

TOTAL PAGES :

Responsabilité-Service-Société Responsibility-Office -Company	Date	Signature
Planck PLM Thermal Responsible	09/04/04	E/LE
Planck PLM Technical Manager	09/04/04	Par
Planck PLM Manager	09/04/04	$\left(\right) \left(\right)$
PA Manager	09/04/04	- For-
		· · ·
Project Manager	09/04/04	
	Responsabilité-Service-Société Responsibility-Office -Company Planck PLM Thermal Responsible Planck PLM Technical Manager Planck PLM Manager Planck PLM Manager PA Manager Project Manager	Responsabilité-Service-Société Responsibility-Office - CompanyDatePlanck PLM Thermal Responsible09/04/04Planck PLM Technical Manager09/04/04Planck PLM Manager09/04/04PA Manager09/04/04Project Manager09/04/04Imager09

Data management : G. SERRA

Entité Emettrice : Alcatel Space - Cannes (détentrice de l'original)

Référence Fichier :H-P-3-ASPI-AN-0330 (PPIM thermal analyses - V2.0) .doc du 09/04/04 14:12

REFERENCE :	H-P-3-ASPI-AN-0330		
DATE :	09/04/04		
ISSUE :	2	Page : 2/181	

HERSCHEL/PLANCK	DISTRIBUTION RECORD		
DOCUMENT NUMBER : H-P-3-ASPI-AN-0330		Issue 2/ Rev. : 0 0 Date: 09/04/04	
EXTERNAL DISTRIBUT	ION	INTERNAL DISTRIBUTION	
ESA		HP team	Х
ASTRIUM			
ALENIA			
CONTRAVES			
TICRA			
TECNOLOGICA			
		Clt Documentation	Orig.

ENREGISTREMENT DES EVOLUTIONS / CHANGE RECORDS

ISSUE	DATE	§ : DESCRIPTION DES EVOLUTIONS <i>§ : CHANGE RECORD</i>	REDACTEUR AUTHOR
DRAFT 1 2	17/06/02 01/07/02 09/04/04	PDR Major evolution (CDR PPLM)	E. GAVILA E. GAVILA E. GAVILA

TABLE OF CONTENTS

1.	INTRODUCTION	9
	1.1 Scope	9
	1.2 Applicable and Reference Documents	9
	1.2.1 Applicable documents	
	1.2.2 Reference documents	9
	1.3 ACRONYMS	11
2.	REVIEW OF PPLM STRUCTURE THERMAL REQUIREMENTS	12
	2.1 Performance requirements at interfaces with Instruments and Reflectors	12
	2.1.1 Operational mode	12
	2.1.2 Non-operational mode	12
	2.2 Performance requirements issued from straylight analysis	13
	2.3 TELESCOPE AND CRYO-STRUCTURE QUALIFICATION TEMPERATURE RANGE	14
	2.4 Review of Interface specifications	14
	2.4.1 Instruments & coolers I/F heat loads allocation	14
	2.4.2 Planck PLIVI I/F specification	15
3.	P-PLM STRUCTURE THERMAL MATHEMATICAL MODEL DESCRIPTION	16
	3.1 Method and software	16
	3.2 GENERAL PRESENTATION	16
	<i>3.2.1 Contents</i>	16
	3.2.2 Radiative model	17
	3.2.3 Nodal network set-up presentation	20
	3.3 MODELLING ASSUMPTIONS	ZZ
	3.3.1 General rules	ZZ 22
	3 3 3 P-PI M Design narameters	23 24
	3.3.4 PPIM structure interfaces	
4	STEADY STATES ANALYSES RESULTS	53
••		E2
	4.1.1 PPLIVESTEADY STATE RESULTS - NOMINAL OPERATING CASE	53 52
	4.1.1 Temperature cartography	55 51
	4.7 PPI M STEADY STATE RESULTS – WORST HOT OPERATING CASE	55
	4.2.1 Worst hot case definition	55
	4.2.2 Temperature cartography	55
	4.2.3 Interface Heat Loads review	56
	4.2.4 Heat flows	58
	4.2.5 Hot performance with nominal environment	61
	4.3 PPLM Steady state results – Worst Cold operating case	62
	4.3.1 Worst Cold operating case definition	62
	4.3.2 Temperature cartography	62
	4.4 PPLIVI SIEADY STATE RESULTS – WORST COLD NON-OPERATING CASE	63
	4.4.1 VVUISI COID NON-OPERATING CASE DETINITION	63 ∠ 2
	4.4.2 IEIIIPETALUTE CATOUTAPTIY	03 45
_		00
5.	COOL DOWN ANALYSES	67
6.	PPLM THERMAL STABILITY STUDY	68

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

Tanck PLIN Thermal Analyses			
5	DATE :	09/04/04	
	ISSUE :	2	Page : 5/181

 6.1 SVM TEMPERATURES FLUCTUATION	. 68 . 68 . 70 . 73 . 73 . 75 . 83 . 83 . 83 . 92 . 96 . 96 . 98
APPENDIX	.99
APPENDIX 1	100
MATERIALS PROPERTIES : CONDUCTIVITY AND HEAT CAPACITY VALUES	100
APPENDIX 2	110
MATERIALS PROPERTIES : THERMO-OPTICAL PROPERTIES	110
APPENDIX 3	114
MATERIALS PROPERTIES : AREAS AND COATING DEFINITION FOR RADIATIVE MODELLING1	114
APPENDIX 4	127
PPLM CTA HARNESS DESIGN JUSTIFICATION1	127
APPENDIX 5	140
PPLM INTERFACES : SVM STRUCTURE TEMPERATURE	140
APPENDIX 6	142
INSERT DETAILED MODELLING	142
APPENDIX 7	144
TEMPERATURES LISTING HOT CASE	144
APPENDIX 8	163
TEMPERATURES LISTING NOMINAL CASE	163

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

LIST OF FIGURES

FIGURE 3-1 : PPLM GEOMETRICAL MODEL OVERVIEW	
Figure 3-2 : ESARAD structure	
FIGURE 3-3 : SHIELD SHAPE BEFORE DEFORMATION	
FIGURE 3-4 : SHIELD SHAPE AFTER DEFORMATION	
FIGURE 3-5 : ESATAN MODEL ARCHITECTURE	20
FIGURE 3-6 : QUILTING EFFECT DETAILED MODELLING	
FIGURE 3-7 : QUILTING EFFECT : REFLECTION CONE	
FIGURE 3-8 : FLAT PUK EMITTANCE ESTIMATION FLOWCHART	
FIGURE 3-9 : MODELLING OF SURFACES EQUIPPED WITH OPEN HONEYCOMB	
FIGURE 3-10 : OPEN HONEYCOMB DETAILED RADIATIVE MODEL	
FIGURE 3-11 : EMISSIVITY GEOMETRIC ENHANCEMENT	
FIGURE 3-12 : PUK EMISSIVITY MONOCHROMATIC BEHAVIOUR (LEMTA MEASUREMENTS)	30
FIGURE 3-13 : BLACKBODY EMISSION PROFILE @ 50K	31
FIGURE 3-14 : OPEN HC EMITTANCE ESTIMATION FLOWCHART	32
FIGURE 3-15 : PUK OPEN HC EMITTANCE	33
FIGURE 3-16 : LEC EMITTANCE ESTIMATION FLOWCHART	33
FIGURE 3-17 : STRUTS HOLES	
Figure 3-18 : Struts – shields crossing	35
FIGURE 3-19 : STRUTS-SHIELDS BLADES CONDUCTANCE	39
FIGURE 3-20 : COUPLING WITH SHIELDS EDGE	40
FIGURE 3-21 : COUPLING THROUGH ONE BAFFLE-SHIELD3 BRAID	42
FIGURE 3-22 : DETAILED SC 3C INTERFACE TMM	48
FIGURE 3-23 : SIMPLIFIED SC 3C INTERFACE TMM	48
FIGURE 3-24 : DETAILED MODELLING OF CONDUCTION THROUGH INSERT	49
FIGURE 4-1 : NOMINAL PPLM TEMPERATURE CARTOGRAPHY	53
FIGURE 4-2 : "HOT" PPLM TEMPERATURE CARTOGRAPHY	55
FIGURE 4-3 : INTERFACE HEAT LOADS REVIEW / HOT CASE	57
Figure 4-4 : Shield 1 "hot" heat budget	58
Figure 4-5 : Shield 2 "hot" heat budget	59
Figure 4-6 : Shield 3 "hot" heat budget	59
FIGURE 4-7 : INTERFACES WITH HFI	60
FIGURE 4-8 : INTERFACES WITH LFI	60
FIGURE 4-9 : INTERFACES WITH SORPTION COOLER.	61
FIGURE 4-10 : COLD OPERATING PPLM TEMPERATURE CARTOGRAPHY	62
FIGURE 4-11 : COLD NON OPERATING PPLM TEMPERATURE CARTOGRAPHY	64
FIGURE 5-1 : COOL DOWN ANALYSIS	67
FIGURE 6-1 : BEU – PAU TEMPERATURE FLUCTUATIONS / AMPLIFIED AMPLITUDES	69
FIGURE 6-2 : SVM SUB-PLATFORM MLI TEMPERATURE FLUCTUATIONS / AMPLIFIED AMPLITUDES	
FIGURE 6-3 : STRUTS I/F TEMPERATURE FLUCTUATIONS / AMPLIFIED AMPLITUDES	70
FIGURE 6-4 : SHIELD 3 EXTERNAL PARTS FLUCTUATION / SVM PERTURBATION	70
FIGURE 6-5 : SHIELD 3 INTERNAL PARTS FLUCTUATION / SVM PERTURBATION	71
FIGURE 6-6 : SECONDARY REFLECTOR FLUCTUATION / SVM PERTURBATION	71
FIGURE 6-7 : PRIMARY REFLECTOR FLUCTUATION / SVM PERTURBATION	72
FIGURE 6-8 : INNER BAFFLE FLUCTUATION / SVM PERTURBATION	72
FIGURE 6-9 : SORPTION COOLER DISSIPATION PROFILES # Q/Q _{MEAN} JPL 1999 DATA	73
Figure 6-10 : Sorption Cooler dissipation profiles $\# Q/Q_{MEAN}$ JPL 1999 data / Amplification 10	74
FIGURE 6-11 : SORPTION COOLER DISSIPATION PROFILES # Q (W) NEW JPL DATA	74
FIGURE 6-12 : SORPTION COOLER DISSIPATION PROFILES # Q/Q _{mean} (New JPL data)	75
FIGURE 6-13 : SHIELD 3 INTERNAL PARTS FLUCTUATION / SORPTION COOLER NOMINAL PERTURBATION JPL 1999 INPUT	TS 76
FIGURE 6-14 : SHIELD 3 EXTERNAL PARTS FLUCTUATION / SORPTION COOLER NOMINAL PERTURBATION JPL 1999 INPUT	TS 76
FIGURE 6-15 : INNER BAFFLE FLUCTUATION / SORPTION COOLER NOMINAL PERTURBATION JPL 1999 INPUTS	77
Référe	nce du modèle : M023-3

FIGURE 6-16 : SHIELD 3 INTERNAL PARTS FLUCTUATION / SORPTION COOLER AMPLIFIED PERTURBATION	. 77
FIGURE 6-17 : SHIELD 3 EXTERNAL PARTS FLUCTUATION / SORPTION COOLER AMPLIFIED PERTURBATION	. 78
FIGURE 6-18 : SECONDARY REFLECTOR FLUCTUATION / SORPTION COOLER AMPLIFIED PERTURBATION	. 78
FIGURE 6-19 : PRIMARY REFLECTOR FLUCTUATION / SORPTION COOLER AMPLIFIED PERTURBATION	. 79
FIGURE 6-20 : INNER BAFFLE FLUCTUATION / SORPTION COOLER AMPLIFIED PERTURBATION	. 79
FIGURE 6-21 : SHIELD 3 INTERNAL PARTS FLUCTUATION / SORPTION COOLER PERTURBATION JPL 2002 INPUTS	. 80
FIGURE 6-22 : SHIELD 3 EXTERNAL PARTS FLUCTUATION / SORPTION COOLER PERTURBATION JPL 2002 INPUTS	. 80
FIGURE 6-23 : SECONDARY REFLECTOR FLUCTUATION / SORPTION COOLER PERTURBATION JPL 2002 INPUTS	. 81
FIGURE 6-24 : PRIMARY REFLECTOR FLUCTUATION / SORPTION COOLER PERTURBATION JPL 2002 INPUTS	. 81
FIGURE 6-25 : INNER BAFFLE FLUCTUATION / SORPTION COOLER PERTURBATION JPL 2002 INPUTS	. 82
FIGURE 6-26 : PRIMARY REFLECTOR DESCRIPTION	. 83
FIGURE 6-27 : PRIMARY REFLECTOR MODELLING	. 84
Figure 6-28 : Inertia damping	. 86
FIGURE 6-29 : MODELLING OF THE "ACTIVE FACE + SKIN" SYSTEM	. 86
FIGURE 6-30 : CORRESPONDENCE : INERTIA-SURFACE / POSITION ON PR	. 87
FIGURE 6-31 : PR FLUCTUATION / 1D MODEL RESULTS / OSA 10° (MAA 26°)	. 89
FIGURE 6-32 : INERTIA DAMPING COMPARISON OF "OSA 10° (MAA 26°)" AND "OSA 15° (MAA 31°)" CASES	. 90
FIGURE 6-33 : PR FLUCTUATION / 1D MODEL RESULTS / DEGRADED CASE / OSA 10° (MAA 26°)	. 91
Figure 6-34 : Inertia damping / Degraded case Comparison of "OSA 10° (maa 26°)" and "OSA 15° (maa 31°)" cases .	. 91
FIGURE 6-35 : BAFFLE THICKNESS DESCRIPTION	. 93
Figure 6-36 : Baffle modelling	. 94
Figure 6-37 : Baffle fluctuation / 1D model results / OSA 10° (maa 26°)	. 95

LIST OF TABLES

TABLE 2.1-1 : OPERATIONAL INTERFACE TEMPERATURE REQUIREMENTS	12
TABLE 2.1-2 : NON-OPERATIONAL INTERFACE TEMPERATURE REQUIREMENTS	13
TABLE 2.2-1 : THERMAL STABILITY REQUIREMENTS	13
TABLE 2.3-1 : QUALIFICATION TEMPERATURE RANGE	14
TABLE 2.4-1 : SORPTION COOLER I/F HEAT LOADS ALLOCATIONS.	14
TABLE 2.4-2 : LFI RAA I/F HEAT LOADS ALLOCATIONS	14
TABLE 2.4-3 : HFI I/F HEAT LOADS ALLOCATIONS	14
TABLE 2.4-4 : ELECTRONIC BOXES I/F HEAT LOADS ALLOCATIONS	15
TABLE 3.2-1 : RADIATIVE PROPERTIES PARAMETERS	18
TABLE 3.2-2 : TMM NODAL BREAKDOWN	21
TABLE 3.3-1 : OPERATIONAL CASES DEFINITION	23
TABLE 3.3-2 : NON-OPERATIONAL CASE DEFINITION	23
TABLE 3.3-3 : CONTAMINATION OF LOW EMISSIVE SURFACE.	25
TABLE 3.3-4 : MIRO FACESHEET QUILTING EFFECT ON SPECULAR REFLECTION	27
TABLE 3.3-5 : SENSITIVITY ON APPARENT EMITTANCE EVALUATION	31
TABLE 3.3-6 : SHIELDS HOLES / CASES DEFINITION	34
TABLE 3.3-7 : P-PLM WORST RADIATIVE PROPERTIES / COMPARISON WITH INITIAL REQUIREMENTS	36
TABLE 3.3-8 : PPLM CTA HARNESS	37
TABLE 3.3-9 : P-PLM SHIELDS CONDUCTIVE PROPERTIES / COMPARISON WITH INITIAL REQUIREMENTS	44
TABLE 3.3-10 : P-PLM BAFFLE AND TEL. STRUCTURE CONDUCTIVE PROPERTIES / COMPARISON WITH INITIAL REQUIREMENTS	45
TABLE 3.3-11 : P-PLM STRUTS CONDUCTIVE PROPERTIES / COMPARISON WITH INITIAL REQUIREMENTS	45
TABLE 3.3-12 : P-PLM THERMAL BRAIDS CONDUCTIVE PROPERTIES / COMPARISON WITH INITIAL REQUIREMENTS	45
TABLE 3.3-13 : MODEL WEIGHT	46
TABLE 3.3-14 : SC 3C HEAT SINKING / SENSITIVITY STUDY	50
TABLE 3.3-15 : SORPTION COOLER EXCHANGERS DESIGN PARAMETERS	51
TABLE 3.3-16 : SORPTION COOLER EXCHANGERS I/F THERMAL CONTACT ASSUMPTIONS	51
TABLE 3.3-17 : SVM INTERFACES THERMO-OPTICAL PROPERTIES	52

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

K FLIVI IIIEIIIIAI AIIAIYSES			
3	DATE :	09/04/04	
	ISSUE :	2	Page : 8/181

TABLE 4.1-1 : PPLM / INSTRUMENTS NOMINAL INTERFACES TEMPERATURES.	54
TABLE 4.2-1 : PPLM / INSTRUMENTS WORST HOT INTERFACES TEMPERATURES	56
TABLE 4.2-2 : INTERFACES TEMPERATURES	58
TABLE 4.2-3 : "HOT PLM" CASE DEFINITION	61
TABLE 4.3-1 : PPLM / INSTRUMENTS WORST COLD OPERATING INTERFACES TEMPERATURES	63
TABLE 4.4-1 : PPLM / INSTRUMENTS WORST NON-OPERATING COLD INTERFACES TEMPERATURES	65
TABLE 4.5-1 : SENSITIVITY STUDIES	66
TABLE 6.2-1 : SYNTHESIS OF THE THERMAL FLUCTUATIONS DUE TO THE SORPTION COOLER	82
TABLE 6.3-1 : POSITION / INERTIA CORRESPONDENCE FOR PR	88
TABLE 6.3-2 : PR TEMPERATURE FLUCTUATION FOLLOWING POSITION / OSA 15° (MAA 31°) W EXT. BAFFLE	92
TABLE 6.4-1 : PPLM THERMAL FLUCTUATIONS OVERALL SYNTHESIS.	97
TABLE 6.4-2 : TEMPERATURE FLUCTUATION / COMPARISON WITH SPECIFICATION	98

1. INTRODUCTION

1.1 Scope

This document is intended to present the PPLM thermal analyses. Full design description is given in [RD2].

1.2 Applicable and Reference Documents

1.2.1 Applicable documents

Ref.	No.	Issue/date	Title	
AD 1	SCI-PT-RS-05991	Latest issue	H/P System requirement specifications	
AD 2	H-P-3-ASPI-SP-0274	Latest issue	Planck telescope Optical and RF system specifications	
AD 3	H-P-3-ASPI-IS-070	Latest issue	Planck PLM Interface and Applicability specification	
AD 4	PL-LFI-PST-ID-002	I3R0	PLANCK SORPTION COOLER ICD	
AD 5	SCI- PT-IIDB/LFI-04142	I2R1	Instrument Interface Document PART INSTRUMENT "LFI"	
AD 6	SCI-PT-IIDB-HFI-04141	I3R1	Instrument Interface Document PART B INSTRUMENT "HFI"	
AD 7	SCI-PT-RS-07422	I5R4	Planck Telescope – Primary Reflector / Secondary Reflector Specification	

1.2.2 Reference documents

Ref.	No.	Issue/date Title		
RD 1	H-P-3-ASP-ID-0550	I2RO PPLM EICD		
RD 2	H-P-3-ASPI-RP-0313	I2 Planck PLM Design Report		
RD 3	H-P-3-CSAG-TR-0002	12R2	Planck Telescope & Cryo-structure Therma Conductivity Evaluation Report	
RD 4	H-P-3-CSAG-TR-0006	I1RO	Planck Telescope & Cryo-structure Selection High Emissivity Coating – Phase 2 Report	
RD 5	H-P-3-CSAG-TR-0008	I1R2	Planck Telescope & Cryo-structure Interface Thermal Conductance Test Report	
RD 6	H-P-3-CSAG-TR-0009	I1RO	Planck Telescope & Cryo-structure Thermo- optical Properties Evaluation Report	

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

REFERENCE :	H-P-3-ASPI-AN-0330
NEI ENENGE .	11-1 - J-AJI I-AN-0330

09/04/04 DATE : 2

ISSUE :

Page : 10/181

Ref.	No.	Issue/date	Title	
RD 7	H-P-3-CSAG-AN-0003	I2R2	Planck Telescope & Cryo-structure Thermal Design & Analysis Report	
RD 8	H-P-3-CSAG-AN-0006	I1RO	Planck Telescope & Cryo-structure Thermo- optical Design & Analysis Report	
RD 9	H-P-3-CSAG-TR-0103	I1R0	Planck Telescope & Cryo Structure - Delta Qualification Test Report Low Emissivity Coatings (LEC)	
RD 10	H-P-1-ASP-LI-0279	I3R0	Declared material List (DML)	
RD 11	5C LCSE R – 7100 13		Détermination de la conductivité thermique d'un alliage d'aluminium 5056 entre 4-50K 77-160K	
RD 12	H-P-3-ASP-AN-0657	I1RO	Planck CQM Cryo-Chain Thermal Mathematical Model Description	
RD 13	PLA-ASED-RP-014	I1RO	Transient Thermal Analysis Report for the Primary and Secondary Reflector	
RD 14	H-P-1-ASPI-AN-0269	I3R0	End of Life cleanliness analysis	
RD 15	H-P-3-ASPI-BT-0275	I2RO	PPLM MCI budgets	
RD 16	H-P-1-ASPI-TN-0216	Issue 1	Radiometric environment hypothesis for straylight assessment	
RD 17	H-P-3-ASPI-AN-0323	Issue 1	PPLM RF Analysis	
RD 18	H-P-3-ASPI-SP-0004	Latest issue	Planck telescope specification	
RD 19	H-P-3-ASPI-SP-0021	Latest issue	Cryo-structure and telescope baffle specification	

Planck PI M Thermal Analyses	REFERENCE :	H-P-3-ASPI-A	N-0330
	DATE :	09/04/04	
	ISSUE :	2	Page : 11/181

1.3 Acronyms

AD	Applicable Document
CFRP	Carbon Fiber Reinforced Plastic
CTE	Coefficient of thermal expansion
BOL	Beginning of Life
EOL	End of Life
EP	Entrance Pupil
FPA	Focal Plane Assembly
FOV	Field-of-view
PPLM	Planck Payload Module
HFI	High Frequency Instrument
LFI	Low Frequency Instrument
LOS	Line Of Sight
MOS	Margin of Safety
N/A	Not applicable
PA	Product Assurance
PLM	Payload Module
PR	Primary Reflector
PtV	Pic to valley
RD	Reference Document
RH	Relative Humidity
RMS	Root Mean Square
S/C	Spacecraft
SR	Secondary Reflector
ТА	Telescope Assembly
TBC	To be confirmed
TBD	To be determined
WFE	Wave Front Error
wrt	With Regards To
PPLM	Cryo-Structure and Telescope

2. REVIEW OF PPLM STRUCTURE THERMAL REQUIREMENTS

2.1 Performance requirements at interfaces with Instruments and Reflectors

2.1.1 Operational mode

The PPLM structure must ensure, at Instruments Interfaces, max temperatures compatible with the cryo-chain functioning.

Table 2.1-1 presents a synthesis of requirements in operating mode.

Operating mode		Min T (K)	Max T (K)	Location at which the required temperature must be guaranteed
	VG1	N/A	170	
LFI WG	VG2	N/A	120	on interface shield side
	VG3	N/A	60	
	VG1	150	170	
Sorption Cooler	VG2	100	120	at exchangers and on exchangers side (at exchanger 3C on shield 3)
	VG3	45	60	
JFET box		40	60	on PR panel side
lfi fpu		40	65	on PR panel side
Primary Reflector		30	50	average PR temperature
Secondary Reflector		30	50	average SR temperature

 Table 2.1-1 : Operational interface temperature requirements

2.1.2 Non-operational mode

Table 2.1-2 presents a synthesis of requirements in non-operating mode.

R EFERENCE :	H-P-3-ASPI-AN-0330		
DATE :	09/04/04		
ISSUE :	2	Page : 13/181	

Non operating mode		Min T (K)	Max T (K)	Location at which the required temperature must be guaranteed	
	VG1	N/A	N/A		
LFI WG	VG2	N/A	N/A	on interface shield side	
	VG3	N/A	N/A		
	VG1	150	323		
Sorption Cooler	VG2	100	323	at exchangers and on exchangers side	
	VG3	40	323		
JFET box		30	333	on PR panel side	
lfi fpu		N/A	323	on PR panel side	
Primary Reflector		30	323	average PR temperature	
Secondary Reflector		30	323	average SR temperature	

 Table 2.1-2 : Non-operational interface temperature requirements

2.2 Performance requirements issued from straylight analysis

As described in Table 2.2-1, straylight concerns require stability on a selection of PPLM elements.

PPLM thermal stability requirements		Max amplitude (µK)	Comments
	Circular central part	1	
Primary Reflector	Moon illuminated part	15	active face
Reflector	Circular outer part	3	
Secondary Reflector		1	active face
Baffle		100	internal surface
Shield 3 (internal)		100	inside of optical enclosure
Shield 3 (external)		13	outside of optical enclosure

Table 2.2-1 : Thermal stability requirements

The stability requirements are derived from straylight requirements (see [RD17]). The specified max amplitude corresponds to the 1/60 Hz frequency.

2.3 Telescope and Cryo-structure qualification temperature range

Table 2.3-1 is extracted from [RD18] and [RD19].

ltomo	Qualif	ication	Acceptance	
nems	Min	Max	Min	Max
Material & Process (sample)	30 K	85 °C	/	/
Telescope & Cryo-Structure	40 K	85 °C	45 K	80 °C

Table 2.3-1 : Qualification	temperature range
-----------------------------	-------------------

2.4 Review of Interface specifications

2.4.1 Instruments & coolers I/F heat loads allocation

Table 2.4-1 to Table 2.4-3 present heat loads allocations at Instruments interfaces.

<i>Sorption Cooler</i> I/F Heat Loads	T reference (K)	Allocated load (mW)	Margin	Max load (mW)
Shield 3	58.5/56.3/52.3	1175	10%	1293
Shield 2	108	447	20%	531
Shield 1	158	566	20%	673

Table 2.4-1 : Sorption Cooler I/F heat loads allocations

LFI RAA I/F Heat Loads	T reference (K)	Allocated load (mW)	Margin	Max load (mW)
Shield 3	51.4/57.6	710	20%	852
Shield 2	106	560	20%	672
Shield 1	166	5370	20%	6444

Table 2.4-2 : LFI RAA I/F heat loads allocations

HFI I/F Heat Loads	T reference (K)	Allocated load (mW)	Margin	Max load (mW)
Shield3+telescope	50	620	20%	744
Shield2+struts	110	20	20%	24
Shield 1	165	50	20%	60

Table 2.4-3 : HFI I/F heat loads allocations

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

2.4.2 Planck PLM I/F specification

- <u>SVM interface IR thermo-optical properties</u>
 - ε=0.05
 - $\quad \tau_{\text{IR}} = \,90\%$
- <u>SVM MLI outer layer temperature</u>
 - Upper closure panels and subplatform : 220K
 - Solar array : 300K
 - BEU & PAU : 235K
- Description: PLM struts conductive interface : 310K (stability ±0.02K over [1/5000Hz, 1/60Hz])
- Heat loads from electronic boxes

Electronic boxes	T reference	Allocated load	Margin	Max load
I/F Heat Loads	(K)	(mW)		(mW)
PAU&BEU→Shield1	166	2300	20%	2760

Table 2.4-4 : Electronic boxes I/F heat loads allocations

3. P-PLM STRUCTURE THERMAL MATHEMATICAL MODEL DESCRIPTION

3.1 Method and software

The PPLM structure thermal modelling is based on nodal method and uses Esarad and Esatan respectively to compute radiative couplings and to set up and solve the nodal network.

Esarad runs a Monte-Carlo ray-tracing; in order to ensure radiative computation precision (generally mandatory for passive coolers performance accurate estimation), the minimum number of rays emitted by each radiating face is fixed approximately at 10000 (drawn from specific sensitivity study).

Esatan is used to set up the nodal network (radiative and conductive couplings, dissipations, boundary conditions, thermal capacitances), to solve the hence built thermal system and to output the yielded temperatures and exchanged fluxes.

Attention is paid to set the computation parameters at proper values in order to ensure, for steady and transient runs, the solving algorithms full convergence.

3.2 General presentation

3.2.1 Contents

The global TMM takes into account :

- □ The P-PLM structure, i.e
 - ✓ the 12 cryo struts (including inner foam and attachment blades) and the bracing struts,
 - ✓ the 3 shields of the V-Groove system,
 - ✓ the telescope structure (frame, reflectors panels, struts and brackets),
 - ✓ the baffle,
 - ✓ the primary and secondary reflectors,
 - ✓ the thermal braids,
- □ The P-PLM active control harness
- □ The SVM interfaces
- **D** The Instruments & Coolers TMM (as described in [RD12] for HFI & Sorption Cooler)

The Figure 3-1 displays an overview of PPLM geometrical model.

The model (nominal case) is referenced under H-P-ASPI-DD-1568 I2.

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

Planck PLM Thermal Analyses	REFERENCE :	H-P-3-ASPI-A	N-0330
	DATE :	09/04/04	
	ISSUE :	2	Page : 17/181

Figure 3-1 : PPLM geometrical model overview

3.2.2 Radiative model

3.2.2.1 ESARAD structure

Esarad files architecture is displayed in Figure 3-2.

REFERENCE :	H-P-3-ASPI-AN-0330		
DATE :	09/04/04		
ISSUE :	2	Page : 18/181	

Figure 3-2 : ESARAD structure

3.2.2.2 Radiative parameters

The available radiative properties parameters are :

Radiative properties	IR spectrum	Solar spectrum
Emission	8	-
Absorption	8	α
Specular reflectivity	$ ho_{S IR}$	$\rho_{S sol}$
Diffuse reflectivity	$ ho_{DIR}$	$ ho_{D sol}$
Transmittivity	T _{iR}	T _{sol}

Table 3.2-1 : Radiative properties parameters

Note :

- The reflectance Specularity can also be characterised by the Specularity rate $\tau_s = \rho_{S IR} / (\rho_{S IR} + \rho_{D IR})$.
- IR parameters are linked by the relation ϵ + $\rho_{S\,IR}$ + $\rho_{D\,IR}$ + T_{IR} = 1 .
- These parameters characterise macroscopic properties of extent areas (defined by radiative surfaces) and thus may represent not only ideal coatings behaviour but also the influence of potential defaults inherent to actual design (shapes inaccuracies, singularities, ...).
- Only cases without solar illumination are studied, for which only IR parameters are relevant, hence the presentation in this document of IR coefficients only.

3.2.2.3 Geometrical representativity

The P-PLM structure geometry definition is based on CSAG CDR engineering drawings. It corresponds therefore to the estimated ideal shapes at operational temperature.

Sensitivities have been performed to check the influence of shields distortion (due to thermo-elastic effect) on the performance (perturbation of V-Groove efficiency). Figure 3-3 and Figure 3-4 show typical shield shapes before and after deformation (scale exaggerated \times 100 for visibility).

Planck PLM Thermal Analyses	R EFERENCE :	H-P-3-ASPI-A	N-0330
	DATE :	09/04/04	
	ISSUE :	2	Page : 19/181

Figure 3-3 : Shield shape before deformation

Figure 3-4 : Shield shape after deformation

Computations show that such displacements have :

- ✓ visible though small impact on shields 1&2 (<1K)</p>
- ✓ no impact on shield 3 (<0.1K)</p>

The ideal geometry has therefore been used for GMM and this potential low error source has been considered as included in the 2K mathematical uncertainty.

Planck PLM Thermal Analyses	R EFERENCE :	H-P-3-ASPI-A	N-0330
	DATE :	09/04/04	
	ISSUE :	2	Page : 20/181

3.2.3 Nodal network set-up presentation

3.2.3.1 ESATAN structure

Esatan files architecture is displayed in Figure 3-5.

Figure 3-5 : ESATAN model architecture

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

Planck	ΡΙΜ	Thermal	Anal	vses
TATION		merman	Ana	yscs

3.2.3.2 Nodal breakdown

The nodal breakdown is described in Table 3.2-2.

PPLM	Primary Reflector	(33000-33999)	75 nodes
1677 nodes			Front : 33000-33076 Rear : 33100-33176
(20000 20000)			Thermal foil: 33200
(30000-39999)			Heater and inner MLI cover : 33311-33376
(50000-79999)	Secondary Paflactor	(34000 34000)	75 podes
modol oool dowm	Secondary Reflector	(34000-34999)	Front : 34000-34076
405 modes			Rear : 34100-34176
405 nodes			Thermal foil : 34200
			outer MLI cover foil : 34411-34476
	Baffle	(30000-30999)	12 nodes
		` ´	30000-30005
		(50000 50000)	30500-30505
	VGI	(50000-599999)	198 nodes
			50210-50236, 51210-51236
			50310-50236, 51310-51336
			50410-50236, 51410-51436
			50610-50684, 51610-51684
			52100-52602
	VG2	(60000-69999)	198 nodes
			60110-60184, 61110-61184 60210-60236, 61210, 61236
			60310-60236, 61310-61336
			60410-60236, 61410-61436
			60510-60236, 61510-61536
			62100-62602
	VG3	(70000-79999)	270 nodes
			70110-70189, 71110-71189
			70210-70278, 71210-71278
			70410-70437, 71410-71437
			70510-70578, 71510-71578
			70610-70689, 71610-71689
			72100-72602
	FRAME	(35000-35999)	96 nodes
			35000-35173
	DD atministration	(31000 31699)	35210-35263 30 podes
	PK structure	(31000-31099)	Main panel
			31000-31008, 31100-31108
			31009-31033, 31109-31133
			20 nodes
			31203-31208, 31303-31308
			31220-31223,31320-31323
			2 nodes
			Triangle panel : 31500, 31501
			2 nodes Dismountable beam : 31400, 31401
			20 nodes
			Main panel struts
			31600-31609, 31610-31619
			10 nodes Bottom strut
			31620-31629
			10 nodes
			Back strut
			10 nodes
			Top strut
	a.p.	(01500 01000)	31640-31649
	SR structure	(31700-31899)	14 nodes
			31700-31706, 31710-31716

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

FIGULE FLIVI ITTELITIAL ATTALYSES	Planck	PLM	Thermal	Analy	vses
-----------------------------------	--------	-----	---------	-------	------

3.3 Modelling assumptions

3.3.1 General rules

3.3.1.1 PPLM structure modelling

The PPLM structure modelling is based on :

Detailed analytical studies

These detailed studies aim at providing the global TMM with consolidated assumptions (open honeycomb performance, thermal coupling between shield 3 and Sorption Cooler exchanger ...)

Experimental data issued from intensive materials and coating characterisation

Assumptions take into account data drawn from latest measurements, including HEC emittance, processed by ASP and compared to CSAG assessments (see appendixes 1&2)

• CSAG CDR definition

All geometrical parameters have been updated according to CDR engineering drawings

Observations on CQM hardware

Actual CQM coating detailed definition (open honeycomb covering) has been taken into account after observations on specimen

All modelling parameters are given with uncertainty through (min – nom – max) values in order to build the (cold – nom – hot) global TMM cases.

Notes :

- The optical closures (SLI skirts) between Baffle & Shield 3 and PR Panel & FPU are not included in radiative model because of their negligible influence on the thermal performance.
- The modelling parameters uncertainty is defined after materials characteristic uncertainty, the latter being generally much higher than geometrical parameters (thickness ...) tolerances.

3.3.1.2 Heat allocations for Instruments interfaces

The PPLM TMM takes into account nominal Instruments modelling. The instruments modelling is not described in this document, only the resulting loads are of interest for the passive performance demonstration.

These nominal Instruments TMM will be used for cold and nominal operating cases definition. Since the corresponding interface heat loads should be inferior to the allocated ones, the hot case will use fixed extra power in order to reach allocated values.

lf,

- \checkmark $\phi(T)$ is the I/F allocated load at temperature T,
- \checkmark Q(T) is the I/F heat load resulting from the use of the Instrument model,
- \checkmark T_c is the computed I/F temperature with the Instrument model,

the extra power δQ injected at I/F will be written : $\delta Q = \varphi(T_c) - Q(T_c)$.

The hence "modified" Instrument modelling therefore produces $Q'(T_c) = \phi(T_c)$ at I/F.

Note that non-operating case will take into account nominal Instruments TMM in OFF mode i.e without any fluidic dissipation at PPLM interfaces.

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLN Thermal Analyses du 12/04/04 09:59

3.3.1.3 SVM interface

The SVM interfaces are taken into account by using a temperature boundary SVM model. Three cases are used at SVM level:

- Nom case : SVM TCS temperatures "EOL + uncertainties" ⊕ Nominal thermo-optical parameters
- Safe : SVM TCS temperatures "BOL survival uncertainties"

 Nominal thermo-optical parameters

Details about interface definition are given in §3.3.4.3.

3.3.2 Analysis cases definition

3.3.2.1 Operational cases

Three operational cases are studied. The macroscopic definition of these cases is given in Table 3.3-1.

Operational cases	PPLM structure	Instruments I/F	SVM I/F	Operating Sorption Cooler
Nominal	Nominal	Nominal	Nominal	Nominal
Hot	Hot	Allocations	Hot	Redundant
Cold	Cold	Nominal	Nominal	Nominal

Table 3.3-1 : Operational cases definition

Notes :

- ✓ Redundant Sorption Cooler is considered for hot case because its position leads to hotter configuration
- ✓ Nominal Instruments TMM are used in cold case because no other models are available
- ✓ Nominal SVM I/F conditions are used in cold case for simplification sake (weak sensitivity)

3.3.2.2 Non-operational case

One very cold case is studied, as defined in Table 3.3-2.

Non-operational case	PPLM structure	Instruments I/F	SVM I/F
Safe cold	Cold	OFF	Safe

Table 3.3-2 : Non-operational case definition

3.3.3 P-PLM Design parameters

3.3.3.1 Thermo-optical parameters

3.3.3.1.1 TMM parameters estimation process

The parameters (ϵ^{mod} , τ_s^{mod}) integrate all information related to :

- <u>The coating in its clean and perfect condition</u>
 For example, the MIRO sheet perfectly flat and clean.
 This state is considered as the one corresponding to the measurements.
- <u>The potential contamination (ground&flight)</u> The contamination levels are drawn from [RD14]. Note that only the particular contamination (5000ppm) may have a noticeable influence on the thermo-optical characteristics.
- <u>The potential presence of interfering substance on the coating</u> Some glue, covering part of the open honeycomb cells, may typically reduce the emittance.
- <u>The non-perfect surfaces geometry</u> Mainly for highly Specular surfaces (Miro sheets), for which degradation of the flatness may decrease the Specularity. Note that, in order keep modelling close to the physical system, only "small scale" effects can be integrated in the thermo-optical parameters.
- <u>The presence of objects and structure elements perturbing the ideal coating</u> Either for high or low emissive coatings, the presence of screws, pipes, supports ... will modify (i.e degrade in a conservative approach) the coating properties.

The rational estimation of all these degradation sources allow to define, for each characteristic area of the structure, dedicated properties.

Note :

- Thermal cycling and cleaning process are assumed, as shown by [RD9], to have no influence on LEC thermooptical properties.

3.3.3.1.1.1 Initial measurement data

□ LEC (MIRO)

Measurements have been performed on MIRO sheets.

Measurement data used as inputs for TMM are :

- ✓ Specular reflectance measurement (LEMTA)
- ✓ Direct measurements (EADS)

Results are shown in Appendix 2.

Planck PI M Thermal Analyses	R EFERENCE :	H-P-3-ASPI-A	N-0330
	DATE :	09/04/04	
	ISSUE :	2	Page : 25/181

□ HEC (PUK on substrate)

Measurements have been performed on flat Aluminium samples. Extrapolation to open HC coating needs analytical processing (see §3.3.3.1.2)

Measurement data used as inputs for TMM are :

- ✓ Specular reflectance measurement (LEMTA)
- ✓ Direct measurements (LEEE)

Results are shown in Appendix 2.

3.3.3.1.1.2 Estimation of contamination influence

A specific tool has been developed in order to estimate the influence of contaminant deposit on surfaces, mainly low emissive ones.

This tool uses as inputs absorption indices of main contaminants ($H_20 \& NH_3$) and derives emissivity degradation as a function of contaminant thickness and substrate temperature.

Inputs, in term of contaminants amount, are drawn from [RD14]. Next tables show the resulting degradation.

Molecular					
	Density (g/cm3)	H20	Groove 1	Groove 2	Groove 3
	1	Surf density (g/cm ²)	2.89E-07	1.76E-05	1.45E-05
		Thickness (µm)	2.9E-03	1.8E-01	1.5E-01
		Emiss degradation	2.0E-06	1.0E-04	1.0E-05
				-	
	Density (g/cm3)	NH3	Groove 1	Groove 2	Groove 3
	1	Surf density (g/cm ²)	2.94E-18	4.29E-08	0
		Thickness (µm)	2.9E-14	4.3E-04	0.0E+00
		Emiss degradation	0.0E+00	2.0E-06	0.0E+00
	Density (g/cm3)	Other contaminants	Groove 1	Groove 2	Groove 3
	1	Surf density (g/cm ²)	1.83E-06	1.83E-06	1.83E-06
		Thickness (µm)	1.8E-02	1.8E-02	1.8E-02
		Emiss degradation	1.8E-06	1.8E-06	1.8E-06
				-	
Particular					
	Emissivity p	-	Groove 1	Groove 2	Groove 3
	0.9	200	5000	5000	5000

Global emissivity degradation				
	-	Groove 1	Groove 2	Groove 3
	Emiss degradation	4.0E-03	4.1E-03	4.0E-03

4.0E-03

4.0E-03

4.0E-03

 Table 3.3-3 : Contamination of low emissive surface

This shows that only the particulate contamination may have an influence on low emissive surfaces.

Emiss degradation

Note that, though the same approach could be applied to Specularity degradation, the contamination has been considered as having no significant influence on Specularity rate. The uncertainty existing on the Specular reflection is indeed much larger (#5%) than its potential degradation (0.5%) by particles scattering, whereas the emissivity degradation (0.004) is comparable to the measurement uncertainty (0.006).

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLN Thermal Analyses du 12/04/04 09:59

Planck PI M Thermal Analyses	R EFERENCE :	H-P-3-ASPI-A	N-0330
	DATE :	09/04/04	
	ISSUE :	2	Page : 26/181

Influence of contamination on high emissive coating is assessed by reducing 0.5% to the "clean" value :

 $\varepsilon_{\text{contaminated}} = \varepsilon_{\text{clean}} \times (1-5000 \text{ppm})$

3.3.3.1.1.3 Parasitic substance on coating

Observations show glue traces on the open honeycomb cells surface.

The covered surface has been estimated equal to 33mm². Consistent with observations, this represents a 1mm bandwidth along the perimeter of the cell bottom.

The emissivity value assumed for this area is 0.1 which, along with the corresponding surface, allows to determine the flat coating emittance degradation.

3.3.3.1.1.4 Geometry degradation

Geometry degradation will affect primarily highly Specular surfaces, very sensitive to any defaults. The most widespread default on shields is the facesheet quilting effect.

This default profile can be modelled as following (drawn from [RD8]) :

Figure 3-6 : Quilting effect detailed modelling

This is represented in global TMM by a flat surface with adapted thermo-optical coefficients.

• Emissivity degradation

The ratio of the developed surface and the projected one (as modelled in global TMM) is $< 1 + 10^{-4}$. The emissivity increase due to geometry effect is then assumed to be negligible ($< 10^{-4}$).

• Specular rate degradation

The flat modelled surface must represent the reflection deviation induced by the inclined parts of the real surface. This deviation has to be integrated in the diffuse reflection coefficient ρ_{diff} ^q.

The ρ_{diff} coefficient characterising a reflection over a 2π radians solid angle, the quilted surface diffuse reflection can be written :

$$\rho_{\text{diff}}^{q} = \rho_{\text{diff}}^{\text{Miro}} + \rho_{\text{spec}}^{\text{Miro}} \times (S_{\text{inclined}} / S_{\text{cell}}) \times (1 - \cos(2\alpha))$$

Figure 3-7 : Quilting effect : reflection cone

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

Note :

 ρ_{diff}^{Miro} and ρ_{spec}^{Miro} represent the measured Diffuse and Specular reflection without quilting.

Results are presented in Table 3.3-4. A sensitivity has been performed by exaggerating the defaults.

Quilting	$(\rho_{diff}$ ^q - ρ_{diff} ^{Miro})/ ρ_{diff} ^{Miro}
$\alpha = 0.1^{\circ} \& H = 0.002mm$	5 10 ⁻⁵
$\alpha = 1^{\circ} \& H = 0.02mm$	2.5 10-4

Table 3.3-4 : Miro facesheet quilting effect on Specular reflection

The results show that the quilting effect has no significant influence. The taking into account of this effect is nonetheless included in coating specular reflectance evaluation for the hot case.

3.3.3.1.1.5 Perturbing elements

A collection of supports, holes, screws are spread over the shields, with different densities according to the considered areas. A detailed work has been performed to count down the surfaces corresponding to all these elements. These surfaces, associated to elements thermo-optical assumptions, lead to substrate coating degradation.

Note that the influence is taken into account only for low emissive areas; the elements developed area is generally much more important than the supporting surface and modelling only the flat surfaces, for HEC, can then be considered as a conservative approach.

The elements emissivity and Specular rate are respectively considered as equal to 0.5 and 0%, whatever the position or the temperature.

The definition of most important radiative areas are presented in appendix 3.

Note that the exact coating definition is also taken into account. For example, the baffle HEC coating is composed of black painted open honeycomb and black flat surfaces. The equivalent average emittance is assessed from the surface weighing of the corresponding surfaces.

3.3.3.1.2 High emissivity coating (PUK) characterisation

3.3.3.1.2.1 Flat coating

The emissivity values for all PUK coated flat surfaces are drawn from LEEE measurements on Aluminium coating (conservative approach wrt min values).

The following scheme gives a synthesis of the way the flat PUK coated surfaces emittance is estimated in all cases (hot/nom/cold) :

Figure 3-8 : Flat PUK emittance estimation flowchart

See Appendix 2 for emittance curve.

Note :

The contamination influence is estimated with following assumptions :

- ✓ 5000 ppm particulate contamination (molecular influence negligible)
- ✓ Particles emissivity = 0

3.3.3.1.2.2 Open honeycomb

The open honeycomb is aimed at increasing the flat coating emissivity by geometrical effect.

The apparent emittance of the projected flat surface (as modelled in the global TMM) is computed from flat coating properties and geometry by using a detailed dedicated radiative model (THERMICA, Monte Carlo method).

The modelling presented in Figure 3-9 is theoretically valid only in case of perfect temperature homogeneity in the open HC height. The max gradient estimated @60K between the facesheet and the honeycomb upper extremity is 0.3K, meaning that the mean radiative temperature of the coating (composed by both facesheet and honeycomb)

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

Planck PI M Thermal Analyses	R EFERENCE :	H-P-3-ASPI-AN-0330		
r lanck r Ewi mermar / haryses	DATE :	09/04/04		
	ISSUE :	2	Page : 29/181	

will be \approx 0.15K higher than the facesheet itself. This gradient did not justify the implementation of extra nodes in the detailed TMM and is considered to be covered by the 2K mathematical uncertainty.

A view of the detailed open HC radiative model is presented by Figure 3-10. The modelled cells are consistent with the design (3/8'' / 14.3 mm).

Figure 3-10 : Open honeycomb detailed radiative model

The detailed open HC radiative model allows to define a relation g() : $\epsilon_{app} = g(\epsilon_{flat \ coating})$ The hence assessed relation is presented in Figure 3-11.

Figure 3-11 : Emissivity geometric enhancement

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

REFERENCE :	H-P-3-ASPI-AN-0330				
DATE :	09/04/04				
ISSUE :	2	Page : 30/181			

The characteristic points are computed with the detailed model and mathematical extrapolations are afterwards applied to obtain continuous curves. The two extreme curves correspond to pure Specular or Diffuse flat coatings. It is important to notice that the higher Specularity rate the better the geometrical enhancement.

Considering the 0% Spec as a worst case (the Specular ratio tends to increase with increasing wavelengths and then with decreasing temperature), the nominal geometric effect is considered as the median one (50% Specular ratio).

The relation g() is valid for monochromatic assessment on the whole interesting range (sufficient size difference between cells size and wavelength).

According to the total emissivity definition $\varepsilon_{T} = \frac{\int \varepsilon_{(\lambda,T)} L^{0}(\lambda,T) d\lambda}{\int L^{0}(\lambda,T) d\lambda}$, and because of the relation g() strong non-linearity,

the relation $g(\varepsilon_T) = \frac{\int g(\varepsilon_{(\lambda,T)}) L^0(\lambda,T) d\lambda}{\int L^0(\lambda,T) d\lambda}$ cannot be written, hence the need to know the ε_{λ} profile versus

wavelength in order to estimate the parameter $\varepsilon_{app T} = \frac{\int g(\varepsilon_{(\lambda,T)}) L^0(\lambda,T) d\lambda}{\int L^0(\lambda,T) d\lambda}$.

At the time this report is written, the ε_{λ} profile is not determined, only total values being assessed. Nonetheless, monochromatic behaviour can be estimated from Specular reflectance measurements performed at LEMTA.

Figure 3-12 : PUK emissivity monochromatic behaviour (LEMTA measurements)

Planck PI M Thermal Analyses	REFERENCE :	H-P-3-ASPI-A	N-0330
	DATE :	09/04/04	
	ISSUE :	2	Page : 31/181

As shown in Figure 3-13, the interesting bandwidth is [0; $300\mu m$] through which Figure 3-12 shows large derived emissivity variations.

Knowing that :

- > Specular reflectance measurements systematically over-estimate the emissivity,
- > the g() relation non-linearity effect is all the more important that the emissivity is low,

it is necessary to check the influence of the curve level.

In order to be as representative as possible to the "real" emissivity profile, the initial data are translated down to values yielding integrated emittance (@50K) close to min estimated value (#0.4). The curve named "sensitivity" is the resulting curve, hence giving an estimation of the "worst" (or lowest) monochromatic profile.

Figure 3-13 : Blackbody emission profile @ 50K

Computations have been made in order to compare, with both profiles, the results obtained when using both methods to compute apparent emitance :

M1
$$\varepsilon_{app T} = \frac{\int g(\varepsilon_{(\lambda,T)}) L^{0}(\lambda,T) d\lambda}{\int L^{0}(\lambda,T) d\lambda}$$

M2 $\epsilon_{app T} = g(\epsilon_T)$

The results are presented in Table 3.3-5.

			0% Specular			100% Specular		
Curve	Т (К)	$\epsilon_{\text{flat T}}$	ε _{аσσ T} (M2)	ε _{аσο T} (M1)	Delta (M1-M2)	ε _{аσσ T} (M2)	ε _{аσσ T} (M1)	Delta (M1-M2)
Degraded profile	50	0.411	0.784	0.748	-0.036	0.886	0.840	-0.046
Degraded profile	100	0.470	0.817	0.811	-0.007	0.916	0.907	-0.009
Initial profile	50	0.881	0.971	0.969	-0.003	0.994	0.991	-0.003

Table 3.3-5 : Sensitivity on apparent emittance evaluation

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

Planck F	PLM Th	nermal	Analy	yses
----------	--------	--------	-------	------

R EFERENCE :	H-P-3-ASPI-AN-0330				
DATE :	09/04/04				
ISSUE :	2	Page : 32/181			

It can be noted that :

- > The non-linearity effect is more important for the Specular behaviour than for the diffuse one.
- > The non-linearity effect is more important at low temperature (linked to the considered monochromatic values).

Considering the results obtained @50K with the degraded profile as a worst case, a fixed 2% deviation will be applied to all values, in addition to a 3% uncertainty for hot and cold cases.

The following scheme gives a synthesis of the way the open HC emittance is estimated in all cases (hot/nom/cold) :

Notes :

- The contamination influence is estimated with following assumptions :
 - ✓ 5000 ppm particulate contamination (molecular influence negligible)
 - ✓ Particles emissivity = 0
- The glue traces influence is estimated with following assumptions :
 - ✓ Covered surface = 33mm² (#1mm bandwidth around cell)
 - ✓ Emissivity of covered surface = 0.1

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLN Thermal Analyses du 12/04/04 09:59

Planck	PLM	Thermal	Ana	vses
· · · · · · · · · · · · · · · · · · ·		morman	/ 11 / C	

R EFERENCE :	H-P-3-ASPI-AN-0330					
DATE :	09/04/04					
ISSUE :	2	Page : 33/181				

The results are presented here below :

Figure 3-15 : PUK open HC emittance

Data on PUK measurements are also presented in Appendix 2.

3.3.3.1.3 Low emissivity coating (MIRO) characterisation

The MIRO thermo-optical values are drawn from LEMTA and EADS measurements (see Appendix 2).

Unlike HEC, LEC will be very sensitive to parasitics on the coating. Details about defaults surface estimation are reported in Appendix 3.

The Figure 3-16 gives a synthesis of the way the LEC thermo-optical properties are estimated in all cases (hot/nom/cold) :

Figure 3-16 : LEC emittance estimation flowchart

Référence du modèle : M023-3

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

Planck PI M Thermal Analyses	R EFERENCE :	N-0330	
	DATE :	09/04/04	
	ISSUE :	2	Page : 34/181

3.3.3.1.4 Shields holes

Holes, through which struts and pipes cross the shields, modify the ideal Miro thermo-optical properties in the sense they increase the object transmittance. Though initially taken into account by locally modifying shield transmittance, it has afterwards been decided to insert "real" holes. The closure around cryo-struts being expected to present the more difficulties, only the holes around the struts are modelled.

Along with the hot/nom/cold cases definition, several configurations are modelled. Table 3.3-6 presents the cases definition.

Diam hole (mm)	Nom	Hot	Cold	
Diam Strut +	2.5	10	2.5	

Table 3.3-6 : Shields holes / cases definition

Figure 3-17 and Figure 3-18 show the holes position and the whole assembly struts + shields.

Figure 3-17 : Struts holes

Planck PI M Thermal Analyses	Reference :	N-0330	
	DATE :	09/04/04	
	ISSUE :	2	Page : 35/181

Figure 3-18 : Struts - shields crossing

3.3.3.1.5 Comparison of thermo-optical parameters with initial requirements

Table 3.3-7 is aimed at comparing the initial main required values with the estimated worst properties of actual design.

The displayed values are averaged on each object (Shield1 ...) and take into account all degradations presented in §3.3.3.1.1. It can be seen that most significant deviations concern high emissivity coatings, while low emissive properties are globally as initially expected.

REFERENCE: H-P-3-ASPI-AN-0330

2

09/04/04

DATE :

ISSUE :

Page : 36/181

Shields	Shie ± X f	ld 1 aces	Shield	1 edge	Shie ± X f	eld 2 Faces	Shield	2 edge	Shield 3 face -X		Shield 3 face +X outside baffle	
Comp model/req	model "hot"	req	model "hot"	req	model "hot"	req	model "hot"	req	model "hot"	req	model "hot"	req
ε	0.06	≤ 0.05	0.8	≥ 0.8	0.06	≤ 0.05	0.7	≥ 0.8	0.06	≤ 0.05	0.68	≥0.9
$ au_{ m S}$	0.94	≥ 0.9	0	0	0.94	≥ 0.9	0	0	0.93	≥ 0.9	0	0
T _{IR}	0 *	0	0	N/A	0 *	0	0	N/A	0 *	0	0	N/A
Baffle & Tel. structure	Ba [:] Inner	ffle side	Ba Oute	ffle r side	Telescop	e Frame	PR p Outer sp	anel bace side				
Comp model/req	model "hot"	req	model "hot"	req	model "hot"	req	model "hot"	req				
ε	0.05	≤ 0.05	0.68	≥ 0.9	0.43	≥ 0.85	0.64	≥ 0.9				
$ au_{s}$	0.9	≥ 0.9	0	0	0	0	0	0				
T _{IR}	0	N/A	0	N/A	0	N/A	0	N/A				
Struts	Str	uts							-			
Comp model/req	model "hot"	req										
ε	0.44-0.89	≥ 0.85										
τ_{s}	0	0										
T _{IR}	0	N/A										

Table 3.3-7 : P-PLM worst radiative properties / comparison with initial requirements

* Though the closures of shields holes may be not perfect, the equivalent transmittance value, when averaged on shield total surface, is expected to be very small.

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59
Planck PLM Thermal Analyses

3.3.3.2 Conductive parameters

3.3.3.2.1 Parasitic conduction through PPLM CTA harness

Two sets of harness are mounted on the PPLM, for both functions :

- ✓ Power injection (decontamination)
- ✓ Temperature acquisition

Details about harness design description and justification are given in Appendix 4.

• Power injection harness

All wires are AWG24 Brass, with exact following characteristics (supplier data) :

- ✓ Conductor cross section : 0.239 mm²
- ✓ Brass type : 64/36
- Temperature acquisition harness

All wires are AWG28 Brass, with exact following characteristics (supplier data) :

- ✓ Conductor cross section : 0.0882 mm²
- ✓ Brass type : 64/36

The number of wires reaching each stage is shown in Table 3.3-8.

Wires number	Wires number
Shield 1	112
Shield 2	100
Shield 3 & Telescope	92

Table 3.3-8 : PPLM CTA harness

No dedicated device is used to heat sink the P-PLM harness to the intermediate shields. Though the harness, routing along the struts, will obviously be linearly heat sinked, the conservative assumption is made according to which the PPLM parts are linked, through the harness, directly to the 300K SVM parts.

The harness is moreover conductively connected to the sandwich area closest to the strut along which the wires are routed. This assumption is not only expected to be representative to reality (strong mechanical coupling at shieds exit) but also tends to locate the input heat loads which is, for shield rejection concerns, conservative.

Note that the presented conservative assumptions constitute the single set of parameters used for all nom/hot/cold global TMM cases.

3.3.3.2.2 Conduction along Struts

Both cryo and bracing struts are considered.

```
Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLN
Thermal Analyses du 12/04/04 09:59
```

3.3.3.2.2.1 Cryo-Struts

Struts are made of GFRP (R-Glass / Epoxy composite), the conductivity of which has been characterised by intensive measurements. Measurement bench at CEA Grenoble has been the subject of ASP analytical studies which have corrected the now reliable test set-up. Measured values as well as TMM data used in nom/cold/hot TMM cases definition are presented in Appendix 1.

In line with CSAG design, the struts are modelled with next main parameters :

- GFRP length = 860mm
- Outer diameter = 50mm
- Inner diameter = 46.9mm

Cryo-struts are moreover filled with foam (ECCOSTOCK SH # 16kg/m³). The parasitic conductive coupling is modelled with the 300K foam conductivity value (conservative approach) = 0.02W/mK.

Note that the modelling also takes into account the Aluminium collars on which the interface blades are fixed (total aluminium height per strut # 120mm).

3.3.3.2.2.2 Bracing struts

Bracing struts are modelled between SVM and Groove 1 with same material properties than cryo-struts, and following parameters :

- GFRP length = 190mm
- Outer diameter = 11mm
- Inner diameter = 10mm

Bracing struts between Shield 3 and Telescope are not modelled (thermally neutral).

3.3.3.2.3 Couplings through "Struts-Shields" blades

The couplings are computed by ASP after AA7075 blade and copper braids geometry and material properties (see Appendix 1). The results are shown in Figure 3-19 and compared to CSAG assessment (see [RD7]) and available measurement data.

It can be noted that ASP assessment, though pessimistic when compared to measurements data (the latter corresponding to an optimistic ASP assessment wrt uncertainties), is optimistic wrt CSAG. This discrepancy is explained by a computation mistake found lately in CSAG assessment.

CSAG proposed min values for AN (single blade) ! Error identified !

240

290

× TMM data - nom (single) / Uncertainty 30%

190

140

Nom/min/max values are used for nom/hot/cold cases definition.

90

3.3.3.2.4 Couplings within shields

0.000 40

3.3.3.2.4.1 Transversal couplings

The shields transversal conductance (through the thickness) is based on the following considerations :

- Sandwich thickness = 20mm (internal petals) & 17mm (external petals) √
- AA5056 honeycomb (see Appendix 1 for conductivity values) √
- \checkmark Different honeycomb densities according to the areas (taken into account as best as possible according to radiative meshing).

Nom/min/max AA5056 conductivity values are used for nom/hot/cold cases definition.

3.3.3.2.4.2 In-plane couplings

The shields "in-plane" conductances are characterised by intra-petals couplings and by contacts between petals.

Planck	PLM	Thermal	Anal	vses
I Idilloi		morman	7.0101	,303

3.3.3.2.4.2.1 Intra-petals couplings

Theses coupling are based on the following considerations :

- ✓ Sheet thickness = 0.25mm
- ✓ Sandwich thickness = 20mm (internal petals) & 17mm (external petals)
- ✓ Miro27 for sheets conductivity (see Appendix 1 for values)
- ✓ AA5056 for honeycomb in-plane conductivity (see Appendix 1 for values)

Nom/min/max AA5056 & Miro conductivity values are used for nom/hot/cold cases definition.

Note that the couplings between the sandwich nodes and the edges (black painted and used as radiator) are modelled according to Figure 3-20.

Figure 3-20 : Coupling with shields edge

3.3.3.2.4.2.2 Inter-petals couplings

Interface conductances have been measured by ASP at operational temperature on representative samples for internal-external and external-external links. The resulting values, extrapolated by ASP to provide continuous data over the temperature range, are presented in Appendix 1 along with TMM assumptions.

Offering more margin, the internal-internal interface is analytically studied (see Appendix 1 for values).

Nom/min/max values are used for nom/hot/cold cases definition

3.3.3.2.5 Couplings within Baffle

3.3.3.2.5.1 Transversal couplings

The shields transversal conductance (through the thickness) is based on the following considerations :

- ✓ Sandwich thickness = 20mm
- ✓ AA5056 honeycomb (see Appendix 1 for conductivity values)
- ✓ Different honeycomb densities according to the areas (taken into account as best as possible according to radiative meshing)

Nom/min/max AA5056 conductivity values are used for nom/hot/cold cases definition.

3.3.3.2.5.2 In-plane couplings

The baffle "in-plane" conductances are characterised by couplings within each part and by contacts between the two baffle parts.

3.3.3.2.5.2.1 Couplings within each part

Theses coupling are based on the following considerations :

- ✓ Sheet thickness = 0.25mm
- \checkmark Sandwich thickness = 20mm
- ✓ Miro27 for sheets conductivity (see Appendix 1 for values)
- ✓ AA5056 for honeycomb in-plane conductivity (see Appendix 1 for values)

Nom/min/max AA5056 & Miro conductivity values are used for nom/hot/cold cases definition.

3.3.3.2.5.2.2 Couplings between two Baffle parts

Baffle parts interface being similar to shields internal-external interface, the associated performance is derived from measured data (see Appendix 1 for values).

Nom/min/max values are used for nom/hot/cold cases definition.

3.3.3.2.6 Couplings through thermal braids

Thermal braids are made of several elementary braids. These elementary braids are all of the same type :

- Cross section $= 3 \text{mm}^2$
- Material = Copper RRR56 (see Appendix 1 for conductivity values)

Notes:

- Cross section has been assessed by ASP from CEA Saclay measurements on actual hardware and differ slightly from CSAG statements (section should be 3.4mm² according to supplier). The origin of this discrepancy is under discussion with CSAG. It has been preferred to rely on ASP assessed cross section, based on measurements, which is besides conservative wrt CSAG value.
- The braids are modelled as pure conductive couplings.

Review of different braids assemblies :

- □ Baffle Shield 3
 - CSAG braids
 - ✓ 64 elementary braids
 - ✓ Average length = 100mm

Figure 3-21 shows the coupling through a 8-braid assembly (as modelled) compared to measurements. Note that assumptions differ from CSAG assessment; measured values were indeed considered as more reliable.

- ASP braids
 - ✓ 120 elementary braids
 - ✓ Average length = 350mm
- □ Baffle PR Panel (ASP braids)
 - 40 elementary braids
 - Average length = 120mm
- □ Frame PR Panel
 - 8 elementary braids
 - Average length = 50mm
- □ Frame SR Panel
 - 2 elementary braids
 - Average length = 50mm

For all braids, nom/min/max copper conductivity values are used for nom/hot/cold cases definition.

3.3.3.2.7 Couplings in Telescope structure

3.3.3.2.7.1 PR&SR panels

Both panels sandwiches are made of :

- CFRP (M55J/Cyanate) skins
- AA5056 honeycomb

Conductivity values are reported in Appendix 1. Note that CFRP conductivity values are based on measurements as well as ASP data processing.

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

The model meshing allows to accurately take into account extra thickness (and hence conductivity) brought by PR Panel doublers.

All panels interface elements are also part of the model :

- Brackets
- Struts
- Triangle panel
- Lower and FPU beams

3.3.3.2.7.2 Frame

The frame is modelled as CFRP (same as panels) skin (2.5mm thick) with local reinforcements, consistently with the design.

Links with Baffle through brackets are also taken into account.

3.3.3.2.8 Comparison of conductive parameters with initial requirements

Table 3.3-9 to Table 3.3-12 are aimed at comparing the initial main required values with the estimated worst properties of actual design.

Many deviations from initial requirements can be noted. These deviations are though compensated by MIRO high conductivity, especially at cold temperature, which improves significantly the radiative areas efficiency.

REFERENCE: H-P-3-ASPI-AN-0330

2

09/04/04

DATE :

ISSUE :

Page : 44/181

Shields	Shie Centra (@1!	eld 1 al part 50 K)	Shie Extern (@1	ld 1 al part 50 K)	Shie Centra (@10	ld 2 al part 00 K)	Shie Extern (@10	ld 2 al part 00 K)	Shie Centra (@5	eld 3 al part 0 K)	Shie Externa (@5	ld 3 al part 0 K)
Comp mod/req	mod "hot"	req	mod "hot"	req	mod "hot"	req	mod "hot"	req	mod "hot"	req	mod "hot"	req
In-plane sheet conductance λ.e (W/K)	0.04	> 0.03	0.04	> 0.02	0.05	> 0.03	0.05	> 0.02	0.08	> 0.03	0.08	> 0.03
In-plane honeycomb conductance λ.e (W/K)	3.10 ⁻³	> 9.10 ⁻³	3.10 ⁻³	> 5.10 ⁻³	2.10 ⁻³	> 9.10 ⁻³	2.10 ⁻³	> 5.10 ⁻³	1.10 ⁻³	> 9.10 ⁻³	1.10 ⁻³	> 9.10 ⁻³
Transversal conductance λ/L (W/m ² .K)	18	> 19	21	> 11	14	> 19	16	> 11	9	> 19	10	> 19
Conductive couplings between two petals (W/K)	3.6	> 1.4	0.4	> 0.4 (*)	3.8	> 1.4	0.3	> 0.45 (*)	5	> 1.4	0.5	> 0.5 (*)

Shields	Shield1 (@150 K)		Shield2 (@100 K)		Shield3 (@50 K)	
Comp mod/req	mod "hot"	req	mod "hot"	req	mod "hot"	req
Conductive couplings between central and external facets (W/K)	0.8	> 0.6 ^(*)	0.8	> 0.7 ^(*)	1	> 0.8 ^(*)

Table 3.3-9 : P-PLM shields conductive properties / comparison with initial requirements

^(*) Requirement has been re-formulated to be directly comparable with performed measurements; it lies now between two reference lines separated by 64mm.

REFERENCE: H-P-3-ASPI-AN-0330

 Date :
 09/04/04

 Issue :
 2
 Page : 45/181

Baffle PR support panel Telescope Frame Baffle & Tel. structure (@40 K) (@40 K) (@40 K) Comp mod/req mod "hot" mod "hot" mod "hot" req req req In-plane sheet 2.10^{-3 (1)} 8.10-4 > 5.10⁻³ > 1.10⁻² conductance 0.08 > 0.02 λ.e (W/K) In-plane honeycomb conductance > 9.10-3 6.10-3 1.3 10-3 > 0.02 N/A N/A λ .e (W/K) Transversal conductance : 7.6 > 19 6 > 7 N/A N/A λ/L (W/m².K) Conductive couplings between two parts 0.6 >0.6 N/A N/A N/A N/A (W/K)

Table 3.3-10 : P-PLM Baffle and Tel. structure conductive properties / comparison with initial requirements

Struts	Struts (@50 K)		
Comp mod/req	mod "hot"	req	
λS/L (W/K)	1.2 10 ^{-4 (2)}	< 1 10 ⁻⁴	

Table 3.3-11 : P-PLM Struts conductive properties / comparison with initial requirements

Thermal braids Couplings (W/K)	PR P and F	anel Trame	nel PR I ame and		PR Panel and Baffle		Baffle and Shield 3		SR Panel and Frame	
Comp mod/req	mod "hot"	req	mod "hot"	req	mod "hot"	req	mod "hot"	req		
T = 50 K	0.25	> 0.4	0.5	N/A	1.3 ⁽³⁾	> 1	0.07	> 0.1		
T = 100 K	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
T = 150 K	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		

Table 3.3-12 : P-PLM thermal braids conductive properties / comparison with initial requirements

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

Planck PI M Thermal Analyses	R EFERENCE :	H-P-3-ASPI-A	N-0330
	DATE :	09/04/04	
	ISSUE :	2	Page

⁽¹⁾ Doublers not included

 $^{(2)}$ Foam not included; parasitic conductance induced by foam $\approx 4.10^{-5}$ W/K

⁽³⁾ ASP + CSAG braids conductance; extra braids between baffle&Shield 3 and Baffle&PR Panel have replaced those between PR Panel and Shield 3

3.3.3.3 Thermal inertia parameters

The PPLM structure thermal inertia computation is based on :

□ CSAG CDR mass budget (see [RD15])

Table 3.3-13 shows the differences between the mathematical mass (model weight) and the actual mass drawn from budgets.

Global Budget verification		TMM Mass	Design Mass w ctg	Deviation
Groove 1		35.79	36.50	-2%
Groove 2		32.08	32.60	-2%
Groove 3		45.19	45.70	-1%
Cryo Struts		25.03	25.30	-1%
Brace Strut		0.40	0.40	0%
	Frame	23.13	23.70	-2%
Telescope	SR Panel	6.57	6.70	-2%
	PR Panel	50.04	50.90	-2%
Baffle		35.81	35.90	0%
Total Cryo Structure	& Telescope	254.04	257.70	-1%

Table 3.3-13 : Model weight

The mass input for thermal inertia computation is very close to reality.

Materials heat capacitances

Except for composites, the capacitances of which have been measured at ITMO, all data are drawn from bibliographic studies.

Heat capacitances values are reported in Appendix 1.

3.3.4 PPLM structure interfaces

3.3.4.1 Interfaces with Instruments and coolers

Details about Instruments&coolers models (except LFI RAA) included in global TMM are reported in [RD12].

3.3.4.1.1 Interfaces with HFI

Interfaces with HFI are identified as :

□ 4K Cooler assembly

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLN Thermal Analyses du 12/04/04 09:59 Page: 46/181

REFERENCE :	H-P-3-ASPI-AN-0330					
DATE :	09/04/04					
ISSUE :	2	Page : 47/181				

No radiative interaction between 4K Cooler piping and shields (screening effect) is taken into account. Though optimistic, this assumption is justified by the 4K pipes small dimensions and thus by their a priori low influence, when compared, for instance, to the wave-guides.

Interfaces are located to the Shield 3 heat sink.

□ 0.1K Cooler pipes

No radiative interaction between the 0.1K Cooler piping and the shields (screening effect) is taken into account. Though optimistic, this assumption is justified by the 0.1K pipes small dimensions and thus by their a priori low influence, when compared, for instance, to the wave-guides.

Interfaces are located to the 3 Shields heat sinks.

□ Bellow + harness & JFET

The model takes into account radiative and conductive connections with the structure consistently with the provided HFI models and defined interfaces.

□ HFI FPU

Radiative interactions between the PPLM optical cavity and the HFI FPU are implicitly taken into account by global modelling.

3.3.4.1.2 Interfaces with LFI

The LFI RAA model taken into account is the one delivered on 06/2003 by Laben under the reference LFI_CQM_212. This version is the latest available and corresponds to the closest modelling of current design.

3.3.4.1.3 Interfaces with Sorption Cooler

3.3.4.1.3.1 General rules

The interfaces with the Sorption Cooler are limited to the heat exchangers located on the three shields :

- No radiative interaction between the Sorption piping, routing between different shields, and the shields (screening effect) is taken into account. Though optimistic, this assumption is justified by the Sorption pipes small dimensions and thus by their low influence when compared, for instance, to the wave-guides. Note that perturbations of shields thermo-optical properties induced by the pipes routing on the shields, as well as pipes supports, are taken into account in the shields emissivity and specular ratio degradation (see Appendix 3).
- The sorption cooler exchangers are radiatively modelled (boxes on the shields) in order to take into account associated perturbation.
- No internal design of Sorption exchangers is modelled in P-PLM TMM. Only the thermal contact between the exchanger fitting and the shield is defined after design characteristics. The so-called "interface temperature" is on the exchanger's side of the contact.
- The power distribution on Shield 3 is spread on the three exchangers according to JPL equations; 72% on 3A, 19% on 3B and 9% on 3C.

3.3.4.1.3.2 Thermal Exchangers heat sinking

The 3 shields are used as pre-cooling stages for Sorption Cooler, requiring good heat sinking at each exchanger.

Pland	c PI M Thermal Analyses	Reference :	H-P-3-ASPI-A	N-0330
i lanci		DATE :	09/04/04	
		ISSUE :	2	Page : 48/181

3.3.4.1.3.2.1 Exchanger 3C

The efficiency of the heat sink between the exchanger and the shield is of major importance for the performance (requirement to be verified on exchanger contact plane). A specific detailed study has then been performed in order to consolidate the assumptions used in global TMM.

3.3.4.1.3.2.1.1 Detailed model

The exchanger surrounding area has been modelled by a 400 node detailed TMM. The detailed geometrical model is presented in Figure 3-22.

Figure 3-22 : Detailed SC 3C interface TMM

This detailed TMM is afterwards simplified (see Figure 3-23) in order to be included into the global TMM.

Figure 3-23 : Simplified SC 3C interface TMM

Planck PI M Thermal Analyses	R EFERENCE :	H-P-3-ASPI-AN-0330		
r laneix r Elwi mermar Anaryses	DATE :	09/04/04		
	ISSUE :	2	Page: 49/181	

3.3.4.1.3.2.1.2 Identification of thermal paths

The main thermal paths to be considered are :

- ✓ Contact exchanger facesheet (dry)
- ✓ Contact exchanger inserts (dry)
- ✓ Coupling insert facesheets (through the glue)

Figure 3-24 : Detailed modelling of conduction through insert

The coupling insert – facesheet has been estimated by use of another 30 node detailed model (see Appendix 6); this model allows to refine the estimation of how the heat is conducted within the insert and then propagated through the glue layer to the facesheets.

The physical parameters used to support the modelling are :

The copper – aluminium dry contact

Bibliography study, associated to estimation of the contact pressure, lead to the following assumptions :

- Optimistic evaluation : $B_c = 3800 \text{ W/m}^2\text{K}$
- Pessimistic evaluation : $B_c = 440 \text{ W/m}^2\text{K}$

Note that the contact between exchanger and facesheet is expected to be quite poor. Indeed, the potential insert displacements, combined with relatively poor surface flatness under the exchanger, are expected to decrease significantly the contact efficiency.

 \checkmark The conduction within the insert

A 40 W/mK value is assumed @50K for the aluminium conductivity.

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

The conduction within the glue \checkmark

A 0.12 W/mK value is assumed @50K for the glue conductivity.

The way the room between the insert and the sandwich is filled up with glue (up to the facesheet upper surface or not, see Figure 3-24) is also of much importance. Two assumptions are made as extreme optimistic and conservative :

- Optimistic evaluation : Glue filling up to 100% facesheet thickness (glue spilling out insert-facesheet interspace)
- Pessimistic evaluation : Glue filling up to 10% facesheet thickness

3.3.4.1.3.2.1.3 Sensitivities and results

The sensitivity cases are based on main parameters :

- Contact Exchanger-Insert : $B_c = 440 \text{ W/m}^2\text{K} // 3800 \text{ W/m}^2\text{K}$
- Contact Exchanger-Facesheet : B_c = 0 W/m²K // 440 W/m²K // 3800 W/m²K
- Conduction between insert and facesheet : glue filling 10% or 100%

Results are presented in Table 3.3-14 in term of temperature gradient between the exchanger and the shield.

ΔT Exchanger - Shield	B _c Exch-insert 440 W/m ² K	B _c Exch-insert 3800 W/m ² K	B _c Exch-Miro 0 W/m²K	B _c Exch-Miro 440 W/m²K	B _c Exch-Miro 3800 W/m ² K	Filling 10%	Filling 100%
Ref		X			X		Х
+0.1K	Х			X			Х
+0.1K	Х			Х		Х	
+ 1K		Х	Х				Х
+ 1K	Х		Х				х
+ 2K	Х		Х			х	

Table 3.3-14 : SC 3C heat sinking / sensitivity study

Table 3.3-14 shows that, in case of a poor contact between exchanger and facesheet, the thermal sinking is very sensitive to the glue filling. Note that the presented sensitivities are over-estimated because computed with fixed Sorption Cooler dissipation, though the latter normally varies according to I/F temperature.

Due to the difficult control of both flatness and glue filling, it has been decided to build up global TMM hot case with an unambiguous conservative approach : □ Hot case ·

	HOLCASE	
	- Contact Exchanger-Insert :	$B_{c} = 440 \text{ W/m}^{2}\text{K}$
	- Contact Exchanger-Facesheet :	$B_c = 0 W/m^2 K$
	- Conduction between insert and facesheet :	glue filling 10%
Oth	ner cases are based on more optimistic values :	
	Nominal case :	
	- Contact Exchanger-Insert :	$B_{c} = 3800 \text{ W/m}^{2}\text{K}$
	- Contact Exchanger-Facesheet :	$B_{c} = 440 \text{ W/m}^{2}\text{K}$
	- Conduction between insert and facesheet :	glue filling 100%
	Cold case :	0 0
	- Contact Exchanger-Insert :	$B_c = 3800 \text{ W/m}^2\text{K}$
	- Contact Exchanger-Facesheet :	$B_{c} = 3800 \text{ W/m}^{2}\text{K}$
	- Conduction between insert and facesheet :	glue filling 100%

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

R EFERENCE :	H-P-3-ASPI-AN-0330		
DATE :	09/04/04		
ISSUE :	2	Page : 51/181	

3.3.4.1.3.2.2 Exchangers 1-2-3A&3B

Being less sensitive parameters, the thermal interfaces between the Sorption exchangers and the shields are more classically modelled by contact conductances ($W/m^2.K$) determined after design parameters such as the number/type of screws.

The main design parameters of Sorption exchangers are :

Sorption Cooler exchangers	Unit	Groove 1	Groove 2	Groove 3
Characteristics		(warmest)	(interm.)	(coldest)
Nb. of exchangers	-	1	1	2
Length	mm	350	350	196
Width	mm	35	35	35
Material	-	Copper	Copper	Copper
Nb. of screws per unit	-	2 x 16 M4	2 x 16 M4	2 x 9 M4
Op. temperature	К	150	100	50

Table 3.3-15 : Sorption Cooler exchangers design parameters

<u>Note</u>: Parameters given for one (either nominal or redundant) Sorption Cooler.

As a conservative approach, the thermal conductance through each interface is estimated considering an effective thermal contact only under each screw head which corresponds approximately, for M4 screws, to a 38 mm² contact surface per screw.

The nominal contact conductance (B_c^{loc}), locally to the screws, is taken equal to # 3000 W/m².K. This value, valid only where the contact pressure is ensured, is based on ASP experience for low temperature applications.

The contact is then spread all over the actual exchanger interface area in order to define the TMM parameter B_c which, consistently with the interface total area, is used to model this interface.

The Table 3.3-16 gives a synthesis of the thermal contact assumptions for different nom/hot/cold cases :

Sorption Cooler	Bc nom (W/m².K)	Bc hot (W/m².K)	Bc cold (W/m².K)	S _c (spread) (mm²)	Materials (-)
VG3					
I/F A	300	150	300	6860	Copper / Alu
I/F B	300	150	300	6860	Copper / Alu
VG2	300	150	300	12250	Copper / Alu
VG1	300	150	300	12250	Copper / Alu

Table 3.3-16 : Sorption Cooler exchangers I/F thermal contact assumptions

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLN Thermal Analyses du 12/04/04 09:59

Planck PI M Thermal Analyses	R EFERENCE :	H-P-3-ASPI-A	N-0330
	DATE :	09/04/04	
	ISSUE :	2	Page : 52/181

3.3.4.2 Interfaces with Reflectors

The reflectors model used in global TMM is the one delivered by ASED and described in [RD13].

3.3.4.3 Interfaces with SVM

□ <u>Temperatures</u>

In order to keep as close as possible to current design, the SVM structure temperatures are drawn from latest SVM TCS results (see Appendix 5) and the MLI upper layer temperatures are re-computed in PPLM TMM. The resulting MLI outer temperatures being slightly lower than those from PLM IF specification, a sensitivity is performed (see §4.5) to check the performance delta when using one (SVM TCS analyses results) or the other (PLM I/F spec) assumptions.

<u>Thermo-optical properties</u>

SVM interfaces	MLI on Solar Array +X side		Aluminised MLI on Sub-platform		Aluminised MLI on upper closure Panels	
nom / degraded	nom	deg	nom	deg	nom	deg
ε	0.05	0.1	0.05	0.1	0.05	0.1
τ_{s}	0.9	0.5	0.9	0.5	0.9	0.5
T _{IR}	0	0	0	0	0	0

The thermo-optical description of SVM interfaces is reported in Table 3.3-17 :

 Table 3.3-17 : SVM interfaces thermo-optical properties

Note that the hot case is defined after parameters degraded wrt specified ones for conservative reasons.

□ Interface fluxes

The BEU & PAU models, though not in line with latest design (1 box design for BEU for instance), provide radiative interfaces (flux & geometry) which largely cover I/F flux specification (see §4.2.3). The radiating areas temperatures are moreover drawn from latest SVM TCS.

<u>Temperature fluctuations</u>

The inputs for stability analyses (see §6.1) are drawn from SVM TCS CDR results and cover PLM I/F specification.

Planck	PLM	Thermal	Anal	vses
		· · · · · · · · · · · · · · · · · · ·	7.01041	,

4. STEADY STATES ANALYSES RESULTS

Four steady states are studied :

- Operating modes
 - Nominal case related to typical assumptions
 - Hot case related to pessimistic assumptions
 - Cold case related to optimistic assumptions
- Non-operating mode
 - Cold case related to optimistic assumptions

Notes :

- An assumption is said optimistic when it tends to lower the shield 3 temperature
- The different configurations are explained in §3.3.1.

4.1 PPLM Steady state results - Nominal operating case

4.1.1 Temperature cartography

Figure 4-1 shows the PPLM nominal temperature cartography.

Figure 4-1 : Nominal PPLM temperature cartography

Table 4.1-1 presents a summary of PPLM / Instruments interfaces temperatures in nominal case. Note that a complete temperatures listing is given in Appendix 8.

PPLM interfaces temperatures		Computed temperatures Nominal case (K)
	I/F with VG1	138.3 – 142.8
LFI WG	I/F with VG2	79.9 - 83.1
	I/F with VG3	46.0 - 47.2
	I/F with VG1	136.5
Sorption Cooler	I/F with VG2	83.3
	I/F with VG3	49.8 / 47.5 / 45.7
4K Cooler coldes	st exchanger	45.8
0.1K Cooler cold	lest exchanger	46.2
JFET box		47.3
FPU interface		[41.9 - 44.9]
Primary Reflector		[41.4 – 42.8]
Secondary Reflec	tor	[41.6 – 41.8]

Table 4.1-1 : PPLM / Instruments nominal interfaces temperatures

4.1.2 Evolutions since PDR

Next table shows main model evolutions PDR \rightarrow CDR as well as associated impact on computed nominal performance. Note that Instruments modelling evolutions are also taken into account (nominal performance assessment).

TMM evolutions	Impact on Sorption Cooler 3C I/F Temperature (K)	Comments
LFI RAA TMM	-1.8	100GHz removed
Sorption Cooler TMM	-2.8	New equations (*)
Cryo Struts	-0.4	Meshing and materials assumption
External petals contact	-1.2	Zero contact initially assumed
MIRO and copper conductivity	-0.6	From measurements
New braids	-0.2	New Baffle – Shield3 link
ATC harness	+0.3	None initially included

* Global heat load on shield 3 has not changed significantly with latest equations. However, the distribution of this load on the three shield 3 precooler is now such that the coldest one (3C), which is the most important one wrt performance, receives only 9% of the global load. This explains why the equations update, with no shield 3 global load modification, leads to a colder Sorption Cooler 3C interface.

Planck PLM Thermal Analyses	
-----------------------------	--

4.2 PPLM Steady state results - Worst Hot operating case

4.2.1 Worst hot case definition

The worst hot case corresponds to the hot configuration (as presented in \$3.3.2) degraded by mathematical uncertainty (2K) :

> $T_{worst hot} = T_{hot} + 2K = f(Pi_{degraded}) + 2K$

where Pi_{degraded} are representative of the degraded (i.e hot) PPLM thermal functioning, including Instruments overloads in line with system margin.

Note that this hot case is assessed with redundant Sorption Cooler ON.

4.2.2 Temperature cartography

Figure 4-2 shows the PPLM "hot" temperature cartography.

Figure 4-2 : "hot" PPLM temperature cartography

REFERENCE :	H-P-3-ASPI-AN-0330		
DATE :	09/04/04		
ISSUE :	2	Page : 56/181	

Table 4.2-1 presents a summary of PPLM / Instruments interfaces temperatures in worst hot case. Note that a complete temperatures listing is given in Appendix 7.

PPLM worst hot interfaces temperatures		Computed temperatures hot case (K)	Mathematical uncertainty (K)	Worst hot temperatures (K)	Max T (K)
	I/F with VG1	155.6 – 156.8	+ 2	157.6 – 158.8	170
LFI WG	I/F with VG2	89.1 – 91.1	+ 2	91.1 – 93.1	120
	I/F with VG3	54.1 – 55.0	+ 2	56.1 – 57.0	60
	I/F with VG1	146.3	+ 2	148.3	170
Sorption Cooler	I/F with VG2	92.2	+ 2	94.2	120
	I/F with VG3 (3C)	52.2	+ 2	54.2	60
4K Cooler coldest exchanger		53.1	+ 2	55.1	-
0.1K Cooler coldest exchanger		51.3	+ 2	53.1	-
JFET box		54	+ 2	56	60
FPU		[45.4 – 50.1]	+ 2	[47.4 – 52.1]	65
Primary Reflector		[45.1 – 46.7]	+ 2	[47.1 – 48.7]	50
Secondary Reflect	tor	[45.6 – 45.8]	+ 2	[47.6 – 47.8]	50

Table 4.2-1 : PPLM / Instruments worst hot interfaces temperatures

The passive radiator performance is compliant with specifications for all interfaces.

4.2.3 Interface Heat Loads review

As explained in §3.3.1.2 extra loads are injected at main Instruments interfaces in order to reach allocated values.

This is obviously possible only when nominal Instruments lead to heat fluxes lower than allocated. Two exceptions have been found :

- PAU&BEU boxes : Incident heat loads are much higher than allocated
 - \Rightarrow no modification of computed loads (conservative approach)
- HFI : Loads on intermediate shields and struts are much higher than allocated (mainly due to Harness+Bellow)
 ⇒ computed loads increased by 20% on shields 1 & 2 (system margin wrt current HFI design)

Extra loads are located at following interfaces :

- Sorption Cooler (Redundant)
 - Shield 3 (δQ_{SC}^{3})
 - @ Exchanger 3A (72% δQ_{SC}^{3})
 - @ Exchanger 3B (19% δQ_{SC}^3)
 - @ Exchanger 3C (9% δQ_{sc} ³)

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

Planck PLM Thermal Analyses	REFERENCE :	H-P-3-ASPI-A	AN-0330
	DATE :	09/04/04	
	ISSUE :	2	Page : 57/181

- Shield 2 @ Exchanger 2
- Shield 1 @ Exchanger 1
- LFI RAA
 - Shield 3 @ Wave Guides interfaces (symmetrical)
 - Shield 2 @ Wave Guides interfaces (symmetrical)
 - Shield 1 @ Wave Guides interfaces (symmetrical)
- HFI
 - ✤ Shield 3 @ 4K and JFET interfaces
 - ✤ Shield 2 @ Dilution Cooler interface
 - ✤ Shield 1 @ Dilution Cooler interface

Figure 4-3 allows to compare :

- Interface heat loads allocations (φ)
- Heat loads as computed by Instruments models (Q)
- Loads actually injected $(Q + \delta Q)$ to be compared with allocations $(Q + \delta Q \ge \varphi)$

Figure 4-3 : Interface Heat Loads review / hot case

Effective heat loads are superior or equal to allocations for all interfaces.

Table 4.2-2 gives a comparison between the reference temperatures at which the allocations are given and the ones computed with heat loads presented before.

```
Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLN
Thermal Analyses du 12/04/04 09:59
```

Inte	erface	T ref allocation (K)	T computed (K)
Sorption Cooler	Shield3	52	52
	Shield2	108	92
	Shield1	158	146
lfi raa	Shield3	54.5	54
	Shield2	106	90
	Shield1	166	156
HFI	Shield3 + Tel	50	53
	Shield2 + Struts	110	87
	Shield1	165	145

Table 4.2-2 : Interfaces temperatures

The temperatures are consistent with reference ones on Shield3 but not on Shields1&2. However, knowing that the budget on Shield3 is the most important, and that $Q + \delta Q$ is generally superior to ϕ , it can be considered that the obtained interfaces status is conservative wrt allocations.

4.2.4 Heat flows

Figure 4-4, Figure 4-5 and Figure 4-6 present the three shields "hot" heat budgets.

Figure 4-4 : Shield 1 "hot" heat budget

DATE : 09/04/04

ISSUE :

2

Figure 4-5 : Shield 2 "hot" heat budget

Figure 4-6 : Shield 3 "hot" heat budget

Next figures show Instruments heat loads on PPLM (extra loads δQ not included).

Figure 4-7 : Interfaces with HFI

Figure 4-8 : Interfaces with LFI

Figure 4-9 : Interfaces with Sorption Cooler

4.2.5 Hot performance with nominal environment

The case "Hot PLM", as described in Table 4.2-3, has been studied for comparison with 50K goal only.

50K Goal	PPLM structure	Instruments I/F	SVM I/F	Operating Sorption Cooler
Hot PLM	Hot	Nominal	Hot	Nominal

Table 4.2-3 : "Hot PLM" case definition

The computed Sorption Cooler I/F 3C temperature is 48K, leading to 50K when including mathematical uncertainties.

The goal is then achieved with Instruments interfaces as currently modelled.

Planck PLM Thermal Analyses	R EFERENCE :	H-P-3-ASPI-A	AN-0330
	DATE :	09/04/04	
	ISSUE :	2	Page : 62/181

4.3 PPLM Steady state results - Worst Cold operating case

4.3.1 Worst Cold operating case definition

The worst operating cold case corresponds to the cold operating configuration (as presented in §3.3.2.2) including mathematical uncertainty :

 \blacktriangleright T_{worst cold} = T_{op cold} - 2K

Note that this cold case is assessed with nominal Sorption Cooler ON.

4.3.2 Temperature cartography

Figure 4-10 shows the PPLM cold operating temperature cartography.

Figure 4-10 : Cold operating PPLM temperature cartography

Table 4.3-1 presents a summary of PPLM / Instruments interfaces temperatures in worst cold operating case.

Reference :	H-P-3-ASPI-AN-0330		
DATE :	09/04/04		
ISSUE :	2	Page : 63/181	

PPLM worst cold interfaces temperatures (operating)		Computed temperatures cold operating case (K)	Mathematical uncertainty (K)	Worst cold operating temperatures (K)	Min T (K)
	I/F with VG1	136.5 – 140.7	- 2	134.5 – 138.7	-
LFI WG	I/F with VG2	78.6 – 81.3	- 2	76.6 – 79.3	-
	I/F with VG3	44.5 - 45.7	- 2	42.5 - 43.7	-
	I/F with VG1	135.1	- 2	133.1	150
Sorption Cooler	I/F with VG2	81.7	- 2	79.7	100
	I/F with VG3	44.2	- 2	42.2	45
4K Cooler coldes	t exchanger	44.5	- 2	42.5	-
0.1K Cooler coldest exchanger		44.8	- 2	42.8	-
JFET box		45.4	- 2	43.4	40
FPU		[40.7 – 43.4]	- 2	[38.7 – 41.4]	40
Primary Reflector		[40.1 – 41.5]	- 2	[38.1 – 39.5]	30
Secondary Reflec	tor	[40.3 - 40.6]	- 2	[38.3 – 38.6]	30

Table 4.3-1 : PPLM / Instruments worst cold operating interfaces temperatures

Deviations have to be noted wrt cold operating conditions, mainly at Sorption Cooler interfaces

4.4 PPLM Steady state results - Worst Cold non-operating case

4.4.1 Worst Cold non-operating case definition

The worst non-operating cold case corresponds to the cold non-operating configuration (as presented in §3.3.2.2) including mathematical uncertainty :

 \succ T_{worst cold} = T_{non op cold} - 2K

4.4.2 Temperature cartography

Figure 4-11 shows the PPLM cold non-operating temperature cartography.

Figure 4-11 : Cold non operating PPLM temperature cartography

Table 4.4-1	presents a summar	v of PPLM / Ir	nstruments interfaces	temperatures in w	orst non-operating cold case.
		j - ·			

PPLM worst cold interfaces temperatures (non-operating)		Computed temperatures Cold non operating case (K)	Mathematical uncertainty (K)	Worst non- operating cold temperatures (K)	Min T (K)
	I/F with VG1	130.1 – 134.1	- 2	128.1 – 132.1	-
LFI WG	I/F with VG2	71.4 – 72.4	- 2	69.4 – 70.4	-
	I/F with VG3	33.8 - 34.1	- 2	31.8 – 32.1	-
	I/F with VG1	123	- 2	121	150
Sorption Cooler	I/F with VG2	71	- 2	69	100
	I/F with VG3	33	- 2	31	40
4K Cooler coldest exchanger		33	- 2	31	-
0.1K Cooler coldest exchanger		33	- 2	31	-
JFET box		32	- 2	30	30
FPU		32	- 2	30	-
Primary Reflector		32	- 2	30	30
Secondary Reflect	tor	32	- 2	30	30

Table 4.4-1 : PPLM / Instruments worst non-operating cold interfaces temperatures

As for operating case, deviations have to noted at Sorption Cooler interfaces.

It is also to be noticed that Shield3 and Telescope predicted min average temperatures are close to 30K (lower materials&process qualification range), the coldest parts belonging to PR panel and reaching 28K.

4.5 Sensitivity analyses

Sensitivity studies have been performed and are reported in Table 4.5-1.

REFERENCE :	H-P-3-ASPI-AN-0330		
DATE :	09/04/04		
ISSUE :	2	Page : 66/181	

Sensitivities	Deviation	Impact at Sorption Cooler coldest I/F (3C)	Comments
In-plane Shields and Baffle sheet conductance	-15%	+0.15 K	
Shields and Baffle honeycomb conductance	-30%	+0.04 K	
SC1&2&3A&3B contact conductance	-50%	+0.03 K	
Copper braids conductance	-30%	+0.10 K	
Copper braids conductance	-100%	+4.7 K	Braids removed
Shields petals Interface conductance	-30%	+0.10 K	
Cryo-Struts conductance	+ 30%	+0.23 K	
ATC harness conductance	+20%	+0.06 K	
SC 3C heat sink	"nom → hot"	+0.38 K	See §3.3.4.1.3 for deviation detailed description
LEC properties (ϵ , ρ_s)	"nom → hot" on all LEC surfaces	+0.4 K	See §3.3.3.1.3 for deviation detailed description
HEC properties (ε)	"nom → hot" on all HEC surfaces	+1 K	See §3.3.3.1.2 for deviation detailed description
SVM I/f temperatures	TCS results → PLM I/F spec	+0.1 K	

Table 4.5-1 : Sensitivity studies

Planck	PLM	Thermal	Analyses
--------	-----	---------	----------

REFERENCE :	H-P-3-ASPI-AN-0330		
DATE :	09/04/04		
ISSUE :	2	Page : 67/181	

5. COOL DOWN ANALYSES

A passive cool down has been studied. The profiles of shields and reflectors average temperatures are presented in Figure 5-1.

Figure 5-1 : Cool down analysis

Note that this cool-down corresponds to a nominal case.

Planck	ΡΙΜ	Thermal	Ana	vses
Tarick		merman	Alla	ryscs

6. PPLM THERMAL STABILITY STUDY

This study is aimed at providing thermal inputs necessary for straylight analysis.

The thermal perturbations are listed according to the position of the sources :

- SVM temperatures fluctuation
 - ✓ Occurring at PPLM / SVM conductive and radiative interfaces
- Sorption Cooler dissipation on shields 1&2&3
- ✓ Occurring at Sorption exchangers on shields
- Moon illumination
 - ✓ Occurring on primary mirror and baffle

The PPLM thermal stability is analysed through the study of the following elements :

- Shield 3 upper parts (internal and external parts)
- Baffle internal faces
- Primary and secondary reflectors

Notes :

- ✓ The selected elements are the most sensitive ones regarding straylight concerns.
- ✓ The reference temperatures for the stability study are the elements average ones.

The transient analyses presented in §6.1 and §6.2 are performed with global PPLM TMM.

The analyses presented in §6.3 are based on local models independent of PPLM global TMM.

In both studies, attention has been paid to choose computation parameters (time step < CSGMIN) ensuring the convergence of ESATAN resolution routines.

6.1 SVM temperatures fluctuation

The SVM reference temperatures taken into account correspond to the following interfaces :

- BEU and PAU radiative areas
- External faces of PPLM sub-platform and SVM upper closer panel MLI (including BEU and PAU MLI)
- External face of the solar array MLI
- PPLM struts conductive interface

6.1.1 Thermal perturbations inputs

The inputs are drawn from SVM TCS CDR results on which a ×10 margin is taken into account.

Note that the PPLM global TMM used to assess the effect of these fluctuations is not the one in line with CDR steady state analyses but is an older version; this less detailed and hence lighter version gives conservative results.

REFERENCE :	H-P-3-ASPI-AN-0330		
DATE :	09/04/04		
ISSUE :	2	Page : 69/181	

SVM amplified fluctuations are presented in the following graphs :

Figure 6-1 : BEU – PAU temperature fluctuations / amplified amplitudes

Figure 6-2 : SVM sub-platform MLI temperature fluctuations / amplified amplitudes

Figure 6-3 : Struts I/F temperature fluctuations / amplified amplitudes

Note : MLI BEU-PAU and MLI SA fluctuations are not presented because they are of the same order as MLI sub - pltf.

6.1.2 Resulting PPLM temperature fluctuation

The fluctuations resulting from the perturbations presented in §6.1.1 are reported in the following graphs.

Figure 6-4 : Shield 3 external parts fluctuation / SVM perturbation

Planck PLM Thermal Analyses	R EFERENCE :	H-P-3-ASPI-AN-0330	
	DATE :	09/04/04	
	ISSUE :	2	Page : 71/181

Figure 6-5 : Shield 3 internal parts fluctuation / SVM perturbation

Figure 6-6 : Secondary reflector fluctuation / SVM perturbation

Planck PLM Thermal Analyses	R EFERENCE :	H-P-3-ASPI-AN-0330	
	DATE :	09/04/04	
	ISSUE :	2	Page : 72/181

Figure 6-7 : Primary reflector fluctuation / SVM perturbation

Figure 6-8 : Inner baffle fluctuation / SVM perturbation

Notes:

- The presented fluctuations are only due to the SVM fluctuations (no Sorption Cooler dissipation variations).
- The observed drift on shield 3 and baffle is due to a slight change of the injected mean values after amplification of the SVM fluctuations.

It can be stated from these different results that SVM I/F fluctuations, even when amplified by a factor of 10, lead to no significant thermal fluctuations upon PPLM sensitive elements.

As shown in §6.2, the Sorption Cooler variable dissipation on shields is the major contributor to PPLM thermal instability.
Planck PLM Thermal Analyses	R EFERENCE :	H-P-3-ASPI-A	N-0330
	DATE :	09/04/04	
	ISSUE :	2	Page : 73/181

6.2 Sorption Cooler dissipations on shields

The Sorption Cooler pipes being pre-cooled on the three shields induce a fluctuating dissipation, on each shield, tuned on the cooler functioning profile.

6.2.1 Thermal perturbations inputs

Two kinds of inputs are studied :

- JPL inputs dating from 1999
- JPL latest provided inputs (06/2002)

As shown in next two paragraphs, these two sets of inputs present quite different profiles which may lead to different PPLM thermal responses.

<u>Note</u> : In order to use provided fluctuation data (dissipation profile Q = f(t)) for any shields temperatures and then for several values of average dissipation Q_{mean} , the initial data have been turned into Q/Q_{mean} profiles.

6.2.1.1 JPL 1999 inputs

Figure 6-9 : Sorption Cooler dissipation profiles # Q/Q_{mean} JPL 1999 data

The three profiles are 667s periodic functions. Only one period is presented in the Figure 6-9.

It can be remarked that, excepted for Shield 2, the dissipation fluctuations remain approximately within \pm 2% of the mean value.

A sensitivity study has been performed on the basis of the nominal profile amplitudes amplified by a factor of 10.

The resulting amplified profiles are presented here below :

Figure 6-10 : Sorption Cooler dissipation profiles # Q/Q_{mean} JPL 1999 data / amplification 10

6.2.1.2 New JPL inputs

The profiles given by JPL are reported hereafter :

Heat Dissipation Profile on Three V-Grooves

Figure 6-11 : Sorption Cooler dissipation profiles # Q (W) new JPL data

A period of approximately 4000 s (# 6×667 s) can be drawn.

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59 Référence du modèle : M023-3

Planck PLM Thermal Analyses	R EFERENCE :	H-P-3-ASPI-A	N-0330
	DATE :	09/04/04	
	ISSUE :	2	Page : 75/181

Sorption cooler dissipation profile 1.06 1.04 1.02 Q/Qmean (-) 1.00 0.98 Shield 1 0.96 Shield 2 Shield 3 0.94 500 1000 1500 2000 2500 3500 4000 0 3000 Time (s)

These profiles, turned into Q/Q_{mean} ratio curves, are presented over a period :

Figure 6-12 : Sorption Cooler dissipation profiles # Q/Q_{mean} (new JPL data)

The Figure 6-12 shows the three profiles, in term of Q/Q_{mean} ratio, are identical.

It can moreover be noted that, even though this profile can hardly be compared to the 1999 data one (see §6.2.1.1), the fluctuations amplitudes seem to be twice as big as the previous ones (± 4 % instead of ± 2 %).

6.2.2 Resulting PPLM temperature fluctuation

The fluctuations resulting from the perturbations presented in §6.2.1 are reported in the following graphs.

Planck PLM Thermal Analyses	R EFERENCE :	H-P-3-ASPI-A	N-0330
	DATE :	09/04/04	
	ISSUE :	2	Page : 76/181

6.2.2.1 Results with JPL 1999 inputs

6.2.2.1.1 Nominal amplitudes

Figure 6-13 : Shield 3 internal parts fluctuation / Sorption Cooler nominal perturbation JPL 1999 inputs

Figure 6-14 : Shield 3 external parts fluctuation / Sorption Cooler nominal perturbation JPL 1999 inputs

Planck PLM Thermal Analyses	R EFERENCE :	H-P-3-ASPI-A	N-0330
	DATE :	09/04/04	
	ISSUE :	2	Page : 77/181

Figure 6-15 : Inner baffle fluctuation / Sorption Cooler nominal perturbation JPL 1999 inputs

The mirrors fluctuations are not presented because of their very weak fluctuations (not detectable). See §6.2.2.1.2 for amplified fluctuations.

6.2.2.1.2 Amplified perturbations (×10)

 Planck PLM Thermal Analyses
 REFERENCE :
 H-P-3-ASPI-AN-0330

 Date :
 09/04/04
 09/04/04

 Issue :
 2
 Page : 78/181

Figure 6-17 : Shield 3 external parts fluctuation / Sorption Cooler amplified perturbation

Figure 6-18 : Secondary reflector fluctuation / Sorption Cooler amplified perturbation

Planck PLM Thermal Analyses	Reference :	H-P-3-ASPI-A	N-0330
	DATE :	09/04/04	
	ISSUE :	2	Page : 79/181

Figure 6-19 : Primary reflector fluctuation / Sorption Cooler amplified perturbation

The mirrors fluctuation can hardly be detected (#0.1µK), even with amplified perturbations.

Figure 6-20 : Inner baffle fluctuation / Sorption Cooler amplified perturbation

<u>Note</u> : The observed drift on all elements is due to a slight change of the injected mean values after amplification of the fluctuations.

Planck PLM Thermal Analyses	REFERENCE :	H-P-3-ASPI-A	N-0330
	DATE :	09/04/04	
	ISSUE :	2	Page : 80/181

6.2.2.2 Results with JPL 2002 inputs

Figure 6-21 : Shield 3 internal parts fluctuation / Sorption Cooler perturbation JPL 2002 inputs

Figure 6-22 : Shield 3 external parts fluctuation / Sorption Cooler perturbation JPL 2002 inputs

REFERENCE : H-P-3-ASPI-AN-0330 **Planck PLM Thermal Analyses** DATE : 09/04/04 2 Page : 81/181 **ISSUE**:

Figure 6-23 : Secondary reflector fluctuation / Sorption Cooler perturbation JPL 2002 inputs

Figure 6-24 : Primary reflector fluctuation / Sorption Cooler perturbation JPL 2002 inputs

Planck	PLM	Thermal	Anal	vses
Tarres		merman	/ that	yscs

R EFERENCE :	H-P-3-ASPI-AN-0330		
DATE :	09/04/04		
ISSUE :	2	Page : 82/181	

Figure 6-25 : Inner baffle fluctuation / Sorption Cooler perturbation JPL 2002 inputs

6.2.2.3	Synthesis of	of thermal	perturbations	due to	the Sor	ption Coole	١
---------	--------------	------------	---------------	--------	---------	-------------	---

<i>Thermal fluctuations due to</i>	Sorption Cooler JPL 1999 data		Sorption Cooler JPL 1999 data ⊗ 10		Sorptior JPL 200	n Cooler D2 data
Sorption Cooler	Amplitude	Period	Amplitude	Period	Amplitude	Period
Shield 2 internal	2120	# 667 c	20060 чК	# 667 c	7880 µK	# 4000 s
Shield 3 Internal	2130 μκ	# 007 5	20960 µK	# 007 \$	4088 µK	# 667 s
Shield 2 ovtornal	110 עע	# 667 c	1020	# 667 c	1200 µK	# 4000 s
Shield 3 external	110 μκ	# 007 3	1039 μκ	# 007 5	# 100 µK	# 667 s
See Deflector	nogligible		< 0.1 uK	# 667 c	# 0.4 μK	# 4000 s
Sec. Reflector	riegiigibie	-	< υ. τ μκ	# 007 \$	negligible	# 667 s
Drim Doflactor	nogligible		0.1	# 667 c	# 0.2 μK	# 4000 s
PHILL Reflector	riegiigibie	-	0.1 μκ	# 007 5	negligible	# 667 s
Pofflo internel	20 11/2	# 667 0	200 чК	# 667 0	400 µK	# 4000 s
Bame internal	30 µK	# 007 \$	300 µK	# 007 \$	# 30 µK	# 667 s

Table 6.2-1 : Synthesis of the thermal fluctuations due to the Sorption Cooler

Note that amplitudes and periods are difficult to extract from the results computed after JPL 2002 data.

Planck PI M Thermal Analyses	Reference :	H-P-3-ASPI-A	AN-0330
	DATE :	09/04/04	
	ISSUE :	2	Page : 83/181

6.3 Direct Moon illumination

6.3.1 Thermal fluctuations of the PR

6.3.1.1 Introduction

This paragraph is intended to present the results achieved about the PR temperature fluctuation when submitted to direct Moon illumination.

In order to avoid huge time consuming 3D or 2D approaches, a 1D model of PR thickness has firstly been created; any incoming perturbation on PR (external Moon illumination) is fully transmitted through PR thickness, without any 2D damping, thus leading to the maximum PR active face local temperature fluctuation.

The 1D results are afterwards processed by a simple inertia approach in order to estimate the PR active face temperature fluctuations as a function of the considered area.

6.3.1.2 PR 1D modelling

6.3.1.2.1 Reflector design

The description of the reflector is given hereafter :

Figure 6-26 : Primary Reflector description

6.3.1.2.2 Reflector modelling

Planck PLM Thermal Analyses

Reference :	H-P-3-ASPI-AN-0330		
DATE :	09/04/04		
ISSUE :	2	Page : 84/181	

The 1D reflector modelling of the presented design is shown here below :

Figure 6-27 : Primary Reflector modelling

6.3.1.2.2.1 Physical parameters assumptions

All assumptions are made in order to :

- Minimise the thermal inertia of different parts.
 - \rightarrow Only the Aluminium is taken into account for the active face.
 - \rightarrow Gelcoat and glue masses are neglected for the skins inertia estimation.
 - \rightarrow All Cp are considered at 50 K.

 \rightarrow For composite material, the Cp value is, regardless of the mass ratio, this of the component which presents the lowest one.

- \rightarrow The 96.9% NIDA lightening is considered for NIDA inertia evaluation.
- Minimise the thermal coupling in the PR thickness.

 \rightarrow Though not taken into account for the inertia evaluation, all intermediate layers (glue, gelcoat ...) are considered as insulating layers in the PR thickness.

Planck PLM Thermal Analyses	Reference :	H-P-3-ASPI-/	AN-0330
	DATE :	09/04/04	
	ISSUE :	2	Page : 85/181

 \rightarrow All conductivity assumptions are pessimistic ones :

- λ_{AI} is taken equal to 200 W/m.K in spite of Aluminium deposit probably high purity.
- λ_{skin} (CFRP in thickness) is taken equal to the lowest value found in bibliography (which also corresponds to a standard Araldite resin conductivity).
- λ_{NIDA} (CFRP in plane) is taken equal to the T300 one (much lower than the M60J one).
- \rightarrow The 96.9% NIDA lightening is considered for the evaluation of the following couplings :
 - Couplings through NIDA thickness.
 - Couplings through "skin \leftrightarrow NIDA" glue and arbitrary contact.

Note : The model is built per surface unit.

6.3.1.2.2.2 Moon illumination evaluation

The incident flux on PR due to moon direct illumination is given here below :

PR Moon illumination	Planck osa = 10°	Planck osa = 15°	Sourco
	maa _{max} = 26°	maa _{max} = 31°	Source
Incident flux density on PR	0.13 mW/m ²	0.18 mW/m ²	[RD 16]
PR absorptance (wrt Moon radiation)	2%	2%	
PR absorbed flux density	2.6 μW/m²	3.6 μW/m²	

For information :

DD Moon illumination	Planck osa = 10°	Planck osa = 15°		
PR MOOIT IIIdinination	$maa_{max} = 26^{\circ}$	$maa_{max} = 31^{\circ}$	Source	
PR illuminated surface	0.09 m ²	0.266 m ²	[RD 16]	
Total PR absorbed flux	0.23 µW	0.96 µW		

<u>Note</u> : The PR illuminated surfaces are evaluated in both cases without extended baffle. It can be noted that "osa10" (maa 26") without extended baffle" and "osa15" (maa 31") with extended baffle" lead to the same PR illuminated surface.

6.3.1.2.3 1D modelling approach results

Considering §6.3.1.2.1 assumptions, the computed PR active face temperature fluctuation is :

Period = 60s	Planck osa = 10°	Planck osa = 15°
No extended Baffle	maa _{max} = 26°	maa _{max} = 31°
PR temperature fluctuation	0.2 µK	0.3 µK

This amplitude is the max one seen by the PR illuminated surface (and consequently by any area of PR active surface).

Planck PLM Thermal Analyses	REFERENCE :	H-P-3-ASPI-A	N-0330
	DATE :	09/04/04	
	ISSUE :	2	Page : 86/181

6.3.1.3 Overall PR active face temperature fluctuation

§6.3.1.2 has allowed to estimate fluctuation of the PR moon illuminated active face.

§6.3.1.3 is aimed at evaluating the temperature fluctuation on other areas of PR active face. As explained hereafter, the proposed method merely consists in applying, to the illuminated area temperature fluctuation, a damping factor depending of the considered surface inertia.

6.3.1.3.1 Inertia damping

The goal is to determinate the damping factor to be applied to ΔT_{PR}^{0} as a function of the considered surface (S). ΔT_{PR}^{S} will hence be all the more important as the considered surface S is small i.e. is close to the illuminated area (S_{III}).

Sizing approach : The considered area is assumed as *thermally homogeneous*.

Figure 6-28 : Inertia damping

As shown by the 1D model results (see 4), the "Active face + skin" system is thermally homogeneous. This system (A) can the be defined by :

Figure 6-29 : Modelling of the "active face + skin" system

With :

- Q : Moon flux perturbation on (A).
- T : (A) temperature.
- C : (A) Thermal capacitance.
- K : Linear coupling with sink.

Date : 09/04/04	Planck PLM Thermal Analyses	R EFERENCE :	H-P-3-ASPI-A	N-0330
		DATE :	09/04/04	
Issue : 2 Page : 87/18		ISSUE :	2	Page : 87/181

Notes :

- The radiative coupling between the PR active face and space is negligible when compared to its conductive coupling with the PR inner skin. The only considered linear coupling to a thermal sink is therefore the conductive coupling with the inner skin.
- K # 0.2 W/m².K (1D model).
- C # 90 J/K.m² (1D model).

The heat equation is : $Q + K \times (T_{inner skin} - T) = C \times dT/dt$

leading to : $\Delta T^2 = Q^2 / (K^2 + C^2 \times \omega^2)$

Besides, $C^2 \times \omega^2 >> K^2$, so : $\Delta T \# Q/(C \times \omega)$

As a consequence, the temperature fluctuation seen by S can be extrapolated from the one seen by S_{ill} through the simple formula :

 $\Delta T_{PR}^{S} = \Delta T_{PR}^{SIII} \times S_{III} / S = \Delta T_{PR}^{O} \times S_{III} / S$

6.3.1.3.2 "surface/position" correspondence

The 0.09 m² and 0.266 m² surfaces correspond to the illuminated surfaces in both studied cases.

The thermal perturbation is assumed to propagate with a plane front. The surface to be taken into account for the inertia evaluation is therefore this of the mirror area "above" the considered point.

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLN Thermal Analyses du 12/04/04 09:59 Référence du modèle : M023-3

The table hereafter shows the "surface/inertia" correspondence :

z (mm)	S(z) (m²)
188.68	0.125
377.36	0.342
566.04	0.604
754.72	0.893
943.39	1.194
1132.07	1.496
1320.75	1.786
1509.43	2.051
1698.11	2.272
1886.79	2.403

Table 6.3-1 : Position / inertia correspondence for PR

Note : The z values correspond to 10 points regularly distributed in the height.

- 6.3.1.4 PR active face temperature fluctuation results
- 6.3.1.4.1 Typical assumptions
- 6.3.1.4.1.1 PR illuminated face temperature fluctuation

Modelling assumptions, as presented in §6.3.1.2.2, lead to the following results for "osa 10° (maa 26°)" case :

Figure 6-31 : PR fluctuation / 1D model results / osa 10° (maa 26°)

It is reminded that this temperature fluctuation is evaluated for the PR *illuminated face*.

<u>Note</u> : The boundary condition ($T_{inner skin}$ = fixed temperature) is confirmed by the results (fluctuation already negligible at node 35).

6.3.1.4.1.2 Effect of inertia damping

The following curves show the damping of this fluctuation when the considered area is far from the illuminated surface.

Planck PLM Thermal Analyses

Figure 6-32 : Inertia damping Comparison of "osa 10° (maa 26°)" and "osa 15° (maa 31°)" cases

6.3.1.4.2 Sensitivity analysis

A sensitivity analysis is performed through the study of a degraded case defined as follows :

- All the parameters (λ_{gc}, λ_{gl}, λ_{skin}, λ_{NIDA}, λ_{Al}, B_{af/s}, B_{s/N}, B_{N/s}, Cp_{Al}, Cp_{skin}, Cp_{NIDA}) are divided by a factor 2 (insulation of active face and reduction of thermal inertia).
- Moon illumination amplitude multiplied by a factor 2.

6.3.1.4.2.1 PR illuminated face temperature fluctuation

The modelling assumptions lead to the following results for "osa 10° (maa 26°)" case :

Planck PLM Thermal Analyses

Figure 6-33 : PR fluctuation / 1D model results / Degraded Case / osa 10° (maa 26°)

6.3.1.4.2.2 Effect of inertia damping

The following curves show the damping of this fluctuation when the considered area is far from the illuminated surface.

Figure 6-34 : Inertia damping / Degraded case Comparison of "osa 10° (maa 26°)" and "osa 15° (maa 31°)" cases

Planck PLM Thermal Analyses	R EFERENCE :	H-P-3-ASPI-A	N-0330
	DATE :	09/04/04	
	ISSUE :	2	Page : 92/181

6.3.1.5 Conclusion

Though performed through a rather simple modelling approach, the analyses allow to assess a max PR temperature fluctuation (due to Moon direct illumination) according to the considered PR area.

Indeed, considering :

- the realistic but nevertheless sizing typical assumptions,
- the results of the sensitivity analyses and the so-defined degraded case,

the max PR active face temperature fluctuation, due to direct Moon illumination, is, for all cases (osa 10°, 15° with or without extended Baffle) :

Period 60 s	osa 10° wo ext. baffle	osa 15° wo ext. baffle	osa 15° w ext. baffle
Illuminated area	# 1 μK	# 1.3 μK	# 1.3 μK
Central area	# 0.1 μK	# 0.4 μK	# 0.1 μK

The table hereafter shows, for the "osa 15° w ext. baffle" case, the fluctuation amplitude following z :

osa 15°	z (m)	ΔΤ (μΚ)
Illuminated area	0	1.33
	188.68	1.09
Circular outer part	377.36	0.36
	566.04	0.20
	754.72	0.13
Circular central part	943.39	0.10
	1132.07	0.08
	1320.75	0.07
	1509.43	0.06
Circular outer part	1698.11	0.05
	1886.79	0.05

Table 6.3-2 : PR temperature fluctuation following position / osa 15° (maa 31°) w ext. baffle

6.3.2 Thermal fluctuations of the Baffle

6.3.2.1 Introduction

This paragraph is intended to present the results achieved about the baffle temperature fluctuation when submitted to direct Moon illumination.

Planck PLM Thermal Analyses	R EFERENCE :	H-P-3-ASPI-A	N-0330
	DATE :	09/04/04	
	ISSUE :	2	Page : 93/181

The same approach as used for the PR has been applied to the baffle stability study; a 1D model of baffle thickness has been created. However, the baffle temperature fluctuation being a less sensitive parameter regarding straylight analysis, no inertia damping was applied to the 1D model results.

Note that the hence computed fluctuations should strictly concern only the back sides of illuminated areas. Allocating these fluctuations to the whole Baffle internal surface is a largely sizing assumption.

6.3.2.2 Baffle 1D modelling

6.3.2.2.1 Baffle design

The description of the baffle is given hereafter :

Figure 6-35 : Baffle thickness description

6.3.2.2.2 Baffle modelling

The 1D baffle modelling of the presented design is shown in Figure 6-36.

Planck PLM Thermal Analyses

REFERENCE :	H-P-3-ASPI-A	N-0330
DATE :	09/04/04	
ISSUE :	2	Page : 94/181

Figure 6-36 : Baffle modelling

6.3.2.2.2.1 Physical parameters assumptions

All assumptions are made in order to :

- Minimise the thermal inertia of different parts.
 - \rightarrow Inertia of open NIDA or paint are neglected.
 - \rightarrow Glue mass is neglected for the skins inertia estimation.
 - \rightarrow All Cp are considered at 50 K.
- Maximise the thermal coupling in the baffle thickness.
 - \rightarrow All conductivity assumptions are optimistic ones :
 - $\rightarrow \lambda_{\mbox{\tiny Al}}$ is taken equal to 200 W/m.K
 - \rightarrow No interfaces taken into account between skins and NIDA core.
 - \rightarrow The two skins are directly coupled to each other by a radiative coupling (ϵ =1 on each face).

Note :

The model is built per surface unit.

Planck	PLM	Thermal	Ana	lvses
I IMIIOR		i i i ci i i i ai	7.010	1303

REFERENCE :	H-P-3-ASPI-AN-0330		
DATE :	09/04/04		
ISSUE :	2	Page : 95/181	

6.3.2.2.2.2 Moon illumination evaluation

The incident flux on baffle due to moon direct illumination is the same as for the PR :

Poffle Meen illumination	Planck osa = 10°	Planck osa = 15°	Source
Barrie Moon munination	$maa_{max} = 26^{\circ}$	$maa_{max} = 31^{\circ}$	Source
Incident flux density on baffle	0.13 mW/m ²	0.18 mW/m ²	[RD 16]
Baffle absorptance (wrt Moon radiation)	100%	100%	
Baffle absorbed flux density	0.13 mW/m²	0.18 mW/m²	

his amplitude is injected to the Baffle as a 60s-period sinusoidal signal. This assumption is clearly pessimistic. Indeed, contrarily to the PR, the Baffle moon illumination should remain quite continuous, the only residual input flux fluctuation resulting from the Baffle being non-symmetrical around X axis.

6.3.2.3 Baffle internal face temperature fluctuation results

6.3.2.3.1 Typical assumptions

Modelling assumptions, as presented in §6.3.2.2.2, lead to the following results :

Typical case	Planck osa = 10°	Planck osa = 15°
Period 60s	maa _{max} = 26°	$maa_{max} = 31^{\circ}$
Internal face fluctuation	8 µK	11.2 µK

This amplitude is the max one potentially seen by the Baffle internal surface.

Figure 6-37 : Baffle fluctuation / 1D model results / osa 10° (maa 26°)

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59 Référence du modèle : M023-3

6.3.2.3.2 Sensitivity analysis

A sensitivity analysis is performed through the study of degraded case defined as follows :

- The parameters (λ_{skin}, λ_{NIDA}) are multiplied by a factor 1.5 (coupling of perturbation absorbing face and internal face).
- The parameters (Cp_{skin}, Cp_{NIDA}) are divided by a factor 2.
- Moon illumination amplitude multiplied by a factor 2.

These assumptions lead to the following results :

Degraded case	Planck osa = 10°	Planck osa = 15°
Period 60s	$maa_{max} = 26^{\circ}$	$maa_{max} = 31^{\circ}$
Internal face fluctuation	21 µK	29 µK

This amplitude is the max one potentially seen by the Baffle internal surface.

6.3.2.4 Conclusion

Though performed through a rather simple modelling approach, the analyses allow to assess a max baffle internal face temperature fluctuation (due to Moon illumination).

Indeed, considering :

- the realistic but nevertheless sizing typical assumptions,
- the results of the sensitivity analyses and the so-defined degraded case,

the max baffle internal face temperature fluctuation, due to direct Moon illumination, is :

- # 20 µK for "osa 10° (maa 26°)" case
- # 30 µK for "osa 15° (maa 31°)" case

6.4 Overall synthesis on thermal fluctuation study

6.4.1 Temporal expression of thermal fluctuations

The results are synthetically presented in the Table 6.4-1.

Planck PLM Thermal Analyses

REFERENCE: H-P-3-ASPI-AN-0330

2

DATE : 09/04/04

ISSUE :

Page : 97/181

				Perturbati	ion source				
PPLM thermal stability study results	SVM		Sorption Cooler JPL 1999 data		Sorption Cooler JPL 2002 data		Moon illumination		
	Amplitude	Period	Amplitude	Period	Amplitude	Period	Amplitude	Period	
Shield 2 internal	pogligiblo		۲۱۵۵ שער	667 c	7880 µK	# 4000 s			
Shield S internal	riegiigibie	-	2130 μκ οσ	2130 μκ - 667 s - 4	4088 µK	# 667 s	-	-	
Shield 3 external	pegligible	_	- 110 μK 667	ıK 667 s	1200 µK	# 4000 s		_	
Shield S external	riegligible	-			# 100 µK	# 667 s	_	-	
Sec Reflector	nealiaible	_	0.01 µK ³	667 s	# 0.4 μK	# 4000 s	-	-	
	nogingible			0073	negligible	# 667 s			
Prim. Reflector	nealiaible	-	0.01 µK ³	667 s	# 0.2 μK	# 4000 s	0.1 uK ¹	60 s	
	nogingioro		0.01 μις	5.01 pr.		negligible	# 667 s	o. r pre	
Baffle internal	rnal negligible - 30 uK		30 uK	667 s	400 µK	# 4000 s	30 цК ²	60 s	
bunne miternar	negngible		30 μκ 667		# 30 µK	# 667 s	ος μις	555	

Table 6.4-1 : PPLM thermal fluctuations overall synthesis

Notes :

 $^{1} \Rightarrow$ Value for PR central areas and corresponding to a " osa 15° (maa 26°) w ext. baffle ". See §6.3.1.4 for details. This value takes into account margin as explained in §6.3.1.4.2.

² \Rightarrow Value corresponding to a "osa 15° (maa 26°)" case. This value takes into account margin as explained in §6.3.2.3.2.

 3 \Rightarrow Values extrapolated from case with amplified perturbation (see §6.2.2.1.2).

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59 Référence du modèle : M023-3

Planck PLM Thermal Analyses	Reference :	H-P-3-ASPI-A	N-0330
	DATE :	09/04/04	
	ISSUE :	2	Page : 98/181

6.4.2 Spectral expression of temporal fluctuations

The temporal fluctuations are processed through a Fourier transform operation.

The comparison of temporal results obtained with JPL 2002 or 1999 data points out the JPL 2002 fluctuation profile as a worst case. As far as Sorption Cooler perturbation is concerned, only results in line with JPL 2002 data are therefore presented hereafter.

The Table 6.4-2 presents for each straylight sensitive element, the computed amplitude corresponding to 1/60 Hz, as well as the max specified value at this frequency.

PPLM	thermal stability	Computed max amplitude at 1/60 Hz (µK)	Requirements (µK)
	Circular central part	0.2 ¹	1
Primary Reflector	Moon illuminated part	1.3 ¹	15
	Circular outer part	1.1 ¹	3
Secondary Reflector		<< 0.1	1
Baffle		30 ¹	100
Shield 3 (internal)		4.7	100
Shield 3 (external)		1.3	13

 Table 6.4-2 : Temperature fluctuation / Comparison with specification

¹ includes fluctuations due to Moon illumination, SVM and Sorption Cooler perturbations

All stability requirements are met.

Planck PLM Thermal Analyses	R EFERENCE :	H-P-3-ASPI-A	N-0330	
	DATE :	09/04/04		
		ISSUE :	2	Page : 99/181

APPENDIX

Planck PLM Thermal Analyses	R EFERENCE :	H-P-3-ASPI-	AN-0330
	DATE :	09/04/04	
	ISSUE :	2	Page : 100/181

APPENDIX 1

MATERIALS PROPERTIES : CONDUCTIVITY AND HEAT CAPACITY VALUES

Planck	PLM	Thermal	Anal	vses
Tarick		merman	/ linai	yscs

REFERENCE :	H-P-3-ASPI-AN-0330		
DATE :	09/04/04		
ISSUE :	2	Page : 101/181	

GFRP

 \Rightarrow Cryo-Struts, bracing ...

CSAG proposed data out of date.

Planck PLM Thermal Analyses	R EFERENCE :	H-P-3-ASPI-	AN-0330
	DATE :	09/04/04	
	ISSUE :	2	Page : 102/181

CFRP

 \Rightarrow Telescope sandwich facesheets

Planck	PLM	Thermal	Ana	vses
I IGHIOR		morman	7.110	300

REFERENCE :	H-P-3-ASPI-	AN-0330
DATE :	09/04/04	
ISSUE :	2	Page : 103/181

Scotchweld 2216

 \Rightarrow Elements interfacing (struts blades, braids ...)

Planck	PLM	Thermal	Anal	vses
Tarick		merman	/ that	yJCJ

REFERENCE :	H-P-3-ASPI-	AN-0330
DATE :	09/04/04	
ISSUE :	2	Page : 104/181

Miro27

 \Rightarrow Shields1&2&3 and Baffle sandwich facesheets

Référence du modèle : M023-3

Planck	PLM	Thermal	Anal	vses
				J

REFERENCE :	H-P-3-ASPI-	AN-0330
DATE :	09/04/04	
ISSUE :	2	Page : 105/181

Copper

\Rightarrow Thermal braids

Planck	PLM	Thermal	Anal	vses
Tarron		morman	/ thu	y303

REFERENCE :	H-P-3-ASPI-	AN-0330
DATE :	09/04/04	
ISSUE :	2	Page : 106/181

\Rightarrow Struts collars and blades

Same heat capacity values as for Miro27.

AA5056

 \Rightarrow All sandwich cores

→ Same heat capacity values as for Miro27.

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59 Référence du modèle : M023-3

Planck	PI M	Thermal	Analy	vses
I TATION		merman	Anar	1303

REFERENCE :	H-P-3-ASPI-AN-0330	
DATE :	09/04/04	
ISSUE :	2	Page : 107/181

Titanium

\Rightarrow Telescope and struts brackets

Planck PLM Thermal Analyses

R EFERENCE :	H-P-3-ASPI-A	AN-0330
DATE :	09/04/04	
ISSUE :	2	Page : 108/181

Shields petals inter-conductance

Planck PLM Thermal Analyses

R EFERENCE :	H-P-3-ASPI-AN-0330			
DATE :	09/04/04			
ISSUE :	2	Page : 109/181		

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

Planck PLM Thermal Analyses	R EFERENCE :	H-P-3-ASPI-	AN-0330
	DATE :	09/04/04	
	ISSUE :	2	Page : 110/181

APPENDIX 2

MATERIALS PROPERTIES : THERMO-OPTICAL PROPERTIES

REFERENCE :	H-P-3-ASPI-AN-0330				
DATE :	09/04/04				
ISSUE :	2	Page : 111/181			

LEC

EADS measurement (calorimetric method) :

 $\epsilon = 0.041 \pm 0.006 @ 20^{\circ}C$

LEMTA measurements : Normal Specular reflectance and RDH (hemispherical diffuse reflectance) :

Results of data processing :

✓ Emissivity as a function of temperature

The ϵ (T) curve is processed from spectral measurements (integration through Planck law at T) adjusted from EADS measurement (see next figure).

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59 **Planck PLM Thermal Analyses**

✓ Reflectance properties

Miro	Nominal	Max (cold)	Min (hot)	
Specular ratio	98.2%	100%	94.9%	

Reflectance properties are directly assessed from available LEMTA data. An average specular ratio between 10 and 20µm has been taken into account as conservative value for all IR spectral range (specular ratio increase with wavelength).

Planck	PLM	Thermal	Ana	lvses
		·····ai	<i>i</i>	

REFERENCE :	H-P-3-ASPI-AN-0330				
DATE :	09/04/04				
ISSUE :	2	Page : 113/181			

HEC

LEEE measurements :

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

Planck PLM Thermal Analyses	R EFERENCE :	H-P-3-ASPI-	AN-0330
	DATE :	09/04/04	
	ISSUE :	2	Page : 114/181

APPENDIX 3

MATERIALS PROPERTIES : AREAS AND COATING DEFINITION FOR RADIATIVE MODELLING

Référence Fichler :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

Planck PI M Thermal Analyses	R EFERENCE :	H-P-3-ASPI-	AN-0330
Fighter Em mermar Analyses	DATE :	09/04/04	
	ISSUE :	2	Page : 115/181

Planck PI M Thermal Analyses	R EFERENCE :	H-P-3-ASPI-	AN-0330
	DATE :	09/04/04	
	ISSUE :	2	Page : 116/181

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

Planck PLM Thermal Analyses	R EFERENCE :	H-P-3-ASPI	-AN-0330
	DATE :	09/04/04	
	ISSUE :	2	Page : 117/181

Parasitic elements on LEC :

Area numb	er	1	2	3	4	5	6
Aroa dosigna	tion	Miro uppor	Miro lowor	Miro	Miro	Miro upper	Miro JPL
Area designation	wino upper	MILO IOWEI	screws#B	screws#C	routing	routing	
Total surface (m²)	9.204	9.052	0.152	0.144	0.910	0.910
Default surface	(m²)	0.020	0.020	0.106	0.001	0.021	0.066

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

Planck PLM Thermal Analyses	Reference :	H-P-3-ASPI-	AN-0330
	DATE :	09/04/04	
	ISSUE :	2	Page : 118/181

Shield 2

R EFERENCE :	H-P-3-ASPI-	AN-0330
DATE :	09/04/04	
ISSUE :	2	Page : 119/181
	Reference : Date : Issue :	REFERENCE : H-P-3-ASPI- DATE : 09/04/04 ISSUE : 2

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

Planck PI M Thermal Analyses	
DATE : 09/04/04	
Issue: 2 Page:	120/181

Parasitic elements on LEC :

Area number	1	2	3	4	5	6
Area designation	Miro uppor	Miro lowor	Miro	Miro	Miro upper	Miro JPL
Area designation	wino upper	IVIII O IOWEI	screws#B	screws#C	routing	routing
Total surface (m ²)	8.791	8.640	0.151	0.132	0.909	0.909
Default surface (m ²)	0.020	0.020	0.106	0.001	0.020	0.045

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

Planck PLM Thermal Analyses	Reference :	H-P-3-ASPI-	AN-0330
	DATE :	09/04/04	
	ISSUE :	2	Page : 121/181

Planck PI M Thermal Analyses	REFERENCE :	H-P-3-ASPI-	AN-0330
· · · · · · · · · · · · · · · · · · ·	Date :	09/04/04	
	ISSUE :	2	Page : 122/181

Planck PLM Thermal Analyses	R EFERENCE :	H-P-3-ASPI	-AN-0330
	DATE :	09/04/04	
	ISSUE :	2	Page : 123/181

Parasitic elements on LEC :

Area number	1	2	3	4	5
Area designation	Miro	Miro	Miro	Miro JPL	Miro JPL
Alea designation	IVIII O	screws#B	screws#C	routing (int)	routing (ext)
Total surface (m ²)	7.429	0.150	0.125	0.918	0.490
Default surface (m ²)	0.020	0.106	0.002	0.177	0.007

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

REFERENCE :	H-P-3-ASPI-AN-0330		
DATE :	09/04/04		
ISSUE :	2	Page : 124/181	

Baffle

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

Planck PLM Thermal Analyses	REFERENCE :	H-P-3-ASPI-	AN-0330
	DATE :	09/04/04	
	ISSUE :	2	Page : 125/181

PR Panel

Planck PLN	Thermal	Analyses
------------	---------	----------

Reference :	H-P-3-ASPI-	AN-0330
DATE :	09/04/04	
ISSUE :	2	Page : 126/181

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

Planck PLM Thermal Analyses	Referen	
	DATE :	

 REFERENCE :
 H-P-3-ASPI-AN-0330

 DATE :
 09/04/04

 Issue :
 2
 Page : 127/181

APPENDIX 4

PPLM CTA HARNESS DESIGN JUSTIFICATION

A4 – 0 Introduction

The P-PLM harness to be routed from SVM to cold P-PLM stages is constituted by temperature sensors and heating lines cables.

The choice of cables characteristics will be driven by :

- for T° sensors lines, the measurement uncertainty due to the non perfect knowledge of the wires electrical resistance (the sensors are thermistors),
- for heating lines, the max amperage to be seen by the conducting wires,
- for all lines, a need to minimise the heat leaks, through the harness, from the SVM hot parts to the P-PLM coldest stages.

The final cables definition must also keep hardware characteristics (wires materials and gauge) within reasonable and well tried range.

The detailed description of the temperature acquisition accuracy and power injection, is given in A4 - 1 - 1 and A4 - 1 - 2.

A4 - 1 P-PLM Harness functional requirements

A4 – 1-1 Temperature acquisition lines

Extract from [RD1] :

Decontamination sensors	Quantity	Туре	NominalT	Accuracy
Primary Reflectors				
PRTC1	1	А	40K	± 2.5K
PRTC2	1	В	40K	± 2.5K
PRTC3	1	С	40K	± 2.5K
Sub total 1	3			
Secondary Reflectors				
SRTC1	1	А	40K	± 2.5K
SRTC2	1	В	40K	± 2.5K
SRTC3	1	С	40K	± 2.5K
Sub total 2	3			
FPU-HFI				
FPUHFITC1	1	А	4K	± 2.5K
FPUHFITC2	1	В	4K	± 2.5K
FPUHFITC3	1	С	4K	± 2.5K
Sub total 3	3			
FPU-LFI				
FPULFITC1	1	А	20K	± 2.5K
FPULFITC2	1	В	20K	± 2.5K
FPULFITC3	1	С	20K	± 2.5K
Sub total 4	3			
Total	12			

Planck PLM Thermal Analyses

Reference :	H-P-3-ASPI-AN-0330
DATE :	09/04/04

2

ISSUE :

Page : 129/181

Operational sensors	Quantity	Type	NominalT	Accuracy
Groove 1	Quantity		1 torrinari	ricouracy
SC heat exchanger 1	1	N	135K	+ 1K
	1	R	135K	+ 2.5K
SC heat exchanger 2	1	N	135K	± 1K
je se	1	R	135K	± 2.5K
+ Z External edge	1	N	113K	± 1K
	1	R	113K	± 2.5K
Groove 2				
SC heat exchanger 1	1	N	80K	± 1K
	1	R	80K	± 2.5K
SC heat exchanger 2	1	N	80K	± 1K
	1	R	80K	± 2.5K
Groove 3				
SC heat exchanger 1	1	Ν	50K	± 1K
	1	R	50K	± 2.5K
SC heat exchanger 2	1	N	50K	± 1K
	1	R	50K	± 2.5K
Wave Guides Interface1	1	N	50K	± 1K
	1	R	50K	± 2.5K
Wave Guides Interface2	1	N	50K	± 1K
	1	R	50K	± 2.5K
Optical cavity	1	N	50K	± 1K
	1	R	50K	± 2.5K
PR panel				
JFET interfaces	1	N	40K	± 1K
	1	R	40K	± 2.5K
FPU interface 1(lower beam)	1	N	40K	± 1K
	1	R	40K	± 2.5K
FPU interface2 (+Y)	1	N	40K	± 1K
	1	R	40K	± 2.5K
FPU Interface3 (-Y)		N	40K	± IK
Deffle	1	R	40K	± 2.5K
Ballie	1	NI	401/	. 11/
	1		40K	
Paffle 2 (Lateral face modium)	1	K N	40K	± 2.3K
	1	D	40K	
Baffle 3 (Lateral face upper	1	N	40K	± 2.3K
position)	1	N	40K	± 1K
	1	R	40K	+ 2.5K
Baffle 3 (Rear face)	1	N	40K	± 1K
	1	R	40K	± 2.5K
Reflectors	İ			-
PR1	1	N	40K	± 1K
	1	R	40K	± 1K
PR2	1	Ν	40K	± 1K
	1	R	40K	± 1K
SR1	1	Ν	40K	± 1K
	1	R	40K	± 1K
SR2	1	N	40K	± 1K
	1	R	40K	± 1K
Total	44			

The indicated accuracies are for electronic only, worst case without calibration. A calibration is requested to improve the situation. The goal for the sensor line (sensor and wires) is to not degrade the above accuracy more than 20% for operational cryo temperatures.

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

Planck PLM Thermal Analyses	R EFERENCE :	H-P-3-ASPI-AN-0330		
	DATE :	09/04/04		
	ISSUE :	2	Page : 130/181	

According to CDMU possibilities, only 2 wire sensors can be acquired.

This 2 wire acquisition has a direct impact on the selection of sensors. Indeed, in order to have an acceptable T° measurement uncertainty due to the wires resistance, the total wires resistance (resp the uncertainty wrt its knowledge) has to be kept low when compared to the sensor resistance (resp the sensors sensitivity).

This becomes a serious problem at low temperature where sensors resistance and sensitivity become very low. Next table shows examples with different Rosemount 118MF Pt probes, assuming a 60Ω harness with a 7Ω (approx 10% of total resistance) uncertainty upon its actual resistance knowledge.

118MF Pt probe	Ratio R _{wiring} / R _{probe 50K} (%)	T° measurement at 50K Uncertainty due to wires (K)
Pt100	673%	16.9
Pt500	134%	3.4
Pt1000	67%	1.7
Pt2000	33%	0.8
Pt5000	13%	0.4

Measurement accuracy / Influence of Pt probe selection

Therefore, due to :

- ✓ Planck PLM dimensions and resulting important cable lengths,
- ✓ the 2 wire acquisition,
- ✓ the need to lower the heat leaks induced by the wiring,
- ✓ the required measurement accuracy,
- ✓ unreliability of PT5000 sensors,

it appears compulsory to use PT2000 sensors.

The harness sizing will be based on this PT2000 use assumption.

One of Pt probes drawbacks is the need of a rather high excitation current (≤ 1 mA) leading to potential significant probe self heating.

Next table presents examples of dissipated power for PT2000 (Joule effect in wires neglected), in case of continuous current supply (conservative approach). These loads are of interest only for operational mode.

118MF PT2000	Т (К)	Self dissipated power (mW)		
I = IIIIA		1 probe	Total	
Shield1 (2 probes)	150	1.0	2.0	
Shield 2 (2 probes)	110	0.7	1.4	
Shield 3 and Telescope (42 probes)	50	0.18	7.5	

PT2000 self heating estimation

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

Planck	ЫM	Thermal	Δnal	VSPS
FIGIIUN		mermai	Апаг	y 303

R EFERENCE :	H-P-3-ASPI-AN-0330			
DATE :	09/04/04			
ISSUE :	2	Page : 131/181		

Though negligible wrt global performance, this self heating may decay the measurement accuracy since the sensor may overheat wrt the substrate. This overheat, linked to the potting quality and to the contact with the substrate, is difficult to predict. For a rough estimation, it is assumed a static gain equal to 50 (independent of T°) which means that a self heating power of 1 W induces a gradient "probe – substrate" equal to 50 K. It is moreover assumed that the 1mA current is applied permanently, which is a conservative assumption. Next table presents estimations of overheat values (K) taking into account these assumptions :

118MF PT2000	Т (К)	Self Heating (mW)	Overheat [G=50 K/W] (K)
	300 (FPU+Tel Decont)	2.3	0.12
150 (Sh1 Operational)		1.0	0.05
	110 (Sh2 Operational)	0.7	0.04
	50 (Sh3+Tel Operational)	0.18	0.01

PT2000 overheat estimation

A4 – 1-2 Heating lines

Classification	Heated element / area	Number of lines		Mode	Max µ (V	oower V)	Require (V	d power V)
		Ν	R	Ē	ΣΝ	ΣR	ΣΝ	ΣR
PR dec	Primary Reflector	2	1	dec	120	60	49.5	49.5
SR dec	Secondary Reflector	1	1	dec	60	60	26.4	26.4
FPU dec	FPU -HFI	1	1	dec	60	60	TBD	TBD
FPU dec	FPU - LFI	1	1	dec	60	60	TBD	TBD

Power injection needs

Note :

• The required power values are drawn from ASED analyses (see [RD13]).

Next table present, for information, heating lines resistance values used for further computations :

Classification	Heated element / area	Total resistance (Ω)	Required power (theoretical power under 28V) (W)
PR dec N1	Primary Reflector	32.8	23.9
PR dec N2	Primary Reflector	30.7	25.6
PR dec R	Primary Reflector	15.9	49.5
SR dec	Secondary Reflector	29.7	26.4
FPU dec	FPU	TBD	TBD

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

Heating lines characteristics

A4 - 2 Wires materials classification

Absolute indicators, in term of thermo-electrical best behaviour, have to be expressed in order to classify a priori the different candidate materials.

A4 – 2 – 1 Temperature acquisition lines

The T° measurement uncertainty due to the wires resistance can be considered, at first order, proportional to the wire material **electrical resistivity** [R_e (Ω .m)] at the corresponding temperature.

The measurement uncertainty δ [K] (induced by wires resistance) can be written as follows :

$\delta = A \times R_e \times I/(S \times \eta)$	[1]

where :

- ✓ I is the wire length (forth and back) [m]
- \checkmark S is the wire section [m²]
- √ η is the sensor sensitivity [Ω/K]
- \checkmark A is an non-dimensional constant depending of the acquisition electronics.

The heat leaks can be considered as proportional to the **conductivity integral [IK (W/m)]** between the hot and cold harness boundaries.

Notes :

- No dedicated device is foreseen to heat sink the P-PLM harness to the intermediate shields. Though the harness, routing along the struts, will obviously be linearly heat sinked, the conservative assumption is made according to which the 50K parts are linked, through the harness, directly to the 300K SVM parts.
- As a conservative approach, the presented computations involve only conductive couplings.. Besides, the harness routing has been defined so that the induced radiative perturbations may be as low as possible (routing on the struts). Moreover, the current optimisation already takes into account limitations in certain parameters, such as the max wire size, in order to keep the "pure conductive" assumption as reasonable as possible.

The heat leak **\phi** [W] on shield 3 (induced by one wire) can be written as follows

$\phi = IK(300, 50) \times S/I$	[2]

where :

 \checkmark IK(300,50) is the conductivity integral between 300K and 50K.

Using [1] and [2], the heat leak can be written as follows :

$\phi = A \times IK(300,50) \times Re / (\delta \times \eta) $ [3]	$\phi = A \times IK(300, 50) \times Re$ /	(δ×η)	[3]
--	---	-------	-----

Then, with given δ and η values, the best material will be the one minimising IK(300,50)×Re.

Note :

• Equation [3] shows that a probe with high sensitivity η will yield a lower impact, on T[°] measurement uncertainty, of wires resistance.

The next table presents an overview of different common materials and associated IK(300,50)×Re values.

Material description	Int. Cond. IK(W/m)		Int. Cond. IK(W/m)		Resist. elec Re (Ohm.m)	IK.Re (W.Ohm)
	300 K > 50 K		Моу	Probes		
Copper	88024		1.10E-08	9.68E-04		
Aluminum	53791 53791		1.71E-08	9.20E-04		
304 Stainless Steel	2939		6.15E-07	1.81E-03		
Manganin	4137	4127	4.61E-07	1.91E-03		
Phosphore Bronze A	11327	11327	9.68E-08	1.10E-03		
Brass Cu - Zn (90-10)	36114	30114	3.15E-08	1.14E-03		
Brass Cu - Zn (70-30)	21331	21331	5.66E-08	1.21E-03		

Material classification / Sensors lines

Note :

• The Re value is the average value between 300K and 50K, assuming a linear temperature distribution along the wire, even for Decontamination mode (weak influence on results and T° distribution roughly known during Decontamination).

The figure below displays the classification of these materials for the sensors harness definition. The best materials correspond to the lower Y values.

Material classification / Sensors lines

A4-2-2 Heating lines

The performance indicator related to heating lines is expressed through the equation [4].

 $\phi = B \times IK[300, 50] \times Re^{2/3}$

[4]

where :

✓ B is constant independent of conductivity and resistivity values

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59 Next table presents an overview of different common materials and associated IK(300,50)× $Re^{2/3}$ values.

Material description	Int. Cond. IK (W/m)		Resist. elec Re (Ohm.m)	IK.Re^(2/3)
	300 K	> 50 K	300 K	Heaters
Copper	89224	88024	1.96E-08	6.39E-01
Aluminum	53791	53791	3.09E-08	5.30E-01
304 Stainless Steel	2009	2939	7.20E-07	2.36E-01
Manganin	4137	4137	4.76E-07	2.52E-01
Phosphore Bronze A	11327	11327	1.07E-07	2.55E-01
Brass Cu - Zn (90-10)	30114	36114	4.11E-08	4.30E-01
Brass Cu - Zn (70-30)	21331	21331	6.92E-08	3.60E-01

Material classification / Heating lines

Note :

• The Re value is the value at 300K, since the significant value of this parameter corresponds to a heating mode.

Next figure displays the classification of these materials for the heaters harness definition. The best materials correspond to the lower Y values.

Material classification / Heating lines

A4 – 3 Design constraints

Acceptance criteria have to be defined in order to guide the wire selection according to specific Planck constraints.

A4 – 3 – 1 Maximum heat leaks

The overall harness will be defined so as to induce, at 50K level, heat leaks (HL_{50K}) inferior to 8% of global loads on Shield 3 (#2W). The contribution of both heating and sensors lines are as defined by criteria [C1] and [C2] :

|--|

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLN Thermal Analyses du 12/04/04 09:59

$HL_{50K}^{sensors} \le 140 \text{mW}$

A4 - 3 - 2 Wires size

The smaller size, considering fragility and classical handling, has been taken equal to AWG28. Hence the [C3] criteria on the min wire gauge to be considered :

Min wires size : AWG28 [C3]

Though difficult to quantify, it is felt that the wires overall dimension has to be kept as reduced as possible (influence of radiative effect, required holes in shields for pass through, handling ...). The [C4] criteria upon max wires size has been quantified as follows :

Max wires size · AWG22	[CA]	1
IVIDA WILES SIZE . AVVOZZ	C4]	

Note :

20 AWG22 wires (approximately the number of wires for the heating lines) would roughly lead to a 5mm diameter cylindrical harness or to a 20mm wide flat harness.

A4 - 3 - 3 Voltage loss in heater wires

Harnesses, in cryo application, often experience large voltage losses. Planck PLM heaters harness will be designed so that its resistance induce a total power loss, when compared to the theoretical heaters dissipation under 28V nominal voltage, inferior to 15%. Hence the [C5] criteria :

Power loss due to wires < 15% theoretical power

A4 - 4 Wires optimisation

The materials selection and the design constraints must be confronted in order to lead to the final optimisation.

A4 - 4 - 1 Temperature acquisition lines

A4 - 4 - 1 - 1 Selection of material

The needs of temperature acquisitions are presented in term of wires reaching each stage :

- Shield 1 : 112
- Shield 2 : 100 .
- Shield 3 + Telescope : 92 •

It can be seen that most of the sensors will be placed on the 50K level. As a conservative approach the all 112 wires are preliminarily considered as reaching the 50K shield.

The combination of [C2] and [C3] criteria, associated to the number of wires, lead to a maximum IK. This maximum IK eliminates the use of the most conductive materials as shown below (the accepted materials are those on the left side of the borderline).

Planck PLM Thermal Analyses

R EFERENCE :	H-P-3-ASPI-	AN-0330
DATE :	09/04/04	
ISSUE :	2	Page : 135/181

[C5]

[C2]

Planck PLM Thermal Analyses

Sensors lines wiring optimisation

When referring to the figure above, it can be noted that the accepted materials are not the optimum ones. This is due to the fact that, because of the min AWG value (criteria [C3]), the only significant parameter is the IK.

The baseline material for sensors wires is therefore Brass.

A back-up material may be Phosphore Bronze

A4 - 4 - 1 - 2 Final definition and verification

For availability and technological reasons, Brass is preferred to Phosphore Bronze. The chosen definition is AWG28 Brass. The design verification, in term of induced uncertainties and heat loads, is given in tables below.

Т° (К)	Mode	PT2000 resistance (Ω)	PT2000 sensitivity (Ω/K)	Total wire length (m)	Total wires resistance (Ω)	Uncertainty on wires resistance (%)	Resulting uncertainty on T° measurement (K)	Uncertainty including overheat (K)
40	Ope	115	7	8	5	±20	±0.15	±0.16
110	Ope	692	9	6	4	±20	±0.10	±0.14
150	Ope	1030	8	4	3	±20	±0.07	±0.12
300	Dec	2314	8	8	7	±20	±0.15	±.0.27

Sensors lines wiring verification / T° measurement accuracy

Notes :

- The 2×4m wires length takes into account potential routing on shields and/or sensors locating on Baffle.
- The ±20% uncertainty on wires resistance corresponds, for example, to an uncertainty of ±50K on the wires distribution temperature between the shields.
- It is of course assumed that the wires resistance can be subtracted from each probe R=f(T) curve.
- The 300K case corresponds to a Decontamination mode i.e. to probes on Reflectors at ambient temperature.

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLN Thermal Analyses du 12/04/04 09:59 As shown below, the induced heat loads are below the 150mW defined as goal.

Material	AWG	nb wires	Length	S per cond	Tmax	Tmin	I cond	Load
description	-	-	(m)	(m²)	(K)	(K)	(W/m)	(mW)
Brass 65/35	28	112	2	8.8E-08	300	50	2.10E+04	100

Sensors lines wiring verification / Heat loads

Note :

- The 2m length is assumed as the minimum length between SVM and shield 3 (conservative assumption).
- The exact wires definition (type of Brass and cross section) is drawn from supplier data (see [RD1])

A4 - 4 - 2 Heating lines

A4 - 4 - 2-1 Selection of material

The needs of heating lines are expressed in next table in term of wires number.

Classification	Heated	Number of lines		Number	Required power (W)		
	element / area	N	R	of wires	ΣΝ	ΣR	
PR dec	Primary Reflector	2	1	8	49.5	49.5	
SR dec	Secondary Reflector	1	1	4	26.4	26.4	
FPU dec	FPU	2	2	8	TBD	TBD	

Notes :

- The same type of wires shall be used for all circuits.
- The number of wires is chosen so that approximately 25W shall be supported by a 2-wire circuit (hence a 4-wire circuit for PR dec R)

Heating lines / Number of wires

The combination of [C1] and [C3] criteria, associated to the number of wires, lead to a maximum IK. This maximum IK eliminates the use of the most conductive materials as shown in figure below (the accepted materials are those on the left side of the borderline).

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

Planck PLM Thermal Ana	alyses
------------------------	--------

Heating lines wiring optimisation 1/2

The combination of [C4] and [C5] criteria, associated to the min 2-wire heaters circuits resistance (=29.7 Ω), lead to a maximum R_e. This maximum R_e eliminates the use of the most resistive materials.

Both borderlines define an acceptance area (lower left side) as shown in next figure.

Heating lines wiring optimisation 2/2

The best material is Brass.

The selected material for sensors wires is therefore Brass.

A back-up material may be Phosphore Bronze.

A4 – 4 – 2-2 Final definition and verification

As for the sensors wires, the chosen material is brass. The final definition is AWG24 Brass. The wires design is verified wrt heat loads, power loss at heaters level and max amperage.

A4 - 4 - 2-2-1 Heat loads

The design verification, in term of heat loads, is given here below :

Harness description -	Material description	AWG -	nb wires -	length (m)	S per cond (m²)	Tmax (K)	Tmin (K)	l cond (W/m)	Load (mW)
Heaters PR	Brass	24	8	2	3.24E-07	300	50	2.1E+04	20
Heaters SR	Brass	24	4	2	3.24E-07	300	50	2.1E+04	10
Heaters FPU	Brass	24	8	2	3.24E-07	300	50	2.1E+04	20
Total heaters harness							50		

Heating lines wiring verification / Heat loads

The resulting heat loads appear acceptable, though slightly exceeding the initial upper limit.

Note :

• The 2m length assumption is the same as for the sensors lines.

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLN Thermal Analyses du 12/04/04 09:59

A4 – 4 – 2-2-2 Power loss due to wires resistance

The next table shows the final power available at heaters level:

Line	Re	AWG	Section	Length	Voltage	Wires	Heaters	Power in	Theoretical	Loss of
	(Ohm.m)	-	(m²)	(m)	(V)	resistance (Ohm)	(Ohm)	heater (W)	power in heater (W)	power (%)
PR N1	7.21E-08	24	2.4E-07	6	28	1.8E+00	32.8	21.5	23.9	10
PR N2	7.21E-08	24	2.4E-07	6	28	1.8E+00	30.7	22.8	25.6	11
PR R	7.21E-08	24	2.4E-07	6	28	9.0E-01	15.9	44.3	49.5	10
SR N&R	7.21E-08	24	2.4E-07	6	28	1.8E+00	29.7	23.5	26.4	11

Heating lines wiring verification / Power loss due to wires resistance

The power loss is below the 15% goal.

Notes :

- R_e value at ambient (heaters operating mode).
- Wires are assumed to be doubled for PR redundant line (hence a twice as low wires resistance).
- The wiring length is assumed equal to 3m (6m forth and back).
- The exact wires definition (type of Brass and cross section) is drawn from supplier data (see [RD1])

A4 - 4 - 2-2-3 Max amperage

The wires definition is compatible with max amperage.

Indeed :

- Maximum current admissible for 24AWG brass is 1.95 A which, taking into account 50% derating, becomes 0.97A
- With a 28V PCDU output voltage, and according to heating needs, the max amperage seen by the SR wires (worst case) will be ≤ 0.95A

A4 – 5 Conclusion

The chosen wire for sensors lines wiring is AWG28 Brass. This choice leads to the following performance :

- Temperature measurement uncertainty due to wires resistance @50K $\approx \pm 0.2$ K
- Heat leaks on cold stage (50K) ≈ 100mW

The chosen wire for heating lines is AWG24 Brass. This choice leads to the following performance :

- Power loss in wires $\approx 10\%$
- Heat leaks on cold stage (50K) ≈ 50mW

This definition is included in global TMM modelling.

Planck PI M Thermal Analyses	REFERENCE :	H-P-3-ASPI-AN-0330		
	DATE :	09/04/04		
	ISSUE :	2	Page : 140/181	

APPENDIX 5

PPLM INTERFACES : SVM STRUCTURE TEMPERATURE

LABEL	T EOL + uncertainties (K)	SVM hot&nom (K) in TMM	T BOL survival - uncertainties (K)	SVM safe (K) in TMM
Solar Array (+Y.+Z)	398.8	398.8	373.8	373.8
Solar Array (+YZ)	399.4	399.4	374.1	374.1
Solar Array (-YZ)	399.4	399.4	372.7	372.7
Solar Array (-Y.+Z)	399.1	399.1	373.9	373.9
SVM Top (+Y.+Z)	301.3	301.3	252.5	252.5
SVM Top (+YZ)	300.9	300.9	259.1	259.1
SVM Top (-YZ)	301.2	301.2	265.6	265.6
SVM Top (-Y.+Z)	300.4	300.4	266.0	266.0
Sub-platform (+Y.+Z)	306.5	306.5	262.2	262.2
Sub-platform (+YZ)	306.0	306.0	258.5	258.5
Sub-platform (-YZ)	304.1	304.1	254.4	254.4
Sub-platform (-Y.+Z)	306.3	306.3	265.9	265.9
SVM radiator (-Y.+Z)	284.5	284.5	256.3	256.3
SVM radiator (+Z)	281.9	281.9	239.9	239.9
SVM radiator (+Y.+Z)	287.7	287.7	235.9	235.9
SVM radiator (+Y)	286.6	286.6	242.1	242.1
SVM radiator (+YZ)	261.9	261.9	236.3	236.3
SVM radiator (-Z)	263.3	263.3	238.1	238.1
SVM radiator (-YZ)	259.1	259.1	237.8	237.8
SVM radiator (-Y)	284.5	284.5	257.7	257.7
BEU (radiative area)	281.3	310.0	232.1	253.9
BEU lateral -Y	309.8	-	254.1	-
BEU central	304.1	-	247.9	-
BEU lateral +Y	310.4	-	253.9	-
PAU (radiative area)	266.6	269.3	229.9	232.2
I/F struts (+Y.+Z)	301.6	301.6	257.8	257.8
I/F struts (+Y)	301.5	301.5	257.8	257.8
I/F struts (+YZ)	304.4	304.4	250.9	250.9
I/F struts (-YZ)	304.2	304.2	251.0	251.0
I/F struts (-Y)	302.0	302.0	264.2	264.2
I/F struts (-Y.+Z)	301.4	301.4	260.3	260.3

REFERENCE :	H-P-3-ASPI-AN-0330				
DATE :	09/04/04				
ISSUE :	2	Page : 142/181			

APPENDIX 6

INSERT DETAILED MODELLING

Planck PLM Thermal Analyses	REFERENCE :	H-P-3-ASPI-AN-0330		
	DATE :	09/04/04		
	ISSUE :	2	Page : 143/181	

Next picture shows how main thermal paths, around the insert, are identified :

_

Next table shows the heat fluxes distribution along different thermal paths, with several assumptions on the glue filling :

Heat balance on 20 mm around insert	Assumption o	n glue thicknes Iower	ss between inse r skin	ert flange and
	100%	50%	10%	1%
Insert flange to lower skin (through the glue)	57,4%	40,7%	12,2%	1,4%
Glue under lower skin	27,8%	39,0%	58,0%	65,3%
Lower skin total flux	85,2%	79,6%	70,2%	66,7%
Lower skin radial heat flux	83,9%	78,6%	69,5%	66,1%
Lower skin - Upper skin (through nida)	1,3%	1,1%	0,7%	0,6%
Glue (central part) to upper skin	8,3%	11,4%	16,7%	18,7%
Glue (external part) to upper skin	6,5%	9,0%	13,1%	14,7%
Upper skin total flux	16,1%	21,4%	30,5%	33,9%
Upper skin radial heat flux	16,0%	21,3%	30,3%	33,8%
Upper skin radiative flux to space	0,2%	0,2%	0,2%	0,2%

APPENDIX 7

TEMPERATURES LISTING

HOT CASE
IΛ וח .

					DATE :	09	/04/04	
					ISSUE :	2	Pag	je : 145/181
			1730	HEAT FLANGE	286 79999	4961	SREM 156 30	1000
1001	Solar Array vs. sate	llit 285.19492	1730		01	4701	LCA2 229.90	000
1002	Solar Array vs. sate	llit 281.13587	1732	FCV MAIN 287 200	00	4702	LGA5 230.00	000
1003	Solar Array vs. sate	llit 280.58879	1733	ECV MAIN 287.299	⁷⁷ 00			
1004	Solar Array vs. sate	llit 283.42355	1734		297 20000			
1010	Solar Array 399.39	999	1743		287.39999	4042	VMC 220.20	000
1061	I/F struts -Y 302.00	000	1744		102 20000	4903	MULDALL 200 E2	404
1062	I/F struts -Y-Z	304.20001	1740		193.39999	7522	NO7715 210 20	090
1063	I/F struts +Y-Z	304.39999	2001	SVIVI Rad - Y + Z	284.50000	8501	NOZZLE 218.80	
1064	I/F struts +Y	301.50000	2002	SVM Rad +Z	281.89999	8503	DECOMP. COVER	216.39999
1065	I/F struts +Y+Z	301.60001	2003	SVM Rad +Y+Z	287.70001	8512	HEAT BARRIER	291.60001
1066	I/F struts -Y+Z	301.39999	2004	SVM Rad +Y	286.60001	8513	HEAT BARRIER	281.79999
1501	FIRING CONE	247.60001	2005	SVM Rad +Y-Z	261.89999	8514	HEAT BARRIER	276.70001
1503	THRUSTER 225.80	000	2006	SVM Rad -Z	263.29999	8533	DECOMP. COVER	218.60001
1504	HEAD PLATE DISC	252.00000	2007	SVM Rad -Y-Z	259.10001	8601	NOZZLE 212.10	001
1505	HEAT BARRIER	253.70000	2008	SVM Rad -Y	284.50000	8603	DECOMP. COVER	210.39999
1507	HEAT FLANGE	269.00000	3000	SVM I/F 300.000	00	8612	HEAT BARRIER	291.00000
1509	HEAT FLANGE	287.00000	3001	MLI SVM Top +Z	186.04116	8613	HEAT BARRIER	279.39999
1510	HEAT FLANGE	287.10001	3002	MLI SVM Top +Y	190.73742	8614	HEAT BARRIER	275.29999
1521	FIRING CONF	247.20000	3003	MLI SVM Top -Z	196.91539	8633	DECOMP. COVER	211.80000
1523	THRUSTER 229 600	001	3004	MLI SVM Top +Z-Y	185.97056	8701	NOZZLE 218.99	001
1524		251 30000	3011	SVM Top + Y + Z	301.29999	8703	DECOMP. COVER	216.39999
1524	HEAT BARRIER	257.50000	3012	SVM Top +Y-Z	300.89999	8712	HEAT BARRIER	294.50000
1525		252.07777	3013	SVM Top -Y-Z	301.20001	8713	HEAT BARRIER	284.00000
1527		208.00000	3014	SVM Top -Y+Z	300.39999	8714	HEAT BARRIER	278.70001
1529		287.00000	3501	MLI on Subplatform	+ Y + Z	8733	DECOMP. COVER	218.80000
1530	THE COM 202 70	200.09999		193.52504		8801	NOZZLE 220.10	001
1532	THR_COW 292.700		3502	MLI on Subplatform 201.18697	+Y-Z	8803	DECOMP. COVER	217.60001
1533	FCV MAIN 287.000	500	3503	MI I on Subplatform	-Y-7	8812	HEAT BARRIER	294.50000
1534	FCV MAIN 287.000	000		204.02824		8813	HEAT BARRIER	284.10001
1543	HEAT FLANGE	287.00000	3504	MLI on Subplatform	-Y+Z	8814	HEAT BARRIER	278.79999
1544	HEAT FLANGE	287.00000	0511	193.76194		8833	DECOMP. COVER	219.89999
1546	HEAT FLANGE	193.10001	3511	Subplatform +Y+Z	306.50000	13001	WG BEU VG1 Ti	260.44480
1701	FIRING CONE	249.89999	3512	Subplatform +Y-Z	306.00000	13002	WG BEU VG1	195.46192
1703	THRUSTER 231.70	000	3513	Subplatform -Y-Z	304.10001	13003	WG VG1 VG2	152.42279
1704	HEAD PLATE DISC	254.10001	3514	Subplatform -Y+Z	306.29999	13004	WG VG1 VG2	137.42840
1705	HEAT BARRIER	255.70000	3550	MLI on Subplatform 196.90080	hole	13005	WG VG1 VG2	124 15324
1707	HEAT FLANGE	270.00000	3560	Subplatform hole	306.29999	13006	WG VG1 VG2	111 37404
1709	HEAT FLANGE	287.29999	3600	MILIBELL 221.360	22	13000	WG_VG1_VG2	08 07/00
1710	HEAT FLANGE	287.29999	3901	BAFFLE STR1	165 30000	12009	WG_VG2_VG3	99 20025
1721	FIRING CONE	245.30000	3902	BAFFLE STR1	167 89999	12000		77 54541
			3022		00	12010		//.54541
			2040	LGA2 200.000	00	13010		00.41/45
1723	THRUSTER 224.800	000	3702		101 20000	13011	wc_ss 56./48	10
1724	HEAD PLATE DISC	249.60001	4701	DALLE SIKI	202 0000	13012	wg_ss 49.225	04
1725	HEAT BARRIER	251.20000	4902	DAFFLE SIKI	207.00000	13013	WG_SS 40.775	25
1727	HEAT FLANGE	267.10001	4921	SAST 227.899	77 77	13014	wg_ss 30.054	94
1729	HEAT FLANGE	286.89999	4922	lgaz 242.899	77	13015	WG_Cu 22.275	20

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

REFERENCE: H-P-3-ASPI-AN-0330

			mar / u	largees	DATE :	09	/04/04	
					ISSUE :	2	Pag	ge : 146/181
13016	WG_Cu 22.15476	5	16701	Block 4 4.70416		29060	Harness6 171.6	2116
13017	WG_Cu 22.03310)	16/02	Block 4 4.70415		29070	Harness / 140.7	5864
13018	WG_CU 21.9102	1/1/02/2	16/0/	BIOCK 4 4.70415		29080	Harness8 109.9	5248
13100	I/F_WG_VG1	161.68363	16708	BIOCK 4 4.70413		29090	Harnessy 80.21	567
13200	I/F_WG_VG2	104.75716	16/09	BIOCK 4 4.70414	270 (0570	29100	Harness_3rd_Gr	51.31669
13300	I/F_WG_VG3	00.45320	18001	Tube_BEU_VG1	270.60579	29110	Harness_SVIVI	300.00000
15001	I/F_WG_SS_CU	22.33514	18002	Tube_BEU_VGT	200.24270	29120	Harness2 278.6	7404
15001	Harnes_BEUVG1	240.40801	18003	Tube_VG1_VG2	100.38750	29130	Harness 255.3	7080
15002	Hallies_BEOVG1	198.20745	10004	Tube_VG1_VG2	137.60712	29140		10/7
			18005	Tube_VG1_VG2	123.23153	29150	Harnesso 202.3	4907
15002	Harpos VC1 VC2	144 17224	18000	Tube_VG1_VG2	110.24770	29100	Harnesso 172.9	0715
15003	Harnes_VG1_VG2	104.17324	19009	Tube_VG2_VG3	90.24887	29170	Harness 111.7	4547
15004	Harnes_VG1_VG2	149.01022	18008	Tube_VG2_VG3	72 00084	29180	Harnesso 92.17	4547
15005	Harnes_VG1_VG2	130.07043	10009	Tube_VG2_VG3	/3.99900	29190	Harness 2rd Cr	E2 E2000
15000	Harnes_VG1_VG2	120.04033	10010	Tube_vG2_vG3	05.15555	29200	Raffle V ovt	47 55771
15007	Harnes VG2_VG3	103 27858				30000	Baffle -7 evt	47.55771
15000	Harnes_VG2_VG3	04 24000	10011		55 99090	20002	Baffle Z ext	49.37717
15010	Harnes VG2 VG3	86 83798	18012	Tube_VG3_TOP	48 76126	30002	Baffle +7 ext	40.33773
15010	Harnes_VG2_VG3	79 61/11	10012	Tube_VG3_TOP	40.70120	20003	Paffle + 7 ovt	49.20793
15011	Harnes VG3_TOP	70.01411	18014	Tube_VG3_TOP	41.47477	30004	Baffle - V evt	40.22022
15012	Harnes VG3 TOP	64 89569	18015	Tube_TOP_END	23 14270	30500	Baffle +V int	47.56709
15013	Harnes_VG3_TOP	50 0/88/	18090		260 25304	30501	Baffle -7 int49.60	47.30707
15014	Harnes TOP bend	55 98358	18100	FLANGE Thermal Br	aid VG1	30502	Baffle -7 int48 34	852
15016	Harnes TOP bend	52 75135	10100	178.95442		30502	Baffle +7 int	49 31188
15017	Harnes TOP bend	49 80237	18101	I/F_Column_FLANGE	E_Therma	00000	buille + 2 line	17.01100
15018	harness bend	47 07878	10110	179.70469	1(0(227)			
15019	harness bend	44 54103	18110	Panels_VG1	169.62276			
15020	harness bend	42 15671	18200	104.75688	ald_vG2	30504	Baffle +7 int	48 23092
15021	harness bend	39.89968	18201	I/F_Column_FLANGE	E_Therma	30505	Baffle -Y int49.39	300
15022	harness bend	37.74893		104.70058		31000	Main panel -7 low	r + Y 52.22398
15023	harness bend	35.68763	18210	Panels_VG2	103.47234	31001	Main panel -Z low	+Y 47.88049
15024	harness bend	33.70085	18300	FLANGE_Thermal_Br 60.45469	aid_VG3	31002	' Main panel -Z low	+Y 45.53559
15025	harness_bend	31.77687	18301	I/F_Column_FLANGE	_Therma	31003	, Main panel -Z low	+Y 47.65024
15026	harness_bend	29.90408		60.63516		31005	Main panel -Z +Y	47.39563
15027	harness_bend	28.04924	18310	Panels_VG3	62.83571	31006	Main panel -Z +Y	47.37601
15028	harness_bend_FPU	26.22360	18410	Panels_Plane_VG3	54.37068	31007	Main panel -Z +Y	47.66203
15029	harness_bend_FPU	24.42041	18450	I/F_Column_VG3-ss_ 45.50122	_cu	31008	Main panel -Z +Y	47.97297
15030	harness_bend_FPU	22.63750	18500	FLANGE SS CU	22.34075	31009	Main panel -Z +Y	48.57914
15101	I/F_Hr_VG1	174.11052	18501	I/F_Column_FLANGE	_Therma	31010	Main panel -Z low	-Y 47.19105
15201	I/F_Hr_VG2	121.16714		23.10252		31011	Main panel -Z low	-Y 46.40612
15301	I/F_Hr_VG3	83.52184	18510	Panel_plaine_TOP	29.45996	31012	Main panel -Z low	-Y 45.53211
15450	I/F_Hr_VG3-ss_cu	67.78416	29010	Harness_SVM	300.00000	31013	Main panel -Z low	-Y 46.48150
15501	I/F_Hr_ss_cu	57.75578	29020	Harness2 278.4915	59	31015	Main panel -Z -Y	46.54426
16301	Block 4 4.68416		29030	Harness3 254.9628	39	31016	Main panel -Z -Y	46.63076
16441	Block 4 4.69296		29040	Harness4 229.2592	29	31017	Main panel -Z -Y	47.33193
			29050	Harness5 201.377	14			

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

IΛ ΡΙ . .

	viinerm	ai Ar	naryses	Date :	09/0	04/04	
				ISSUE :	2	Page	: 147/181
Main panel -Z -Y	47.64901	31123	Main panel top +Z 53.623	97	31500	Triangle Panel down.	.45.32496
Main panel -Z -Y	48.54846	31124	Main panel +Z Top +Y		31501	Triangle Panel up	45.34355
Main panel -Z 5	50.08668		45.36763		31600	strut - Y panel .	45.42714
Main panel -Z	52.41220	31125	Main panel +Z Top 45.394	40	31601	strut - Y panel.	45.18489
Main panel -Z 5	50.13692	31126	Main panel +Z Top -Y 45.367	34	31602	strut - Y panel .	45.07485
Main panel -Z	53.72392	31127	Main panel +Z Top +Y 43 49394		31603	strut - Y panel.	45.09688
Main panel -Z Top +Y	45.34490	31128	Main panel +7 Top 43.330	01	31604	strut - Y panel.	45.25593
Main panel -Z Top	45.35192	31129	Main panel +Z Top -Y 43.489	48	31605	strut - Y panel.	45.56006
Main panel -Z Top -Y	45.34485	31130	Main panel +Z Top +Y		31606	strut - Y panel .	46.01422
Main panel -Z Top +Y	43.48248		42.72278		31607	strut - Y panel.	46.62712
Main panel -Z Top	43.32065	31131	Main panel +Z low +Y		31608	strut - Y panel.	47.40495
Main panel -Z Top -Y	43.47794	21122	42.42030	00	31609	strut - Y panel .	48.35667
Main panel -Z Top +Y	42.71029	21122	Main panel + 7 Top - 1 42.719	70 D0			
Main panel -Z low +Y	42.41195	21202	Doubler papel 7 low + X	20			
Main panel -Z Top -Y	42.70745	31203	47.62555				
Main panel -Z Top	41.99185	31206	Doubler panel -Z medium		31610	strut + Y panel.	45.49001
Main panel +Z low +Y			47.36652		31611	strut + Y panel.	45.26332
51.88091		31208	Doubler panel -Z medium 47.96993		31612	strut + Y panel.	45.16364
Main panel +Z low +Y 47.83572		31213	Doubler panel -Z low -Y		31613	strut + Y panel.	45.19091
Main panel +Z low +Y			46.48697		31614	strut + Y panel.	45.35110
45.69418		31216	Doubler panel -Z medium 46.62800		31615	strut + Y panel.	45.65075
Main panel +Z low +Y		31218	Doubler papel -7 medium		31616	strut + Y panel.	46.09540
	17 20007	01210	47.65353		31617	strut + Y panel.	46.69602
	+7.30777	31220	Doubler panel top -Z +Y		31618	strut + Y panel.	47.45713
47.37933	+1	21221	50.09537	20	31619	strut + Y panel.	48.38991
Main panel +Z medium	1 +Y	31221	Doubler panel top -Z 52.422	78	31620	Bottom strut panel	44.29661
47.68178	N .	31222	50.15975		31621	Bottom strut panel	44.31590
Main panel +2 medium 47.95893	1 + Y	31223	Doubler panel top -Z 53.961	00	31622	Bottom strut panel	44.35547
Main panel +Z +Y	48.61936	31303	Doubler panel +Z low +Y		31623	Bottom strut panel	44.41811
Main panel +Z low -Y	47.13391		47.64999		31624	Bottom strut panel	44.50534
Main panel +Z low -Y	46.41983	31306	Doubler panel +Z medium 47.37598		31625	Bottom strut panel	44.61678
Main panel +Z low -Y	45.60406	31308	Doubler panel +Z medium		31626	Bottom strut panel	44.75138
Main panel +Z low -Y	46.47931		47.97301		31627	Bottom strut panel	44.90879
Main panel + Z - Y	46.55649	31313	Doubler panel +Z low -Y		31628	Bottom strut panel	45.08814
Main panel +Z medium	ı -Y	31316	Doubler papel +7 medium		31629	Bottom strut panel	45.28947
46.63208		31310	46.63075		31630	Back strut panel	43.98328
Main panel +Z medium 47.35150	ı -Y	31318	Doubler panel +Z medium		31631	Back strut panel	43.24309
		21220			31632	Back strut panel	42.71454
		31320	50.08683		31633	Back strut panel	42.40850
		31321	Doubler panel top +Z 52.412	30	31634	Back strut panel	42.32456
Main panel +Z medium	ı -Y	31322	Doubler panel top +Z -Y		31635	Back strut panel	42.46411
47.63231			50.13726		31636	Back strut panel	42.82267
Main panel + Z - Y	48.58972	31323	Doubler panel top +Z 53.725	34	31637	Back strut panel	43.39237
Main panel top +Z +Y5	50.04986	31400	Dismountable panel face 45.40903		31638	Back strut panel	44.15920
Main panel top +Z	52.40839	31401	Dismountable panel face		31639	Back strut panel	45.11878
Main panel top +Z -Y 5	50.08712		45.52927		31640	top strut panel	45.11167

Référence Fichler :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

וח IΛ .

REFERENCE : H-P-3-ASPI-AN-0330

	Planck PL	IVI I neri	mai Ai	naiyses	Date :	: 09/04/04		
					ISSUE :	2	Pag	je : 148/181
31641	top strut panel	44.18040	31901	brac strut+Y	240.07132	32005	strut 1 - Y (+Z)	142.58526
31642	top strut panel	43.39509	31902	brac strut+Y	196.60414	32006	strut 1 - Y (+Z)	137.61117
31643	top strut panel	42.75202	31903	brac_strut+Y	175.17793	32007	strut 1 - Y (+Z)	132.94978
31644	top strut panel	42.25283	31904	_ brac_strut+Y	164.27625	32008	strut 1 - Y (+Z)	127.40965
31645	top strut panel	41.89766	31905	brac_strut+Y	158.75577	32009	strut 1 - Y (+Z)	131.21025
31646	top strut panel	41.68741	31906	brac_strut+Y	156.07408	32010	strut 1 - Y (+Z)	127.31145
31647	top strut panel	41.62135	31907	brac_strut+Y	155.30557	32011	strut 1 - Y (+Z)	114.84197
31648	top strut panel	41.69978	31908	brac_strut+Y	155.29787	32012	strut 1 - Y (+Z)	105.67216
31649	top strut panel	41.92336	31909	brac_strut+Y	155.67064	32013	strut 1 - Y (+Z)	98.67709
31700	SR panel +Z low	46.11589	31910	brac_strut+Y	156.17707	32014	strut 1 - Y (+Z)	93.01093
31701	SR panel +Z low	46.69933	31911	brac_strut-Y	243.54085	32015	strut 1 - Y (+Z)	88.08959
31702	SR panel +Z low	46.11275	31912	brac_strut-Y	204.75302	32016	strut 1 - Y (+Z)	83.46353
31703	SR panel +Z low	46.31693	31913	brac_strut-Y	186.74392	32017	strut 1 - Y (+Z)	84.73438
31704	SR panel +Z medium	46.19866	31914	brac_strut-Y	177.95476	32018	strut 1 - Y (+Z)	83.41431
31705	SR panel +Z medium2	2 46.21117	31915	brac strut-Y	173.45589	32019	strut 1 - Y (+Z)	75.98017
31706	SR panel +Z Top	46.28377	31916	brac strut-Y	171.38294	32020	strut 1 - Y (+Z)	69.72970
31710	SR panel -Z low	46.11283	31917	brac_strut-Y	170.04843	32021	strut 1 - Y (+Z)	63.94169
31711	SR panel -Z low	46.71126	31918	brac strut-Y	168.63047	32022	strut 1 - Y (+Z)	58.24344
31712	SR panel -Z low	46.11442	31919	brac strut-Y	166.04995	32023	strut 1 - Y (+Z)	52.36092
			31920	brac strut-Y	161.12843	32024	strut 1 - Y (+Z)	50.03182
			31951	brac CFRP+Y	50.10121	32025	strut 1 - Y (+Z)	52.33480
			31952	brac CFRP+Y	49.61524	32026	strut 1 - Y (+Z)	50.94047
31713	SR panel -Z low	46.31867	31953	brac CFRP+Y	49.13599	32027	strut 1 - Y (+Z)	49.62486
31714	SR panel -Z medium	46.19736	31954	brac CFRP+Y	48.66253	32028	strut 1 - Y (+Z)	48.36277
31715	' SR panel -Z medium2	46.20904	31955	brac CFRP+Y	48.19470	32029	strut 1 - Y (+Z)	47.13930
31716	SR panel -Z top	46.26868	31956	brac CFRP+Y	47.73177	32030	strut 1 - Y (+Z)	45.95064
31800	strut + Y panel.	45.90744				32031	eccofoam strut 1 -	Y (+Z
31801	strut + Y panel.	45.85547					221.46658	,
31802	strut + Y panel.	45.80406	31957	brac CFRP+Y	47.27280	32032	eccofoam strut 1 -	Y (+Z
31803	strut + Y panel.	45.75367	31958	brac CFRP+Y	46.81707	22022	occofoam strut 1	V (1 7
31804	strut + Y panel.	45.71683	31959	brac CFRP+Y	46.36343	32033	162.44507	Γ(+Ζ
31805	strut + Y panel.	45.71362	31960	- brac_CFRP+Y	45.91027	32034	eccofoam strut 1 -	Y (+Z
31806	strut + Y panel .	45.74596	31961	brac CFRP-Y	49.79476	00005	150.10312	
31807	strut + Y panel.	45.81048	31962	- brac_CFRP-Y	49.50647	32035	eccofoam strut 1 - 142.77191	Υ (+Ζ
31808	strut + Y panel .	45.90337	31963	brac_CFRP-Y	49.23101	32036	eccofoam strut 1 -	Y (+Z
31809	strut + Y panel.	46.02298	31964	brac_CFRP-Y	48.96819		137.64622	
31810	strut - Y panel.	45.88483	31965	- brac_CFRP-Y	48.71793			
31811	strut - Y panel .	45.88366	31966	brac_CFRP-Y	48.47964	32037	eccofoam strut 1 - 132.93464	Y (+Z
31812	strut - Y panel.	45.88502	31967	brac_CFRP-Y	48.25332	32038	eccofoam strut 1 -	Y (+7
31813	strut - Y panel .	45.89164	31968	brac_CFRP-Y	48.03862		128.04421	
31814	strut - Y panel .	45.91397	31969	brac_CFRP-Y	47.83458	32039	eccofoam strut 1 -	Y (+Z
31815	strut - Y panel .	45.97281	31970	brac_CFRP-Y	47.64064	22040	130.03210	V (17
31816	strut - Y panel .	46.07195	32001	strut 1 - Y (+Z)	224.62429	32040	126.66559	1 († L
31817	strut - Y panel	46.20582	32002	strut 1 - Y (+Z)	182.83249	32041	eccofoam strut 1 -	Y (+Z
31818	strut - Y panel .	46.37090	32003	strut 1 - Y (+Z)	161.65245		115.04711	
31819	strut - Y panel .	46.56758	32004	strut 1 - Y (+Z)	149.67908	32042	eccoroam strut 1 - 105.85266	r (+Ζ

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

л . Planck .

REFERENCE : H-P-3-ASPI-AN-0330

лапск Р	LIVI I ner	mai Ai	naiyses	Date :	09	/04/04	
				leeur -	2	Do	$a_0 \cdot 1/0/101$
				135UE .	Z	га	ge. 149/101
	(7	1 20005	(N (7	20100		((00000
eccofoam strut 1 - Y 98.79113	(+Z	32085	eccofoam strut 2 144.86257	- Y (-Z	32122	strut 3 - Z -Y	66.00809 55.72022
eccofoam strut 1 - Y 93.07719	(+Z	32086	eccofoam strut 2 140.45566	- Y (-Z	32123	strut 3 - Z -Y	51.06926
eccofoam strut 1 - Y	(+Z	32087	eccofoam strut 2	- Y (-Z	32125	strut 3 - Z -Y	55.67594
88.14615	(.7	22088	136.87127	V (7	32126	strut 3 - Z -Y	53.90392
83.88352	(+2	32088	133.43169	- 1 (-2	32127	strut 3 - Z -Y	52.24575
eccofoam strut 1 - Y 84.58386	(+Z				32128	strut 3 - Z - Y	49.16532
eccofoam strut 1 - Y	(+Z				32130	strut 3 - Z -Y	47.70353
83.50556	224 00535	32089	eccofoam strut 2	- Y (-Z	32131	eccofoam inside s	trut 3234.39440
strut 2 \vee (7)	192 21007		137.53601		32132	eccofoam inside s	trut 3212.25907
strut 2 \cdot V (7)	163.51007	32090	eccofoam strut 2	- Y (-Z	32133	eccofoam inside s	trut 3212.73683
strut 2 \cdot V (7)	162.30804	22001	132.00114	V (7	32134	eccofoam inside s	trut 3222.26497
strut 2 \cdot Y (-Z)	131.14300	32091	119.36346	- 1 (-2	32135	eccofoam inside s	trut 3227.61559
struct 2 - Y $(-Z)$	144.00770	32092	eccofoam strut 2	- Y (-Z	32136	eccofoam inside s	trut 3223.76525
struct 2 - Y $(-Z)$	140.38606		109.51723		32137	eccofoam inside s	trut 3206.01665
strut 2 - Y (-Z)	130.85901	32093	eccofoam strut 2 - 102.04761	- Y (-Z	32138	eccofoam inside s	trut 3173.95184
strut 2 - Y (-Z)	132.79328	32094	eccofoam strut 2	- Y (-Z	32139	eccofoam inside s	trut 3158.94173
strut 2 - Y (-Z)	138.34497		96.00275	,	32140	eccofoam inside s	trut 3169.26902
strut 2 - Y (-Z)	132.69577	32095	eccofoam strut 2	- Y (-Z			
strut 2 - Y (-Z)	119.12045	22007	90.03931	V (7			
strut 2 - Y (-Z)	109.31610	32096	85.77368	- Y (-Z			
strut 2 - Y (-Z)	101.92703	32097	eccofoam strut 2	- Y (-Z	32141	eccofoam inside s	trut 3146.18334
strut 2 - Y (-Z)	95.94339		86.15815		32142	eccofoam inside s	trut 3136.95412
strut 2 - Y (-Z)	90.62056	32098	eccofoam strut 2 - 85.34239	- Y (-Z	32143	eccofoam inside s	trut 3129.55498
strut 2 - Y (-Z)	85.32769	32101	strut 3 - Z -Y	236.26763	32144	eccofoam inside s	trut 3116.11546
strut 2 - Y (-Z)	86.25972	32102	strut 3 - 7 -Y	210.34540	32145	eccofoam inside s	trut 3103.80560
strut 2 - Y (-Z)	85.27335	32103	strut 3 - 7 -Y	211.97093	32146	eccofoam inside s	trut 392.04732
strut 2 - Y (-Z)	77.59286	32104	strut 3 - 7 -Y	222 61849	32147	eccofoam inside s	trut 388.70181
strut 2 - Y (-Z)	71.20621	32105	strut 3 - 7 -Y	228 39423	32148	eccofoam inside s	strut 391.05012
strut 2 - Y (-Z)	65.27572	32106	strut 3 - 7 -Y	224 94141	32151	strut 4 - Z (-Y)	231.62659
strut 2 - Y (-Z)	59.39019	32100	strut 3 - 7 -Y	207 22818	32152	strut 4 - Z (-Y)	195.08683
strut 2 - Y (-Z)	53.21237	32108	strut 3 - 7 - Y	172 50856	32153	strut 4 - Z (-Y)	178.33980
strut 2 - Y (-Z)	50.66754	32100	strut 3 - 7 -V	156 70752	32154	strut 4 - Z (-Y)	170.22850
strut 2 - Y (-Z)	53.18510	22110	strut 2 7 V	172 00664	32155	strut 4 - Z (-Y)	166.05706
strut 2 - Y (-Z)	51.84856	22110	strut 2 7 V	145 01072	32156	strut 4 - Z (-Y)	163.10839
strut 2 - Y (-Z)	50.61336	22111	strut 2 7 V	124 70025	32157	strut 4 - 7 (-Y)	159.63851
strut 2 - Y (-Z)	49.45812	32112	strut 2 Z V	130.79925	32158	strut 4 - 7 (-Y)	152.86223
strut 2 - Y (-Z)	48.36808	32113	strut 2 7 V	130.06015	32159	strut 4 - 7 (-Y)	155 21014
strut 2 - Y (-Z)	47.34340	32114	strut 2 Z Y	100.75000	32160	strut 4 - 7 (-Y)	152 71009
eccofoam strut 2 - Y	(-Z	32115	strut 3 - Z - Y	103.75893	32160	strut $A = 7$ (-Y)	135 01086
accofoam strut 2 V	(_7	32116	strut 2 7 V	91.33537	32167	strut 4 - 7 (-Y)	122 76284
184.64635	\ _	32117	strut 0 - Z - Y	δδ.21990	32162	strut 4 - 7 (-V)	113 60510
eccofoam strut 2 - Y	(-Z	32118	strut 3 - Z -Y	91.24885	22100	strut 4 - 7 (-V)	105 91520
163.31883		32119	strut 3 - Z -Y	89.73917	32104	strut 4 - 7 (-V)	98 49409
eccofoam strut 2 - Y 151.57145	(-Z	32120	strut 3 - Z -Y	84.95639	22100	$\operatorname{strut} A = Z (-1)$	00.47470
		32121	strut 3 - Z -Y	/5.52042	52100	Julu + - 2 (-1)	/0.00007

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

Ы

REFERENCE: H-P-3-ASPI-AN-0330

	Planck H	² LM Ther	mal A	nalyses	Date :	09	/04/04	
						2	Par	ne · 150/181
					13302 .	2	ια	jc . 130/101
001/7		00 10000	L		1/0 7/5/4	00040	() I I I	7 () (
32167	strut 4 - $Z(-Y)$	89.13309	32203	strut 5 - $Z(+Y)$	168.76564	32242	121.66302	Ζ (+ Υ
32108	strut 4 - $Z(-Y)$	89.98020	32204	strut E $\overline{Z}(+Y)$	159.59944	32243	eccofoam strut 5 -	Z (+Y
32109	strut 4 - Z (-Y)	74 73210	32205	strut 5 - Z (+ Y)	153,86872		112.93267	_ /
22170	strut 4 - Z (-1)	69 24916	22200	strut 5 - $Z(+1)$	153.50672	32244	eccofoam strut 5 - 105.71637	Z (+Y
32171	strut 4 - Z (-Y)	61 63653	32207	strut 5 - $Z(+Y)$	140 70844			
32172	strut 4 - 7 (-V)	54 47635	32200	strut 5 - 7 (+ V)	155 68006			
32173	strut 4 - 7 (-V)	51 40302	32207	strut 5 - $7(+Y)$	149 68517	32245	eccofoam strut 5 -	Z (+Y
22174	strut 4 - Z (-1)	51.47302	22210	strut 5 - $Z(+1)$	122 09745		98.86939	
32175	strut 4 - 7 (-V)	52 83006	22211	strut 5 - $Z(+1)$	121 /1557	32246	eccofoam strut 5 - 91 87813	Z (+Y
22170	strut 4 - Z (-1)	51.24007	22212	strut 5 - $Z(+1)$	112 90454	32247	eccofoam strut 5 -	7 (+Y
22177	strut 4 - Z (-1)	40.05201	22213	strut 5 - $Z(+1)$	105 69512	02217	91.17611	2 () 1
32178	struct 4 - $Z(-Y)$	49.95291	32214	struct 5 - $Z(+Y)$	105.68512	32248	eccofoam strut 5 -	Z (+Y
32179	strut 4 - Z $(-Y)$	48.64273	32215	strut 5 - $Z(+Y)$	98.88160	00054	91.26636	
32180	strut 4 - Z (-Y)	47.40528	32216	strut 5 - $Z(+Y)$	91.34590	32251	strut 6 - Z + Y	226.99029
32181	eccoroam strut 4 - 228.87606	Ζ (-Υ	32217	strut 5 - $Z(+Y)$	91.10906	32252	strut 6 - Z + Y	186.02330
32182	eccofoam strut 4 -	Ζ (-Υ	32218	strut 5 - Z (+ Y)	91.27400	32253	strut 6 - Z + Y	165.84453
	196.37408		32219	strut 5 - Z (+ Y)	82.70196	32254	strut 6 - Z + Y	155.10212
32183	eccofoam strut 4 - 179 08310	Ζ (-Υ	32220	strut 5 - Z (+ Y)	75.74682	32255	strut 6 - Z + Y	149.33387
32184	eccofoam strut 4 -	7 (-Y	32221	strut 5 - Z (+ Y)	69.25613	32256	strut 6 - Z + Y	146.08966
02101	170.57544	2(1	32222	strut 5 - Z (+ Y)	62.69955	32257	strut 6 - Z +Y	144.55994
32185	eccofoam strut 4 -	Ζ (-Υ	32223	strut 5 - Z (+ Y)	55.66818	32258	strut 6 - Z +Y	143.95000
	166.16748	- / . /	32224	strut 5 - Z (+Y)	52.91004	32259	strut 6 - Z + Y	154.24748
32186	eccofoam strut 4 - 163.06434	Ζ (-Υ	32225	strut 5 - Z (+Y)	55.63569	32260	strut 6 - Z + Y	143.86230
32187	eccofoam strut 4 -	Z (-Y	32226	strut 5 - Z (+Y)	53.80266	32261	strut 6 - Z + Y	127.88251
	159.44075		32227	strut 5 - Z (+Y)	52.10464	32262	strut 6 - Z + Y	116.58812
32188	eccofoam strut 4 -	Ζ (-Υ	32228	strut 5 - Z (+Y)	50.51382	32263	strut 6 - Z + Y	108.17933
32189	eccofoam strut 4 -	7 (32229	strut 5 - Z (+Y)	49.00556	32264	strut 6 - Z + Y	101.44565
52107	154.82410	2 (-1	32230	strut 5 - Z (+Y)	47.56896	32265	strut 6 - Z + Y	95.51714
32190	eccofoam strut 4 -	Ζ (-Υ	32231	eccofoam strut 5 - 2 224,91742	<u>7</u> (+Y	32266	strut 6 - Z + Y	89.59833
	151.60621	- / . /	32232	eccofoam strut 5 - 7	7 (+Y	32267	strut 6 - Z + Y	90.74888
32191	eccofoam strut 4 - 135.34410	Ζ (-Υ	02202	189.25461	- () .	32268	strut 6 - Z + Y	89.53838
32192	eccofoam strut 4 -	Ζ (-Υ	32233	eccofoam strut 5 - 2	<u>Z</u> (+Y	32269	strut 6 - Z + Y	81.03852
	123.01980		22224	109.01727	7 (. N	32270	strut 6 - Z + Y	74.14598
			32234	160.04341	<u>(+ Y</u>	32271	strut 6 - Z + Y	67.82389
			32235	eccofoam strut 5 - 2	<u>7</u> (+Y	32272	strut 6 - Z + Y	61.61553
32193	eccofoam strut 4 - 113 73186	Ζ (-Υ		155.71579		32273	strut 6 - Z + Y	55.17040
32194	eccofoam strut 4 -	7 (-Y	32236	eccofoam strut 5 - 2 153.90385	<u>7</u> (+Y	32274	strut 6 - Z + Y	52.66995
02171	105.94176	2(1	32237	eccofoam strut 5 - 7	7 (+Y	32275	strut 6 - Z + Y	55.14136
32195	eccofoam strut 4 -	Ζ (-Υ		152.50699		32276	strut 6 - Z + Y	53.53643
	98.46322	- / . /	32238	eccofoam strut 5 - 2	<u>/</u> (+Y	32277	strut 6 - Z + Y	52.05604
32196	eccofoam strut 4 - 90.60930	Ζ (-Υ	22220	150.35723	7 (. N	32278	strut 6 - Z +Y	50.67450
32197	eccofoam strut 4 -	Z (-Y	32239	154.81050	<u>(+</u>)	32279	strut 6 - Z +Y	49.37061
	89.29738		32240	eccofoam strut 5 - 2	<u>Z</u> (+Y	32280	strut 6 - Z + Y	48.13371
32198	eccofoam strut 4 - 89.92693	Ζ (-Υ		148.87149		32281	eccofoam strut 6 -	Z +Y
32201	strut 5 - 7 (+Y)	227.93544	32241	eccofoam strut 5 - 2 133.31746	<u>/</u> (+Y	22202	223.07041	7.1
32202	strut 5 - Z (+Y)	187.89843				32202	187.36283	L + I

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

REFERENCE : H-P-3-ASPI-AN-0330

	FIGHLEK F		mai A	naryses	DATE :	09	/04/04	
					ISSUE :	2	Pag	e : 151/181
32283	eccofoam strut 6 -	Z +Y	32320	strut 7 + Y (-Z)	72.46703	32355	strut 8 + Y (+Z)	140.93504
	166.65594		32321	strut 7 + Y (-Z)	66.38879	32356	strut 8 + Y (+Z)	136.03616
32284	eccofoam strut 6 - 155.53714	Z +Y	32322	strut 7 + Y (-Z)	60.40145	32357	strut 8 + Y (+Z)	131.63528
32285	eccofoam strut 6 -	Z +Y	32323	strut 7 + Y (-Z)	54.17081	32358	strut 8 + Y (+Z)	126.58805
	149.55886		32324	strut 7 + Y (-Z)	51.65469	32359	strut 8 + Y (+Z)	130.58479
32286	eccofoam strut 6 -	Z +Y	32325	strut 7 + Y (-Z)	54.14317	32360	strut 8 + Y (+Z)	126.49508
32287	eccofoam strut 6 -	7 +Y	32326	strut 7 + Y (-Z)	52.73262	32361	strut 8 + Y (+Z)	114.28215
02207	144.68737	2 1	32327	strut 7 + Y (-Z)	51.42909	32362	strut 8 + Y (+Z)	105.36530
32288	eccofoam strut 6 -	Z +Y	32328	strut 7 + Y (-Z)	50.21396	32363	strut 8 + Y (+Z)	98.57363
00000	144.64138	7 \/	32329	strut 7 + Y (-Z)	49.07269	32364	strut 8 + Y (+Z)	93.13516
32289	eccoroam strut 6 - 152.76520	Ζ + Υ	32330	strut 7 + Y (-Z)	47.99968	32365	strut 8 + Y (+Z)	88.50202
32290	eccofoam strut 6 -	Z +Y	32331	eccofoam strut 7 +	Y (-Z	32366	strut 8 + Y (+Z)	84.21359
	143.37335			221.27607		32367	strut 8 + Y (+Z)	85.75073
32291	eccofoam strut 6 - 128.20379	Z +Y	32332	eccofoam strut 7 + 183.62624	Y (-Z	32368	strut 8 + Y (+Z)	84.16554
32292	eccofoam strut 6 -	Z +Y	32333	eccofoam strut 7 +	Y (-Z	32369	strut 8 + Y (+Z)	76.61076
	116.83065			161.78146		32370	strut 8 + Y (+Z)	70.29772
32293	eccofoam strut 6 - 108 32332	Z +Y	32334	eccofoam strut 7 + 149.64238	Y (-Z	32371	strut 8 + Y (+Z)	64.46101
32294	eccofoam strut 6 -	7 +Y	32335	eccofoam strut 7 +	Y (-Z	32372	strut 8 + Y (+Z)	58.72578
	101.51742			142.56341	·	32373	strut 8 + Y (+Z)	52.80930
32295	eccofoam strut 6 -	Z +Y	32336	eccofoam strut 7 +	Y (-Z	32374	strut 8 + Y (+Z)	50.41412
22204	90.00902	7 . V	32337	eccofoam strut 7 +	Y (-7	32375	strut 8 + Y (+Z)	52.78344
32270	90.10378	2 + 1	02007	134.94248	1 (2	32376	strut 8 + Y (+Z)	51.49505
			32338	eccofoam strut 7 +	Y (-Z	32377	strut 8 + Y (+Z)	50.29334
			22220	132.23930	V (7	32378	strut 8 + Y (+Z)	49.15973
32297	eccofoam strut 6 -	Z +Y	32339	136.81510	1 (-2	32379	strut 8 + Y (+Z)	48.07853
22200	90.02009	7.1	32340	eccofoam strut 7 +	Y (-Z	32380	strut 8 + Y (+Z)	47.05121
32298	89.62283	Ζ + Υ	20244	131.00749	N/ (7	32381	eccofoam strut 8 + 220.94125	Y (+Z
32301	strut 7 + Y (-Z)	224.46224	32341	118.68934	Y (-Z	32382	eccofoam strut 8 +	Y (+Z
32302	strut 7 + Y (-Z)	182.28871	32342	eccofoam strut 7 +	Y (-Z		183.26686	·
32303	strut 7 + Y (-Z)	160.96010		109.19638		32383	eccofoam strut 8 + 161 10000	Y (+Z
32304	strut 7 + Y (-Z)	149.21416	32343	eccofoam strut 7 + 102.08170	Y (-Z	32384	eccofoam strut 8 +	Y (+7
32305	strut 7 + Y (-Z)	142.33365	32344	eccofoam strut 7 +	Y (-Z	02001	148.53574	. (. 2
32306	strut 7 + Y (-Z)	138.10586		96.47719		32385	eccofoam strut 8 +	Y (+Z
32307	strut 7 + Y (-Z)	134.89391	32345	eccofoam strut 7 + 91.71813	Y (-Z	22206	141.13424	V (. 7
32308	strut 7 + Y (-Z)	131.64679	32346	eccofoam strut 7 +	Y (-Z	52500	136.08671	1 (+2
32309	strut 7 + Y (-Z)	137.69211		87.56436	·	32387	eccofoam strut 8 +	Y (+Z
32310	strut 7 + Y (-Z)	131.55845	32347	eccofoam strut 7 +	Y (-Z		131.63647	
32311	strut 7 + Y (-Z)	118.45025	32348	eccofoam strut 7 +	Y (-7	32388	eccofoam strut 8 + 127.20033	Υ (+Ζ
32312	strut 7 + Y (-Z)	108.99511	52540	87.19250		32389	eccofoam strut 8 +	Y (+Z
32313	strut 7 + Y (-Z)	101.95389					129.99930	
32314	strut 7 + Y (-Z)	96.40564				32390	eccofoam strut 8 + 125.87974	Y (+Z
32315	strut 7 + Y (-Z)	91.66691				32391	eccofoam strut 8 +	Y (+Z
32316	strut 7 + Y (-Z)	87.13110	32351	strut 8 + Y (+Z)	224.12950		114.48900	
32317	strut 7 + Y (-Z)	88.72524	32352	strut 8 + Y (+Z)	181.95451	32392	eccofoam strut 8 + 105.54247	Y (+Z
32318	strut $7 + Y(-Z)$	87.07928	32353	strut 8 + Y (+Z)	160.28737	32393	eccofoam strut 8 +	Y (+Z
32319	siiul / + Y (-Z)	19.00152	32354	strut 8 + Y (+Z)	148.09884		98.68954 Référe	nce du modèle : M023-3

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

וח

REFERENCE: H-P-3-ASPI-AN-0330

	Planck P	LM Ther	mal A	nai Anaiyses		09	/04/04
					Issue :	2	Page : 152/181
32394	eccofoam strut 8 +	Y (+Z	32434	eccofoam strut 9 + '	Y +Z	32470	strut 10 + Z (+Y) 69.21284
22205	93.20018	V (. 7	22425	140.05788	V . 7	32471	strut 10 + Z (+Y) 63.57958
32393	88.56195	1 (+Ζ	32435	138.89969	Γ + Ζ	32472	strut 10 + Z (+Y) 58.06006
32396	eccofoam strut 8 +	Y (+Z	32436	eccofoam strut 9 + '	Y +Z	32473	strut 10 + Z (+Y) 52.38887
00007	84.62594	X (7	00407	133.69412		32474	strut 10 + Z (+Y) 49.99255
32397	85.56248	Υ (+Ζ	32437	129.37340	Υ + Ζ	32475	strut 10 + Z (+Y) 52.36486
32398	eccofoam strut 8 +	Y (+Z	32438	eccofoam strut 9 + '	Y +Z	32476	strut 10 + Z (+Y) 51.34533
	84.27454			125.07684		32477	strut 10 + Z (+Y) 50.42264
32401	strut 9 + Y +Z	223.69619	32439	eccofoam strut 9 + ' 127.75341	Y +Z	32478	strut 10 + Z (+Y) 49.58156
32402	strut 9 + Y +Z	180.86676	32440	eccofoam strut 9 + '	Y +Z	32479	strut 10 + Z (+Y) 48.81180
				123.78926		32480	strut 10 + Z (+Y) 48.12070
			32441	eccofoam strut 9 + ' 112.66203	Y +Z	32481	eccofoam strut 10 + Z (+ 220.34216
32403	strut 9 + Y +Z	158.77084	32442	eccofoam strut 9 + ` 103.92458	Y +Z	32482	eccofoam strut 10 + Z (+ 182.17931
32404	strut 9 + Y +Z	146.22008	32443	eccofoam strut 9 +	Y +Z	32483	eccofoam strut 10 + Z (+
32405	strut 9 + Y +Z	138.68368		97.26205			159.60613
32406	strut 9 + Y +Z	133.61924	32444	eccofoam strut 9 + ' 91.96351	Y +Z	32484	eccofoam strut 10 + Z (+ 146.59173
32407	strut 9 + Y +Z	129.37135	32445	eccofoam strut 9 + '	Y +Z	32485	eccofoam strut 10 + Z (+
32408	strut 9 + Y +Z	124.48673		87.54082			138.74353
32409	strut 9 + Y +Z	128.31539	32446	eccofoam strut 9 + ' 83.87776	Y +Z	32486	eccofoam strut 10 + Z (+ 133.36924
32410	strut 9 + Y + Z	124.39544	32447	eccofoam strut 9 + '	Y +Z	32487	eccofoam strut 10 + Z (+
32411	strut $9 + Y + Z$	112.45979		84.88255			128.78510
32412	strut $9 + Y + Z$	103.74899	32448	eccofoam strut 9 + ' 83.54931	Y +Z	32488	eccofoam strut 10 + Z (+ 124.10529
32413	strut $Q + Y + Z$	97.14662	32451	strut $10 + 7 (+Y)$	223.57175	32489	eccofoam strut 10 + Z (+
22414	strut $Q + Y + Z$	91.00939	32452	strut 10 + Z (+Y)	180.86001		126.41050
32410	strut $Q + V + 7$	87.47033	32453	strut 10 + Z (+Y)	158.79721	32490	eccofoam strut 10 + Z (+ 122 79395
32410	strut 9 + Y + 7	85 08041	32454	strut 10 + Z (+Y)	146.15454	32491	eccofoam strut 10 + Z (+
32418	strut 9 + Y + Z	83 43648					111.77396
32419	strut 9 + Y + Z	76.01866				32492	eccofoam strut 10 + Z (+ 103 06030
32420	strut 9 + Y +Z	69.80399				32493	eccofoam strut $10 + 7 (+$
32421	strut 9 + Y +Z	64.06207	32455	strut 10 + Z (+Y)	138.53418		96.39083
32422	strut 9 + Y +Z	58.42494	32456	strut 10 + Z (+Y)	133.30238	32494	eccofoam strut 10 + Z (+
32423	strut 9 + Y +Z	52.61555	32457	strut 10 + Z (+Y)	128.79320	32495	r_{100042}
32424	strut 9 + Y +Z	50.26089	32458	strut 10 + Z (+Y)	123.51417	02170	86.67365
32425	strut 9 + Y +Z	52.59021	32459	strut 10 + Z (+Y)	126.91163	32496	eccofoam strut 10 + Z (+
32426	strut 9 + Y +Z	51.33573	32460	strut 10 + Z (+Y)	123.42047	22407	03.04000
32427	strut 9 + Y +Z	50.16878	32461	strut 10 + Z (+Y)	111.57878	32477	84.02780
32428	strut 9 + Y +Z	49.06843	32462	strut 10 + Z (+Y)	102.88730	32498	eccofoam strut 10 + Z (+
32429	strut 9 + Y + Z	48.02145	32463	strut 10 + Z (+Y)	96.27582	225.01	82.72410
32430	strut 9 + Y + Z	47.02604	32464	strut 10 + Z (+Y)	91.00395	32501	SIIU(11 + 2(-1)) = 223.03094
32431	eccofoam strut 9 +	Y +Z	32465	strut 10 + Z (+Y)	86.60747	32302	strut 11 + Z (-T) 181.03/20 strut 11 + Z (V) 150.03/20
32432	eccofoam strut 0	V +7	32466	strut 10 + Z (+Y)	82.65927	32503	strut 11 + 7 (-V) 1/4 22100
JZ4JZ	182.19224	1 72	32467	strut 10 + Z (+Y)	84.22096	32504	strut 11 + 7 (-Y) 138 60570
32433	eccofoam strut 9 +	Y +Z	32468	strut 10 + Z (+Y)	82.61384	32505	strut 11 + 7 (-Y) 133 57065
	124.26431		32469	strut 10 + Z (+Y)	/5.31822	02000	

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

REFERENCE: H-P-3-ASPI-AN-0330

DATE :	09/04/04	
ISSUE :	2	Page : 153/181

			32544	eccofoam strut 11 +	Z (-	32585
32507	strut 11 + Z (-Y)	129.03241	22545	91.13737	7 (22506
32508	strut 11 + Z (-Y)	123.69282	32345	86.69056	Ζ (-	32360
32509	strut 11 + Z (-Y)	127.01724	32546	eccofoam strut 11 +	Z (-	32587
32510	strut 11 + Z (-Y)	123.59808	22547	02.70700	7 (27500
32511	strut 11 + Z (-Y)	111.72766	32547	83.92373	Ζ (-	32588
32512	strut 11 + Z (-Y)	103.02382	32548	eccofoam strut 11 +	Z (-	32589
32513	strut 11 + Z (-Y)	96.39207		82.65587		
32514	strut 11 + Z (-Y)	91.08278	32551	strut 12 + Z -Y	223.78293	32590
32515	strut 11 + Z (-Y)	86.62597	32552	strut 12 + Z -Y	181.05578	32591
32516	strut 11 + Z (-Y)	82.59431	32553	strut 12 + Z -Y	159.10214	02071
32517	strut 11 + Z (-Y)	84.11029	32554	strut 12 + Z -Y	146.60889	32592
32518	strut 11 + Z (-Y)	82.54857	32555	strut 12 + Z -Y	139.06099	00500
32519	strut 11 + Z (-Y)	75.26314	32556	strut 12 + Z -Y	134.05283	32593
32520	strut 11 + Z (-Y)	69.15085	32557	strut 12 + Z -Y	129.66002	32594
32521	strut 11 + Z (-Y)	63.51798	32558	strut 12 + Z -Y	124.76710	
32522	strut 11 + Z (-Y)	58.00329				32595
32523	strut 11 + Z (-Y)	52.33874	32559	strut 12 + Z -Y	128.73002	32596
32524	strut 11 + Z (-Y)	49.93852	32560	strut 12 + Z -Y	124.67519	02070
32525	strut 11 + Z (-Y)	52.31478	32561	strut 12 + Z -Y	112.61666	32597
32526	strut 11 + Z (-Y)	51.30595	32562	strut 12 + Z -Y	103.78847	225.00
32527	strut 11 + Z (-Y)	50.39267	32563	strut 12 + Z -Y	97.08493	32598
32528	strut 11 + Z (-Y)	49.56059	32564	strut 12 + Z -Y	91.68611	33000
32529	strut 11 + Z (-Y)	48.79928	32565	strut 12 + Z -Y	87.12294	33011
32530	strut 11 + Z (-Y)	48.11655	32566	strut 12 + Z -Y	82.93246	33012
32531	eccofoam strut 11 +	Ζ (-	32567	strut 12 + Z -Y	84.38207	33013
	220.41023	- /	32568	strut 12 + Z -Y	82.88547	33014
32532	eccofoam strut 11 + 182.35231	Ζ(-	32569	strut 12 + Z -Y	75.51181	33015
32533	eccofoam strut 11 +	Z (-	32570	strut 12 + Z -Y	69.32513	33016
	159.83449		32571	strut 12 + Z -Y	63.60431	33041
32534	eccofoam strut 11 + 146.77224	Z (-	32572	strut 12 + Z -Y	57.98332	33042
32535	eccofoam strut 11 +	Z (-	32573	strut 12 + Z -Y	52.19552	33043
	138.91356	Υ.	32574	strut 12 + Z -Y	49.90619	
32536	eccofoam strut 11 +	Z (-	32575	strut 12 + Z -Y	52.16987	
22527	occofoam strut 11	7 (32576	strut 12 + Z -Y	50.80441	33044
32337	129.02133	Ζ (-	32577	strut 12 + Z -Y	49.51767	33045
32538	eccofoam strut 11 +	Z (-	32578	strut 12 + Z -Y	48.28468	33046
	124.28354	- /	32579	strut 12 + Z -Y	47.09055	33071
32539	eccoroam strut 11 + 126.52610	Ζ (-	32580	strut 12 + Z -Y	45.92986	33072
32540	eccofoam strut 11 +	Z (-	32581	eccofoam strut 12 + 220.55286	Ζ-Υ	33073
27511	122.70004	7 (_	32582	eccofoam strut 12 +	Z -Y	33074
JZJ4 I	111.92350	<u>~ \</u>		182.38430		33075
32542	eccofoam strut 11 + 103.19619	Z (-	32583	eccofoam strut 12 + 159.91432	Ζ-Υ	33076
32543	eccofoam strut 11 +	Z (-	32584	eccofoam strut 12 +	Z -Y	22111
	96.50566			147.04149		22110
			1			33112

32585	eccofoam strut 12 + Z -Y 139.28055
32586	eccofoam strut 12 + Z -Y 134.11410
32587	eccofoam strut 12 + Z -Y 129.67167
32588	eccofoam strut 12 + Z -Y 125.36686
32589	eccofoam strut 12 + Z -Y 128.14922
32590	eccofoam strut 12 + Z -Y 124.06855
32591	eccofoam strut 12 + Z -Y 112.81933
32592	eccofoam strut 12 + Z -Y 103.96506
32593	eccofoam strut 12 + Z -Y 97.19743
32594	eccofoam strut 12 + Z -Y 91.75916
32595	eccofoam strut 12 + Z -Y 87.18414
32596	eccofoam strut 12 + Z -Y 83.33230
32597	eccofoam strut 12 + Z -Y 84.20522
32598	eccofoam strut 12 + Z -Y 82.98844
33000	PR front centre . 45.54066
33011	PR front ring1 0. 45.58236
33012	PR front ring1 60. 45.31884
33013	PR front ring1 120. 45.89464
33014	PR front ring1 180. 45.57467
33015	PR front ring1 240. 45.89551
33016	PR front ring1 300. 45.31942
33041	PR front ring2 0. 46.03678
33042	PR front ring2 60. 45.17642
33043	PR front ring2 120. 46.28743
33044	PR front ring2 180. 45.61706
33045	PR front ring2 240. 46.28808
33046	PR front ring2 300. 45.17791
33071	PR front ring3 0. 45.44000
33072	PR front ring3 60. 45.11570
33073	PR front ring3 120. 46.28515
33074	PR front ring3 180. 45.64175
33075	PR front ring3 240. 46.28583

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59 Référence du modèle : M023-3

PR front ring3 300. 45.11769

PR rear centre . . 45.53992

PR rear ring1 0. 45.60337

PR rear ring1 60. 45.33344

REFERENCE: H-P-3-ASPI-AN-0330

Planck PLM Thermal Analyses											
						5		DATE :	09/	′04/04	
								ISSUE :	2		Page : 154/181
33113	PR	rear ring1 120.	45.97581	33444	PR	MLI rear	ring 4	1.53689	34373	SR MLI	fwd ring 45.72087
33114	PR	rear ring1 180.	45.59501	33445	PR	MLI rear	ring 4	0.98420	34374	SR MLI	fwd ring 45.61844
33115	PR	rear ring1 240.	45.97684	33446	PR	MLI rear	ring 3	37.30844	34375	SR MLI	fwd ring 45.76535
33116	PR	rear ring1 300.	45.33409	33471	PR	MLI rear	ring 3	34.37838	34376	SR MLI	fwd ring 45.55592
33141	PR	rear ring2 0.	46.14562	33472	PR	MLI rear	ring 3	86.73269	34411	SR MLI	rear ring 38.78808
33142	PR	rear ring2 60.	45.18557	33473	PR	MLI rear	ring 4	0.09948	34412	SR MLI	rear ring 41.73035
33143	PR	rear ring2 120.	46.68565	33474	PR	MLI rear	ring 4	1.01627	34413	SR MLI	rear ring 44.73537
33144	PR	rear ring2 180.	45.63588	33475	PR	MLI rear	ring 4	0.03235	34414	SR MLI	rear ring 44.26905
33145	PR	rear ring2 240.	46.68613	33476	PR	MLI rear	ring 3	86.69019	34415	SR MLI	rear ring 44.71506
33146	PR	rear ring2 300.	45.18698	34000	SR	front centre	e. 4	5.74409	34416	SR MLI	rear ring 41.69836
33171	PR	rear ring3 0.	45.44790	34011	SR	front rina1	0.4	5.75027	34471	SR MLI	rear ring 35.79446
33172	PR	rear ring3 60	45 12271	34012	SR	front ring1	60 4	5 71109	34472	SR MU	rear ring 39 03421
33173	PR	rear ring3 120	46 36655	34013	SR	front ring1	120 4	15 75917	34473	SR MII	rear ring 43 99316
33173	DD	rear ring3 120.	45.65570	34013	SD	front ring1	120. 4	15 73204	34473	SP MII	rear ring 41.55264
22175		roor ring2 240	45.05570	24014	SN	front ring1	240 4	15.73204	24474		rear ring 42.94E49
22170	PK	rear ring3 240.	40.30700	34015	SK	front ring1	240. 4	5.79904	34475		rear ring 20,10100
33170	РК	thermal fail	45.12450	34010	SK	front ring?	300.4	5.72094	34470	SK IVILI	
33200	PR	inermai ioli .	45.05407	34071	SK	front ring2	0. 4	5.73201	35000	rim i_in	46.85243
33311	PR	MLI fwa ring	45.41101	34072	SR	front ring2	60. 4	5.69260	35001	rim i_io	47.22688
33312	PR	MLI fwd ring	45.15951	34073	SR	front ring2	120. 4	5.74455	35002	rim1_out	46./1949
33313	PR	MLI fwd ring	45.82266	34074	SR	front ring2	180. 4	5.71519	35003	rim1_up	46.69036
33314	PR	MLI fwd ring	45.46079	34075	SR	front ring2	240. 4	5.78736	35010	rim1_in	46.04587
33315	PR	MLI fwd ring	45.82773	34076	SR	front ring2	300. 4	5.70984	35011	rim1_lo	46.17408
33316	PR	MLI fwd ring	45.16024	34100	SR	rear centre	4	5.77067	35012	rim1_out	45.97382
33341	PR	MLI fwd ring	45.92373	34111	SR	rear ring1	0. 4	5.81142	35013	rim1_up	45.99122
33342	PR	MLI fwd ring	44.99901	34112	SR	rear ring1	60. 4	5.72853	35020	rim1_in	45.88749
33343	PR	MLI fwd ring	46.53740	34113	SR	rear ring1	120. 4	5.82606	35021	rim1_lo	46.29980
33344	PR	MLI fwd ring	45.52562	34114	SR	rear ring1	180. 4	5.75572	35022	rim1_out	45.76437
33345	PR	MLI fwd ring	46.53995	34115	SR	rear ring1	240. 4	5.89131	35023	rim1_up	45.49941
33346	PR	MLI fwd ring	45.00021	34116	SR	rear ring1	300. 4	5.74612	35030	rim2_in	45.88711
33371	PR	MLI fwd ring	45.21150	34171	SR	rear ring2	0. 4	5.74942	35031	rim2_lo	46.29936
33372	PR	MLI fwd ring	44.92725	34172	SR	rear ring2	60. 4	5.70199	35032	rim2_out	45.76397
33373	PR	MLI fwd ring	46.20899	34173	SR	rear ring2	120. 4	5.77247	35033	rim2_up	45.49900
33374	PR	MLI fwd ring	45.53307	34174	SR	rear ring2	180. 4	5.73056	35040	rim2_in	45.44757
33375	PR	MLI fwd ring	46.20815	34175	SR	rear ring2	240. 4	5.82176	35041	rim2_lo	45.46177
33376	PR	MLI fwd ring	44.92830	34176	SR	rear ring2	300. 4	5.71995	35042	rim2_out	45.31884
33411	PR	MLI rear ring	37.42919	34200	SR	thermal foil	. 4	5.59686	35043	rim2_up	45.31875
33412	PR	MLI rear ring	38.17592	34311	SR	MLI fwd	ring 4	5.63958	35050	rim2_in	47.59224
33413	PR	MLI rear ring	39.91400	34312	SR	MLI fwd	ring 4	5.62060	35051	rim2_lo	47.66300
				34313	SR	MLI fwd	ring 4	5.79373	35052	rim2_out	47.50428
				34314	SR	MLI fwd	ring 4	5.71220	35053	rim2_up	47.95245
33414	PR	MLI rear rina	40.42749	34315	SR	MLI fwd	ring 4	5.85653	35060	rim3_in	47.59287
33415	PR	MLI rear ring	40.11307	34316	SR	MLI fwd	ring 4	5.63702	35061	rim3 lo	47.66374
33416	PR	MLI rear ring	38.18087	34371	SR	MLI fwd	rina 4	5.52831	35062	rim3 out	47.50522
33441	PR	MLI rear ring	36.18043	34372	SR	MLI fwd	rina 4	5.53703	35063	rim3 up	47.95311
33442	PR	MLI rear ring	37.31902				9.		35070	rim3 in	46.44322
33443	PR	MLI rear ring	40.88407						35071	rim3 lo	46.65342
				•				ļ	50071		

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

REFERENCE : H-P-3-ASPI-AN-0330

	FIGHLK F			laryse	3	Date :	09.	/04/04	
						ISSUE :	2	Page	: 155/181
								5	
35072	rim3 out 46.863	16	35211	I/F 1 rim1 lo	47.2299	96	50122	SHield 1 inf facet 1	156.09905
35073	rim3 up 46.384	10	35212	I/F 1 rim1 ou	t 46 7186	4	50125	SHield 1 inf ext fac	142 73122
35080	rim3 in 44 148	36	35213	I/F 1 rim1 up	46 6902	99	50126	SHield 1 inf ext fac	137 17493
35081	rim3 lo 45.056	32	35220	I/F 2 rim1 in	45.8873	31	50120	SHield 1 inf facet 1	139.23504
			35221	I/F 2 rim1 lo	46.3023	37	50131	SHield 1 inf facet 1	142.20244
			35222	I/F 2 rim1 ou	t 45.7635	52	50135	SHield 1 inf ext fac	138.67878
			35223	I/F 2 rim1 up	45.4974	13	50136	SHield 1 inf ext fac	134.31191
35082	rim3 out 44.611	78	35230	I/F 3 rim2 in	47.5924	12	50170	SHield 1 inf facet 1	151,31069
35083	rim3 up 44.297	46	35231	I/F 3 rim2 lo	47.6650)5	50171	SHield 1 inf facet 1	150.70557
35090	rim4 in 44.146	946	35232	I/F 3 rim2 ou	t 47 5039	94	50172	SHield 1 inf facet 1	150 12830
35091	rim4 lo 45.054	.39	35233	I/F 3 rim2 up	47 9564	12	50173	SHield 1 inf facet 1	149 58128
35092	rim4_out 44.609	966	00200		1111001	-	50174	SHield 1 inf facet 1	149 06571
35093	rim4 up 44 295	52					50175	SHield 1 inf facet 1	148 58121
35100	rim4 in 43.292	265	35240	I/F 4 rim3 in	44 1443	36	50176	SHield 1 inf facet 1	148 12731
35101	rim4 lo 43.416	44	35241	I/E 4 rim3 lo	45.0586	7	50177	SHield 1 inf facet 1	147 70398
35101	rim4_i0 43.234	34	35241	1/F 4 rim3_0	+0.0000	,, 19	50178	SHield 1 inf facet 1	147 31163
35102	rim4_up 43.097	153	35242	1/F 4 rim3 un	44.2957	19	50170	SHield 1 inf facet 1	146 95142
35110	rim4_up 45.077	56	35250	I/E 5 rim/ in	46 2621	, 0	50177	Shield I ini lacet I	140.75142
35110	rim4_in 46.201	43	35250	1/E 5 rim4_10	40.2021				
35112	rim4_i0 46.001	121	35257	I/E 5 rim4_0	+0.0004)6	50180	SHield 1 inffacet 1	146 62602
35112	rim4_00t 46.130	27	35252	1/F 5 rim4_00	40.1500	19	50180	SHield 1 inf facet 1	140.02002
35120	rim5_in	967	35260	I/E 6 rim5 in	40.3917	22	50182	SHield 1 inf facet 1	146 10544
25120	rim5_in 46.202		25261		45.7577	00	50102	SHield 1 inf facet 1	145 02047
25121	rim5_00 46.002	22	25261		40.0002	12	50103	SHield 1 inf facet 1	145.73747
25122	rim5_up 46.290	23	25262		45.6044	н о 2 и	50104	SHield 1 inf facet 2	127 07257
25120	rim5_up 40.387	20	41000		40.0075	94	50210	SHield 1 inf facet 2	120 60144
25121	rim5_in 45.167	50	41000	1 210 10	57276		50211	SHield 1 inf facet 2	120 65002
25122	rim5_00 45.207	.14	41100		1 75010		50212	SHield 1 inf ovt fac	122 00620
25122	rim5_up 45.050	014	41500	IPO_IVII 21	20000		50215	Shield 1 inf ext fac	120 56912
25140	rim5_up 45.032	105	42000		16 10162		50210	SHield 1 inf facet 2	124.50015
25140	rim5_in 45.737	21	45000	RELL DAE box	, 212 020	50	50220	SHield 1 inf facet 2	126 16204
25141	rim5_00 40.002	02	45100	DAE Black Si	do 206.254	114	50221	SHield 1 inf facet 2	124 10745
25142	rim5_up 45.564	.03	45200	DAL_DIACK_SI	12 96104	14	50222	SHield 1 inf ovt fac	120 /2522
25150	rim6_in45.030	002	40000	DEIVI 31	12.00174		50225	Shield 1 inf ext fac	129.43333
25150	rim6 lo 46.502	940	46100	DEIVI_DUX SI	<pre>/ Sido 221.040</pre>	270	50220	SHield 1 inf facet 2	120.20001
35151	rim(_out45.302	20	40200		<_31UE 231.949	//3	50230	Shield 1 inf facet 2	133.09712
25152	rimé up 45.600	130	47000	FEIVI 25	12 24540		50231	SHield 1 inf facet 2	121 20540
30103	rimé in 45.559	.02	47100	FEIVI_DOX 31	12.34349	00	50232	Shield 1 inf out for	131.20309
35100	rim(lo 4(015	002	47200		210.000	002	50235	Shield 1 inf ext fac	127.17070
35161	rim6_10 46.015	024	49000	BEU_I/F_SVIVI	313.149	799	50236	Shield 1 inf faast 2	124.48665
ວວ⊺ວ∠ ວ⊑1/ ວ	rim6 up 45.843	.40	50111		auet 1 140.533	D/4	503 IU		121.0025/
30103	rimé in 44.052		50110		auet 1 143.096	000	5U311		131.89256
30170	rimé la 47.000	.ວບ .70	50112		vt foc 141,400	000	5U312		120.0003/
351/1	rimo_10 47.226	0/0	50115		xtac 141.420	010	50315		120.39067
35172	rim6_out 46./19	241	50116		xiiac 137.773	5/2	50316		123.31999
351/3	нно_up 46.690	44 05007	50120		auet 1 139./39	x/4	50320		133./3066
35210	ı/⊢ı rım'i_in	46.85237	50121	Shield 1 int fa	acet i 143.710	152	50321	Shield 1 int facet 3	131.05388

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

REFERENCE : H-P-3-ASPI-AN-0330

	FIGHT FI		mai Ai	laryses	Date :	09.	/04/04	
					ISSUE :	2	Page	: 156/181
50322	SHield 1 inf facet 3	127.96706	50621	SHield 1 inf facet 6	143.50631	51177	SHield 1 sup facet 1	147.64890
50325	SHield 1 inf ext fac	124.31479	50622	SHield 1 inf facet 6	155.18413	51178	SHield 1 sup facet 1	147.23947
50326	SHield 1 inf ext fac	121.97644	50625	SHield 1 inf ext fac	145.81066	51179	SHield 1 sup facet 1	146.85140
50330	SHield 1 inf facet 3	133.44938	50626	SHield 1 inf ext fac	140.19138	51180	SHield 1 sup facet 1	146.47951
50331	SHield 1 inf facet 3	130.55836	50630	SHield 1 inf facet 6	140.49761	51181	SHield 1 sup facet 1	146.11609
50332	SHield 1 inf facet 3	127.40301	50631	SHield 1 inf facet 6	143.14819	51182	SHield 1 sup facet 1	145.74907
50335	SHield 1 inf ext fac	123.82815	50632	SHield 1 inf facet 6	170.21091	51183	SHield 1 sup facet 1	145.35899
50336	SHield 1 inf ext fac	121.38079	50635	SHield 1 inf ext fac	142.75511	51184	SHield 1 sup facet 1	144.91336
50410	SHield 1 inf facet 4	133.51738	50636	SHield 1 inf ext fac	139.16894			
50411	SHield 1 inf facet 4	130.61187	50670	SHield 1 inf facet 6	144.20816	51210	SHield 1 sup facet 2	137.83277
50412	SHield 1 inf facet 4	127.49290	50671	SHield 1 inf facet 6	144.83134	51211	SHield 1 sup facet 2	138.64467
50415	SHield 1 inf ext fac	124.01514	50672	SHield 1 inf facet 6	145.38079	51212	SHield 1 sup facet 2	138.63634
50416	SHield 1 inf ext fac	121.57019	50673	SHield 1 inf facet 6	145.94704	51215	SHield 1 sup ext fac	132.98568
50420	SHield 1 inf facet 4	133.94755	50674	SHield 1 inf facet 6	146.51952	51216	SHield 1 sup ext fac	129.55338
50421	SHield 1 inf facet 4	131.21039	50675	SHield 1 inf facet 6	147.09794	51220	SHield 1 sup facet 2	136.55960
50422	SHield 1 inf facet 4	128.26450	50676	SHield 1 inf facet 6	147.68396	51221	SHield 1 sup facet 2	136.12814
50425	SHield 1 inf ext fac	124.63369	50677	SHield 1 inf facet 6	148.27946	51222	SHield 1 sup facet 2	134.15511
50426	SHield 1 inf ext fac	122.25287	50678	SHield 1 inf facet 6	148.88884	51225	SHield 1 sup ext fac	129.41099
			50679	SHield 1 inf facet 6	149.51585	51226	SHield 1 sup ext fac	126.25468
50430	SHield 1 inf facet 4	134.45199	50680	SHield 1 inf facet 6	150.16426	51230	SHield 1 sup facet 2	135.65863
50431	SHield 1 inf facet 4	132.22788	50681	SHield 1 inf facet 6	150.84106	51231	SHield 1 sup facet 2	133.89631
50432	SHield 1 inf facet 4	129.30639	50682	SHield 1 inf facet 6	151.55466	51232	SHield 1 sup facet 2	131.18741
50435	SHield 1 inf ext fac	125.86435	50683	SHield 1 inf facet 6	152.31513	51235	SHield 1 sup ext fac	127.15475
50436	SHield 1 inf ext fac	123.79941	50684	SHield 1 inf facet 6	153.15730	51236	SHield 1 sup ext fac	124.47226
			51110	SHield 1 sup facet 1	140.47537	51310	SHield 1 sup facet 3	134.32848
			51111	SHield 1 sup facet 1	143.02848	51311	SHield 1 sup facet 3	131.85753
50510	SHield 1 inf facet 5	135.86135	51112	SHield 1 sup facet 1	168.22009	51312	SHield 1 sup facet 3	128.86945
50511	SHield 1 inf facet 5	134.33395	51115	SHield 1 sup ext fac	141.34263	51315	SHield 1 sup ext fac	125.37517
50512	SHield 1 inf facet 5	131.79377	51116	SHield 1 sup ext fac	137.74609	51316	SHield 1 sup ext fac	123.29446
50515	SHield 1 inf ext fac	128.15245	51120	SHield 1 sup facet 1	139.68375	51320	SHield 1 sup facet 3	133.69319
50516	SHield 1 inf ext fac	125.51329				51321	SHield 1 sup facet 3	131.01929
50520	SHield 1 inf facet 5	137.08166	51121	SHield 1 sup facet 1	143.66448	51322	SHield 1 sup facet 3	127.93613
50521	SHield 1 inf facet 5	136.46166	51122	SHield 1 sup facet 1	156.81968	51325	SHield 1 sup ext fac	124.29022
50522	SHield 1 inf facet 5	135.08781	51125	SHield 1 sup ext fac	142.70193	51326	SHield 1 sup ext fac	121.95746
50525	SHield 1 inf ext fac	131.05396	51126	SHield 1 sup ext fac	137.15214	51330	SHield 1 sup facet 3	133.41190
50526	SHield 1 inf ext fac	127.98635	51130	SHield 1 sup facet 1	139.18110	51331	SHield 1 sup facet 3	130.52373
50530	SHield 1 inf facet 5	138.02208	51131	SHield 1 sup facet 1	142.15049		·	
50531	SHield 1 inf facet 5	139.04405	51135	SHield 1 sup ext fac	138.65776			
50532	SHield 1 inf facet 5	139.18750	51136	SHield 1 sup ext fac	134.28977			
50535	SHield 1 inf ext fac	135.58287	51170	SHield 1 sup facet 1	151.39290			
50536	SHield 1 inf ext fac	132.38126	51171	SHield 1 sup facet 1	150.73835	51332	SHield 1 sup facet 3	127.38258
50610	SHield 1 inf facet 6	139.59231	51172	SHield 1 sup facet 1	150.13176	51335	SHield 1 sup ext fac	123.80490
50611	SHield 1 inf facet 6	142.68274	51173	SHield 1 sup facet 1	149.56697	51336	SHield 1 sup ext fac	121.36819
50615	SHield 1 inf ext fac	143.88053	51174	SHield 1 sup facet 1	149.03956	51410	SHield 1 sup facet 4	133.47949
50616	SHield 1 inf ext fac	138.97178	51175	SHield 1 sup facet 1	148.54606	51411	SHield 1 sup facet 4	130.57715
50620	SHield 1 inf facet 6	140.29082	51176	SHield 1 sup facet 1	148.08345	51412	SHield 1 sup facet 4	127.47184
						=		

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

וח IΛ . .

REFERENCE: H-P-3-ASPI-AN-0330

			mai Ai	naryses	Date :	09	/04/04	
					ISSUE :	2	Page	e: 157/181
51415	SHield 1 sup ext fac	123.99177				60136	shield 2 inf ext fac	87.78104
51416	SHield 1 sup ext fac	121.55603	51673	SHield 1 sup facet 6	145.82673	60170	shield 2 inf facet 1	90.94047
51420	SHield 1 sup facet 4	133.90927	51674	SHield 1 sup facet 6	146.39880	60171	shield 2 inf facet 1	90.93866
51421	SHield 1 sup facet 4	131.17584	51675	SHield 1 sup facet 6	146.97541	60172	shield 2 inf facet 1	90.94258
51422	SHield 1 sup facet 4	128.23323	51676	SHield 1 sup facet 6	147.55951	60173	shield 2 inf facet 1	90.95321
51425	SHield 1 sup ext fac	124.60816	51677	SHield 1 sup facet 6	148.15403			
51426	SHield 1 sup ext fac	122.23400	51678	SHield 1 sup facet 6	148.76221			
51430	SHield 1 sup facet 4	134.41315	51679	SHield 1 sup facet 6	149.38713	60174	shield 2 inf facet 1	90.97143
51431	SHield 1 sup facet 4	132.19165	51680	SHield 1 sup facet 6	150.03183	60175	shield 2 inf facet 1	90.99822
51432	SHield 1 sup facet 4	129.28675	51681	SHield 1 sup facet 6	150.69888	60176	shield 2 inf facet 1	91.03476
51435	SHield 1 sup ext fac	125.84199	51682	SHield 1 sup facet 6	151.38931	60177	shield 2 inf facet 1	91.08266
51436	SHield 1 sup ext fac	123.77382	51683	SHield 1 sup facet 6	152.10023	60178	shield 2 inf facet 1	91.14425
51510	SHield 1 sup facet 5	135.82176	51684	SHield 1 sup facet 6	152.82238	60179	shield 2 inf facet 1	91.22283
51511	SHield 1 sup facet 5	134.29648	52100	SHield 1 b facet 1	135.14902	60180	shield 2 inf facet 1	91.32334
51512	SHield 1 sup facet 5	131.77354	52101	SHield 1 b facet 1	134.58245	60181	shield 2 inf facet 1	91.45308
51515	SHield 1 sup ext fac	128.13023	52102	SHield 1 b facet 1	131.95382	60182	shield 2 inf facet 1	91.62312
51516	SHield 1 sup ext fac	125.49784	52200	SHield 1 b facet 2	127.44869	60183	shield 2 inf facet 1	91.85040
51520	SHield 1 sup facet 5	137.04120	52201	SHield 1 b facet 2	124.31668	60184	shield 2 inf facet 1	91.62792
51521	SHield 1 sup facet 5	136.42175	52202	SHield 1 b facet 2	122.64304	60210	shield 2 inf facet 2	87.19063
51522	SHield 1 sup facet 5	135.05226	52300	SHield 1 b facet 3	121.58359	60211	shield 2 inf facet 2	87.98295
51525	SHield 1 sup ext fac	131.02567	52301	SHield 1 b facet 3	120.29840	60212	shield 2 inf facet 2	88.96747
51526	SHield 1 sup ext fac	127.97051	52302	SHield 1 b facet 3	119.71426	60215	shield 2 inf ext fac	87.55676
51530	SHield 1 sup facet 5	137.97913	52400	SHield 1 b facet 4	119.89423	60216	shield 2 inf ext fac	86.85702
51531	SHield 1 sup facet 5	139.00145	52401	SHield 1 b facet 4	120.50754	60220	shield 2 inf facet 2	87.01442
51532	SHield 1 sup facet 5	139.16183	52402	SHield 1 b facet 4	121.98537	60221	shield 2 inf facet 2	87.19187
51535	SHield 1 sup ext fac	135.54459	52500	SHield 1 b facet 5	123.61910	60222	shield 2 inf facet 2	87.14719
51536	SHield 1 sup ext fac	132.36021	52501	SHield 1 b facet 5	125.94121	60225	shield 2 inf ext fac	86.26588
51610	SHield 1 sup facet 6	139.53358	52502	SHield 1 b facet 5	130.09615	60226	shield 2 inf ext fac	85.74482
51611	SHield 1 sup facet 6	142.61687	52600	SHield 1 b facet 6	136.26264	60230	shield 2 inf facet 2	86.62975
51615	SHield 1 sup ext fac	143.78577	52601	SHield 1 b facet 6	137.38182	60231	shield 2 inf facet 2	86.45008
51616	SHield 1 sup ext fac	138.93337	52602	SHield 1 b facet 6	136.44989	60232	shield 2 inf facet 2	85.97801
51620	SHield 1 sup facet 6	140.23138	59000	scr_VG1 146.2532	26	60235	shield 2 inf ext fac	85.19889
51621	SHield 1 sup facet 6	143.44332	59010	scn VG1 144.8776	5	60236	shield 2 inf ext fac	84.75551
51622	SHield 1 sup facet 6	155.57026	60110	shield 2 inf facet 1	87.48920	60310	shield 2 inf facet 3	86.28665
51625	SHield 1 sup ext fac	145.73432	60111	shield 2 inf facet 1	88.23161	60311	shield 2 inf facet 3	85.93189
51626	SHield 1 sup ext fac	140.15898	60112	shield 2 inf facet 1	100.50843	60312	shield 2 inf facet 3	85.31283
51630	SHield 1 sup facet 6	140.43829	60115	shield 2 inf ext fac	87.55463	60315	shield 2 inf ext fac	84.50236
51631	SHield 1 sup facet 6	143.07615	60116	shield 2 inf ext fac	87.14011	60316	shield 2 inf ext fac	84.04140
51632	SHield 1 sup facet 6	170 14434	60120	shield 2 inf facet 1	87 49837	60320	shield 2 inf facet 3	86 13210
51635	SHield 1 sup ext fac	142 66778	60120	shield 2 inf facet 1	88 67476	60321	shield 2 inf facet 3	85 50459
51636	SHield 1 sup ext fac	139,13871	60122	shield 2 inf facet 1	91.11176	60322	shield 2 inf facet 3	84,81186
51670	SHield 1 sun facet 6	144 09702	60125	shield 2 inf evt fac	88 88753	60322	shield 2 inf evt fac	83 99/190
51671	SHield 1 sun facet 6	144 68255	60125	shield 2 infect fac	87 95669	60323	shield 2 infect fac	83 54574
51670	Shield 1 sup facet 6	145 25602	60120	shield 2 inf facat 1	87 44197	60320	shield 2 inf facat 2	85 01085
01072		110.20002	60131	shield 2 inf facet 1	88 61038	60330	shield 2 inf facet 3	85 23861
			60135	shield 2 inf evt fac	88 68176	60333	shield 2 inf facet 3	84 44709
			00133	STICIC Z ITT CALLOC	55.00170	00002		51.77/07

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

REFERENCE : H-P-3-ASPI-AN-0330

				lary3C3	DATE :	09	/04/04	
					ISSUE :	2	Page	: 158/181
60335	shield 2 inf ext fac	83.64201	60635	shield 2 inf ext fac	87.00775	61184	shield 2 sup facet 1	90.88086
60336	shield 2 inf ext fac	83.21039	60636	shield 2 inf ext fac	86.64927	61210	shield 2 sup facet 2	87.18034
60410	shield 2 inf facet 4	85.85083	60670	shield 2 inf facet 6	87.04204	61211	shield 2 sup facet 2	87.97292
60411	shield 2 inf facet 4	85.12736	60671	shield 2 inf facet 6	87.09537	61212	shield 2 sup facet 2	88.97400
60412	shield 2 inf facet 4	84.33083	60672	shield 2 inf facet 6	87.14150	61215	shield 2 sup ext fac	87.55253
60415	shield 2 inf ext fac	83.53113	60673	shield 2 inf facet 6	87.18967	61216	shield 2 sup ext fac	86.85397
60416	shield 2 inf ext fac	83.09279	60674	shield 2 inf facet 6	87.23984	61220	shield 2 sup facet 2	87.00576
60420	shield 2 inf facet 4	85.84876	60675	shield 2 inf facet 6	87.29170	61221	shield 2 sup facet 2	87.18370
60421	shield 2 inf facet 4	85.14474	60676	shield 2 inf facet 6	87.34522	61222	shield 2 sup facet 2	87.14032
60422	shield 2 inf facet 4	84.42234	60677	shield 2 inf facet 6	87.40059	61225	shield 2 sup ext fac	86.26117
60425	shield 2 inf ext fac	83.60744	60678	shield 2 inf facet 6	87.45803	61226	shield 2 sup ext fac	85.74206
			60679	shield 2 inf facet 6	87.51777	61230	shield 2 sup facet 2	86.62347
			60680	shield 2 inf facet 6	87.58008	61231	shield 2 sup facet 2	86.44372
60426	shield 2 inf ext fac	83.16122	60681	shield 2 inf facet 6	87.64526	61232	shield 2 sup facet 2	85.97854
60430	shield 2 inf facet 4	85.97782	60682	shield 2 inf facet 6	87.71373	61235	shield 2 sup ext fac	85.19556
60431	shield 2 inf facet 4	85.33503	60683	shield 2 inf facet 6	87.78596	61236	shield 2 sup ext fac	84.75314
60432	shield 2 inf facet 4	84.59443	60684	shield 2 inf facet 6	87.86255	61310	shield 2 sup facet 3	86.27806
60435	shield 2 inf ext fac	83.79308				61311	shield 2 sup facet 3	85.92487
60436	shield 2 inf ext fac	83.35177	61110	shield 2 sup facet 1	87.47473	61312	shield 2 sup facet 3	85.31334
60510	shield 2 inf facet 5	86.18717	61111	shield 2 sup facet 1	88.20960	61315	shield 2 sup ext fac	84.49916
60511	shield 2 inf facet 5	85.60715	61112	shield 2 sup facet 1	100.49864	61316	shield 2 sup ext fac	84.03900
60512	shield 2 inf facet 5	84.92555	61115	shield 2 sup ext fac	87.54445	61320	shield 2 sup facet 3	86.12480
60515	shield 2 inf ext fac	84.17986	61116	shield 2 sup ext fac	87.13584			
60516	shield 2 inf ext fac	83.75004	61120	shield 2 sup facet 1	87.48655			
60520	shield 2 inf facet 5	86.33062	61121	shield 2 sup facet 1	88.66169	61321	shield 2 sup facet 3	85.49823
60521	shield 2 inf facet 5	86.03547	61122	shield 2 sup facet 1	91.19414	61322	shield 2 sup facet 3	84.80611
60522	shield 2 inf facet 5	85.58312	61125	shield 2 sup ext fac	88.87907	61325	shield 2 sup ext fac	83.99107
60525	shield 2 inf ext fac	84.81224	61126	shield 2 sup ext fac	87.95271	61326	shield 2 sup ext fac	83.54337
60526	shield 2 inf ext fac	84.35274	61130	shield 2 sup facet 1	87.43149	61330	shield 2 sup facet 3	85.93438
60530	shield 2 inf facet 5	86.67467	61131	shield 2 sup facet 1	88.59505	61331	shield 2 sup facet 3	85.23266
60531	shield 2 inf facet 5	86.62298	61135	shield 2 sup ext fac	88.67409	61332	shield 2 sup facet 3	84.44799
60532	shield 2 inf facet 5	86.41336	61136	shield 2 sup ext fac	87.77770	61335	shield 2 sup ext fac	83.63905
60535	shield 2 inf ext fac	85.58370	61170	shield 2 sup facet 1	90.96186	61336	shield 2 sup ext fac	83.20822
60536	shield 2 inf ext fac	85.07842	61171	shield 2 sup facet 1	90.94595	61410	shield 2 sup facet 4	85.84345
60610	shield 2 inf facet 6	87.01251	61172	shield 2 sup facet 1	90.93891	61411	shield 2 sup facet 4	85.12104
60611	shield 2 inf facet 6	87.17386	61173	shield 2 sup facet 1	90.93966	61412	shield 2 sup facet 4	84.33146
60615	shield 2 inf ext fac	86.51248	61174	shield 2 sup facet 1	90.94737	61415	shield 2 sup ext fac	83.52815
60616	shield 2 inf ext fac	85.91911	61175	shield 2 sup facet 1	90.96123	61416	shield 2 sup ext fac	83.09050
60620	shield 2 inf facet 6	87.17524	61176	shield 2 sup facet 1	90.98030	61420	shield 2 sup facet 4	85.84148
60621	shield 2 inf facet 6	87.53941	61177	shield 2 sup facet 1	91.00319	61421	shield 2 sup facet 4	85.13834
60622	shield 2 inf facet 6	89.07101	61178	shield 2 sup facet 1	91.02790	61422	shield 2 sup facet 4	84.41649
60625	shield 2 inf ext fac	87.17181	61179	shield 2 sup facet 1	91.05143	61425	shield 2 sup ext fac	83.60336
60626	shield 2 inf ext fac	86.51048	61180	shield 2 sup facet 1	91.06925	61426	shield 2 sup ext fac	83.15881
60630	shield 2 inf facet 6	87.38006	61181	shield 2 sup facet 1	91.07449	61430	shield 2 sup facet 4	85.96945
60631	shield 2 inf facet 6	87.81437	61182	shield 2 sup facet 1	91.05673	61431	shield 2 sup facet 4	85.32807
60632	shield 2 inf facet 6	100.75627	61183	shield 2 sup facet 1	91.00017	61432	shield 2 sup facet 4	84.59435

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

REFERENCE : H-P-3-ASPI-AN-0330

	FIGHT FI		illai Ai	lalyses	DATE :	09	/04/04	
					ISSUE :	2	Page	: 159/181
61435	shield 2 sup ext fac	83.78970	61684	shield 2 sup facet 6	87.81924	70173	SHield 3 inf facet 1	53.79386
61436	shield 2 sup ext fac	83.34944	62100	SHield 2 b facet 1	86.71690	70174	SHield 3 inf facet 1	53.80357
61510	shield 2 sup facet 5	86.17985	62101	SHield 2 b facet 1	87.51997	70175	SHield 3 inf facet 1	53.86016
61511	shield 2 sup facet 5	85.60030	62102	SHield 2 b facet 1	87.34676	70176	SHield 3 inf facet 1	53.97882
61512	shield 2 sup facet 5	84.92492	62200	SHield 2 b facet 2	86.43937	70177	SHield 3 inf facet 1	54.17956
61515	shield 2 sup ext fac	84.17614	62201	SHield 2 b facet 2	85.34803	70178	SHield 3 inf facet 1	54.49119
61516	shield 2 sup ext fac	83.74743	62202	SHield 2 b facet 2	84.37401	70179	SHield 3 inf facet 1	54.95757
61520	shield 2 sup facet 5	86.32197	62300	SHield 2 b facet 3	83.67154	70180	SHield 3 inf facet 1	54.46556
61521	shield 2 sup facet 5	86.02719	62301	SHield 2 b facet 3	83.18512	70181	SHield 3 inf facet 1	54.15090
61522	shield 2 sup facet 5	85.57570	62302	SHield 2 b facet 3	82.85382	70182	SHield 3 inf facet 1	53.90737
61525	shield 2 sup ext fac	84.80702	62400	SHield 2 b facet 4	82.73802	70183	SHield 3 inf facet 1	53.72399
61526	shield 2 sup ext fac	84.34975	62401	SHield 2 b facet 4	82.80648	70184	SHield 3 inf facet 1	53.59865
61530	shield 2 sup facet 5	86.66311	62402	SHield 2 b facet 4	82.99283	70185	SHield 3 inf facet 1	53.52575
61531	shield 2 sup facet 5	86.61251	62500	SHield 2 b facet 5	83.38474	70186	SHield 3 inf facet 1	53.45617
61532	shield 2 sup facet 5	86.40664	62501	SHield 2 b facet 5	83.97885	70187	SHield 3 inf facet 1	53.43277
61535	shield 2 sup ext fac	85.57816	62502	SHield 2 b facet 5	84.69130	70188	SHield 3 inf facet 1	53.45463
61536	shield 2 sup ext fac	85.07526	62600	SHield 2 b facet 6	85.51730	70189	SHield 3 inf facet 1	53.21044
61610	shield 2 sup facet 6	87.00015	62601	SHield 2 b facet 6	86.09984	70210	SHield3_inf_facet2	51.04821
61611	shield 2 sup facet 6	87.15925	62602	SHield 2 b facet 6	86.23482	70211	SHield3_inf_facet2	51.50797
61615	shield 2 sup ext fac	86.49902	69000	scr_VG2 92.2205	9	70212	SHield3_inf_facet2	51.37645
61616	shield 2 sup ext fac	85.91502	69010	scn_VG2 87.1034	9	70213	SHield3_inf_facet2	51.47597
61620	shield 2 sup facet 6	87.16054	70110	SHield 3 inf facet 1	51.20253	70214	SHield3_inf_facet2	50.99794
61621	shield 2 sup facet 6	87.52165	70111	SHield 3 inf facet 1	51.94388	70215	SHield3_inf_facet2	50.96073
61622	shield 2 sup facet 6	89.12373	70112	SHield 3 inf facet 1	59.79377	70216	SHield3_inf_facet2	50.70059
61625	shield 2 sup ext fac	87.16158	70115	SHield 3 inf ext fac	50.82756	70217	SHield3_inf_facet2	50.79493
61626	shield 2 sup ext fac	86.50621	70116	SHield 3 inf ext fac	50.78911	70220	SHield3_inf_facet2	50.92310
61630	shield 2 sup facet 6	87.36341	70117	SHield 3 inf ext fac	50.82841	70221	SHield3_inf_facet2	50.74157
61631	shield 2 sup facet 6	87.79162	70118	SHield 3 inf facet 1	51.20187	70222	SHield3_inf_facet2	50.40334
			70119	SHield 3 inf facet 1	52.62964	70223	SHield3_inf_facet2	50.53620
61632	shield 2 sup facet 6	100.74627	70120	SHield 3 inf facet 1	51.18681	70225	SHield3_inf_ext_facet	2 50.55651
61635	shield 2 sup ext fac	86.99659	70121	SHield 3 inf facet 1	52.56200	70226	SHield3_inf_ext_facet	2 50.43426
61636	shield 2 sup ext fac	86.64492	70122	SHield 3 inf facet 1	51.15768	70227	SHield3_inf_ext_facet	2 50.39192
61670	shield 2 sup facet 6	87.02470	70123	SHield 3 inf facet 1	52.24398	70230	SHield3_inf_facet2	50.84776
61671	shield 2 sup facet 6	87.07470				70231	SHield3_inf_facet2	50.54571
61672	shield 2 sup facet 6	87.12488				70232	SHield3_inf_facet2	50.22354
61673	shield 2 sup facet 6	87.17560	70124	SHield 3 inf facet 1	52.75658	70233	SHield3_inf_facet2	50.24807
61674	shield 2 sup facet 6	87.22710	70125	SHield 3 inf ext fac	51.53703	70235	SHield3_inf_ext_facet	2 50.15941
61675	shield 2 sup facet 6	87.27961	70126	SHield 3 inf ext fac	51.33795	70236	SHield3_inf_ext_facet	2 50.09735
61676	shield 2 sup facet 6	87.33331	70127	SHield 3 inf ext fac	51.24157	70237	SHield3_inf_ext_facet	2 50.04676
61677	shield 2 sup facet 6	87.38836	70134	SHield 3 inf facet 1	52.48960			
61678	shield 2 sup facet 6	87.44490	70135	SHield 3 inf ext fac	51.23152	70270	SHield3_inf_ext_facet	2 51.22245
61679	shield 2 sup facet 6	87.50304	70136	SHield 3 inf ext fac	51.01635	70271	SHield3_inf_ext_facet	2 51.07178
61680	shield 2 sup facet 6	87.56287	70137	SHield 3 inf ext fac	50.92903	70272	SHield3_inf_ext_facet	2 50.96111
61681	shield 2 sup facet 6	87.62444	70170	SHield 3 inf facet 1	53.89565	70273	SHield3_inf_ext_facet	2 51.24790
61682	shield 2 sup facet 6	87.68776	70171	SHield 3 inf facet 1	53.85844	70274	SHield3_inf_ext_facet	2 51.04605
61683	shield 2 sup facet 6	87.75275	70172	SHield 3 inf facet 1	53.81733	70275	SHield3_inf_ext_facet	2 50.94812

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

Dlanck DI M Thormal Analysos

REFERENCE: H-P-3-ASPI-AN-0330

	FIGHT FI			laryses	DATE :	09,	/04/04	
					ISSUE :	2	Page	: 160/181
70276	SHield3_inf_ext_face	t2 50.98614				70628	SHield 3 inf facet 6	50.75622
70277	SHield3_inf_ext_face	t2 50.85091	70437	SHield 3 inf ext fac	49.30359	70629	SHield 3 inf facet 6	51.32946
70278	SHield3_inf_ext_face	t2 50.84168	70510	SHield3_inf_facet5	50.68449	70630	SHield 3 inf facet 6	51.09686
70310	SHield 3 inf facet 3	50.74075	70511	SHield3_inf_facet5	50.17016	70631	SHield 3 inf facet 6	51.67346
70311	SHield 3 inf facet 3	50.40870	70512	SHield3_inf_facet5	49.86851	70632	SHield 3 inf facet 6	59.71012
70312	SHield 3 inf facet 3	50.16578	70513	SHield3_inf_facet5	49.87167			
70313	SHield 3 inf facet 3	50.09830	70514	SHield3_inf_facet5	50.73395			
70315	SHield 3 inf ext fac	49.90598	70515	SHield3_inf_facet5	50.22690	70635	SHield 3 inf ext fac	50.27463
70316	SHield 3 inf ext fac	49.83807	70516	SHield3_inf_facet5	49.98320	70636	SHield 3 inf ext fac	50.26859
70317	SHield 3 inf ext fac	49.79838	70517	SHield3_inf_facet5	50.01272	70637	SHield 3 inf ext fac	50.25006
70320	SHield 3 inf facet 3	50.68570	70520	SHield3_inf_facet5	50.79585	70670	SHield 3 inf facet 6	50.77753
70321	SHield 3 inf facet 3	50.27928	70521	SHield3_inf_facet5	50.45558	70671	SHield 3 inf facet 6	50.86128
70322	SHield 3 inf facet 3	50.03687	70522	SHield3_inf_facet5	50.10408	70672	SHield 3 inf facet 6	50.94224
70323	SHield 3 inf facet 3	49.90923	70523	SHield3_inf_facet5	50.20874	70673	SHield 3 inf facet 6	51.02576
70325	SHield 3 inf ext fac	49.69269	70525	SHield3_inf_ext_facet5	49.99748	70674	SHield 3 inf facet 6	51.11392
70326	SHield 3 inf ext fac	49.63004	70526	SHield3_inf_ext_facet5	49.89071	70675	SHield 3 inf facet 6	51.20903
70327	SHield 3 inf ext fac	49.59523	70527	SHield3_inf_ext_facet5	49.84984	70676	SHield 3 inf facet 6	51.31365
70330	SHield 3 inf facet 3	50.65652	70530	SHield3_inf_facet5	50.84215	70677	SHield 3 inf facet 6	51.37345
70331	SHield 3 inf facet 3	50.20698	70531	SHield3_inf_facet5	50.70249	70678	SHield 3 inf facet 6	51.43675
70332	SHield 3 inf facet 3	49.95552	70532	SHield3_inf_facet5	50.37638	70679	SHield 3 inf facet 6	51.51153
70333	SHield 3 inf facet 3	49.82782	70533	SHield3_inf_facet5	50.49021	70680	SHield 3 inf facet 6	51.59760
70335	SHield 3 inf ext fac	49.59848	70535	SHield3_inf_ext_facet5	49.84516	70681	SHield 3 inf facet 6	51.69253
70336	SHield 3 inf ext fac	49.52972	70536	SHield3_inf_ext_facet5	49.80937	70682	SHield 3 inf facet 6	51.79872
70337	SHield 3 inf ext fac	49.49698	70537	SHield3_inf_ext_facet5	49.78157	70683	SHield 3 inf facet 6	51.91592
70410	SHield 3 inf facet 4	50.62433	70570	SHield3_inf_ext_facet5	50.69496	70684	SHield 3 inf facet 6	52.05405
70411	SHield 3 inf facet 4	50.16832	70571	SHield3_inf_ext_facet5	50.73789	70685	SHield 3 inf facet 6	52.20609
70412	SHield 3 inf facet 4	49.91132	70572	SHield3_inf_ext_facet5	50.68546	70686	SHield 3 inf facet 6	52.35758
70413	SHield 3 inf facet 4	49.77372	70573	SHield3_inf_ext_facet5	50.54123	70687	SHield 3 inf facet 6	52.50115
70415	SHield 3 inf ext fac	49.48460	70574	SHield3_inf_ext_facet5	50.46684	70688	SHield 3 inf facet 6	52.62372
70416	SHield 3 inf ext fac	49.38546	70575	SHield3_inf_ext_facet5	50.42505	70689	SHield 3 inf facet 6	52.70317
70417	SHield 3 inf ext fac	49.33609	70576	SHield3_inf_ext_facet5	50.28987	71110	SHield 3 sup facet 1	51.19949
70420	SHield 3 inf facet 4	50.61412	70577	SHield3_inf_ext_facet5	50.17647	71111	SHield 3 sup facet 1	51.94081
70421	SHield 3 inf facet 4	50.12888	70578	SHield3_inf_ext_facet5	50.17957	71112	SHield 3 sup facet 1	59.79359
70422	SHield 3 inf facet 4	49.85435	70610	SHield 3 inf facet 6	50.95912	71115	SHield 3 sup ext fac	50.80608
70423	SHield 3 inf facet 4	49.70259	70611	SHield 3 inf facet 6	51.04344	71116	SHield 3 sup ext fac	50.75884
70425	SHield 3 inf ext fac	49.42597	70613	SHield 3 inf facet 6	50.73636	71117	SHield 3 sup ext fac	50.67548
70426	SHield 3 inf ext fac	49.34672	70615	SHield 3 inf ext fac	50.48364	71118	SHield 3 sup facet 1	51.19814
70427	SHield 3 inf ext fac	49.30255	70616	SHield 3 inf ext fac	50.39406	71119	SHield 3 sup facet 1	52.62395
70430	SHield 3 inf facet 4	50.63331	70617	SHield 3 inf ext fac	50.33762	71120	SHield 3 sup facet 1	51.18250
70431	SHield 3 inf facet 4	50.14199	70618	SHield 3 inf facet 6	51.00174	71121	SHield 3 sup facet 1	52.48508
70432	SHield 3 inf facet 4	49.86392	70619	SHield 3 inf facet 6	51.31553	71122	SHield 3 sup facet 1	51.15319
70433	SHield 3 inf facet 4	49.74947	70620	SHield 3 inf facet 6	51.03677	71123	SHield 3 sup facet 1	52.14556
70435	SHield 3 inf ext fac	49.43462	70621	SHield 3 inf facet 6	51.52484	71124	SHield 3 sup facet 1	52.59382
70436	SHield 3 inf ext fac	49.34663	70625	SHield 3 inf ext fac	50.68017	71125	SHield 3 sup ext fac	51.51963
			70626	SHield 3 inf ext fac	50.52013	71126	SHield 3 sup ext fac	51.32487
			70627	SHield 3 inf ext fac	50.38155	71127	SHield 3 sup ext fac	51.22796

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

Date : Issue : 09/04/04 2

Page : 1	61/181
-----------------	--------

71134	SHield 3 sup facet 1	52.37223	712
71135	SHield 3 sup ext fac	51.21479	717
71136	SHield 3 sup ext fac	51.00451	/12
71137	SHield 3 sup ext fac	50.91772	712
71170	SHield 3 sup facet 1	55.02408	
71171	SHield 3 sup facet 1	54.54505	712
71172	SHield 3 sup facet 1	54.20758	712
71173	SHield 3 sup facet 1	53.97248	
71174	SHield 3 sup facet 1	53.81236	712
71175	SHield 3 sup facet 1	53.70671	717
71176	SHield 3 sup facet 1	53.63818	/12
			712
71177	SHield 3 sup facet 1	53.58918	
71178	SHield 3 sup facet 1	53.53808	712
71179	SHield 3 sup facet 1	53.45652	712
71180	SHield 3 sup facet 1	53.29817	
71181	SHield 3 sup facet 1	53.08851	712
71182	SHield 3 sup facet 1	52.90917	717
71183	SHield 3 sup facet 1	52.75228	/12
71184	SHield 3 sup facet 1	52.61720	713
71185	SHield 3 sup facet 1	52.49800	713
71186	SHield 3 sup facet 1	52.38947	713
71187	SHield 3 sup facet 1	52.28685	713
71188	SHield 3 sup facet 1	52.18565	713
71189	SHield 3 sup facet 1	52.08147	713
71210	SHield3_sup_facet2	51.04489	
71211	SHield3_sup_facet2	51.48162	713
71212	SHield3_sup_facet2	51.09394	713
71213	SHield3_sup_facet2	51.43854	713
71214	SHield3_sup_facet2	50.99510	713
71215	SHield3_sup_facet2	50.95660	713
71216	SHield3_sup_facet2	50.66638	713
71217	SHield3_sup_facet2	50.78997	713
71220	SHield3_sup_facet2	50.92070	713
71221	SHield3_sup_facet2	50.73653	713
71222	SHield3_sup_facet2	50.32076	713
71223	SHield3_sup_facet2	50.52500	713
71225	SHield3_sup_ext_facet	2	713
	50.55098		713
71226	SHield3_sup_ext_facet 50.42684	2	713
71227	SHield3 sup ext facet	2	713
	50.38553		714
71230	SHield3_sup_facet2	50.84568	714
71231	SHield3_sup_facet2	50.54189	714
71232	SHield3_sup_facet2	50.16813	714
71233	SHield3_sup_facet2	50.23084	714

71235	SHield3_sup_ext_facet2	2
7400/	50.15378	2
71236	SHield3_sup_ext_facet: 50.09089	2
71237	SHield3_sup_ext_facet: 50.03835	2
71270	SHield3_sup_ext_facet2 51.20117	2
71271	SHield3_sup_ext_facet2 51.06292	2
71272	SHield3_sup_ext_facet2 50.95485	2
71273	SHield3_sup_ext_facet2 51.22139	2
71274	SHield3_sup_ext_facet2 51.03651	2
71275	SHield3_sup_ext_facet2 50.94103	2
71276	SHield3_sup_ext_facet2 50.97628	2
71277	SHield3_sup_ext_facet2 50.84123	2
71278	SHield3_sup_ext_facet2 50.83472	2
71310	SHield 3 sup facet 3	50.73898
71311	SHield 3 sup facet 3	50.40666
71312	SHield 3 sup facet 3	50.15725
71313	SHield 3 sup facet 3	50.07992
71315	SHield 3 sup ext fac	49.89202
71316	SHield 3 sup ext fac	49.82437
71317	SHield 3 sup ext fac	49.78841
71320	SHield 3 sup facet 3	50.68408
71321	SHield 3 sup facet 3	50.27771
71322	SHield 3 sup facet 3	50.03184
71323	SHield 3 sup facet 3	49.90180
71325	SHield 3 sup ext fac	49.67902
71326	SHield 3 sup ext fac	49.61535
71327	SHield 3 sup ext fac	49 58023
71330	SHield 3 sup facet 3	50 65494
71221	SHield 2 sup facet 2	50.00474
71000		10.20330
71332		49.95074
/1333	Shield 3 sup facet 3	49.80957
71335	SHield 3 sup ext fac	49.58050
71336	SHield 3 sup ext fac	49.51177
71337	SHield 3 sup ext fac	49.47772
71410	SHield 3 sup facet 4	50.62278
71411	SHield 3 sup facet 4	50.16692
71412	SHield 3 sup facet 4	49.90654
71413	SHield 3 sup facet 4	49.75611
71415	SHield 3 sup ext fac	49.47894

71416	SHield 3 sup ext fac	49.37964
71417	SHield 3 sup ext fac	49.33031
71420	SHield 3 sup facet 4	50.61254
71421	SHield 3 sup facet 4	50.12734
71422	SHield 3 sup facet 4	49.84950
71423	SHield 3 sup facet 4	49.69559
71425	SHield 3 sup ext fac	49.41783
71426	SHield 3 sup ext fac	49.33809
71427	SHield 3 sup ext fac	49.29383
71430	SHield 3 sup facet 4	50.63167
71431	SHield 3 sup facet 4	50.14007
71432	SHield 3 sup facet 4	49.85554
71433	SHield 3 sup facet 4	49.73186
71435	SHield 3 sup ext fac	49.42558
71436	SHield 3 sup ext fac	49.33779
71437	SHield 3 sup ext fac	49.29461
71510	SHield3_sup_facet5	50.68270
71511	SHield3_sup_facet5	50.16686
71512	SHield3_sup_facet5	49.82055
71513	SHield3_sup_facet5	49.85540
71514	SHield3_sup_facet5	50.73207
71515	SHield3_sup_facet5	50.22431
71516	SHield3_sup_facet5	49.96277
71517	SHield3_sup_facet5	50.00876
71520	SHield3_sup_facet5	50.79384
71521	SHield3_sup_facet5	50.44993
71522	SHield3_sup_facet5	50.01463
71523	SHield3_sup_facet5	50.19668
71525	SHield3_sup_ext_facet 49.99245	5
71526	SHield3_sup_ext_facet 49.88394	5
71527	SHield3_sup_ext_facet 49.84380	5
71530	SHield3_sup_facet5	50.84007
71531	SHield3_sup_facet5	50.69526
71532	SHield3_sup_facet5	50.23870
71533	SHield3_sup_facet5	50.47094
71535	SHield3_sup_ext_facet 49.83977	5
71536	SHield3_sup_ext_facet 49.80322	5
71537	SHield3_sup_ext_facet 49.77584	5
71570	SHield3_sup_ext_facet 50.68892	5
71571	SHield3_sup_ext_facet 50.73147	5

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

REFERENCE :	H-P-3-ASPI-AN-0330
ILL LILLIUCE .	

				Jeeg	DATE :	09.	/04/04	
					ISSUE :	2	Page	: 162/181
71572	SHield3_sup_ext_facet	5	71619	SHield 3 sup facet 6	51.31622	71674	SHield 3 sup facet 6	50.99771
	50.67951	_	71620	SHield 3 sup facet 6	51.03460	71675	SHield 3 sup facet 6	51.09260
/15/3	50.53464	5	71621	SHield 3 sup facet 6	51.53726	71676	SHield 3 sup facet 6	51.19603
71574	SHield3_sup_ext_facet	:5	71625	SHield 3 sup ext fac	50.66467	71677	SHield 3 sup facet 6	51.29633
	50.45965		71626	SHield 3 sup ext fac	50.50846	71678	SHield 3 sup facet 6	51.38592
71575	SHield3_sup_ext_facet	5	71627	SHield 3 sup ext fac	50.37014	71679	SHield 3 sup facet 6	51.48244
71576	SHield3 sup ext facet	5	71628	SHield 3 sup facet 6	50.58384	71680	SHield 3 sup facet 6	51.58889
,,	50.28314		71629	SHield 3 sup facet 6	51.34392	71681	SHield 3 sup facet 6	51.70840
71577	SHield3_sup_ext_facet	5	71630	SHield 3 sup facet 6	51.09450	71682	SHield 3 sup facet 6	51.84456
71570		F	71631	SHield 3 sup facet 6	51.67266	71683	SHield 3 sup facet 6	52.00165
/15/8	50.17309	.5	71632	SHield 3 sup facet 6	59.70993	71684	SHield 3 sup facet 6	52.20026
71610	SHield 3 sup facet 6	50.95694	71635	SHield 3 sup ext fac	50.27045	71685	SHield 3 sup facet 6	52.44462
71611	SHield 3 sup facet 6	51.03755	71636	SHield 3 sup ext fac	50.26292	71686	SHield 3 sup facet 6	52.73237
71613	SHield 3 sup facet 6	50.69158	71637	SHield 3 sup ext fac	50.24274	71687	SHield 3 sup facet 6	53.08101
71615	SHield 3 sup ext fac	50.47141	71670	SHield 3 sup facet 6	50.65387	71688	SHield 3 sup facet 6	53.51520
71616	SHield 3 sup ext fac	50.38312	71671	SHield 3 sup facet 6	50.73915	71689	SHield 3 sup facet 6	54.07070
71617	SHield 3 sup ext fac	50.32651	71672	SHield 3 sup facet 6	50.82335			
71618	SHield 3 sup facet 6	50.99958	71673	SHield 3 sup facet 6	50.90876			

REFERENCE :	H-P-3-ASPI-AN-0330			
DATE :	09/04/04			
ISSUE :	2	Page : 163/181		

APPENDIX 8

TEMPERATURES LISTING

NOMINAL CASE

Reference :	H-P-3-ASPI-AN-0330			
DATE :	09/04/04			
ISSUE :	2	Page : 164/181		

1001	Solar Array vs. satellit	313.80787
1002	Solar Array vs. satellit	311.50380
1003	Solar Array vs. satellit	311.35980
1004	Solar Array vs. satellit	314.14508
1010	Solar Array 399.39999)
1061	I/F struts -Y 302.0000)
1062	I/F struts -Y-Z	304.20001
1063	I/F struts +Y-Z	304.39999
1064	I/F struts +Y	301.50000
1065	I/F struts +Y+Z	301.60001
1066	I/F struts -Y+Z	301.39999
1501	FIRING CONE	247.60001
1503	THRUSTER 225.80000)
1504	HEAD PLATE DISC	252.00000
1505	HEAT BARRIER	253.70000
1507	HEAT FLANGE	269.00000
1509	HEAT FLANGE	287.00000
1510	HEAT FLANGE	287.10001
1521	FIRING CONE	247.20000
1523	THRUSTER 229.60001	
1524	HEAD PLATE DISC	251.30000
1525	HEAT BARRIER	252.89999
1527	HEAT FLANGE	268.00000
1529	HEAT FLANGE	287.00000
1530	HEAT FLANGE	286.89999
1532	THR_COM 292.70001	
1533	FCV MAIN 287.00000)
1534	FCV MAIN 287.00000)
1543	HEAT FLANGE	287.00000
1544	HEAT FLANGE	287.00000
1546	HEAT FLANGE	193.10001
1701	FIRING CONE	249.89999
1703	THRUSTER 231.70000)
1704	HEAD PLATE DISC	254.10001
1705	HEAT BARRIER	255.70000
1707	HEAT FLANGE	270.00000
1709	HEAT FLANGE	287.29999
1710	HEAT FLANGE	287.29999
1721	FIRING CONE	245.30000
1723	THRUSTER 224.80000)
1724	HEAD PLATE DISC	249.60001
1725	HEAT BARRIER	251.20000
1727	HEAT FLANGE	267.10001
1729	HEAT FLANGE	286.89999
1730	HEAT FLANGE	286.79999

1732	THR_COM	293.20001	
1733	FCV MAIN	287.29999)
1734	FCV MAIN	286.89999)
1743	HEAT FLAN	IGE	287.39999
1744	HEAT FLAN	IGE	287.00000
1746	HEAT FLAN	IGE	193.39999
2001	SVM Rad -Y	′+Z	284.50000
2002	SVM Rad +	Z	281.89999
2003	SVM Rad +	Y+Z	287.70001
2004	SVM Rad +	Y	286.60001
2005	SVM Rad +	Y-Z	261.89999
2006	SVM Rad -Z	<u>,</u>	263.29999
2007	SVM Rad - Y	(-Z	259.10001
2008	SVM Rad - Y	(284.50000
3000	SVM I/F	300.00000	1
3001	MLI SVM To	p +Z	209.40753
3002	MLI SVM To	p +Y	211.78060
3003	MLI SVM To	op -Z	215.43486
3004	MLI SVM To	p +Z-Y	208.96363
3011	SVM Top +	Y + Z	301.29999
3012	SVM Top +	Y-Z	300.89999
3013	SVM Top -Y	′-Z	301.20001
3014	SVM Top -Y	′+Z	300.39999
3501	MLI on Sub 215.07516	platform +	Y + Z
3502	MLI on Sub 218.88600	platform +	(-Z
3503	MLI on Sub 220.28154	platform -Y	-Z
3504	MLI on Sub 215.22536	platform -Y	+Z
3511	Subplatform	n +Y+Z	306.50000
3512	Subplatform	n +Y-Z	306.00000
3513	Subplatform	n -Y-Z	304.10001
3514	Subplatform	n-Y+Z	306.29999
3550	MLI on Sub 216.21595	platform ho	le
3560	Subplatform	n hole	306.29999
3600	MLI BEU	239.58767	
3901	BAFFLE STR	1	165.30000
3902	BAFFLE STR	1	167.89999
3922	LGA2	268.50000)
3962	LGA3	287.29999)
4901	BAFFLE STR	1	191.39999
4902	BAFFLE STR	1	207.00000
4921	SAS1	227.89999	,
1022	LGA2	242.89999)

4961	SREM	156.30000)
4962	LGA3	238.80000)
4963	VMC	220.2000)
7522	MLI PAU	228.11198	3
8501	NOZZLE	218.80000)
8503	DECOMP.	COVER	216.39999
8512	HEAT BAR	RIER	291.60001
8513	HEAT BAR	RIER	281.79999
8514	HEAT BAR	RIER	276.70001
8533	DECOMP.	COVER	218.60001
8601	NOZZLE	212.10007	1
8603	DECOMP.	COVER	210.39999
8612	HEAT BAR	RIER	291.00000
8613	HEAT BAR	RIER	279.39999
8614	HEAT BAR	RIER	275.29999
8633	DECOMP.	COVER	211.80000
8701	NOZZLE	218.9900	I
8703	DECOMP.	COVER	216.39999
8712	HEAT BAR	RIER	294.50000
8713	HEAT BAR	RIER	284.00000
8714	HEAT BAR	RIER	278.70001
8733	DECOMP.	COVER	218.80000
8801	NOZZLE	220.1000	I
8803	DECOMP.	COVER	217.60001
8812	HEAT BAR	RIER	294.50000
8813	HEAT BAR	RIER	284.10001
8814	HEAT BAR	RIER	278.79999
8833	DECOMP.	COVER	219.89999
13001	WG_BEU_	VG1_Ti	257.13663
13002	WG_BEU_	VG1	185.52235
13003	WG_VG1_	VG2	139.46149
13004	WG_VG1_	VG2	126.18232
13005	WG_VG1_	VG2	113.98742
13006	WG_VG1_	VG2	101.97075
13007	WG_VG2_	VG3	90.29894
13008	WG_VG2_	VG3	79.93890
13009	WG_VG2_	VG3	69.42461
13010	WG_VG2_	VG3	58.21319
13011	WG_SS	49.21882	
13012	WG_SS	43.21561	
13013	WG_SS	36.41415	
13014	WG_SS	27.84468	
13015	WG_Cu	21.85621	
13016	WG_Cu	21.76610	
13017	WG_Cu	21.67504	
		Référence d	u modèle · M023-3

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

				naryses	Date :	09	/04/04	
					ISSUE :	2	Page : 10	65/181
13018	WG_Cu 21.58304	1	16709	Block 4 4.69738		29120	Harness2 277.98401	
13100	I/F_WG_VG1	147.27646	18001	Tube_BEU_VG1	269.20793	29130	Harness3 253.85124	
13200	I/F_WG_VG2	95.69607	18002	Tube_BEU_VG1	201.96503	29140	Harness4 227.44040	
13300	I/F_WG_VG3	52.11586	18003	Tube_VG1_VG2	155.29642	29150	Harness5 198.76216	
13500	I/F_WG_ss_cu	21.90106	18004	Tube_VG1_VG2	132.17626	29160	Harness6 168.17755	
15001	Harnes_BEUVG1	242.75181	18005	Tube_VG1_VG2	116.68045	29170	Harness7 136.55957	
15002	Harnes_BEUVG1	194.06353	18006	Tube_VG1_VG2	102.57248	29180	Harness8 105.17124	
15003	Harnes_VG1_VG2	160.09924	18007	Tube_VG2_VG3	88.70756	29190	Harness9 74.98095	
15004	Harnes_VG1_VG2	144.91798	18008	Tube_VG2_VG3	77.29078	29200	Harness_3rd_Gr 45.3	30432
15005	Harnes_VG1_VG2	132.56170	18009	Tube_VG2_VG3	67.27619	30000	Baffle + Y ext 43.2	29910
15006	Harnes_VG1_VG2	122.00845	18010	Tube_VG2_VG3	57.74698	30001	Baffle -Z ext 44.3	34084
15007	Harnes_VG2_VG3	110.56609	18011	Tube_VG3_TOP	49.21701	30002	Baffle -Z ext 43.0	58327
15008	Harnes_VG2_VG3	99.95570	18012	Tube_VG3_TOP	43.79767	30003	Baffle + Z ext 44.	78250
15009	Harnes_VG2_VG3	91.33335	18013	Tube_VG3_TOP	37.86885	30004	Baffle + Z ext 43.8	36448
15010	Harnes_VG2_VG3	84.12196	18014	Tube_VG3_TOP	30.26031	30005	Baffle -Y ext 44.4	46153
15011	Harnes_VG3_TOP	76.34156	18015	Tube_TOP_END	22.55313	30500	Baffle + Y int 43.3	30477
15012	Harnes_VG3_TOP	69.03899	18090	I/F_TI_GFRP	267.80598	30501	Baffle -Z int44.35314	
15013	Harnes_VG3_TOP	63.25641	18100	FLANGE_Thermal_B 173.57264	raid_VG1	30502	Baffle -Z int43.68964	
15014	Harnes_VG3_TOP	58.51658	18101	I/F Column FLANG	F Therma	30503	Baffle +Z int 44.8	30292
15015	Harnes_TOP_bend	54.70202	10101	174.55877	2	30504	Baffle +Z int 43.8	37094
15016	Harnes_TOP_bend	51.57859	18110	Panels_VG1	161.93249	30505	Baffle -Y int44.45635	
15017	Harnes_TOP_bend	48.71979	18200	FLANGE_Thermal_B	raid_VG2	31000	Main panel -Z low +Y 46.0	55625
15018	harness_bend	46.07332	10001	95.70043	C. Thormo	31001	Main panel -Z low +Y 43.	51220
15019	harness_bend	43.60325	18201	96.14518	E_Therma	31002	Main panel -Z low +Y 41.9	96834
15020	harness_bend	41.27919	18210	Panels_VG2	95.81235	31003	Main panel -Z low +Y 43.3	39544
15021	harness_bend	39.07710	18300	FLANGE_Thermal_B	raid_VG3	31005	Main panel -Z +Y 43.3	31681
15022	harness_bend	36.97773		52.11928		31006	Main panel -Z +Y 43.2	22381
15023	harness_bend	34.96552	18301	I/F_Column_FLANG 52 56603	E_Therma	31007	Main panel -Z +Y 43.3	33286
15024	harness_bend	33.02745	18310	Panels VG3	55 39066	31008	Main panel -Z +Y 43.	56799
15025	harness_bend	31.15285	18410	Panels Plane VG3	48 51464	31009	Main panel -Z +Y 43.8	38754
15026	harness_bend	29.33166	18450	I/E Column VG3-ss		31010	Main panel -Z low -Y 43.	11689
15027	harness_bend	27.53075	10100	41.23351	_00	31011	Main panel -Z low -Y 42.	53382
15028	harness_bend_FPU	25.76197	18500	FLANGE_SS_CU	21.90551	31012	Main panel -Z low -Y 41.9	96538
15029	harness_bend_FPU	24.01924	18501	I/F_Column_FLANG	E_Therma	31013	Main panel -Z low -Y 42.0	52935
15030	harness_bend_FPU	22.30042	10510	22.52337	07.00404	31015	Main panel -Z -Y 42.0	57791
15101	I/F_Hr_VG1	170.02336	18510	Panel_plaine_TOP	27.20431	31016	Main panel -Z -Y 42.	74598
15201	I/F_Hr_VG2	117.25751	29010	Harness_SVM	300.00000	31017	Main panel -Z -Y 43.	15052
15301	I/F_Hr_VG3	80.96472	29020	Harness2 278.187	79	31018	Main panel -Z -Y 43.3	38347
15450	I/F_Hr_VG3-ss_cu	66.00972	29030	Harness3 254.297	81	31019	Main panel -Z -Y 43.8	37290
15501	I/F_Hr_ss_cu	56.40808	29040	Harness4 228.171	40	31020	Main panel -Z 44.8	36996
16301	Block 4 4.67832		29050	Harness5 199.813	22	31021	Main panel -Z 46.3	34368
16441	Block 4 4.68680		29060	Harness6 169.560	89	31022	Main panel -Z 44.9	71894
16701	Block 4 4.69741		29070	Harness7 138.244	02	31023	Main panel -Z 47.	14531
16702	Block 4 4.69740		29080	Harness8 107.085	98	31024	Main panel -Z Top +Y 41.0	62594
16707	Block 4 4.69739		29090	Harness9 77.0766	3	31025	Main panel -Z Top 41.6	63182
16708	Block 4 4.69738		29100	Harness_3rd_Gr	47.73541	31026	Main panel -Z Top -Y 41.0	62593
			29110	Harness_SVM	300.00000			

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

REFERENCE :	H-P-3-ASPI-AN-0330

:	09/04/04

ISSUE :

DATE

2

Page : 166/181

31027	Main panel -Z Top +Y 40.37957
31028	Main panel -Z Top 40.27677
31029	Main panel -Z Top -Y 40.38203
31030	Main panel -Z Top +Y 39.85786
31031	Main panel -Z low +Y 39.65449
31032	Main panel -Z Top -Y 39.85978
31033	Main panel -Z Top 39.34425
31100	Main panel +Z low +Y 46.43752
31101	Main panel +Z low +Y 43.49206
31102	Main panel +Z low +Y 42.07178
31103	Main panel +Z low +Y 43.40472
31105	Main panel +Z +Y 43.31421
31106	Main Panel +Z medium +Y 43.22584
31107	Main panel +Z medium +Y 43.34310
31108	Main panel +Z medium +Y 43.55917
31109	Main panel +Z +Y 43.91213
31110	Main panel +Z low -Y 43.08134
31111	Main panel +Z low -Y 42.55269
31112	Main panel +Z low -Y 42.01427
31113	Main panel +Z low -Y 42.62614
31115	Main panel + Z - Y 42.68530
31116	Main panel +Z medium -Y 42.74626
31117	Main panel +Z medium -Y 43.16219
31118	Main panel +Z medium -Y 43.37264
31119	Main panel + Z - Y 43.89806
31120	Main panel top +Z +Y44.84842
31121	Main panel top +Z 46.34110
31122	Main panel top +Z -Y 44.88879
31123	Main panel top +Z 47.08389
31124	Main panel +Z Top +Y 41.63928
31125	Main panel +Z Top 41.65813
31126	Main panel +Z Top -Y 41.63924
31127	Main panel +Z Top +Y 40.38689
31128	Main panel +Z Top 40.28267
31129	Main panel +Z Top -Y 40.38931
31130	Main panel +Z Top +Y 39.86595
31131	Main panel +Z low +Y 39.65987
31132	Main panel +Z Top -Y 39.86785

31133	Main panel +Z Top 39.35810
31203	Doubler panel -Z low +Y 43.37997
31206	Doubler panel -Z medium 43.21723
31208	Doubler panel -Z medium 43.56576
31213	Doubler panel -Z low -Y 42.63549
31216	Doubler panel -Z medium 42.74465
31218	Doubler panel -Z medium 43.38728
31220	Doubler panel top -Z +Y 44.87479
31221	Doubler panel top -Z 46.34966
31222	Doubler panel top -Z +Y 44.93448
31223	Doubler panel top -Z 47.29005
31303	Doubler panel +Z low +Y 43.39523
31306	Doubler panel +Z medium 43.22378
31308	Doubler panel +Z medium 43.56802
31313	Doubler panel +Z low -Y 42.62942
31316	Doubler panel +Z medium 42.74597
31318	Doubler panel +Z medium 43.38354
31320	Doubler panel top +Z +Y 44.87007
31321	Doubler panel top +Z 46.34376
31322	Doubler panel top +Z -Y 44.91922
31323	Doubler panel top +Z 47.14645
31400	Dismountable panel face 41.87592
31401	Dismountable panel face 41.96274
31500	Triangle Panel down41.61098
31501	Triangle Panel up 41.62474
31600	strut - Y panel . 41.49269
31601	strut - Y panel . 41.35418
31602	strut - Y panel . 41.30555
31603	strut - Y panel . 41.34752
31604	strut - Y panel . 41.48093
31605	strut - Y panel . 41.70798
31606	strut - Y panel . 42.03907
31607	strut - Y panel . 42.47780
31608	strut - Y papel 43 02827
31600	strut - V nanol /2 60000
51009	зи ист г ранег. 43.09889

31610	strut + Y panel.	41.33084
31611	strut + Y panel.	41.20519
31612	strut + Y panel.	41.16951
31613	strut + Y panel.	41.22479
31614	strut + Y panel.	41.37697
31615	strut + Y panel.	41.62780
31616	strut + Y panel.	41.97973
31617	strut + Y panel.	42.43957
31618	strut + Y panel.	43.01405
31619	strut + Y panel.	43.70628
31620	Bottom strut panel	40.83087
31621	Bottom strut panel	40.86577
31622	Bottom strut panel	40.91559
31623	Bottom strut panel	40.98292
31624	Bottom strut panel	41.06841
31625	Bottom strut panel	41.17146
31626	Bottom strut panel	41.29168
31627	Bottom strut panel	41.42865
31628	Bottom strut panel	41.58188
31629	Bottom strut panel	41.75161
31630	Back strut panel	40.48747
31631	Back strut panel	39.92618
31632	Back strut panel	39.52600
31633	Back strut panel	39.29520
31634	Back strut panel	39.23516
31635	Back strut panel	39.34823
31636	Back strut panel	39.62923
31637	Back strut panel	40.07116
31638	Back strut panel	40.66922
31639	Back strut panel	41.41393
31640	top strut panel	41.41616
31641	top strut panel	40.74182
31642	top strut panel	40.17680
31643	top strut panel	39.72109
31644	top strut panel	39.37641
31645	top strut panel	39.14084
31646	top strut panel	39.01454
31647	top strut panel	38.99468
31648	top strut panel	39.08090
31649	top strut panel	39.27276
31700	SR panel +Z low	42.02559
31701	SR panel +Z low	42.40996
31702	SR panel +Z low	42.01458
31703	SR panel +Z low	42.15839

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

וח IΛ .

REFERENCE : H-P-3-ASPI-AN-0330

		.w men	mai Ai	haryses	DATE :	09	/04/04	
					ISSUF :	2	Pac	ne : 167/181
					100021			jo 1 1077 101
21704	CD popul. 7 modium	40.07551	21017	brog strut V	155 00105	22022	$\frac{1}{\sqrt{2}}$	47 20000
21705	SR panel + 7 medium	42.07551	21010	brac_strut-f	155.03125	32023	strut 1 \cdot Y (+Z)	47.20090
31705	SR panel + Z Ten	42.07750	21010	brac_strut Y	154.44293	32024	Strut 1 \cdot Y (+Z)	44.90108
31700	SR panel 7 low	42.10480	31919	brac_strut Y	152.84884	32025	Strut 1 - Y $(+Z)$	47.20593
21711	SR panel Z low	42.02379	21051		140.01139	32020	strut 1 \cdot Y (+Z)	40.03154
31711	SR panel -Z low	42.41757	31951	brac_CFRP+Y	43.88219	32027	strut 1 \cdot Y (+Z)	44.92255
31/12	SR panel -Z low	42.01614	31952	brac_CFRP+Y	43.58641	32028	strut I - Y $(+Z)$	43.85589
31/13	SR panel -Z low	42.15987	31953		43.29537	32029	strut I - Y $(+Z)$	42.83491
31/14	SR panel -Z medium	42.07480	31954	brac_CFRP+Y	43.00900	32030	strut 1 - Y $(+Z)$	41.85514
31715	SR panel -Z medium2	42.07636	31955	brac_CFRP+Y	42.72735	32031	eccofoam strut 1 - 213.87074	Υ (+Ζ
31/16	SR panel -Z top	42.09732	31956	brac_CFRP+Y	42.45007	32032	eccofoam strut 1 -	Y (+Z
31800	strut + Y panel.	41.62386	31957	brac_CFRP+Y	42.17659		173.50886	
31801	strut + Y panel.	41.61681	31958	brac_CFRP+Y	41.90650	32033	eccofoam strut 1 -	Y (+Z
31802	strut + Y panel.	41.60737	31959	brac_CFRP+Y	41.63927	22024	150.91007	V (. 7
31803	strut + Y panel.	41.59740	31960	brac_CFRP+Y	41.37416	32034	138.62635	Υ (+Ζ
31804	strut + Y panel.	41.59597	31961	brac_CFRP-Y	45.16910	32035	eccofoam strut 1 -	Y (+Z
31805	strut + Y panel.	41.61889	31962	brac_CFRP-Y	44.97851		131.54779	
31806	strut + Y panel.	41.66664	31963	brac_CFRP-Y	44.79666	32036	eccofoam strut 1 - 126.84062	Y (+Z
31807	strut + Y panel.	41.73627	31964	brac_CFRP-Y	44.62355	32037	eccofoam strut 1 -	Y (+7
31808	strut + Y panel.	41.82481	31965	brac_CFRP-Y	44.45915		123.12821	
31809	strut + Y panel.	41.93021	31966	brac_CFRP-Y	44.30312	32038	eccofoam strut 1 -	Y (+Z
31810	strut - Y panel .	41.80384	31967	brac_CFRP-Y	44.15548	22020	119.54434	V (. 7
31811	strut - Y panel .	41.81517	31968	brac_CFRP-Y	44.01597	32039	123.20393	Υ (+Ζ
31812	strut - Y panel .	41.82405	31969	brac_CFRP-Y	43.88431	32040	eccofoam strut 1 -	Y (+Z
31813	strut - Y panel .	41.83291	31970	brac_CFRP-Y	43.76018		118.30271	
31814	strut - Y panel .	41.85092	32001	strut 1 - Y (+Z)	217.28643	32041	eccofoam strut 1 - 106.66353	Y (+Z
31815	strut - Y panel .	41.89356	32002	strut 1 - Y (+Z)	172.00512	32042	eccofoam strut 1 -	Y (+Z
31816	strut - Y panel .	41.96253	32003	strut 1 - Y (+Z)	150.04415		97.83947	Υ.
31817	strut - Y panel .	42.05473	32004	strut 1 - Y (+Z)	138.18535	32043	eccofoam strut 1 -	Y (+Z
31818	strut - Y panel .	42.16746	32005	strut 1 - Y (+Z)	131.34711	22044	91.20000	V (. 7
31819	strut - Y panel .	42.30011	32006	strut 1 - Y (+Z)	126.75643	32044	86.02352	Υ (+Ζ
31901	brac_strut+Y	230.24430	32007	strut 1 - Y (+Z)	123.11734	32045	eccofoam strut 1 -	Y (+Z
31902	brac_strut+Y	182.76948	32008	strut 1 - Y (+Z)	118.93135		81.73363	
31903	brac_strut+Y	159.83541	32009	strut 1 - Y (+Z)	123.92840	32046	eccofoam strut 1 - 78.15510	Y (+Z
31904	brac_strut+Y	148.29023	32010	strut 1 - Y (+Z)	118.87292	32047	eccofoam strut 1 -	Y (+Z
31905	brac_strut+Y	142.71762	32011	strut 1 - Y (+Z)	106.42530		79.13313	·
31906	brac_strut+Y	140.56739	32012	strut 1 - Y (+Z)	97.65403	32048	eccofoam strut 1 -	Y (+Z
31907	brac_strut+Y	139.88833	32013	strut 1 - Y (+Z)	91.08389	22051	strut 2 V (7)	217 20166
31908	brac_strut+Y	140.15208	32014	strut 1 - Y (+Z)	85.94794	32051	strut 2 \cdot 1 (-Z)	172 10502
31909	brac_strut + Y	140.48155	32015	strut 1 - Y (+Z)	81.67343	32032	strut 2 \cdot Y (-Z)	172.19593
31910	brac_strut + Y	139.67585	32016	strut 1 - Y (+Z)	77.76949	32053	SITUL 2 - Y $(-Z)$	150.10944
31911	brac_strut-Y	233.34267	32017	strut 1 - Y (+Z)	79.32456	32034	strut 2 \cdot Y (-Z)	132.07450
31912	brac_strut-Y	190.25328	32018	strut 1 - Y (+Z)	77.74042	32055	strut 2 - Y $(-Z)$	132.07650
31913	brac_strut-Y	170.87428	32019	strut 1 - Y (+Z)	70.17640	32056	strut 2 \cdot Y (-Z)	128.12190
31914	brac_strut-Y	162.13089	32020	strut 1 - Y (+Z)	63.99333	32057	SILUL Z - Y $(-Z)$	125.47077
31915	brac_strut-Y	157.67444	32021	strut 1 - Y (+Z)	58.38675	32058	SILUL Z - Y $(-Z)$	123.19204
31916	brac_strut-Y	155.65811	32022	strut 1 - Y (+Z)	52.91580	32059	SILUL Z - Y $(-Z)$	130.31540
			I		I	32060	SIFUL∠-Y(-Z) Réfé	I∠3. I3 / /U rence du modèle : M023-3

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

09/04/04

2

Date : Issue :

D

Page : 168/181

32061	strut 2 - Y (-Z)	109.97299	32097	eccofoam strut 2 - Y (81.34887	-Z	32144	eccofoam inside strut	3108.88840
32062	strut 2 - Y (-Z)	100.80218	32098	eccofoam strut 2 - Y	-Z	32145	eccofoam inside strut	397.52275
32063	strut 2 - Y (-Z)	94.08980		80.16028		32146	eccofoam inside strut	386.75828
32064	strut 2 - Y (-Z)	88.80867	32101	strut 3 - Z -Y	227.25294	32147	eccofoam inside strut	383.46401
32065	strut 2 - Y (-Z)	84.33850	32102	strut 3 - Z -Y	199.13452	32148	eccofoam inside strut	385.87387
32066	strut 2 - Y (-Z)	80.09129	32103	strut 3 - Z -Y	204.36629	32151	strut 4 - Z (-Y)	222.95846
32067	strut 2 - Y (-Z)	81.52186	32104	strut 3 - Z -Y	218.60270	32152	strut 4 - Z (-Y)	182.88463
32068	strut 2 - Y (-Z)	80.05969	32105	strut 3 - Z -Y	225.34883	32153	strut 4 - Z (-Y)	165.41283
32069	strut 2 - Y (-Z)	72.21513	32106	strut 3 - Z -Y	220.96766	32154	strut 4 - Z (-Y)	156.92123
32070	strut 2 - Y (-Z)	65.86627	32107	strut 3 - Z -Y	202.81861	32155	strut 4 - Z (-Y)	153.01936
32071	strut 2 - Y (-Z)	60.09748	32108	strut 3 - Z -Y	164.78378	32156	strut 4 - Z (-Y)	150.78016
32072	strut 2 - Y (-Z)	54.41745	32109	strut 3 - Z -Y	144.54115	32157	strut 4 - Z (-Y)	148.00650
32073	strut 2 - Y (-Z)	48.45167	32110	strut 3 - Z -Y	164.49242	32158	strut 4 - Z (-Y)	141.33341
32074	strut 2 - Y (-Z)	45.95105	32111	strut 3 - Z -Y	137.24671	32159	strut 4 - Z (-Y)	142.74346
32075	strut 2 - Y (-Z)	48.43562	32112	strut 3 - Z -Y	129.68117	32160	strut 4 - Z (-Y)	141.23828
32076	strut 2 - Y (-Z)	47.16429	32113	strut 3 - Z -Y	122.22297	32161	strut 4 - Z (-Y)	124.21877
32077	strut 2 - Y (-Z)	46.00227	32114	strut 3 - Z -Y	108.75737	32162	strut 4 - Z (-Y)	112.82180
32078	strut 2 - Y (-Z)	44.92663	32115	strut 3 - Z -Y	97.47187	32163	strut 4 - Z (-Y)	104.56879
32079	strut 2 - Y (-Z)	43.92218	32116	strut 3 - Z -Y	86.12611	32164	strut 4 - Z (-Y)	97.74316
32080	strut 2 - Y (-Z)	42.98179	32117	strut 3 - Z -Y	82.98129	32165	strut 4 - Z (-Y)	91.13898
32081	eccofoam strut 2 - Y (- 213.89824	-Z	32118	strut 3 - Z -Y	86.07781	32166	strut 4 - Z (-Y)	83.62411
32082	eccofoam strut 2 - V (.7	32119	strut 3 - Z -Y	85.74328	32167	strut 4 - Z (-Y)	83.04405
52002	173.68124	L	32120	strut 3 - Z -Y	80.28873	32168	strut 4 - Z (-Y)	83.57888
32083	eccofoam strut 2 - Y (-Z	32121	strut 3 - Z -Y	70.84535	32169	strut 4 - Z (-Y)	75.29490
	151.01568	-	32122	strut 3 - Z -Y	61.43401	32170	strut 4 - Z (-Y)	68.57510
32084	eccoroam strut 2 - Y (- 139.05884	-Z	32123	strut 3 - Z -Y	51.22930	32171	strut 4 - Z (-Y)	62.35120
32085	eccofoam strut 2 - Y (-Z	32124	strut 3 - Z -Y	46.58493	32172	strut 4 - Z (-Y)	56.04536
	132.30407		32125	strut 3 - Z -Y	51.20252	32173	strut 4 - Z (-Y)	49.19905
32086	eccofoam strut 2 - Y (- 128 23848	-Z	32126	strut 3 - Z -Y	49.44454	32174	strut 4 - Z (-Y)	46.30623
32087	eccofoam strut 2 - Y (-7	32127	strut 3 - Z -Y	47.81389	32175	strut 4 - Z (-Y)	49.18019
02007	125.55045	_	32128	strut 3 - Z -Y	46.27137	32176	strut 4 - Z (-Y)	47.65170
32088	eccofoam strut 2 - Y (-	-Z	32129	strut 3 - Z -Y	44.78977	32177	strut 4 - Z (-Y)	46.25650
22000	123.80403	7	32130	strut 3 - Z -Y	43.35348	32178	strut 4 - Z (-Y)	44.96771
32009	129.28930	-2	32131	eccofoam inside strut	3225.24041	32179	strut 4 - Z (-Y)	43.76006
32090	eccofoam strut 2 - Y (-	-Z	32132	eccofoam inside strut	3201.45908	32180	strut 4 - Z (-Y)	42.62966
	122.64956		32133	eccofoam inside strut	3205.14624	32181	eccofoam strut 4 - Z (-Y
32091	eccofoam strut 2 - Y (· 110.24166	-Z	32134	eccofoam inside strut	3218.04973	32182	eccofoam strut 4 - Z (-Y
32092	eccofoam strut 2 - Y (-Z	32135	eccofoam inside strut	3224.41901		184.35937	
	101.00851	7	32136	eccofoam inside strut	3219.80087	32183	eccofoam strut 4 - Z (166.19844	-Y
32093	eccoroam strut 2 - Y (- 94.21348	-∠	32137	eccofoam inside strut	3201.39522	32184	eccofoam strut 4 - 7 (-Y
32094	eccofoam strut 2 - Y (-	-Z	32138	eccofoam inside strut	3166.16993	02101	157.32084	
0005-	88.8/99/	_	32139	eccoroam inside strut	3147.32421	32185	eccofoam strut 4 - Z (153,16530	-Y
32095	eccotoam strut 2 - Y (- 84.38890	-∠	32140	eccotoam inside strut	3161.36494	32186	eccofoam strut 4 - 7 (-Y
32096	eccofoam strut 2 - Y (-Z	32141	eccotoam inside strut	3138.44940	02100	150.73425	-
	80.49336		32142	eccotoam inside strut	3129.74554	32187	eccofoam strut 4 - Z (-Y
			32143	eccotoam inside strut	3121.80232		147.70068	

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

REFERENCE : H-P-3-ASPI-AN-0330

				5	DATE :	09	/04/04	
					ISSUE :	2	Pa	ge : 169/181
32188	eccofoam strut 4 -	Z (-Y	32228	strut 5 - Z (+Y)	44.57252	32264	strut 6 - Z +Y	89.89998
	141.88240	- / . /	32229	strut 5 - Z (+Y)	43.50802	32265	strut 6 - Z +Y	84.36447
32189	eccotoam strut 4 142.49142	Ζ (-Υ	32230	strut 5 - Z (+Y)	42.52175	32266	strut 6 - Z + Y	78.79220
32190	eccofoam strut 4 -	Z (-Y	32231	eccofoam strut 5 -	Z (+Y	32267	strut 6 - Z + Y	79.48024
	140.12214			216.30430	7 ()(32268	strut 6 - Z +Y	78.75742
32191	eccofoam strut 4 - 1 124.56385	Z (-Y	32232	177.25575	Ζ (+ Υ	32269	strut 6 - Z +Y	71.04517
32192	eccofoam strut 4 -	Z (-Y	32233	eccofoam strut 5 -	Z (+Y	32270	strut 6 - Z + Y	64.76317
	113.08329			156.46544		32271	strut 6 - Z + Y	59.05331
			32234	eccofoam strut 5 - 146.55482	Z (+Y	32272	strut 6 - Z + Y	53.47775
			32235	eccofoam strut 5 -	Z (+Y	32273	strut 6 - Z + Y	47.70603
32193	eccofoam strut 4 - 1	Z (-Y		142.31823		32274	strut 6 - Z + Y	45.29199
3210/	eccofoam strut 4	7 (_V	32236	eccofoam strut 5 -	Z (+Y	32275	strut 6 - Z +Y	47.69085
52174	97.76617	2 (-1	32237	eccofoam strut 5	7 (+V	32276	strut 6 - Z + Y	46.54691
32195	eccofoam strut 4 -	Ζ (-Υ	52257	138.51308	2 (1 1	32277	strut 6 - Z + Y	45.52187
00407	91.11152	7 () (32238	eccofoam strut 5 -	Z (+Y	32278	strut 6 - Z + Y	44.59251
32196	eccofoam strut 4 84.13237	Ζ (-Υ		135.36349	7 () (32279	strut 6 - Z + Y	43.74294
32197	eccofoam strut 4 -	Z (-Y	32239	eccofoam strut 5 - 137.47882	Ζ(+Υ	32280	strut 6 - Z + Y	42.97065
32198	83.15916 eccofoam strut 4 -	Z (-Y	32240	eccofoam strut 5 - 133.96726	Z (+Y	32281	eccofoam strut 6 215.42543	- Z +Y
	83.54613		32241	eccofoam strut 5 -	Z (+Y	32282	eccofoam strut 6 175 52454	- Z +Y
32201	strut 5 - $Z(+Y)$	219.60884	00040	120.04052	7 ()(32283	eccofoam strut 6	- Z +Y
32202	strut 5 - $Z(+Y)$	175.71062	32242	eccoroam strut 5 - 109.59773	Ζ(+Υ		153.22010	
32203	strut 5 - $Z(+Y)$	155.54473	32243	eccofoam strut 5 -	Z (+Y	32284	eccofoam strut 6	- Z +Y
32204	strut 5 - $Z(+Y)$	146.07465		101.76400		22205	141.42070	7 . V
32205	Strut 5 - $Z(+Y)$	142.13199	32244	eccofoam strut 5 - 95.15512	Z (+Y	32205	135.12040	- 2 +1
32200	Strut 5 - $Z(+Y)$	140.25976				32286	eccofoam strut 6	- Z +Y
22207	strut 5 - Z $(+ 1)$	130.02990				22207	131.562//	7
32200	strut 5 - $Z(+1)$	127 05500	32245	eccofoam strut 5 -	Z (+Y	32287	129.45614	- Z + Y
32209	strut 5 - Z (+ f)	137.93300		88.56942		32288	eccofoam strut 6	- Z +Y
22210	strut 5 - Z $(+1)$	110 74560	32246	eccofoam strut 5 - 81 48702	Z (+Y		128.78965	
32211	strut 5 - $Z(+Y)$	109 37694	32247	eccofoam strut 5 -	7 (+Y	32289	eccofoam strut 6 135.67590	- Z +Y
32212	strut 5 $-$ 7 (+V)	101.66034		80.11050		32290	eccofoam strut 6	- Z +Y
32213	strut 5 - 7 (+ Y)	95 15316	32248	eccofoam strut 5 -	Z (+Y		127.62402	
32214	strut 5 - 7 (+ Y)	88 61146	20051	80.89334	218 90210	32291	eccofoam strut 6	- Z +Y
32216	strut 5 - Z $(+Y)$	81 00415	22251	strut 6 $-Z + Y$	218.60210	32292	eccofoam strut 6	- 7 +Y
32210	strut 5 - 7 $(+Y)$	79 92776	22252	strut 6 $7 \pm V$	152 22041	52272	103.79609	2 11
32218	strut 5 - 7 $(+Y)$	80 95959	32253	strut 6 - 7 + V	140 96478	32293	eccofoam strut 6	- Z +Y
32219	strut 5 - $Z(+Y)$	73.23271	32254	strut 6 - 7 + V	134 88762	22204	90.16850	7.1
32220	strut 5 - 7 (+ Y)	66.89466	32255	strut 6 - 7 + Y	131 43997	32294	89.95549	- <u>Z</u> + Y
32221	strut 5 - Z (+ Y)	60.97917	32250	strut 6 - 7 + Y	129 33426	32295	eccofoam strut 6	- Z +Y
32222	strut 5 - Z (+Y)	54.94601	32258	strut 6 - 7 + Y	128 15048		84.39845	
32223	strut 5 - Z (+ Y)	48.36516	32250	strut 6 - 7 + Y	136 94006	32296	eccofoam strut 6 79.24300	- Z +Y
32224	strut 5 - Z (+Y)	45.51327	32260	strut 6 - 7 + Y	128.09689			
32225	strut 5 - Z (+Y)	48.34717	32261	strut 6 - 7 + Y	113.69231	32297	eccofoam strut 6	- Z +Y
32226	strut 5 - Z (+Y)	46.97141	32262	strut 6 - 7 + Y	103.57938		79.41447	
32227	strut 5 - Z (+Y)	45.72156	32263	strut 6 - 7 + Y	96.04879	32298	eccofoam strut 6 78.80868	- Z +Y
	. ,		. 02200				00000 Ré	férence du modèle : M023-3

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

DATE :	09/04/04	
ISSUE :	2	Page : 170/181

32301	strut 7 + Y (-Z)	217.32032	32341	eccofoam strut 7 + 107.68182	Y (-Z	32382	eccofoam strut 8 + 173.44672	⊢ Y (+Z
32302 32303	strut 7 + Y (-Z) strut 7 + Y (-Z)	150.03465	32342	eccofoam strut 7 + 98.63493	Y (-Z	32383	eccofoam strut 8 + 150.57342	+ Y (+Z
32304 32305	strut 7 + Y (-Z)	138.19950 131.37367	32343	eccofoam strut 7 + 91.84017	Y (-Z	32384	eccofoam strut 8 ⊣ 137.92455	+ Y (+Z
32306	strut 7 + Y (-Z)	127.14485	32344	eccofoam strut 7 + 86.48177	Y (-Z	32385	eccofoam strut 8 ⊣ 130.61038	+ Y (+Z
32307 32308	strut 7 + Y (-Z) strut 7 + Y (-Z)	123.88908 120.25219	32345	eccofoam strut 7 + 81.94491	Y (-Z	32386	eccofoam strut 8 ⊣ 125.58244	+ Y (+Z
32309	strut 7 + Y (-Z)	126.01263	32346	eccofoam strut 7 + 77.93643	Y (-Z	32387	eccofoam strut 8 ⊣ 121.53595	+ Y (+Z
32310 32311	strut 7 + Y (-Z) strut 7 + Y (-Z)	120.19518 107.43457	32347	eccofoam strut 7 + 78.57295	Y (-Z	32388	eccofoam strut 8 ⊣ 117.82028	+ Y (+Z
32312	strut 7 + Y (-Z)	98.44434	32348	eccofoam strut 7 + 77.59543	Y (-Z	32389	eccofoam strut 8 + 121.12964	+ Y (+Z
32313 32314	strut 7 + Y (-Z) strut 7 + Y (-Z)	91.71862 86.41225				32390	eccofoam strut 8 + 116.59259	+ Y (+Z
32315	strut 7 + Y (-Z)	81.90020	32351 32352	strut 8 + Y (+Z) strut 8 + Y (+Z)	217.16833 171.97109	32391	eccofoam strut 8 +	+ Y (+Z
32316 32317	strut 7 + Y (-Z) strut 7 + Y (-Z)	78.70955	32353	strut 8 + Y (+Z)	149.70816	32392	eccofoam strut 8 +	+ Y (+Z
32318	strut 7 + Y (-Z)	77.51271	32354 32355	strut 8 + Y (+Z) strut 8 + Y (+Z)	137.47310 130.41691	32393	eccofoam strut 8 +	+ Y (+Z
32320	strut 7 + Y (-Z)	63.99254	32356	strut 8 + Y (+Z)	125.49939	32394	eccofoam strut 8 +	+ Y (+Z
32321 32322	strut 7 + Y (-Z) strut 7 + Y (-Z)	58.45492 53.03678	32357	strut 8 + Y $(+Z)$ strut 8 + Y $(+Z)$	121.50795	32395	eccofoam strut 8 +	+ Y (+Z
32323	strut 7 + Y (-Z)	47.42351	32359	strut 8 + Y (+Z)	121.79365	32396	eccofoam strut 8 +	⊦Y(+Z
32324 32325	strut 7 + Y (-Z) strut 7 + Y (-Z)	45.03122 47.40875	32361	strut 8 + Y (+Z)	105.03596	32397	eccofoam strut 8 +	+ Y (+Z
32326	strut 7 + Y (-Z)	46.32888	32362 32363	strut 8 + Y (+Z)	96.39836 89.87190	32398	eccofoam strut 8 +	+ Y (+Z
32327 32328	strut 7 + Y (-Z) strut 7 + Y (-Z)	45.35485 44.46978	32364	strut 8 + Y (+Z)	84.76124	32401	76.69575 strut 9 + Y +Z	21
32329	strut 7 + Y (-Z)	43.66328	32365 32366	strut 8 + Y (+Z) strut 8 + Y (+Z)	80.51715 76.62333	32402	strut 9 + Y +Z	17
32330 32331	strut 7 + Y (-Z) eccofoam strut 7 +	42.93605 Y (-Z	32367	strut 8 + Y (+Z)	78.06448	32403	strut 9 + Y +Z	14
32332	213.91327 eccofoam strut 7 +	Y (-Z	32368 32369	strut 8 + Y (+Z) strut 8 + Y (+Z)	76.59482 69.24885	32404	strut 9 + Y + Z	13
32333	173.65338 eccofoam strut 7 +	Y (-7	32370	strut 8 + Y (+Z)	63.23824	32405	strut 9 + Y +Z strut 9 + Y +Z	12
30334	150.91957	V (-7	32371 32372	strut 8 + Y (+Z) strut 8 + Y (+Z)	57.77464 52 46734	32407	strut 9 + Y +Z	11
32334	138.64249) (-Z	32373	strut 8 + Y (+Z)	47.01494	32408 32409	strut 9 + Y +Z strut 9 + Y +Z	11
32335	eccoroam strut / + 131.60010	Υ (-Ζ	32374	strut 8 + Y (+Z)	44.71801 47.00071	32410	strut 9 + Y +Z	11
32336	eccofoam strut 7 + 127.23338	Y (-Z	32375	strut 8 + Y (+Z)	45.94313	32411 32412	strut 9 + Y +Z strut 9 + Y +Z	10 95
32337	eccofoam strut 7 + 123.91289	Y (-Z	32377	strut 8 + Y (+Z)	44.97669	32413	strut 9 + Y +Z	88
32338	eccofoam strut 7 + 120.87381	Y (-Z	32378	strut 8 + Y (+Z)	44.08173	32414 32415	strut 9 + Y +Z strut 9 + Y +Z	83 79
32339	eccofoam strut 7 + 125.18022	Y (-Z	32380	strut 8 + Y (+Z)	42.47158	32416	strut 9 + Y + Z	76
32340	eccofoam strut 7 + 119.65031	Y (-Z	32381	eccotoam strut 8 + 213.75702	Υ (+Ζ	32417 32418	strut 9 + Y +Z strut 9 + Y +Z	77 76

Référence du modèle : M023-3

216.52403

170.59819

147.87874

135.49868

128.10071

123.39569

119.62055

115.55065

120.37017

115.49535

103.61737

95.16233

88.83144

83.92203 79.91804

76.35114

77.93232

76.32372

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

© ALCATEL SPACE

Company confidential

REFERENCE: H-P-3-ASPI-AN-0330

•				Jergeee	DATE :	09/	/04/04	
					ISSUE :	2	Pag	ge : 171/181
32419	strut 9 + Y +Z	69.03753	32456	strut 10 + Z (+Y)	123.31531	32494	eccofoam strut 10 83 70737	+ Z (+
32420	strut 9 + Y +Z	63.07196	32457	strut 10 + Z (+Y)	119.31895	32495	eccofoam strut 10	+ Z (+
32421	strut 9 + Y + Z	57.65435	32458	strut 10 + Z (+Y)	115.02537		79.79084	,
32422	strut 9 + Y + Z	52.39381 46.99449	32459 32460	strut 10 + Z (+Y) strut 10 + Z (+Y)	119.60608 114.96897	32496	eccofoam strut 10 76.65072	+ Z (+
32423	strut 9 + Y + 7	44 72448	32461	strut 10 + 7 (+Y)	103 16390	32497	eccofoam strut 10	+ Z (+
32424	strut 9 + Y + 7	46 98038	32462	strut 10 + 7 (+Y)	94 75320		77.74402	
32426	strut 9 + Y + 7	45 92660	32463	strut 10 + 7 (+Y)	88 47589	32498	eccofoam strut 10 76.38079	+ Z (+
32427	strut 9 + Y + 7	44 96347	32464	strut 10 + 7 (+Y)	83 62493	32501	strut 11 + Z (-Y)	216.39463
32428	strut 9 + Y + Z	44.07259	32465	strut 10 + 7 (+Y)	79 72514	32502	strut 11 + Z (-Y)	170.85042
32429	strut 9 + Y + 7	43 24181	32466	strut 10 + 7 (+ Y)	76 29247	32503	strut 11 + Z (-Y)	148.37530
32430	strut 9 + Y + 7	42 46903	32467	strut 10 + 7 (+Y)	77 95191	32504	strut 11 + Z (-Y)	136.01810
32431	$eccofoam strut 9 \pm V$	12.10700	32468	strut 10 + 7 (+Y)	76 26543	32505	strut 11 + 7 (-Y)	128.64177
52451	213.05722		32460	strut 10 + 7 (+Y)	68 95825	32506	strut $11 + 7$ (-Y)	123.80040
32432	eccofoam strut 9 + Y	′ +Z	32407	strut 10 + 7 (+ Y)	62 08354			
	1/2.0911/		32470	strut 10 + 7 (+Y)	57 57955			
32433	eccotoam strut 9 + Y 148.76710	+Ζ	32471	strut 10 + 7 (+Y)	52 35484	32507	strut 11 + 7 (-Y)	119.86619
32434	eccofoam strut 9 + Y	′ +Z	32472	strut 10 + 7 (+Y)	47 01593	32508	strut 11 + Z (-Y)	115.44510
	135.94044		32474	strut 10 + 7 (+Y)	44 68522	32509	strut 11 + Z (-Y)	119.93861
32435	eccofoam strut 9 + Y 128.33382	′ +Z	32475	strut 10 + 7 (+Y)	47.00235	32510	strut 11 + Z (-Y)	115.38783
32436	eccofoam strut 9 + Y	′ +Z	32476	strut 10 + 7 (+Y)	46 13420	32511	strut 11 + Z (-Y)	103.50299
	123.48189		32477	strut 10 + Z (+Y)	45.36973	32512	strut 11 + Z (-Y)	95.02451
32437	eccofoam strut 9 + Y	′ +Z	32478	strut 10 + 7 (+ Y)	44 69148	32513	strut 11 + Z (-Y)	88.67659
32438	$eccofoam strut 9 \pm Y$	′ ±7	32479	strut 10 + Z (+Y)	44.09282	32514	strut 11 + Z (-Y)	83.78751
52450	116.14555		32480	strut 10 + Z (+Y)	43.57928	32515	strut 11 + Z (-Y)	79.85219
32439	eccofoam strut 9 + Y	′ +Z	32481	eccofoam strut 10 +	7 (+	32516	strut 11 + Z (-Y)	76.40969
	119.67240			213.20411	- ()	32517	strut 11 + Z (-Y)	78.09139
32440	eccoroam strut 9 + Y 114.95401	$+ \Sigma$	32482	eccofoam strut 10 + 172.19357	Ζ(+	32518	strut 11 + Z (-Y)	76.38268
32441	eccofoam strut 9 + Y	′ +Z	32483	eccofoam strut 10 +	Z (+	32519	strut 11 + Z (-Y)	69.06223
22442		/ . 7		148.86261		32520	strut 11 + Z (-Y)	63.07308
32442	95.34089	÷Σ	32484	eccofoam strut 10 + 135 97814	Ζ(+	32521	strut 11 + Z (-Y)	57.64763
32443	eccofoam strut 9 + Y	′ +Z	32485	eccofoam strut 10 +	7 (+	32522	strut 11 + Z (-Y)	52.40315
	88.95296	, ,		128.46265	- ()	32523	strut 11 + Z (-Y)	47.03661
32444	eccoroam strut 9 + Y 84.00096	+Ζ	32486	eccofoam strut 10 + 123.40063	Ζ(+	32524	strut 11 + Z (-Y)	44.69564
32445	eccofoam strut 9 + Y 79.98166	′ +Z	32487	eccofoam strut 10 +	Z (+	32525	strut 11 + Z (-Y)	47.02295
32446	eccofoam strut 9 + Y	′ +Z	22400	119.34677	7 (.	32520	strut 11 + 7 (-Y)	45.37815
	76.71411		52400	115.62163	Ζ (+	32528	strut 11 + Z (-Y)	44.69708
32447	eccofoam strut 9 + Y 77.73570	′ +Z	32489	eccofoam strut 10 +	Z (+	32529	strut 11 + Z (-Y)	44.09699
32448	eccofoam strut 9 + Y	′ +Z	32400	accoform strut 10 +	7 (+	32530	strut 11 + Z (-Y)	43.58259
32451	76.43389 strut 10 + 7 (+Y)	216 67469	52470	114.41796	2 (+	32531	eccofoam strut 11	+ Z (-
32452	strut 10 \pm 7 (\pm V)	170 60741	32491	eccofoam strut 10 + 103.38265	Ζ(+	20520	eccofoam strut 11	+ 7 (-
32452	strut $10 + 7 (\pm V)$	147 97856	32492	eccofoam strut 10 +	Z (+	52552	172.33435	· <i>L</i> (
32454	strut $10 + 7 (\pm V)$	135 52378		94.93229	``	32533	eccofoam strut 11	+ Z (-
52 104	5.00 10 12 (11)	100.02070	32493	eccofoam strut 10 +	Ζ(+	22524	149.24682	. 7 (
32455	strut 10 + Z (+Y)	128.25502		_ 5.0 , 000		52034	136.45769	⊤ ∠ (-

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

				j	DATE :	09.	/04/	04		
					Issue :	2			Page	: 172/181
32535	eccofoam strut 11	+ Z (-	32573	strut 12 + Z -Y	47.09763					
22524	128.80304	. 7 (32574	strut 12 + Z -Y	44.81896	33044	PR	front	ring2 180	41.90171
32530	123.88309	+ Z (-	32575	strut 12 + Z -Y	47.08298	33045	PR	front	ring2 240	42.49369
32537	eccofoam strut 11	+ Z (-	32576	strut 12 + Z -Y	45.90207	33046	PR	front	ring2 300	41.53016
	119.88029		32577	strut 12 + Z -Y	44.80574	33071	PR	front	ring3 0.	41.79033
32538	eccofoam strut 11 - 116.04415	+ Z (-	32578	strut 12 + Z -Y	43.77147	33072	PR	front	ring3 60.	41.47777
32539	eccofoam strut 11 -	+ Z (-	32579	strut 12 + Z -Y	42.78438	33073	PR	front	ring3 120	42.48334
	119.28669		32580	strut 12 + Z -Y	41.83567	33074	PR	front	ring3 180	41.92218
32540	eccofoam strut 11 - 114 82567	+ Z (-	32581	eccofoam strut 12 -	+ Z -Y	33075	PR	front	ring3 240	42.48360
32541	eccofoam strut 11 .	+ 7 (-	22502	213.31132	. 7 V	33076	PR	front	ring3 300.	41.47840
52541	103.72180		32302	172.54747	F Z -1	33100	PR	rear	centre	41.83828
32542	eccofoam strut 11	+ Z (-	32583	eccofoam strut 12 -	+ Z -Y	33111	PR	rear	ring1 0.	41.91106
20542	95.20357	7 (149.49995		33112	PR	rear	ring1 60.	41.66235
32543	eccoroam strut 11 - 88.80114	+ Z (-	32584	eccofoam strut 12 - 136.83046	+ Z -Y	33113	PR	rear	ring1 120.	42.20747
32544	eccofoam strut 11	+ Z (-	32585	eccofoam strut 12 -	+ Z -Y	33114	PR	rear	ring1 180.	41.88145
	83.87046			129.61196		33115	PR	rear	ring1 240.	42.20763
32545	eccofoam strut 11 - 79.91996	+ Z (-	32586	eccofoam strut 12 - 124 89275	⊦ Z -Y	33116	PR	rear	ring1 300.	41.66301
32546	eccofoam strut 11 -	+ Z (-	32587	eccofoam strut 12 -	+ 7 -Y	33141	PR	rear	ring2 0.	42.39950
	76.77021	·	02007	121.04569		33142	PR	rear	ring2 60.	41.53629
32547	eccofoam strut 11 -	+ Z (-	32588	eccofoam strut 12 -	+ Z -Y	33143	PR	rear	ring2 120.	42.81060
32548	eccofoam strut 11 .	+ 7 (-	22590	117.43072	7 V	33144	PR	rear	ring2 180.	41.91541
52540	76.49955		52569	121.01645	F Z -1	33145	PR	rear	ring2 240.	42.81071
32551	strut 12 + Z -Y	216.76124	32590	eccofoam strut 12 -	+ Z -Y	33146	PR	rear	ring2 300.	41.53672
32552	strut 12 + Z -Y	171.04819		116.21563		33171	PR	rear	ring3 0.	41.79605
32553	strut 12 + Z -Y	148.62169	32591	eccofoam strut 12 - 104.84820	⊢ Z -Y	33172	PR	rear	ring3 60.	41.48282
32554	strut 12 + Z -Y	136.36916	32592	eccofoam strut 12 -	+ Z -Y	33173	PR	rear	ring3 120.	42.54247
32555	strut 12 + Z -Y	129.40046		96.20233		33174	PR	rear	ring3 180.	41.93234
32556	strut 12 + Z -Y	124.81894	32593	eccofoam strut 12 - 89.73359	⊢ Z -Y	33175	PR	rear	ring3 240.	42.54260
32557	strut 12 + Z -Y	121.02554	32594	eccofoam strut 12 -	- Z -Y	33176	PR	rear	ring3 300.	41.48335
32558	strut 12 + Z -Y	116.82837		84.76445		33200	PR	therm	nal foil .	41.37484
			32595	eccofoam strut 12 -	+ Z -Y	33311	PR	MLI	fwd ring	41.72978
			32506	eccofoam strut 12	- 7 - V	33312	PR	MLI	fwd ring	41.49551
32559	strut 12 + Z -Y	121.72566	52570	77.50116	F Z -1	33313	PR	MLI	fwd ring	42.06193
32560	strut 12 + Z -Y	116.77134	32597	eccofoam strut 12 -	+ Z -Y	33314	PR	MLI	fwd ring	41.75036
32561	strut 12 + Z -Y	104.61788	00500	/8.60/50	7. V	33315	PR	MLI	fwd ring	42.06376
32562	strut 12 + Z -Y	96.01808	32598	eccotoam strut 12 - 77.22220	F Z -Y	33316	PR	MLI	fwd ring	41.49799
32563	strut 12 + Z -Y	89.60669	33000	PR front centre	41.84047	33341	PR	MLI	fwd ring	42.19179
32564	strut 12 + Z -Y	84.68384	33011	PR front ring1 C	. 41.89564	33342	PR	MLI	fwd ring	41.35783
32565	strut 12 + Z -Y	80.68267	33012	PR front ring1 60	D. 41.65169	33343	PR	MLI	fwd ring	42.66757
32566	strut 12 + Z -Y	77.13279	33013	PR front ring1 12	20. 42.14761	33344	PR	MLI	fwd ring	41.80447
32567	strut 12 + Z -Y	78.81836	33014	PR front ring1 1	30. 41.86674	33345	PR	MLI	twd ring	42.67035
32568	strut 12 + Z -Y	77.10496	33015	PR front ring1 24	40. 42.14751	33346	PR	MLI	two ring	41.35776
32569	strut 12 + Z -Y	69.63114	33016	PR front ring1 30	00. 41.65227	33371	PR	MLI	iwa ring	41.5/631
32570	strut 12 + Z -Y	63.52247	33041	PR front ring2 C	. 42.31355	33372	PR	MLI	two ring	41.29713
32571	strut 12 + Z -Y	57.99070	33042	PR front ring2 60	0. 41.52972	33373	PR	MLI	iwa ring	42.39156
32572	strut 12 + Z -Y	52.61613	33043	PR front ring2 12	20. 42.49371	33374	PR	MLI	iwa ring	41.81427

Référence Fichler :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

Dlanck DI M Thormal Analysos

	Pla		JK	PL	w men	ma		la	195	962		[Date :	0	9/04/04	
												I	SSUE :	2		Page : 173/181
33375	PR	MLI	fwd	ring	42.39045	1	34200	SR	thern	nal foi	il.	41.62183	3	35050	rim2 in	43.29686
33376	PR	MLI	fwd	ring	41.29687		34311	SR	MLI	fwd	ring	41.65874	Ļ	35051	rim2 lo	43.29902
33411	PR	MLI	rear	rina	34.13422		34312	SR	MLI	fwd	rina	41.65103	3	35052	rim2 out	43.23294
33412	PR	MLI	rear	ring	34.70106		34313	SR	MLI	fwd	ring	41.79925	5	35053	rim2 up	43.53835
33413	PR	MLI	rear	ring	36.39695		34314	SR	MLI	fwd	ring	41.72788	3	35060	rim3 in	43.29781
33414	PR	MLI	rear	ring	36.76806		34315	SR	MLI	fwd	ring	41.84828	3	35061	rim3 lo	43.30008
33415	PR	MLI	rear	ring	36.48061		34316	SR	MLI	fwd	ring	41.66621		35062	rim3_out	43.23420
33416	PR	MLI	rear	ring	34.80298		34371	SR	MLI	fwd	ring	41.55693	3	35063	rim3_up	43.53933
33441	PR	MLI	rear	ring	32.98469		34372	SR	MLI	fwd	ring	41.57489)	35070	rim3_in	42.95865
33442	PR	MLI	rear	ring	33.89955						0			35071	rim3 lo	43.12701
33443	PR	MLI	rear	ring	37.14538		34373	SR	MLI	fwd	ring	41.73491		35072	rim3 out	43.31742
33444	PR	MLI	rear	ring	37.72869		34374	SR	MLI	fwd	ring	41.64429)	35073	rim3 up	42.92713
33445	PR	MLI	rear	rina	37.27682		34375	SR	MLI	fwd	rina	41.77294	Ļ	35080	rim3 in	40.64275
33446	PR	MLI	rear	rina	33.87102		34376	SR	MLI	fwd	rina	41.58883	3	35081	rim3 lo	41.20158
33471	PR	MLI	rear	rina	31.44168		34411	SR	MLI	rear	rina	35.55103	3		_	
33472	PR	MLI	rear	ring	33.40606		34412	SR	MLI	rear	ring	38.33904	Ļ			
33473	PR	MLI	rear	ring	36.47217		34413	SR	MLI	rear	ring	40.98228	3	35082	rim3 out	40.99430
33474	PR	MLI	rear	ring	37.42634		34414	SR	MLI	rear	ring	40.51623	3	35083	rim3 up	40.81868
33475	PR	MLI	rear	ring	36.40856		34415	SR	MLI	rear	ring	41.03038	3	35090	rim4 in	40.64051
33476	PR	MLI	rear	ring	33.35797		34416	SR	MLI	rear	ring	38.41429)	35091	rim4 lo	41.19930
34000	SR	front	centre	e.	41.75841		34471	SR	MLI	rear	ring	32.52022	2	35092	rim4 out	40.99183
34011	SR	front	ring1	0.	41.76540		34472	SR	MLI	rear	ring	35.82491		35093	rim4 up	40.81641
34012	SR	front	rina1	60.	41.73100		34473	SR	MLI	rear	rina	40.22823	3	35100	rim4 in	39.85519
34013	SR	front	ring1	120.	41.77290		34474	SR	MLI	rear	ring	38.05072)	35101	rim4 lo	39.93068
34014	SR	front	ring1	180.	41.74732		34475	SR	MLI	rear	ring	40.28160)	35102	rim4 out	39.80474
34015	SR	front	ring1	240.	41.80468		34476	SR	MLI	rear	ring	35.83257	,	35103	rim4 up	39.71538
34016	SR	front	ring1	300.	41.74357		35000	rim	1 in	42.3	7765			35110	rim4 in	42.24189
34071	SR	front	ring2	0.	41.74879		35001	rim	- 1 lo	42.4	9336			35111	rim4 lo	42.37137
34072	SR	front	ring2	60.	41.71494		35002	rim	- 1 out	42.2	8259			35112	rim4 out	42.15855
34073	SR	front	ring2	120.	41.75979		35003	rim	- 1_up	42.3	7248			35113	rim4_up	42.50966
34074	SR	front	ring2	180.	41.73271		35010	rim	1 in	41.9	7416			35120	rim5 in	42.24281
34075	SR	front	ring2	240.	41.79313		35011	rim	- 1_lo	42.0	7305			35121	rim5_lo	42.37223
34076	SR	front	ring2	300.	41.72872		35012	rim	1 out	41.9	1982			35122	rim5 out	42.15940
34100	SR	rear	centre	÷	41.77748		35013	rim	- 1_up	41.9	2905			35123	rim5_up	42.51058
34111	SR	rear	ring1	0.	41.81277		35020	rim	1_in	41.7	9348			35130	rim5_in	41.19247
34112	SR	rear	ring1	60.	41.74374		35021	rim	1_lo	41.9	7725			35131	rim5_lo	41.19980
34113	SR	rear	ring1	120.	41.82435		35022	rim	1_out	41.6	8305			35132	rim5_out	41.09240
34114	SR	rear	ring1	180.	41.76456		35023	rim	1_up	41.5	4665			35133	rim5_up	41.09570
34115	SR	rear	ring1	240.	41.87341		35030	rim	2_in	41.7	9328			35140	rim5_in	41.62736
34116	SR	rear	ring1	300.	41.75744		35031	rim	2_lo	41.9	7699			35141	rim5_lo	41.88786
34171	SR	rear	ring2	0.	41.76103	1	35032	rim	2_out	41.6	8283			35142	rim5_out	41.53880
34172	SR	rear	ring2	60.	41.72178	1	35033	rim	2_up	41.5	4642			35143	rim5_up	41.38175
34173	SR	rear	ring2	120.	41.78002	1	35040	rim	2_in	41.7	0815			35150	rim6_in	41.62784
34174	SR	rear	- ring2	180.	41.74383		35041	rim	2_lo	41.7	1448			35151	rim6_lo	41.88839
34175	SR	rear	ring2	240.	41.81763	1	35042	rim	2_out	41.6	0827			35152	rim6_out	41.53930
34176	SR	rear	ring2	300.	41.73585	1	35043	rim	2_up	41.6	1119			35153	rim6_up	41.38227

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

וח IΛ . .

REFERENCE : H-P-3-ASPI-AN-0330

		lvi iner	mai Ai	nalyses	DATE :	: 09/04/04		
					ISSUE :	2	Page	e:174/181
35160	rim6_in 41.85829)	47200	FEM_dx_Black_Side	273.78790	50235	SHield 1 inf ext fac	119.63465
35161	rim6_lo 41.94429)	49000	BEU_I/F_SVM	313.14999	50236	SHield 1 inf ext fac	117.81322
35162	rim6_out 41.80549)	50110	SHield 1 inf facet 1	129.69940	50310	SHield 1 inf facet 3	124.93727
35163	rim6_up 41.82396)	50111	SHield 1 inf facet 1	131.23321	50311	SHield 1 inf facet 3	123.00187
35170	rim6_in 42.37757	,	50112	SHield 1 inf facet 1	161.15076	50312	SHield 1 inf facet 3	120.80951
35171	rim6_lo 42.49327	,	50115	SHield 1 inf ext fac	131.88408	50315	SHield 1 inf ext fac	118.46191
35172	rim6_out 42.28251		50116	SHield 1 inf ext fac	129.45305	50316	SHield 1 inf ext fac	116.94491
35173	rim6_up 42.37240)	50120	SHield 1 inf facet 1	128.79387	50320	SHield 1 inf facet 3	124.59116
35210	I/F 1 rim1_in	42.37761	50121	SHield 1 inf facet 1	130.97139	50321	SHield 1 inf facet 3	122.54801
35211	I/F 1 rim1_lo	42.49470	50122	SHield 1 inf facet 1	137.88336	50322	SHield 1 inf facet 3	120.30523
35212	I/F 1 rim1_out	42.28191	50125	SHield 1 inf ext fac	130.89606	50325	SHield 1 inf ext fac	117.78018
35213	I/F 1 rim1_up	42.37307	50126	SHield 1 inf ext fac	127.71224	50326	SHield 1 inf ext fac	116.13678
35220	I/F 2 rim1_in	41.79353	50130	SHield 1 inf facet 1	128.33425	50330	SHield 1 inf facet 3	124.48097
35221	I/F 2 rim1_lo	41.97864	50131	SHield 1 inf facet 1	129.69146	50331	SHield 1 inf facet 3	122.35166
35222	I/F 2 rim1_out	41.68240	50135	SHield 1 inf ext fac	127.43562	50332	SHield 1 inf facet 3	120.03866
35223	I/F 2 rim1_up	41.54521	50136	SHield 1 inf ext fac	124.92317	50335	SHield 1 inf ext fac	117.60531
35230	I/F 3 rim2_in	43.29727	50170	SHield 1 inf facet 1	134.57679	50336	SHield 1 inf ext fac	115.92024
35231	I/F 3 rim2_lo	43.30043	50171	SHield 1 inf facet 1	134.15604	50410	SHield 1 inf facet 4	124.71558
35232	I/F 3 rim2_out	43.23291	50172	SHield 1 inf facet 1	133.75028	50411	SHield 1 inf facet 4	122.62384
35233	I/F 3 rim2_up	43.54162	50173	SHield 1 inf facet 1	133.36031	50412	SHield 1 inf facet 4	120.35014
			50174	SHield 1 inf facet 1	132.98615	50415	SHield 1 inf ext fac	117.97712
			50175	SHield 1 inf facet 1	132.62718	50416	SHield 1 inf ext fac	116.27382
35240	I/F 4 rim3_in	40.63891	50176	SHield 1 inf facet 1	132.28274	50420	SHield 1 inf facet 4	125.16502
35241	I/F 4 rim3_lo	41.20239	50177	SHield 1 inf facet 1	131.95186	50421	SHield 1 inf facet 4	123.24998
35242	I/F 4 rim3_out	40.99251	50178	SHield 1 inf facet 1	131.63349	50422	SHield 1 inf facet 4	121.15762
35243	I/F 4 rim3_up	40.81714	50179	SHield 1 inf facet 1	131.32684	50425	SHield 1 inf ext fac	118.59839
35250	I/F 5 rim4_in	42.24233				50426	SHield 1 inf ext fac	116.88258
35251	I/F 5 rim4_lo	42.37415						
35252	I/F 5 rim4_out	42.15838	50180	SHield 1 inf facet 1	131.03104	50430	SHield 1 inf facet 4	125.62836
35253	I/F 5 rim4_up	42.51355	50181	SHield 1 inf facet 1	130.74500	50431	SHield 1 inf facet 4	124.20392
35260	I/F 6 rim5_in	41.62762	50182	SHield 1 inf facet 1	130.46809	50432	SHield 1 inf facet 4	122.16975
35261	I/F 6 rim5_lo	41.89021	50183	SHield 1 inf facet 1	130.20124	50435	SHield 1 inf ext fac	119.77718
35262	I/F 6 rim5_out	41.53852	50184	SHield 1 inf facet 1	129.93306	50436	SHield 1 inf ext fac	118.25132
35263	I/F 6 rim5_up	41.38074	50210	SHield 1 inf facet 2	127.28985			
41000	FEMs 21.53655	5	50211	SHield 1 inf facet 2	127.28408			
41100	LR2 18.55694	Ļ	50212	SHield 1 inf facet 2	126.57244			
41500	FPU_MF 21.44669)	50215	SHield 1 inf ext fac	123.48373	50510	SHield 1 inf facet 5	126.79527
42000	LR2 fluid 18.39800)	50216	SHield 1 inf ext fac	121.35274	50511	SHield 1 inf facet 5	126.04587
45000	BEU-DAE 315.5565	51	50220	SHield 1 inf facet 2	126.38164	50512	SHield 1 inf facet 5	124.42188
45100	BEU-DAE_box	312.81844	50221	SHield 1 inf facet 2	125.66250	50515	SHield 1 inf ext fac	121.91661
45200	DAE_Black_Side	284.17195	50222	SHield 1 inf facet 2	124.01766	50516	SHield 1 inf ext fac	120.03439
46000	BEM 312.7085	55	50225	SHield 1 inf ext fac	121.09716	50520	SHield 1 inf facet 5	127.74941
46100	BEM_box 312.5624	4	50226	SHield 1 inf ext fac	119.03157	50521	SHield 1 inf facet 5	127.82562
46200	BEM_dx_Black_Side	227.73506	50230	SHield 1 inf facet 2	125.76783	50522	SHield 1 inf facet 5	127.32702
47000	FEM 290.6204	1	50231	SHield 1 inf facet 2	124.24968	50525	SHield 1 inf ext fac	124.40217
47100	FEM_box 312.2708	35	50232	SHield 1 inf facet 2	122.22364	50526	SHield 1 inf ext fac	122.26538

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

	Dlanck Dl			REFERENCE : H-P-3-ASPI-AN-0330				
	FIGHT FL		nai A	laryses	DATE :	09	/04/04	
					ISSUE :	2	Page	: 175/181
50530	SHield 1 inf facet 5	128 44687	51131	SHield 1 sun facet 1	129 66467			
50531	SHield 1 inf facet 5	129 91663	51135	SHield 1 sup ext fac	127 42556	51332	SHield 1 sun facet 3	120 03147
50537	SHield 1 inf facet 5	131 00820	51136	SHield 1 sup ext fac	127.42330	51335	SHield 1 sup ext fac	117 50/15
50532	SHield 1 inf ext fac	128 30101	51170	SHield 1 sup facet 1	134 61542	51336	SHield 1 sup ext fac	115 91313
50535	SHield 1 infect fac	126.04596	51171	SHield 1 sup facet 1	134 16005	51/10	SHield 1 sup facet 4	124 60770
50610	SHield 1 inf facet 6	120.04370	51172	SHield 1 sup facet 1	133 7/007	51/11	SHield 1 sup facet 4	124.07777
50611	SHield 1 inf facet 6	127.40333	51172	SHield 1 sup facet 1	133.74777	51412	SHield 1 sup facet 4	122.00730
50615	SHield 1 inf ovt fac	132.37022	51174	SHield 1 sup facet 1	122 07209	51412	SHield 1 sup out fac	117 06557
50615	Shield 1 inf ext fac	121 27474	51175	SHield 1 sup facet 1	122.77270	51415	SHield 1 sup ext fac	116 26502
50620	SHield 1 inf facet 6	120 78046	51176	SHield 1 sup facet 1	122.01130	51420	SHield 1 sup facet 4	125 14672
50620	SHield 1 inf facet 6	127.70040	51177	SHield 1 sup facet 1	132.20550	51420	SHield 1 sup facet 4	123.14072
50621	Shield 1 inf facet 6	132.05047	51178	SHield 1 sup facet 1	131.93340	51421	SHield 1 sup facet 4	123.23320
50022	Shield 1 inflater 0	142.37141	51170 E1170	SHield 1 sup facet 1	121 20744	51422	SHield 1 sup out fac	121.14210
50025	SHield 1 inf ext fac	130.23123	51179	SHield 1 sup facet 1	131.30744	51425	SHield 1 sup ext fac	116.00002
50020	Shield 1 inf faast (132.41399	51100		130,72422	51420	Shield 1 sup faset 4	10.07309
50630	Shield 1 inf facet 6	129.84355	51181	Shield 1 sup facet 1	130.72423	51430	SHield 1 sup facet 4	123.01007
50631	Shield 1 inf facet 6	132.08447	51182	Shield 1 sup facet 1	130.44601	51431	SHield 1 sup facet 4	124.18665
50632	Shield 1 inf racel 6	162.70625	51183	Shield 1 sup facet 1	130.17523	51432	SHield 1 sup racet 4	122.16219
50635	Shield 1 infext fac	133.86898	51184	Shield I sup facet I	129.91039	51435	Shield 1 sup ext fac	119.76627
50636		131.37106	51010		407 07000	51436		118.23853
50670	Shield I infracet 6	135.74536	51210	Shield I sup facet 2	127.27023	51510	SHIEld I sup facet 5	126.77630
50671	Shield 1 inf facet 6	136.39528	51211	Shield 1 sup facet 2	127.26591	51511	SHield 1 sup facet 5	126.02772
50672	Shield 1 Ini facel 6	136.61289	51212		126.56464	51512	SHield T sup facet 5	124.41408
50673	Shield 1 inf facet 6	136.89299	51215	Shield 1 sup ext fac	123.47337	51515	Shield 1 sup ext fac	121.90573
50674	Shield 1 inf facet 6	137.20554	51216		121.34554	51516		120.02621
50675	Shield I infracet 6	137.53912	51220	Shield I sup facet 2	126.36319	51520	SHIEld I sup facet 5	127.72970
50676	Shield I infracet 6	137.88856	51221	Shield I sup facet 2	125.64508	51521	SHIEld I sup facet 5	127.80625
50677	Shield 1 inf facet 6	138.25127	51222	Shield 1 sup facet 2	124.00149	51522	SHield 1 sup facet 5	127.31001
50678	SHield 1 inf facet 6	138.62870	51225	SHield 1 sup ext fac	121.08523	51525	SHield 1 sup ext fac	124.39116
50679	Shield 1 inf facet 6	139.02403	51226	Shield 1 sup ext fac	119.02449	51526	SHield 1 sup ext fac	122.25764
50680	Shield 1 inf facet 6	139.43819	51230	Shield 1 sup facet 2	125.74986	51530	SHield 1 sup facet 5	128.42631
50681	Shield 1 inf facet 6	139.87801	51231	Shield 1 sup facet 2	124.23272	51531	SHield 1 sup facet 5	129.89555
50682	Shield 1 inf facet 6	140.34716	51232	Shield 1 sup facet 2	122.21621	51532	SHield 1 sup facet 5	130.99747
50683	Shield 1 inf facet 6	140.85730	51235	Shield 1 sup ext fac	119.62320	51535	SHield 1 sup ext fac	128.28356
50684	Shield I infracet 6	141.43892	51236	Shield I sup ext fac	117.80543	51536	SHield I sup ext fac	126.03493
51110	Shield 1 sup facet 1	129.66976	51310	Shield 1 sup facet 3	124.91971	51610	SHield 1 sup facet 6	129.43365
51111	Shield 1 sup facet 1	131.19661	51311	Shield 1 sup facet 3	122.98564	51611	SHield 1 sup facet 6	132.54074
51112	Shield 1 sup facet 1	161.11479	51312	Shield 1 sup facet 3	120.80217	51615	SHield 1 sup ext fac	134.88510
51115	Shield 1 sup ext fac	131.83583	51315	Shield 1 sup ext fac	118.45112	51616	SHield 1 sup ext fac	131.35352
51116	Shield 1 sup ext fac	129.43685	51316	Shield 1 sup ext fac	116.93242	51620	SHield 1 sup facet 6	129.74996
51720	Shiela 1 sup facet 1	128.76508	51320	SHIEIG T SUP facet 3	124.5/363	51621	SHIEID I SUP facet 6	132.81651
E1404		100.04/05	51321	SHIEIG T SUP facet 3	122.531/5	51622	SHIERA 1 SUP facet 6	142.80239
51727	SHIERA 1 SUP facet 1	130.94605	51322	SHIEIG T SUP facet 3	120.29006	51625	Shiela 1 sup ext fac	136.19006
51722	SHIEIG T SUP facet 1	138.25246	51325	SHIEIG T SUP ext fac	117.76857	51626	SHIEID I SUP ext fac	132.39457
51725	Shiela 1 sup ext fac	130.88205	51326	SHIEIG T SUP ext fac	116.12669	51630	SHIEID 1 SUP facet 6	129.81349
51126	Shield I sup ext fac	127.69928	51330	SHIEIG I SUP facet 3	124.46310	51631	SHIEIG I SUP facet 6	132.04557
51130	SHIEID 1 sup facet 1	128.30665	51331	SHIEID 1 sup facet 3	122.33523	51632	SHIEID 1 sup facet 6	162.66957

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

REFERENCE : H-P-3-ASPI-AN-0330

	FIGHT FL		illai A	laryses	Date :	09	/04/04	
					ISSUE :	2	Page	e:176/181
51635	SHield 1 sup ext fac	133.81786	60122	shield 2 inf facet 1	79.87775	60322	shield 2 inf facet 3	78.06226
51636	SHield 1 sup ext fac	131.35392	60125	shield 2 inf ext fac	79.30182	60325	shield 2 inf ext fac	77.58892
51670	SHield 1 sup facet 6	135.49591	60126	shield 2 inf ext fac	78.96778	60326	shield 2 inf ext fac	77.31860
51671	SHield 1 sup facet 6	135.98907	60130	shield 2 inf facet 1	79.51997	60330	shield 2 inf facet 3	79.02610
51672	SHield 1 sup facet 6	136.38965	60131	shield 2 inf facet 1	79.46182	60331	shield 2 inf facet 3	78.58342
			60135	shield 2 inf ext fac	78.81478	60332	shield 2 inf facet 3	78.09636
			60136	shield 2 inf ext fac	78.51583	60335	shield 2 inf ext fac	77.62803
51673	SHield 1 sup facet 6	136.75199	60170	shield 2 inf facet 1	79.55515	60336	shield 2 inf ext fac	77.36168
51674	SHield 1 sup facet 6	137.10159	60171	shield 2 inf facet 1	79.52417	60410	shield 2 inf facet 4	79.13989
51675	SHield 1 sup facet 6	137.45089	60172	shield 2 inf facet 1	79.49363	60411	shield 2 inf facet 4	78.71182
51676	SHield 1 sup facet 6	137.80642	60173	shield 2 inf facet 1	79.46373	60412	shield 2 inf facet 4	78.23721
51677	SHield 1 sup facet 6	138.17191				60415	shield 2 inf ext fac	77.79185
51678	SHield 1 sup facet 6	138.55024				60416	shield 2 inf ext fac	77.53110
51679	SHield 1 sup facet 6	138.94387	60174	shield 2 inf facet 1	79.43459	60420	shield 2 inf facet 4	79.22575
51680	SHield 1 sup facet 6	139.35454	60175	shield 2 inf facet 1	79.40624	60421	shield 2 inf facet 4	78.94174
51681	SHield 1 sup facet 6	139.78350	60176	shield 2 inf facet 1	79.37873	60422	shield 2 inf facet 4	78.56576
51682	SHield 1 sup facet 6	140.22979	60177	shield 2 inf facet 1	79.35203	60425	shield 2 inf ext fac	78.10545
51683	SHield 1 sup facet 6	140.68874	60178	shield 2 inf facet 1	79.32618			
51684	SHield 1 sup facet 6	141.14756	60179	shield 2 inf facet 1	79.30117			
52100	SHield 1 b facet 1	127.68582	60180	shield 2 inf facet 1	79.27708	60426	shield 2 inf ext fac	77.83508
52101	SHield 1 b facet 1	126.02308	60181	shield 2 inf facet 1	79.25399	60430	shield 2 inf facet 4	79.45415
52102	SHield 1 b facet 1	123.37323	60182	shield 2 inf facet 1	79.23215	60431	shield 2 inf facet 4	79.29828
52200	SHield 1 b facet 2	119.95089	60183	shield 2 inf facet 1	79.21207	60432	shield 2 inf facet 4	78.96638
52201	SHield 1 b facet 2	117.71288	60184	shield 2 inf facet 1	79.18870	60435	shield 2 inf ext fac	78.51371
52202	SHield 1 b facet 2	116.55240	60210	shield 2 inf facet 2	79.30338	60436	shield 2 inf ext fac	78.23804
52300	SHield 1 b facet 3	115.71503	60211	shield 2 inf facet 2	79.12411	60510	shield 2 inf facet 5	79.69465
52301	SHield 1 b facet 3	114.92905	60212	shield 2 inf facet 2	78.81923	60511	shield 2 inf facet 5	79.67758
52302	SHield 1 b facet 3	114.74410	60215	shield 2 inf ext fac	78.36913	60512	shield 2 inf facet 5	79.46387
52400	SHield 1 b facet 4	115.10087	60216	shield 2 inf ext fac	78.08422	60515	shield 2 inf ext fac	79.05747
52401	SHield 1 b facet 4	115.64716	60220	shield 2 inf facet 2	79.20136	60516	shield 2 inf ext fac	78.79581
52402	SHield 1 b facet 4	116.97126	60221	shield 2 inf facet 2	78.84888	60520	shield 2 inf facet 5	79.82187
52500	SHield 1 b facet 5	118.68612	60222	shield 2 inf facet 2	78.46744	60521	shield 2 inf facet 5	80.17762
52501	SHield 1 b facet 5	120.81422	60225	shield 2 inf ext fac	78.01831	60522	shield 2 inf facet 5	80.34718
52502	SHield 1 b facet 5	124.44085	60226	shield 2 inf ext fac	77.74698	60525	shield 2 inf ext fac	79.84831
52600	SHield 1 b facet 6	129.51089	60230	shield 2 inf facet 2	79.06214	60526	shield 2 inf ext fac	79.53164
52601	SHield 1 b facet 6	130.48352	60231	shield 2 inf facet 2	78.65115	60530	shield 2 inf facet 5	80.01473
52602	SHield 1 b facet 6	129.50907	60232	shield 2 inf facet 2	78.19291	60531	shield 2 inf facet 5	80.73112
59000	scr_VG1 130.2052	27	60235	shield 2 inf ext fac	77.74187	60532	shield 2 inf facet 5	81.65620
59010	scn_VG1 136.5337	17	60236	shield 2 inf ext fac	77.48138	60535	shield 2 inf ext fac	80.75272
60110	shield 2 inf facet 1	79.94925	60310	shield 2 inf facet 3	78.98288	60536	shield 2 inf ext fac	80.30545
60111	shield 2 inf facet 1	80.09067	60311	shield 2 inf facet 3	78.54681	60610	shield 2 inf facet 6	80.10921
60112	shield 2 inf facet 1	92.65932	60312	shield 2 inf facet 3	78.07096	60611	shield 2 inf facet 6	81.08067
60115	shield 2 inf ext fac	79.53829	60315	shield 2 inf ext fac	77.61255	60615	shield 2 inf ext fac	81.49052
60116	shield 2 inf ext fac	79.32072	60316	shield 2 inf ext fac	77.34475	60616	shield 2 inf ext fac	80.87524
60120	shield 2 inf facet 1	79.64506	60320	shield 2 inf facet 3	78.96844	60620	shield 2 inf facet 6	80.10016
60121	shield 2 inf facet 1	79.73148	60321	shield 2 inf facet 3	78.51405	60621	shield 2 inf facet 6	80.99376

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

REFERENCE : H-P-3-ASPI-AN-0330

				largees	DATE :	09	/04/04	
					ISSUE :	2	Page	: 177/181
60622	shield 2 inf facet 6	83.02500	61177	shield 2 sup facet 1	79.34683	61422	shield 2 sup facet 4	78.56310
60625	shield 2 inf ext fac	81.28531	61178	shield 2 sup facet 1	79.31984	61425	shield 2 sup ext fac	78.10366
60626	shield 2 inf ext fac	80.74134	61179	shield 2 sup facet 1	79.29337	61426	shield 2 sup ext fac	77.83393
60630	shield 2 inf facet 6	80.04973	61180	shield 2 sup facet 1	79.26721	61430	shield 2 sup facet 4	79.44947
60631	shield 2 inf facet 6	80.58147	61181	shield 2 sup facet 1	79.24111	61431	shield 2 sup facet 4	79.29472
60632	shield 2 inf facet 6	93.63834	61182	shield 2 sup facet 1	79.21474	61432	shield 2 sup facet 4	78.96736
60635	shield 2 inf ext fac	80.15865	61183	shield 2 sup facet 1	79.18765	61435	shield 2 sup ext fac	78.51226
60636	shield 2 inf ext fac	79.94094	61184	shield 2 sup facet 1	79.15916	61436	shield 2 sup ext fac	78.23692
60670	shield 2 inf facet 6	83.02624	61210	shield 2 sup facet 2	79.29800	61510	shield 2 sup facet 5	79.69228
60671	shield 2 inf facet 6	83.17102	61211	shield 2 sup facet 2	79.11960	61511	shield 2 sup facet 5	79.67506
60672	shield 2 inf facet 6	83.05297	61212	shield 2 sup facet 2	78.82134	61512	shield 2 sup facet 5	79.46498
60673	shield 2 inf facet 6	82.96199	61215	shield 2 sup ext fac	78.36726	61515	shield 2 sup ext fac	79.05596
60674	shield 2 inf facet 6	82.89183	61216	shield 2 sup ext fac	78.08289	61516	shield 2 sup ext fac	78.79460
60675	shield 2 inf facet 6	82.83785	61220	shield 2 sup facet 2	79.19731	61520	shield 2 sup facet 5	79.81818
60676	shield 2 inf facet 6	82.79676	61221	shield 2 sup facet 2	78.84533	61521	shield 2 sup facet 5	80.17386
60677	shield 2 inf facet 6	82.76628	61222	shield 2 sup facet 2	78.46443	61522	shield 2 sup facet 5	80.34361
60678	shield 2 inf facet 6	82.74480	61225	shield 2 sup ext fac	78.01621	61525	shield 2 sup ext fac	79.84593
60679	shield 2 inf facet 6	82.73118	61226	shield 2 sup ext fac	77.74573	61526	shield 2 sup ext fac	79.53026
60680	shield 2 inf facet 6	82.72466	61230	shield 2 sup facet 2	79.05909	61530	shield 2 sup facet 5	80.00964
60681	shield 2 inf facet 6	82.72475	61231	shield 2 sup facet 2	78.64827	61531	shield 2 sup facet 5	80.72575
60682	shield 2 inf facet 6	82.73117	61232	shield 2 sup facet 2	78.19374	61532	shield 2 sup facet 5	81.63780
60683	shield 2 inf facet 6	82.74385	61235	shield 2 sup ext fac	77.74039	61535	shield 2 sup ext fac	80.75019
60684	shield 2 inf facet 6	82.76293	61236	shield 2 sup ext fac	77.48026	61536	shield 2 sup ext fac	80.30402
			61310	shield 2 sup facet 3	78.97927	61610	shield 2 sup facet 6	80.10319
			61311	shield 2 sup facet 3	78.54385	61611	shield 2 sup facet 6	81.06991
61110	shield 2 sup facet 1	79.94042	61312	shield 2 sup facet 3	78.07204	61615	shield 2 sup ext fac	81.47877
61111	shield 2 sup facet 1	80.07935	61315	shield 2 sup ext fac	77.61120	61616	shield 2 sup ext fac	80.87348
61112	shield 2 sup facet 1	92.65445	61316	shield 2 sup ext fac	77.34365	61620	shield 2 sup facet 6	80.09339
61115	shield 2 sup ext fac	79.53318	61320	shield 2 sup facet 3	78.96524	61621	shield 2 sup facet 6	80.98484
61116	shield 2 sup ext fac	79.31872				61622	shield 2 sup facet 6	83.05430
61120	shield 2 sup facet 1	79.63961	61321	shield 2 sup facet 3	78.51120	61625	shield 2 sup ext fac	81.28032
61121	shield 2 sup facet 1	79.72545	61322	shield 2 sup facet 3	78.05965	61626	shield 2 sup ext fac	80.73934
61122	shield 2 sup facet 1	79.90884	61325	shield 2 sup ext fac	77.58719	61630	shield 2 sup facet 6	80.04344
61125	shield 2 sup ext fac	79.29792	61326	shield 2 sup ext fac	77.31747	61631	shield 2 sup facet 6	80.57023
61126	shield 2 sup ext fac	78.96604	61330	shield 2 sup facet 3	79.02236			
61130	shield 2 sup facet 1	79.51599	61331	shield 2 sup facet 3	78.58045			
61131	shield 2 sup facet 1	79.45668	61332	shield 2 sup facet 3	78.09768	61632	shield 2 sup facet 6	93.63327
61135	shield 2 sup ext fac	78.81205	61335	shield 2 sup ext fac	77.62674	61635	shield 2 sup ext fac	80.15318
61136	shield 2 sup ext fac	78.51439	61336	shield 2 sup ext fac	77.36066	61636	shield 2 sup ext fac	79.93894
61170	shield 2 sup facet 1	79.56492	61410	shield 2 sup facet 4	79.13746	61670	shield 2 sup facet 6	82.58230
61171	shield 2 sup facet 1	79.52907	61411	shield 2 sup facet 4	78.70931	61671	shield 2 sup facet 6	82.63924
61172	shield 2 sup facet 1	79.49531	61412	shield 2 sup facet 4	78.23870	61672	shield 2 sup facet 6	82.67207
61173	shield 2 sup facet 1	79.46324	61415	shield 2 sup ext fac	77.79060	61673	shield 2 sup facet 6	82.68901
61174	shield 2 sup facet 1	79.43254	61416	shield 2 sup ext fac	77.53002	61674	shield 2 sup facet 6	82.69589
61175	shield 2 sup facet 1	79.40302	61420	shield 2 sup facet 4	79.22265	61675	shield 2 sup facet 6	82.69689
61176	shield 2 sup facet 1	79.37450	61421	shield 2 sup facet 4	78.93881	61676	shield 2 sup facet 6	82.69496

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

	Dlanck Dl	M Thor	mal Ar	alveos	Ref	ERENCE :	H-P	-3-ASPI-AN-0330	C
I				laryses	DAT	Έ:	09/	04/04	
					Issu	JE :	2	Page	: 178/181
61677	shield 2 sup facet 6	82.69219	70136	SHield 3 inf ext fac	45.10687	702	70	SHield3 inf ext facet2	44.98821
61678	shield 2 sup facet 6	82.69006	70137	SHield 3 inf ext fac	45.07440	702	71	SHield3 inf ext facet2	45.00658
61679	shield 2 sup facet 6	82.68960	70170	SHield 3 inf facet 1	45.66560	702	72	SHield3 inf ext facet2	44.98456
61680	shield 2 sup facet 6	82.69151	70171	SHield 3 inf facet 1	45.64668	702	73	SHield3 inf ext facet2	44.93116
61681	shield 2 sup facet 6	82.69624	70172	SHield 3 inf facet 1	45.61853	702	74	SHield3 inf ext facet2	44.89488
61682	shield 2 sup facet 6	82.70405	70173	SHield 3 inf facet 1	45.58660	702	75	SHield3_inf_ext_facet2	44.87569
61683	shield 2 sup facet 6	82.71503	70174	SHield 3 inf facet 1	45.55381	702	76	SHield3_inf_ext_facet2	44.82923
61684	shield 2 sup facet 6	82.72911	70175	SHield 3 inf facet 1	45.52151	702	77	SHield3_inf_ext_facet2	44.78100
62100	SHield 2 b facet 1	79.06904	70176	SHield 3 inf facet 1	45.49011	702	78	SHield3_inf_ext_facet2	44.78910
62101	SHield 2 b facet 1	78.72110	70177	SHield 3 inf facet 1	45.45951	703	10	SHield 3 inf facet 3	45.05729
62102	SHield 2 b facet 1	78.27388	70178	SHield 3 inf facet 1	45.42931	703	11	SHield 3 inf facet 3	44.79297
62200	SHield 2 b facet 2	77.84715	70179	SHield 3 inf facet 1	45.40122	703	12	SHield 3 inf facet 3	44.66141
62201	SHield 2 b facet 2	77.51464	70180	SHield 3 inf facet 1	45.37205	703	13	SHield 3 inf facet 3	44.64633
62202	SHield 2 b facet 2	77.25113	70181	SHield 3 inf facet 1	45.34987	703	15	SHield 3 inf ext fac	44.61535
62300	SHield 2 b facet 3	77.11602	70182	SHield 3 inf facet 1	45.33171	703	16	SHield 3 inf ext fac	44.58669
62301	SHield 2 b facet 3	77.09100	70183	SHield 3 inf facet 1	45.31677	703	17	SHield 3 inf ext fac	44.56376
62302	SHield 2 b facet 3	77.13282	70184	SHield 3 inf facet 1	45.30674	703	20	SHield 3 inf facet 3	45.05124
62400	SHield 2 b facet 4	77.30036	70185	SHield 3 inf facet 1	45.30120	703	21	SHield 3 inf facet 3	44.79664
62401	SHield 2 b facet 4	77.60178	70186	SHield 3 inf facet 1	45.26508	703	22	SHield 3 inf facet 3	44.66230
62402	SHield 2 b facet 4	77.99932	70187	SHield 3 inf facet 1	45.23166	703	23	SHield 3 inf facet 3	44.59544
62500	SHield 2 b facet 5	78.55069	70188	SHield 3 inf facet 1	45.19956	703	25	SHield 3 inf ext fac	44.49684
62501	SHield 2 b facet 5	79.27879	70189	SHield 3 inf facet 1	45.16454	703	26	SHield 3 inf ext fac	44.46495
62502	SHield 2 b facet 5	80.04232	70210	SHield3_inf_facet2	45.15441	703	27	SHield 3 inf ext fac	44.44761
62600	SHield 2 b facet 6	80.60492	70211	SHield3_inf_facet2	44.99498	703	30	SHield 3 inf facet 3	45.06061
62601	SHield 2 b facet 6	80.47364	70212	SHield3_inf_facet2	44.84057	703	31	SHield 3 inf facet 3	44.81875
62602	SHield 2 b facet 6	79.68188	70213	SHield3_inf_facet2	44.94802	703	32	SHield 3 inf facet 3	44.67826
69000	scr_VG2 79.21462		70214	SHield3_inf_facet2	45.13010	703	33	SHield 3 inf facet 3	44.60496
69010	scn_VG2 83.33285		70215	SHield3_inf_facet2	44.84174	703	35	SHield 3 inf ext fac	44.47337
70110	SHield 3 inf facet 1	45.30090	70216	SHield3_inf_facet2	44.70645	703	36	SHield 3 inf ext fac	44.43228
70111	SHield 3 inf facet 1	45.60362	70217	SHield3_inf_facet2	44.74801	703	37	SHield 3 inf ext fac	44.41227
70112	SHield 3 inf facet 1	54.20829	70220	SHield3_inf_facet2	45.10014	704	10	SHield 3 inf facet 4	45.08305
70115	SHield 3 inf ext fac	44.99633	70221	SHield3_inf_facet2	44.81813	704	11	SHield 3 inf facet 4	44.84039
70116	SHield 3 inf ext fac	44.97864	70222	SHield3_inf_facet2	44.63678	704	12	SHield 3 inf facet 4	44.69321
70117	SHield 3 inf ext fac	44.98172	70223	SHield3_inf_facet2	44.69141	704	13	SHield 3 inf facet 4	44.61499
70118	SHield 3 inf facet 1	45.26351	70225	SHield3_inf_ext_facet2	44.70062	704	15	SHield 3 inf ext fac	44.46740
70119	SHield 3 inf facet 1	45.44603	70226	SHield3_inf_ext_facet2	44.64313	704	16	SHield 3 inf ext fac	44.41156
70120	SHield 3 inf facet 1	45.24068	70227	SHield3_inf_ext_facet2	44.62297	704	17	SHield 3 inf ext fac	44.38398
70121	SHield 3 inf facet 1	45.32234	70230	SHield3_inf_facet2	45.07751	704	20	SHield 3 inf facet 4	45.10320
70122	SHield 3 inf facet 1	45.21698	70231	SHield3_inf_facet2	44.79464	704	21	SHield 3 inf facet 4	44.88610
70123	SHield 3 inf facet 1	45.19098	70232	SHield3_inf_facet2	44.61825	704	22	SHield 3 inf facet 4	44.72849
70124	SHield 3 inf facet 1	45.43127	70233	SHield3_inf_facet2	44.63887	704	23	SHield 3 inf facet 4	44.63449
70125	SHield 3 inf ext fac	45.14124	70235	SHield3_inf_ext_facet2	44.60919	704	25	SHield 3 inf ext fac	44.47270
70126	SHield 3 inf ext fac	45.08206	70236	SHield3_inf_ext_facet2	44.58531	704	26	SHield 3 inf ext fac	44.42126
70127	SHield 3 inf ext fac	45.05279	70237	SHield3_inf_ext_facet2	44.56742	704	27	SHield 3 inf ext fac	44.39140
70134	SHield 3 inf facet 1	45.20771				704	30	SHield 3 inf facet 4	45.13586
70135	SHield 3 inf ext fac	45.15727				704	31	SHield 3 inf facet 4	44.98396

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

Dlanck DI M Thormal Analysos

REFERENCE : H-P-3-ASPI-AN-0330

	Planck PLIVI Inermal Analyses				DATE: 00/04/04			
			DATE :	DATE: 09/04/04				
					ISSUE :	2	Page	: 179/181
70432	SHield 3 inf facet 4	44.83534	70621	SHield 3 inf facet 6	45.92448	71124	SHield 3 sup facet 1	45.44135
70433	SHield 3 inf facet 4	44.74022	70625	SHield 3 inf ext fac	45.83528	71125	SHield 3 sup ext fac	45.13560
70435	SHield 3 inf ext fac	44.51500	70626	SHield 3 inf ext fac	45.71879	71126	SHield 3 sup ext fac	45.07587
70436	SHield 3 inf ext fac	44.45027	70627	SHield 3 inf ext fac	45.62023	71127	SHield 3 sup ext fac	45.04617
			70628	SHield 3 inf facet 6	45.97335	71134	SHield 3 sup facet 1	45.19474
70437	SHield 3 inf ext fac	44.41863	70629	SHield 3 inf facet 6	46.22166	71135	SHield 3 sup ext fac	45.14985
70510	SHield3_inf_facet5	45.19740	70630	SHield 3 inf facet 6	45.34599	71136	SHield 3 sup ext fac	45.10068
70511	SHield3_inf_facet5	45.08848	70631	SHield 3 inf facet 6	45.77153	71137	SHield 3 sup ext fac	45.06838
70512	SHield3_inf_facet5	44.92598	70632	SHield 3 inf facet 6	54.71017	71170	SHield 3 sup facet 1	46.01634
70513	SHield3_inf_facet5	44.88053				71171	SHield 3 sup facet 1	45.86933
70514	SHield3_inf_facet5	45.23905				71172	SHield 3 sup facet 1	45.75940
70515	SHield3_inf_facet5	45.22345	70635	SHield 3 inf ext fac	45.23675	71173	SHield 3 sup facet 1	45.67507
70516	SHield3_inf_facet5	45.08438	70636	SHield 3 inf ext fac	45.25906	71174	SHield 3 sup facet 1	45.60844
70517	SHield3_inf_facet5	45.08734	70637	SHield 3 inf ext fac	45.25692	71175	SHield 3 sup facet 1	45.55386
70520	SHield3_inf_facet5	45.27762	70670	SHield 3 inf facet 6	48.79738	71176	SHield 3 sup facet 1	45.50716
70521	SHield3_inf_facet5	45.46866	70671	SHield 3 inf facet 6	49.40331			
70522	SHield3_inf_facet5	45.40126	70672	SHield 3 inf facet 6	48.94480			
70523	SHield3_inf_facet5	45.40920	70673	SHield 3 inf facet 6	48.55811			
70525	SHield3_inf_ext_facet	t5 45.02123	70674	SHield 3 inf facet 6	48.23271	71177	SHield 3 sup facet 1	45.46507
70526	SHield3_inf_ext_facet	t5 44.93684	70675	SHield 3 inf facet 6	47.95979	71178	SHield 3 sup facet 1	45.42484
70527	SHield3_inf_ext_facet	t5 44.90155	70676	SHield 3 inf facet 6	47.73201	71179	SHield 3 sup facet 1	45.38629
70530	SHield3_inf_facet5	45.30030	70677	SHield 3 inf facet 6	47.52751	71180	SHield 3 sup facet 1	45.34692
70531	SHield3_inf_facet5	45.72817	70678	SHield 3 inf facet 6	47.43035	71181	SHield 3 sup facet 1	45.31042
70532	SHield3_inf_facet5	46.30449	70679	SHield 3 inf facet 6	47.39790	71182	SHield 3 sup facet 1	45.27727
70533	SHield3_inf_facet5	45.86191	70680	SHield 3 inf facet 6	47.42460	71183	SHield 3 sup facet 1	45.24604
70535	SHield3_inf_ext_facet	t5 44.79666	70681	SHield 3 inf facet 6	47.25894	71184	SHield 3 sup facet 1	45.21782
70536	SHield3_inf_ext_facet	t5 44.75134	70682	SHield 3 inf facet 6	47.13865	71185	SHield 3 sup facet 1	45.19139
70537	SHield3_inf_ext_facet	t5 44.72063	70683	SHield 3 inf facet 6	47.05343	71186	SHield 3 sup facet 1	45.16558
70570	SHield3_inf_ext_facet	t5 45.42617	70684	SHield 3 inf facet 6	46.99119	71187	SHield 3 sup facet 1	45.13925
70571	SHield3_inf_ext_facet	t5 45.25298	70685	SHield 3 inf facet 6	46.94975	71188	SHield 3 sup facet 1	45.11126
70572	SHield3_inf_ext_facet	t5 45.16566	70686	SHield 3 inf facet 6	46.92820	71189	SHield 3 sup facet 1	45.08036
70573	SHield3_inf_ext_facet	t5 45.56254	70687	SHield 3 inf facet 6	46.92157	71210	SHield3_sup_facet2	45.15350
70574	SHield3_inf_ext_facet	t5 45.33788	70688	SHield 3 inf facet 6	46.92466	71211	SHield3_sup_facet2	44.99107
70575	SHield3_inf_ext_facet	t5 45.23537	70689	SHield 3 inf facet 6	46.93089	71212	SHield3_sup_facet2	44.76940
70576	SHield3_inf_ext_facet	t5 45.35165	71110	SHield 3 sup facet 1	45.29985	71213	SHield3_sup_facet2	44.93856
70577	SHield3_inf_ext_facet	t5 45.20825	71111	SHield 3 sup facet 1	45.60283	71214	SHield3_sup_facet2	45.12924
70578	SHield3_inf_ext_facet	t5 45.15856	71112	SHield 3 sup facet 1	54.20821	71215	SHield3_sup_facet2	44.84034
70610	SHield 3 inf facet 6	45.34245	71115	SHield 3 sup ext fac	44.99298	71216	SHield3_sup_facet2	44.69381
70611	SHield 3 inf facet 6	46.00713	71116	SHield 3 sup ext fac	44.97237	71217	SHield3_sup_facet2	44.74582
70613	SHield 3 inf facet 6	46.41218	71117	SHield 3 sup ext fac	44.94227	71220	SHield3_sup_facet2	45.09933
70615	SHield 3 inf ext fac	45.98429	71118	SHield 3 sup facet 1	45.26256	71221	SHield3_sup_facet2	44.81620
70616	SHield 3 inf ext fac	45.82310	71119	SHield 3 sup facet 1	45.45419	71222	SHield3_sup_facet2	44.60249
70617	SHield 3 inf ext fac	45.74627	71120	SHield 3 sup facet 1	45.23971	71223	SHield3_sup_facet2	44.68669
70618	SHield 3 inf facet 6	45.35015	71121	SHield 3 sup facet 1	45.32059	71225	SHield3_sup_ext_face	et2
70619	SHield 3 inf facet 6	45.99924	71122	SHield 3 sup facet 1	45.21598		44.69790	
70620	SHield 3 inf facet 6	45.35176	71123	SHield 3 sup facet 1	45.18330	71226	SHIeld3_sup_ext_face 44.63947	etZ

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59

REFERENCE: H-P-3-ASPI-AN-0330

Fighter Live merman Analyses			DATE :	09	/04/04	
				ISSUE :	2	Page : 180/181
71227	SHield3_sup_ext_facet2	71335	SHield 3 sup ext fac	44.46596	71536	SHield3_sup_ext_facet5
71230	SHield3 sun facet2 45 07675	71336	SHield 3 sup ext fac	44.42435	71537	SHield3 sun ext facet5
71230	SHield3_sup_racet2	71337	SHield 3 sup ext fac	44.40369	/100/	44.71739
71232	SHield3 sun facet2 44 59122	71410	SHield 3 sup facet 4	45.08240	71570	SHield3_sup_ext_facet5
71233	SHield3 sup facet2 44 63053	71411	SHield 3 sup facet 4	44.83978	71571	45.39624
71235	SHield3 sup ext facet2	71412	SHield 3 sup facet 4	44.69074	/15/1	45.24566
	44.60636	71413	SHield 3 sup facet 4	44.60581	71572	SHield3_sup_ext_facet5
71236	SHield3_sup_ext_facet2	71415	SHield 3 sup ext fac	44.46316		45.16215
71007	44.30201 SHield2 sup ovt facet2	71416	SHield 3 sup ext fac	44.40745	71573	SHield3_sup_ext_facet5 45.50596
/123/	44.56418	71417	SHield 3 sup ext fac	44.37970	71574	SHield3_sup_ext_facet5
71270	SHield3_sup_ext_facet2	71420	SHield 3 sup facet 4	45.10253		45.32918
	44.98553	71421	SHield 3 sup facet 4	44.88543	71575	SHield3_sup_ext_facet5 45_23135
71271	SHield3_sup_ext_facet2 45.00320	71422	SHield 3 sup facet 4	44.72582	71576	SHield3 sup ext facet5
71272	SHield3_sup_ext_facet2	71423	SHield 3 sup facet 4	44.63082	11070	45.34337
	44.98132	71425	SHield 3 sup ext fac	44.46835	71577	SHield3_sup_ext_facet5
71273	SHield3_sup_ext_facet2 44 92746	71426	SHield 3 sup ext fac	44.41662	71570	45.20331
71274	SHield3 sup ext facet2	71427	SHield 3 sup ext fac	44.38658	/15/8	45.15485
	44.89096	71430	SHield 3 sup facet 4	45.13511	71610	SHield 3 sup facet 6 45.34003
71275	SHield3_sup_ext_facet2	71431	SHield 3 sup facet 4	44.98315	71611	SHield 3 sup facet 6 45.94032
71076	44.07202	71432	SHield 3 sup facet 4	44.83173	71613	SHield 3 sup facet 6 46.27454
/12/0	44.82551	71433	SHield 3 sup facet 4	44.73102	71615	SHield 3 sup ext fac 45.97233
71277	SHield3_sup_ext_facet2	71435	SHield 3 sup ext fac	44.51013	71616	SHield 3 sup ext fac 45.81650
	44.77662	71436	SHield 3 sup ext fac	44.44540	71617	SHield 3 sup ext fac 45.73971
71278	SHield3_sup_ext_facet2 44.78551	71437	SHield 3 sup ext fac	44.41366	71618	SHield 3 sup facet 6 45.34802
71310	SHield 3 sup facet 3 45.05661	71510	SHield3_sup_facet5	45.19648	71619	SHield 3 sup facet 6 45.97378
71311	SHield 3 sup facet 3 44.79212	71511	SHield3_sup_facet5	45.08722	71620	SHield 3 sup facet 6 45.34992
71312	SHield 3 sup facet 3 44.65728	71512	SHIeld3_sup_facet5	44.90994	71621	SHield 3 sup facet 6 45.91887
71313	SHield 3 sup facet 3 44.63699	71513	SHield3_sup_facet5	44.87269	71625	SHield 3 sup ext fac 45.82298
71315	SHield 3 sup ext fac 44.60804	71514	SHield3_sup_facet5	45.23789	71626	SHield 3 sup ext fac 45.71178
71316	SHield 3 sup ext fac 44.57903	71515	SHield3_sup_facet5	45.22182	71627	SHield 3 sup ext fac 45.61358
		71516	SHield3_sup_facet5	45.07164	71628	SHield 3 sup facet 6 45.76267
		71517	SHield3_sup_facet5	45.08513	71629	SHield 3 sup facet 6 46.21481
		71520	SHield3_sup_facet5	45.27610	71630	SHield 3 sup facet 6 45.34456
		71521	SHield3_sup_facet5	45.46045	71631	SHield 3 sup facet 6 45.76959
71317	SHield 3 sup ext fac 44.55594	71522	SHield3_sup_facet5	45.28921	71632	SHield 3 sup facet 6 54.71008
71320	SHield 3 sup facet 3 45.05059	71525	SHield2 sup out face	45.39777	71635	SHield 3 sup ext fac 45.22691
71321	SHield 3 sup facet 3 44.79598	/1525	45.01847		71636	SHield 3 sup ext fac 45.24973
71322	SHield 3 sup facet 3 44.65962	71526	SHield3_sup_ext_face	t5	71637	SHield 3 sup ext fac 45.24795
71323	SHield 3 sup facet 3 44.59158		44.93308		71670	SHield 3 sup facet 6 46.15780
71325	SHield 3 sup ext fac 44.48967	71527	SHield3_sup_ext_face 44.89814	15	71671	SHield 3 sup facet 6 46.23367
71326	SHield 3 sup ext fac 44.45713	71530	SHield3_sup_facet5	45.29845	71672	SHield 3 sup facet 6 46.31231
71327	SHield 3 sup ext fac 44.43951	71531	SHield3_sup_facet5	45.70221	71673	SHield 3 sup facet 6 46.39584
71330	SHield 3 sup facet 3 45.05996	71532	SHield3_sup_facet5	45.80820	71674	SHield 3 sup facet 6 46.48654
71331	SHield 3 sup facet 3 44.81815	71533	SHield3_sup_facet5	45.82053	71675	SHield 3 sup facet 6 46.58683
71332	SHield 3 sup facet 3 44.67581	71535	SHield3_sup_ext_face	t5	71676	SHield 3 sup facet 6 46.69943
71333	SHield 3 sup facet 3 44.59569		44.79374		71677	SHield 3 sup facet 6 46.81126

Référence Fichier :H-P-3-ASPI-AN-0330_2_0 - PPLM Thermal Analyses du 12/04/04 09:59
Planck PLM Thermal Analyses

REFERENCE ·	H-P-3-ASPI-AN-0330
NEFERENCE .	11-1-2-4211-414-0220

				larjoos	DATE :	09.	/04/04		
					ISSUE :	2	Page : 181/181		
71678	SHield 3 sup facet 6	46.87074	72013	insert nominal	45.66425	72401	SHield 3 b facet 4	44.36606	
71679	SHield 3 sup facet 6	46.90650	72100	SHield 3 b facet 1	44.94012	72402	SHield 3 b facet 4	44.39429	
71680	SHield 3 sup facet 6	46.92414	72101	SHield 3 b facet 1	45.02710	725045.1	725045.16279		
71681	SHield 3 sup facet 6	46.92328	72102	SHield 3 b facet 1	45.04954	72502	45.2320	13	
			722044.98184			72503	45.1550	45.15504	
71682	SHield 3 sup facet 6	46.91606	72202	44.8725	7	72504	45.0845	4	
71683	SHield 3 sup facet 6	46.91072	72203	44.7856	9	72505	44.8982	.9	
71684	SHield 3 sup facet 6	46.91324	72204	44.7452	7	72506	44.7175	3	
71685	SHield 3 sup facet 6	46.92742	72205	44.6198	0	72600	SHield 3 b facet 6	45.71793	
71686	SHield 3 sup facet 6	46.95813	72206	44.5643	4	72601	SHield 3 b facet 6	45.59309	
71687	SHield 3 sup facet 6	47.01055	72300	SHield 3 b facet 3	44.53695	72602	SHield 3 b facet 6	45.23041	
71688	SHield 3 sup facet 6	47.09089	72301	SHield 3 b facet 3	44.42053				
71689	SHield 3 sup facet 6	47.20757	72302	SHield 3 b facet 3	44.38441				
72003	insert redundant	44.93135	72400	SHield 3 b facet 4	44.35586				

Référence du modèle : M023-3