

Test Report for Jiggle Mapping using the Naive Mapmaker

Rene Gastaud
Nicola Schneider‐Bontemps

SPIRE‐CEA‐REP‐003196

9th February 2009

1. Overview
The goal of this test is to demonstrate that the Naïve APPP (Averaged Pointed Photometer
Product) Mapper module functions as specified by the documentation on the module. This
includes the specifications put forward in the following documents:

• SPIRE Data Processing Pipeline Module Requirements (SPIRE-ICS-DOC-002998)

• SPIRE Pipeline Description (SPIRE-RAL-DOC-002437), paragraph 4.2.16 and 4.1.13

This test outlines the results of testing the Naive APPP Mapper Module with a set of dummy
Pointed Photometer Products (PPP). This product contains timelines for each detector and
the associated coordinates in the sky (pointing ra, dec).

The Naive APPP Mapper Module is used with the AOT jiggle map 64 nods.

The Naive APPP Mapper Module computes three maps (see figures):

the image

the error

the exposure.

The requirements to check are (from doc 1 6.12.5):

• SCNMAP‐FUN‐022 The SPIRE interface shall provide an interface between jiggle‐

mode observations and the mapping module's naïve mapper.

• SCNMAP‐FUN‐031 The jiggle‐mode SPIRE interface shall operate on data from a Pointed
Photometer product.

• SCNMAP‐FUN‐072 The jiggle‐mode SPIRE interface of the MADmap mapper shall

produce one SimpleImage Product as output for each array. This product shall contain at
least the following information for each bolometer array:

 Estimated surface brightness

 Estimated error

 Unit

 Coverage

 Astrometry headers to convert map and sky coordinates

• Requirement xxx1: the signal is the mean of the signals falling on the same pixel of
the final map

• Requirement xxx2: the error on the signal must be computed as the standard
deviation of the input signal.

• Requirement xxx3: the exposure map (or coverage map) is computed by adding one
to a given pixel of the final map each time a signal falls on this given map

• Requirement xxx4: the astrometry (pointing) of the final map must be consistent with
the coordinates of the input

• Requirement xxx7: give an unit for the image

• Input Data Product: Pointed Photometer Product (PPP) This product contains timeline
for each detector and the associated coordinates in the sky (pointing ra, dec). The signal
is in a table dataset named signal and the coordinates ra in a tabledataset named ra. We
need signal, error (for the error on the signal), ra, dec.

• Output Data Product: Image The output is one or three images, one image per array.
You have one image for PSW (if present in the PPP), one for PMW (if present in the
PPP, one for PLW (if present in the PPP). Each image contains 3 images (see above)
one for the signal, another for the error, and the last one for the exposure.

• Calibration Products: None

• Calling Procedure: Assuming that pp is a PPP product

task = NaiveApppMapperTask()

mapPsw = task(input=ppp, array="PSW")

mapPlw = task(input=ppp, array="PLW")

mapPmw = task(input=ppp, array="PMW")

2. User Interface and API
The name of the short cut of the task in jide/hipe should be Task naiveApppMapper because
the task class name is NaiveApppMapperTask . This has been corrected, but this compels
not to use this short cut if we want the scripts to be used both with the old version and new
version.

from herschel.spire.ia.pipeline.phot.scanmap import NaiveApppMapperTask

task = NaiveApppMapperTask()

mapPsw = task(input=ppp, array="PSW")

3. Test Design and Implementation
In order to exercise the Naive APPP Mapper module and to check that the average over a
wide range of input values dummies PPP products are created with signal columns filled with
different strategies.

• Bruce Sibthorpe Simulations: Bruce has created several ppp for the jiggle map 64
nods with different input skies

• Very Crude Simulator: Rene created one ppp for the jiggle map 64 nods with Lena
(lady’s face) as input

The different steps are outlined in the flowdiagram of Fig. 1.

It was easier to use for the first tests the ppp from the very crude simulator. The image has
all the artifacts due to chopper, nodding and all the defaults of the instrument.

The steps of the tests are:

• Inside jide/hipe:

• Create dummy or read it from a fits file

• Check that the PPP is correct with some plots

•

• Run the task Naive APPP Mapper

• Check that we have something with display, then save it as a fits file.

•

• Inside IDL

• Read the PPP

• Read the Map

• Produce an IDL map from the PPP with the astrometry of the previous map

• Compare the map and IDL map

• Compare the exposure and IDL exposure

 Input Sky (LENA)

 Simulator (Bruce) Very Crude

 Simulator

 PPP

 IDL Crude Mosaiker Naive Appp Mapper

 Image, Weights Sample Image

 Comparison

Fig.1 Flow diagram of the testing procedure

The IDL scripts, the IDL routines, the java scripts, the java modules, the input sky are under
cvs. It is easier than to put them into the Twiki pages, where you can not put big files or keep
the versions of a file.

The IDL scripts and routines are under cvs in the usr
tree http://www.rssd.esa.int/herschel_scripts/cvsweb.cgi/develop/user/fr/saclay/rene/
map/.

The java scripts and modules are
in: http://www.rssd.esa.int/herschel_scripts/cvsweb.cgi/develop/proto/spire_pipeline/h
erschel/spire/ia/toymodel/scanmap/TestLenaJiggle64NaiveApppMapper.py?cvsroot=
Herschel_CVS

The input sky is
in: http://www.rssd.esa.int/herschel_scripts/cvsweb.cgi/develop/data/pacs/data/inputs
kies/lena512.fits?cvsroot=Herschel_CVS

4. Test with the Very Crude Simulator
The image of Lena has been used as input.

Fig. 2 IDL image, naïve image, and difference

The difference is less than 1e-6, and the mean of the image is 100, so relative error 1e-8 !

Fig. 3 Exposure

The results of both IDL crudeMosaiker and naiveAPPPMapperTask for the exposure are the
same. Exposure is a matrix of integers, so here they are no errors by truncation.

http://www.rssd.esa.int/herschel_scripts/cvsweb.cgi/develop/user/fr/saclay/rene/map/�
http://www.rssd.esa.int/herschel_scripts/cvsweb.cgi/develop/user/fr/saclay/rene/map/�
http://www.rssd.esa.int/herschel_scripts/cvsweb.cgi/develop/proto/spire_pipeline/herschel/spire/ia/toymodel/scanmap/TestLenaJiggle64NaiveApppMapper.py?cvsroot=Herschel_CVS�
http://www.rssd.esa.int/herschel_scripts/cvsweb.cgi/develop/proto/spire_pipeline/herschel/spire/ia/toymodel/scanmap/TestLenaJiggle64NaiveApppMapper.py?cvsroot=Herschel_CVS�
http://www.rssd.esa.int/herschel_scripts/cvsweb.cgi/develop/proto/spire_pipeline/herschel/spire/ia/toymodel/scanmap/TestLenaJiggle64NaiveApppMapper.py?cvsroot=Herschel_CVS�
http://www.rssd.esa.int/herschel_scripts/cvsweb.cgi/develop/data/pacs/data/inputskies/lena512.fits?cvsroot=Herschel_CVS�
http://www.rssd.esa.int/herschel_scripts/cvsweb.cgi/develop/data/pacs/data/inputskies/lena512.fits?cvsroot=Herschel_CVS�

5. Test with IDL Simulator
The output of the simulator for an exponential disk has been used. The disk is big compared
to the detectors, so it is fairly constant. The image is weird, but we get the same image from
the idl crudeMosaiker.

Fig. 4 Naïve image crudeMosaiker image difference of the two
images

mean(abs(image1-naiveImage)) = 0.0068651006

mean(abs(naiveImage[ii]))= 0.87851875 (non zero pixels)

With the blank sky, the output image is blank, minimum is zero and maximum is zero.

With the psf 1 Jansky we got as final map this both with naïve app mapper and idl crudeMosaiker.

6. The obvious test

The obvious test is to compare the input sky with the image of the naïve appp mapper. It is
difficult to do this test on Bruce simulated data, because they are chopped and are too
realistic (too much defaults). It is easier with the very crude simulator.

With Lena, the first result is that there is an inversion right/left.

I correct it by changing the sign of cdelt1 in the astrometry.

In IDL I use hastrom to align image1 with respect to image2. The size of the total image, the
size of the pixel, the coordinates of the pixels are changed so that the two images can be
easily compared: it is the same part of the sky, with the same resolution and same
orientation.

The input image (sky) has a resolution of 1 arcseconds, the output image has a resolution of
6 arcseconds (to be compared with the beam fwhm of 17).

1) First try regrid skyImage to naiveImage, so that both have the dimensions [47,90] .

The difference shows a pattern, perhaps dued to a shift. The idl routine
CORREL_OPTIMIZE gives a shift of -1, -1. With a shift of -1, -1 the difference of image
show no more pattern:

Fig. 5 No shift shifted

2) To improve the precision on the shift, I try to regrid the output image on the skyImage.

The idl routine correl_optimize gives absurd result: the offset is as big as the image.

My own correlation routine gives an offset of 4, 21 pixels or arcseconds (for skyimage 1
pixel=1arcseconds) to be compared to 1,1 pixels of the naiveImage or 6, 6 arcseconds.

The difference of images shows a pattern, so this is not conclusive.

3) As the difference of the input image and the output shifted image is non zero and big
in the previous test, another way to check the shift is to use a point as image. A
perfect point is not easy to use, it can fall on non detected area (in real life no point
exists, only psf/beam image). So after infructuous test with a point I use a gaussian,
fwhm = 17.0. I then use the idl procedure gauss2dfit on the output image to check the

size and the spatial offsets.

Fig. 6: the reconstructed Gaussian, pixel size =6”

Spatial offset x=9.3 arcseconds and y=6 arcseconds, which is compatible with the
previous result with Lena. The amplitude of the Gaussian is 9.7 to be compared with the
input 10.: precision is 3%, which is good. The size of the Gaussian is 7.7 and 7.4
arseconds, to be compared to 7.23 arcseconds (fwhm=17.), precision is 5%.

The flux is given by 2*PI*a*b*amplitude, the precision on the flux is 4%

The reconstructed Gaussian is lower, and larger: it is blurred, which is normal: the naïve
mapper is naïve and blurs the input image. The flux of the reconstructed image is greater
of the input image.

7. Test Pass / Fail Criteria
When the difference of the reference and the output of the task is less than a given threshold
(say by example 1E-5), the test is passed.

8. Input Data
Input data is a dummy PPP Product with, signal, ra, dec created by the script
TestLenaJiggle64NaiveApppMapper.py

.

9. Test Results
The tests test1, test2 passes but not test3.

The test test6 works for “usual” data but fails for ra=[1,359], the computed mean is 180
instead of zero. Test5 is not yet implemented

10. Conclusions and Recommendations
The Naive APPP Mapper module module has been tested on dummy PPP. The following
conclusions are drawn:

1. The module computes a correct image.

2. The module computes a correct exposure.

3. The astrometry is correct, with the problem of cdelt1/ flip left/right

The following recommendations are made:

More tests :

 1 test the error

 2 test the astrometry with other images

	Test Report for Jiggle Mapping using the Naive Mapmaker
	Rene Gastaud
	Nicola Schneider-Bontemps
	SPIRE-CEA-REP-003196
	9th February 2009
	1. Overview
	2. User Interface and API
	3. Test Design and Implementation
	4. Test with the Very Crude Simulator
	5. Test with IDL Simulator
	6. The obvious test
	7. Test Pass / Fail Criteria
	8. Input Data
	9. Test Results
	10. Conclusions and Recommendations

