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1. Background
Early in 2009, the European Space Agency will launch the Herschel Space Observatory to make 
astronomical observations in the far-infrared and submillimeter (see http://sci.esa.int/herschel/) to help 
understand the formation of stars and galaxies. Among the three instruments on board is SPIRE, the 
Spectral and Photometric Imaging Receiver. The SPIRE imaging photometer and spectrometer both 
employ bolometric detector arrays.

The SPIRE instrument team aims to provide astronomers with an accurate measurement of the 
astronomical object of interest. Data processing has to take care to remove instrumental artifacts before 
presenting data to the astronomer. Cosmic rays are a significant source of data contamination. Cosmic 
ray particles can strike the detection system of the SPIRE instrument and cause transient alterations to 
the signal, commonly referred to as “glitches”. The cosmic rays deposit their energy in the detection 
system essentially instantaneously. Subsequent filtering of the detector signal gives these glitches a 
characteristic shape determined by the filter characteristics of the read-out electronics and the thermal 
inertia of the detector material (see Illustration 1).

The SPIRE spectrometer is a Fourier transform spectrometer (FTS) and the instrument records 
interference patterns. For any given observation, the SPIRE FTS will make n redundant measurements. 
During data processing, the raw data from the SPIRE instrument are turned into interferograms I as a 
function of optical path difference (OPD) x. The i'th interferogram will contain signal contributions 
from the sources in the two input ports, noise, and glitches

One of the final steps in the data processing pipeline computes the average interferogram for the n 
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Illustration 1: Sample glitch recorded by a SPIRE detector 
during ground-based flight model testing

I  x = I source  x  I noise x  I glitch x 

http://sci.esa.int/herschel/


measured interferograms:

If the noise is randomly distributed then the average of the noise contribution the interferogram will go 
to zero: I noise x 0

Glitches, however, will still contaminate the signal from the source. The goal is to remove the glitch 
signature from the individual interferograms: I i

glitch x 0 . Only then will the average interferogram 
reflect the radiation from the source only.

An effective and robust algorithm is required to automatically identify and remove glitches in each 
interferogram.

2. Glitches as outliers
Thee deglitching scheme described here relies on statistical analysis and the mathematical notion of an 
“outlier”. There is no broad consensus as to the precise definition of an outlier in the mathematical 
literature. Intuitively, an outlier can be understood as an element in a set of numbers which derives 
from a distribution different than the distribution from which most of the elements in that set derive (cf. 
Thode 2002, p. 123; Davies & Gather 1993, p. 782). This characterization applies to a glitch when 
comparing the glitch signal at a certain OPD to redundant measurements without the energy added 
from a cosmic ray hit. Outlier detection for an observation of the SPIRE FTS is a nontrivial process for 
a number of reasons: 
•Commonly, outlier detection is performed by setting a threshold above which a data point is flagged. 
However, within an interferogram, there is strong modulation around a central burst. Thus, one cannot 
create a static threshold for the whole interferogram. 
•The interferograms vary significantly when different sources are observed. A single threshold, even if 
it depends on OPD, will only be of limited effectiveness when detecting outliers.

3. Small number statistics
Another aspect of the usage of the SPIRE FTS further complicates matters: Astronomers are limited by 
the observation time available to them and are frugal in their use of this time. When using the SPIRE 
spectrometer for the key science programs, which accounts for about 50% of the nominal mission time, 
they have often chosen to make only a small number of repeated measurements on a given source (see 
Illustration 2). An outlier detection algorithm for the SPIRE spectrometer is therefore required to 
operate on data with sample sizes as low as 2 in more than 30% of all observations. In more than 50% 
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of all observations there are less than 10 iterations. Measurements are repeated 17 times or fewer in 
about 75% of all observations. This leaves sample sizes of 20 and higher for only 25% of all 
observations.

An algorithm to identify outliers will depend on various parameters. A suitable parameter choice has to 
be made. There are two conflicting requirements for a glitch detection algorithm:

(1) Flag as few as possible false positives, i.e. data samples which are not glitches.
(2) Identify as many as possible glitches correctly.

This study takes the following approach: Each considered set of parameters is evaluated on the basis of 
how many false positives an algorithm will find. A parameter set is accepted as a feasible choice for the 
data processing pipeline if fewer than 0.1% of data samples are flagged as false positives. Of the 
parameter sets which satisfy this condition, those parameter are identified which correctly identify an 
acceptable number of glitches in data from the SPIRE ground-based test campaign PFM4.44

4. Outlier detection
A wide range of methods is available for the statistical identification of outliers. Many practitioners 
have used a simple “3-sigma clipping” approach. It has become more common to use outlier detection 
methods based on the median rather than the mean. Both algorithms are studied below. 
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Illustration 2: FTS observations during the Guaranteed and Open Time Key Programs
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 a) Two basic algorithms
First, the terminology is defined to describe the studied algorithms.
 
Definitions:

I i x  : Interferogram signal as a function of optical path difference x  for scan i ,where i=1,. .. ,n
I  x = I 1 x  , I 2  x  , ... , I n  x  : The interferogram signal vector as a function of OPD x

Standard Deviation Clipping
A simple outlier identification relies on the standard deviation as a measure of the variability of the data 
around the average value:

MAD Clipping
Alternatively, one could use an equivalent criterion using the median instead of the mean and median 
absolute deviation (MAD) instead of the standard deviation:

The factor of 1.4826 ensures that the MAD and the standard deviation can be compared on an equal 
footing when it comes to specifying the expectation for the proportion of randomly distributed points 
that fall within a certain range around the average for normally distributed data.

 b) Performance limitations of the two algorithms
Both algorithms suffer different shortcomings for small sample sizes. “Small” here is taken to be fewer 
than 18 elements (cf. Illustration 2).

The standard deviation clipping suffers from the well-known Masking Effect (cf. Davies and Gather 
1993, p. 784). Consider the data in Illustration 3, which shows ten elements from five normally 
distributed datasets (average = 0, standard deviation = 1) except for a single point in the second dataset 
which was set to a value of 30, simulating a glitch.
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I i  x  is an outlier iff
∣I i  x−I  x ∣≥k⋅ I  xwithk0

 I
2  x ≡ 1

n−1∑i

n
 I i  x −I  x 2 : Standard deviation interferogram

I i x   is an outlier iff
∣I i x −MEDIAN  I  x ∣≥1.4826⋅k⋅MAD I  x with k0

MEDIAN  I  x ≡ 1
2  I[ n1

2 ] x  I[ n
2 ]
 x 

where I [ j ]denotes the j'th element of the ordered set {I i}
[ X ]denotes the first integer lower than or equal a real number

MAD I i≡MEDIAN ∣I 1−MEDIAN  I ∣, ... ,∣I n−MEDIAN  I ∣



The standard deviation clipping with a threshold factor of k=2 does not identify the glitch as an outlier 
because not only is the glitch value exceedingly large but so is the mean plus the threshold factor times 
the standard deviation. The latter increases quadratically and because of the small sample size, the 
envelope defined by the standard deviation around the average is not violated.
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Illustration 3: A single glitch at a value of 30 (arbitrary 
units) in five datasets of ten elements which are otherwise 
created with a Gaussian random number generator

Illustration 4: Standard Deviation Clipping applied to the data



The MAD clipping with a threshold factor of k=2 easily identifies the glitch as an outlier, as is shown 
in Illustration 5.

MAD clipping suffers from an effect which may be called “accidental grouping”. It is documented in 
the following figures. Consider five normally distributed datasets with ten data points each (mean = 0, 
standard deviation = 1) as in Illustration 6.
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Illustration 5: MAD clipping applied to the data

Illustration 6: Five datasets created with a Gaussian random 
number generator



Even though there are, by construction, no glitches present in the data, MAD clipping identifies two 
outliers at index 5. The data are not examples for infrequent but large values in a Gaussian distribution 
as one might expect. Instead, three out of the five data points at index 5 lie closely together, leading to a 
very small MAD, i.e. a very strict condition for outlier detection which is then violated by the 
remaining two data points.

Applied to the same data, the standard deviation clipping has no trouble recognizing the white noise as 
what it is and not flagging an outlier (see Illustration 8).

Jan 6, 2009 8/27

Illustration 7: MAD clipping applied to white noise



If the sample size is small, identifying glitches correctly and avoiding false positives is difficult for 
standard deviation and MAD clipping respectively. As the sample size increases, these problems are 
less likely to occur:

• For standard deviation clipping, each normally distributed dataset decreases the standard 
deviation by a factor of N /N1 , making the outlier identification more sensitive. For 
example, increasing the sample size from 3 to 6 reduces the standard deviation by ~25%. 
Simply by adding one more normally distributed dataset would lead to the identification of the 
glitch in Illustration 3 in almost all cases.

• The MAD clipping is less likely to suffer from accidental grouping as it is less likely to occur 
for larger samples sizes. Illustration 9 shows how the mean percentage of false positives 
decreases as the number of scans increases and converges towards the value of ~4.55% 
expected for a Gaussian distribution.
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Illustration 8: Standard deviation clipping applied to  
white noise



The comprehensive evaluation of the two algorithms must quantify the proportion of randomly 
distributed samples wrongly flagged as outliers and the number of glitches correctly identified. The 
latter has to rely on an external judgement whether an element is a glitch or not. 

Simulations with 5,000 data samples created by a Gaussian random number generator (mean = 0, 
standard deviation = 1) show two clear trends concerning false positives (see Illustration 10): 

● An increase in the threshold factor k will decrease the proportion of flagged false positives in a 
sample for both, standard deviation and MAD clipping.

● An increase in the number of scans n will increase the proportion of false positives identified in 
a sample by standard deviation clipping.

● There is a lower threshold for standard deviation clipping below which no false positives are 
identified. The regime of not finding any false positives starts at increasingly higher numbers of 
scans as the threshold factor increases.

● An increase in the number of scans n tends to decrease the proportion of false positives in a 
sample for the MAD clipping. 
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Illustration 9: The mean percentage of false positives from MAD 
clipping (k=2) as a function of sample size for simulated data up to 
100 and 1,000 trials. The standard deviation of the mean is also given.



Using data from the SPIRE ground-based test campaign PFM4 (see 27 Appendix) the standard 
deviation clipping algorithm was tested for n = 6, 8, 16 scans with a total number of glitches of 89, 87, 
11 respectively. The algorithm was applied to PFM4 data, but only for those parameter sets where the 
expected ratio of false positives was less than 0.1% (see Table 1). 

n Threshold factors where the expected 
false positive ratio is less than 0.1%

6 2 – 6 in steps of 0.5
8 2 – 6 in steps of 0.5
16 2.5 – 6 in steps of 0.5

Table 1: Parameter sets for standard deviation clipping
In all cases listed in Table 1, the standard deviation clipping did not identify a single outlier. Therefore, 
not a single glitch was flagged correctly. MAD clipping was not applied to PFM4, because the expected 
ratio of false positives was significantly higher than the required 0.1% for up to 16 scans (see 
Illustration 11). These results show that neither of the algorithms is useful to detect glitches when the 
scan numbers are 16 or less.
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Illustration 10: Ratio of false positives over data elements 
after 1,000 trials



5. Outlier detection for SPIRE interferograms
One solution for the problem of not being able to effectively detect outliers is to increase the sample 
size. Unfortunately, the number of repeated measurements is not negotiable as it is selected by the 
astronomer and limited by a very scarce resource: observation time. However, alternate means to 
increase the sample size for the identification of outliers do exist:  I x , the standard deviation 
interferogram, measures the square root of the variance in the averaged interferogram. The variance 
depends on the performance of the detectors, the electronics, and the amount of change in the signal 
modulation due to moving the linear translation stage in SPIRE's interferometer. Outside of the central 
burst region, the variance should be mainly due to the noise introduced by the detectors and the 
electronics as the changes in modulation are relatively small. This means that the variance should be 
approximately constant away from the central burst region. The ground-based data confirm this 
expectation (see e.g. Illustration 12).
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Illustration 11: Expected false positive ratios for the MAD clipping 
algorithm



A glitch, however, will lead to a significantly increased standard deviation at the OPD where it 
occurred. The problem of identifying an outlier in a small set of interferograms of commonly fewer 
than ten can therefore be translated into identifying an outlier within a portion of the standard deviation 
interferogram. Introducing second-order statistics has an important advantage over the the glitch 
identification algorithms described earlier: An outlier in the standard deviation interferogram can be 
identified within a portion of the standard deviation interferogram whose size can be selected 
independently of the number of scans. The sample size can be set to numbers high enough to avoid the 
problems associated with identifying outliers in very small sample sizes of less than ten elements. The 
remaining problem is that the standard deviation interferogram is not flat for the whole OPD range but 
does reflect significant changes in modulation, i.e. the central burst region. Outlier detection has to take 
these variations in the standard deviation into account. 

 a) Algorithm descriptions
The outlier detection algorithms employ second order statistics and operate on a subsection (“window”) 
of the standard deviation interferograms measured during an observation. The proposed algorithms use 
the mean, standard deviation, median, and median absolute deviation from the median within such a 
given window:

Windowed Standard Deviation Clipping:
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Illustration 12: Standard deviation interferograms of a high (left) and medium (right) resolution  
observation during PFM4 testing, obsid: 300113C8 and 300114CA, forward scans



Windowed MAD Clipping:
The windowed clipping algorithm with the median absolute deviation is defined equivalently: 

Once a specific position x is flagged, the following criterion identifies the specific scan with a glitch:

The algorithm is then applied again to the data without the flagged samples.

It should be noted, that this criterion would, in the case of n=2, flag samples in both interferograms as 
glitches. This is not a satisfactory solution and a special rule has to be introduced to deal with this 
special case. Three possible solutions have been proposed to deal with this special case:

1.Calculate the three-point difference TPD  x=I  x − 1
2
⋅ I x− x  I  x x  for the sample in 

each interferogram and flag that sample as a glitch which has the higher absolute three-point difference. 
It is not possible to make this calculation for the very first and last element of the interferogram.
2.Use the median of the surrounding data points as reference to determine which interferogram deviates 
the most from the typical value:

This criterion can also be used for the very first and the very last element of the interferogram. In these 
two cases, the median will be calculated on only one side of the glitch.
3.Instead of applying this algorithm to only the forward or only the reverse scans, it is possible to 
identify glitches across all scans, irrespective of their direction. This will increase the sample size to 
four. The main risk for this option derives from some detectors showing systematic differences for 
forward and reverse scans.
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I x   contains a glitch at position x iff
 I x −MEAN w  I x ≥k⋅STDDEV w  I  x

with MEAN w  I x =
1
w∑i=−w−1

2

w−1
2  I  xi x

STDDEV w
2  I x= 1

w−1∑i=−w−1
2

w−1
2  I  xi x−MEAN w I x 2

With an odd integer w≥3and the OPD interval x

I  x  contains a glitch at position x iff
 I x−MEDIAN w  I x ≥k⋅1.4826⋅MADw  I x

MEDIAN w  I  x=1
2 I

w  x
[ w1

2 ]
 I

w  x
[ w

2 ]
 I

w x[ j] as the j'th element of the set { I x− x w1
2

 , ... , I x x w1
2

}

after sorting the set in the order of the values of its elements.

MADw  I x =MAD I x− x w1
2

 , ... , I x x w1
2



If x  has been identified as the location of a glitch, I i  x   is a glitch iff
I i  x=Max ∣MEDIAN  I  x− I j  x∣, j=1,. .. , n

If x  has been identified as the location of a glitch, I i  x   is a glitch iff
I i x =Max ∣MEDIAN  I  x− x , I  x x − I j x ∣, j=1,. .. ,n 



 a) False Positives
There are three parameters for the windowed algorithms: Number of scans n, window size w, and 
threshold factor k. As n is determined by the astronomer, the goal is to find a pair of w and k that 
optimize the requirements for a glitch finding algorithm for a given n.

The first requirement, to find a small number of false positives only, can be verified with data 
simulated by a standard Gaussian random number generator. We created noise 'interferograms' with 
5,000 data samples with an average value of 0 and a standard deviation of 1. We created the normally 
distributed data and applied the windowed glitch identification algorithms to these data 100 times for 
each combination of parameters. The following parameter sets were chosen:

Number of Scans n 6, ... , 34 in steps of 2
Window Size w 5, 11, 17, 23, 25, 27, 29, 31, 33, 35, 41, 47, 53
Threshold factor k 2.0, ... , 6.0 in steps of 0.5

The results for the expected false positives show consistent trends:

When increasing the number of scans from 6 to 34, the number of false positives is reduced for both 
algorithms (see Illustration 13). Both algorithms work better with larger sample sizes.

When increasing the window size from 5 to 53 (see Illustration 14), the two algorithms show different 
behavior due to the problems discussed in section 45 Performance limitations of the two algorithms. 
The windowed standard deviation clipping does not flag any samples as outliers for very small 
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Illustration 13: Expected ratio of false positives as a function of scan 
number n; k=3, w=53



windows and the number of false positives increases with increasing window size. The windowed 
MAD clipping shows the opposite trend: Fewer false positives are identified as the window size 
increases. 

When increasing the threshold factor from 2 to 6, the number of false positives is reduced for both 
algorithms (see Illustration 15). The threshold outside of which a data sample is flagged becomes wider 
and fewer outliers are identified in the randomly distributed data.
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Illustration 14: Expected ratio of false positives as a function of  
window size w; k=3, N=32



An interferogram from SPIRE taken with an Astronomical Observation Template in high resolution 
will contain about 6,000 independent samples. A level of 0.1% glitches was set as an upper bound, 
leading to less than 6 false positives identified in a typical high resolution interferogram. The expected 
levels of false positives from a simulation based on a Gaussian random number generator were checked 
against the level of false positives measured in data collected during the SPIRE ground-based test 
campaign PFM4 (see 27 Appendix). The windowed glitch identification algorithms were tested for n = 
16, 8, 6 scans with a total number of glitches of 11, 87, 89 respectively. Tables 2 to 4 detail the actual 
(experimental) false positives, expected (theoretical) false positives for all those parameter sets which 
satisfied the criterion to yield fewer than 0.1% expected false positives. The tables show that those 
parameter sets that find no false positives whatsoever also identify no or very few glitches correctly. In 
other words: A certain level of false positives has to be accepted in order to allow for a sensitive 
detection of glitches.
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Illustration 15: Expected ratio of false positives as a function of the 
threshold factor k; N=32, w=53
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Table 2: Results for deglitching PFM4 data with 16 scans

Windowed Standard Deviation Clipping Windowed MAD Clipping

3.5 17 3.39E-007 1.87E-007 0 6 11 1.95E-004 2.24E-004 4
4 23 1.36E-007 1.87E-007 0 5.5 11 2.71E-004 3.06E-004 5
5 35 6.78E-008 0 0 5 11 3.94E-004 4.43E-004 6

4.5 29 6.78E-008 0 0 6 17 5.54E-005 5.78E-005 6
6 47 0 0 0 4 29 2.80E-004 2.17E-004 7
6 41 0 0 0 4.5 17 2.70E-004 2.71E-004 7

5.5 41 0 0 0 4 33 2.54E-004 1.85E-004 7
6 35 0 0 0 5 17 1.56E-004 1.59E-004 7

5.5 35 0 0 0 4.5 29 1.36E-004 1.07E-004 7
6 33 0 0 0 4.5 31 1.23E-004 8.45E-005 7

5.5 33 0 0 0 4.5 33 1.19E-004 7.69E-005 7
5 33 0 0 0 4.5 35 1.18E-004 7.43E-005 7
6 31 0 0 0 5 53 1.10E-004 1.36E-005 7

5.5 31 0 0 0 4.5 41 9.21E-005 5.62E-005 7
5 31 0 0 0 5.5 17 9.17E-005 9.25E-005 7
6 29 0 0 0 5 29 6.91E-005 4.12E-005 7

5.5 29 0 0 0 5.5 53 6.74E-005 5.04E-006 7
5 29 0 0 0 5 47 6.00E-005 1.87E-005 7
6 27 0 0 0 5 31 5.90E-005 3.90E-005 7

5.5 27 0 0 0 5 33 5.72E-005 3.26E-005 7
5 27 0 0 0 5 35 5.43E-005 3.28E-005 7

4.5 27 0 0 0 5.5 23 5.24E-005 4.14E-005 7
6 25 0 0 0 5.5 25 4.66E-005 4.05E-005 7

5.5 25 0 0 0 5 41 4.23E-005 2.09E-005 7
5 25 0 0 0 5.5 27 4.19E-005 2.72E-005 7

4.5 25 0 0 0 6 53 4.08E-005 1.68E-006 7
6 23 0 0 0 5.5 29 3.51E-005 2.56E-005 7

5.5 23 0 0 0 5.5 47 3.05E-005 6.53E-006 7
5 23 0 0 0 5.5 31 3.00E-005 2.11E-005 7

4.5 23 0 0 0 6 23 2.98E-005 2.07E-005 7
6 17 0 0 0 5.5 33 2.69E-005 1.70E-005 7

5.5 17 0 0 0 5.5 35 2.55E-005 1.38E-005 7
5 17 0 0 0 6 25 2.50E-005 1.87E-005 7

4.5 17 0 0 0 6 27 2.21E-005 1.64E-005 7
4 17 0 0 0 5.5 41 1.93E-005 1.29E-005 7
6 11 0 0 0 6 29 1.77E-005 1.04E-005 7

5.5 11 0 0 0 6 31 1.55E-005 8.40E-006 7
5 11 0 0 0 6 47 1.41E-005 2.80E-006 7

4.5 11 0 0 0 6 33 1.35E-005 8.40E-006 7
4 11 0 0 0 6 35 1.34E-005 7.28E-006 7

3.5 11 0 0 0 6 41 9.57E-006 6.16E-006 7
3 11 0 0 0 4.5 11 5.93E-004 6.50E-004 8
6 5 0 0 0 4 17 4.80E-004 5.04E-004 8

5.5 5 0 0 0 4 27 3.05E-004 2.44E-004 8
5 5 0 0 0 4 31 2.62E-004 1.97E-004 8

4.5 5 0 0 0 4 35 2.50E-004 1.65E-004 8
4 5 0 0 0 4.5 53 1.96E-004 4.07E-005 8

3.5 5 0 0 0 4.5 27 1.52E-004 1.16E-004 8
3 5 0 0 0 5 23 9.49E-005 7.71E-005 8

2.5 5 0 0 0 5 27 7.88E-005 5.86E-005 8
2 5 0 0 0 3.5 31 5.65E-004 4.52E-004 9

4.5 35 2.04E-007 0 1 3.5 33 5.50E-004 4.28E-004 9
4.5 33 1.36E-007 0 1 4 41 2.11E-004 1.51E-004 9

4 25 1.36E-007 1.87E-007 1 4.5 23 1.78E-004 1.61E-004 9
6 53 6.78E-008 0 1 4.5 25 1.67E-004 1.38E-004 9

5.5 53 6.78E-008 0 1 4.5 47 1.25E-004 4.72E-005 9
5.5 47 6.78E-008 0 1 5 25 8.83E-005 6.47E-005 9

5 41 6.78E-008 0 1 3.5 53 6.88E-004 2.93E-004 10
4.5 31 6.78E-008 0 1 3.5 29 5.96E-004 5.09E-004 10
2.5 11 1.54E-004 2.00E-004 2 3.5 47 5.64E-004 3.25E-004 10
4.5 41 2.71E-007 0 2 4 53 3.60E-004 1.09E-004 10

5 53 2.04E-007 0 2 4 47 2.65E-004 1.17E-004 10
4 27 2.04E-007 1.87E-007 2 3 53 0 7.59E-004 11
5 47 1.36E-007 0 2 3 47 0 8.19E-004 11
3 17 3.89E-005 4.83E-005 3 3 35 0 9.55E-004 11

3.5 23 6.04E-006 6.16E-006 3 3 41 0 8.49E-004 11
4 33 1.36E-006 1.12E-006 3 3.5 17 8.76E-004 9.07E-004 11
4 31 1.02E-006 9.33E-007 3 3.5 23 6.84E-004 6.41E-004 11
4 29 6.11E-007 3.73E-007 3 3.5 25 6.57E-004 5.71E-004 11

3.5 27 1.23E-005 1.23E-005 5 3.5 27 6.40E-004 5.43E-004 11
3.5 25 9.30E-006 1.16E-005 5 3.5 35 5.39E-004 4.12E-004 11

4 35 1.90E-006 1.87E-006 5 3.5 41 4.79E-004 3.56E-004 11
4.5 53 1.22E-006 7.46E-007 5 4 23 3.42E-004 3.10E-004 11
4.5 47 6.78E-007 1.87E-007 5 4 25 3.25E-004 2.82E-004 11
3.5 31 1.88E-005 1.60E-005 6
3.5 29 1.57E-005 1.66E-005 6

4 47 5.22E-006 6.34E-006 6
4 41 3.87E-006 2.43E-006 6

3.5 41 3.56E-005 3.73E-005 7
3.5 35 2.69E-005 2.72E-005 7
3.5 33 2.38E-005 2.07E-005 7

4 53 7.06E-006 4.66E-006 7
3 27 1.48E-004 1.51E-004 8
3 23 1.09E-004 1.16E-004 8

3.5 47 4.61E-005 5.06E-005 8
2.5 17 5.46E-004 6.21E-004 9

3 33 2.02E-004 1.94E-004 9
3 31 1.81E-004 1.82E-004 9
3 29 1.66E-004 1.69E-004 9
3 25 1.32E-004 1.43E-004 9

3.5 53 5.39E-005 4.70E-005 9
2.5 33 0 9.90E-004 11
2.5 31 9.76E-004 9.62E-004 11
2.5 29 9.46E-004 9.32E-004 11
2.5 27 9.14E-004 9.11E-004 11
2.5 25 8.58E-004 8.72E-004 11
2.5 23 7.94E-004 8.22E-004 11

3 53 3.06E-004 2.61E-004 11
3 47 2.81E-004 2.58E-004 11
3 41 2.46E-004 2.22E-004 11
3 35 2.19E-004 2.04E-004 11

Threshold 
Factor k

Window 
Size w

Experimental False 
Positive Ratio

Theoretical False 
Positive Ratio

Correct 
Identifications

Threshold 
Factor k

Window 
Size w

Experimental False 
Positive Ratio

Theoretical False 
Positive Ratio

Correct 
Identifications
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Table 3: Results for deglitching PFM4 data with 8 scans

Windowed Standard Deviation Clipping Windowed MAD Clipping

6 35 0 0 0 6 11 4.65E-004 5.64E-004 62
6 33 0 0 0 5.5 11 6.48E-004 7.20E-004 64
6 31 0 0 0 6 27 6.82E-005 4.89E-005 66

5.5 31 0 0 0 6 41 3.58E-005 1.31E-005 66
6 29 0 0 0 6 17 1.43E-004 1.81E-004 67

5.5 29 0 0 0 5.5 27 1.20E-004 7.84E-005 67
6 27 0 0 0 6 25 7.43E-005 5.75E-005 67

5.5 27 0 0 0 6 29 5.60E-005 3.77E-005 68
5 27 0 0 0 6 53 5.26E-005 6.34E-006 68
6 25 0 0 0 6 31 4.54E-005 2.54E-005 68

5.5 25 0 0 0 6 33 4.44E-005 2.43E-005 68
5 25 0 0 0 6 35 4.43E-005 2.57E-005 68
6 23 0 0 0 5.5 25 1.29E-004 1.02E-004 69

5.5 23 0 0 0 5.5 29 1.00E-004 6.42E-005 69
5 23 0 0 0 5.5 41 6.51E-005 3.43E-005 69
6 17 0 0 0 6 47 4.00E-005 1.12E-005 69

5.5 17 0 0 0 5.5 17 2.29E-004 2.46E-004 70
5 17 0 0 0 5.5 31 8.45E-005 5.60E-005 70

4.5 17 0 0 0 5.5 33 8.15E-005 5.37E-005 70
4 17 0 0 0 5.5 53 8.75E-005 1.90E-005 71
6 11 0 0 0 5.5 35 8.04E-005 4.07E-005 71

5.5 11 0 0 0 6 23 7.99E-005 6.68E-005 71
5 11 0 0 0 5.5 47 7.00E-005 2.43E-005 71

4.5 11 0 0 0 5 23 2.42E-004 2.43E-004 72
4 11 0 0 0 5 27 2.15E-004 1.67E-004 72

3.5 11 0 0 0 5 31 1.62E-004 1.26E-004 72
3 11 0 0 0 5.5 23 1.39E-004 1.19E-004 72
6 5 0 0 0 5 25 2.29E-004 1.88E-004 73

5.5 5 0 0 0 5 29 1.84E-004 1.52E-004 73
5 5 0 0 0 5 33 1.56E-004 1.04E-004 73

4.5 5 0 0 0 5 35 1.54E-004 1.07E-004 73
4 5 0 0 0 5 17 3.75E-004 4.63E-004 74

3.5 5 0 0 0 5 53 1.57E-004 4.89E-005 74
3 5 0 0 0 4.5 17 6.29E-004 7.52E-004 76

2.5 5 0 0 0 4.5 29 3.54E-004 2.94E-004 76
2 5 0 0 0 5 41 1.26E-004 7.84E-005 76
6 41 0 0 1 4.5 23 4.45E-004 4.22E-004 77

5.5 35 0 0 1 4.5 25 4.21E-004 3.83E-004 77
5.5 33 0 0 1 4.5 27 3.97E-004 3.18E-004 77

5 29 0 0 1 4.5 31 3.18E-004 2.62E-004 77
4.5 23 0 0 1 4.5 33 3.09E-004 2.39E-004 77
4.5 25 2.53E-008 0 5 4.5 35 3.08E-004 2.28E-004 77

5 31 0 0 6 5 47 1.31E-004 4.96E-005 78
6 47 0 0 14 4.5 41 2.59E-004 1.84E-004 80
5 33 5.06E-008 0 16 4 25 8.01E-004 7.56E-004 81

5.5 41 7.59E-008 0 17 4 27 7.68E-004 6.62E-004 81
4.5 27 5.06E-008 0 17 4.5 47 2.66E-004 1.53E-004 82
3.5 17 6.58E-007 1.12E-006 21 4 23 8.36E-004 8.21E-004 83

6 53 1.52E-007 0 24 4 31 6.42E-004 5.68E-004 83
5 35 7.59E-008 0 25 4 33 6.27E-004 5.17E-004 83

4.5 29 2.78E-007 0 28 4.5 53 2.93E-004 1.29E-004 83
4 23 5.06E-007 3.73E-007 30 4 29 7.05E-004 6.24E-004 84

4.5 31 5.06E-007 0 36 4 35 6.23E-004 4.70E-004 84
5.5 47 2.53E-007 0 36 3.5 53 0 8.16E-004 85

4 25 8.61E-007 7.46E-007 40 4 53 5.83E-004 3.50E-004 85
5 41 4.30E-007 0 41 4 47 5.46E-004 3.82E-004 85

4.5 33 6.58E-007 0 44 4 41 5.40E-004 4.16E-004 85
5.5 53 4.05E-007 0 44 3.5 47 0 8.90E-004 86

4 27 1.80E-006 1.87E-006 46 3.5 41 0 9.76E-004 86
4.5 35 8.61E-007 0 47

4 29 2.78E-006 1.12E-006 50
5 47 7.34E-007 0 50
4 31 3.59E-006 4.85E-006 51

4.5 41 1.59E-006 1.12E-006 53
3.5 23 1.78E-005 2.46E-005 54
2.5 11 3.68E-004 5.70E-004 55

5 53 9.87E-007 0 55
3 17 9.96E-005 1.61E-004 57
4 33 5.39E-006 5.97E-006 57

3.5 25 2.71E-005 4.07E-005 58
4.5 47 2.43E-006 2.24E-006 62
4.5 53 3.70E-006 2.24E-006 64

4 35 7.16E-006 7.46E-006 65
3.5 27 3.77E-005 4.03E-005 69

4 41 1.29E-005 1.46E-005 69
3.5 29 4.81E-005 7.69E-005 72

4 47 2.08E-005 2.24E-005 72
4 53 2.67E-005 2.84E-005 75

3.5 33 7.09E-005 8.51E-005 76
3.5 35 8.32E-005 9.40E-005 77
3.5 31 5.80E-005 7.87E-005 77

3 23 2.79E-004 3.88E-004 78
3 25 3.41E-004 4.26E-004 79

3.5 53 1.63E-004 1.88E-004 79
3.5 41 1.09E-004 1.21E-004 79

3 27 3.94E-004 4.90E-004 81
3.5 47 1.36E-004 1.38E-004 81

3 33 5.18E-004 5.50E-004 82
3 31 4.71E-004 5.52E-004 82
3 29 4.38E-004 5.02E-004 82
3 41 6.24E-004 6.84E-004 83
3 35 5.63E-004 6.06E-004 83
3 53 7.68E-004 7.94E-004 84
3 47 7.02E-004 7.60E-004 84

Threshold 
Factor k

Window 
Size w

Experimental False 
Positive Ratio

Theoretical False 
Positive Ratio

Correct 
Identifications

Threshold 
Factor k

Window 
Size w

Experimental False 
Positive Ratio

Theoretical False 
Positive Ratio

Correct 
Identifications
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Table 4: Results for deglitching PFM4 data with 6 scans (cropped back from 8 
scans by removing scans 5 & 6)

Windowed Standard Deviation Clipping Windowed MAD Clipping

6 35 0 0 0 6 11 5.36E-004 8.81E-004 62
6 33 0 0 0 6 27 8.50E-005 8.61E-005 66
6 31 0 0 0 6 41 4.97E-005 3.13E-005 66

5.5 31 0 0 0 6 17 1.70E-004 2.66E-004 67
6 29 0 0 0 5.5 27 1.48E-004 1.68E-004 67

5.5 29 0 0 0 6 25 9.23E-005 1.07E-004 67
6 27 0 0 0 6 29 7.17E-005 5.67E-005 68

5.5 27 0 0 0 6 53 6.77E-005 1.69E-005 68
5 27 0 0 0 6 31 5.99E-005 5.67E-005 68
6 25 0 0 0 6 35 5.85E-005 3.93E-005 68

5.5 25 0 0 0 6 33 5.83E-005 5.27E-005 68
5 25 0 0 0 5.5 17 2.72E-004 4.66E-004 69
6 23 0 0 0 5.5 25 1.58E-004 1.77E-004 69

5.5 23 0 0 0 5.5 29 1.27E-004 1.48E-004 69
5 23 0 0 0 5.5 41 8.91E-005 6.87E-005 69
6 17 0 0 0 6 47 5.43E-005 2.14E-005 69

5.5 17 0 0 0 5.5 31 1.08E-004 1.21E-004 70
5 17 0 0 0 5.5 33 1.05E-004 1.10E-004 70

4.5 17 0 0 0 5.5 53 1.13E-004 4.28E-005 71
4 17 0 0 0 5.5 35 1.04E-004 9.60E-005 71
6 11 0 0 0 6 23 9.96E-005 1.15E-004 71

5.5 11 0 0 0 5.5 47 9.54E-005 5.72E-005 71
5 11 0 0 0 5 23 2.92E-004 4.28E-004 72

4.5 11 0 0 0 5 27 2.63E-004 3.20E-004 72
4 11 0 0 0 5 31 2.04E-004 2.52E-004 72

3.5 11 0 0 0 5.5 23 1.68E-004 2.04E-004 72
3 11 0 0 0 5 17 4.39E-004 7.47E-004 73
6 5 0 0 0 5 25 2.77E-004 3.86E-004 73

5.5 5 0 0 0 5 29 2.30E-004 2.66E-004 73
5 5 0 0 0 5 53 2.03E-004 1.04E-004 73

4.5 5 0 0 0 5 35 1.98E-004 2.08E-004 73
4 5 0 0 0 5 33 1.98E-004 2.15E-004 73

3.5 5 0 0 0 4.5 29 4.34E-004 5.41E-004 75
3 5 0 0 0 4.5 23 5.30E-004 7.78E-004 76

2.5 5 0 0 0 4.5 25 5.03E-004 6.73E-004 76
2 5 0 0 0 4.5 27 4.78E-004 5.83E-004 76
6 41 0 0 1 4.5 31 3.94E-004 4.63E-004 76

5.5 35 0 0 1 4.5 35 3.86E-004 4.17E-004 76
5.5 33 0 0 1 4.5 33 3.84E-004 4.45E-004 76

5 29 0 0 1 5 47 1.76E-004 1.35E-004 76
4.5 23 0 0 1 5 41 1.70E-004 1.43E-004 76

5 31 2.52E-008 0 5 4.5 47 3.41E-004 2.93E-004 80
4.5 25 2.52E-008 0 5 4.5 41 3.35E-004 3.30E-004 80

6 47 2.52E-008 0 14 4.5 53 3.75E-004 2.43E-004 81
5 33 1.01E-007 0 15 4 33 7.64E-004 9.22E-004 82

4.5 27 1.01E-007 0 16 4 35 7.63E-004 8.68E-004 82
5.5 41 1.76E-007 0 18 4 53 7.30E-004 6.30E-004 83
3.5 17 9.33E-007 2.49E-006 20 4 47 6.87E-004 6.79E-004 83

6 53 2.77E-007 0 25 4 41 6.84E-004 7.87E-004 83
5 35 1.76E-007 0 26

4.5 29 4.54E-007 0 29
4 23 7.81E-007 4.98E-007 31

4.5 31 8.57E-007 0 37
5.5 47 4.29E-007 0 37

4 25 1.46E-006 2.99E-006 41
5 41 8.07E-007 0 42

4.5 33 1.08E-006 0 45
5.5 53 7.81E-007 0 45

4 27 2.67E-006 2.49E-006 47
4.5 35 1.41E-006 1.49E-006 48

4 29 4.06E-006 6.47E-006 51
5 47 1.36E-006 0 51
4 31 5.50E-006 1.24E-005 52

4.5 41 2.52E-006 9.95E-007 54
2.5 11 4.34E-004 9.89E-004 55
3.5 23 2.31E-005 5.72E-005 55

5 53 1.64E-006 4.98E-007 55
3 17 1.23E-004 3.00E-004 57
4 33 8.04E-006 1.09E-005 58

3.5 25 3.52E-005 7.06E-005 59
4.5 47 3.81E-006 2.49E-006 62
4.5 53 5.57E-006 5.97E-006 64

4 35 1.12E-005 2.14E-005 65
3.5 27 4.88E-005 1.05E-004 69

4 41 1.86E-005 3.03E-005 69
3.5 29 6.20E-005 1.27E-004 72

4 47 2.89E-005 4.93E-005 72
4 53 3.77E-005 6.67E-005 75

3.5 33 9.13E-005 1.69E-004 76
3 23 3.39E-004 6.69E-004 77

3.5 53 2.12E-004 3.42E-004 77
3.5 35 1.08E-004 2.00E-004 77
3.5 31 7.51E-005 1.51E-004 77

3 25 4.12E-004 7.47E-004 78
3.5 41 1.43E-004 2.32E-004 78

3 27 4.78E-004 8.55E-004 79
3.5 47 1.78E-004 3.10E-004 79

3 29 5.31E-004 8.94E-004 80

Threshold 
Factor k

Window 
Size w

Experimental False 
Positive Ratio

Theoretical False 
Positive Ratio

Correct 
Identifications

Threshold 
Factor k

Window 
Size w

Experimental False 
Positive Ratio

Theoretical False 
Positive Ratio

Correct 
Identifications



Illustrations 16 to 18 directly compare the expected and the actual false positive glitch ratios. In 
general, the expected and actual false positive ratios are in better agreement for the windowed standard 
deviation clipping than for the windowed MAD clipping. As the scan number decreases the agreement 
for both algorithms becomes worse. For the highest scan number of 16, both algorithms show good 
agreement except for MAD clipping which shows systematic deviations for specific parameter sets. 
More detailed inspection of the data shows that these outliers employ large window sizes larger than 
40. Further analysis has shown that a disproportional number of outliers for these algorithms is found 
around the center burst region – when compared to smaller window sizes. Once the window size 
becomes comparable to the width of the center burst, MAD clipping will again run into the problem of 
accidental grouping and flag significantly more outliers for interferograms than for randomly 
distributed data. 

In addition to the observation that the deglitching algorithms studied here do flag false positives, it is 
also possible to specify where in the interferograms such false positives are flagged. Overall, both 
algorithms will flag more outliers in the center burst region than further away from ZPD. Positions that 
are flagged as containing outliers even though no obvious deviant data sample can be seen, correspond 
to large values in the standard deviation interferogram. These large standard deviation values, in turn, 
correspond to a large slope in the original interferograms, i.e. they are close to the zero-crossings of the 
interferograms. In summary: both algorithms will flag false positives. If they do, it is likely that the 
false positives are close to the zero-crossings within the center burst of interferograms.

Jan 6, 2009 21/27

Illustration 16: Comparison of actually identified and expected false positives  
for windowed standard deviation and MAD clipping; PFM4 - 16 scans
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Illustration 17: Comparison of actually identified and expected false positives  
for windowed standard deviation and MAD clipping; PFM4 - 8 scans
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Illustration 18: Comparison of actually identified and expected false positives  
for windowed standard deviation and MAD clipping; PFM4 - 6 scans
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 b) Correct Identifications
External information on the location of actual glitches has to be available in order to assess whether an 
outlier that has been identified by a deglitching algorithm is, in fact, a glitch. It is very time-consuming 
to manually evaluate hours worth of data. Also, manual evaluation introduces a dependency on the 
particular person who inspected the data. We therefore decided to make use of the 1st level deglitching 
module with its default settings (SPIRE builds as of October 16, 2008 until end of November 2008). 
This resulted in a total of 29 and 129 glitches for observations with 16 and 8 scans respectively. Josh 
Litven then reviewed these glitches visually and rejected glitches as false positives which do not seem 
to be due to a transient disturbance in the detector timeline. This reduced the total number of glitches to 
16 and 111 glitches for observations with 16 and 8 scans respectively. At that point, the detector 
timelines were merged with the spectrometer mechanism timeline into spectrometer detector 
interferograms. The location of the glitch identified by 1st level deglitching within the interferogram is 
calculated at this point. A number of glitches were not present in the interferograms because they 
occurred in the detector timelines before or after the stage mechanism was in motion, further reducing 
the total number of glitches to 11 and 89 for observations with 16 and 8 scans respectively. A glitch is 
taken to have been correctly identified if 2nd level deglitching identified a glitch within three sample 
points to either side of the location of a real glitch as vetted by the process described earlier.

The results of this process are shown in the fifth and eleventh column for Standard Deviation and MAD 
Clipping in the tables 2 to 4 which detail the results for observations with 16, 8, and 6 scans. In order to 
cover the case of 6 scans we removed scans 5 & 6 from the observations with 8 scans, leaving 87 valid 
glitches. Note that only those parameter combinations with an expected false positive ratio of less than 
0.1% are included. The results are summarized below:

For the case of 16 scans, unfortunately, only 11 glitches were seen in the data, greatly reducing the 
reliability of any statistically derived result on the performance of the deglitching algorithms with 
different parameters. 
•Windowed MAD clipping yielded fewer than 0.1% false positives for a total of 74 parameter sets. 
The parameter sets range from k=3 and w=11 to the respective maximum values of k=6 and w=53, 
correctly identifying 4 to 11 glitches. The best result of identifying all 11 glitches correctly were 
achieved with threshold factors between 3 and 4 and a wide range of window sizes, w=17 – 53.
•Windowed Standard Deviation clipping yielded fewer than 0.1% false positives for a total of 101 
parameter sets. However, only for 32 parameter sets did windowed standard deviation clipping identify 
4 or more glitches correctly (cf. to the paragraph above). These 32 parameter sets range from k=2.5 to 
4.5 and w=17 to 53, correctly identifying up to 11 glitches. The best result of identifying all 11 glitches 
correctly were achieved with threshold factors of either 2.5 or 3 and window sizes between 25 and 53.

For the case of 8 scans, 89 glitches were seen in the data, giving a much better basis to evaluate the 
algorithm performance than for the case of 16 scans.
•Windowed MAD clipping yielded fewer than 0.1% false positives for a total of 59 parameter sets. 
The parameter sets range from k=3.5 and w=11 to the respective maximum values of k=6 and w=53, 
correctly identifying 62 to 86 glitches. The best results of identifying 85 or 86 glitches correctly were 
achieved with threshold factors of 3.5 or 4 and window sizes between 41 and 53.
•Windowed Standard Deviation clipping yielded fewer than 0.1% false positives for a total of 94 
parameter sets. However, only for 24 parameter sets did windowed standard deviation clipping identify 
62 or more glitches correctly (cf. to the paragraph above). These 24 parameter sets range from k=3.0 to 
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4.5 and w=25 to 53, correctly identifying between 62 and 84 glitches. The best result of identifying 83 
or 84 glitches correctly were achieved with a threshold factor of 3 and window sizes between 29 and 
53.

For the case of 6 scans, 87 glitches were seen in the data, giving a much better basis to evaluate the 
algorithm performance than for the case of 16 scans.
•Windowed MAD clipping yielded fewer than 0.1% false positives for a total of 49 parameter sets. 
The parameter sets range from k=4 and w=11 to the respective maximum values of k=6 and w=53, 
correctly identifying 62 to 83 glitches. The best results of identifying 82 or 83 glitches correctly were 
achieved with a threshold factor of 4 and window sizes between 33 and 53.
•Windowed Standard Deviation clipping yielded fewer than 0.1% false positives for a total of 88 
parameter sets. However, only for 18 parameter sets did windowed standard deviation clipping identify 
62 or more glitches correctly (cf. to the paragraph above). These 18 parameter sets range from k=3.0 to 
4.5 and w=23 to 53, correctly identifying between 62 and 80 glitches. The best result of identifying 80 
or 79 glitches correctly were achieved with threshold factors of 3 or 3.5 and window sizes between 27 
and 47.
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6. Conclusions
Four algorithms have been studied in terms of their suitability to identify glitches in interferograms 
produced by the SPIRE imaging FTS: Standard Deviation clipping, MAD clipping, windowed standard 
deviation clipping, and windowed MAD clipping. 

The results from the analysis of the false positive ratio and the number of correctly identified glitches 
provide a good – if not comprehensive – basis to make recommendations for the implementation of 2nd 

level deglitching module in the data processing environment for the SPIRE spectrometer:
0.A good choice of deglitching parameters depends on the number of scans available in the 
interferogram data product. 
1.Standard Deviation clipping should not be used to identify glitches in interferograms with only 16 
scans or fewer. This threshold may actually be higher, but it has not been possible to test it so far. 
Standard Deviation clipping will tend to be too insensitive, not finding any glitches.
2.MAD clipping should not be used to identify glitches in interferograms with only 16 scans or fewer. 
This threshold may actually be higher, but it has not been possible to test it so far. MAD clipping will 
tend to be too sensitive, flagging a large number of false positives.
3.The parameter range for windowed MAD clipping that leads to reasonable glitch identification is 
more than twice as large as for windowed Standard Deviation clipping. The best parameter 
combinations for windowed MAD clipping lead to better glitch identification than the best parameter 
combinations for windowed Standard Deviation clipping. Windowed MAD clipping is therefore 
recommended as the default algorithm.
4.The window for windowed MAD clipping should be smaller than the central burst region of the 
interferogram studied. A default value of w=33 elements has been found to be effective when applied to 
data from the PFM4 test campaign.
5.The windowed clipping algorithms do not depend as strongly on the specific window size as they do 
on the threshold factor. One default value for windowed Standard Deviation clipping (w=41) and 
windowed MAD clipping (w=33) can therefore be used in the automated pipeline.
6.The default values for the threshold factor for the windowed clipping algorithms should tend to 
decrease with increasing scan number. When determining the default parameters, the threshold factor 
was kept to a minimum while still staying below the 0.1% threshold for the false positive ratio. The 
following default parameters have been implemented:

7.
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Table 5: Recommended default  
parameters for windowed deglitching 
algorithms

N Win STD Win MAD
4 4 4.5
6 3.5 4
8 3 4

10 3 3.5
12 3 3.5
14 3 3.5
16 3 3.5
18 2.5 3

>18 2.5 3



7. Outlook
A lot of work has already been done verifying the performance of different interferogram deglitching 
schemes. The following additional work would be useful for further refinement of the processing 
module:
•Verify the performance of the deglitching algorithms with simulated data (cf. test report by LAM on 1st 

level deglitching) to improve the statistical validity and characterize systematically the ability to 
correctly identify glitches for arbitrary scan numbers.
•Quantify the suitability of the proposed methods to deal with the special case of two plus two scans.
•Explore whether the skewness interferogram is more suited than the standard deviation interferogram 
to feed the windowed clipping algorithms.
•
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8. Appendix
The SPIRE ground-based test campaign PFM4 was used to evaluate the efficiency of the deglitching 
algorithms in identifying glitches correctly. The list of used observations from PFM4 is given below. 
Note that test data for the case of 6 iterations, i.e. three forward and three reverse scans, were created 
by removing the scans numbered 5 and 6 from the data with 8 iterations.

Data was available for total time periods of 75 and 208 minutes for scan numbers of 16 and 8 
respectively.
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