

# **Technical Note**

The Bolometer Phases Calibration Product  
 Ref:
 SPIRE-RAL-NOT-003266

 Issue:
 1.0

 Date:
 10 August 2011

 Page:
 1 of 6

# **SPIRE Bolometer Phase Calibration Product**

Edward Polehampton, Bruce Swinyard, Yilmaz Gul

# **1.1 Reference Documents**

## 1.2 Introduction

This technical note describes the Bolometer Phase calibration product. This calibration product contains the optimum phase settings determined from Phase-Up measurements for both "nominal" and "bright" bolometer operating modes. This calibration product is currently only used for Spectrometer processing and so this note does not deal with the Photometer phases.

The standard Spectrometer "bright" mode uses the bolometers with a dephased high bias setting and so has different optimum phases than the nominal mode.

# 1.3 Spectrometer Bright Mode Bias and Phase settings

Table 1 shows the detector bias and phase settings for the Spectrometer nominal mode and the two bright modes that have been used through the mission. The "old setting" (nominal bias, dephased) was used early in the mission for some tests (last observation was on OD451). The final bright mode adopted for the release of the AOT was the "High Bias Mode".

|                          | SSW Bias<br>(mV) | SSW Phase<br>(deg) | SLW Bias<br>(mV) | SLW Phase<br>(deg) |
|--------------------------|------------------|--------------------|------------------|--------------------|
| Nominal Mode             | 35.969           | 186.353            | 31.132           | 190.588            |
| Old setting              | 31.127           | 118.588            | 31.132           | 117.176            |
| (nominal bias, dephased) |                  |                    |                  |                    |
| High Bias Mode           | 176.385          | 103.059            | 176.417          | 108.706            |

Table 1: Bias and Phase settings for the different modes.

## 1.4 Phase-Up measurements

Phase-Up measurements are used to determine the optimum phase setting for a certain bias voltage and frequency. This is a relatively simple exercise whereby the phase is changed over a large range and the voltage measured. A cosine function is fitted for each bolometer and the median central value is taken as the phase setting for that array.

Measurements were made at various times during PV phase to determine the optimum phases for each array at different bias voltages and different bias frequencies. The optimum phases were calculated by Bruce Swinyard and the results versus frequency and bias are given in the Appendix. These were the numbers used to derive the phases actually set in the final AOT (shown in Table 1).

During the rest of the mission, Phase-Up observations have been carried out at regular intervals. In summer 2010, Yilmaz Gul investigated these observations to determine the trend in optimum phase through the mission (presented to the SDAG on 26 August 2010). He fitted a cosine function to the JFET voltages. An example fit for one detector from SLW is shown in Figure 1 and results for nominal mode in Figures 2 and 3.



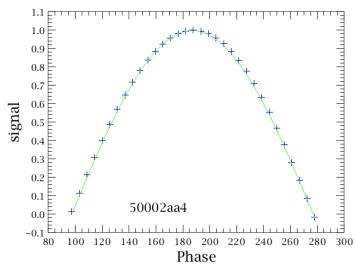
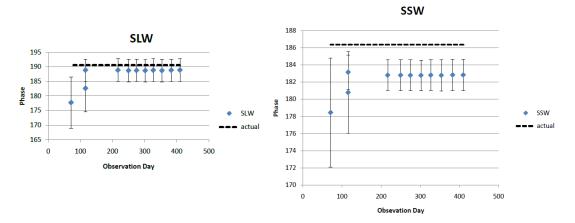
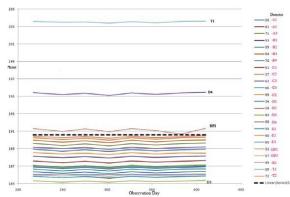





Figure 1: Example fit to a Phase-Up using a cosine function.



*Figure 2*: Best phase determined for nominal mode from observations throughout the mission (up to OD 410). The dashed line shows the actual phases used (Table 1). The error bars show the spread over detectors in the array.



*Figure 3:* Spread in best phase for different detectors in SLW. This spread was translated into the error bars shown in Figure 2.

A high bias mode phase-up was observed on OD495 (0x50006C08). A nominal mode phase-up was also done on this day (0x50006C07). Both were pointed at dark sky. The data were processed by Yilmaz Gul in September 2010 in the same way as described above. The results are shown in Table 2



as the average over all detectors, and also individually for the centre detectors. The full results for all detectors individually are given in the Appendix.

|                              | SSW Phase<br>(all dets) | SSWD4 Phase | SLW Phase<br>(all dets) | SLWC3 Phase |
|------------------------------|-------------------------|-------------|-------------------------|-------------|
| 0x50006C07<br>(Nominal mode) | 182.80 ± 1.82           | 182.05      | 188.88 ± 3.91           | 185.34      |
| 0x50006C08<br>(Bright mode)  | 172.47 ± 0.83           | 172.60      | 176.29 ± 6.25           | 174.24      |

**Table 2:** Measured best phase from OD495 (in degrees). The error for all detectors is a measure of the detector to detector scatter.

## **1.5 Modelling the phase & determining the fixed phase offset**

In order to predict the phase for any bias setting (as required for carrying out the multi-level noise test for instance), Bruce Swinyard carried out some modelling of the phases. He ran the "EIDP" spreadsheets provided by JPL with the delivery of the flight model detectors. These are:

PFM\_PLW\_EIDP\_V6A.XLS PFM\_PMW\_EIDP10.XLS PFM\_PSW\_EIDP9.XLS PFM\_SLW\_EIDP14.XLS PFM\_SSW\_EIDP10.XLS

These spreadsheets allow one to calculate the bolometer resistance for each bolometer for a given bias setting and optical loading for all bolometers. The optical loading from the telescope was estimated using loadcurves taken against the dark sky (probably on OD50 but it doesn't make much difference). The spreadsheets were modified to directly calculate the phase at a number of bias voltages using the following formula,

 $\phi_{\text{set}} = 180 \text{-} \text{ATAN}(-2\pi F^* C^* R_{\text{tot}}) - \phi_{\text{fixed}}(F) \qquad (1)$ 

where  $\phi_{set}$  is the optimum phase at bias frequency *F*. Initial guesses were used for the capacitance, *C*, and the fixed phase,  $\phi_{fixed}(F)$ , was set to zero. For each bias setting, the mean bolometer resistance was taken over all channels (including darks and thermistors) and a fixed mean value used for the load resistor to calculate  $R_{tot}$ ,

$$R_{\rm tot} = R_{\rm L}R_{\rm bol}/(R_{\rm L} + R_{\rm bol})$$

Using the measured values, trial values for *C* and  $\phi_{fixed}(F)$  were used in order to minimise the errors between the prediction and the measured phases.

The "result" from this exercise is the average capacitance for each array and the value of the fixed part of the phase equation that is only dependent on frequency and not on the bolometer resistance. Table 3 gives these values for all five arrays.

|       |        | 70 Hz           | 130 Hz                    | 190 Hz             | 80 Hz           | 160 Hz             | 240 Hz             |
|-------|--------|-----------------|---------------------------|--------------------|-----------------|--------------------|--------------------|
| Array | C (pF) | <b>\$</b> fixed | <b>φ</b> <sub>fixed</sub> | φ <sub>fixed</sub> | <b>\$</b> fixed | φ <sub>fixed</sub> | φ <sub>fixed</sub> |
| PLW   | 65     | 23.26           | 8.89                      | 1.86               |                 |                    |                    |
| PMW   | 30     | 22.13           | 6.5                       | -0.85              |                 |                    |                    |
| PSW   | 43     | 22.64           | 7.83                      | 0.12               |                 |                    |                    |
| SLW   | 60     |                 |                           |                    | 24.47           | 13.6               | 9.09               |
| SSW   | 70     |                 |                           |                    | 23.29           | 11.44              | 7.23               |

Table 3: Calibration values for phase correction



The Bolometer Phases Calibration Product  
 Ref:
 SPIRE-RAL-NOT-003266

 Issue:
 1.0

 Date:
 10 August 2011

 Page:
 4 of 6

# **1.6 Final calibration product**

Figure 2 shows that the optimum phase is very stable through the mission. Therefore, the phase-up results for the two observations from OD495 should be representative for the whole mission. These two observations were used to fill the calibration product. Detectors without a fit were set to NaN in the calibration product. The offset phases from Table 3 for 160 Hz were also included as metadata in the calibration product.

### 1.7 Appendix: Peak Phases

Peak phase settings from PV phase (median over all detectors)

| 1a PSW |  |
|--------|--|
|--------|--|

| Bias Setting (0-P<br>mV) | 70 Hz  | 130 Hz | 190 Hz |
|--------------------------|--------|--------|--------|
| 15.0368235               | 163    | 182    | 192    |
| 30.0736471               | 160.75 | 178    | 189    |
| 50.1227451               | 158.35 |        | 185.6  |
| 127.813                  |        | 173.45 |        |

#### 1b PMW

| Bias Setting (0-P<br>mV) | 70 Hz  | 130 Hz | 190 Hz |
|--------------------------|--------|--------|--------|
| 15.13235294              | 163.25 | 182.5  | 193    |
| 31.27352941              | 160.75 | 179    | 189    |
| 50.44117647              | 159    |        | 185.8  |
| 128.625                  |        | 173.75 |        |

#### 1c PLW

| Bias Setting (0-P<br>mV) | 70 Hz  | 130 Hz | 190 Hz |
|--------------------------|--------|--------|--------|
| 15.195176                | 166.4  | 187    | 199    |
| 31.403365                | 161.85 | 180.4  | 193.45 |
| 50.650588                | 159.35 |        | 187.8  |
| 129.159                  |        | 173.8  |        |

1d SLW

| Bias Setting (0-P mV) | 80 Hz | 160 Hz | 240 Hz |
|-----------------------|-------|--------|--------|
| 15.2202902            | 169.6 | 190.8  | 206    |
| 29.74874902           | 167.1 | 188.6  | 202    |
| 100.315549            | 159.9 | 178.2  |        |
| 125.2214784           | 158.9 | 176.4  |        |

### 1e SSW

| Bias Setting (0-P mV) | 80 Hz | 160 Hz | 240 Hz |
|-----------------------|-------|--------|--------|
| 15.2202902            | 168   | 188.8  | 201.5  |
| 29.74874902           | 165   | 184.8  | 197    |
| 100.315549            | 159   | 175.2  |        |
| 125.22148             | 158.1 | 174.3  |        |



The Bolometer Phases Calibration Product  
 Ref:
 SPIRE-RAL-NOT-003266

 Issue:
 1.0

 Date:
 10 August 2011

 Page:
 5 of 6

Peak phases determined from the nominal and bright mode Phase-Up observations on OD495.

| Detector | Nominal best  | High Bias best |
|----------|---------------|----------------|
|          | phase         | phase          |
| SSWA1    | 181.674955496 | 171.971047592  |
| SSWA2    | 182.759191016 | 172.928788968  |
| SSWA3    | 182.488132136 | 172.983000744  |
| SSWA4    | 183.210955816 | 172.820365416  |
| SSWB1    | 181.331614248 | 172.603518312  |
| SSWB2    | 181.476178984 | 172.820365416  |
| SSWB3    | 182.307426216 | 172.458953576  |
| SSWB4    | 184.999944424 | 172.711941864  |
| SSWB5    | 186.138391720 | 172.639659496  |
| SSWC1    | 181.747237864 | 172.115612328  |
| SSWC2    | 181.150908328 | 172.531235944  |
| SSWC3    | 181.07862596  | 172.730012456  |
| SSWC4    | 183.409732328 | 172.838436008  |
| SSWC5    | 183.355520552 | 172.386671208  |
| SSWC6    | 182.235143848 | 173.741965608  |
| SSWD1    | 181.674955496 | 172.151753512  |
| SSWD2    | 180.825637672 | 173.037212520  |
| SSWD3    | 180.789496488 | 168.212364456  |
| SSWD4    | 182.054437928 | 172.603518312  |
| SSWD5    |               |                |
| SSWD6    | 182.144790888 | 172.711941864  |
| SSWD7    | 182.741120424 | 172.621588904  |
| SSWE1    | 181.837590824 | 172.368600616  |
| SSWE2    | 181.313543656 | 172.115612328  |
| SSWE3    | 181.765308456 | 172.458953576  |
| SSWE4    | 182.090579112 | 172.892647784  |
| SSWE5    | 183.825355944 | 172.115612328  |
| SSWE6    | 181.277402472 | 172.549306536  |
| SSWF1    | 181.07862596  | 172.693871272  |
| SSWF2    | 184.620461992 | 172.440882984  |
| SSWF3    | 184.024132456 | 172.350530024  |
| SSWF4    |               |                |
| SSWF5    | 188.234580392 | 172.296318248  |
| SSWG1    | 187.855097960 | 171.934906408  |
| SSWG2    | 183.409732328 | 172.22403588   |
| SSWG3    | 183.174814632 | 173.21791844   |
| SSWG4    | 183.951850088 | 173.199847848  |
|          |               |                |
| SLWA1    | 186.915427176 | 174.500930472  |
| SLWA2    | 187.620180264 | 171.067517992  |
| SLWA3    | 189.626015976 | 174.75391876   |
| SLWB1    | 188.162298024 | 174.247942184  |
| SLWB2    | 187.041921320 | 174.374436328  |
| SLWB3    | 189.987427816 | 174.320224552  |
| SLWB4    | 188.957404072 | 174.627424616  |
| SLWC1    | 185.849262248 | 174.537071656  |
| SLWC2    | 187.114203688 | 174.374436328  |
| SLWC3    | 189.174251176 | 171.356647464  |
| SLWC4    | 186.68050948  | 174.266012776  |
| SLWC5    | 190.29462788  | 174.627424616  |



# **Technical Note**

The Bolometer Phases Calibration Product  
 Ref:
 SPIRE-RAL-NOT-003266

 Issue:
 1.0

 Date:
 10 August 2011

 Page:
 6 of 6

| SLWD1 | 186.373309416 | 174.519001064 |
|-------|---------------|---------------|
| SLWD2 | 190.439192616 | 173.814247976 |
| SLWD3 | 185.343285672 | 174.247942184 |
| SLWD4 | 195.444746600 | 174.356365736 |
| SLWE1 | 185.867332840 | 174.139518632 |
| SLWE2 | 188.559851048 | 174.266012776 |
| SLWE3 | 186.04803876  | 174.735848168 |