
Ref: SPIRE-RAL-NOT-003229

Point Source Extraction Design Document

P

1. Module Information

11

1.1. Module Owner

1

 Huw Morris (RAL)

1.2. Others Contributing

1

 Rich Savage, Rupert Ward, Anthony Smith (Sussex University)

1.3. Applicable Documents

1

 (List documents here)

1.4. Module Description

1

The purpose of this module is to extract point sources from a Herschel SimpleImage. Different
source extraction algorithms can be used, with the user selecting an algorithm at runtime. The
current supported algorithms are DAOPHOT and SussExtractor.

c

1.5. Input Data Products

1

image a Herschel SimpleImage.

aa

1.6. Input Parameters

1

algorithm Source Extraction Algorithm The algorithm used to extract point sources. Use
"Daophot" or "SussExtractor".

detThreshold Detector Threshold The threshold at which a local maximum is determined.

pixelRegion Pixel Region The region around each pixel in which to search for local maxima.

fwhm Full width-half maximum A Gaussian approximation of the beam profile.
prf Point response function A SimpleImage that contains a point response function. If

defined, this will be used instead of fwhm.

returnPixelCoordinates optional flag if the found sources are returned in pixel coordinates
rather than RA/Dec.r

Corner1Ra,
Corner1Dec,
Corner2Ra,
Corner2Dec Restrict the area of search on the image to a rectangle bound by these oppposite

cornersc

inputSourceList List of input sources An optional SourceListProduct, containing a list of
"known" source positions, at which the fluxes will be extracted.

fluxPriorsLambda Flux Priors Lambda Lamba value for the SussExtractor.

fitBackground Fit Background Flag for background fit. (SussExtractor only)

subtractMedianBackground Subtract Median Background Flag for whether to subtract the
median background. (SussExtractor only)m

1.7. Output Data Products1

result a SourceListProduct. This is a Product which contains an entry for each source found
in the image.ii

2. Module Design2

The srcext module is written as a Herschel task.TT

2.1 Module Method22

This module is designed to separate the workings of the task from the actual source extraction as
much as possible. The task itself checks input and uses the strategy pattern to create an Extractor,
and also creates a SourceExtractorParams. a

SourceExtractorParams is a convenience class to store the input parameters of the task.

�

An extractor algorithm is implemented in the Extractor class, which implements

SourceExctractorStrategy. An instance of an extractor contains a number of extractor modules.
SourceExtractorFactory uses the factory pattern to return an Extractor with the appropriate modules,
depending on the algorithm used.d

ExtractorModuleAbstract is the base class for extractor modules, implementing
ExtractorModuleType. All extractor modules extend this class. An extractor module performs one
step in the overall extraction.s

The extractor modules input is ExtractorData, which extends ExtractorDataType. T

When the task is executed, an Extractor instance is created, and a sequence of ExtractorModules is
added. The SourceExtractorParams is converted into ExtractorData, and each module is executed in
turn. If all modules executed without error, a SourceListProduct is created as the output of the
task.t

Note: the existence of PointSourceList, PointSource, and ExtractorData is historical, and doesn't
really represent best design. The existing Extractor Modules were written to operate on
ExtractorData and a PointSourceList, but new Extractor algorithms only need to implement the
SourceExtractorStrategy.

2.2 Improvements and Open Issues2

Class Diagram of the Source Extraction Module

• The list of columns in the SourceListProduct is fixed. Perhaps it would be better if each
algorithm could define which columns it needs. In this case, which columns (if any) should
be mandatory? Having no mandatory fields would allow for maximum flexibility in the
algorithm, but would cause difficulties with any other tool which uses a SourceListProduct
as an input.

a

• Although the architecture allows other algorithms to be added, the original plan was for each
extraction algorithm to be a separate class, which would be registered with the task. The
user would be able to write a new algorithm (implementing SourceExtractorStrategy),
register it with the task, and then immediately use it.

r

2.3 Problems

The DAOPHOT algorithm appears to be very sensitive to the correct value of fwhm. This may also
be true of SussExtractor, but has not yet been properly tested.

b

	Point Source Extraction Design Document
	1. Module Information

	1.1. Module Owner

	1.2. Others Contributing

	1.3. Applicable Documents

	1.4. Module Description

	1.5. Input Data Products

	1.6. Input Parameters

	1.7. Output Data Products

	2. Module Design

	2.1 Module Method

	2.2 Improvements and Open Issues

	2.3 Problems

