

à

HERSCHEL / PLANCK	
CDR PLANCK Micro-Vibration Analysis Report	
H-P-3-ASP-AN-0774	
Product Code:	

	Responsabilité-Service-Société Responsibility-Office –Company	Date	Signature
Rédigé par/ <i>Written by</i>	System Mechanical Analyses team		A
Vérifié par/ <i>Verified by</i>	System Mechanical Analyses P. LODEREAU	29/06/04	A deduce some
Approbation/ <i>Approved</i>	Sciences/Obs. Satellite Group Manager R. VIALE	02/07/04	tela
Approbation/ <i>Approved</i>	System Mechanical Architecture Ph. CLAVEL	т/07/04	₩S
Approbation/ <i>Approved</i>	System Engineering Manager P.RIDEAU	9107104	Richar
Approbation/ <i>Approved</i>	PA Manager C. MASSE	9/07/04	Harse
Approbation/ <i>Approved</i>	Project Manager J.J. JUILLET	13/07/04	

Entité Emettrice : Alcatel Space - Cannes (détentrice

l'original) :

DATE : 25/06/2004

Issue : 1 Rev. 0

Page: 2/48

HERSCHEL/PLANCK	DISTRIBUTION RECORD			
DOCUMENT NUMBER : H-P-3-ASP-AN-0774 Date: 25/06/2004				
EXTERNAL DISTRIBU	ΓΙΟΝ		INTERNAL DISTRIBUTION	
ESA		Х	HP team	Х
ASTRIUM				
ALENIA				
CONTRAVES				
TICRA				
TECNOLOGICA				
			Clt Documentation	Orig.

Référence Fichier :H-P-3-ASP-AN-0774 du 13/07/04 11:13

DATE : 25/06/2004

ISSUE: 1 Rev. 0 Page: 3/48

ENREGISTREMENT DES EVOLUTIONS / CHANGE RECORDS

ISSUE	DATE	§ : DESCRIPTION DES EVOLUTIONS § : CHANGE RECORD	REDACTEUR AUTHOR

	▼ ▲	Reference :	H-P-3-ASP-AN	N-0774
		Date :	25/06/2004	
	SPACE	Issue : 1	Rev. 0	Page: 4/48
	TABLE OF CONTEN	NTS		
1	APPLICABLE & REFERENCE DOCUMENTS			7
2	INTRODUCTION			8
3	PLANCK SPACECRAFT 3.1.1 MCI 3.1.2 FEM Numerical Checks			9 11 12
4	FOCAL PLANE UNIT OPTICAL INSTRUMENT			14
5	4K COOLER SUBSYSTEM & LOADING CONDITION	S		16
6	MICRO-VIBRATION ANALYSIS			17
	6.1 METHODOLOGY 6.1.1 Micro-Vibration Analysis 6.1.2 Post-Processing			17 17 18
	6.2 SPECIFICATION REQUIREMENTS			20
	6.3 SINE RESPONSE LEVELS			21
	6.4 STRUCTURAL DAMPING FACTOR			26
	6.5 RESULTS			28
7	CONCLUSIONS			34
AF	PENDIX A : SINE RESPONSE LEVELS			36
AF	PENDIX B : STRAIN ENERGY COMPUTATION			41

V 🛕 🛕	Reference : H	H-P-3-ASP-AN-0774		
ALCATEL SPACE	DATE : 2	25/06/2004		
	Issue : 1 F	Rev. 0	Page: 5/48	
LIST OF T	ABLES			
TABLE 1: SPACECRAFT KRBG MATRIX			12	
TABLE 2: SPACECRAFT KRBN MATRIX			12	
TABLE 3: SPACECRAFT KRBF MATRIX			13	
TABLE 4: FPU HARMONICS FREQUENCY RANGES			19	
TABLE 5 : MICRO-VIBRATION SPECIFICATION REQUIREMEN	ITS		20	
TABLE 6: SINE OUTPUT NODE IDS			21	
TABLE 7: HIGHEST PEAKS ON FPU SINE RESPONSE (X-AXIS)			22	
TABLE 8: HIGHEST PEAKS ON FPU SINE RESPONSE (Y-AXIS)				
TABLE 9: HIGHEST PEAKS ON FPU SINE RESPONSE (Z-AXIS)				
TABLE 10: RESULTS (SPECIFICATION #2)			34	
TABLE 11: RESULTS (SPECIFICATION #3)			34	
TABLE 12: RESULTS (SPECIFICATION #4)			35	

			▼			
Α	L	С		Т	Ε	L
SPACE						

ese	
	et nick

DATE : 25/06/2004

ISSUE : 1 Rev. 0 Page: 6/48

LIST OF FIGURES

FIGURE 1:PLANCK SPACECRAFT FEM VIEWS	9
FIGURE 2: PLANCK SPACECRAFT AXES	10
FIGURE 3: FPU FEM VIEW	14
FIGURE 4: PRIMARY REFLECTOR & FPU FEM VIEW	14
FIGURE 5: FPU INTERFACES DETAILED VIEW	15
FIGURE 6: 4K COOLER VIEW (SVM PANEL + Y)	16
FIGURE 7: SINE OUTPUT NODE LOCATIONS	21
FIGURE 8: FPU SINE RESPONSE LEVELS ALONG X-AXIS VS FREQUENCY (PR DAMPING = 0.5%)	22
Figure 9: FPU sine response levels along Y-axis vs frequency (pr damping = 0.5%)	23
FIGURE 10: FPU SINE RESPONSE LEVELS ALONG Z-AXIS VS FREQUENCY (PR DAMPING = 0.5%)	24
FIGURE 11: FPU SINE RESPONSE LEVELS ALONG X-AXIS VS FREQUENCY (PR DAMPING = 0.05%)	26
FIGURE 12: FPU SINE RESPONSE LEVELS ALONG Y-AXIS VS FREQUENCY (PR DAMPING = 0.05%)	26
FIGURE 13: FPU SINE RESPONSE LEVELS ALONG Z-AXIS VS FREQUENCY (PR DAMPING = 0.05%)	27
FIGURE 14: 3-AXIS ACCELERATION RESULTANT IN THE RANGE [30HZ-200HZ])	29
FIGURE 15: IN-PLANE ACCELERATION RESULTANT IN THE RANGE [50HZ-70HZ]	31
FIGURE 16: Z-AXIS RMS LEVELS IN THE RANGE [120HZ-160HZ]	32
FIGURE 17: X-AXIS RMS LEVELS IN THE RANGE [30HZ-200HZ]	37
FIGURE 18: Y-AXIS LEVELS IN THE RANGE [30HZ-200HZ]	37
FIGURE 19: Z-AXIS RMS LEVELS IN THE RANGE [30HZ-200HZ]	38
FIGURE 20: X-AXIS RMS LEVELS IN THE RANGE [30HZ-200HZ]	39
FIGURE 21: Y-AXIS RMS LEVELS IN THE RANGE [30HZ-200HZ]	39
FIGURE 22: Z-AXIS RMS LEVELS IN THE RANGE [30HZ-200HZ]	40

Reference :	H-P-3-ASP-AN-0774		
Date :	25/06/2004		
Issue : 1	Rev. 0	Page: 7/48	

1 APPLICABLE & REFERENCE DOCUMENTS

- [RD1] CDR Planck Dynamic Analysis and Sine Test Prediction Report H-P-3-ASPI-AN-0718, Issue 1.0
- [RD2] Instrument Interface Document part B instrument HFI SCI-PT-IIDB-HFI-04141 is 3,1 dated 05/03/04
- [RD3] Planck PLM Mechanical and Thermoelastic Analyses H-P-3-ASPI-AN-0329, Issue 2.0
- [RD4] Instrument Interface Document SCI-PT-IIDA-04624 is 3,1 dated 12/02/04

Reference :	H-P-3-ASP-AN-0774		
Date :	25/06/2004		
Issue : 1	Rev. 0	Page: 8/48	

2 INTRODUCTION

In the space environment the 4K Cooler subsystem (placed in the Service Module) ensures the cooling of the Planck spacecraft's detectors. During its working the 4K Cooler generates dynamic loads propagating to the whole spacecraft structures and, in particular, to the FPU (Focal Plane Unit) optical instrument.

The purpose of the present document is to investigate the effects, in terms of acceleration levels, occurring at the support interfaces of the FPU. Computed acceleration levels are then compared to specification requirements (see [RD02] & §6.2).

Micro-vibration analysis have been carried out through the following steps:

- Numerical checks of the spacecraft finite element model (see §3.1.2),
- Stiffening of the SVM Panel + Y where 4K Cooler is mounted on,
- Modifying spacecraft damping from 2% (CDR analysis finite element model) to 0.5%,
- Sine analysis with free boundary conditions (see §6.3),
- Investigating effects over FPU responses of reducing the damping factor of the FPU supporting structures (see §6.4) to take into account the eventual cryo temperature effect.

Planck finite element model issued from Critical Design Review has been used to perform present analyses (see [RD01]). As Planck spacecraft is supposed to be in the space environment, dynamic analyses are performed with spacecraft free boundary conditions.

For more details about Planck configuration and definitions see [RD01].

Reference :	H-P-3-ASP-AN-0774		
Date :	25/06/2004		
Issue : 1	Rev. 0	Page: 9/48	

3 PLANCK SPACECRAFT

The Planck spacecraft fem is shown in Figure 1.

Figure 1:Planck spacecraft fem views

With respect to CDR model, the SVM Panel +Y (4K Cooler subsystem is just mounted on) has been reinforced changing sandwich panel skin thickness from 0.3 mm to 0.6 mm to be in accordance with design updates subsequent to FEM delivery. So doing the frequency of first mode shifts from 37.50Hz to 44.80Hz.

Also the structural damping factor has been changed. It has been set to 0.5% to consider a structural damping adapted to microvibration.

The Planck satellite reference frame (O, X_{x} , Y_{x} , Z_{x}) is defined as follows:

- Its origin O is located at the point of intersection of the longitudinal Launcher axis and Satellite /Launcher separation plane; the origin coincides with the centre of the Satellite /Launcher separation plane,
- Xs coincides with the nominal spin axis of Planck. Positive X_s axis is oriented opposite to the Sun in nominal operation. The X_s axis coincides with the launcher longitudinal axis,
- Zs is such that the Planck telescope line of sight is in the (X_s, Z_s) plane. The telescope is pointing in the $+Z_s$ half-plane,
- Ys completes the right-handed orthogonal reference frame.

Figure 2: PLANCK Spacecraft Axes

•		Reference	: H-P-3-ASP-A	N-0774
	Scriet Creek	Date :	25/06/2004	Ļ
JFACE		Issue : 1	Rev. 0	Page: 11/48

3.1.1 MCI

The following table shows spacecraft cog and mass properties.

```
Ουτρυτ
                               GRID POINT
                    FROM
                                                       WEIGHT
                                                                       GENERATOR
   0
                                                               REFERENCE POINT =
                                                                                          Ο
                                             МΟ
  1.926995E+03 9.159340E-16 2.220446E-16 -2.220446E-16 2.663320E+01 -5.150472E+01 *
  9.159340E-16 1.926995E+03 7.105427E-14 -2.470676E+01 -2.131628E-14 1.531172E+03 *
2.220446E-16 7.105427E-14 1.926995E+03 5.145069E+01 -1.531172E+03 2.486900E-14 *
 -2.220446E-16 -2.470676E+01 5.145069E+01 3.207727E+03 -2.004143E+01 -7.076578E+00 *
  2.663320E+01 -2.131628E-14 -1.531172E+03 -2.004143E+01 3.779446E+03 6.002093E+01 *
* -5.150472E+01 1.531172E+03 2.486900E-14 -7.076578E+00 6.002093E+01
                                                                               3.966282E+03 *
                                               S
                         1.000000E+00 0.000000E+00 0.000000E+00 *
                       *
                       *
                         0.000000E+00
                                         1.000000E+00 0.000000E+00 *
                        0.000000E+00 0.000000E+00 1.000000E+00 *
                                          DIRECTION
     MASS AXIS SYSTEM (S)
                                MASS
                                                    X-C.G.
                                                                    Y-C.G.
                                                                                   Z-C.G.
                                         -1.152284E-19 2.672800E-02 1.382110E-02
7.945907E-01 -1.106193E-17 1.282139E-02
                      1.926995E+03
        X
        Y
                       1.926995E+03
                                          7.945907E-01 2.669996E-02 1.290558E-17
                      1.926995E+03
        Ζ
                                             I(S)
                       * 3.206037E+03 -2.084081E+01 -1.255518E+01 *
                       * -2.084081E+01 2.562423E+03 -6.073278E+01 *
* -1.255518E+01 -6.073278E+01 2.748250E+03 *
                                             I(Q)
                          2.543928E+03
                                         2.765606E+03
                                                         3.207176E+03 *
                                               0
                          2.480107E-02 4.071877E-02
                                                         9.988628E-01 *
                       *
                       * -9.586715E-01 -2.823155E-01
                                                         3.531177E-02 *
                          2.834323E-01 -9.584571E-01
                                                         3.203419E-02 *
```

The spacecraft total mass is 1927 kg. A complete description of the Planck fem is given in [RD1].

Reference :	H-P-3-ASP-A	N-0774
Date :	25/06/2004	
Issue : 1	Rev. 0	Page: 12/48

3.1.2 FEM Numerical Checks

3.1.2.1 Strain Energy

The numerical verifications of the PLANCK fem have been performed by computing conditioning matrices KRBG , KRBN and KRBF (see Table 1, Table 2 & Table 3) which are representative of the residual strain energy inside the model.

0 M.	ATRIX KRBG	(GINC) NAME 101)	IS A	DB PREC	6 CO:	LUMN X	6 ROW
SQUARE	MATRIX.							
0COLUMN	1	ROWS	1 THRU	6				
ROW								
1)	-6.0639D	-05 -1.490	3D-05 -4.88	16D-05	3.0801D-05	1.9556D-04	-2.4532D-05	
OCOLUMN	2	ROWS	1 THRU	6				
ROW								
1)	-4.5604D	-06 <u>-1.414</u>	7D-05 -2.91	87D-05	1.4686D-04	5.3970D-05	1.6536D-05	
OCOLUMN	3	ROWS	1 THRU	6				
ROW								
1)	-1.2530D	-05 1.499	3D-05 <u>-8.05</u>	87D-05	-6.4191D-05	1.2200D-04	1.1201D-05	
0COLUMN	4	ROWS	1 THRU	6				
ROW								
1)	9.7827D	-06 1.127	72D-04 -4.81	50D-05	3.9714D-04	8.0484D-05	1.3623D-04	
OCOLUMN	5	ROWS	1 THRU	б				
ROW								
1)	1.0289D	-04 6.420	7D-05 1.63	07D-04	-1.4814D-04	-4.6232D-04	3.0235D-04	
0 COLUMN	6	ROWS	1 THRU	б				
ROW								
1)	-4.6470	D-05 -2.21	10D-04 -6.8	851D-0	5 3.2363D-06	2.1980D-04	-6.2197D-05	

Table 1: Spacecraft KRBG matrix

0 MA	TRIX KRBN	(GINC	NAME 101)	IS A	DB PREC	6 CC	DLUMN X	6 ROW
SQUARE N	ATRIX.							
OCOLUMN	1	ROWS	1 THRU	6				
ROW								
1)	-9.6305D	-05 -2.146	1D-05 -4.59	97D-05	2.9767D-05	2.0500D-04	-4.8762D-05	
OCOLUMN	2	ROWS	1 THRU	6				
ROW								
1)	-5.5034D	-06 <u>-4.118</u>	7D-05 -2.910	02D-05	1.5617D-04	5.6304D-05	-1.0966D-05	
OCOLUMN	3	ROWS	1 THRU	6				
ROW								
1)	-2.3010D	-05 1.729	9D-05 -7.76	07D-05	-5.1751D-05	1.0265D-04	1.1987D-05	
OCOLUMN	4	ROWS	1 THRU	6				
ROW								
1)	7.38200	-06 1.178	5D-04 -4.17	31D-05	<u>3.9821D-04</u>	7.8365D-05	1.1524D-04	
OCOLUMN	5	ROWS	1 THRU	6				
ROW								
1)	1.2140D	-04 6.621	2D-05 1.67	73D-04	-1.4655D-04	-4.5864D-04	2.9992D-04	
OCOLUMN	6	ROWS	1 THRU	6				
ROW								
1)	-5.1670D	-05 -2.270	6D-04 -6.10	35D-05	-2.5926D-05	1.6584D-04	<u>-2.1059D-05</u>	

Table 2: Spacecraft KRBN matrix

DATE : 25/06/2004

ISSUE : 1 Rev. 0 Page: 13/48

0 MA	TRIX KRBF	(GIN	O NAME 101) IS A	DB PREC	6 COLUMN X	6 ROW
SQUARE N	ATRIX.						
OCOLUMN	1	ROWS	1 THRU	б			
ROW							
1)	<u>-9.6305</u>	-05 -2.14	61D-05 -4.5	5997D-05	2.9767D-05	2.0500D-04 -4.8762D-05	
OCOLUMN	2	ROWS	1 THRU	б			
ROW							
1)	-5.5034I	0-06 <u>-4.11</u>	87D-05 -2.9	9102D-05	1.5617D-04	5.6304D-05 -1.0966D-05	
OCOLUMN	3	ROWS	1 THRU	6			
ROW							
1)	-2.30100	0-05 1.72	99D-05 <u>-7.7</u>	7607D-05	-5.1751D-05	1.0265D-04 1.1987D-05	
OCOLUMN	4	ROWS	1 THRU	б			
ROW							
1)	7.38201	0-06 1.17	85D-04 -4.1	L731D-05	3.9821D-04	7.8365D-05 1.1524D-04	
OCOLUMN	5	ROWS	1 THRU	6			
ROW							
1)	1.21400	0-04 6.62	12D-05 1.6	5773D-04	-1.4655D-04	-4.5864D-04 2.9992D-04	
OCOLUMN	6	ROWS	1 THRU	б			
ROW							
1)	-5.16701	0-05 -2.27	06D-04 -6.1	L035D-05	-2.5926D-05	1.6584D-04 <u>-2.1059D-05</u>	

Table 3: Spacecraft KRBF matrix

3.1.2.2 Free-Free Modes

With free boundary conditions, the first seven frequencies of the spacecraft model are described hereafter.

MODE NR.	EIGENVALUE	RADIANS	CYCLES	GENERALIZED MASS	GENERALIZED STIFFNESS
1	1.35E-07	3.67E-04	5.84E-05	1.00E+00	1.35E-07
2	2.80E-07	5.29E-04	8.43E-05	1.00E+00	2.80E-07
3	3.55E-07	5.96E-04	9.48E-05	1.00E+00	3.55E-07
4	6.65E-07	8.15E-04	1.30E-04	1.00E+00	6.65E-07
5	1.10E-06	1.05E-03	1.67E-04	1.00E+00	1.10E-06
6	1.73E-06	1.31E-03	2.09E-04	1.00E+00	1.73E-06
7	1.56E+02	1.25E+01	1.99E+00	1.00E+00	1.56E+02

Reference :	H-P-3-ASP-AN-0774		
Date :	25/06/2004		
Issue : 1	Rev. 0	Page: 14/48	

4 FOCAL PLANE UNIT OPTICAL INSTRUMENT

The FPU fem is shown in Figure 3.

Figure 3: FPU fem view

FPU is hinged (RBE2 123) at the primary reflector support panel level (see Figure 4) by six interfaces.

Figure 4: Primary Reflector & FPU femsview

Figure 5 shows how FPU is connected to primary reflector support panel.

Figure 5: FPU interfaces detailed view

Sine response levels (see §6.3) are computed at the central node of the 4-node rigid element (RBE2) shown in the figure above as required by specification requirements.

▼		Reference :	H-P-3-ASP-A	N-0774
ALCATEL	Contraction Contract	Date :	25/06/2004	
JIACE		Issue : 1	Rev. 0	Page: 16/48

5 4K COOLER SUBSYSTEM & LOADING CONDITIONS

The 4K Cooler is mounted on SVM Panel +Y and is modeled by a rigid element (MSC/NASTRAN RBE2) with a lumped mass (CONM2 MSC/NASTRAN element). A view of SVM Panel +Y is shown in Figure 6.

Figure 6: 4K Cooler view (SVM Panel + Y)

The 4K Cooler is hinged (RBE2 123 MSC/NASTRAN rigid element) at the SVM Panel +Y (see Figure 4) by 4 interfaces and aligned with spacecraft Z-axis.

During its working, the 4K Cooler generates a dynamic load along the Spacecraft Z-axis. The load magnitude is 40 mN at the 4K Cooler fundamental frequency and harmonics up to 200 Hz. Load amplitude above 200Hz is assumed to be 0. Noise outside the fundamental and harmonics is assumed to be 0.

The 4K Cooler fundamental frequency may be adjusted in between 35Hz and 45Hz.

The dynamic load is applied to the 4K Cooler center of gravity (node 144642).

▼		Reference :	H-P-3-ASP-A	N-0774
ALCATEL	Serie Cartes	Date :	25/06/2004	
JIACE		Issue : 1	Rev. 0	Page: 17/48

6 MICRO-VIBRATION ANALYSIS

6.1 METHODOLOGY

6.1.1 Micro-Vibration Analysis

To compute the dynamic responses at FPU feet level a sine analysis has been performed in the frequency range [0-200 Hz] and free boundary conditions. The results of this analysis have been compared with specification requirements (see §6.2).

To evaluate the eventual damping evolution for the structure at cryo temperature, the following procedure has been followed:

- § Identification of the peaks in the FPU sine responses (see §6.3),
- § Evaluation of the deformation of the substructures supporting FPU by modal and strain energy analyses (see APPENDIX B),
- § Reduction of the damping of the primary reflector support panel (see §6.4),
- § New sine analysis and final comparison with specifications.

▼		Reference	: H-P-3-ASP-/	AN-0774
	Contract	Date :	25/06/2004	4
JFACE	All All	Issue : 1	Rev. 0	Page: 18/48

6.1.2 Post-Processing

Post-processing has been carried out by MATLAB v6.0r13 software. MSC/Nastran output file containing the magnitude and phase spectrum at the FPU interfaces and cog level is transformed in a MATLAB variable using FETools software.

The steps followed to post-process data are described hereunder:

- For each direction and interface node, the acceleration is computed by modal superposition using MSC/Nastran between 0 and 200 Hz. A constant perturbation force of 40 mN is assumed on the entire frequency band. This force is applied at the center of gravity of the 4K cooler compressor in the spacecraft Z-direction (see § 5).
- The RMS value of the acceleration is computed for each direction and interface node:

$$L_RMS(f) = \frac{L(f)}{\sqrt{2}}$$
 ,

where L(f) is the peak level response and f the corresponding frequency.

- Once set the 4K working frequency fun, the harmonic magnitudes of the responses have to be seek. As dynamic analysis has been performed up to 200Hz, at most 5 harmonics can contribute to the computation of the FPU response levels.
- ◆ For taking into account spacecraft fem uncertainty, the highest values of the harmonic magnitudes L_RMS_{MAX}(H*fun), where H is the harmonic order (at most H = 5), have been seek in a +/-5% or +/-10% range around the corresponding harmonic frequency (f = H*fun), depending on the frequency f is respectively lower or greater than 100Hz.

$$L_RMS_{MAX}(H*fun) = Max_{Freq_Range}[L_RMS(H*fun)].$$

For example if 35Hz is 4K Cooler working frequency (corresponding to the fundamental frequency fun), for each node and direction the maximum values of the response are to be seek in the frequency ranges reported in the table hereunder.

Harmonic ID	Harmonic Frequency [Hz]	Uncertainty Range [%]	Freq. Range [Hz]
#1	35.0	5 (< 100Hz)	33.25 - 38.25
#2	70.0	5 (< 100Hz)	66.50 - 73.50
#3	105.0	10 (> 100Hz)	99.75 – 110.25
#4	140.0	10 (> 100Hz)	133.00 - 147.00
#5	175.0	10 (> 100Hz)	166.25 – 183.75

• Then, the RMS value of the acceleration for one FPU interface node and one direction is computed as the quadratic sum over the maximum values of the harmonics:

$$L_{RMS_{TOT}}(fun) = \sqrt{\sum_{H} L_{RMS_{MAX}}(H, fun)^{2}}$$

Moreover, if the 3-axis resultant R(fun) has to be computed, the $L_RMS_{TOT}(fun)$ values computed for each direction have to combine again as follows:

 $R(fun) = \sqrt{L RMS_{TOT} X(fun)^{2} + L RMS_{TOT} Y(fun)^{2} + L RMS_{TOT} Z(fun)^{2}}$

DATE : 25/06/2004

ISSUE: 1 Rev. 0 Page: 19/48

Shifting the fundamental frequency from 35Hz to 45Hz, the ranges for other harmonics change and they are shown in table 4.

Harmoni c Nr.	Frequency Range [Hz]	Uncertainty Frequency Range [%]	Min-Max Freq. Range [Hz]	Contribution to Spec#2	Contribution to Spec#3	Contribution to Spec#4
#1	35-45	+/-5%	33.25 - 47.25	YES	-	-
#2	70-90	+/-5%	66.50 - 94.50	YES	YES	-
#3	105-135	+/-10%	94.50 - 148.50	YES	-	YES
#4	140-180	+/-10%	126.00 - 198.00	YES	-	YES
#5	175-200	+/-10%	157.50 - 220.00	YES	-	-

Table 4: FPU harmonics frequency ranges

Reference :	H-P-3-ASP-AN-0774		
Date :	25/06/2004		
Issue : 1	Rev. 0	Page: 20/48	

6.2 SPECIFICATION REQUIREMENTS

The FPU interfaces should withstand the specification requirements reported in Table 5

Specification Nr.	Frequency Range [Hz]	Acceleration Level [g]	Output Acceleration Description
#2	30-200	2.0E-03	XYZ-Axis Resultant (RMS Value)
#3	50-70	0.2E-03	XY-Axis Resultant (RMS Value)
#4	120-160	0.2E-03	Z-Axis (RMS Value)

Table 5 : Micro-vibration Specification Requirements

Remark:

- § The spacecraft modal analysis with free boundary conditions shows lateral modes of the FPU occurring in the range 50Hz-70Hz as the longitudinal mode in the range 120Hz-160Hz.
- § As respect to the global specification #2 the resultant of the 3-axis acceleration levels have to be computed.
- § The specification #3 concerning the FPU lateral mode frequency range involve the in-plane resultant (2-axis acceleration levels used).
- § The specification #3 does not involve any resultant but just out-of-plane value has to be considered.
- § For each frequency step resultants are computed considering one-axis rms value.

6.3 SINE RESPONSE LEVELS

The FPU nodes used in the sine response are listed in Table 6 and shown in Figure 7.

GRID ID	COORD. FRAME ID	DESCRIPTION
69010	90001	+X+YTOPI/FFPU
69011	90001	+X-Y TOP I/F FPU
69012	90001	+X+Y BOTTOM I/F FPU
69013	90001	+X-Y BOTTOM I/F FPU
69017	90001	-X RIGHT I/F FPU
69018	90001	-X LEFT I/F FPU
100007	90001	X I/F HFI
100353	90001	-Y I/F HFI
100363	90001	+YI/FHFI
102000	90001	CoG HFI

Table 6: Sine output node Ids

They include FPU and HFI interfaces, and FPU center of gravity.

Figure 7: Sine output node locations

All the sine response levels are expressed in the local coordinate frame 90001. It is defined as follows:

- Z-axis is perpendicular to the FPU support plane,
- Y-axis lies in the support plane and coincides with spacecraft Y-axis,
- X-axis lies in the support plane and completes the right-handed orthogonal reference frame.

 REFERENCE :
 H-P-3-ASP-AN-0774

 DATE :
 25/06/2004

 ISSUE : 1
 Rev. 0
 Page: 22/48

X-axis sine responses are shown in Figure 8.

Figure 8: FPU sine response levels along X-axis vs frequency (PR damping = 0.5%)

Tha	highost	nooke for	V ovic	rochoncoc	oro cumom	orizod in	Tabla	7
i ne	monest	DEAKSTOL	X-AXIN	TENDOLINES	are summ	anzeo n	i rabie	/
	ingiloot	pounditor	n anio	100001000	are summi		I TONIO	•••

Sine Analysis	Modal & S	.E. Analysis		
Peak Node	Freq. [Hz]	Mode Nr.	Freq. [Hz]	Remarks
FPU CoG	66.0	81	65.8	FPU Lateral Mode Not Excited
FPU CoG	71.5	93	72.1	Telescope structure strain energy % not significant
FPU CoG	87.5	123	87.4	Telescope structure strain energy % not significant
FPU Feet	110.0	180	110.6	Telescope structure strain energy % not significant
FPU Feet	170.0	344	169.5	Telescope structure strain energy % not significant

Table 7: Highest peaks on FPU sine response (X-axis)

Remark:

- § Mode #81 is not excited as the largest 2nd harmonic frequency range [66.50Hz 94.50Hz] (see table 4) does not include the frequency 65.8 Hz.
- § In the other modes there is not a significant level of strain energy accumulated in the telescope structure¹.

¹ Telescope structure includes baffle, primary reflector, secondary reflector and support frame (see [RD3]).

 REFERENCE :
 H-P-3-ASP-AN-0774

 DATE :
 25/06/2004

 ISSUE : 1
 Rev. 0
 Page: 23/48

Y-axis sine responses are shown in Figure 9.

Figure 9: FPU sine response levels along Y-axis vs frequency (PR damping = 0.5%)

The highest peaks for Y-axis responses are summarized in Table 8.

Sine Analysis	Modal & S.	.E. Analysis		
Peak Node	Freq. [Hz]	Mode Nr.	Freq. [Hz]	Remarks
FPU CoG	50	58	49.7	FPU Lateral Mode Not Excited
FPU CoG	61	73	60.6	FPU Lateral Mode Not Excited
FPU CoG	71	90	71.3	Telescope structure strain energy % not significant
FPU CoG	78	107	78.4	Telescope structure strain energy % not significant
FPU CoG	88	125	88.2	Telescope structure strain energy % not significant

Table 8: Highest peaks on FPU sine response (Y-axis)

Remark:

- § Modes #58 & #73 are not excited as the largest frequency ranges for the 1st and 2nd harmonics are respectively [33.25Hz 47.25Hz] and [66.50Hz 94.50Hz].
- § In the other modes there is not a significant level of strain energy accumulated in the telescope.

Reference :	H-P-3-ASP-AN-0774		
Date :	25/06/2004		
Issue : 1	Rev. 0	Page: 24/48	

Z-axis sine responses are shown in Figure 10.

Figure 10: FPU sine response levels along Z-axis vs frequency (PR damping = 0.5%)

The highest peaks for Z-axis responses are summarized in Table 9.

Sine Analysis	Modal & S.	E. Analysis		
Peak Node	Freq. [Hz]	Mode Nr.	Freq. [Hz]	Remarks
FPU Feet	110	180	110.6	Telescope SE % not significant
FPU Feet	127.5	230	127.1	FPU Longitudinal Mode Excited
FPU Feet	150	289	150.7	Telescope structure strain energy % not significant
FPU Feet	157	301	156.8	Telescope structure strain energy % not significant
FPU Feet	170	346	170.4	Telescope structure strain energy % not significant

Table 9: Highest peaks on FPU sine response (Z-axis)

Remark:

§ Only the mode #230 at 127Hz risks to be impacted by the eventual damping evolution. Strain energy distribution is shown hereunder.

MODE	2 = 230 -	- FREQUENCY	<i>x</i> = 127.10	2 Hz		
EFFF	CTIVE MAS	SS & INERTI	IA (KG, KG	.M2) :		
	MX	MY	MZ	IX	IY	ΙZ
	0.000	0.000	0.000	0.000	0.000	0.000
SUBS	TRUCTURE	OR SUBSYST	ſEM		% SE	SUM
PLN	I Primary	reflector			21.646	21.646
SVN	Lower cl	losure pane	el		14.497	36.143
PLN	I Baffle				13.478	49.621
PLN	I Groove3				8.699	58.320
PLN	I Groove2				7.892	66.212
PLN	I Struts_H	Blades_Brac	ce		5.649	71.861
SVN	I Central	cone			4.678	76.539
PLN	I Frame				3.882	80.421
E_BEXT					3.037	83.459
SVN	I Payload	subplatfor	rm		2.309	85.768
SVN	I Panel -Y	∠+Z			2.215	87.983
SVN	I Panel +2	Z			1.702	89.685
PLM Groovel					1.506	91.191
SVN	I Panel +Y	Ľ+Ζ			1.427	92.618
SVN	I Upper cl	losure pane	el		1.347	93.965

§ In the other modes there is not a significant level of strain energy accumulated in the telescope structure.

DATE : 25/06/2004 ISSUE : 1 Rev. 0 Page: 26/48	Reference :	H-P-3-ASP-AI	N-0774
ISSUE: 1 Rev. 0 Page: 26/48	Date :	25/06/2004	
	Issue : 1	Rev. 0	Page: 26/48

6.4 STRUCTURAL DAMPING FACTOR

To estimated an eventual damping evolution at cryo temperature, the structural damping factor of the primary reflector support panel has been reduced to 0.05% (very unfavourable).

The sine responses shown in §6.3 change as reported in Figure 11-Figure 13.

Figure 11: FPU sine response levels along X-axis vs frequency (PR damping = 0.05%)

Figure 12: FPU sine response levels along Y-axis vs frequency (PR damping = 0.05%)

Référence Fichier :H-P-3-ASP-AN-0774 du 13/07/04 11:13

Remark:

In the new PR support panel configuration (damping factor = 0.05%) the peak at 127Hz is higher. The peak at 134.6Hz has near the same level but the corresponding mode presents a more significant percentage of strain energy going to the primary reflector (49%) and baffle (10%).

MODE = 246 -	FREQUENCY	<i>X</i> = 134.620) Hz		
EFFECTIVE MASS	& INERT	IA (KG, KG.	M2) :		
MX	MY	MZ	IX	IY	IZ
0.000	0.000	0.000	0.000	0.000	0.000
SUBSTRUCTURE C	R SUBSYS	ſEM		% SE	SUM
PLM Primary r	eflector			48.901	48.901
PLM Baffle				9.646	58.547
PLM Groove3				8.184	66.731
SVM Central c	one			4.964	71.695
PLM Groove2				4.534	76.229
PLM Struts_Bl	ades_Brad	ce		4.160	80.389
SVM Payload s	ubplatfor	rm		3.066	83.455
SVM Lower clo	sure pane	el		2.296	85.751
PLM Groovel				2.104	87.854
PLM Frame				1.859	89.713
E_BEXT				1.516	91.228
SVM Panel +Y+	Z			1.294	92.522
SVM Upper clo	sure pane	el		1.003	93.525

6.5 RESULTS

The results for FPU interfaces are presented as follows:

- § for all the interfaces,
- § for every working frequency of the 4K Cooler (that is from 35Hz to 45Hz with a 0.1Hz step),
- § for both nominal and reduced damping factors,

The locations of the FPU interfaces is just reminded hereunder.

Results are presented in Figure 11, Figure 12 and Figure 13.

The 3-axis resultant (necessary to verify specification #2) is shown in Figure 14.

Figure 14: 3-axis acceleration resultant in the range [30Hz-200Hz])

Specification #2 requires levels being lower than $2^{10^{-3}}$ g.

Remark:

1. The highest combined level is $\sim 0.22*10^{-3}$ g and it occurs for the FPU I/F (node 69012) working the 4K Cooler at 37.2Hz.

Référence Fichier :H-P-3-ASP-AN-0774 du 13/07/04 11:13

DATE : 25/06/2004

ISSUE: 1 Rev. 0 Page: 30/48

2. Reduction of the damping factor does not produce significant changes in the resultant levels. Maximum levels occur at 35-36Hz rather than 37-38Hz and shift from top FPU interfaces to bottom ones (nodes 69017 & 69018).

The 2-axis resultant (necessary to verify specification #3) is shown in Figure 15.

Figure 15: In-plane acceleration resultant in the range [50Hz-70Hz]

Remark:

- 1. In this case only 2nd harmonic at the 4K Cooler working frequency of 35Hz can contribute to the resultant computation. That is why only one value can be observed at 35Hz.
- 2. All the interfaces reach the same level and the maximum level is 0.025×10^{-3} g and it is quite lower than specification requirement (0.2×10^{-3} g).
- 3. Reduction of the damping factor does not produce significant changes in the in-plane resultant levels.

The Z-axis rms level (necessary to verify specification #4) is shown in Figure 16.

Figure 16: Z-axis rms levels in the range [120Hz-160Hz]

Specification #4 requires levels being lower than 0.2×10^{-3} g.

Remark:

- 1. For each axis, 3rd harmonic contributes in the range [40Hz 45Hz] as 4th harmonic does in the range [35Hz 40Hz].
- 2. Only at the frequency of 40Hz the 3rd and 4th harmonics combine. Thus, a significant peak of $\sim 0.17*10^{-3}$ g can be observed for the FPU I/F (node 69012) just at 40Hz.

DATE : 25/06/2004

ISSUE : 1 Rev. 0 Page: 33/48

- 3. Reduction of the damping factor does not produce significant changes in the Z-axis rms levels. All the curves translate slightly upward. Maximum level occur still at 40Hz.
- 4. Mode #230 at 127.1Hz (see Figure 10 and Table 9) corresponds to a 4K Cooler working frequency of ~42Hz.
 At this frequency no peak appears in Figure 16. The constant values after 40Hz corresponds to the peak values at 127.1Hz shown in Figure 10 since they are always inside the +/-10% bandwidth when maximum values are searched (see §6.1.2 for details).

Reference :	H-P-3-ASP-AN-0774		
Date :	25/06/2004		
Issue : 1	Rev. 0	Page: 34/48	

7 CONCLUSIONS

Three specifications have been studied and results are fully compliant for all the specifications. Results are summarised in Table 10 - Table 12.

Node ID		SPECIFICATIO	PR SUPPORT PANEL DAMPING 0.5%		PR SUPPORT PANEL DAMPING 0.05%	
	Description	N #2 [30Hz-200Hz]	Max Acceleration Level [mg]	4K Cooler Working Frequency [Hz]	Max Acceleration Level [mg]	4K Cooler Working Frequency [Hz]
69010	+X+Y TOP I/F		0.21	39.0	0.22	39.0
69011	+X-Y TOP I/F		0.19	38.8	0.21	38.8
69012	+X+Y BOTTOM I/F	2*10-3	0.22	37.3	0.24	37.3
69013	+ X-Y BOTTOM I/F	2 10	0.19	35.0	0.22	37.4
69017	-X RIGHT I/F		0.20	35.0	0.24	35.0
69018	-X LEFT I/F		0.21	35.0	0.24	35.0

Table 10: Results (Specification #2)

Node ID		SPECIFICATIO	PR SUPPORT PANEL DAMPING 0.5%		PR SUPPORT PANEL DAMPING 0.05%	
	Description	N #3 [50Hz-70Hz]	Max Acceleration Level [mg]	4K Cooler Working Frequency [Hz]	Max Acceleration Level [mg]	4K Cooler Working Frequency [Hz]
69010	+X+Y TOP I/F		0.02	35.0	0.03	35.0
69011	+X-Y TOP I/F		0.03	35.0	0.03	35.0
69012	+X+Y BOTTOM I/F	0.0*10-3	0.02	35.0	0.03	35.0
69013	+ X-Y BOTTOM I/F	0.2 10	0.03	35.0	0.03	35.0
69017	-X RIGHT I/F		0.03	35.0	0.03	35.0
69018	-X LEFT I/F		0.03	35.0	0.03	35.0

Table 11: Results (Specification #3)

DATE : 25/06/2004

Issue : 1

Rev. 0

Page: 35/48

		SPECIFICATIO	PR SUPPORT PANEL DAMPING 0.5%		PR SUPPORT PANEL DAMPING 0.05%	
ID	Description	N #4 [120Hz- 160Hz]	Max Acceleration Level [mg]	4K Cooler Working Frequency [Hz]	Max Acceleration Level [mg]	4K Cooler Working Frequency [Hz]
69010	+X+Y TOP I/F		0.16	40.0	0.17	40.0
69011	+X-Y TOP I/F		0.14	40.0	0.15	40.0
69012	+X+Y BOTTOM I/F	0.0*10-3	0.17	40.0	0.18	40.0
69013	+ X-Y BOTTOM I/F	0.2 10	0.14	40.0	0.15	40.0
69017	-X RIGHT I/F		0.08	40.0	0.09	40.0
69018	-X LEFT I/F		0.09	40.0	0.09	40.0

Table 12: Results (Specification #4)

Reference :	H-P-3-ASP-AI	N-0774
Date :	25/06/2004	
Issue : 1	Rev. 0	Page: 36/48

APPENDIX A : SINE RESPONSE LEVELS

3-AXIS RMS RESPONSES (0.5% DAMPING)

Figure 17: X-axis rms levels in the range [30Hz-200Hz]

Figure 18: Y-axis levels in the range [30Hz-200Hz]

Figure 19: Z-axis rms levels in the range [30Hz-200Hz]

3-AXIS RMS RESPONSES (0.05% DAMPING)

Figure 20: X-axis rms levels in the range [30Hz-200Hz]

Figure 21: Y-axis rms levels in the range [30Hz-200Hz]

Référence Fichier :H-P-3-ASP-AN-0774 du 13/07/04 11:13

Figure 22: Z-axis rms levels in the range [30Hz-200Hz]

Reference :	H-P-3-ASP-AN-0774	
Date :	25/06/2004	
Issue : 1	Rev. 0	Page: 41/48

APPENDIX B : STRAIN ENERGY COMPUTATION

25/06/2004

Issue : 1 Rev. 0

Date :

X-axis						
MODE =	= 81 -	FREQUENCY	<i>X</i> = 65.821	l Hz		
EFFECI	CIVE MAS	S & INERTI	LA (KG, KG.	.M2) :		
Μ	ΔX	MY	MZ	IX	IY	IZ
C	0.000	0.000	0.000	0.000	0.000	0.000
SUBSTR	RUCTURE	OR SUBSYS	ГЕМ		% SE	SUM
PLM S	Struts_B	lades_Brad	ce		21.122	21.122
PLM F	Primary :	reflector			16.210	37.333
PLM F	Frame				9.770	47.103
PLM G	Groove3				7.442	54.545
SVM I	links				7.142	61.686
SVM C	Central o	cone			5.009	66.695
PLM E	Baffle				4.803	71.498
PLM S	Secondar	y reflecto	or		3.882	75.380
SVM 1	<u> Fanks</u>				3.317	78.697
SVM F	ayload :	subplatfo	rm		3.301	81.998
SVM F	Panel +Y	+Z			2.711	84.709
PLM G	Groove2				2.423	87.132
PLM G	Groovel				2.192	89.324
PLM F	FPU				1.860	91.184
SVM I	Lower clo	osure pane	el		1.828	93.012
SVM S	Shear par	nels			1.815	94.827
SVM U	Jpper clo	osure pane	el		1.227	96.054

MODE = 93 - FREQUENCY = 72.075 Hz

EFFECTIVE MASS MX	& INERTIA MY	(KG, KG. MZ	M2) : IX	IY	IZ
0.000	0.000	0.000	0.000	0.000	0.000
SUBSTRUCTURE O	R SUBSYSTE	M		% SE	SUM
PLM Primary r PLM Baffle	eflector			24.702 15.219	24.702 39.921
PLM FPU				8.896	48.817
PLM Frame				7.791	56.607
PLM Struts_Bl	ades_Brace			5.428	62.036
PLM Groovel				4.483	66.519
PLM Groove2				3.891	70.410

PLM Secondary reflector	3.670	74.080
SVM Links	3.524	77.604
SVM Central cone	3.045	80.649
SVM Lower closure panel	2.928	83.577
SVM Shear panels	2.147	85.724
SVM Payload subplatform	1.821	87.546
SVM Tanks	1.514	89.059
SVM Panel -Z	1.502	90.561
SVM Upper closure panel	1.476	92.037
SVM Panel +Y+Z	1.352	93.389
SVM Panel -Y	1.071	94.460

MODE = 123 - FREQUENCY = 87.385 Hz

Page: 42/48

EFFECTIVE MASS & INERTIA (K	G, KG.M2) :		
MX MY MZ		IX	IY	ΙZ
0.000 0.000 0.	000	0.000	0.000	0.000
SUBSTRUCTURE OR SUBSYSTEM		:	& SE	SUM
PLM Primary reflector			35.647	35.647
PLM Groove3			18.213	53.860
SVM Links			12.089	65.949
PLM Baffle			6.785	72.734
PLM Struts_Blades_Brace			4.533	77.267
PLM FPU			4.512	81.779
SVM Lower closure panel			2.802	84.580
SVM Shear panels			2.637	87.217
SVM Panel -Y+Z			1.862	89.079
SVM Central cone			1.652	90.732
SVM Upper closure panel			1.418	92.150
PLM Frame			1.357	93.507
SVM Panel -Z+Y			1.204	94.711
MODE = 180 - FREQUENCY = 1	.10.571 H	Iz		
EFFECTIVE MASS & INERTIA (K	G, KG.M2) :		
MX MY MZ		IX	IY	ΙZ
0.000 0.000 0.	000	0.000	0.000	0.000

SUBSTRUCTURE OR SUBSY	/STEM %	SE	SUM
PLM Baffle		40.956	40.956

Référence Fichier :H-P-3-ASP-AN-0774 du 13/07/04 11:13

Référence du modèle : M023-3

DATE : 25/06/2004

ISSUE : 1 Rev. 0 Page: 43/48

SVM Central cone	14.831	55.788
PLM Primary reflector	14.012	69.800
E_BINT	6.887	76.687
SVM Lower closure panel	4.239	80.926
SVM Panel -Y+Z	2.371	83.297
PLM FPU	1.775	85.071
PLM Struts_Blades_Brace	1.665	86.736
PLM Groove3	1.422	88.158
PLM Frame	1.308	89.466
SVM Links	1.222	90.688
SVM Upper closure panel	1.145	91.833
E_BEXT	1.093	92.926

MODE = 344 - FREQUENCY = 169.528 Hz

EFFECTIVE MASS & INERTIA (KG, KG.M2) :

		a 11101(1)	(100) 100			
	MX	MY	MZ	IX	IY	ΙZ
	0.000	0.000	0.000	0.000	0.000	0.000
SUBST	RUCTURE OF	R SUBSYS	ГЕМ		% SE	SUM
PLM	Groovel				54.359	54.359
PLM	Baffle				8.820	63.179
PLM	Struts_Bla	ades_Brad	ce		7.756	70.935
PLM	Primary re	eflector			4.754	75.690
SVM	Upper clos	sure pane	el		4.168	79.857
SVM	Central co	one			4.086	83.944
PLM	Groove3				3.392	87.335
PLM	FPU				2.164	89.499
PLM	Groove2				1.833	91.332
SVM	Payload su	ubplatfor	cm		1.617	92.949
PLM	Frame	_			1.429	94.378
SVM	Lower clos	sure pane	el		1.184	95.562

25/06/2004

Date :

REFERENCE : H-P-3-ASP-AN-0774

Rev. 0 Issue : 1 Page: 44/48

	e e
PLM	Struts_Blades_Brace
PLM	Secondary reflector
SVM	Lower closure panel
PLM	Groove3
SVM	Upper closure panel
SVM	Panel +Y
SVM	Links
SVM	Payload subplatform
PLM	Groove2
SVM	Panel +Y+Z
SVM	Panel -Z+Y

MODE = 90 - FREQUENCY = 71.345 Hz

EFFECTIVE	MASS	&	INERTIA	(KG,	KG.M2)	:
-----------	------	---	---------	------	--------	---

	MX	MY	MZ	IX	IY	IZ
	0.000	0.000	0.000	0.000	0.000	0.000
SUBS	TRUCTURE	OR SUBSYST	ſEM		% SE	SUM
SVM SVM PLM E_BIJ PLM PLM PLM PLM SVM SVM SVM SVM	Central Lower cl Primary NT Baffle Struts_E Groove1 Secondar Frame Groove3 Links Tanks Groove2 Panel +Y	cone osure pane reflector Blades_Brac Ty reflecto	el ce or		$12.957 \\ 12.796 \\ 8.960 \\ 8.907 \\ 8.769 \\ 4.840 \\ 4.778 \\ 4.501 \\ 4.322 \\ 4.177 \\ 3.028 \\ 2.951 \\ 2.684 \\ 2.542 \end{cases}$	12.957 25.753 34.713 43.621 52.389 57.230 62.008 66.509 70.831 75.007 78.035 80.986 83.670 86.212
SVM SVM PLM SVM	Panel -2 Payload FPU Upper cl	subplatfor	rm		2.420 2.330 2.054 1.781	88.633 90.963 93.017 94 798
SVM	Shear pa	nels	~-		1.377	96.175

MODE = 107 - FREQUENCY = 78.373 Hz

EFFECTIVE MASS & INERTIA (KG, KG.M2) :

MODE = 58 - FREQUENCY = 49.710 HzEFFECTIVE MASS & INERTIA (KG, KG.M2) : MY MX

Y-axis

	MX	MY	MZ	IX	IY	ΙZ
	0.000	0.000	0.000	0.000	0.000	0.000
SUBS	TRUCTURE	OR SUBSYST	ſEM		% SE	SUM
PLM	Primary	reflector			16.070	16.070
PLM	Frame				12.320	28.390
SVM	Central	cone			12.024	40.414
PLM	Secondar	y reflecto	or		9.378	49.792
PLM	Baffle				7.025	56.817
SVM	Payload	subplatfor	rm		7.008	63.825
PLM	Struts_E	Blades_Brac	6.836	70.661		
SVM	Lower cl	osure pane	el		4.830	75.491
SVM	Upper cl	osure pane	el		4.181	79.672
SVM	Tanks				4.089	83.761
SVM	Panel -Y	Z+Z			2.176	85.937
PLM	Groovel				1.714	87.651
PLM	FPU				1.661	89.312
SVM	Links				1.492	90.804
PLM	Groove2				1.413	92.216
SVM	Panel +Y	7			1.382	93.598
SVM	Shear pa	anels			1.226	94.824
E_BEI	XT				1.024	95.848

MODE = 73 - FREQUENCY = 60.622 Hz

EFFECTIVE MAS MX 0.000	S & INERTIA MY 0.000	(KG, KG. MZ 0.000	M2) : IX 0.000	IY 0.000	IZ 0.000
SUBSTRUCTURE	OR SUBSYSTE	М		% SE	SUM
PLM Baffle PLM Frame				20.990 12 796	20.990
SVM Central	cone			12.048	45.834
PLM Primary	reflector			8.825	54.659
SVM Tanks				5.614	60.273

Référence Fichier :H-P-3-ASP-AN-0774 du 13/07/04 11:13

DATE : 25/06/2004

Issue : 1

Rev. 0 Page: 45/48

	MA	MY	MZ	IX	IY	IZ
	0.000	0.000	0.000	0.000	0.000	0.000
SUBSI	TRUCTURE (OR SUBSYST	ΈM		% SE	SUM
PLM	Struts_B	lades_Brac	e		24.731	24.731
PLM	Secondary	y reflecto	r		21.659	46.390
PLM	Primary 1	reflector			14.335	60.725
PLM	Groovel				9.958	70.683
PLM	Groove3				5.119	75.802
PLM	Frame				4.812	80.614
SVM	Central d	cone			2.192	82.806
SVM	Lower clo	osure pane	1		2.142	84.948
PLM	Baffle				1.991	86.939
SVM	Upper clo	osure pane	1		1.853	88.792
SVM	Panel -Z-	+Y			1.495	90.287
PLM	FPU				1.424	91.711
SVM	Panel +Y				1.395	93.106
PLM	Groove2				1.304	94.411
SVM	Panel -Y	+ Z			1.244	95.654
SVM	Panel +Y	+Z			1.169	96.823
MODE	= 125 -	FREQUENCY	= 88.164	1 Hz		
MODE	= 125 - CTIVE MAS: MX 0.000	FREQUENCY S & INERTI MY 0.000	<pre>T = 88.164 A (KG, KG MZ 0.000</pre>	4 Hz .M2) : IX 0.000	IY 0.000	IZ 0.000
MODE EFFEC	= 125 - CTIVE MAS: MX 0.000 FRUCTURE (FREQUENCY S & INERTI MY 0.000 DR SUBSYST	<pre>T = 88.164 A (KG, KG MZ 0.000 TEM</pre>	4 Hz .M2) : IX 0.000	IY 0.000 % SE	IZ 0.000 SUM
MODE EFFEC SUBST	= 125 - CTIVE MASS MX 0.000 IRUCTURE (FREQUENCY S & INERTI MY 0.000 DR SUBSYST	<pre>T = 88.16* A (KG, KG MZ 0.000 YEM</pre>	4 Hz .M2) : IX 0.000	IY 0.000 % SE	IZ 0.000 SUM
MODE EFFEC SUBSI PLM	= 125 - CTIVE MASS MX 0.000 IRUCTURE (Primary 1	FREQUENCY S & INERTI MY 0.000 DR SUBSYST reflector	<pre>T = 88.16* A (KG, KG MZ 0.000 TEM</pre>	4 Hz .M2) : IX 0.000	IY 0.000 % SE 62.771	IZ 0.000 SUM 62.771
MODE EFFEC SUBSI PLM PLM	= 125 - CTIVE MASS MX 0.000 IRUCTURE (Primary 1 Baffle	FREQUENCY S & INERTI MY 0.000 DR SUBSYST reflector	" = 88.16 A (KG, KG MZ 0.000 "EM	4 Hz .M2) : IX 0.000	IY 0.000 % SE 62.771 10.281	IZ 0.000 SUM 62.771 73.052
MODE EFFEC SUBSI PLM PLM DLM	= 125 - CTIVE MASS MX 0.000 IRUCTURE (Primary P Baffle Frame	FREQUENCY S & INERTI MY 0.000 DR SUBSYST reflector	" = 88.16 A (KG, KG MZ 0.000 "EM	4 Hz .M2) : IX 0.000	IY 0.000 % SE 62.771 10.281 4.532 2.000	IZ 0.000 SUM 62.771 73.052 77.584
MODE EFFEC SUBSI PLM PLM PLM PLM	= 125 - CTIVE MASS MX 0.000 IRUCTURE (Primary = Baffle Frame Struts_B	FREQUENCY S & INERTI MY 0.000 DR SUBSYST reflector lades_Brac	" = 88.16 A (KG, KG MZ 0.000 "EM	4 Hz .M2) : IX 0.000	IY 0.000 % SE 62.771 10.281 4.532 3.098	IZ 0.000 SUM 62.771 73.052 77.584 80.682
MODE EFFEC SUBSI PLM PLM PLM PLM PLM	= 125 - CTIVE MASS MX 0.000 IRUCTURE (Primary 1 Baffle Frame Struts_B Groove2	FREQUENCY S & INERTI MY 0.000 DR SUBSYST reflector lades_Brac	" = 88.16 A (KG, KG MZ 0.000 "EM	4 Hz .M2) : IX 0.000	IY 0.000 % SE 62.771 10.281 4.532 3.098 2.317	IZ 0.000 SUM 62.771 73.052 77.584 80.682 82.999
MODE EFFEC SUBSI PLM PLM PLM PLM PLM SVM	= 125 - CTIVE MASS MX 0.000 IRUCTURE (Primary 1 Baffle Frame Struts_B3 Groove2 Lower clo	FREQUENCY S & INERTI MY 0.000 DR SUBSYST reflector lades_Brac	<pre>T = 88.16* A (KG, KG MZ 0.000 TEM Tem Tem</pre>	4 Hz .M2) : IX 0.000	IY 0.000 % SE 62.771 10.281 4.532 3.098 2.317 2.149	IZ 0.000 SUM 62.771 73.052 77.584 80.682 82.999 85.147 86.725
MODE EFFE(SUBSJ PLM PLM PLM PLM SVM SVM	= 125 - CTIVE MASS MX 0.000 IRUCTURE (Primary 1 Baffle Frame Struts_B3 Groove2 Lower clo Links	FREQUENCY S & INERTI MY 0.000 DR SUBSYST reflector lades_Brac osure pane	F = 88.16 A (KG, KG MZ 0.000 FEM	4 Hz .M2) : IX 0.000	IY 0.000 % SE 62.771 10.281 4.532 3.098 2.317 2.149 1.557	IZ 0.000 SUM 62.771 73.052 77.584 80.682 82.999 85.147 86.705
MODE EFFEC SUBST PLM PLM PLM SVM SVM SVM	= 125 - CTIVE MASS MX 0.000 IRUCTURE (Primary r Baffle Frame Struts_B Groove2 Lower clo Lower clo Links Panel -Y	FREQUENCY S & INERTI MY 0.000 DR SUBSYST reflector lades_Brac osure pane +Z	<pre>T = 88.16* A (KG, KG MZ 0.000 TEM Tem Tem</pre>	4 Hz .M2) : IX 0.000	IY 0.000 % SE 62.771 10.281 4.532 3.098 2.317 2.149 1.557 1.481 1.445	IZ 0.000 SUM 62.771 73.052 77.584 80.682 82.999 85.147 86.705 88.186 80.621
MODE EFFEC SUBSJ PLM PLM PLM SVM SVM SVM SVM	= 125 - CTIVE MASS MX 0.000 IRUCTURE (Primary r Baffle Frame Struts_B Groove2 Lower clo Lower clo Links Panel -Y Upper clo	FREQUENCY S & INERTI MY 0.000 DR SUBSYST reflector lades_Brac osure pane +Z osure pane	<pre>T = 88.16* A (KG, KG MZ 0.000 TEM Tem Tem Tem Tem Tem Tem</pre>	4 Hz .M2) : IX 0.000	IY 0.000 % SE 62.771 10.281 4.532 3.098 2.317 2.149 1.557 1.481 1.445 1.202	IZ 0.000 SUM 62.771 73.052 77.584 80.682 82.999 85.147 86.705 88.186 89.631
MODE EFFEC SUBST PLM PLM PLM SVM SVM SVM SVM SVM SVM	= 125 - CTIVE MASS MX 0.000 IRUCTURE (Primary F Baffle Frame Struts_B Groove2 Lower clo Lower clo Links Panel -Y Upper clo Groove3 Carber	FREQUENCY S & INERTI MY 0.000 DR SUBSYST reflector lades_Brac osure pane +Z osure pane	<pre>T = 88.16* A (KG, KG MZ 0.000 TEM Tem Tem Tem Tem Tem</pre>	4 Hz .M2) : IX 0.000	IY 0.000 % SE 62.771 10.281 4.532 3.098 2.317 2.149 1.557 1.481 1.445 1.298 1.222	IZ 0.000 SUM 62.771 73.052 77.584 80.682 82.999 85.147 86.705 88.186 89.631 90.929
MODE EFFEC SUBST PLM PLM PLM PLM SVM SVM SVM SVM SVM SVM SVM SVM SVM SV	= 125 - CTIVE MASS MX 0.000 IRUCTURE (Primary F Baffle Frame Struts_B Groove2 Lower clo Links Panel -Y- Upper clo Groove3 Central of	FREQUENCY S & INERTI MY 0.000 DR SUBSYST reflector lades_Brac osure pane +Z osure pane cone	<pre>T = 88.164 A (KG, KG MZ 0.000 TEM TeM Te Te Te</pre>	4 Hz .M2) : IX 0.000	IY 0.000 % SE 62.771 10.281 4.532 3.098 2.317 2.149 1.557 1.481 1.445 1.298 1.220 1.217	IZ 0.000 SUM 62.771 73.052 77.584 80.682 82.999 85.147 86.705 88.186 89.631 90.929 92.150 82.267

MODE = 180 - FREQUENCY = 110.571 Hz

Z-axis

REFERENCE : H-P-3-ASP-AN-0774

DATE : 25/06/2004

ISSUE: 1 Rev. 0 Page: 46/48

SVM Links1.222SVM Upper closure panel1.145
SVM Upper closure panel 1.145

ΙZ

0.000

MODE = 230 - FREQUENCY = 127.102 Hz

EFFECTIVE MASS	S & INERTI	A (KG, KG	.M2) :		
MX	MY	MZ	IX	IY	IZ
0.000	0.000	0.000	0.000	0.000	0.000
SUBSTRUCTURE (OR SUBSYST	EM		% SE	SUM
PLM Baffle				40.956	40.956
SVM Central o	cone			14.831	55.788
PLM Primary	reflector			14.012	69.800
E_BINT				6.887	76.687
SVM Lower clo	osure pane	1		4.239	80.926
SVM Panel -Y	+Z			2.371	83.297
PLM FPU				1.775	85.071
PLM Struts_B	lades_Brac	e		1.665	86.736
PLM Groove3				1.422	88.158
PLM Frame				1.308	89.466
SVM Links				1.222	90.688
SVM Upper clo	osure pane	1		1.145	91.833
E BEXT	-			1.093	92.926

MODE = 180 - FREQUENCY = 110.571 Hz

EFFECTIVE MASS & INERTIA (KG, KG.M2) MX MY MZ II 0.000 0.000 0.000 0	: X IY .000 0.000	IZ 0.000
SUBSTRUCTURE OR SUBSYSTEM	% SE	SUM
PLM Baffle SVM Central cone	40.956 14.831	40.956 55.788
PLM Primary reflector	14.012	69.800 76.687
SVM Lower closure panel	4.239	80.926
SVM Panel -Y+Z PLM FPU	2.371 1.775	83.297 85.071
PLM Struts_Blades_Brace PLM Groove3	1.665 1.422	86.736 88.158
PLM Frame	1.308	89.466

 EFFECTIVE MASS & INERTIA (KG, KG.M2):

 MX
 MY
 MZ
 IX
 IY

 0.000
 0.000
 0.000
 0.000
 0.000

 SUBSTRUCTURE OR SUBSYSTEM
 % SE
 % SE

SUBSTRUCTURE OR SUBSYSTEM	% SE	SUM
PLM Primary reflector	21.646	21.646
SVM Lower closure panel	14.497	36.143
PLM Baffle	13.478	49.621
PLM Groove3	8.699	58.320
PLM Groove2	7.892	66.212
PLM Struts_Blades_Brace	5.649	71.861
SVM Central cone	4.678	76.539
PLM Frame	3.882	80.421
E_BEXT	3.037	83.459
SVM Payload subplatform	2.309	85.768
SVM Panel -Y+Z	2.215	87.983
SVM Panel +Z	1.702	89.685
PLM Groovel	1.506	91.191
SVM Panel +Y+Z	1.427	92.618
SVM Upper closure panel	1.347	93.965

MODE = 289 - FREQUENCY = 150.718 Hz

EFFECTIVE MASS MX 0.000	& INERTIA MY 0.000	(KG, KG.M MZ 0.000	2) : IX 0.000	IY 0.000	IZ 0.000
SUBSTRUCTURE OF	R SUBSYSTE	М		% SE	SUM
E_BEXT PLM Groove2 SVM Central co PLM Groove1 SVM Lower clos PLM Groove3 PLM Struts_Bla	one sure panel ades_Brace			$12.767 \\ 12.758 \\ 11.576 \\ 11.013 \\ 7.708 \\ 5.884 \\ 5.105 \\ \end{array}$	12.767 25.525 37.101 48.114 55.821 61.706 66.811

Référence Fichier :H-P-3-ASP-AN-0774 du 13/07/04 11:13

Référence du modèle : M023-3

DATE : 25/06/2004

ISSUE: 1 Rev. 0 Page: 47/48

MODE = 346 - FREQUENCY = 170.375 Hz

EFFECTIVE MASS & INERTIA (KG KG M2) :

PLM Baffle 4.004 70.815 SVM Payload subplatform 3.564 74.379 SVM Panel +Y 3.449 77.828 SVM Panel -Z+Y 2.934 80.762 SVM Panel -Y+Z 2.480 83.242 SVM Upper closure panel 2.344 85.586 SVM Tanks 2.231 87.817 PLM Primary reflector 1.751 89.568 SVM Links 1.626 91.194 SVM Shear panels 1.457 92.652 SVM Panel +Y+Z 1.426 94.077 SVM Panel -Y 1.250 95.328 SVM Panel -Y-Z 1.100 96.428

MODE = 301 - FREQUENCY = 156.793 Hz

E BEXT

E BINT

PLM Primary reflector

SVM Lower closure panel

SVM Payload subplatform

SVM Upper closure panel

PLM Struts_Blades_Brace

SVM Panel -Y+Z

PLM Groovel

SVM Shear panels

SVM Panel +Y+Z

SVM Panel -Y SVM Tanks

SVM Links

PLM Frame

PLM FPU

PLM Groove2

SVM Panel +Z

INERTIA (KG,	KG.M2) :		
Y MZ	IX	IY	ΙZ
.000 0.000	0.000	0.000	0.000
SUBSYSTEM		% SE	SUM
9		19.884	19.884
Y .	INERTIA (KG, Y MZ 000 0.000 JUBSYSTEM	INERTIA (KG, KG.M2) : MZ IX 000 0.000 0.000 UBSYSTEM	INERTIA (KG, KG.M2) : MZ IX IY 000 0.000 0.000 0.000 SUBSYSTEM % SE 19.884 13.236

	MX	MY	MZ	IX	IY	IZ
	0.000	0.000	0.000	0.000	0.000	0.000
SUBS	TRUCTURE	OR SUBSYS	% SE	SUM		
PLM	Groove2	2			22.653	22.653
PLM	Groove3	3			12.673	35.327
PLM	Struts_	_Blades_Brad	ce		7.849	43.175
SVM	Central	cone			7.748	50.923
E_BEXT					6.107	57.030
SVM	Panel +	-Y			5.994	63.024
SVM	Payload	l subplatfor	rm		4.976	68.001
PLM	Baffle				3.832	71.832
PLM	Groovel	-			3.143	74.976
SVM	Upper c	closure pane	el		3.109	78.085
SVM	Lower c	closure pane	el		3.016	81.101
SVM	Panel -	-Z+Y			2.685	83.785
SVM	Shear p	anels			2.389	86.175
SVM	Panel +	-Y+Z			2.348	88.523
PLM	Primary	<pre>reflector</pre>	2.337	90.860		
SVM	Links				1.909	92.769
SVM	Panel +	-Z			1.665	94.434
SVM	Panel -	-Y+Z			1.229	95.663
PLM	Frame				1.113	96.776

Référence Fichier :H-P-3-ASP-AN-0774 du 13/07/04

42.497

51.621

58.309

63.178

67.705

71.647

75.505

79.202

82.552

85.027

86.850

88.663

90.406 91.990

93.401

94.726

96.003

97.199

9.377

9.124

6.688

4.869

4.527

3.942

3.857

3.697

3.350

2.475

1.823

1.814

1.743

1.585

1.411

1.325

1.277

1.196

Reference :	H-P-3-ASP-AN-0774		
Date :	25/06/2004		
Issue : 1	Rev. 0	Page: 48/48	

END OF DOCUMENT