mm. The PSW focus position is changed by 1.2mm from 25mm to 23.8mm. Front-short and back-short distances at the detectors are not affected by this change. The distance from the 300mK filter

Other effects of this NCR are a small mass increase (approximately 4 grams) and a slight CG shift (estimated z-cg decrease of ~0.5mm). (Note that the PFM PMW, which is the only affected unit yet assembled, has a mass of 605g

to the feedhorn entrance plane is increased by the shifts given above.

decrease of ~0.5mm). (Note that the PFM PMW, which is the only affected unit yet assembled, has a mass of 605g including the mass increase. This is still less than the 632g ICD limit.)

Cause of NCR

Disposition / Corrective Action

Document or Drawing Affected (Title, Number & Issue)

Estimated COST OF NCR (cost of : correction, Materials, Resource, and delay to Project etc.)

NON-CONFORMANCE REPORT (NCR)

PRODUCT ASSURANCE Space Science and Technology Department

		NCR Num	nber:	HR-SP-JPL-N	CR-006
	PA Manager ((Or Deputy)	Projec	t Manager (Or Deputy)	Date
(Signatures Required)					

Waiver List

- 1) HR-SP-JPL-RFW-005 (Sine Vibration Omission)
- 2) HR-SP-JPL-RFW-006 (Vibration Test Levels)

REQUEST FOR WAIVER / DEVIATION (RFW/RFD)

PRODUCT ASSURANCE Space Science and Technology Department

RFW/RFD Number:

HR-SP-JPL-RFW-005

Spacecraft / Project	Herschel	Originator's Name	Kalyani Sukhatmo	e
System / Experiment / Model	SPIRE	Signature / Date		
Sub-System	detectors	Request Type (Highlight applicable request)	Waiver (RFW)	Deviation (RFD)
Assembly		Organisation	Jet Propulsior	n Laboratory
Sub-Assembly		Ref. Doc. / Drwg No.	SPIRE-JPL-PI	RJ-000456
Item		Deferences		
Serial No.		References		

RFW/RFD Title

BDA and JFET module sine test deletion

End Items(s) Affected (Hardware, Software)						
Name		CI-N	umber			Model(s)
Bolometric Detector Assem	Iblies				CQ	M, PFM, FS
JFET Modules					CQ	M, PFM, FS
	Requ	irement / Interface Doc	uments Affect	ed		
Specification/Drawin	g Title	Number	Issue	Da	ite	App. Paragraph
BDA-SSSD (SPIRE-JPL-PI	RJ-		3.2	Jan	7,	BDA-DES-10, JFET-DES-
000456)				200	3	07
	Description	of Deviation / Discrena	ncy / Non-Con	forma	nce	
High Level Sine- Vibe Test is not performed on these units						
	le net perferned					
	Other Ite	ems or Requirements (F	Potentially) Aff	ected		
	Need fo	r RFW/RFD and Ration	ale for Accept	ance		
The hardware has to be o	walified under a	cold vibration test and	d is installed in	n the c	old v	vibration facility for the
purpose of the test. The h	nigh level sine v	ibration test configurat	tion will put th	e hard	lware	and the personnel at risk
since the cold vibration fa	acility is not stru	ucturally capable of wit	thstanding the	high	level	s. Obtaining additional
resources (cost and sche	dule) for develo	ping a new set-up is n	ot feasible at t	his tin	ne.	
	Approved	Rejected		Name	•	Date
JPL Engineering:						
JPL Product						
Assurance:						
CCB-Chairman:						
Principal Investigator						
Product Assurance:						
Co-Investigator						
Prime Contractor						
ESA Project Office						

REQUEST FOR WAIVER / DEVIATION (RFW/RFD)

RFW/RFD Number:

HR-SP-JPL-RFW-006

Spacecraft / Project	Herschel	Originator's Name		
System / Experiment /	SPIRE	Signature / Date		
Model		-		
Sub-System	Detector	Request Type	Waiver (RFW)	Deviation
-		(Highlight applicable request)		(RFD)
Assembly	BDA	Organisation	Jet Propulsion	n Laboratory
Sub-Assembly		Ref. Doc. / Drwg No.		
Item		Deferences		
Serial No.		References		

RFW/RFD Title

End Items(s) Affected (Hardware, Software)							
Name		CI-Nui	nber		Model(s)		
BDA				QN	I, CQM, PFM, FS		
	Requirem	ent / Interface Docu	ments Affecte	d			
Specification/Drawing Title		Number	Issue	Date	App. Paragraph		
BDA-SSSD	BDA-D	ES-10	3.2	Jan 7, 03			
Desc	ription of D	eviation / Discrepand	cy / Non-Conf	ormance			
 Random Vibration Test L There are five different fla which is of the PLW type 	evels are no avours of th	ot the same as given e BDA. The qualifica	in the BDA-S tion vibration	SSD (Iss) test is d	ue 3.2), BDA-Des-10 one on only one QM unit		
C	ther Items	or Requirements (Po	tentially) Affe	cted			
1. The random vibration tes	Need for RF	W/RFD and Rational	e for Accepta	nce SSL) in a	n email on May 2, 2003		
which superceded the BE 2. The qualification test pro Memorandum, Oct. 3, 200 5132-03-167]	 The random vibration test levels are as specified by Berend Winter (MSSL) in an email on May 2, 2003, which superceded the BDA-SSSD The qualification test program in using the PLW flavor as the only Qual Model, is given in Interoffice Memorandum, Oct. 3, 2003, Henry Abakians, Subject: SPIRE BDA Random Vibration Test Program [IOM 5132-03-167] 						
Ap	proved	Rejected	I	Name	Date		
Engineering:							
Product Assurance:							
CCB-Chairman:							
Principle Investigator							
Product Assurance:							
Co-Investigator							
Prime Contractor							

REQUEST FOR WAIVER / DEVIATION (RFW/RFD)

PRODUCT ASSURANCE Space Science and Technology Department

RFW/RFD Number:

HR-SP-JPL-RFW-006

ESA Project Office		

INTEROFFICE MEMORANDUM 5132-03-167 October 3, 2003 Project: Herschel/Planck

TO: Martin Herman

FROM: Henry Abakians

SUBJECT: SPIRE BDA random vibration test program

This IOM outlines the random vibration test program for Herschel/Planck project's SPIRE element. Due to schedule and cost constrains, our proposed test program does not strictly conform to JPL's standard random vibration program; however, it maintains a medium to low risk posture.

The recommendations will concentrate on the vibration environment since that is the source of highest stresses on the unit. The SPIRE qualification program also includes thermal cycling and accelerated aging, but it will not be addressed in this IOM.

The SPIRE element of the JPL Herschel/Planck project has several Bolometer Detector Assemblies (BDA). These BDAs are identical in their outer housing, and primarily vary in a thermally isolated suspension which contains the bolometer array and the feedhorn (the suspension is held on to the housing via two rows of braided Kevlar strings). There are five flavors to these suspensions: PSW, PMW, PLW, SSW, SLW (P: photometer, S: spectrometer, LW: long wave, MW: medium wave, SW: short wave). The suspensions also vary in their mass and center of gravity (PLW the heaviest, SSW the lightest).

In a traditional JPL Qual/FA test program, a Qual unit for each BDA flavor would be tested (3-axis, 2 min. per axis), and all subsequent flight units would be FA tested (3-axis test, FA levels, 1 min. per axis). In a traditional Protoflight program, all flight units would be protoflight tested (3-axis test, Qual levels, 1 min. per axis).

The SPIRE element has evolved into a Qual/FA/Protoflight test program. We have built and successfully tested a qual unit (CQM, PLW). It was random vibrated at Qual levels and durations (2 minutes) in three axes. This unit successfully passed the random vibration test, and remained within the specifications (performance or otherwise). Our proposed test program for all subsequent BDAs is as follows:

BDA type	test program	random vibe axis	duration
PSW	PF	x	2 min
PMW	PF	x	2 min
PLW	Qual/PF	3 axis Qual	2min/axis
		PF-x axis only	1 min
SSW	PF	x	2 min
SLW	PF	Х	2 min

JPL

The test program deviates from a standard JPL program; however, we believe it maintains an acceptable risk posture for the following reasons:

1-The vibration in the z-direction is substantially more benign than x and y. Therefore, we can eliminate the random vibration test in the z-direction for all flight units (this is based on the CQM test results).

2-There is sufficient cross-talk between x and y (based on CQM test results). Therefore, we can eliminate the y direction shake and perform the test in the x-direction for an additional 1 minute (x is the more severe direction; moreover, since we are not concerned with low cycle fatigue failure – substantiated by the CQM test - we feel justified in extending the x-direction test duration to 2 minutes, thus indirectly testing for y-direction).

While it is clearly more desirable to test in y-direction directly, eliminating this test is primarily driven by cost and schedule constraints: all our test are performed at or below 100K, thus a one axis vibration will require a minimum of 3 work days; however, extending a 1 minute test to 2 minutes will not impact schedule, cost, or the safety of the hardware.

3-We have tested the heaviest assembly (PLW) for our qualification program. This ensures that our design is validated for the highest possible stresses in the Kevlar string.

4- Force transducers will be utilized in 3 directions. Their responses will be correlated with the CQM results providing additional assurance on hardware workmanship, reliability and robustness.

John Forgrave, Concurrence:

Environmental requirements Engineering, Group Supervisor

Concurrence:

Paul MacNeal, Dynamics Engineer Herschel/Planck

Concurrence:

Tim Larson, Mission Assurance Manager Herschel/Planck

Distribution: Bill McAlpine Margaret Frerking Michael O'Connell Gary Parks Kalyani Sukhatme Mark Weilert -2-

Open Problem / Failure Report (PFR) List

Open PFR's on This Hardware (PFM PLW BDA 10209800-1 S/N 014): NONE

Open PFR's on Similar Hardware:

NONE

SPIRE Bolometer Detector Assembly Handling Document

Prepared by Mark Weilert

20 August, 2003 revised 20 Nov. 03

WARNINGS

BDA is Contamination Sensitive: Open Red Shipping container only in a FED-STD-209 Class 10000 clean room (ISO 14644-1 class 7) or better. Handle BDA with gloves only.

BDA is ESD Sensitive, handle with grounding straps, ESD-safe gloves and ESD smocks at an ESD-safe workstation. Note that no connector savers or other connector protection are shipped with the BDA, per the business agreement.

BDA is Fragile: Do not drop or otherwise shock. Take care to avoid applying unnecessary force to the Kevlar suspended portion of the BDA. In particular, do not torque the thermal strap interface fasteners to greater than 320 N*mm. The BDA is preferably held/supported either by its square mounting flange, or by the light-seal can which holds the electrical connectors. Note that the red shipping container provides only minimal shock isolation, and should be treated as equally fragile while the BDA is inside. Because the Kevlar tension is higher at room temperature than cold, **DO NOT SHAKE TEST AT ANY TEMPERATURE ABOVE 100K** (except for low-level survey shakes, 0.25g typical). A full level shake at room temperature risks **catastrophic** failure. Avoid touching Kevlar braid with anything, it is sensitive to abrasion or cutting by seemingly smooth objects.

BDA is Humidity Sensitive: The Kevlar tension increases with moisture absorption. Keep in a dry environment when possible during storage or while not being handled. (While being actively handled, higher humidity is acceptable to maintain ESD safety, 35-50% RH typical.)

BDA is Temperature Sensitive: The Kevlar tension and creep increases at high temperatures, **DO NOT BAKE OUT AT ABOVE 80°C.**

Unpacking Procedure:

The BDA is shipped in a multi-layer container. A custom shipping container (red) inside a case inside case. The case should be opened only in a reasonably clean area in order to protect the red shipping container, which should only be opened in a class 10000 or better clean room at an ESD-safe workstation. The red shipping container has three shockmonitors attached to the top, labeled 10g, 20g and 50g. The monitors have steel balls and springs which are contained between plastic rails if the unit has not seen the marked shock level. If the monitors have experienced their specified shock, some of the balls will be loose in the bottom. Please note the state of the three shock monitors and report the result to JPL. These monitors may need to be removed from the top of the red shipping container before it is opened, since they probably obstruct access to the vent plug. They are attached with a double-stick tape adhesive and may be pulled off by applying force to the white base. (Avoid just pulling on the clear case, as this will likely open up the monitor and spill the contents.) **NOTE: The cases holding the red shipping container must be returned to JPL for use in future shipments.**

Opening the Red Shipping Container:

An exploded view of the container is shown below. The top is the side with the vent plug in the center. Make sure the area around the plug is clean, then remove the plug to equalize the pressure. The 8 closeout screws are next loosened alternately (with a 1/8"

hex key) to relieve pressure on the o-ring seal, and then backed off completely to disengage the screws from the base. The container lid is then lifted straight up to open the container. Two guide pins prevent significant sideways motion of the lid until it is high enough to clear the BDA The BDA is removed from the shipping container base by removing the mounting nuts and washers from the rubber shock mounts and lifting the BDA straight up.

For re-installation of the BDA into the red container, note that the light can must be up, as shown, to prevent the container lid from hitting the BDA. Also, the epoxy terminations of the Kevlar braids should be oriented towards the cutouts in the container base.

SPIRE

Subject: BDA Electronic Handling Procedure, SPIRE P/LW-PFM S/N014

Prepared by: Anthony Turner

Document No:

Issue: Draft

Date: 2/23/05

Checked by:

Date:....

Approved by:....

Date:....

Distribution

Change Record

Issue

Date

Electronic Handling Procedure P/LW-PFM S/N014

Date:

Table of Contents

1.	Introduction	page	6
2.	Handling	page	6
3.	Signal Requirements	page	6
4.	Device Isolation	page	7
5.	Room Temperature Detector Values Check	page	7
6.	Load Resistor-Detector Continuity Check	page	10

Electronic Handling Procedure P/LW-PFM S/N014

Glossary

Electronic Handling Procedure P/LW-PFM S/N014

1. Introduction:

This document provides the Electronic Handling Procedure for the Proto-Flight Model-Photometer Long Wavelength Bolometer Detector Array serial number 014.

2. Handling:

- 1. **BDA is Contamination Sensitive**: Handle BDA with Gloves only in a FED-STD-209 Class 10000 clean room (ISO 14644-1 class 7) or better.
- 2. **BDA is ESD Sensitive**: Electronic parts included in the P/LW-PFM S/N014 science instrument are subject to electro-static discharge failures. Please handle with appropriate ESD hardware handling procedures. Handle with grounding straps, ESD-safe gloves, ESD smocks at an ESD-safer workstation.

3. Signal Requirements:

The interface circuit for the BDA contains a series of resistive networks as depicted in figure 1. Two high resistive load resistors (~ 6-14 M Ω) are coupled to a NTD Ge thermistor (R _{bolo}) through a lithographed metalization circuit and provide the bias circuitry for the device. The maximum DC input voltage for the bias lines V+ and V- lines is +/- 1 V, and the maximum AC input voltage is 100mV rms.

Figure 1: Interface circuit of the Bolometer Detector Array

Electronic Handling Procedure P/LW-PFM S/N014

Date:

DC Voltage-Current Limits for Room Temperature Detector Values Check:

Signal	Pin	Nominal Value	Max Value
V+	25	+50mV	+1 V
V-	50	-50mV	-1 V
I+,I-	25,50	10µA	25µA

DC Voltage-Current Limits for room temperature Load Resistor-Detector Continuity Check:

Signal	Pin	Nominal Value	Max Value
V+	25	+50mV	+1 V
V-	50	-50mV	-1 V
I+, I-	25,50	<0.5µA	1µA

4. Device Isolation Check:

The 300mK stage Kevlar suspended portion of the detector chassis is grounded directly to the electronic ground on pin 51 of the nanonics 51 pin connectors on each side. A resistance of less than 200 Ω can be checked from the thermal strap of the 300mK stage to electrical ground pin 51. The 2K stage is electrically isolated from the electronic ground via the Kevlar supports. Measuring from pin 51 to any metal section of the 2K stage will yield an open circuit.

5. Room Temperature Detector Values Check

The final measured DC resistance value for each of the bolometer detector at room temperature is shown in tables 1 and 2. The measurements bypass the load resistors in the circuit measuring directly through the output signal pins on the two nanonics 51 pin connectors. All measurements were performed with a Fluke 87 True RMS Multi-meter set in the $4k\Omega$ range. All measurements are in $k\Omega$ unless designated otherwise. Channels that are out of range are re-measured using the $40M\Omega$ range to determine their value. The failure mode of any particular channel is also designated in tables 1 and 2. The designation for the failure modes are **open**- Channel open at 300mK, **short**-channel shorted at 300mK, **float**- channel floating at 300mK or **caution**- for cautionary concerning due to detector performance status change during testing at 300mK.

Electronic Handling Procedure P/LW-PFM S/N014

Issue: Date:

Table 1: P/LW-PFM S/N014 Room Temperature DC Detector Measurements J01 connector

Connector		Nanonics	Nanonics	Detector	Resistance	Failure
Label	Signal	Pin From	Pin To	Label	(kohms)	Mode
J01	1	1	26	R1	3.80M	
	2	2	27	A8	2.727	
	3	3	28	A7	2.636	
	4	4	29	A6	2.586	
	5	5	30	A9	2.713	
	6	6	31	C 9	2.797	
	7	7	32	B8	2.74	
	8	8	33	B7	2.648	
	9	9	34	C7	2.664	
	10	10	35	B5	2.534	
	11	11	36	B6	2.547	
	12	12	37	A5	2.435	
	13	13	38	T1	2.48	
	14	14	39	B4	2.496	
	15	15	40	C 4	2.569	
	16	16	41	B3	2.562	
	17	17	42	C2	2.694	
	18	18	43	B2	2.627	
	19	19	44	B1	2.698	
	20	20	45	A3	2.627	
	21	21	46	A4	2.609	
	22	22	47	A1	2.778	
	23	23	48	DK1	2.77	
	24	24	49	A2	2.784	
	V- to V+	50	25		0.694M	
	V- to gnd	50	51		>40M	
	V+ to gnd	25	51		>40M	
	Chassis to gnd	chassis	51		68.1 ohms	

Electronic Handling Procedure P/LW-PFM S/N014

Date:

Table 2: P/LW-PFM S/N014 Room Temperature DC Detector Measurements J02 connector

Connector	Signal	Nanonics	Nanonics	Detector	Resistance	Failure
Label	Signai	Pin From	Pin To	Label	(kohms)	Mode
J02	1	1	26	E1	2.56	
	2	2	27	E2	2.489	
	3	3	28	E3	3.564	
	4	4	29	E4	2.399	
	5	5	30	D1	2.479	
	6	6	31	D2	2.422	
	7	7	32	D3	2.389	
	8	8	33	D4	2.337	
	9	9	34	C1	2.49	
	10	10	35	C3	2.408	
	11	11	36	C5	2.323	
	12	12	37	T2	2.27	
	13	13	38	E5	2.276	
	14	14	39	C6	2.38	
	15	15	40	C8	2.482	
	16	16	41	D5	2.367	
	17	17	42	D6	2.411	
	18	18	43	D7	2.478	
	19	19	44	D8	2.527	
	20	20	45	E7	2.523	
	21	21	46	E6	2.455	
	22	22	47	E8	2.564	
	23	23	48	DK2	2.604	
	24	24	49	E9	2.652	
	V- to V+	50	25		0.662M	
	V- to gnd	50	51		>40M	
	V+ to gnd	25	51		>40M	
	Chassis to gnd	chassis	51		61.2 ohms	
Project Document

Electronic Handling Procedure P/LW-PFM S/N014

6. Load Resistor-Detector Continuity Check

A DC continuity check of the load resistors in series with the bolometer detectors will complete the electrical checkout at room temperature. The test can be performed with a Fluke 87 True RMS multi-meter set on the 40M Ω scale. The data set measures from V+ to output signal S+ and V- to output signal S- for each channel. The nominal value read for the live bolometer channels (room temp detector DC resistance ~ 1.5k Ω) should read approximately 3-6M Ω . Channels with open bolometer channels will give values 8M Ω or higher. The Data sets for the P/LW-PFM S/N014 for the final test through the entire circuit are shown in tables 3 and 4. Electronic Handling Procedure P/LW-PFM S/N014

Issue: Date:

Table 3:	P/LW-PFM	S/N014 Load	Resistor-	Detector	DC Continuity	/ Check J01
connecto	<u>or</u>					

-						
Connector		Detector	Bias V+	V + to S +	Bias V-	V- to $S-$
Label	Signal	Label	(pin 25) To	Resistance	(pin 50)	Resistance
Label		Laber	S+ pin	(Mohms)	To S- pin	(Mohms)
J01	1	R1	1	5.04	26	5.04
	2	A8	2	4.2	27	4.2
	3	A7	3	4.2	28	4.2
	4	A6	4	4.2	29	4.2
	5	A9	5	4.22	30	4.24
	6	C9	6	4.23	31	4.24
	7	B 8	7	4.24	32	4.24
	8	B7	8	4.23	33	4.24
	9	C7	9	4.24	34	4.24
	10	B 5	10	4.24	35	4.24
	11	B 6	11	4.24	36	4.24
	12	A5	12	4.28	37	4.24
	13	T 1	13	4.24	38	4.25
	14	B4	14	4.25	39	4.26
	15	C4	15	4.24	40	4.24
	16	B3	16	4.25	41	4.25
	17	C2	17	4.26	42	4.25
	18	B 2	18	4.28	43	4.28
	19	B 1	19	4.28	44	4.25
	20	A3	20	4.25	45	4.24
	21	A4	21	4.27	46	4.28
	22	A 1	22	4.28	47	4.28
	23	DK1	23	4.28	48	4.28
	24	A2	24	4.28	49	4.28

Electronic Handling Procedure P/LW-PFM S/N014

Issue: Date:

Table 4: P/LW-PFM S/N014 Load Resistor- Detector DC Continuity Check J02 connector

Connector	Signal	Detector	Bias V+ (pin 25) To	V+ to S+ Resistance	Bias V- (pin 50)	V- to S- Resistance
Label		Laber	S+ pin	(Mohms)	To S- pin	(Mohms)
J02	1	E1	1	4.12	26	4.12
	2	E2	2	4.12	27	4.12
	3	E3	3	4.12	28	4.12
	4	E4	4	4.12	29	4.12
	5	D1	5	4.12	30	4.16
	6	D2	6	4.16	31	4.12
	7	D3	7	4.16	32	4.12
	8	D4	8	4.12	33	4.12
	9	C1	9	4.12	34	4.12
	10	C3	10	4.16	35	4.12
	11	C5	11	4.16	36	4.16
	12	T 2	12	4.16	37	4.18
	13	E5	13	4.17	38	4.12
	14	C6	14	4.14	39	4.16
	15	C8	15	4.12	40	4.16
	16	D5	16	4.12	41	4.12
	17	D6	17	4.16	42	4.16
	18	D7	18	4.16	43	4.14
	19	D8	19	4.12	44	4.12
	20	E7	20	4.16	45	4.16
	21	E6	21	4.16	46	4.16
	22	E8	22	4.16	47	4.16
	23	DK2	23	4.15	48	4.2
	24	E9	24	4.16	49	4.16

EIDP Coverpage For PLW BDA (SN014)

Unit Identfication						
Name	PL'	W BDA	([]		
Part #	10209800-1					
S/N	<i>;</i>	#014				

Environmemtal Testing							
			Duration				
	Axes		or Number of				
	Tested	Temperature	Cycles	Pass/Fail	Requirement	Source	Waiver #
			2 min per		X, Y, Z at 90 K	SSSD	HR-SP-JPL-
Random Vibration Test	Х	100 K	axis	Р	1 min per axis	Sec # 3.4	RFW-006
						SSSD	HR-SP-JPL-
High Level Sine Vibe Test	None	NA	NA	NA	X, Y, Z at 90 K	Sec # 3.4	RFW-005
					None (other than as part of the assembly		
Bakeout	NA	NA	NA	NA	procedure)	D-20549	
					1 thermal cycle		
		RoomT to			roomT to 77 K		
Thermal Cycles	NA	~ 6 K	2	Р	(max 5)	D-20549	

Other Testing	Frequ	iency [Hz]					
	Pre-full	Post-full			Minimum		
	level	level			Performance	Source	Waiver #
Lowest Resonant					> 200 Hz	SSSD	
Frequency	257 Hz	251 Hz			(Goal: >250 Hz)	Sec # 3.1.3	NA
Metrology Measurements v	I vere perfo	rmed before a	and after the V	ibration Te	I st and the Therma	I Cycles	
	Motion			Meets	Performance		
	in X/Y	Motion in Z		Goal ?	Goal	Source	Waiver #
Maximum motion due to					125 µm in X/Y	SSSD	
Random Vibration Test	31 µm	24 μm		Y	and 500 µm in Z	Sec # 3.1.1	NA
Maximum motion due to					125 μm in X/Y	SSSD	
the 1st thermal cycle	11 μm	11 μm		Y	and 500 µm in Z	Sec # 3.1.1	NA
Maximum motion due to					125 μm in X/Y	SSSD	
the 2nd thermal cycle	5.8 μm	6.7 μm		Y	and 500 µm in Z	Sec # 3.1.1	NA
Cumulative Maximum					125 μm in X/Y	SSSD	
motion	46.9 μm	38.7 μm		Y	and 500 μ m in Z	Sec # 3.1.1	NA
Cold Continuity Measurem	l ents were	made during	l each of the the	rmal cycle	<u> </u>		
				Pass/Fail	Requirement	Source	Waiver #
Cold Continuity Test				1 400/1 41			
(1st Thermal Cycle)				Р	None	NA	NA
Cold Continuity Test							
(2nd Thermal Cycle)				Р	None	NA	NA

ENVIRONMENTAL TEST AUTHORIZATION AND SUMMARY (ETAS)

AUTHORIZATION SECTION								
PROJECT Herschel			LOG NO. HS034					
TEM/ASSEMBLY TITLE				DATE ISSUED 11/23/2004				
REFERENCE DESIGNATION NUMBER	PART NO. (IF MULTIPLE, AT 10209800	TACH LIST)	REV.	SERIAL NO. 014				
HARDWARE TYPE	FLIGHT SPARE		PRE-ENVIRONMENTAL INSPECTI	ON REPORT NUMBER (ATTACH IR)				
WIRING HARNESS	EM SE	PART NO.	REV.	SERIAL NO.				
TEST DESCRIPTION (CHECK ALL APPLICABLE)			TYPE OF TEST	FLIGHT ACCEPTANCE				
RANDOM VIBRATION THERMAL VAC.	THERMAL ATMOSPHERE	PERFORMED ON THIS UN	PROTO FLIGHT					
YES NO (IF NO, ATTACH E HAS THE UNIT PASSED ALL PRE-ENVIRONMENTAL FU	XCEPTIONS LIST)	ENTER PROJ. DOC. NO.	AND REV					
YES NO (IF NO, ATTACH E HAVE ALL DESIGN ANALYSES BEEN COMPLETED AND	XCEPTIONS LIST) REQUIRED CHANGES BEEN	BRIEF EXPLANATION	. <u></u>					
YES NO (IF NO, ATTACH E IS THE TEST ARTICLE IDENTICAL TO OTHER FLIGHT L	XCEPTIONS LIST)	BRIEF EXPLANATION						
YES NO (IF NO, ATTACH EXCEPTIONS LIST) BRIEF EXPLANATION ARE ALL PERS AGAINST THIS LINIT CLOSED?								
YES INO (IF NO, ATTACH EXCEPTIONS LIST) BRIEF EXPLANATION HAVE ALL WAIVERS AND ECRS BEEN APPROVED AND ARE THEY INCORPORATED?								
YES NO (IF NO, ATTACH EXCEPTIONS LIST) BRIEF EXPLANATION TEST AUTHORIZED BY								
COGNIZANT ENGINEER DATE TECHNICAL MGR./INSTR MRG./PI PREP DATE ENVRONMENTAL REQUIREMENTS ENG. DATE								
(4/11/23/04) Matin fr 2/2/05 NEX 2000 2-8-05								
TEST AGENCY (IF MULTIPLE, ATTACH SUMMARY AND	TEST DATES) TEST INITIAT	TION DATE ACCUMUL	ATED OPERATING HOURS PRIOR	TO FIRST ENVIRONMENTAL TEST				
SERIAL NUMBERS ACTUALLY TESTED	TEST TERMIN	ATION DATE OPERATIN	NG HOURS DURING ENVIRONMENT	AL EXPOSURE				
	TEST	DESCRIPTION						
	PYROSHOCK SHOCK AXES: X Y	Z PRESSURE: <1E-5 290K to 7K	CUUM TEMPERATURE AT	Mosphere Dother				
	SHOCKS/AXIS:	NO OF CYCLES: 2	NO OF CYCLES:					
EMC COND. SUSC.	COND. EMIS.		TEMP. LEVEL (°c) AND ACCUMUL. HOT:°c,	ATED DURATION (HRS.) _h COLD:°c, h				
WERE THERE ANY PFRs GENERATED DURING ENVIRO	DNMENTAL TESTS?	LIST PFR NOS. / BF	HOT:°c, RIEF EXPLANATION	_hCOLD:°c,h				
	NS COMPLETE?	LIST PFR NOS. / BF	RIEF EXPLANATION					
REPORTS. IF NO WERE ALL PLANNED TESTS/LEVELS/DURATIONS ACH	D, ATTACH EXPLANATION)							
YES NO (IF NO, ATTACH E)	(CEPTIONS LIST)							
COGNIZANT ENGINEER DA	TED. SEE THE ATTACHED SU	IMMARY FOR ACTIONS TH R MRG./PI PREP REP	IAT NEED TO BE TAKEN. DATE ENVIRONMENTAL REQ	UIREMENTS ENG. DATE				
LARDWARE HAS SUCCESSFULLY COMPLETED TH COGNIZANT ENGINEER DA		ISTED ON THIS FORM OR I R MRG./PI PREP REP	REMAINING ACTIONS HAVE BEEN T DATE ENVIBONMENTAL REQ	I AKEN, INCLUDING RETEST. UIREMENTS ENG. DATE				
-RIA 218/05	Matin Je	n 2/9/05	i Asta	W/ 2-8-05				

OTHER AUTHORIZATION PROVISIONS AND EXPLANATIONS

1 is a 1-axis cold vibration test (100 K) done on the BDA. The test will be done with the BDA unit mounted inside a cold vibration facility. 3 force transducers will be mounted in the BDA load path in order to measure the BDA response. After the vibration test, 2 thermal cycles will be completed in a vacuum environment from 290K to 7K.

		NOT STREET
	p.	
- Internet		

ENVIRONMENTAL TEST THORIZATION AND SUMMARY (ETAS) ENVIRONMENTAL TEST SUMMARY

HARDWARE	S/N	ETAS	TEST ENVIRONMENT LEVELS & DURATION	DATE TEST PERFORMED	TEST AGENCY	PASS/ FAIL	COMMENTS
BDA (10209800)	14	34					
			LATERAL				
			2 minute Random Vibe				
			+3dB/octave 20-100Hz			н. С	
			0.06 g^2/Hz 100-138.5 Hz				
			+36dB/octave 138.5-170 Hz				
			0.7 g^2/Hz 170-200 Hz				
			-48dB/octave 200-220 Hz				
			.1 g^2/Hz 220-300 Hz				
	e.		-9 dB/octave 300-2000 Hz				
			Total Input: 8.0 Grms				
			Spectrum to be notched in		."		
			order to get 15 g's response				
			RMS				
			LONGITUDINAL (not				
			done on this unit)				
			2 minute Random Vibe				
			+3dB/octave 20-100Hz				
			0.08g^2/Hz 100-400Hz				
			-12dB/octave 400-2000Hz				
	· · .		Total Input: 6.2 Grms				
			Spectrum to be notched in				
			order to get 15 g's response				
			RMS				
			Each axis 1/4 g sine sweep 20-				
			2000 Hz each axis $1 \sim 100 \text{ K}$				
	· *						
			2 Inermal cycles from				
			290K to 7K				

PAGE 3 JPL 2683 R 1/98 FF

C:\VcpNT\Daten\m+p\SPIRE\BDA\101647 run 3 xax.rsn

C:\VcpNT\Daten\m+p\SPIRE\BDA\101647 run 3 xax.rsn

2

PERFORMANCE VERIFICATION MATRIX - PFM PLW BDA - S/N 10209800-1-014

BDA Performance

ltem	D. Value	Min Perf	Measured Median	Unit	Reference	Note
Number of bad optical pixels	= 4	= 11	0		BDA-PER-01	
(NEPphoton/NEPtotal)^2 (derived)	> 0.55	> 0.46	0.44		BDA-PER-02	at 16 mV bias
Optical efficiency*	> 0.85	> 0.65	0.76		BDA-PER-03	
Detector time constant	< 18	< 32	5.9	ms	BDA-PER-06	at 20 mV bias
Vmax***	< 11***		5.8	mV	BDA-DRCU-22	
Calibration uniformity**	> 0.99	> 0.99	N/M		BDA-PER-08	
Cross-talk (n-n)**	< 0.01	< 0.05	N/M		BDA-PER-09	
Cross-talk (non n-n)**	< 0.001	< 0.001	N/M		BDA-PER-09	
1/f knee frequency	< 30	< 100	56	mHz	BDA-PER-10	at 21.2 mV bias
Average conducted heat load from 1.7 K	< 8	< 15	< 2.1	uW	BDA-TEC-06	

BDA Design Values (at 300 mK)

ltem	Target	Measured Median	Unit	Reference	Note
R0	180.0	99.9	Ohms	BDA-SSSD	
Delta	41.8	42.2	K	BDA-SSSD	
R300	24.0	14.6	MOhms	BDA-SSSD	
G300	40.0	68.3	pW/K	BDA-SSSD	
Beta	1.5	1.59		BDA-SSSD	
C300	1.00	0.63	pJ/K	BDA-SSSD	
Rlr	10.0	8.1	MOhms	BDA-SSSD	room temp
Dark Sdc	6.0	4.3	e8 V/W	BDA-SSSD	at 21.2 mV bias
Dark NEP (1 Hz), incl 10 nV/rtHz amp. noise	3.3	4.9	e-17 W/rtHz	derived	at 21.2 mV bias
Dark NEP (0.1 Hz), incl 10 nV/rtHz amp. noise	3.3	5.7	e-17 W/rtHz	derived	at 21.2 mV bias
Vmax	5.0	5.2	mVrms	BDA-SSSD	SSSD value in error
BDA temperature rise from 1.7 K	< 10	7	mK	BDA-HCO-1	
BDA thermal time constant	100	< 100	S	BDA-HCO-2	what value?

*assumes vlower = 1.02 vcutoff

**not tested

***Thermistor values are not included

Pixel Performance		l			L	l			l	L
Item	DV	MP								
BDA connector			J05	J05	J05	J05	J05	J05	J05	J05
BDA pins			1,26	2,27	3,28	4,29	5,30	6,31	7,32	8,33
BoDAC Connector			4	4	4	4	4	4	4	4
Channel ID			1	2	3	4	5	6	7	8
Detector ID			R1	A8	A7	A6	A9	C9	B8	B7
BDA Pixel Operability			Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
BoDAC channel Operability	N/A	N/A	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Noisy BoDAC channel	N/A	N/A	No	No	No	No	No	No	No	No
(NEPphoton/NEPtotal)^2 (derived)	> 0.55	> 0.46	N/M	0.47	0.44	0.44	0.46	0.44	0.46	0.44
Optical efficiency*	> 0.85	> 0.65	N/M	0.77	0.78	0.72	0.81	0.78	0.75	0.74
Detector time constant	< 18	< 32	N/M	6.2	5.9	6.3	6.5	5.4	5.1	5.8
Calibration uniformity**	> 0.99	> 0.99	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cross-talk (n-n)**	< 0.01	< 0.05	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cross-talk (non n-n)**	< 0.001	< 0.001	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1/f knee frequency	< 30	< 100	N/A	47	47	56	47	47	47	56
Pixel Design Values										
Item	Tai	rget								
R0	18	0.0	4.94E+06	149.08	86.20	99.86	121.14	104.51	136.46	103.32
Delta	41	1.8	0.00	41.59	43.09	42.22	42.33	42.10	41.70	42.34
G300	4	10	N/A	66.71	67.39	67.11	65.66	66.07	67.67	68.94
Beta	1	.5	N/A	1.58	1.61	1.59	1.61	1.61	1.60	1.57
C300	1.	00	N/A	0.62	0.63	0.66	0.66	0.55	0.52	0.61
Gamma	1 (fi	xed)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
R300	24	4.1	5.0	19.4	13.8	14.2	17.5	14.6	18.0	14.9
Rlr+	10	0.0	8.2	8.1	8.0	8.1	8.2	8.2	8.2	8.1
RIr-	10	0.0	8.1	8.0	8.1	8.2	8.1	8.1	8.1	8.2
Dark Sdc	6	.0	N/M	4.7	4.3	4.3	4.6	4.3	4.6	4.4
Dark NEP (1 Hz), incl 9 nV/rtHz amp.***	3	.3	N/M	4.74	4.72	4.82	4.83	4.68	4.65	4.68
Dark NEP (0.1 Hz), incl 9 nV/rtHz amp.***	3	.3	N/M	5.33	5.45	5.51	5.49	5.21	5.30	5.20
Vmax	5	.0	N/M	5.85	4.91	4.99	5.48	5.04	5.68	5.18
*assumes vlower = 1.02 vcutoff										
**not tested										

Pixel Performance										
Item										
BDA connector	J05	J05	J05	J05	J05	J05	J05	J05	J05	J05
BDA pins	9,34	10,35	11,36	12,37	13,38	14,39	15,40	16,41	17,42	18,43
BoDAC Connector	4	4	4	4	4	4	4	4	4	4
Channel ID	9	10	11	12	13	14	15	16	17	18
Detector ID	C7	B5	B6	A5	T1	B4	C4	B3	C2	B2
BDA Pixel Operability	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
BoDAC channel Operability	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Noisy BoDAC channel	No	No	No	No	No	No	???	No	No	No
(NEPphoton/NEPtotal)^2 (derived)	0.45	0.44	0.41	0.45	N/M	0.44	0.44	0.42	0.44	0.42
Optical efficiency*	0.72	0.73	0.75	0.75	N/M	0.75	0.74	0.74	0.78	0.76
Detector time constant	5.4	5.4	6.7	6.4	N/M	6.0	5.7	5.8	5.8	6.7
Calibration uniformity**	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cross-talk (n-n)**	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cross-talk (non n-n)**	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1/f knee frequency	47	56	56	47	84	56	47	65	56	47
Binal Daaine Maluaa										
Pixel Design values			1							
Pixel Design Values Item										
R0	107.07	108.24	88.47	107.46	95.44	92.89	98.82	89.04	101.79	82.16
R0 Delta	107.07 42.41	108.24 42.08	88.47 41.73	107.46 42.42	95.44 39.83	92.89 42.97	98.82 42.68	89.04 42.10	101.79 42.77	82.16 42.83
R0 Delta G300	107.07 42.41 67.93	108.24 42.08 68.35	88.47 41.73 68.40	107.46 42.42 69.31	95.44 39.83 N/M	92.89 42.97 69.26	98.82 42.68 68.92	89.04 42.10 71.45	101.79 42.77 73.13	82.16 42.83 74.60
R0 Delta G300 Beta	107.07 42.41 67.93 1.60	108.24 42.08 68.35 1.57	88.47 41.73 68.40 1.60	107.46 42.42 69.31 1.56	95.44 39.83 N/M N/M	92.89 42.97 69.26 1.59	98.82 42.68 68.92 1.59	89.04 42.10 71.45 1.57	101.79 42.77 73.13 1.56	82.16 42.83 74.60 1.58
R0 Delta G300 Beta C300	107.07 42.41 67.93 1.60 0.56	108.24 42.08 68.35 1.57 0.56	88.47 41.73 68.40 1.60 0.72	107.46 42.42 69.31 1.56 0.67	95.44 39.83 N/M N/M N/M	92.89 42.97 69.26 1.59 0.64	98.82 42.68 68.92 1.59 0.60	89.04 42.10 71.45 1.57 0.63	101.79 42.77 73.13 1.56 0.63	82.16 42.83 74.60 1.58 0.76
R0 Delta G300 Beta C300 Gamma	107.07 42.41 67.93 1.60 0.56 1.0	108.24 42.08 68.35 1.57 0.56 1.0	88.47 41.73 68.40 1.60 0.72 1.0	107.46 42.42 69.31 1.56 0.67 1.0	95.44 39.83 N/M N/M N/M 1.0	92.89 42.97 69.26 1.59 0.64 1.0	98.82 42.68 68.92 1.59 0.60 1.0	89.04 42.10 71.45 1.57 0.63 1.0	101.79 42.77 73.13 1.56 0.63 1.0	82.16 42.83 74.60 1.58 0.76 1.0
Item R0 Delta G300 Beta C300 Gamma R300	107.07 42.41 67.93 1.60 0.56 1.0 15.6	108.24 42.08 68.35 1.57 0.56 1.0 15.1	88.47 41.73 68.40 1.60 0.72 1.0 11.7	107.46 42.42 69.31 1.56 0.67 1.0 15.7	95.44 39.83 N/M N/M 1.0 9.6	92.89 42.97 69.26 1.59 0.64 1.0 14.6	98.82 42.68 68.92 1.59 0.60 1.0 15.0	89.04 42.10 71.45 1.57 0.63 1.0 12.4	101.79 42.77 73.13 1.56 0.63 1.0 15.6	82.16 42.83 74.60 1.58 0.76 1.0 12.7
Item R0 Delta G300 Beta C300 Gamma R300 RIr+	107.07 42.41 67.93 1.60 0.56 1.0 15.6 8.2	108.24 42.08 68.35 1.57 0.56 1.0 15.1 8.2	88.47 41.73 68.40 1.60 0.72 1.0 11.7 8.2	107.46 42.42 69.31 1.56 0.67 1.0 15.7 8.2	95.44 39.83 N/M N/M 1.0 9.6 8.2	92.89 42.97 69.26 1.59 0.64 1.0 14.6 8.4	98.82 42.68 68.92 1.59 0.60 1.0 15.0 8.2	89.04 42.10 71.45 1.57 0.63 1.0 12.4 8.2	101.79 42.77 73.13 1.56 0.63 1.0 15.6 8.2	82.16 42.83 74.60 1.58 0.76 1.0 12.7 8.2
Item R0 Delta G300 Beta C300 Gamma R300 RIr+ RIr-	107.07 42.41 67.93 1.60 0.56 1.0 15.6 8.2 8.1	108.24 42.08 68.35 1.57 0.56 1.0 15.1 8.2 8.2	88.47 41.73 68.40 1.60 0.72 1.0 11.7 8.2 8.2	107.46 42.42 69.31 1.56 0.67 1.0 15.7 8.2 8.2	95.44 39.83 N/M N/M 1.0 9.6 8.2 8.2	92.89 42.97 69.26 1.59 0.64 1.0 14.6 8.4 8.2	98.82 42.68 68.92 1.59 0.60 1.0 15.0 8.2 8.2	89.04 42.10 71.45 1.57 0.63 1.0 12.4 8.2 8.2	101.79 42.77 73.13 1.56 0.63 1.0 15.6 8.2 8.2 8.2	82.16 42.83 74.60 1.58 0.76 1.0 12.7 8.2 8.2
Item R0 Delta G300 Beta C300 Gamma R300 RIr+ RIr- Dark Sdc	107.07 42.41 67.93 1.60 0.56 1.0 15.6 8.2 8.1 4.4	108.24 42.08 68.35 1.57 0.56 1.0 15.1 8.2 8.2 8.2 4.4	88.47 41.73 68.40 1.60 0.72 1.0 11.7 8.2 8.2 4.1	107.46 42.42 69.31 1.56 0.67 1.0 15.7 8.2 8.2 8.2 4.5	95.44 39.83 N/M N/M 1.0 9.6 8.2 8.2 8.2 N/M	92.89 42.97 69.26 1.59 0.64 1.0 14.6 8.4 8.2 4.4	98.82 42.68 68.92 1.59 0.60 1.0 15.0 8.2 8.2 8.2 4.4	89.04 42.10 71.45 1.57 0.63 1.0 12.4 8.2 8.2 8.2 4.1	101.79 42.77 73.13 1.56 0.63 1.0 15.6 8.2 8.2 8.2 4.4	82.16 42.83 74.60 1.58 0.76 1.0 12.7 8.2 8.2 8.2 4.1
Item R0 Delta G300 Beta C300 Gamma R300 RIr+ RIr- Dark Sdc Dark NEP (1 Hz), incl 9 nV/rtHz amp.***	107.07 42.41 67.93 1.60 0.56 1.0 15.6 8.2 8.1 4.4 4.66	108.24 42.08 68.35 1.57 0.56 1.0 15.1 8.2 8.2 8.2 4.4 4.61	88.47 41.73 68.40 1.60 0.72 1.0 11.7 8.2 8.2 4.1 4.76	107.46 42.42 69.31 1.56 0.67 1.0 15.7 8.2 8.2 4.5 5.05	95.44 39.83 N/M N/M 1.0 9.6 8.2 8.2 8.2 8.2 N/M N/M	92.89 42.97 69.26 1.59 0.64 1.0 14.6 8.4 8.2 4.4 4.82	98.82 42.68 68.92 1.59 0.60 1.0 15.0 8.2 8.2 8.2 4.4 7.33	89.04 42.10 71.45 1.57 0.63 1.0 12.4 8.2 8.2 8.2 4.1 4.75	101.79 42.77 73.13 1.56 0.63 1.0 15.6 8.2 8.2 8.2 4.4 4.87	82.16 42.83 74.60 1.58 0.76 1.0 12.7 8.2 8.2 8.2 4.1 4.88
Item R0 Delta G300 Beta C300 Gamma R300 RIr+ RIr- Dark Sdc Dark NEP (1 Hz), incl 9 nV/rtHz amp.*** Dark NEP (0.1 Hz), incl 9 nV/rtHz amp.***	107.07 42.41 67.93 1.60 0.56 1.0 15.6 8.2 8.1 4.4 4.66 5.09	108.24 42.08 68.35 1.57 0.56 1.0 15.1 8.2 8.2 4.4 4.61 5.37	88.47 41.73 68.40 1.60 0.72 1.0 11.7 8.2 8.2 4.1 4.76 5.26	107.46 42.42 69.31 1.56 0.67 1.0 15.7 8.2 8.2 4.5 5.05 5.65	95.44 39.83 N/M N/M 1.0 9.6 8.2 8.2 8.2 8.2 N/M N/M N/M	92.89 42.97 69.26 1.59 0.64 1.0 14.6 8.4 8.2 4.4 4.82 5.62	98.82 42.68 68.92 1.59 0.60 1.0 15.0 8.2 8.2 4.4 7.33 7.56	89.04 42.10 71.45 1.57 0.63 1.0 12.4 8.2 8.2 4.1 4.75 5.50	101.79 42.77 73.13 1.56 0.63 1.0 15.6 8.2 8.2 8.2 4.4 4.87 5.58	82.16 42.83 74.60 1.58 0.76 1.0 12.7 8.2 8.2 4.1 4.88 5.42
Item R0 Delta G300 Beta C300 Gamma R300 RIr+ RIr+ RIr- Dark Sdc Dark NEP (1 Hz), incl 9 nV/rtHz amp.*** Dark NEP (0.1 Hz), incl 9 nV/rtHz amp.*** Vmax	107.07 42.41 67.93 1.60 0.56 1.0 15.6 8.2 8.1 4.4 4.66 5.09 5.27	108.24 42.08 68.35 1.57 0.56 1.0 15.1 8.2 8.2 4.4 4.61 5.37 5.20	88.47 41.73 68.40 1.60 0.72 1.0 11.7 8.2 8.2 4.1 4.76 5.26 4.61	107.46 42.42 69.31 1.56 0.67 1.0 15.7 8.2 8.2 4.5 5.05 5.65 5.65 5.32	95.44 39.83 N/M N/M 1.0 9.6 8.2 8.2 8.2 N/M N/M N/M N/M	92.89 42.97 69.26 1.59 0.64 1.0 14.6 8.4 8.2 4.4 4.82 5.62 5.13	98.82 42.68 68.92 1.59 0.60 1.0 15.0 8.2 8.2 4.4 7.33 7.56 5.18	89.04 42.10 71.45 1.57 0.63 1.0 12.4 8.2 8.2 4.1 4.75 5.50 4.82	101.79 42.77 73.13 1.56 0.63 1.0 15.6 8.2 8.2 4.4 4.87 5.58 5.43	82.16 42.83 74.60 1.58 0.76 1.0 12.7 8.2 8.2 4.1 4.88 5.42 4.95
Item R0 Delta G300 Beta C300 Gamma R300 RIr+ RIr- Dark Sdc Dark NEP (1 Hz), incl 9 nV/rtHz amp.*** Dark NEP (0.1 Hz), incl 9 nV/rtHz amp.***	107.07 42.41 67.93 1.60 0.56 1.0 15.6 8.2 8.1 4.4 4.66 5.09 5.27	108.24 42.08 68.35 1.57 0.56 1.0 15.1 8.2 8.2 4.4 4.61 5.37 5.20	88.47 41.73 68.40 1.60 0.72 1.0 11.7 8.2 8.2 4.1 4.76 5.26 4.61	107.46 42.42 69.31 1.56 0.67 1.0 15.7 8.2 8.2 4.5 5.05 5.65 5.32	95.44 39.83 N/M N/M 1.0 9.6 8.2 8.2 8.2 N/M N/M N/M N/M	92.89 42.97 69.26 1.59 0.64 1.0 14.6 8.4 8.2 4.4 4.82 5.62 5.13	98.82 42.68 68.92 1.59 0.60 1.0 15.0 8.2 8.2 4.4 7.33 7.56 5.18	89.04 42.10 71.45 1.57 0.63 1.0 12.4 8.2 8.2 4.1 4.75 5.50 4.82	101.79 42.77 73.13 1.56 0.63 1.0 15.6 8.2 8.2 4.4 4.87 5.58 5.43	82.16 42.83 74.60 1.58 0.76 1.0 12.7 8.2 8.2 4.1 4.88 5.42 4.95
Item R0 Delta G300 Beta C300 Gamma R300 RIr+ RIr- Dark Sdc Dark NEP (1 Hz), incl 9 nV/rtHz amp.*** Dark NEP (0.1 Hz), incl 9 nV/rtHz amp.*** Vmax	107.07 42.41 67.93 1.60 0.56 1.0 15.6 8.2 8.1 4.4 4.66 5.09 5.27	108.24 42.08 68.35 1.57 0.56 1.0 15.1 8.2 8.2 4.4 4.61 5.37 5.20	88.47 41.73 68.40 1.60 0.72 1.0 11.7 8.2 8.2 4.1 4.76 5.26 4.61	107.46 42.42 69.31 1.56 0.67 1.0 15.7 8.2 8.2 4.5 5.05 5.65 5.32	95.44 39.83 N/M N/M 1.0 9.6 8.2 8.2 8.2 N/M N/M N/M N/M	92.89 42.97 69.26 1.59 0.64 1.0 14.6 8.4 8.2 4.4 4.82 5.62 5.13	98.82 42.68 68.92 1.59 0.60 1.0 15.0 8.2 8.2 4.4 7.33 7.56 5.18	89.04 42.10 71.45 1.57 0.63 1.0 12.4 8.2 8.2 4.1 4.75 5.50 4.82	101.79 42.77 73.13 1.56 0.63 1.0 15.6 8.2 8.2 4.4 4.87 5.58 5.43	82.16 42.83 74.60 1.58 0.76 1.0 12.7 8.2 8.2 4.1 4.88 5.42 4.95
Item R0 Delta G300 Beta C300 Gamma R300 RIr+ RIr- Dark Sdc Dark NEP (1 Hz), incl 9 nV/rtHz amp.*** Dark NEP (0.1 Hz), incl 9 nV/rtHz amp.*** Vmax *assumes vlower = 1.02 vcutoff	107.07 42.41 67.93 1.60 0.56 1.0 15.6 8.2 8.1 4.4 4.66 5.09 5.27	108.24 42.08 68.35 1.57 0.56 1.0 15.1 8.2 8.2 4.4 4.61 5.37 5.20	88.47 41.73 68.40 1.60 0.72 1.0 11.7 8.2 8.2 4.1 4.76 5.26 4.61	107.46 42.42 69.31 1.56 0.67 1.0 15.7 8.2 8.2 4.5 5.05 5.65 5.32	95.44 39.83 N/M N/M 1.0 9.6 8.2 8.2 8.2 N/M N/M N/M N/M	92.89 42.97 69.26 1.59 0.64 1.0 14.6 8.4 8.2 4.4 4.82 5.62 5.13	98.82 42.68 68.92 1.59 0.60 1.0 15.0 8.2 8.2 4.4 7.33 7.56 5.18	89.04 42.10 71.45 1.57 0.63 1.0 12.4 8.2 8.2 4.1 4.75 5.50 4.82	101.79 42.77 73.13 1.56 0.63 1.0 15.6 8.2 8.2 4.4 4.87 5.58 5.43	82.16 42.83 74.60 1.58 0.76 1.0 12.7 8.2 8.2 4.1 4.88 5.42 4.95

Pixel Performance										
Item										
BDA connector	J05	J05	J05	J05	J05	J05	J06	J06	J06	J06
BDA pins	19,44	20,45	21,46	22,47	23,48	24,49	1,26	2,27	3,28	4,29
BoDAC Connector	4	4	4	4	4	4	1	1	1	1
Channel ID	19	20	21	22	23	24	1	2	3	4
Detector ID	B1	A3	A4	A1	DK1	A2	E1	E2	E3	E4
BDA Pixel Operability	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
BoDAC channel Operability	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Noisy BoDAC channel	No	No	No	No	No	No	No	No	No	No
(NEPphoton/NEPtotal)^2 (derived)	0.43	0.44	0.43	0.43	N/M	0.43	0.44	0.44	0.42	0.44
Optical efficiency*	0.81	0.80	0.78	0.83	0.06	0.80	0.78	0.77	0.73	0.70
Detector time constant	5.6	5.9	6.1	N/M	N/M	11.8	5.5	5.7	6.3	7.5
Calibration uniformity**	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cross-talk (n-n)**	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cross-talk (non n-n)**	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1/f knee frequency	56	47	65	47	65	47	75	65	65	65
Pixel Design Values										
ltem										
ltem R0	92.58	96.27	98.05	110.50	103.33	108.85	109.44	100.17	88.98	110.16
ltem R0 Delta	92.58 42.95	96.27 42.78	98.05 42.19	110.50 41.83	103.33 42.54	108.85 41.90	109.44 41.69	100.17 42.66	88.98 42.23	110.16 41.97
Item R0 Delta G300	92.58 42.95 74.29	96.27 42.78 72.72	98.05 42.19 71.48	110.50 41.83 74.05	103.33 42.54 73.36	108.85 41.90 72.90	109.44 41.69 70.48	100.17 42.66 72.52	88.98 42.23 69.41	110.16 41.97 67.53
Item R0 Delta G300 Beta	92.58 42.95 74.29 1.55	96.27 42.78 72.72 1.54	98.05 42.19 71.48 1.61	110.50 41.83 74.05 1.54	103.33 42.54 73.36 1.53	108.85 41.90 72.90 1.54	109.44 41.69 70.48 1.51	100.17 42.66 72.52 1.54	88.98 42.23 69.41 1.58	110.16 41.97 67.53 1.57
Item R0 Delta G300 Beta C300	92.58 42.95 74.29 1.55 0.62	96.27 42.78 72.72 1.54 0.64	98.05 42.19 71.48 1.61 0.67	110.50 41.83 74.05 1.54 N/M	103.33 42.54 73.36 1.53 N/M	108.85 41.90 72.90 1.54 1.29	109.44 41.69 70.48 1.51 0.59	100.17 42.66 72.52 1.54 0.62	88.98 42.23 69.41 1.58 0.68	110.16 41.97 67.53 1.57 0.78
Item R0 Delta G300 Beta C300 Gamma	92.58 42.95 74.29 1.55 0.62 1.0	96.27 42.78 72.72 1.54 0.64 1.0	98.05 42.19 71.48 1.61 0.67 1.0	110.50 41.83 74.05 1.54 N/M 1.0	103.33 42.54 73.36 1.53 N/M 1.0	108.85 41.90 72.90 1.54 1.29 1.0	109.44 41.69 70.48 1.51 0.59 1.0	100.17 42.66 72.52 1.54 0.62 1.0	88.98 42.23 69.41 1.58 0.68 1.0	110.16 41.97 67.53 1.57 0.78 1.0
Item R0 Delta G300 Beta C300 Gamma R300	92.58 42.95 74.29 1.55 0.62 1.0 14.6	96.27 42.78 72.72 1.54 0.64 1.0 14.8	98.05 42.19 71.48 1.61 0.67 1.0 13.9	110.50 41.83 74.05 1.54 N/M 1.0 14.9	103.33 42.54 73.36 1.53 N/M 1.0 15.3	108.85 41.90 72.90 1.54 1.29 1.0 14.8	109.44 41.69 70.48 1.51 0.59 1.0 14.4	100.17 42.66 72.52 1.54 0.62 1.0 15.1	88.98 42.23 69.41 1.58 0.68 1.0 12.7	110.16 41.97 67.53 1.57 0.78 1.0 15.1
Item R0 Delta G300 Beta C300 Gamma R300 Rlr+	92.58 42.95 74.29 1.55 0.62 1.0 14.6 8.3	96.27 42.78 72.72 1.54 0.64 1.0 14.8 8.3	98.05 42.19 71.48 1.61 0.67 1.0 13.9 8.2	110.50 41.83 74.05 1.54 N/M 1.0 14.9 8.2	103.33 42.54 73.36 1.53 N/M 1.0 15.3 8.3	108.85 41.90 72.90 1.54 1.29 1.0 14.8 8.3	109.44 41.69 70.48 1.51 0.59 1.0 14.4 8.0	100.17 42.66 72.52 1.54 0.62 1.0 15.1 8.0	88.98 42.23 69.41 1.58 0.68 1.0 12.7 8.0	110.16 41.97 67.53 1.57 0.78 1.0 15.1 8.0
Item R0 Delta G300 Beta C300 Gamma R300 RIr+ RIr-	92.58 42.95 74.29 1.55 0.62 1.0 14.6 8.3 8.2	96.27 42.78 72.72 1.54 0.64 1.0 14.8 8.3 8.2	98.05 42.19 71.48 1.61 0.67 1.0 13.9 8.2 8.2	110.50 41.83 74.05 1.54 N/M 1.0 14.9 8.2 8.3	103.33 42.54 73.36 1.53 N/M 1.0 15.3 8.3 8.3	108.85 41.90 72.90 1.54 1.29 1.0 14.8 8.3 8.2	109.44 41.69 70.48 1.51 0.59 1.0 14.4 8.0 7.9	100.17 42.66 72.52 1.54 0.62 1.0 15.1 8.0 8.0	88.98 42.23 69.41 1.58 0.68 1.0 12.7 8.0 7.9	110.16 41.97 67.53 1.57 0.78 1.0 15.1 8.0 7.9
Item R0 Delta G300 Beta C300 Gamma R300 RIr+ RIr- Dark Sdc	92.58 42.95 74.29 1.55 0.62 1.0 14.6 8.3 8.2 4.3	96.27 42.78 72.72 1.54 0.64 1.0 14.8 8.3 8.2 4.4	98.05 42.19 71.48 1.61 0.67 1.0 13.9 8.2 8.2 8.2 4.2	110.50 41.83 74.05 1.54 N/M 1.0 14.9 8.2 8.3 4.3	103.33 42.54 73.36 1.53 N/M 1.0 15.3 8.3 8.3 8.3 4.4	108.85 41.90 72.90 1.54 1.29 1.0 14.8 8.3 8.2 4.4	109.44 41.69 70.48 1.51 0.59 1.0 14.4 8.0 7.9 4.3	100.17 42.66 72.52 1.54 0.62 1.0 15.1 8.0 8.0 4.3	88.98 42.23 69.41 1.58 0.68 1.0 12.7 8.0 7.9 4.1	110.16 41.97 67.53 1.57 0.78 1.0 15.1 8.0 7.9 4.3
Item R0 Delta G300 Beta C300 Gamma R300 RIr+ RIr- Dark Sdc Dark NEP (1 Hz), incl 9 nV/rtHz amp.***	92.58 42.95 74.29 1.55 0.62 1.0 14.6 8.3 8.2 4.3 5.03	96.27 42.78 72.72 1.54 0.64 1.0 14.8 8.3 8.2 4.4 6.03	98.05 42.19 71.48 1.61 0.67 1.0 13.9 8.2 8.2 8.2 4.2 4.95	110.50 41.83 74.05 1.54 N/M 1.0 14.9 8.2 8.3 4.3 5.68	103.33 42.54 73.36 1.53 N/M 1.0 15.3 8.3 8.3 8.3 4.4 5.25	108.85 41.90 72.90 1.54 1.29 1.0 14.8 8.3 8.2 4.4 4.98	109.44 41.69 70.48 1.51 0.59 1.0 14.4 8.0 7.9 4.3 4.77	100.17 42.66 72.52 1.54 0.62 1.0 15.1 8.0 8.0 4.3 5.10	88.98 42.23 69.41 1.58 0.68 1.0 12.7 8.0 7.9 4.1 4.88	110.16 41.97 67.53 1.57 0.78 1.0 15.1 8.0 7.9 4.3 5.19
Item R0 Delta G300 Beta C300 Gamma R300 RIr+ RIr- Dark Sdc Dark NEP (1 Hz), incl 9 nV/rtHz amp.*** Dark NEP (0.1 Hz), incl 9 nV/rtHz amp.***	92.58 42.95 74.29 1.55 0.62 1.0 14.6 8.3 8.2 4.3 5.03 5.55	96.27 42.78 72.72 1.54 0.64 1.0 14.8 8.3 8.2 4.4 6.03 6.62	98.05 42.19 71.48 1.61 0.67 1.0 13.9 8.2 8.2 4.2 4.95 6.96	110.50 41.83 74.05 1.54 N/M 1.0 14.9 8.2 8.3 4.3 5.68 7.11	103.33 42.54 73.36 1.53 N/M 1.0 15.3 8.3 8.3 4.4 5.25 6.54	108.85 41.90 72.90 1.54 1.29 1.0 14.8 8.3 8.2 4.4 4.98 5.72	109.44 41.69 70.48 1.51 0.59 1.0 14.4 8.0 7.9 4.3 4.77 5.63	100.17 42.66 72.52 1.54 0.62 1.0 15.1 8.0 8.0 4.3 5.10 6.23	88.98 42.23 69.41 1.58 0.68 1.0 12.7 8.0 7.9 4.1 4.88 5.98	110.16 41.97 67.53 1.57 0.78 1.0 15.1 8.0 7.9 4.3 5.19 7.10
Item R0 Delta G300 Beta C300 Gamma R300 RIr+ RIr- Dark Sdc Dark NEP (1 Hz), incl 9 nV/rtHz amp.*** Dark NEP (0.1 Hz), incl 9 nV/rtHz amp.***	92.58 42.95 74.29 1.55 0.62 1.0 14.6 8.3 8.2 4.3 5.03 5.55 5.28	96.27 42.78 72.72 1.54 0.64 1.0 14.8 8.3 8.2 4.4 6.03 6.62 5.26	98.05 42.19 71.48 1.61 0.67 1.0 13.9 8.2 8.2 4.2 4.95 6.96 5.10	110.50 41.83 74.05 1.54 N/M 1.0 14.9 8.2 8.3 4.3 5.68 7.11 5.37	103.33 42.54 73.36 1.53 N/M 1.0 15.3 8.3 8.3 8.3 4.4 5.25 6.54 5.40	108.85 41.90 72.90 1.54 1.29 1.0 14.8 8.3 8.2 4.4 4.98 5.72 5.31	109.44 41.69 70.48 1.51 0.59 1.0 14.4 8.0 7.9 4.3 4.77 5.63 5.15	100.17 42.66 72.52 1.54 0.62 1.0 15.1 8.0 8.0 4.3 5.10 6.23 5.32	88.98 42.23 69.41 1.58 0.68 1.0 12.7 8.0 7.9 4.1 4.88 5.98 4.79	110.16 41.97 67.53 1.57 0.78 1.0 15.1 8.0 7.9 4.3 5.19 7.10 5.17
Item R0 Delta G300 Beta C300 Gamma R300 RIr+ RIr- Dark Sdc Dark NEP (1 Hz), incl 9 nV/rtHz amp.*** Dark NEP (0.1 Hz), incl 9 nV/rtHz amp.***	92.58 42.95 74.29 1.55 0.62 1.0 14.6 8.3 8.2 4.3 5.03 5.55 5.28	96.27 42.78 72.72 1.54 0.64 1.0 14.8 8.3 8.2 4.4 6.03 6.62 5.26	98.05 42.19 71.48 1.61 0.67 1.0 13.9 8.2 8.2 4.2 4.95 6.96 5.10	110.50 41.83 74.05 1.54 N/M 1.0 14.9 8.2 8.3 4.3 5.68 7.11 5.37	103.33 42.54 73.36 1.53 N/M 1.0 15.3 8.3 8.3 8.3 4.4 5.25 6.54 5.40	108.85 41.90 72.90 1.54 1.29 1.0 14.8 8.3 8.2 4.4 4.98 5.72 5.31	109.44 41.69 70.48 1.51 0.59 1.0 14.4 8.0 7.9 4.3 4.77 5.63 5.15	100.17 42.66 72.52 1.54 0.62 1.0 15.1 8.0 8.0 4.3 5.10 6.23 5.32	88.98 42.23 69.41 1.58 0.68 1.0 12.7 8.0 7.9 4.1 4.88 5.98 4.79	110.16 41.97 67.53 1.57 0.78 1.0 15.1 8.0 7.9 4.3 5.19 7.10 5.17
Item R0 Delta G300 Beta C300 Gamma R300 RIr+ RIr- Dark Sdc Dark NEP (1 Hz), incl 9 nV/rtHz amp.*** Dark NEP (0.1 Hz), incl 9 nV/rtHz amp.*** Vmax	92.58 42.95 74.29 1.55 0.62 1.0 14.6 8.3 8.2 4.3 5.03 5.55 5.28	96.27 42.78 72.72 1.54 0.64 1.0 14.8 8.3 8.2 4.4 6.03 6.62 5.26	98.05 42.19 71.48 1.61 0.67 1.0 13.9 8.2 8.2 4.2 4.95 6.96 5.10	110.50 41.83 74.05 1.54 N/M 1.0 14.9 8.2 8.3 4.3 5.68 7.11 5.37	103.33 42.54 73.36 1.53 N/M 1.0 15.3 8.3 8.3 8.3 4.4 5.25 6.54 5.40	108.85 41.90 72.90 1.54 1.29 1.0 14.8 8.3 8.2 4.4 4.98 5.72 5.31	$ \begin{array}{r} 109.44 \\ 41.69 \\ 70.48 \\ 1.51 \\ 0.59 \\ 1.0 \\ 14.4 \\ 8.0 \\ 7.9 \\ 4.3 \\ 4.77 \\ 5.63 \\ 5.15 \\ \end{array} $	100.17 42.66 72.52 1.54 0.62 1.0 15.1 8.0 8.0 4.3 5.10 6.23 5.32	88.98 42.23 69.41 1.58 0.68 1.0 12.7 8.0 7.9 4.1 4.88 5.98 4.79	110.16 41.97 67.53 1.57 0.78 1.0 15.1 8.0 7.9 4.3 5.19 7.10 5.17
Item R0 Delta G300 Beta C300 Gamma R300 RIr+ RIr- Dark Sdc Dark NEP (1 Hz), incl 9 nV/rtHz amp.*** Dark NEP (0.1 Hz), incl 9 nV/rtHz amp.*** Vmax *assumes vlower = 1.02 vcutoff	92.58 42.95 74.29 1.55 0.62 1.0 14.6 8.3 8.2 4.3 5.03 5.55 5.28	96.27 42.78 72.72 1.54 0.64 1.0 14.8 8.3 8.2 4.4 6.03 6.62 5.26	98.05 42.19 71.48 1.61 0.67 1.0 13.9 8.2 8.2 4.2 4.95 6.96 5.10	110.50 41.83 74.05 1.54 N/M 1.0 14.9 8.2 8.3 4.3 5.68 7.11 5.37	103.33 42.54 73.36 1.53 N/M 1.0 15.3 8.3 8.3 8.3 4.4 5.25 6.54 5.40	108.85 41.90 72.90 1.54 1.29 1.0 14.8 8.3 8.2 4.4 4.98 5.72 5.31	109.44 41.69 70.48 1.51 0.59 1.0 14.4 8.0 7.9 4.3 4.77 5.63 5.15	100.17 42.66 72.52 1.54 0.62 1.0 15.1 8.0 8.0 4.3 5.10 6.23 5.32	88.98 42.23 69.41 1.58 0.68 1.0 12.7 8.0 7.9 4.1 4.88 5.98 4.79	110.16 41.97 67.53 1.57 0.78 1.0 15.1 8.0 7.9 4.3 5.19 7.10 5.17

Pixel Performance										
Item										
BDA connector	J06	J06	J06	J06	J06	J06	J06	J06	J06	J06
BDA pins	5,30	6,31	7,32	8,33	9,34	10,35	11,36	12,37	13,38	14,39
BoDAC Connector	1	1	1	1	1	1	1	1	1	1
Channel ID	5	6	7	8	9	10	11	12	13	14
Detector ID	D1	D2	D3	D4	C1	C3	C5	T2	E5	C6
BDA Pixel Operability	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
BoDAC channel Operability	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Noisy BoDAC channel	No	No	No	???	No	No	No	No	No	No
(NEPphoton/NEPtotal) ² (derived)	0.44	0.43	0.44	0.42	0.42	0.44	0.42	N/M	0.40	0.40
Optical efficiency*	0.78	0.75	0.73	0.74	0.83	0.76	0.78	N/M	0.78	0.82
Detector time constant	5.5	5.2	5.1	6.6	5.7	5.2	6.2	N/M	6.3	7.9
Calibration uniformity**	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cross-talk (n-n)**	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cross-talk (non n-n)**	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1/f knee frequency	65	47	65	112	47	65	56	84	65	56
Pixel Design Values										
Item										
R0	91.90	99.44	108.84	102.90	86.47	98.35	85.54	92.50	78.42	81.38
Delta	43.24	42.47	42.11	41.38	42.26	42.86	42.29	40.22	41.88	41.60
G300	73.04	72.44	69.72	67.62	72.64	71.55	66.44	N/M	65.16	63.36
Beta	1.57	1.56	1.61	1.59	1.52	1.60	1.58	N/M	1.61	1.66
C300	0.61	0.57	0.55	0.70	0.63	0.56	0.65	N/M	0.65	0.80
Gamma	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
R300	15.0	14.6	15.2	13.0	12.3	15.3	12.3	9.9	10.6	10.6
Rir+	8.0	8.0	8.0	8.0	8.0	7.9	8.0	8.0	8.0	8.0
Rir-	7.9	7.9	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
Dark Sdc	4.3	4.3	4.3	4.1	4.1	4.3	4.1	N/M	3.9	3.9
Dark NEP (1 Hz), incl 9 nV/rtHz amp.***	4.76	5.62	4.89	6.12	5.14	5.19	4.75	N/M	5.02	5.26
Dark NEP (0.1 Hz), incl 9 nV/rtHz amp.***	5.63	6.84	6.03	14.53	5.63	6.09	5.43	N/M	5.94	5.68
Vmax	5.31	5.25	5.28	4.83	4.82	5.33	4.61	N/M	4.28	4.24
*assumes vlower - 1.02 voutoff										
**not tested										

2/23/2005

٦.

Pixel Performance										
Item										
BDA connector	J06	J06	J06	J06	J06	J06	J06	J06	J06	J06
BDA pins	15,40	16,41	17,42	18,43	19,44	20,45	21,46	22,47	23,48	24,49
BoDAC Connector	1	1	1	1	1	1	1	1	1	1
Channel ID	15	16	17	18	19	20	21	22	23	24
Detector ID	C8	D5	D6	D7	D8	E7	E6	E8	DK2	E9
BDA Pixel Operability	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
BoDAC channel Operability	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Noisy BoDAC channel	No	No	No	No	No	No	???	No	No	No
(NEPphoton/NEPtotal) ² (derived)	0.44	0.44	0.43	0.45	0.42	0.45	0.45	0.44	N/M	0.45
Optical efficiency*	0.76	0.75	0.73	0.71	0.77	0.76	N/M	0.77	0.05	0.77
Detector time constant	6.9	5.4	7.3	5.4	5.4	5.6	N/M	7.7	N/M	6.8
Calibration uniformity**	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cross-talk (n-n)**	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cross-talk (non n-n)**	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1/f knee frequency	56	56	37	56	47	65	112	65	112	84
Pixel Design Values										
Item										
R0	90.67	114.40	87.40	99.02	83.10	122.06	112.00	100.51	106.57	108.79
Delta	42.89	41.44	42.89	42.89	42.57	41.63	41.92	42.22	42.42	42.12
G300	65.29	65.30	66.81	66.31	66.68	65.09	66.01	64.37	64.93	65.48
Beta	1.62	1.58	1.63	1.63	1.62	1.60	1.61	1.61	1.62	1.60
C300	0.71	0.55	0.77	0.56	0.57	0.57	N/M	0.78	N/M	0.69
Gamma	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
R300	14.1	14.5	13.6	15.4	12.4	15.9	15.2	14.3	15.6	15.2
RIr+	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.1	8.1	8.0
RIr-	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
Dark Sdc	4.3	4.3	4.2	4.4	4.1	4.4	4.4	4.3	4.4	4.4
Dark NEP (1 Hz), incl 9 nV/rtHz amp.***	4.67	4.65	5.01	4.82	4.87	5.46	6.36	5.05	4.80	4.96
Dark NEP (0.1 Hz), incl 9 nV/rtHz amp.***	5.20	5.69	6.13	5.72	5.54	7.21	9.65	6.67	7.39	6.88
Vmax	4.90	5.02	4.87	5.16	4.65	5.25	5.16	4.91	5.15	5.12
* 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										
assumes viower = 1.02 voutoff										
**not tested										

2/23/2005

٦.

Pixel Performance			
Item	Unit	Reference	Note
BDA connector			
BDA pins			
BoDAC Connector			
Channel ID			
Detector ID			
BDA Pixel Operability			
BoDAC channel Operability			
Noisy BoDAC channel			
(NEPphoton/NEPtotal)^2 (derived)		BDA-PER-02	at 30 mV bias
Optical efficiency*		BDA-PER-05	
Detector time constant	ms	BDA-PER-07	at 28 mV bias
Calibration uniformity**		BDA-PER-08	
Cross-talk (n-n)**		BDA-PER-09	
Cross-talk (non n-n)**		BDA-PER-09	
1/f knee frequency	mHz	BDA-PER-10	at 21.2 mV bias
			T
Pixel Design Values			
Pixel Design Values Item	Unit	Reference	Note
Pixel Design Values Item R0	Unit Ohms	Reference BDA-SSSD	Note
Pixel Design Values Item R0 Delta	<mark>Unit</mark> Ohms K	Reference BDA-SSSD BDA-SSSD	Note
Pixel Design Values Item R0 Delta G300	Unit Ohms K pW/K	Reference BDA-SSSD BDA-SSSD BDA-SSSD	Note
Pixel Design Values Item R0 Delta G300 Beta	Unit Ohms K pW/K	Reference BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD	Note
Pixel Design Values Item R0 Delta G300 Beta C300	Unit Ohms K pW/K	Reference BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD	Note
Pixel Design Values Item R0 Delta G300 Beta C300 Gamma	Unit Ohms K pW/K	Reference BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD	Note
Pixel Design Values Item R0 Delta G300 Beta C300 Gamma R300	Unit Ohms K pW/K pJ/K MOhms	Reference BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD	Note
Pixel Design Values Item R0 Delta G300 Beta C300 Gamma R300 Rlr+	Unit Ohms K pW/K pJ/K MOhms MOhms	Reference BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD	Note
Pixel Design Values Item R0 Delta G300 Beta C300 Gamma R300 RIr+ RIr-	Unit Ohms K pW/K pJ/K MOhms MOhms MOhms	Reference BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD	Note
Pixel Design Values Item R0 Delta G300 Beta C300 Gamma R300 RIr+ RIr- Dark Sdc	Unit Ohms K pW/K pJ/K MOhms MOhms MOhms e8 V/W	Reference BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD	Note
Pixel Design Values Item R0 Delta G300 Beta C300 Gamma R300 RIr+ RIr- Dark Sdc Dark NEP (1 Hz), incl 9 nV/rtHz amp.***	Unit Ohms K pW/K pJ/K MOhms MOhms MOhms e8 V/W e-17 W/rtHz	Reference BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD	Note room temp room temp at 21.2 mV bias at 21.2 mV bias
Pixel Design Values Item R0 Delta G300 Beta C300 Gamma R300 RIr+ RIr- Dark Sdc Dark NEP (1 Hz), incl 9 nV/rtHz amp.*** Dark NEP (0.1 Hz), incl 9 nV/rtHz amp.***	Unit Ohms K pW/K pJ/K MOhms MOhms MOhms e8 V/W e-17 W/rtHz e-17 W/rtHz	Reference BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD derived derived	Note room temp room temp at 21.2 mV bias at 21.2 mV bias at 21.2 mV bias
Pixel Design Values Item R0 Delta G300 Beta C300 Gamma R300 RIr+ RIr- Dark Sdc Dark NEP (1 Hz), incl 9 nV/rtHz amp.*** Dark NEP (0.1 Hz), incl 9 nV/rtHz amp.*** Vmax	Unit Ohms K pW/K pJ/K MOhms MOhms e8 V/W e-17 W/rtHz e-17 W/rtHz mVrms	Reference BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD derived derived BDA-DRCU-22	Note room temp room temp at 21.2 mV bias at 21.2 mV bias at 21.2 mV bias
Pixel Design Values Item R0 Delta G300 Beta C300 Gamma R300 RIr+ RIr- Dark Sdc Dark NEP (1 Hz), incl 9 nV/rtHz amp.*** Dark NEP (0.1 Hz), incl 9 nV/rtHz amp.*** Vmax	Unit Ohms K pW/K pJ/K MOhms MOhms e8 V/W e-17 W/rtHz e-17 W/rtHz mVrms	Reference BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD derived derived BDA-DRCU-22	Note room temp room temp at 21.2 mV bias at 21.2 mV bias at 21.2 mV bias
Pixel Design Values Item R0 Delta G300 Beta C300 Gamma R300 RIr+ RIr- Dark Sdc Dark NEP (1 Hz), incl 9 nV/rtHz amp.*** Dark NEP (0.1 Hz), incl 9 nV/rtHz amp.*** Vmax	Unit Ohms K pW/K pJ/K MOhms MOhms e8 V/W e-17 W/rtHz e-17 W/rtHz mVrms	Reference BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD derived derived BDA-DRCU-22	Note room temp room temp at 21.2 mV bias at 21.2 mV bias at 21.2 mV bias
Pixel Design Values Item R0 Delta G300 Beta C300 Gamma R300 RIr+ RIr- Dark Sdc Dark NEP (1 Hz), incl 9 nV/rtHz amp.*** Dark NEP (0.1 Hz), incl 9 nV/rtHz amp.*** Vmax *assumes vlower = 1.02 vcutoff	Unit Ohms K pW/K pJ/K MOhms MOhms e8 V/W e-17 W/rtHz e-17 W/rtHz mVrms	Reference BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD BDA-SSSD derived derived BDA-DRCU-22	Note room temp room temp at 21.2 mV bias at 21.2 mV bias at 21.2 mV bias

Symbol	Units	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
то	K	0.3	Base Tempe	erature									
Vn	nV/rtHz	10	Amplifier Vo	Itage Noise	-								
Q	pW	0	Absorbed Powe	er Onto Bolome	ter								
NEP _{photon}	1e-17 W/rtHz	0.00	Noise in Absorl	bed Optical Pov	/er								
Vbias	mV	21.2	Bias Across Bo	lometer & Load	Resistors								
Detector		Tennet		40	A 7	4.0	40	<u></u>	DO	D7	07	Dr	DA
Detector ID		I arget		A8	A/	A6	A9	C9	B8	B/	5.000	B5	86
Plnermai	pw pW	4.053	#VALUE!	5.513	4.888	4.881	5.257	4.930	5.305	5.022	5.068	4.984	4.000
	рw рw	0 38322	#VALUE!	0 36940	4.000	0 36213	0 36738	4.930	0 36683	0 36232	0 36341	0 36234	4.500
Т/ТО	IX.	1 277	#\/ΔLUE	1 231	1 206	1 207	1 225	1 211	1 223	1 208	1 211	1 208	1 102
Pholo	0	6 18E±06		6.05E±06	1.200	1 88E±06	5 56E±06	4 94E±06	5.83E±06	5 11E±06	5 26E±06	5 10E±06	4 35E±06
Vholo	<u>sz</u> m\/	5.00	#\/ALUE!	0.03L+00 5 78	4.732+00	4.000-+00	5.302+00	4.942+00	5.032+00	5.07	5.202+00	5.192+00	4.332+00
Ibolo	nA	0.81	#VALUE!	0.95	1.02	1.00	0.97	1.00	0.96	0.99	0.98	0.98	1.02
Δ		-5.22	#\/ALLIEI	-5 31	-5.46	-5.40	-5 37	-5 38	-5 33	-5.40	-5.40	-5 39	-5.40
C	pJ/K	1.28	#VALUE!	0.76	0.76	0.79	0.81	0.67	0.64	0.74	0.40	0.68	0.40
G	pW/K	57.8	#VALUE!	92.7	91.1	90.4	90.9	89.9	93.4	92.6	92.4	92.0	90.5
Z/R	•	0.022	#VALUE!	0.079	0.106	0.108	0.084	0.104	0.090	0.106	0.102	0.107	0.136
τ	ms	14.700	#VALUE!	5.941	5.752	6.102	6.316	5.198	4.880	5.593	5.203	5.193	6.534
Sdc	V/W	5.99E+08	#VALUE!	4.69E+08	4.27E+08	4.32E+08	4.58E+08	4.35E+08	4.59E+08	4.37E+08	4.43E+08	4.40E+08	4.07E+08
NEP _{johnson}	1e-17 W/rtHz	0.968	#VALUE!	1.241	1.221	1.228	1.222	1.225	1.249	1.239	1.237	1.239	1.246
NEP _{phonon}	1e-17 W/rtHz	1.811	#VALUE!	2.255	2.217	2.211	2.227	2.206	2.256	2.240	2.236	2.231	2.202
NEP _{load}	1e-17 W/rtHz	0.021	#VALUE!	0.100	0.115	0.119	0.100	0.115	0.112	0.121	0.118	0.123	0.141
NEP _{amp}	1e-17 W/rtHz	1.668	#VALUE!	2.133	2.344	2.315	2.185	2.300	2.177	2.290	2.257	2.271	2.454
NEP _{det}	1e-17 W/rtHz	3.274	#VALUE!	4.157	4.349	4.319	4.185	4.298	4.208	4.314	4.275	4.289	4.477
DQE		0.000	#VALUE!	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
\/p(dot)	n\//rtЦz	10.6	#\/^!!!E!	10.5	19.6	10 7	10.2	10 7	10.2	10.0	10.0	19.0	10.2
		19.0	#VALUE!	19.5	10.0	10.7	19.2	10.7	19.3	10.0	10.9	10.9	10.2
Vn(total)	nv/rtHz	19.6	#VALUE!	19.5	18.6	18.7	19.2	18.7	19.3	18.8	18.9	18.9	18.2
Vn(measured) at 1Hz (1	49 Hz bias)	21.24	16.29	23.18	20.11	21.52	22.27	20.36	21.44	20.44	20.80	20.30	19.49
NEP(measured) at 1 Hz		3.27E-17	#VALUE!	4.94	4.72	4.98	4.87	4.68	4.67	4.68	4.69	4.61	4.78
Vn(measured) at 0.1 Hz	(149 Hz Bias)		17.64	25.00	23.85	24.14	25.12	22.64	24.67	24.06	23.95	23.65	21.50
NEP(measured) at 0.1 H	lz		#VALUE!	5.33	5.59	5.59	5.49	5.21	5.37	5.51	5.40	5.37	5.28
Vn(measured) at 1 Hz (1	47 Hz bias)		17.60	22.22	20.12	20.82	22.12	58 93	21 38	20.90	20.63	24 87	19.41
NEP(measured) at 1 Hz	(147 Hz bias)		17.00	4.74	4.72	4.82	4.83	13.55	4.65	4,79	4.66	5.65	4.76
Vn(measured) at .1 Hz (147 Hz bias)		18.62	25.96	23.23	23.79	25.25	61.35	24.36	22.71	22.54	78.19	21.42
NEP(measured) at 0.1 H	Iz (147 Hz bias)			5.54	5.45	5.51	5.52	14.11	5.30	5.20	5.09	17.76	5.26

Symbol	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
ТО													
Vn													
Q													
VDIAS													
Detector ID	Δ5	T1	B4	C4	B3	C2	B2	B1	Δ3	Δ <i>Δ</i>	Δ1		Δ2
Pthermal	5.075	#VALUE!	4.883	4.975	4.692	5.122	4,798	5.012	4.989	4,920	5.048	5.058	5.006
Pelec+0	5 075	#\/ALLIE!	4 883	4 975	4 692	5 122	4 798	5 012	4 989	4 920	5 048	5 058	5 006
Tbolo	0.36261	#VALUE!	0.36042	0.36171	0.35689	0.36027	0.35581	0.35834	0.35925	0.35911	0.35893	0.35957	0.35935
Т/ТО	1.209	#VALUE!	1.201	1.206	1,190	1.201	1.186	1,194	1,197	1.197	1,196	1.199	1,198
Rholo	5.35E+06	#VALUE!	5.13E+06	5.16F+06	4.64F+06	5.49E+06	4.78F+06	5.26E+06	5.28E+06	5.00F+06	5.39E+06	5.47E+06	5.32E+06
Vbolo	5.21	#VALUE!	5.01	5.07	4.67	5.30	4.79	5.14	5.13	4.96	5.22	5.26	5.16
Ibolo	0.97	#VALUE!	0.98	0.98	1.01	0.97	1.00	0.98	0.97	0.99	0.97	0.96	0.97
A	-5.41	#VALUE!	-5.46	-5.43	-5.43	-5.45	-5.49	-5.47	-5.46	-5.42	-5.40	-5.44	-5.40
С	0.82	#VALUE!	0.77	0.72	0.75	0.76	0.90	0.74	0.77	0.80	#VALUE!	#VALUE!	1.54
G	93.2	#VALUE!	92.8	92.7	93.9	97.3	97.7	97.9	96.1	95.4	97.6	96.8	96.2
Z/R	0.104	#VALUE!	0.113	0.108	0.136	0.113	0.138	0.122	0.118	0.125	0.125	0.117	0.122
τ	6.192	#VALUE!	5.806	5.475	5.623	5.573	6.501	5.380	5.688	5.934	#VALUE!	#VALUE!	11.464
Sdc	4.45E+08	#VALUE!	4.39E+08	4.39E+08	4.14E+08	4.42E+08	4.13E+08	4.33E+08	4.37E+08	4.25E+08	4.34E+08	4.42E+08	4.35E+08
NEP _{johnson}	1.241	#VALUE!	1.237	1.237	1.264	1.267	1.282	1.273	1.261	1.269	1.286	1.268	1.274
NEP _{phonon}	2.248	#VALUE!	2.236	2.238	2.243	2.291	2.285	2.295	2.276	2.264	2.294	2.287	2.278
NEP _{load}	0.121	#VALUE!	0.127	0.123	0.147	0.136	0.155	0.144	0.138	0.142	0.150	0.140	0.144
NEP _{amp}	2.247	#VALUE!	2.276	2.276	2.417	2.261	2.419	2.311	2.288	2.354	2.302	2.262	2.296
NEP _{det}	4.273	#VALUE!	4.296	4.296	4.468	4.327	4.502	4.386	4.343	4.412	4.384	4.327	4.362
DQE	0.000	#VALUE!	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Vn(det)	19.0	#VALUE!	18.9	18.9	18.5	19.1	18.6	19.0	19.0	18.7	19.0	19.1	19.0
Vn(total)	19.0	#VALUE!	18.9	18.9	18.5	19.1	18.6	19.0	19.0	18.7	19.0	19.1	19.0
Vp(mossured) at 1Hz (1/	22.45	21 50	21.10	22.20	20.42	21.52	20.15	22.05	26.69	21.02	160 00	22.57	21.04
NEP(measured) at 1 Hz	23.45	#\/ALLIEL	4.82	32.30 7 37	20.42	21.55	20.15	22.05 5.10	20.00	21.03	38.88	23.57	21.04
Vn(measured) at 0.1 Hz	25.15	30.75	24.67	34.55	30.39	24.68	22.39	27.66	28.94	29.56	172.03	28.89	24.91
NEP(measured) at 0.1 H	5.65	#VALUE!	5.62	7.86	7.35	5.58	5.42	6.39	6.62	6.96	39.60	6.54	5.72
Vn(measured) at 1 Hz (1	22.47	21.16	28.35	32.23	19.63	21.70	20.85	21.76	26.37	21.24	24.69	23.21	21.69
Vn(measured) at 1 Hz	5.05 26.35	#VALUE!	0.45 1/6 73	1.33	4.75	4.91	22.63	5.03 24.03	0.03	30.04	2.08 30.90	5.25 29.44	26.63
NFP(measured) at 0.1 H	20.33	#VALUE!	33.40	7.56	5.50	5.96	5.47	24.00	7.25	7.07	7.11	6.66	6.12
	0.52		00.40	7.00	0.00	0.00	0.77	0.00	1.20	1.01	1.11	0.00	0.12

Symbol	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
ТО													
Vn													
NEP _{photon}													
VDIAS													
Detector ID	E1	E2	E3	E4	D1	D2	D3	D4	C1	C3	C5	T2	E5
Pthermal	5.106	5.230	4.837	5.151	5.216	5.199	5.193	4.880	4.843	5.253	4.714	#VALUE!	4.430
Pelec+Q	5.106	5.230	4.837	5.151	5.216	5,199	5,193	4.880	4.843	5.253	4,714	#VALUE!	4,430
Tbolo	0.36233	0.36190	0.35988	0.36484	0.36124	0.36155	0.36330	0.36168	0.35789	0.36255	0.36084	#VALUE!	0.35847
Т/Т0	1.208	1.206	1.200	1.216	1.204	1.205	1.211	1.206	1.193	1.208	1.203	#VALUE!	1.195
Rbolo	4.98E+06	5.20E+06	4.51E+06	5.01E+06	5.18E+06	5.06E+06	5.16E+06	4.55E+06	4.53E+06	5.19E+06	4.30E+06	#VALUE!	3.88E+06
Vbolo	5.04	5.22	4.67	5.08	5.20	5.13	5.18	4.71	4.68	5.22	4.50	#VALUE!	4.15
Ibolo	1.01	1.00	1.04	1.01	1.00	1.01	1.00	1.04	1.03	1.01	1.05	#VALUE!	1.07
A	-5.36	-5.43	-5.42	-5.36	-5.47	-5.42	-5.38	-5.35	-5.43	-5.44	-5.41	#VALUE!	-5.40
С	0.71	0.75	0.82	0.95	0.74	0.69	0.67	0.84	0.75	0.68	0.78	#VALUE!	0.78
G	93.7	96.9	92.5	91.8	97.7	96.9	94.8	91.0	95.0	96.9	88.9	#VALUE!	86.7
Z/R	0.107	0.105	0.119	0.096	0.106	0.109	0.104	0.116	0.128	0.103	0.114	#VALUE!	0.130
τ	5.345	5.475	6.125	7.274	5.347	5.029	4.958	6.436	5.491	4.978	5.998	#VALUE!	6.083
Sdc	4.27E+08	4.31E+08	4.11E+08	4.33E+08	4.31E+08	4.25E+08	4.32E+08	4.13E+08	4.07E+08	4.31E+08	4.11E+08	#VALUE!	3.95E+08
NEP _{johnson}	1.254	1.262	1.246	1.235	1.262	1.267	1.258	1.245	1.264	1.261	1.219	#VALUE!	1.216
NEP _{phonon}	2.257	2.291	2.233	2.235	2.298	2.290	2.265	2.217	2.262	2.289	2.191	#VALUE!	2.157
NEP _{load}	0.124	0.125	0.129	0.110	0.126	0.128	0.123	0.126	0.139	0.123	0.118	#VALUE!	0.126
NEP _{amp}	2.344	2.318	2.432	2.311	2.322	2.352	2.315	2.420	2.457	2.320	2.436	#VALUE!	2.534
NEP _{det}	4.388	4.383	4.466	4.330	4.391	4.421	4.365	4.445	4.520	4.383	4.434	#VALUE!	4.526
DQE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	#VALUE!	0.000
Vn(det)	18.7	18.9	18.4	18.7	18.9	18.8	18.8	18.4	18.4	18.9	18.2	#VALUE!	17.9
Vn(total)	18.7	18.9	18.4	18.7	18.9	18.8	18.8	18.4	18.4	18.9	18.2	#VALUE!	17.9
Vn(measured) at 1Hz (14	22.32	22.15	20.21	22.52	20.61	23.91	21.24	25.28	20.92	22.39	19.57	20.37	20.02
NEP(measured) at 1 Hz	5.23	5.14	24.58	5.21 31.50	4.79	20.02	4.92 26.80	60.05	24.03	27 10	23 30	#VALUE!	23.08
NEP(measured) at 0.1 H	9.53	47.09	24.00 5.98	7.30	6 12	29.09	6 21	14 53	6 13	6.31	23.30	#\/ALLIF!	23.90
	0.00		0.00	7.00	0.12	0.04	0.21	1 1.00	0.10	0.01	0.00		0.00
Vn(measured) at 1 Hz (1	20.33	22.01	20.08	22.47	20.51	24.82	21.10	45.84	20.91	22.71	19.51	20.69	19.80
NEP(measured) at 1 Hz	4.77	5.10	4.88	5.19	4.76	5.84	4.89	11.09	5.14	5.27	4.75	#VALUE!	5.02
Vn(measured) at .1 Hz (1	24.03	26.86	26.80	30.74	24.23	29.93	26.03	299.16	22.91	26.25	22.31	27.14	23.43
INEP(measured) at 0.1 H	5.63	6.23	6.52	7.10	5.63	7.04	6.03	72.39	5.63	6.09	5.43	#VALUE!	5.94

pfm_plw_eidp_v4.xls

Symbol	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
ТО											
Vn											
Q											
NEP _{photon}											
Vbias											
Detector ID	6	<u>C8</u>	D5	D6	D7	50	E7	E6	E8	ראס	FO
Pthermal	4 402	4 941	5 025	4 910	5 131	4 749	5 175	5 107	4 933	5 104	5 086
	4 402	1.011	5.025	4 910	5 131	1.7.10	5 175	5 107	1.000	5 104	5.086
Tholo	0.35932	0.36412	0.36525	0.36245	0.36529	0.36083	0.36701	0.36540	0.36485	0.36622	0.36570
Т/ТО	1 108	1 21/	1 218	1 208	1 218	1 203	1 223	1 218	1 216	1 221	1 210
Rholo	3 83E±06	1 69F±06	4.83E±06	4.63E±06	5.03E±06	4 33E±06	5 15E±06	5.02E±06	4 72F±06	5.03E±06	4 98F±06
Vbolo	0.00L+00 4.11	4.81	4.93	4.77	5.08	4.54	5.16	5.06	4.83	5.07	<u>4.30</u> <u>+.00</u> 5.03
Ibolo	1.07	1.03	1.02	1.03	1.01	1.05	1.00	1.01	1.02	1.01	1.01
Δ	-5 38	-5.43	-5 33	-5 44	-5.42	-5.43	-5 33	-5 36	-5 38	-5 38	-5 37
C	0.96	0.86	0.67	0.93	0.68	0.68	0.70	#VALUE!	0.95	#VALUE!	0.85
G	85.5	89.3	89.2	90.9	91.4	89.9	89.9	90.7	88.2	89.7	89.8
Z/R	0.129	0.096	0.098	0.105	0.091	0.114	0.090	0.096	0.096	0.089	0.092
τ	7.657	6.640	5.196	7.063	5.173	5.206	5.439	#VALUE!	7.440	#VALUE!	6.564
Sdc	3.94E+08	4.28E+08	4.30E+08	4.22E+08	4.37E+08	4.10E+08	4.41E+08	4.35E+08	4.30E+08	4.40E+08	4.37E+08
NEP _{johnson}	1.212	1.209	1.225	1.223	1.221	1.223	1.225	1.229	1.209	1.215	1.219
NEP _{phonon}	2.139	2.199	2.203	2.215	2.226	2.200	2.214	2.219	2.188	2.209	2.211
NEP _{load}	0.124	0.104	0.109	0.114	0.104	0.119	0.103	0.109	0.105	0.101	0.104
NEPamp	2.538	2.336	2.327	2.370	2.287	2.437	2.265	2.297	2.326	2.274	2.291
NEP _{det}	4.520	4.324	4.326	4.376	4.292	4.442	4.265	4.304	4.308	4.265	4.287
DQE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Vn(det)	17.8	18.5	18.6	18.5	18.8	18.2	18.8	18.7	18.5	18.8	18.7
Vn(total)	17.8	18.5	18.6	18.5	18.8	18.2	18.8	18.7	18.5	18.8	18.7
Vn(measured) at 1Hz (14	20.71	19.99	19.97	22.59	27.58	19.97	25.42	28.11	22.34	21.09	22.12
NEP(measured) at 1 Hz	5.26	4.67	4.65	5.35	6.31	4.87	5.76	6.46	5.20	4.80	5.07
Vn(measured) at 0.1 Hz	22.40	22.25	24.46	28.96	29.30	23.71	33.40	44.01	30.65	32.50	32.44
NEF (measureu) at 0.1 H	5.00	5.20	5.09	0.00	0.71	5.76	1.51	10.11	7.13	1.59	7.43
Vn(measured) at 1 Hz (1	20.77	20.31	108.52	21.14	21.09	20.49	24.12	27.69	21.72	21.11	21.67
NEP(measured) at 1 Hz	5.27	4.74	25.26	5.01	4.82	4.99	5.46	6.36	5.05	4.80	4.96
Vn(measured) at .1 Hz (1	22.36	23.13	110.08	25.87	25.00	22.73	31.84	42.04	28.69	32.53	30.06
NEP(measured) at 0.1 H	5.68	5.40	25.62	6.13	5.72	5.54	7.21	9.65	6.67	7.40	6.88

Symbol	Parameter	Equation (or Comments)
ТО		
Vn		
NEP _{photon}		
VDIdS		
Detector ID		
Pthermal	Power as function of Temperature	$P_{thermal} = [G300/(1+\beta)][T/0.3]^{\beta}T$ evaluated from To to Tb
Pelec+Q	Electrical + Absorbed Power	$P_{e} + Q = [V_{bias}/(2R_{L} + R_{B})]^{2}R_{B} + Q$
Tbolo	Bolometer Temperature	Solve for Tb using Newtonian recursion such that $P_{thermal} = P_e + Q$
Т/Т0	· · · · ·	T/To = Tbolo/To
Rbolo	Bolometer Resistance	$Rbolo = (Ro)exp[(\Delta/Tb)^{1/2}]$
Vbolo	Voltage across Bolometer	Vbolo = $[Vbias/(2R_L + R_B)]R_B$
Ibolo	Current through Bolometer	$Ibolo = Vbias/(2R_{L} + R_{B})$
A		$A = (T/R)(dR/dT) = -(1/2)[(\Delta/Tb)^{1/2}]$
С	Dynamic Heat Capacity	$C = C300[(T/0.3)^{\gamma}]$
G	Dynamic Thermal Conductance	$G = G300[(T/0.3)^{\beta}]$
Z/R		$Z/R = (I/V)(dV/dI) = [-1 - GTb/(P_eA)] / [1 - GTb/(P_eA)]$
τ	Electrical Time Constant	$\tau = [C/2G][(Z/R + 1)(1 + 2R_L/R_B)] / [Z/R + 2R_L/R_B]$
Sdc	Electrical Responsivity at 0 Hz	Sdc = $(1/2)[R_B/P_e]^{1/2}[1 - Z/R] / [1 + (Z/R)(R_B/2R_L)$
NEP _{johnson}	Johnson Noise Prior to Demodulation	$NEP_{johnson} = [(4k(Tb)^{3}G^{2})/(P_{e}A^{2})]^{1/2}$
NEP _{phonon}	Phonon Noise Prior to Demodulation	$=\{[(4kTo^{2}G)(\beta+1)((T/To)^{2\beta+3}-1)]/[(2\beta+3)(T/To)^{p}((T/To)^{p+1}-1)]\}^{1/2}$
NEP _{load}	Johnson Noise from R _L Prior to Demod.	$NEP_{load} = [4kTo/2R_{L}]^{1/2} 2(Z/R)R_{B}lbolo/[(Z/R) - 1] $
NEPamp	Amplifier Noise Prior to Demodulation	$NEP_{amp} = Vn / Sdc$
NEP _{det}	Detector Noise after Demodulation	$NEP_{det} = [2NEP_{john}^{2} + NEP_{phon}^{2} + 2NEP_{load}^{2} + 2NEP_{amp}^{2}]^{1/2}$
DQE	BLIP Figure-of-Merit for Detector	$DQE = NEP_{photon}^{2} / (NEP_{photon}^{2} + NEP_{det}^{2})$
Vn(det)	Voltage Noise of Detector After Demod.	$Vn(det) = NEP_{det}Sdc$
Vn(total)	Total Noise after Demodulation	$Vn(total) = [NEP_{det}^2 + NEP_{photon}^2]^{1/2}Sdc$
Vn(measured) at 1Hz (14	4	
Vn(measured) at 0.1 Hz		
NEP(measured) at 0.1 H	1	
, , ,		
Vn(measured) at 1 Hz (1		
NEP(measured) at 1 Hz	4	
NFP(measured) at .1 HZ (1	
	1	

Symbol	Units	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
T0	К	0.3	Base Temp	erature											
Vn	nV/rtHz	10	Amplifier Vo	Itage Noise											
Q	pW	2.5	Absorbed Pow	er Onto Bolome	eter										
NEP _{photon}	1e-17 W/rtHz	4.60	Noise in Absor	bed Optical Pov	wer										
Vbias	mV	16	Bias Across Bo	olometer & Load	d Resistors										
		_								_					
Detector ID		Target	R1	A8	A7	A6	A9	C9	B8	B7	C7	B5	B6	A5	T1
Pthermal	pvv	4.644	#VALUE!	5.617	5.205	5.202	5.449	5.234	5.521	5.295	5.326	5.271	4.991	5.331	#VALUE!
Pelec+Q	pW	4.644	#VALUE!	5.617	5.205	5.202	5.449	5.234	5.521	5.295	5.325	5.2/1	4.991	5.331	#VALUE!
	ĸ	0.39327	#VALUE!	0.37053	0.30532	0.30303	0.30949	0.30070	0.30649	0.30525	0.30010	0.30345	0.36224	0.30534	#VALUE!
1/10		1.311	#VALUE!	1.235	1.218	1.219	1.232	1.223	1.228	1.218	1.221	1.218	1.207	1.218	#VALUE!
Rbolo	Ω	5.40E+06	#VALUE!	5.95E+06	4.49E+06	4.63E+06	5.39E+06	4.70E+06	5.69E+06	4.90E+06	5.05E+06	4.95E+06	4.06E+06	5.14E+06	#VALUE!
VDOIO	mv	3.40	#VALUE!	4.31	3.48	3.54	3.99	3.58	4.15	3.70	3.78	3.70	3.18	3.81	#VALUE!
Ibolo	nA	0.63	#VALUE!	0.72	0.78	0.76	0.74	0.76	0.73	0.76	0.75	0.75	0.78	0.74	#VALUE!
A		-5.15	#VALUE!	-5.30	-5.43	-5.37	-5.35	-5.36	-5.32	-5.38	-5.38	-5.37	-5.37	-5.39	#VALUE!
C	pJ/K	1.31	#VALUE!	0.77	0.76	0.80	0.82	0.68	0.64	0.74	0.69	0.68	0.86	0.82	#VALUE!
G	pW/K	60.0	#VALUE!	93.1	92.5	91.8	91.7	91.3	94.1	93.8	93.5	93.2	92.4	94.3	#VALUE!
Z/R		0.362	#VALUE!	0.353	0.394	0.396	0.365	0.391	0.367	0.390	0.385	0.392	0.429	0.386	#VALUE!
-		1.000	#\/ALLIEI	0 747	0.000	7.044	7.045	E 074	F F 40	0.405	5 054	5.040	7 500	7.070	
τ	ms	4.000	#VALUE!	6.747	6.623	7.011	7.215	5.971	5.548	6.405	5.951	5.942	7.532	7.072	#VALUE!
Sdc	V/K	4.61E+08	#VALUE!	3.96E+08	3.52E+08	3.55E+08	3.83E+08	3.59E+08	3.85E+08	3.61E+08	3.67E+08	3.63E+08	3.29E+08	3.69E+08	#VALUE!
NED	10.17\//#+U-	1 450	#\/^!!!E!	1 669	1 600	1 709	1 666	1 700	1 601	1 710	1 700	1 710	1 769	1 707	#\/^!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
		1.400	#VALUE!	1.000	1.099	1.700	1.000	2.220	1.091	0.061	1.702	1.713	1.700	2.267	#VALUE!
		1.007	#VALUE!	2.203	2.242	2.230	2.242	2.230	2.200	2.201	2.200	2.203	2.235	2.207	#VALUE!
	1e-17 W/rtHz	0.352	#VALUE!	0.475	0.459	0.468	0.462	0.465	0.484	0.477	0.476	0.480	0.481	0.483	#VALUE!
NEPamp	1e-17 W/rtHz	2.169	#VALUE!	2.526	2.843	2.815	2.610	2.788	2.596	2.767	2.723	2.752	3.039	2.712	#VALUE!
	1e-17 W/rtHz	4.171	#VALUE!	4.889	5.234	5.208	4.962	5.171	4.981	5.169	5.115	5.153	5.494	5.113	#VALUE!
DQE		0.549	#VALUE!	0.470	0.436	0.438	0.462	0.442	0.460	0.442	0.447	0.444	0.412	0.447	#VALUE!
Vn(det)	n\//rtHz	10.2	#\/ALLIE!	10 /	18 /	18.5	10.0	18.5	10.2	18 7	18.8	18 7	18.1	18 0	#\/ALLIE!
Vn(total)	n\//ttHz	20.6	#\/ALLIEL	26.6	24.5	24.7	25.0	24.0	26.1	25.0	25.2	25.1	22.6	25.4	#\/ALLIEL
VII(IOIAI)		20.0	#VALUE!	20.0	24.0	24.7	20.9	24.0	20.1	25.0	20.3	20.1	23.0	20.4	#VALUE!
Measured															
Q_incident	1.16E-11														
NEP_photon	9.69E-17														
Q_absorbed			N/A	8.932E-12	9.081E-12	8.347E-12	9.38E-12	9.055E-12	8.731E-12	8.583E-12	8.372E-12	8.456E-12	8.71E-12	8.771E-12	#VALUE!
NEP_photon	E7200)		N/A	8.495E-17	8.566E-17	8.212E-17	8.705E-17	8.553E-17	8.399E-17	8.327E-17	8.225E-17	8.265E-17	8.389E-17	8.418E-17	#VALUE!
vn(total, gain	= 57300)	2 8710E.00	2 6825-00	2 6825-00	2 6825-09	2 6825-09	2 6825-09	2 6825-00	0.0024331	0.0024331	0.0024331	0.0024331	0.0024331	0.0024331	0.0024331
vii(iuiai)		2.01195-00	2.002E-00	2.0025-00	2.0025-00	2.0020-00	2.0025-00	2.0025-00	4.240E-00	4.240E-00	4.240⊑-00	4.240E-00	4.240E-00	4.240E-00	4.240E-00
Sdc			N/M	1.75E+08	1.75E+08	1.75E+08	1.75E+08	1.75E+08	1.75E+08	1.75E+08	1.75E+08	1.75E+08	1.75E+08	1.75E+08	1.75E+08
NEP(total)			N/M	1.531E-16	1.531E-16	1.531E-16	1.531E-16	1.531E-16	2.424E-16						
DQE		#VALUE!	N/M	0.31	0.31	0.29	0.32	0.31	0.12	0.12	0.12	0.12	0.12	0.12	#VALUE!

Symbol	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Т0															
Vn															
Q															
NEP _{photon}															
Vbias															
		• •			-										
Detector ID	B4	C4	B3	C2	B2	B1	A3	A4	A1	DK1	A2	E1	E2	E3	E4
Pthermal	5.205	5.265	5.080	5.364	5.151	5.291	5.276	5.230	5.316	5.322	5.288	5.350	5.432	5.172	5.379
Pelec+Q	5.205	5.265	5.080	5.363	5.151	5.291	5.276	5.230	5.316	5.322	5.288	5.350	5.432	5.172	5.379
I DOIO	0.36386	0.36482	0.36099	0.36274	0.35940	0.36117	0.36222	0.36233	0.36166	0.36228	0.36226	0.36492	0.36398	0.36348	0.36730
т/то	1.213	1.216	1.203	1.209	1.198	1.204	1.207	1.208	1.206	1.208	1.208	1.216	1.213	1.212	1.224
Rbolo	4.87E+06	4.93E+06	4.36E+06	5.29E+06	4.53E+06	5.04E+06	5.05E+06	4.76E+06	5.18E+06	5.26E+06	5.10E+06	4.80E+06	5.04E+06	4.27E+06	4.83E+06
Vbolo	3.63	3.69	3.35	3.89	3.46	3.75	3.74	3.61	3.82	3.85	3.77	3.70	3.84	3.38	3.73
Ibolo	0.75	0.75	0.77	0.74	0.77	0.74	0.74	0.76	0.74	0.73	0.74	0.77	0.76	0.79	0.77
A	-5.43	-5.41	-5.40	-5.43	-5.46	-5.45	-5.43	-5.40	-5.38	-5.42	-5.38	-5.34	-5.41	-5.39	-5.34
С	0.77	0.73	0.76	0.76	0.91	0.74	0.78	0.81	#VALUE!	#VALUE!	1.56	0.72	0.75	0.82	0.96
G	94.2	94.0	95.6	98.3	99.3	99.1	97.3	96.8	98.8	98.0	97.4	94.8	97.7	94.0	92.8
Z/R	0.400	0.393	0.425	0.393	0.423	0.403	0.401	0.409	0.405	0.398	0.404	0.388	0.383	0.407	0.378
τ	6.645	6.266	6.452	6.342	7.435	6.131	6.489	6.782	#VALUE!	#VALUE!	13.059	6.125	6.254	7.052	8.347
Sdc	3.60E+08	3.63E+08	3.36E+08	3.66E+08	3.38E+08	3.57E+08	3.60E+08	3.49E+08	3.58E+08	3.65E+08	3.59E+08	3.55E+08	3.61E+08	3.38E+08	3.62E+08
NEPjohnson	1.719	1.712	1.776	1.737	1.788	1.755	1.741	1.760	1.769	1.744	1.757	1.720	1.720	1.737	1.692
NEPphonon	2.260	2.260	2.272	2.309	2.311	2.315	2.297	2.287	2.314	2.306	2.299	2.275	2.306	2.258	2.252
NEP _{load}	0.483	0.479	0.497	0.505	0.511	0.509	0.501	0.501	0.520	0.509	0.511	0.478	0.487	0.472	0.463
NEPamp	2.775	2.758	2.975	2.729	2.963	2.803	2.777	2.865	2.792	2.741	2.788	2.815	2.771	2.958	2.766
NEP _{det}	5.185	5.162	5.447	5.173	5.460	5.268	5.221	5.323	5.267	5.190	5.247	5.235	5.203	5.392	5.151
DQE	0.440	0.443	0.416	0.442	0.415	0.433	0.437	0.427	0.433	0.440	0.435	0.436	0.439	0.421	0.444
				-				-						-	-
Vn(det)	18.7	18.7	18.3	19.0	18.4	18.8	18.8	18.6	18.9	18.9	18.8	18.6	18.8	18.2	18.6
Vn(total)	25.0	25.1	24.0	25.4	24.1	25.0	25.1	24.6	25.0	25.3	25.0	24.8	25.1	24.0	25.0
Measured															
Q_incident															
NEP_photon															
_		_	_	_	_	_				_	_			_	
Q_absorbed	8.713E-12	8.655E-12	8.553E-12	9.119E-12	8.889E-12	9.387E-12	9.291E-12	9.044E-12	9.695E-12	6.503E-13	9.341E-12	9.03504E-12	8.9392E-12	8.5044E-12	8.164E-12
NEP_photon	8.39E-17	8.362E-17	8.313E-17	8.584E-17	8.474E-17	8.709E-17	8.664E-17	8.548E-17	8.85E-17	2.292E-17	8.68/E-1/	8.54393E-17	8.4985E-17	8.2893E-17	8.122E-17
Vn(total)	0.0024331 4 246E-08	0.0024331	0.0024331 4 246E-08	1 246E-08	0.0024331 4 246E-08	0.0024331 4 246E-08	1.0024331	2 87193E-08	2 8719E-08	2.4365E-08	2.872E-08				
Theorem	2-0L-00	20L-00	20L-00		⊣.∠+0 ∟-00		-7.270L-00		20C-00		1.7 432-03	2.071302-00	2.07132-00	210002-00	2.0120-00
Sdc	1.75E+08	1.75E+08	1.75E+08	1.75E+08	1.75E+08	1.75E+08	1.75E+08	1.75E+08	1.75E+08	1.75E+08	1.75E+08	1.81E+08	1.81E+08	1.62E+08	1.81E+08
NEP(total)	2.424E-16	2.424E-16	2.424E-16	2.424E-16	2.424E-16	2.424E-16	2.424E-16	2.424E-16	2.424E-16	2.424E-16	9.988E-14	1.58817E-16	1.5882E-16	1.5011E-16	1.588E-16
DQE	0.12	0.12	0.12	0.13	0.12	0.13	0.13	0.12	0.13	0.01	0.00	0.29	0.29	0.30	0.26

Mather_Optical

Symbol	Value	Value	Value	Value	Value Value		Value	Value Value		Value Value		Value
ТО												
Vn												
Q												
NEP _{photon}												
Vbias												
Detector ID	D1	D2	D2	D4	C1	<u></u>	C5	то	E 6	<u> </u>	<u> </u>	D5
Delector ID Pthermal	5 423	5 /11	5 408	5 200	5 178	5 AA7	5 089	12 #\/Δ[][E]	E3 / 901	/ 882	5 230	D3 5 295
	5.420	5.411	5.400	5.200	5.170	5.447	5.003	#VALUE!	4.901	4.002	5.200	5.295
Pelec+Q	0.422	0.36374	0.36555	0.200	0.178	0.447	0.36502	#VALUE!	4.901	4.882	0.239	0.295
T0010	0.30333	0.30374	0.30333	0.30310	1 205	1 215	1.017	#VALUE!	1 212	0.30407	0.30743	1.0020
1/10	1.211	1.212	1.219	1.217	1.205	1.215	1.217	#VALUE!	1.213	1.216	1.225	1.228
Rbolo	5.02E+06	4.90E+06	4.99E+06	4.32E+06	4.30E+06	5.04E+06	4.04E+06	#VALUE!	3.58E+06	3.53E+06	4.46E+06	4.63E+06
VDOIO	3.83	3.78	3.81	3.42	3.39	3.85	3.24	#VALUE!	2.93	2.90	3.50	3.60
Ibolo	0.76	0.77	0.76	0.79	0.79	0.76	0.80	#VALUE!	0.82	0.82	0.78	0.78
A	-5.45	-5.40	-5.37	-5.32	-5.41	-5.42	-5.38	#VALUE!	-5.36	-5.34	-5.40	-5.30
С	0.74	0.69	0.67	0.85	0.75	0.69	0.79	#VALUE!	0.79	0.98	0.87	0.67
G	98.6	97.8	95.8	92.4	96.5	97.8	90.6	#VALUE!	88.8	87.7	90.6	90.3
Z/R	0.384	0.387	0.383	0.403	0.413	0.381	0.407	#VALUE!	0.430	0.431	0.385	0.384
τ	6.108	5.749	5.668	7.409	6.313	5.686	6.941	#VALUE!	7.071	8.904	7.660	5.978
Sdc	3.60E+08	3.55E+08	3.61E+08	3.41E+08	3.35E+08	3.61E+08	3.36E+08	#VALUE!	3.17E+08	3.16E+08	3.55E+08	3.57E+08
NEP _{johnson}	1.721	1.729	1.719	1.733	1.760	1.718	1.713	#VALUE!	1.743	1.742	1.677	1.692
NEPphonon	2.313	2.305	2.282	2.242	2.287	2.303	2.219	#VALUE!	2.194	2.178	2.223	2.224
NEPload	0.487	0.487	0.482	0.470	0.486	0.484	0.452	#VALUE!	0.451	0.448	0.445	0.456
NEPamp	2.778	2.814	2.773	2.936	2.989	2.770	2.977	#VALUE!	3.151	3.163	2.820	2.802
NEPdat	5.214	5.255	5,192	5.359	5.456	5,198	5.379	#VALUE!	5.581	5.588	5.184	5.175
	0 438	0 434	0 440	0 424	0 416	0 439	0 422	#\/ALLIE!	0 405	0 404	0 441	0 441
2 42	0.100	01101	00	0	01110	01100	0		01100	01101	0	0
Vn(det)	18.8	18.7	18.7	18.3	18.3	18.8	18.1	#VALUE!	17.7	17.7	18.4	18.5
Vn(total)	25.0	24.8	25.0	24 1	23.9	25.1	23.8	#\/ALLIE!	23.0	22.9	24.6	24 7
Vii(total)	20.0	2	20.0	2	20.0	20.1	20.0	# 17 LOL.	20.0	22.0	2	2
Measured												
Q_incident												
NEP_photon												
Q_absorbed	9.11373E-12	8.74499E-12	8.481E-12	8.59988E-12	9.66633E-12	8.80058E-12	9.0358E-12	#VALUE!	9.04702E-12	9.49755E-12	8.81097E-12	8.66908E-12
NEP_photon	8.58106E-17	8.40568E-17	8.2//83E-17	8.33564E-17	8.83/38E-17	8.43235E-17	8.5443E-17	#VALUE!	8.5496E-17	8.75989E-17	8.43/32E-17	8.36911E-17
Vn(total, gain	2 871025-00	2 780585-00	2 77305E-00	2 560725-09	2 72/02 -09	3 0565-09	2 845085-00	3 331275-00	2 918095-09	3 15261 -09	3 86112=-09	3 217825-00
vii(iotai)	2.071336-00	2.100000-00	2.113032-00	2.000122-00	2.124332-00	3.0302-06	2.04000-00	5.55157 L-06	2.310002-00	5.152012-00	5.00112L-00	5.21703L-00
Sdc	1.81E+08	1.68E+08	1.69E+08	1.64E+08	1.75E+08	2.18E+08	1.78E+08	2.05E+08	1.72E+08	2.03E+08	1.74E+08	2.00E+08
NEP(total)	1.58817E-16	1.65579E-16	1.64367E-16	1.55905E-16	1.55514E-16	1.39877E-16	1.6027E-16	1.62547E-16	1.69769E-16	1.54939E-16	2.22E-16	1.60983E-16
DQE	0.29	0.26	0.25	0.29	0.32	0.36	0.28	#VALUE!	0.25	0.32	0.14	0.27

Symbol	Value	Value	Value	Value	Value	Value	Value	Value	Parameter
Т0									
Vn									
Q									
NEP _{photon}									
Vbias									
Detector ID	D6	D7	D8	E7	E6	E8	DK2	E9	
Pthermal	5.219	5.366	5.112	5.395	5.350	5.234	5.347	5.336	Power as function of Temperature
Pelec+Q	5.219	5.365	5.112	5.394	5.350	5.234	5.347	5.335	Electrical + Absorbed Power
Tbolo	0.36582	0.36784	0.36484	0.36945	0.36806	0.36823	0.36892	0.36846	Bolometer Temperature
T/T0	1.219	1.226	1.216	1.231	1.227	1.227	1.230	1.228	
Rbolo	4.40E+06	4.84E+06	4.08E+06	4.97E+06	4.83E+06	4.49E+06	4.84E+06	4.78E+06	Bolometer Resistance
Vbolo	3.46	3.73	3.27	3.79	3.71	3.51	3.71	3.68	Voltage across Bolometer
Ibolo	0.79	0.77	0.80	0.76	0.77	0.78	0.77	0.77	Current through Bolometer
A	-5.41	-5.40	-5.40	-5.31	-5.34	-5.35	-5.36	-5.35	
С	0.94	0.68	0.69	0.70	#VALUE!	0.96	#VALUE!	0.85	Dynamic Heat Capacity
G	92.3	92.4	91.5	90.8	91.7	89.6	90.8	90.9	Dynamic Thermal Conductance
Z/R	0.393	0.375	0.406	0.372	0.379	0.385	0.374	0.377	
τ	8.139	5.940	6.017	6.238	#VALUE!	8.580	#VALUE!	7.544	Electrical Time Constant
Sdc	3.49E+08	3.65E+08	3.36E+08	3.69E+08	3.63E+08	3.56E+08	3.67E+08	3.64E+08	Electrical Responsivity at 0 Hz
NEPjohnson	1.700	1.676	1.716	1.678	1.689	1.680	1.671	1.678	Johnson Noise Prior to Demodulation
NEPphonon	2.239	2.245	2.228	2.231	2.238	2.212	2.228	2.230	Phonon Noise Prior to Demodulation
	0.456	0.455	0.455	0.457	0.461	0.447	0.451	0.453	Johnson Noise from R _L Prior to Demod.
	2.868	2.739	2.973	2.710	2.756	2.812	2.727	2.749	Amplifier Noise Prior to Demodulation
	5.259	5.106	5.380	5.070	5.132	5.171	5.082	5.112	Detector Noise after Demodulation
DQE	0.433	0.448	0.422	0.451	0.446	0.442	0.450	0.447	BLIP Figure-of-Merit for Detector
			-			-			
Vn(det)	18.3	18.6	18.1	18.7	18.6	18.4	18.6	18.6	Voltage Noise of Detector After Demod.
Vn(total)	24.4	25.1	23.8	25.3	25.0	24.6	25.1	25.0	Total Noise after Demodulation
Measured									
Q_incident									
NEP_photon									
	0 547745 40	0.050055 40	0.0405.40	0 7005 40		0.0005.40	0 5005 40	0.0445.40	
Q_absorbed	8.51774E-12 9.20574E-17	8.20030E-12	8.912E-12	8.799E-12	#VALUE!	8.939E-12	0.503E-13	9.341E-12	
Vn(total gain	0.003067526	0.001578476	0.0021829	0.0021829	0 0024331	0.0015758	0.0015971	0.0015971	
Vn(total)	5.35345E-08	2.75476E-08	3.81E-08	3.81E-08	4.246E-08	2.75E-08	2.787E-08	2.787E-08	
Sdc	1.68E+08	1.74E+08	2.34E+08	2.34E+08	1.75E+08	1.67E+08	1.61E+08	1.61E+08	
NEP(total)	3.18569E-16	1.58073E-16	1.63E-16	1.63E-16	2.424E-16	1.645E-16	1.735E-16	1.735E-16	
DQE	0.07	0.27	0.27	0.27	#VALUE!	0.27	0.02	0.25	

Symbol	Equation (or Comments)
Т0	
Vn	
Q	
NEP _{photon}	
Vbias	
Detector ID	
Pthermal	$P_{\text{thermal}} = [G300/(1+\beta)][T/0.3]^{P}T$ evaluated from To to Tb
Pelec+Q	$P_e + Q = [V_{bias}/(2R_L + R_B)]^2 R_B + Q$
Tbolo	Solve for Tb using Newtonian recursion such that $P_{thermal} = P_e + Q$
Т/Т0	T/To = Tbolo/To
Rbolo	Rbolo = (Ro)exp[$(\Delta/Tb)^{1/2}$]
Vbolo	$Vbolo = [Vbias/(2R_{L} + R_{B})]R_{B}$
Ibolo	$Ibolo = Vbias/(2R_{L} + R_{B})$
A	$A = (T/R)(dR/dT) = -(1/2)[(\Delta/Tb)^{1/2}]$
С	$C = C300[(T/0.3)^{\gamma}]$
G	$G = G300[(T/0.3)^{\beta}]$
Z/R	$Z/R = (I/V)(dV/dI) = [-1 - GTb/(P_eA)] / [1 - GTb/(P_eA)]$
τ	$\tau = [C/2G][(Z/R + 1)(1 + 2R_L/R_B)] / [Z/R + 2R_L/R_B]$
Sdc	Sdc = $(1/2)[R_B/P_e]^{1/2}[1 - Z/R] / [1 + (Z/R)(R_B/2R_L)$
NEP _{johnson}	$NEP_{johnson} = [(4k(Tb)^{3}G^{2})/(P_{e}A^{2})]^{1/2}$
NEP _{phonon}	$=\{[(4kTo^{2}G)(\beta+1)((T/To)^{2\beta+3}-1)]/[(2\beta+3)(T/To)^{\beta}((T/To)^{\beta+1}-1)]\}^{1/2}$
NEP _{load}	$NEP_{load} = [4kTo/2R_{L}]^{1/2} 2(Z/R)R_{B}lbolo/[(Z/R) - 1] $
NEP _{amp}	NEP _{amp} = Vn / Sdc
NEP _{det}	$NEP_{det} = [2NEP_{john}^{2} + NEP_{phon}^{2} + 2NEP_{load}^{2} + 2NEP_{amp}^{2}]^{1/2}$
DQE	$DQE = NEP_{photon}^{2} / (NEP_{photon}^{2} + NEP_{det}^{2})$
Vn(det)	$Vn(det) = NEP_{det}Sdc$
Vn(total)	$Vn(total) = [NEP_{det}^{2} + NEP_{photon}^{2}]^{1/2}Sdc$
Measured	
Q_Incident	
Q absorbed	
NEP_photon	
Vn(total, gair	
Vn(total)	
Sdc	
NEP(total)	
DOF	
D QL	

EIDP Coverpage For QM PLW BDA

Unit Identfication							
	Name	:	QM F	'LW BDA			
	Part #	:	1020	9800 -8			
	S/N	:	#007				

Environmemtal Testing							
			Duration				
	Axes		or Number				
	Tested	Temperature	of Cycles	Pass/Fail	Requirement	Source	Waiver #
			2 min		X, Y, Z at 90 K	SSSD	HR-SP-JPL-
Random Vibration Test	X, Y, Z	100 K	per axis	Р	1 min per axis	Sec # 3.4	RFW-006
						SSSD	HR-SP-JPL-
High Level Sine Vibe Test	None	NA	NA	NA	X, Y, Z at 90 K	Sec # 3.4	RFW-005
			5 davs as		None (other than		
			part of the		as part of the		
			assembly		assembly		
Bakeout	NA	80 C	procedures	Р	procedure)	D-20549	
		RoomT to			Min15 from RmT		
Thermal Cycles	NA	~ < 10 K	27	Р	to < 77 K	D-20549	

Other Testing								
						Minimum		
		Frequ	ency (Hz)	Note		Performance	Source	Waiver #
Lowest Resonant						> 200 Hz	SSSD	
Frequency (X-axis)		2	83 Hz	Cold		(Goal: >250 Hz)	Sec # 3.1.3	NA
Lowest Resonant						> 200 Hz	SSSD	
Frequency (Y-axis)		2	81 Hz	Cold		(Goal: >250 Hz)	Sec # 3.1.3	NA
Lowest Resonant						> 200 Hz	SSSD	
Frequency (Z-axis)		2	76 Hz	Cold		(Goal: >250 Hz)	Sec # 3.1.3	NA
Metrology Measurements we	ere	performe	d before and	after the Vib	ration Test	and the Thermal C	Cycles	
		Motion in			Meets	Performance		
		X/Y	Motion in Z		Goal ?	Goal	Source	Waiver #
Maximum motion due to								
Random Vibration Test						125 μm in X/Y	SSSD	
1st axis (X)		21 µm	40 µm		Y	and 500 μm in Z	Sec # 3.1.1	NA
Maximum motion due to								
Random Vibration Test						125 μm in X/Y	SSSD	
2nd axis (Y)		22 µm	8.6 μm		Y	and 500 μ m in Z	Sec # 3.1.1	NA
Maximum motion due to								
Random Vibration Test						125 μm in X/Y	SSSD	
3rd axis (Z)		9.5 μm	11 μm		Y	and 500 μm in Z	Sec # 3.1.1	NA
Cumulative Maximum						125 μm in X/Y	SSSD	
motion		34 µm	56 μm		Y	and 500 μm in Z	Sec # 3.1.1	NA
Cold Continuity Measuremen	nts	: In Proce	ess			-		
					Pass/Fail	Requirement	Source	Waiver #
Cold Continuity Test								
(1st Thermal Cycle)					Р	None	NA	NA
Cold Continuity Test								
(2nd Thermal Cycle)					Р	None	NA	NA

QM BDA Random Vibration Test

P/N 10209800-8 S/N 007 X-axis Shake, Cold, Sine Surveys (Before and After 0 dB Random Vibe)

Y-axis Shake, Cold, Sine Surveys (Before and After 0 dB Random Vibe)

Z-axis Shake, Cold, Sine Surveys (Before and After 0 dB Random Vibe)

Hardware ID	PFM PLW BD	DA, 10209800-	1 S/N 014				page 1/2
Date	Time	AIDS	Power	Mate	Demate	Transport	Notes
							Assembly Process Connector Mates
30-Jul-2004		242005		J05	J05		kapton cable sub-assy test
30-Jul-2004		242009		J06	J06		kapton cable sub-assy test
19-Oct-2004		243851		J05,J06	J05,J06		kapton cable post-installation test
20-Oct-2004		243851		J05,J06	J05,J06		load resistor test
9-Nov-2004		243851		J05,J06	J05,J06		detector test
11-Nov-2004		243851		J05,J06	J05,J06		detector test, after feedhorn installation
							Assembly Complete
18-Nov-2004		244324		J05,J06	J05,J06		assembly complete electical test (pre-bakeout)
19-Nov-2004		244324				х	103 -> MDL -> 103, for optical metrology
19-Nov-2004		244324					Filter installation
19-Nov-2004		244324				х	103 -> bld 158 for Vacuum Bakeout (80C, 24 hrs, 10^-5 torr)
22-Nov-2004		244324				х	bld 158 -> 103
23-Nov-2004		244324		J05,J06	J05,J06		post-bakeout, pre-vibe electrical test
23-Nov-2004		244324				х	bld 103 -> 170 for metrology
23-Nov-2004		244324				х	103 -> 183 delivery to environmental test
23-Nov-2004		244398					installation into shake facility
29-Nov-2004		244398				х	183 -> 144 (shake lab)
29-Nov-2004		244398					pump / vent (for RmT pre-shake tests)
29-Nov-2004		244398					pump / cool to ~100K / Shake Test / warm
30-Nov-2004		244398					pump / vent (for RmT post-shake tests)
30-Nov-2004		244398				х	144 -> 183, for removal from shake fixture
30-Nov-2004		244398				х	183 -> 170 for metrology
30-Nov-2004		244398				х	170 -> 103-109D
6-Dec-2004		244399				х	103 -> 183
6-Dec-2004		244399		J05, J06			installation in thermal cycle facility
6-Dec-2004		244399					pump
7-Dec-2004		244399					thermal cycle RmT -> 4K -> RmT
Hardware ID	PFM PLW BD	A, 10209800-	1 S/N 014				page 2/2
-------------	------------	--------------	-----------	----------	----------	-----------	--
Date	Time	AIDS	Power	Mate	Demate	Transport	Notes
8-Dec-2004		244399					vent
8-Dec-2004		244399			J05, J06		remove from thermal cycle facility
8-Dec-2004		244399				х	183->170->183 for metrology
8-Dec-2004		244174		J05, J06			installation in thermal cycle facility
8-Dec-2004		244174					pump
9-Dec-2004		244174					thermal cycle RmT -> 4K
10-Dec-2004		244174					warm -> RmT
13-Dec-2004		244174					vent
13-Dec-2004		244174			J05, J06		remove from thermal cycle facility
13-Dec-2004		244174				х	183->170 -> 183 for metrology
4-Jan-2005		244588		J05, J06			Installation in BODAC
4-Jan-2005		244588					pump
5-Jan-2005		244588					cooldown
interim							performance testing
13-Jan-2005		244605					warmup
19-Jan-2005		244605					vent
19-Jan-2005		244711					pump
20-Jan-2005		244711					cooldown
interim							performance testing
28-Jan-2005		244713					warmup
4-Feb-2005		244713					vent
4-Feb-2005		244713			J05, J06		Removal from BODAC
4-Feb-2005		244713				х	183 -> 103 for storage
17-Feb-2005		244887				х	103 -> 170 -> 103 for metrology
23-Feb-2005		244892		J05, J06	J05, J06		Final electrical test.

Г	12		11		10		9	 8
H								
G								
F								
E								
D	9. ALL DIMEN POSITION. IN ANY A	ISIONS SHOW THE SUSPE XIS.	N FOR THE 300π NDED UNIT MAY	IK STAGE ARE BE SHIFTED F	FOR THE NOMIN ROM NOMINAL P	IAL SUSPENDE OSITION ±0,5π	ED 1m	
	8. ONLY PIXE OMITTED F 7. FOR PHOTE	ELS, DOWEL F FOR CLARITY OMETER AND	PIN HOLES, AND SPECTROMETER	SLOTS VISIBLI SUBSYSTEM	E. ALL OTHER FE	ATURES A AND LAYOU	JT	
С	6. DIMENSION PROVIDED ASSEMBL	IS IN {} ARE (FOR REFREN Y TEMPERAT	CALCULATED FOI NCE ONLY. ALL (TURE OF 20° C.	R OPERATING DTHED DIMENS	TEMPERATURE / IONS ARE BASE	AND ARE D ON AN		
	5 INDICATES 4 REFER TO DETECTOF	S CONNECTOR TABLES ON R ARRAYS.	POSITION. CONI	NECTORS INST	ALLED ARE NAN RENCES BETWE	IONIC STM 051 EN	M6SN.	
B	2. THIS IS TH ARRAY, - CONTAIN REQUIREM	I NUMBER T IE INTERFACE JPL PART NU THE FOLLOW IENTS OF JPL	E CONTROL DRAV IMBER 10209800. ING NOTE: THIS A	SHOWN IN THIS VING FOR THE JPL DRAWING ASSEMBLY ME NTROL DRAWI	BOLOMETER DE G NUMBER 10209 ETS THE INTERF NG 10209721.	TECTOR 1800 SHALL ACE		
A	1. THIS TECHN TRANSFERI AGREEMEN TECHNICAL NASA/PPA ANY OTHEF ANY OTHEF	NICAL DATA I RED BY JPL T WHICH ENT DATA IS TR RC SPIRE ON R PURPOSE, A R PARTY WIT	S EXPORT CONT TO PPARC PURS ERED INTO FORC ANSFERRED TO F FIRST COOPERA AND SHALL NOT HOUT THE PRIOF	ROLLED UNDER JANT TO THE E ON DECEMBE PPARC FOR US TIVE PROJECT BE RE-TRANS R WRITTEN AP	R U.S. LAW AND NASA / PPARC R 2, 1999. THIS E EXCLUSIVELY , MAY NOT BE U FERRED OR DISC PROVAL OF NAS	IS BEING LETTER OF ON THE JSED FOR LOSED TO SA.		

GENERAL VIEW REFERENCE ONLY

5

5	4	2					1							
		REVISIONS												
	DESCRIPTION		CODE	DWN	снк	STRUCT	MATL	THRM CONT	PEM	ENGR	DSGN SUPV	DATA MGT	RELEASE DATE	
	INITIAL RELEASE		- CODE B				SEE TI	TLE E	BLOCK			RTN	12/7/01	
WPDATED: MASS & REMOV	CG'S, FILTER SHAPE,VOLUME NEED AROUND ED MODES AND MASS PARTICIPATION; ROTATE	CAPSTANS, CONN. POSITIONS. D PIXEL MAP 180°.	B	DJC	MAW				MIH	MAW		RGB	09/08/04	
INCORPORATED ECR	HR-SP-JPL-ECR-003; CHANGED FOCUS FO	JR -2 &-3; CHANGED DP TO DK	B											I
			•											

¢ F	= a c e	DRAW	ING							В
0		NOMENCLAT	URE OR DES	CRIPTION		SPECI	FICATION	MATERIAL OR NOTE	ZONE	
		PARTS LIST								
S	CONTRACT N	10 <u>1244858</u>		JET		ROPU	ILSION Institute of Pasadena, ca	LABORATOR	Ϋ́	
	APPD	DAT	E			REL	EASED THROUG	H EDMG		
	DWN DC	RUMB	11/9/01	F	30L	OME	TER I	DETECTOR		
	CHK B B	BURDICK	11/14/01							ED
	STRUCT K B		11/19/01				AKKA	۲,		AT
	THRM		11/19/01				SPIRI	-		ENER
	MSSL A.	J. COKER	11/7/01	SIZE	CAG	E NO	1.0	~~~~~	REV	0
			I				1 1 1 1		1	

23835

10209721

UNCLASSIFIED SHEET 1 OF 7

12/13/01 11/19/01

3

A1

SCALE NONE

1020 A1

АD

REV 2/00

D

				ALL CONNECTORS		
	PIN #	PIN PURPOSE	PIN #	PIN PURPOSE	PIN #	
C	1	SIGNAL A+	18	SIGNAL T+	35	SIGNAL J-
	2	SIGNAL B+	19	SIGNAL U+	36	SIGNAL K-
	3	SIGNAL C+	20	SIGNAL V+	37	SIGNAL L-
	4	SIGNAL D+	21	SIGNAL W+	38	SIGNAL M-
	5	SIGNAL E+	22	SIGNAL X+	39	SIGNAL N-
	6	SIGNAL F+	23	SIGNAL Y+	40	SIGNAL P-
R	7	SIGNAL G+	24	SIGNAL Z+	41	SIGNAL R-
	8	SIGNAL H+	25	SIGNAL BIAS V+	42	SIGNAL S-
	9	SIGNAL I+	26	SIGNAL A-	43	SIGNAL T-
	10	SIGNAL J+	27	SIGNAL B-	44	SIGNAL U-
	11	SIGNAL K+	28	SIGNAL C-	45	SIGNAL V-
	12	SIGNAL L+	29	SIGNAL D-	46	SIGNAL W-
	13	SIGNAL M+	30	SIGNAL E-	47	SIGNAL X-
Δ	14	SIGNAL N+	31	SIGNAL F-	48	SIGNAL Y-
A	15	SIGNAL P+	32	SIGNAL G-	49	SIGNAL Z-
	16	SIGNAL R+	33	SIGNAL H-	50	SIGNAL BIAS V
	17	SIGNAL S+	34	SIGNAL I-	51	SIGNAL BIAS C

Released on SEP-22 2004 by Richard G Bannister and signed by Mark A Weilert CHK, Dustin J Crumb DEGN, Martin I Herman PEM, Mark A Weilert COGE, Richard G Bannister 8

SIZE	CAGE N	0			REV		
A 1	2383	35	10209721				
SCALE 2:	1	UN(CLASSIFIED	SHEET2 OF7			

Г	12	11	10	9	8
Н					
	UNIT: P/LW NUMBER: 102	209800-1	SUBSYSTEM INTERF	ACE DATA	
	FOCUS: 32.8 CONNECTOR	POSITIONS USED: J05, J06			
G	MASS: 632	g	MECHANICAL CHARACT	ERISTICS	
	MOMENT OF MECHANICAL SURFACE FII TOTAL CONT R.M.S. ROUC THERMAL ST	INERTIA: INTERFACE MATERIAL: 7075 NISH DESCRIPTION: CHEM FIL ACT AREA: 1783 mm ² GHNESS OF CONTACT AREA: RAP INTERFACE MATERIAL: CU	: X 34.4 I _x 772 Kg*mm ² AL M GOLD 3.2 uM J 99.999% PURE	I _r 1,145 Kg*mm ²	 _z 1,423 Ko
F	THERMAL ST THERMAL ST THERMAL ST	RAP SURFACE FINISH DESCE RAP CONTACT AREA: 57.5 m RAP R.M.S. ROUGHNESS OF	RIPTION: GOLD PLATED m^2 CONTACT AREA: 3.2 uM		
E					
			لَنَ لَنَ لَنَ		0
			12X2 3X5 2X2 2X2 2X2 2X2		22.9
	Ø1.6 ⊕ Ø0.5 ABC				
D					
	10X 8.66	A1 DK1 A2 A3	A4 A5 A6	A7 A8	A9
	8X 4 33		B3 B4 B5 	B6 B7 B8	_
C					C9
	8X 4 33		D3 D4 D5		
		E1 E2 E3			E9
R					
	E - X	X			
					F
			SECTIO PHOTOMETER	$ \begin{array}{ccc} N & D - D \swarrow^8 \\ LONG & WAVE \\ \overline{} \cdot & 5 \cdot 1 \end{array} $	=9 SH2
A					

6	
Kg*mm 2	

	SUBSYSTEM	INTERFACE	DATA
UNIT: P/MW			
NUMBER: 10209800-2			
FOCUS: 32.2			
CONNECTOR POSITIONS USED: J01, J02, J	J03, J04		
	MECHANICAL	CHARACTERIS	STICS
MASS: 632 g			
C.O.G. LOCATION W.R.T. LOCATION HOLE:	X 34.4	Y	24.3
MOMENT OF INERTIA:	I _x 764 Kg*m	1m^2 I _r	1,152 Kg*mm´
MECHANICAL INTERFACE MATERIAL: 7075 A	λL		
SURFACE FINISH DESCRIPTION: CHEM FILM	GOLD		
TOTAL CONTACT AREA: 1783 mm ²			
R.M.S. ROUGHNESS OF CONTACT AREA: 3.	2 uM		
THERMAL STRAP INTERFACE MATERIAL: CU	99.999% PURE		
THERMAL STRAP SURFACE FINISH DESCRIP	PTION: GOLD PLAT	ED	
THERMAL STRAP CONTACT AREA: 57.5 mm	ົ2		
THERMAL STRAP R.M.S. ROUGHNESS OF (CONTACT AREA: 3	.2 uM	

	 _					-		
							5	Λ
			_				5	–

	12	11	10	9	8
Η			CLIDCY		
G		UNIT: P/SW NUMBER: 10209800-3 FOCUS: 23.8 CONNECTOR POSITIONS MASS: 600 g C.O.G. LOCATION W.R.T. MOMENT OF INERTIA: MECHANICAL INTERFACE	USED: J01, J02, J03, J04, MECH LOCATION HOLE: X I _x 712 MATERIAL: 7075 AL	J05, J06 IANICAL CHARACTERISTICS 34.5 Y Kg*mm^2 I _Y 1,074	24.3 4 Kg*mm^2
F		SURFACE FINISH DESCRI TOTAL CONTACT AREA: 17 R.M.S. ROUGHNESS OF THERMAL STRAP INTERFA THERMAL STRAP SURFAC THERMAL STRAP CONTAC THERMAL STRAP R.M.S.	PTION: CHEM FILM GOLD 783 mm ² CONTACT AREA: 3.2 uM ACE MATERIAL: CU 99.999% I CE FINISH DESCRIPTION: GOLD CT AREA: 57.5 mm ² ROUGHNESS OF CONTACT A	PURE) PLATED REA: 3.2 uM	
E					
D	Ø1.6− ⊕Ø0.5ABC		2 X 2 X 2 X 2 X 2 X 2 X 2 X 2 X 2 X 2 X	2 X 12 Z X 0 2 X 12 Z X 2 Z X 0 2 X 12 Z X 12 Z X 0 2 X 12 Z X 12 Z X 12 Z X 0 2 X 12 Z X	S'LL XS SL XS A14: A15
С	15X 8,66 - 16X 6,495- 16X 4,33- 16X 2,165- 16X 2,165- 16X 4,33- 16X 6,495- 15X 0,65-	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A3 A4 A3 A6 A7 A B3 B4 B5 B6 B7 B8 C3 C4 C5 C6 C7 C D3 D4 D5 D6 D7 D8 E3 E4 E5 E6 E7 E F3 F4 F5 F6 F7 F8 G3 G4 G5 G6 G7 C H3 H4 H5 H6 H7 H8 J3 J4 J5 J6 J7 J7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
B		5 X 18, 75 4 X 16, 25	(4 X13, 75 (4 X11, 25 (4 X8, 75 (4 X8, 75 (4 X3, 75 (4 X1, 25 (4 X1, 25)	4 X1, 25 4 X3, 75 4 X8, 75 4 X11, 25	4 X13, 75 4 X16, 25 5 X18, 75

SECTION E-E	8
PHOTOMETER SHORT	WAVE
SCALE: 5:1	

A|

_			
Z		6.5	
_z	1,364	Kg*mm^2	
	1,364	Kg*mm^2	

7

6

 $\mathbf{\mathbf{A}}$

5

4

		-	-			-	 -	 			
									5		1
				-					J		4

H G F E Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ		3		2		1	
G F E B M A A A A A A A A A A A A A							Н
F E D D D D D D D D D D D D D D D D D D							G
E D 10209721 SALE NOILS UNCLASSIFIED SHEELED OF 1 154 2007 1 155 2007 1							F
B SZE CAGE NO SZE CAGE NO UNCLASSIFIED SHEETES OFF 1 REV 2/04 1 REV 2/04							E
SIZE CAGE NO 10209721 C SCALE NOTED UNCLASSIFIED SHEPTES OF7 V V/V0							D
B SIZE CAGE NO A1 23835 10209721 C SCALE NOTED UNCLASSIFIED SHEETG OPT 1 REV 2/00							10209721
SIZE CAGE NO A1 23835 10209721 C SCALE NOTED UNCLASSIFIED SHEETES OF7 1 REV 2/00							B A1
	-	Ζ	SIZE CA A 1 23 SCALE NOTED	AGE NO 3835 UNCLAS	10209 SSIFIED [9	721 HEETG OF7 1 REV	AutoCAD GENERATED

12	11	10	9	8

SUBSYSTEM INTERFACE DATA

UNIT: S/LW NUMBER: 10209800-4 FOCUS: 36.9

CONNECTOR POSITIONS USED: J05

MECHANICAL CHARACTERISTICS MASS: 550 g C.O.G. LOCATION W.R.T. LOCATION HOLE: X 34.5 24.1 4.4 Y 665 Kg*mm^2 990 Kg*mm^2 l_z 1,239 Kg* MOMENT OF INERTIA: MECHANICAL INTERFACE MATERIAL: 7075 AL SURFACE FINISH DESCRIPTION: CHEM FILM GOLD TOTAL CONTACT AREA: 1783 mm² R.M.S. ROUGHNESS OF CONTACT AREA: 3.2 uM THERMAL STRAP INTERFACE MATERIAL: CU 99.999% PURE THERMAL STRAP SURFACE FINISH DESCRIPTION: GOLD PLATED THERMAL STRAP CONTACT AREA: 57.5 mm² THERMAL STRAP R.M.S. ROUGHNESS OF CONTACT AREA: 3.2 uM

Released on SEP-22¹2²⁰⁴ by Richard G Bannister and signed by Mark A Weilert CHK, Dustin J Crumb DEGN, Martin I Herman PEM, Mark A Weilert COGE, Richard G Bannister 8

G

D

C

B

A

ΗI

7

6

-	
	1
*mm^^^	
'IIIII Z	
	L
	1

5 4 3 2	1
	H
SUBSYSTEM INTERFACE DATA	
NUMBER: 10209800–5 FOCUS: 26.7 CONNECTOR POSITIONS USED: J05, J06 MECHANICAL CHARACTERISTICS	G
MASS: 510 g C.O.G. LOCATION W.R.T. LOCATION HOLE: X 34.6 Y 24.2 Z 6 MOMENT OF INERTIA: I _x 628 Kg*mm ² I _y 936 Kg*mm ² I _z 1,189 Kg*mm ² MECHANICAL INTERFACE MATERIAL: 7075 AL SURFACE FINISH DESCRIPTION: CHEM FILM GOLD TOTAL CONTACT AREA: 1783 mm ²	
R.M.S. ROUGHNESS OF CONTACT AREA: 3.2 uM THERMAL STRAP INTERFACE MATERIAL: CU 99.999% PURE THERMAL STRAP SURFACE FINISH DESCRIPTION: GOLD PLATED THERMAL STRAP CONTACT AREA: 57.5 mm ² THERMAL STRAP R.M.S. ROUGHNESS OF CONTACT AREA: 3.2 uM	- - - - - -
91.6- 	E
⊕ Ø 0.5 A BC ♀ Ø 0.5 A BC ♀ Ø 0.5 A BC ♀ Ø 0.5 A BC ♀ Ø 0.5 A BC ♥ 0.5 A BC ♥ 0.5 A BC ♥ 0.5 A BC ♥ 0.5 A BC ♥ 0.5 A BC ♥ 0.5 A BC ● 0.5 A B C ● 0.5 A B C ● 0.5 A C C C A C C A C C A C A C A C A C A	
6,75 <u>6,75</u> <u>8</u> <u>8</u> <u>8</u> <u>7</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u>	D
$3 \times 2,25$ $3 \times 2,25$ G^{2} F^{3} F^{3} F^{4} G^{3} F^{4} G^{3} F^{4} G^{3} F^{4} G^{4} F^{3} F^{4} G^{4} F^{3} F^{4} G^{4} F^{4} G^{4} F^{4} G^{4} F^{5}	,125 ,125 ,375
$\begin{array}{c c} \hline & \hline $,625 201 102 1
E SECTION E-E SECTION E-E B SECTION E-E B SECTION E-E B SECTION E-E B SECTION E-E B SECTION E-E B SECTION E-E B	RS B
SPECIROMETER SHORT WAVE SCALE: 5:1 G12 SH2	
	JERATED
SIZE CAGE NO A1 23835 1020 SCALE 5:1 UNCLASSIFIED 5 4 3)9721 SHEET 7 OF7 1 REV 2/00

							5	4	

	24	23	22	21	20	19
M		 12MΩ				
L	CHANNEL M	12MΩ JOS 12MΩ JOS 12MΩ SIGNAL M 12MΩ SIGNAL M	J01, J02, J03, J04, J03, J04, J03, J04, J04, J04, J04, J04, J04, J04, J04		JCC CONTINUED	
K	CHANNEL N	12MΩ SIGNAL N SIGNAL N SIGNAL N 12MΩ	+ 14 14 14 - TT - TT		I I I I I <th></th>	
J	CHANNEL P	12MΩ I SIGNAL P I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	+ 15 15 $+$ 40 40 $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$			
	CHANNEL R	12MΩ II SIGNAL R II II II II III III II III III II III III	+ $-$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$		1 1 25 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	CHANNEL S	SIGNAL S SIGNAL S SIGNAL S 12MΩ	+ 17 17 17 42 42 42 42 17 17 17 17 17 17 17 17 17 17 17 17 17		+ + <th></th>	
G	CHANNEL T	SIGNAL T- SIGNAL T- SIGNAL T- 12MΩ 12MΩ SIGNAL U	- 18 18 18 18 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19			
F	CHANNEL U	SIGNAL U	+ 19 19 - 45 45		23 23 24 25 23 25 26 27 27 27 27 27 27 27 27 27 27	
E	CHANNEL V RBOL 5MQ	SIGNAL V	+ 20 20 20 $-$ 46 46 46 $-$ $-$ 46 46 $-$ $-$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$			
D	CHANNEL W RBOL	SIGNAL W 12MΩ 12MΩ SIGNAL X	+ 21 21 21 TT 47 47 47 - 47			
	CHANNEL X RBOL	SIGNAL X	+ 22 22 22 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +		- - <th></th>	
С	CHANNEL Z	SIGNAL Υ SIGNAL Υ SIGNAL Ζ SIGNAL Ζ	+ 23 23 23			
В		SIGNAL Z	+ 24 24 24		20 20 MDM-51S MDM-51P =	
A						

Released on JUL-15-2004 by Richard G Bannister and signed by James J Bock CHK, Dustin J Crumb DEGN, Martin I Herman PEM, Mark A Weilert COGE, Richard G Bannister

6			5			4		3				2					1		
			tr zo	DNE		des INITIAL		REVISIONS		DWI	N СНК	STRUC	T MATL THE	RM NT E BLOC	Engi	R DSGN SUPV	i data / mgt f - RGB	release date 3/18/03	-
			B C		IN	INCORPORATE CORPORATED RAL EC	D ECR 102651 CR HR-SP-JPL-ECR-0	05	D B	DJ	C				MAV	N	RGB	07/12/04	
																			-
209 P7)800-2 /MW					10209 P	9800-3 /SW				102	209 S7	800- /LW	-4	102	209 S/	800) /SW	-5	
	J03	J04		JO1	J02	, 103	J04	J05	106	,)		 ل(J05	,	J	06	-
	A13 T1	R1		D6 R6	F12	R1 D16	E1 E1	D11	G5			F	21 71		R1			_	
	B12	T2		БО С5	E12	T1	T2	E10	J6				21		A4 A3			_	
	C13 A12	E1 D1		A5 E5	H12 G12	B16 C15	H1 G1	C10 B10	F6 G6			D	K 1 3 1		A2 A1			_	
	D12 C12	F1 F2		B5 D5	F13 F13	A15 D15	J1 H2	D10 A9	H7 F7			E F)1 -1		DK1 B3				
	B11 A11	G2 F2		C4	J12 U13	B15	F2	E9	J7						B2 B1			G4 K2	
	E13	G3		D4	G13	D14	G2	B9	H8)2		C3		F	-5	n
	C11	E 3 D 3		B4 C3	E14	A14 A13	H3 J3	D9 A8	F8 G8			E	32 [2		C2 C1		E	- 4 E6	
	B10 A10	F3 G4		B3 A3	J13 H14	B14 C13	E2 F3	C8 E8	J8 F9			A C	×2 23		D3 D2		E	25 24	
	D10 89	E4 F4		A2 D 3	G14	B13	G3 H4	D8 B8	H9			D)3 }3		D1 F3		Γ)7	
	C10	E5		C2	F15	A12		C7	J9	Ň		E	3		E2)5	J
	A9	F5		BZ D2	J15	D12	E3 F4	A7	H1C)		D	,4 K2		ET F3)4 C6	
	B8 A8	G5 E6		A1 C1	G15 H16	B12 E11	G4 H5	D7 B7	G1C)		D C)4 25		F2 F1			C5 C4	
	D8 C8	G6 F6		В1 Пк 1	DK2 F16	A11	E4	C6 F6	J1C) 1		E	34		G1 T1		E	35 Ra	
	B7	G7		D1	E15	B11	F5	A6	G1´	1		, Т	2		G2			Γ2	
12	HSJFP09	HSJFP1C	HS	SJFP03	HSJFP04	HSJFP01	HSJFP02	HSJFP05	HSJFF	°06		ISJI	FS03		HSJFS	501	HSJ	FS02	H
12	J18 HSJFP09	J20 HSJFP10	HS	JU6 SJFP03	HSJFP04	J02 HSJFP01	J04 HSJFP02	J10 HSJFP05	J12 HSJFF	2 206) ISJI)6 FS03		JO2 HSJFS	501	J HSJ	04 FS02	
12	J17 HSJFP09	J19 HSJFP10	HS	JO5 SJFP03	J07 HSJFP04	J01 HSJFP01	J03 HSJFP02	J09 HSJFP05	J11 HSJFF	 '06) UCH	05 FS03		JO1 HSJFS	501	J HSJ	03 FS02	
1 0										- -		، و ی ا ا	13		J11 UC IEC	~ 1	лор ЦСТ	12 ESO2	
	J49	J50		J43	J44	J41	J42	J45	J46	300 S		ال13 ل	- 303 17		J15		П ЭЛ	r 302 16	
	9	10		3	4	1	2	5	6			1	5		13		1	4	G
	5	5		8	8	9	9	7	7				1		2			2	
						<u> </u>		<u> </u>	<u> </u>					I					
																			F

7. INFORMATION IN THIS DOCUMENT IS ALSO CONTAINED IN THE HARNESS DEFINITION DOCUMENT, RAL DOCUMEN SPIRE-RAL-PRJ-000608. IN AREAS WHERE THERE ARE CONFLICTS, THE HARNESS DEFINITION DOCUMENT TAKES PRECEDENCE.

- Section Resistors are 7 times the source resistor.
- 5. GROUND WIRE TO BE TERMINATED AT INSTRUMENT INTEGRATION. WIRE WILL HAVE A MINIMUM LENGTH OF 150MM.
- 4. UNLESS OTHERWISE NOTED, \perp is jfet chassis ground.
- 3 JFET MEMBRANE HEATER IS 0.0204 TIMES THE SOURCE RESISTOR.
- 2. ALL RESISTORS HAVE A TOLERANCE OF $\pm 40\%$.

1. THIS TECHNICAL DATA IS EXPORT CONTROLLED UNDER U.S. LAW AND IS BEING TRANSFERRED BY JPL TO PPARC PURSUANT TO THE NASA / PPARC LETTER OF AGREEMENT WHICH ENTERED INTO FORCE ON DECEMBER 2, 1999. THIS TECHNICAL DATA IS TRANSFERRED TO PPARC FOR USE EXCLUSIVELY ON THE NASA/PPARC SPIRE ON FIRST COOPERATIVE PROJECT, MAY NOT BE USED FOR ANY OTHER PURPOSÉ, AND SHALL NOT BE RE-TRANSFERRED OR DISCLOSED TO ANY OTHER PARTY WITHOUT THE PRIOR WRITTEN APPROVAL OF NASA.

											!				
		QTY REQD	NO REF DES	CAGE NO PART	OR NG NO	NOMENCLATURE OR D	ESCRIPTION	SPECIF	FICATION	MATERIAL OR NOTE	ZONE				
			·		F	PARTS LIST									
MATERIAL				UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN MILLIME	CONTRACT N	0 <u>1244858</u>	- JET PROPULSION LABORATORY								
				LINEAR TOLERANCES: $0-6 \pm 0.1$	APPD	DATE	_	RELE	EASED THROUG	H EDMG					
MET	RIC			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DWN D C CHK J B	RUMB 2/26/03 IDCK 3/17/03	3 3 	wirin(G SCH	EMATIC,		ED			
THIRD ANGLE	PROJECTION			OVER 1000 ± 1.2	MATL D G	RIFFIN 2/11/03	3		SPIRE	-		ERAI			
			SPIRE		RAL J D	WINYARD2/11/03ELDERFIELD2/10/03		CAGE NO	101		REV) GEN			
		NEXT ASSEMBLY	USED ON	(MICROMETERS) V	ENGR L H	ILIENTHAL <u>3/17/03</u> IUSTED 2/26/03	A1X3 2	23835	ΙUα	203760	C	CAL			
		APPLIC		INTERPRET DWG PER ANSI Y14	4.100M DSGN SUPV		SCALE NONE UNCLASSIFIED SHEET 1 OF 1								
		5		4		3				1	REV 2/00				

З К

A1X.

Backshort Data

---TO BE PROVIDED ----