

	Function Name	Date	Signature
Rédigé par/ <i>Written by</i>	Mechanical Analyses D. REBUFFAT	24/01/05	DEChiffet
Vérifié par/ <i>Verified by</i>	Sciences/Obs. Satellite Group Manager R. VIALE	27/01/05	tele
Vérifié par/ <i>Verified by</i>	Engineering Manager PPLM JB. RITI	25102103	A B
Vérifié par/ <i>Verified by</i>	System Engineering Manager P. RIDEAU	25102/05	Biduan
Vérifié par/ <i>Verified by</i>	PA Manager C. MASSE	25/02/05	Yame
Approbation/ <i>Approved by</i>	Project Manager J.J. JUILLET	25.02.05	

Entité Emettrice : Alcatel Space - Cannes (détentrice de l'original)

ENREGISTREMENT DES EVOLUTIONS / CHANGE RECORDS

ISSUE	DATE	<pre>§ : DESCRIPTION DES EVOLUTIONS § : CHANGE RECORD</pre>	REDACTEUR AUTHOR

TABLE OF CONTENTS

1.	INTRODUCTION	6
2.	REFERENCE DOCUMENT	6
3.	TEST CONFIGURATION	7
4.	LFI FPU LINKS LOADS RECOVERY	8
2	1.1 LFI FPU links loads calculation methodology	9
	4.1.1 Sketch of the strut	9
	4.1.2 Axial force in the strut	9
	4.1.3 Bending moment in the strut	9 10
	4.1.5 Calculation of the bending moment at a different location (point D for instance)	10
	4.1.6 Calculation of the shear force in the second strut	10
	4.1.7 Sketch with the locations of the struts links	11
	4.1.8 Calculation of the shear force and tension in the screws of link F	12
	4.1.9 Calculation of the shear force and tension in the screws of the links type D (D, I, G and K)	13
	4.1.10 Calculation of the shear force and tension in the screws of the links type E (E and J)	14
	4.1.11 Calculation of the shear force and tension in the screws of the links type H (H and L)	14
4	1.2 LFI FPU strain gauge data post-processing	15
5.	TEST SEQUENCE	15
6.	DATA AVAILABILITY	15
7.	CQMA2 TEST RESULTS	16
7	7.1 TBNA2 (-12dB, 30s)	16
7	7.2 BNA3 (-8dB, 30s)	18
7	7.3 TBNA4 (-12dB, 30s) (control run)	19
7	7.4 TBNA5 (-12dB, 30s)	20
7	7.5 NIA6 (-6dB, 2min)	21
7	7.6 TBNA7 (-12dB, 30s) control very low level run	24
8.	STATUS ON PPLM EQUIPMENT QUALIFICATION	27
8	3.1 HFI FPU	27
٤	3.2 JFET	29

8.3	Bellow	29
8.4	LFI FPU	29
8.5	LFI wave guide and wave guide upper support structure	29
8.6	PACE	29
8.7	0.1K and 4K pipes	30
8.8	PR and SR	31
9. CC	ONCLUSION	32
10. AI	NNEXES	34

15

16

LIST OF TABLES

TABLE 1: TEST SEQUENCE TABLE 2: ACOUSTIC LEVELS

LIST OF FIGURES

FIGURE 1 : ACOUSTIC TEST CONFIGURATION – MICROPHONES POSITION	8
FIGURE 2 : STRAIN GAUGES LOCATION	9
FIGURE 3 : TBNA2 ACOUSTIC LEVELS	17
FIGURE 4 : BNA3 ACOUSTIC LEVELS	18
FIGURE 5 : TBNA4 ACOUSTIC LEVELS	19
FIGURE 6 : TBNA5 ACOUSTIC LEVELS	20
FIGURE 7 : NIA6 ACOUSTIC LEVELS	21
FIGURE 8 : FPU RESPONSE COMPARISON BETWEEN BNA3 AND NIA6	22
FIGURE 9 : BNA3 ACOUSTIC LEVELS – THIRD OF OCTAVES	22
FIGURE 10 : NIA2 ACOUSTIC LEVELS – THIRD OF OCTAVES	23
FIGURE 11 : TBNA7 ACOUSTIC LEVELS	24
FIGURE 12 : TBNA5 AND TBNA7 COMPARISON – LFI FPU X	25
FIGURE 13 : TBNA5 AND TBNA7 COMPARISON – LFI FPU Y	25
FIGURE 14 : TBNA5 AND TBNA7 COMPARISON – LFI FPU Z	26
FIGURE 15 : TBNA5 AND TBNA7 COMPARISON – HFI STRAIN GAUGE (MOST LOADED ONE)	26
FIGURE 16 : TRANSFER FUNCTIONS COMPARISON BETWEEN HFI STM AND FPS MODELS (IAS DATA)	28

1. INTRODUCTION

The Planck CQM acoustic tests have been performed from 14/10/2004 to 22/10/2004 in Cannes Alcatel facilities. One of the main objective of this test was to inject realistic random loads on the HFI structure. During previous sub-system campaigns HFI FPU STMs, the critical part of HFI had been identified as the struts between 4K and 1.6K stages, which have been instrumented with strain gauges for this test. However, the HFI STM was not completely flight representative, and especially did not contain the Air Liquide cooler (see ch. 8.1).

This test sequence (called CQMA"2") followed a first test sequence performed in August 2004 in the same facilities, which had been stopped after one unique run at -15dB, due to an obvious weakness identified on the LFI FPU MTD links, not compatible with the levels to be passed on higher level runs. It had then been decided to improve accordingly the LFI FPU MTD design.

The CQMA test sequence described in this report includes this new LFI FPU design. The other configuration differences for this second sequence wrt the first sequence is the presence of PR and SR, whereas CSAG dummies had been used for the first sequence (see RD 1 and RD 2). The first sequence results (-15dB run) are available at Alcatel test facilities. They are not part of this report, since better information, in a more realistic configuration, is given with the second sequence. However, a description of the outcome of this first sequence in given in minute H-P-ASP-MN-5262.

Despite remaining concerns on FPU links, which have been carefully checked thanks to the use of strain gauges on LFI FPU struts, a – 6dB run (140.5 dB overall) has been passed successfully on the structure.

Ref.	No.	Issue/date	Title
RD 1	H-P-3-ASP-TS-0728	lss. 1	Planck satellite CQM acoustic test specification
RD 2	H-P-3-ASP-TS-0728	lss. 3	Planck satellite CQM acoustic test specification
RD 3	TR-PHED-400320-AIRL	26/04/2004	FPS vibrations test report
RD 4	SCI-PT-IIDA-04624	lss. 3.3	Herschel/Planck interface document
RD 5	TR-PHCBB-400138-IAS	lss. 1	Vibration test report on Bellow and support on the PR panel
RD 6	TN-PH242-400081-IAS	lss. 1	Specification on acoustic levels for the HFI FPU
RD 7	Draft AN-PH243-XXXX- IAS	08/12/2003	Mechanical coupled study on HFI and LFI FPU
RD 8	AN-PHEC-400296-AIRL	07/04/2004	DCP/PPLM sub-system structural analysis report
RD 9	PL-LFI-LAB-RP-021	18/06/2004	RAA mechanical analysis

2. REFERENCE DOCUMENT

3. TEST CONFIGURATION

The test configuration and instrumentation is described in document RD 2. Main items are recalled hereafter :

The Planck CQM Acoustic (CQMA) test model is composed of 2 main parts :

- The PPLM (cryo-structure+telescope) QM model, delivered by ALCATEL (sub-contracted to CSAG)
- The SVM dummy not "thermally" equipped, delivered by ALCATEL (sub-contracted to APCO). The VIS lower ring is closed by a dedicated tool plate. The sub-platform central hole is closed by an SLI.

The PPLM QM model is equipped with the following equipment :

- CQM PACE on +Y side delivered by JPL
- Primary reflector QM delivered by Astrium
- Secondary reflector QM delivered by Astrium
- LFI FPU MTD delivered by ALCATEL (sub-contracted to LABEN), which is structurally flight representative at that time (STM) updated links design was then implemented wrt July 2004 delivery
- HFI FPU mechanical model delivered by HFI/ESA

Simple mass dummies are manufactured by ALCATEL for the following parts :

- PACE for -Y side : MD on V-grooves and FPU
- Upper WG support structure : MD on PR panel
- Pipes 0.1K and 4K : MD on V-grooves and lower beam
- Bellow : MD on PR panel
- JFET : MD on PR panel (with I/F blades)
- BEU and PAU boxes : MD on sub-platform

The figure hereafter recalls the test configuration and the microphones position :

Figure 1 : acoustic test configuration – microphones position

4. LFI FPU LINKS LOADS RECOVERY

Following the LFI FPU MTD delivery in July 2004, and the CQMA test first sequence in August 2004, it has become obvious that the LFI FPU links were under-sized and would not support specified acoustic loads (see H-P-ASP-MN-5269). As a consequence, it has been decided :

- to improve the LFI FPU STM links design (see H-P-ASP-MN-5323, H-P-3-ASP-TR-0830)
- to implement strain gauges on LFI FPU struts in order to assess during the test the loads for the 4 types of links between main frame and PR interface (see RD 2)

The way these strain gauges have been used during the test is described hereafter.

4.1 LFI FPU links loads calculation methodology

All critical links have been verified thanks to the strain gauges data, using the following formula :

4.1.1 Sketch of the strut

Figure 2 : strain gauges location

4.1.2 Axial force in the strut

Hypothesis: thickness << tube diameter 1.75 mm << 31.75 mm

$$F_a = E.\pi.D.e.\varepsilon$$
 (Eq. 1)

with

F_a = axial force
E = Young modulus
D = beam diameter
E = beam thickness

 ϵ = strain gauge measurement (average of the 2 strain gauges measurements)

4.1.3 Bending moment in the strut

Hypothesis are the same as for the axial force

$$M_{b} = E.S.\frac{R}{2}\Delta\varepsilon$$
 (Eq. 2)

with

 $\begin{array}{l} Mb = \mbox{ bending moment} \\ E = \mbox{ Young modulus} \\ S = \mbox{ working section of the beam} = 2.\pi.R.e \\ R = \mbox{ radius of the beam} \\ \Delta \epsilon = \mbox{ difference between the measurement of the two gauges of the same section} = \epsilon_2 - \epsilon_1 \end{array}$

4.1.4 Calculation of the shear force in the strut

Hypothesis: linear variation of the bending moment along the strut x axis

The bending moment is measured with the gauges at two different locations.

$$F_{shear A} = \left(\frac{\partial M_b}{\partial x}\right)_A \quad \text{(Eq. 3)}$$

with

 $F_{\text{shear A}} = \text{shear force in the beam}$

$$F_{shear_A} = \frac{M_{b_A} - M_{b_B}}{x_A - x_B}$$
 (Eq. 4)

With the previous assumptions, we have a constant shear force in the whole beam. The axial force is also constant in the beam.

4.1.5 Calculation of the bending moment at a different location (point D for instance)

$$M_{D} = M_{A} + (x_{D} - x_{A}).F_{shear A}$$
 (Eq. 5)

4.1.6 Calculation of the shear force in the second strut

$$F_{shear C} = F_{shear A} \cdot \frac{M_{bC}}{M_{bA}}$$
(Eq. 6)

4.1.7 Sketch with the locations of the struts links

Detailed locations of the links are shown at Fig. 1. Gauges are at the location: A, B and C. D, G, I and K are links of the same type: brackets/strut (D-type link).

E and J are identical links: bracket/bracket (E-type link).

F is a unique link.

H and L are identical links: bracket/panel (H-type link).

4.1.8 Calculation of the shear force and tension in the screws of link F

This requires the sum of the contribution of the 2 struts and projection of the force components in different coordinates systems.

 $F_{x} = \sin\theta . (F_{aA} - F_{aC}) + \cos\theta . (F_{sA} + F_{sC})$

 $F_{v} = \cos\theta . (F_{aA} + F_{aC}) + \sin\theta . (-F_{sA} + F_{sC})$

The second step is to project Fx, Fy and Mz is the local coordinates system of the bracket shown on the following sketch.

 $\begin{array}{l} \mathsf{F}_{v} = \sin \alpha. \mathsf{F}_{y} \\ \mathsf{F}_{w} = \cos \alpha. \mathsf{F}_{y} \\ \mathsf{M}_{v} = -\cos \alpha. \mathsf{M}_{z} \\ \mathsf{M}_{w} = -\sin \alpha. \mathsf{M}_{z} \end{array}$

The locations of the 6 screws on the bracket is shown below together with the hypothesis for the force distribution between the screws.

$$\begin{split} D_{UW} &= \text{sqrt}(d_U^2 + d_W^2) \\ \cos\beta &= d_U/d_{UW} \\ \sin\beta &= d_W/d_{UW} \\ M_V &= 4.d_{UW}.F_{Sm} \\ F_{Sm} &= M_V / (4.d_{UW}) \\ F_{\text{shear U}} &= |F_U|/6 + \cos\beta.|F_{Sm}| \\ F_{\text{shear W}} &= |F_W|/6 + \sin\beta.|F_{Sm}| \end{split}$$

 $\begin{aligned} \mathbf{F}_{\text{shear}} &= \mathbf{sqrt}(\mathbf{F}_{\text{shear U}}^2 + \mathbf{F}_{\text{shear W}}^2) \\ \mathbf{F}_{\text{tension}} &= \mathbf{F}_{\text{V}}/6 \pm \mathbf{M}_{\text{W}}/(4.d_{\text{U}}) \end{aligned}$

4.1.9 Calculation of the shear force and tension in the screws of the links type D (D, I, G and K)

The local coordinates system is the same than the one of the strut. No projections are needed.

The results presented in annex 4 and 5 take into account this formula. However, during tests, calculation has been made with less conservative formula for F tension coming form moment Mz, in order to have a more realistic assessment (indeed, in case of gapping, rotation point cannot be at the centre of the link) :

Mz distribution in Dynawork formula

Mz distribution in re-assessed formula

4.1.10 Calculation of the shear force and tension in the screws of the links type E (E and J)

4.1.11 Calculation of the shear force and tension in the screws of the links type H (H and L) Next sketch shows the base bracket and its local coordinates system.

 $M_{w} = 4.d_{U1}.F_{1} + 2.d_{U2}.F_{2}$

Hypothesis: $F_2 = F_1.d_{U2}/d_{U1}$

 $F_1 = M_w.d_{U1}/(4.d_{U1}^2 + 2.d_{U2}^2)$

4.2 LFI FPU strain gauge data post-processing

The only way to derive realistic loads from the strain gauge data for an acoustic test, is to use time dependent files and make the calculations described in previous chapter with these files (indeed, using directly RMS values form the strain gauges means making calculation on non simultaneous and un-signed levels). Then a PSD is computed for each load, as well as the corresponding RMS value, which in final is used for the loading check.

This is a non usual procedure which has necessitated to develop a specific program, using the Dynaworks software. The corresponding script is given in annex 6.

The results are finally given as RMS values tables for each type of link (see annex 4 and 5).

5. TEST SEQUENCE

Following table describes the CQMA2 test sequence:

Designation (date)	Level - duration
TBNA1 (19/08/04)	-15dB – 30s
(Sequence aborted)	
TBNA2 (14/10/04)	-12dB – 30s
BNA3 (15/10/04)	-8dB – 30s
TBNA4 (15/10/04)	-12dB – 30s
TBNA5 (21/10/04)	-12dB –30s
NIA6 (21/10/04)	-6dB – 2min
TBNA7 (22/10/04)	-12dB – 30s

Table 1: TEST SEQUENCE

Due to the risks identified on the LFI FPU links, intermediate very low level runs (-12dB) have been added in order to have a secured step by step procedure.

6. DATA AVAILABILITY

All data (acoustic levels, PSDs, time dependent files for LFI strain gauges, RMS values) are stored at Alcatel test facilities. PSDs are available as universal files.

Main data are presented in Annex 1 to 3, and annex 9 : RMS values tables for runs TBNA4, BNA3, NIA6, as well as the PSD plots for the NIA6 –6dB run.

7. CQMA2 TEST RESULTS

The reference test qualification levels (146 dB overall) are recalled in the following table :

Qualification level test			
OCTAVE BAND CENTRE FREQUENCY (Hz)	QUALIFICATION LEVEL (dB) Ref.: 0 dB = 2.10 ⁻⁵ Pa	TEST TOLERANCE (dB)	
31.5	132	-2, +4	
63	134	-1, +3	
125	139	-1, +3	
250	143	-1, +3	
500	138	-1, +3	
1000	132	-1, +3	
2000	128	-1, +3	
integrated level	146	-1, +3	
Test duration : 2 min			

Table 2: ACOUSTIC LEVELS

All the runs are commented in the following chapters, with also an instrumentation status for each run.

7.1 TBNA2 (-12dB, 30s)

The following acoustic levels have been passed, within tolerances (except at high frequencies, which is acceptable for low level runs) :

Figure 3 : TBNA2 acoustic levels

The outcome of this run is described in minutes H-P-ASP-MN-5472. Main issues are listed below :

- High frequency peak (between 1500Hz and 2000Hz) appears on LFI strain gauges, which is not physical and is due to test facilities. As a consequence, only the 0-1100Hz band shall be considered for the RMS values calculation, for all the runs.
- Failure of accelerometers GVA30Z, GVC75Z, BF103P, PR201Y, PR203P, and of strain gauges B31, SGLFI55, SGA1, SGA2, SGB3, SGB4 (problem has then been fixed for the 4 last ones).
- Identification of LFI most critical link : link D on bibod 3, as expected from analyses (see TRR presentation H-P-ASP-MN-5451), due to high bending moment : 9.8 Nm calculated from LFI strain gauges. Therefore, LFI FPU design appears to be the driver for the upper levels runs. Note that QS analyses along X RDP on the simplified FPU FEM delivered by LABEN to Alcatel show bending moment on this link which is the same order of magnitude of the one calculated with the strain gauges.
- HFI strain gauges data check by IAS show by extrapolation possibility to go up to about –5 dBs without endangering critical HFI struts.

7.2 BNA3 (-8dB, 30s)

The following acoustic levels have been passed, within tolerances (except for the 2000Hz frequency band, which is acceptable) :

Figure 4 : BNA3 acoustic levels

Note that tuning in the 63Hz band has been done in order to reduce the acoustic level in this octave (which was at the upper tolerance for the TBNA2), where the highest loads on the FPU occur. So, in order to check linearity of levels evolution between –12dB and –8dB runs, TBNA4 should be considered.

The outcome of the – 8dB run is described in minutes H-P-ASP-MN-5483. Main issues are listed below :

- Bending moment (14.1Nm 3 sigma) on LFI critical link (D on bipod 3) extracted from the strain gauges, leads to a calculated out of plane load on the screws slightly higher (1416N 3 sigma) than the minimum guarantied tension characterised at Alcatel (1365N type B value). This means that going to higher levels may mean entering a gapping domain on this link, which is risky because not predictable.
- IAS checks on HFI strain gauges allow to go safely to -6dB from HFI point of view

- Comparison of –8dB (TBNA4) and –12dB (BNA3) runs shows almost linear evolution of levels, as shown in H-P-ASP-MN-5483
- Instrumentation status : failure of accelerometers GVA30Z, GVA36R, GVA37T, GVC75Z, GVC86Z, BF103P, PR201Y, and of strain gauges B31, SG24

7.3 TBNA4 (-12dB, 30s) (control run)

The following acoustic levels have been passed, within tolerances (except for the high frequency bands, which is acceptable for low level runs) :

Figure 5 : TBNA4 acoustic levels

- Wrong matching for PSDs of SVM15R, SVM16T and SVM17Z between TBNA2 and TBNA4 leads to an inspection on the SVM dummy, which shows that the PACE bracket on the SVM cone has been wrongly screwed (wrong torque), which is fixed for the next runs.
- Control very low levels comparison between TBNA2 and TBNA4 shows no structural failure. Failing accelerometers GVA36R, GVA37T, SG24, GVC86Z for the BNA3, re-work for the TBNA4.

- Decision by ESA and Alcatel to go to a –6dB run, acknowledging the risks on the LFI FPU (see H-P-ASP-MN-5502)

7.4 TBNA5 (-12dB, 30s)

The TBNA5 run has been passed as a verification run because of the 6 days delay between the – 8dB and the –6dB runs.

Figure 6 : TBNA5 acoustic levels

Matching is good with TBNA4 and no problem is identified concerning structural integrity.

Instrumentation status is the following for TBNA5 : failure of BF103, B31, SGLFI55, GVA30Z, PR201Y, GVA36R, GVA37T, B62, B72, GVC86Z, SG43.

SG43 failure is not an issue since opposed to it, at the same location, is the SG44 which gives good matching. Also, strain gauges B6-2 and B7-2 give strange results (peaks at same frequency but change of amplitude), which is test facilities related and is fixed for the following runs.

By comparison between TBNA5 and TBNA2, it is checked that the PACE support on SVM dummy has been properly attached, since good matching is observed for SVM15R, SVM16T and SVM17Z.

7.5 NIA6 (-6dB, 2min)

The following acoustic levels have been passed for the NIA6, within tolerances

Figure 7 : NIA6 acoustic levels

The outcome of this run is described below :

- correct level passed on HFI in the critical frequency range (peaks at 195Hz and 225Hz). Indeed, strain gauge data evolution for the HFI is almost linear between –8dB and –6dB runs, and peaks are at same frequencies.
- non linear evolution of the 78Hz peak of the LFI FPU between –8dB and –6dB runs (see figure 8) : this effect concerns the FPU and areas next to the FPU I/F (such as the lower beam), for the X RDP direction. Acoustic levels have been checked more accurately, using 3rd of octaves, and no decrease of acoustic level around 78Hz has been identified between –8dB and –6dB runs (see 80Hz band on figures 9 and 10). As a consequence, the most plausible explanation is a beginning of gapping on link D under –6dB loading, which was assessed as possible for this run anyway according to BNA3 strain gauges data. This is confirmed by the fact that non linear evolution is observed on bipods 2 and 3, which are concerned by the gapping, and not on bipod 1, for which no gapping risk is identified. As a consequence, it is likely that part of the out of plane loads generated by the bending moment due to

the X RDP motion of the FPU, passed through the link bonding for bipods 2 and 3, which can account for a higher damping on this mode.

- Status on instrumentation is the same as for TBNA5, except for SG24 (not working, but opposite side SG23 is working so it is not a concern), B62 and B72 (both working), SGLFI55 (working).

Figure 8 : FPU response comparison between BNA3 and NIA6

Figure 9 : BNA3 acoustic levels – third of octaves

Figure 10 : NIA2 acoustic levels – third of octaves

7.6 TBNA7 (-12dB, 30s) control very low level run

The following acoustic levels have been passed for the TBNA7, very comparable to TBNA5.

Figure 11 : TBNA7 acoustic levels

Good matching is observed between TBNA5 and TBNA7 PSDs, with the following status on instrumentation : with respect to NIA6, the only changes are the following : SR209 is not working ; SGLFI55 gives a wrong signal, as it has been the case for every TBN. Also, SGLFI64 and SGLFI73 show small amplitude difference, while there is no frequency shift. But the opposite strain gauges (SGLFI63 and SGLFI71) show good matching, which indicates that the difference is coming from the strain gauge itself. In any case good matching is observed for all LFI accelerometers, which indicates that nothing has broken on the LFI links : gapping effect was not strong enough to reach failure of the link.

As a consequence, it is concluded that the –6dB run has been passed successfully on all the structure without degradation.

Figure 13 : TBNA5 and TBNA7 comparison – LFI FPU Y

Figure 15 : TBNA5 and TBNA7 comparison – HFI strain gauge (most loaded one)

8. STATUS ON PPLM EQUIPMENT QUALIFICATION

This chapter gives a picture of what can be said, from Alcatel point of view, concerning the PPLM equipment acoustic / random environment, as well as their mechanical qualification status for acoustic / random.

PPLM primary structure has been checked as normal work using dedicated accelerometers at same locations as for CSAG sub-system telescope and cryo-structure tests. However, it has already been qualified by applying full qualification acoustic levels on both sub-structures, during telescope and cryo-structure QM tests.

<u>Note</u> : the comparison between instrument interface levels during test, and instrument random spec, takes into account the "-3dB rule " on the PSDs peaks, that is to say the peaks values are divided by 2 before making the comparison (same way spec have been derived from ASTRYD PSDs).

8.1 HFI FPU

IAS has been present during all the CQMA campaign, or available by phone, in order to check the stress levels seen on the HFI critical struts between 4K and 1.6K stages.

Qualification status of HFI, taking into account CQMA test results, is still expected from IAS.

Especially, it shall be taken into account in this status the fact that the HFI FPU STM was not completely flight representative, the main difference with the flight configuration being the absence of the Air Liquide cooler.

What can be said, from Alcatel point of view, is that a maximum micro-strain of 295.3 μ m/m RMS has been passed on the 4K/1.6K struts which were the critical parts on the HFI FPU STM. According to RD 6, the maximum allowable micro-strain is 333 μ m/m, such a ratio of 1.12 with –6dB results, which corresponds to 1.0 dB margin (keeping safety factor).

The artificial increase of damping at 78Hz due to LFI FPU links (see NIA6 run description above) is not an issue for HFI qualification, since levels are seen by HFI as quasi-static acceleration at this frequency, for which HFI has already been qualified at sub-system level (38g X, 40g Y, 37g Z, seen at CoG during FPS campaign – see RD 3 – much higher than CQMA test levels).

So, in theory, it could have been passed –5dB (taking into account the 1.0 dB margin) as a maximum on the HFI FPU, with the HFI STM configuration. However, the difference with the flight configuration induces frequency shifts of the modes loading the critical struts, as shown in IAS email sent on 19/07/2004 : in lateral along X RDP, the transfer functions between LFI I/F and 0.1K stage, measured during HFI STM and FPS sub-system tests, show that the peaks at 196Hz, 222Hz and 309Hz are shifted down to 188-196Hz (double peak), 213Hz and 261Hz for the FPS (flight representative) model. Also, amplitude of the transfer functions are different (higher on the first mode for the FPS). See figure 16 (these transfer functions are similar for 1.6K stage, as shown in RD 3).

As a consequence, there is a possibility that HFI in flight configuration may have seen more than 295.3 μ m/m, which is difficult to assess precisely : according to the test data and the transfer functions comparison, the tendency seems to be that the strain gauge PSD first high peak would be higher in amplitude, and the second one lower.

Given this uncertainty, Alcatel recommend to ask for a level reduction of at least –6 dB, TBC by IAS/ESA who should give their opinion on the struts stresses with a flight configuration HFI FPU, having a better knowledge of their instrument and of the accelerometers information in the 2 configurations. This level

reduction should be applied at least in the 250Hz octave, and in the 125Hz octave, taking into account the frequency shift with the FPU in flight configuration, once mounted on satellite (with the current data, transfer functions comparison shows that we are close to the 125Hz / 250Hz octaves frontier).

Figure 16 : transfer functions comparison between HFI STM and FPS models (IAS test data)

Concerning the absence of the Air Liquide cooler (0.1K stage) during CQMA tests, Alcatel have already expressed their concern (see fax H-P-ASP-LT-5235 dated 04/08/2004) on the random levels passed during FPS test campaigns (see RD 3), not at all compatible with LFI/HFI interface levels computed by IAS (see RD 7), nor with CQMA test data at this interface. This topic has been discussed with IAS during Week 4 / 2005 and will lead to supplementary analyses taking into account the sub-system and CQMA tests data, in order to :

- Assess the levels that would have seen the Air Liquide cooler if it had been mounted on HFI during CQMA tests.
- Re-assess the FPS qualification approach accordingly, taking into account remaining margins in Air Liquide analyses.

Concerning the second point, it can already be stated that very deep notches during FPS sub-system tests (down to 10*E-5 g2/Hz) were driven by a no breaking risk approach for the CQM, with a criteria of not going higher than about 3 gRMS on the 0.1K stage. This criterion looks severe, since it has been passed more than 30g on the FPU CoG during the QS tests (see RD 3).

According to the outcome of these analyses, there is a non negligible probability that the Air Liquide cooler becomes the most critical item for the HFI under random loads, which may lead to even further level reduction request than –6dB in the 250Hz band.

8.2 JFET

JFET was represented by a mass dummy, with interface blades to be more representative, and is not qualified by this test.

Mechanical environment at JFET I/F has been derived from accelerometers PRP120, PRP121, PRP122, PRP126. JFET spec (see RD 4) covers –6dB run levels (factor of more than 4 for in plane and out of plane spec, in line with ASTRYD analyses results).

8.3 Bellow

The bellow was represented by mass dummies. Random environment is not sizing for the bellow, which has its main modes below 100Hz. However a bellow sample has been tested by IAS with the JFET random qualification spec (see IAS report RD 5).

Mechanical environment at Bellow I/F has been derived from accelerometers PRP122, PRP141, PRP120, PRP121. JFET spec covers –6dB run levels for both in plane (factor of more than 6) and out of plane (minimum factor of 1.2 on 200Hz peak on PRP141). Situation should even improve with the real hardware, since the Bellow is a highly damped structure.

8.4 LFI FPU

The LFI FPU STM design is not any more flight representative, so it is not qualified by this test. The new LFI FPU (flight model) has been, in the meantime, tested successfully by LABEN (sine and random) at subsystem level (test report is still expected).

Mechanical environment at FPU I/F has been derived from accelerometers PRP128, PRP129, PRP130, PRP131, PRP132, PRP133, PRP134.

FPU spec (see RD 4) covers –6dB run levels for both in plane and out of plane (by a factor higher than 2, except for high frequency peak at 460Hz, just covered).

8.5 LFI wave guide and wave guide upper support structure

Wave guide upper support structure was represented by mass dummies, and is not qualified by this test. Mechanical environment at FPU I/F has been derived from accelerometers PRP123, PRP124, PRP125, PRP127, PRP141. WGSS spec covers –6dB run levels, except at 210Hz and 260Hz out of plane, where the need is 0.56g2/Hz, for a spec at 0.2g2/Hz. This should be acceptable for the WGSS which have main modes at low frequency (below 100Hz), and is being checked with LABEN for the wave guides (not expected to be critical because first modes are rather around 100Hz according to RD 9, ch. 5.10).

8.6 PACE

JPL was present during CQMA first sequence in August (-15 dB run) in order to check the PACE behaviour under acoustic loads.

According to the –15dB run results from PACE strain gauges, JPL has stated that the PACE could sustain qualification (146 dB) level with still positive margin for both pipe and blades supports, by extrapolating linearly, which is conservative. JPL statement is part of the minutes H-P-ASP-MN-5262. Moreover PACE strain gauges have been verified for CQMA2 campaign, confirming JPL statement : PACE has seen –6dB, and could have seen 146dB with still positive MoS at strain gauges locations.

For information, at the PACE I/F on the V-grooves, levels are in the same range as CSAG tests, and as ASTRYD analyses.

8.7 0.1K and 4K pipes

0.1K and 4K pipes were not mounted for CQMA tests, and have been represented by mass dummies (see doc. RD 2). However, levels have been checked at their interface with PPLM structure.

Mechanical environment at 0.1K and 4K pipes I/F has been derived from accelerometers :

- GVA32, GVA33, GVB52, GVB53, GVC72, GVC73, GVA34, GVA35, GVA54, GVA55, GVC74, GVC75, for V-grooves I/F
- FR165, FR166, FR167, FR168 for frame I/F
- LB180, LB181, LB182, LB183 for lower beam I/F

Unexpected high levels were observed at frame, and mainly lower beam I/F, with peaks much higher than ASTRYD predictions, and sometimes, at a lesser extent, higher than peaks observed during CSAG acoustic test campaign on telescope QM.

Concerning the differences with ASTRYD prediction, it seems that ASTRYD is more reliable for large surfaces random levels (surfaces directly excited by acoustic sound pressure such as V-grooves). Especially, it was not possible to extract levels on the lower beam, from ASTRYD computation, because the lower beam was not represented by surface elements in the FEM. Moreover, ASTRYD analysis has been performed up to 350Hz, which is the usual range where highest random loads are seen. Higher levels peaks are seen during test, but are expected not to be critical because almost all the effective mass of the pipe participates to lower frequency modes.

Concerning the difference of levels seen on frame and lower beam wrt CSAG tests (up to a factor of 4 on certain peaks, but lower levels in other frequency ranges), they are likely to be due to the different configurations : presence of mass dummies not present on the telescope QM (which, for instance, creates a bending mode of the flange on the lower beam not present for CSAG tests), and random levels injected to the frame and the lower beam by the V-grooves acoustic response, via the cryo-struts (V-grooves were not present in the telescope QM test).

However, these levels must be considered with caution because :

- presence of real pipes should improve damping and I/F stiffness
- presence of harness on the satellite flight model will increase damping (harness will also be present around pipe)
- accelerometer on lower beam flange is on top of mass dummy, which may over-assess the in plane levels, due to the height between pipe I/F and dummy top (dummy rotation effect).

In any case, in order to have a good opinion on the risk induced by these high I/F levels, it has been asked to IAS and Air Liquide to check the integrity of the 0.1K pipe under updated random levels derived from CQMA test. These levels, directly extracted from –6dB run, have been provided only when not covered by current pipe spec, and are defined as follows :

Telescope in plane over-spec :

0.55g2/Hz between 200Hz and 265Hz, instead of 0.35g2/Hz (lower beam flange) 5.5g2/Hz between 265Hz and 340Hz, instead of 0.35g2/Hz (lower beam flange) 2.1g2/Hz between 340Hz and 390Hz (lower beam flange) 8.5g2/Hz between 390Hz and 460Hz (lower beam flange) 1.5g2/Hz at 595Hz (lower beam flange)

Telescope out of plane over-spec :

0.26g2/Hz between 100Hz and 180Hz, instead of 0.2g2/Hz (frame) 0.4g2/Hz between 220Hz and 260Hz, instead of 0.35g2/Hz (lower beam flange) 3.5g2/Hz between 260Hz and 350Hz, instead of 0.35g2/Hz (frame and lower beam flange) 0.5g2/Hz at 360Hz (frame), 435Hz (lower beam triangle) and 595Hz (lower beam flange)

V-grooves over-spec :

Only slight exceeds are observed with the -6dB run : 0.37g2/Hz in plane at 625Hz (high frequency, probably not critical) 4.8g2/Hz at 150Hz, 5.6g2/Hz at 224Hz out of plane (small exceeds wrt 4g2/hz spec) and 5.5g2/Hz at 450Hz out of plane (high frequency)

Air liquide has already made analyses presenting quite comfortable MoS with the current spec (see RD 8). It has been proposed to IAS / Air Liquide to extract stress PSDs from these analyses, not available at that stage. With these data, it will be possible to see if pipe modes are in the critical frequency ranges, and to extrapolate stress levels and corresponding MoS if necessary.

Concerning 4K pipe, no analyses results are available for the moment, but these analyses are on-going. It has been agreed that IAS would also ask for PSDs to RAL, in the frame of these analyses, in order to make similar checks for 4K.

These 2 requests should be formalised by IAS during Week 5 / 2005.

8.8 PR and SR

PR and SR have already been qualified under qualification acoustic loads (Ariane 5 qualification spectrum). Test reports are not available at Alcatel yet, but some data have been provided by Astrium for CQMA tests, as RMS values (see annex 8 and 9). These values compare very well with the CQMA test values (RMS values extrapolated to qual are very close to PR and SR sub-system tests values), so PR and SR are not critical for acoustic.

9. CONCLUSION

Despite remaining concerns on the LFI FPU STM design, a –6dB run, with a 2min duration, has been passed successfully on the Planck CQMA model, which has been agreed as the objective to be passed on the FPU HFI STM for this test campaign.

From Alcatel point of view, the only acoustic level reduction clearly identified at this stage is –6dB in the 250Hz and 125Hz bands, due to the HFI 4K-1.6K stages struts. This request could even be stronger, according to the analyses to be performed by IAS / Air Liquide concerning the Air Liquide cooler and clamping mechanism (0.1K stage) not present during test, and could concern other octaves (see ch. 8.1). In any case, since CQMA2 test is the only test successfully qualifying the 4K-1.6K struts, Alcatel propose a –6dB reduction for all the spectrum.

PACE has also seen –6dB loads, and could see qualification loads (146 dB) with still positive MoS, according to JPL.

PR and SR have seen the same kind of loads as for the sub-system tests (scaled to -6 dB), and as such do not seem influenced by the satellite configuration. As a consequence PR and SR are not critical for acoustic loads and may have seen qualification loads.

Other instrument random environment have been checked with dedicated accelerometers (instrument being represented by mass dummies) :

JFET I/F see levels compatible with ASTRYD analyses and corresponding spec (when scaled to qualification loads), and as such is not critical.

Bellow design is not critical under random environment (low frequency modes), and –6dB run levels are covered by levels passed in sub-system tests.

LFI FPU random environment under –6dB loads is covered by spec by more than a factor of 2, except for one high frequency peak at 460Hz (just covered).

Upper wave guide support structure and wave guides random environment under –6dB loads are covered by spec, except for 2 peaks at 210Hz and 260Hz, not covered by a factor of 2, which will be checked with LABEN (not expected to be critical).

Concerning 0.1K and 4K pipe I/F, for the –6dB run, they already see levels quite higher than qualification random spec on frame and, most of all, on lower beam, but with a conservative configuration wrt flight (see ch. 8.7).

Impact on concerned instrument is being checked and should also concern mainly 250Hz octave.

These comparisons have been done directly using the –6dB run results, that is to say the current approach is to identify potential problems for a –6dB acoustic loading on all octaves. Remaining issues after this check concern HFI (Air Liquide cooler), wave guides (not expected to be critical), 0.1K and 4K pipes. All these issues are being checked with instrument.

In case it is necessary to consider level reduction octave by octave, a more detailed check should then be made, but will necessitate first to have received answers from instrument concerning over-specs, as detailed in ch. 8.

10. ANNEXES

ANNEX 1

RMS values TBNA4 (range : 5-1000Hz)

RAPPORT D'ANALYSE Fichier : tbna4.pch Sub 11 Plage de frequence : [5.00 , 1000.00 Hz] ------

	Valeur RMS
SUB1//	0.48
SUB2Y	0.93
SUB3 ^	0.53
SUB4//	0.82
SUB5Y	0.72
SUB6 ^	1.30
SUB7 ^	0.44
SVM15R*	2.57
SVM16T*	1.48
SVM17Z*	1.31
SVM18^	1.30
SVM19^	14.54
SVM20 ^	7.22
SVM21 ^	11.86
GVA307	34.00
GVA317	24.20
GVA32R*	2 44
GVA33T*	2.38
GVA347*	9 74
GVA357*	10.62
GVA36R*	2 10
GVA37T*	1.69
GVA387*	9.37
GVA397*	9 99
GVA407	26.43
GVR507	20.45
GVB517	23.27
GVB52R*	24.04
GVB53T*	2.64
GVB547*	15.62
GVB557*	18.54
GVB56R*	2.01
GVB57T*	1.87
GVB58Z*	7.55
GVB597*	9.66
GVC707	23.96
GVC717	25.78
GVC72R*	3.09
GVC73T*	2.95
GVC747*	8.01
GVC75Z*	6.84
GVC76R*	2.19
GVC77T*	1.97
GVC78Z*	8.94
GVC79R*	2.23
GVC80T*	1.84
GVC81Z*	6.62
GVC82R*	1.99
GVC83T*	1.38
GVC84Z*	10.91
GVC85Z*	8.07
GVC86Z	26.20
BF100 ^	22.73
BF101 ^	25.84
BF102 ^	18.18
BF103 ^	0.26
BF104 ^	22.24
BF105 ^	16.28

PRP120//*	1.05
PRP121Y*	0.93
PRP122 ^*	2.33
PKP123//* PPD124V*	1.5/
PRP125^*	3.45
PRP126 ^*	2.09
PRP127 ^ *	1.93
PRP128//*	1.27
PRP129Y*	1.00
PRP130 ^*	1.96
PRP131//* PPP132V*	2.23
PRP133^*	2 23
PRP134 ^	1.95
PRP135//	1.15
PRP136Y	2.14
PRP137 ^	3.24
PKP138//	1.4/
PRP140 ^	3 20
PRP141 ^ *	3.06
SRP150//	2.99
SRP151Y	2.12
SRP152 ^	2.30
SRP153//	3.59
SRP154Y	2.34
SKF133 FR165R*	2.45
FR166T*	1.88
FR167Z*	5.80
FR168 ^	6.10
LB180//	10.26
LB181Y	9.95
LD102	7.90 5.47
PR200//	1.49
PR201Y	0.01
PR202 ^	2.04
PR203 ^	6.67
PR204 PR205 ^	5.31
SR206//	1.63
SR207Y	1.07
SR208 ^	1.57
SR209	1.94
SK210 FPL12207/*	4.48
FPU221Y*	1.31
FPU222 ^ *	1.72
FPU223//*	2.40
FPU224Y*	1.43
FPU225 ^*	1.51
FPU220 FPU230//	3 48
FPU231Y	2.67
FPU232 ^	3.86
FPU233//	2.96
FPU234Y	2.77
FPU235	1.79
FPU230// FPU237//	1.93
FPU238Y	1.73
FPU239//	2.34
FPU240Y	1.89
FPU241 ^	1.74
FPU242//	2.14
FPU2431 FPU2431	1.4/
FPU245//	1.79
FPU246Y	1.28
----------	----------------
FPU247 ^	1.43
FPU248//	2.02
FPU249Y	1.60
FPU250 ^	2.08
B1-1	147.10
B1-2	121.63
B2-1	160.65
B2-2	118.92
B3-1	0.00
B3-2	114.98
B5-1	146.23
B5-2	135.29
B6-1	143.98
B6-2	121.83
B7-1	130.40
B7-2	110.43
SG01	44.45
SG02	18.36
SG11	43.59
SG12	39.73
SG21	40 12
SG22	24.06
SG23	177 52
SG24	182 79
SG34	217.66
SG41	217.00
SG47	08 61
SG42	10.01
SG43	10.00
SG35	10.04
SC36	51 12
SGVA1	21.13 27.70
SGVA1	27.77
SGVR2	22.05
SGVB3	22.04
SCI EI51	18 12
SGLEI52	22.56
SCIEI52	23.30
SCIEI54	1/1/
SGLEI55	135.02
SCIEI56	16 20
SGLEI61	10.27
SCIEIA2	29.47
SCIEIA2	20.41
SCIEI64	10 72
SCI EI45	20.90
SGI FI66	1/20
SGI FI71	15 10
SGLEI72	13.12
SGI FI73	40.0Z 20.07
SCI FI74	00.77 01 07
SGI FI75	21.7/ 20.57
SOLFI/S	27.3/
3GLFI/0	20.32

ANNEX 2

RMS values BNA3 (range : 5-1000Hz)

RAPPORT D'ANALYSE
Fichier : bna3.pch Sub 11
Plage de frequence : [5 , 1000.00 Hz]

	Valeur RMS
SUB1// SUB2Y	0.75 1.46
SUB3 ^	0.87
SUB4//	1.30
SUB5Y	1.07
SUB6 ^	1.96
SUB7 ^	0.72
SVM15R*	5.26
SVM16T*	1.58
SVM1/Z*	2.42
SVM19 ^	21.65
SVM20 ^	11.13
SVM21 ^	18.97
GVA30Z	52.93
GVA31Z	36.72
GVA32R*	3.79
GVA331*	3.70
GVA34Z* GVA257*	15.45
GVA36R*	3 30
GVA37T*	2.61
GVA38Z*	14.28
GVA39Z*	15.77
GVA40Z	39.26
GVB50Z	36.98
GVB51Z GVB52R*	30.03
GVB52T*	4.26
GVB54Z*	23.51
GVB55Z*	28.84
GVB56R*	3.13
GVB57T*	2.96
GVB58Z*	11.63
GVC707	36.97
GVC71Z	40.14
GVC72R*	4.65
GVC73T*	4.56
GVC74Z*	12.05
GVC75Z*	10.92
GVC70K" GVC77T*	3.37
GVC787*	13.76
GVC79R*	3.45
GVC80T*	2.85
GVC81Z*	9.88
GVC82R*	3.09
GVC83T*	2.22
GVC857*	1/.48 12.11
GVC86Z	39.21
BF100 ^	36.21
BF101 ^	39.35
BF102 ^	26.99
BF103 ^	0.30
BF104 ^	35.43
BF105 ^	25.62

PRP120//*	1.63
PRP121Y*	1.47
PKP122 ^ *	3.63
PRP123//*	2.40 1.97
PRP125^*	5 45
PRP126 ^ *	3.28
PRP127 ^ *	3.04
PRP128//*	1.93
PRP129Y*	1.57
PRP130 ^*	3.11
PRP131//*	3.53
PRP133 ^ *	3.48
PRP134 ^	3.06
PRP135//	1.87
PRP136Y	3.42
PRP137 ^	5.15
PKP138//	2.28
PRP140 ^	5.36
PRP141 ^ *	4.71
SRP150//	4.43
SRP151Y	3.41
SRP152 ^	3.65
SRP153//	5.46
SRP154Y	3.80
SKPISS FR165R*	3.98 7.06
FR166T*	3.06
FR167Z*	9.55
FR168 ^	9.59
LB180//	16.33
LB181Y	15.72
LB182^*	12.53
LB183	8.78 2.17
PR201Y	0.00
PR202 ^	3.09
PR203 ^	10.19
PR204 ^	8.24
PR205 ^	9.06
SR206//	2./6
SR208 ^	2.50
SR209	3.14
SR210	7.02
FPU220//*	2.77
FPU221Y*	2.01
FPU222 ^ *	2.5/
FFU223// FPL1224Y*	2.01
FPU225 ^ *	2.34
FPU226 ^	2.18
FPU230//	5.28
FPU231Y	4.03
FPU232 ^	5.99
	4.49
FPU235 ^	2 74
FPU236//	3.09
FPU237//	2.70
FPU238Y	2.68
FPU239//	3.69
	2.90
FPU241	2.59 2 10
FPU243Y	2.30
FPU244 ^	2.73
FPU245//	2.85

FPU246Y	2.01
FPU247 ^	2.21
FPU248//	3.16
FPU249Y	2.51
FPU250 ^	3.06
B1-1	223.54
B1-2	185.62
B2-1	237 53
B2-2	175.35
B3-1	2 23
B3 2	174.88
B5 1	222 11
	223.44
	200.04
B0-1	224.08
B0-2	18/.28
B/-1	203.35
B/-2	165.85
SG01	117.15
SG02	75.84
SG11	60.47
SG12	57.89
SG21	57.84
SG22	34.54
SG23	252.75
SG24	265.21
SG34	310.81
SG41	49.79
SG42	144.80
SG43	30.73
SG44	31.20
SG35	65.11
SG36	75.65
SGVA1	37 99
SGVA2	11 12
SGV/B3	21.08
SGVB3	36.84
	26.64
SOLITIST SOLITIST	20.04
SOLFISZ	20.71
SGLFID3	33.35
SGLFI54	20.83
SGLFI55	34.//
SGLFI56	24.97
SGLFI61	19.15
SGLFI62	61.67
SGLFI63	47.85
SGLFI64	28.69
SGLFI65	62.47
SGLFI66	22.16
SGLFI71	20.52
SGLFI72	70.04
SGLFI73	49.69
SGLFI74	33.71
SGLFI75	47.07
SGLFI76	31.53

ANNEX 3

RMS values NIA6 (range : 5-1000Hz)

RAPPORT D'ANALYSE Fichier : nia6.pch Sub 11 Plage de frequence : [5 , 1000.00 Hz] ------

	Valeur RMS
SUB1//	0.93
SUB2Y	1.82
SUB3 ^	1.15
SUB4//	1.67
SUB5Y	1.36
SUB6 ^	2.92
SUB7 ^	1.00
SVM15R*	9.39
SVM161* SV/M177*	3.17
SV/M18 ^	3.55
SVM19 ^	27 29
SVM20 ^	14.81
SVM21 ^	24.03
GVA30Z	77.68
GVA31Z	46.10
GVA32R*	5.03
GVA33T*	4.91
GVA34Z*	19.52
GVA35Z*	21.61
GVA36K*	1.42
GVA371 GVA387*	3.00
GVA302 GVA397*	20.30
GVA40Z	49.44
GVB50Z	47.04
GVB51Z	50.36
GVB52R*	6.43
GVB53T*	5.42
GVB54Z*	29.67
GVB55Z*	36.72
GVB56R*	4.15
GVB5/1* GVB587*	3.70
GVB597*	19.01
GVC707	47.25
GVC71Z	51.44
GVC72R*	6.09
GVC73T*	5.90
GVC74Z*	15.97
GVC75Z*	17.26
GVC76R*	4.38
GVC//I*	3.90
GVC70P*	17.02
GVC80T*	3 70
GVC817*	12,91
GVC82R*	4.05
GVC83T*	3.02
GVC84Z*	22.47
GVC85Z*	16.38
GVC86Z	63.42
BF100 ^	45.83
RF101	52.09
BF102 ^	33.//
BF104 ^	0.44 11 12
BF105 ^	32.06

PRP120//*	2.09
PRP121Y*	1.89
PRP122//*	4.00
PRP124Y*	2.55
PRP125 ^ *	6.66
PRP126 ^ *	4.27
PRP127 ^ *	3.94
PRP128//*	2.43
PRP130 ^ *	2.02 4.13
PRP131//*	4.65
PRP132Y*	2.33
PRP133 ^ *	4.29
PRP134	3.85
PRP136Y	4.43
PRP137 ^	6.44
PRP138//	2.93
PRP139Y	2.43
PRP140 ^	6.66
SPP150//	0.04 5.63
SRP151Y	4.34
SRP152 ^	4.67
SRP153//	6.89
SRP154Y	4.86
SRP155 ^	5.12
FRIGOR	0.70 3.64
FR167Z*	12.37
FR168 ^	12.31
LB180//	20.93
LB181Y	20.93
LB182 ^*	16.32
PR200//	3.41
PR201Y	0.01
PR202 ^	3.92
PR203 ^	12.26
PR204 ^	10.06
SR206//	3.52
SR207Y	2.96
SR208 ^	3.10
SR209	3.93
SR210	8.77
FPU220//* FPU221V*	3.03
FPU222 ^*	3.26
FPU223//*	4.60
FPU224Y*	2.89
FPU225 ^ *	3.10
FPU226 ^	2.88
FPU230//	4 82
FPU232 ^	7.49
FPU233//	5.36
FPU234Y	4.86
FPU235 ^	3.49
FFU230// FPU237//	3.33 3.21
FPU238Y	3.42
FPU239//	4.46
FPU240Y	3.77
FPU241 ^	3.32
FFU242//	4.02
FPU244 ^	∠.70 3.60
FPU245//	3.25

FPU246Y	2.62
FPU247 ^	2.84
FPU248//	3.35
FPU249Y	3.19
FPU250 ^	4.11
B1-1	274 07
B1_2	230.22
B7_1	200.22
B2-1	275.27
B2-2 B2-1	217.24
00-1	2.34
D3-Z	212.30
	236.31
BD-Z	241.02
B0-1	269.66
B6-2	228.41
B7-1	250.48
B7-2	201.99
SG01	106.65
SG02	52.64
SG11	77.54
SG12	71.37
SG21	71.81
SG22	40.78
SG23	362.81
SG24	4512.80
SG34	401.88
SG41	70.91
SG42	203.24
SG43	44.61
SG44	55.45
SG35	79.24
SC36	95.00
SCVA1	15 62
SCVAD	45.02
SOVAZ	51.45
SGVD3	45.41
SGVB4	55.00
SGLFI51	32.90
SGLFI52	45.92
SGLFI53	43.03
SGLFI54	23.91
SGLFI55	42.22
SGLFI56	31.17
SGLFI61	22.62
SGLFI62	64.11
SGLFI63	46.65
SGLFI64	49.27
SGLFI65	65.04
SGLFI66	28.59
SGLFI71	23.40
SGLFI72	81.34
SGLFI73	37.59
SGI FI74	30.03
SGI FI75	49 76
SGI FI76	34 37
	0 .07

ANNEX 4

Loads on FPU links – BNA3 (RMS values – range : 0-1100Hz)

Bipode no 1 Bipode no 2 Bipode no 3 Component RMS Component RMS Component RMS DSP Fs D bp1 14.9 DSP Fs D bp2 26.1 DSP Fs D bp3 27.6 323.5 DSP Ft D bp2 DSP Ft D bp3 DSP Ft D bp1 562.5 627.6 DSP_Fy_D_bp1 390.3 DSP_Fy_D_bp2 542.8 DSP_Fy_D_bp3 612.7 DSP_Fx_D_bp1 DSP_Fx_D_bp2 DSP_Fx_D_bp3 59.8 104.5 110.4 7.7 DSP_Mz_D_bp1 DSP_Mz_D_bp2 12.7 DSP_Mz_D_bp3 14.1 DSP_Fs_E_bp1 DSP_Fs_E_bp2 DSP_Fs_E_bp3 777.3 1118.5 1161.5 DSP_Fx_E_bp1 59.8 DSP_Fx_E_bp2 104.5 DSP_Fx_E_bp3 110.4 DSP_Fy_E_bp1 390.3 DSP_Fy_E_bp2 542.8 DSP_Fy_E_bp3 612.7 DSP_Mz_E_bp1 DSP_Mz_E_bp2 DSP_Mz_E_bp3 8.4 15.4 14.0 DSP_Fs_F_bp1 196.9 DSP_Fs_F_bp2 288.7 DSP_Fs_F_bp3 275.6 DSP_Ft_F_bp2 DSP_Ft_F_bp3 DSP Ft F bp1 302.1 289.5 187.5 DSP_Fu_F_bp1 295.4 DSP_Fu_F_bp2 547.8 DSP_Fu_F_bp3 590.9 DSP_Fv_F_bp2 DSP_Fv_F_bp3 DSP_Fv_F_bp1 380.9 289.1 309.3 DSP_Fw_F_bp1 269.7 DSP_Fw_F_bp2 204.7 DSP_Fw_F_bp3 219.0 DSP_Mv_F_bp1 10.6 DSP_Mv_F_bp2 18.0 DSP_Mv_F_bp3 16.9 DSP_Mw_F_bp1 14.9 DSP_Mw_F_bp2 25.5 DSP_Mw_F_bp3 23.9 DSP_Fs_G_bp1 14.9 DSP_Fs_G_bp2 26.1 DSP_Fs_G_bp3 27.6 DSP_Ft_G_bp1 253.4 DSP_Ft_G_bp2 433.1 DSP_Ft_G_bp3 445.3 DSP_Fy_G_bp2 542.8 DSP_Fy_G_bp1 DSP_Fy_G_bp3 612.7 390.3 104.5 DSP_Fx_G_bp1 59.8 DSP_Fx_G_bp2 DSP_Fx_G_bp3 110.4 DSP_Mz_G_bp1 5.1 DSP_Mz_G_bp2 9.0 DSP_Mz_G_bp3 8.8 DSP_Fs_H_bp1 29.3 DSP_Mz_K_bp2 9.3 DSP_Mz_K_bp3 13.8 DSP_Ft_H_bp1 144.6 DSP_Fs_H_bp2 46.8 DSP_Fs_H_bp3 52.0 DSP_Fu_H_bp1 DSP_Ft_H_bp2 175.8 247.9 DSP Ft H bp3 258.5 DSP_Fu_H_bp2 DSP_Fu_H_bp3 353.5 280.9 DSP_Fv_H_bp1 312.1 DSP_Fv_H_bp2 DSP_Fv_H_bp3 DSP Mw H bp1 476.0 538.7 6.4 DSP_Fs_l_bp1 14.9 DSP_Mw_H_bp2 11.4 DSP_Mw_H_bp3 11.3 DSP_Ft_l_bp1 311.7 DSP_Fs_l_bp2 26.1 DSP_Fs_l_bp3 27.6 DSP_Fy_I_bp1 DSP_Ft_l_bp2 442.6 374.7 563.2 DSP_Ft_l_bp3 DSP_Fx_l_bp1 59.8 DSP_Fy_l_bp2 560.9 DSP_Fy_I_bp3 569.8 104.5 DSP_Mz_l_bp1 7.5 DSP_Fx_l_bp2 DSP_Fx_I_bp3 110.4 DSP_Mz_l_bp2 DSP_Mz_l_bp3 DSP Fs J bp1 748.6 12.8 9.1 DSP_Fx_J_bp1 59.8 DSP_Fs_J_bp2 1066.1 DSP_Fs_J_bp3 879.9 DSP_Fx_J_bp2 DSP_Fx_J_bp3 DSP_Fy_J_bp1 374.7 104.5 110.4 DSP_Mz_J_bp1 8.2 DSP_Fy_J_bp2 560.9 DSP_Fy_J_bp3 569.8 DSP_Mz_J_bp2 DSP_Mz_J_bp3 DSP_Fs_K_bp1 14.9 14.0 10.5 DSP_Ft_K_bp1 262.8 DSP_Fs_K_bp2 26.1 DSP_Fs_K_bp3 27.6 DSP_Fy_K_bp1 374.7 DSP_Ft_K_bp2 436.0 DSP_Ft_K_bp3 608.7 DSP_Fx_K_bp1 59.8 DSP_Fy_K_bp2 560.9 DSP_Fy_K_bp3 569.8 DSP_Mz_K_bp1 5.8 DSP_Fx_K_bp2 104.5 DSP_Fx_K_bp3 110.4 DSP_Fs_L_bp1 19.0 DSP_Fs_L_bp2 22.1 DSP_Fs_L_bp3 20.4 DSP_Ft_L_bp1 153.0 DSP_Ft_L_bp2 260.4 DSP_Ft_L_bp3 342.5 114.2 132.6 DSP_Fu_L 122.6 DSP_Fu_L _bp1 DSP_Fu_L _bp2 _bp3 DSP Fv L bp1 361.8 DSP_Fv_L_bp2 555.0 DSP Fv L bp3 567.3 DSP_Mw_L_bp1 7.1 DSP_Mw_L_bp2 11.7 DSP_Mw_L_bp3 16.4

ANNEX 5

Loads on FPU links – NIA6 (RMS values – range : 0-1100Hz)

Bipode no 1		Bipode no 2		Bipode no 3	
Component	RMS	Component	RMS	Component	RMS
DSP_Fs_D_bp1	18.6851	DSP_Fs_D_bp2	47.1509	DSP_Fs_D_bp3	50.2276
DSP_Ft_D_bp1	405.28	DSP_Ft_D_bp2	733.87	DSP_Ft_D_bp3	849.43
DSP_Fy_D_bp1	502.635	DSP_Fy_D_bp2	441.628	DSP_Fy_D_bp3	472.976
DSP_Fx_D_bp1	74.7404	DSP_Fx_D_bp2	188.604	DSP_Fx_D_bp3	200.91
DSP_Mz_D_bp1	9.52466	DSP_Mz_D_bp2	18.5218	DSP_Mz_D_bp3	21.6404
DSP_Fs_E_bp1	864.32	DSP_Fs_E_bp2	1412.93	DSP_Fs_E_bp3	1565.12
DSP_Fx_E_bp1	74.7404	DSP_Fx_E_bp2	188.604	DSP_Fx_E_bp3	200.91
DSP_Fy_E_bp1	502.635	DSP_Fy_E_bp2	441.628	DSP_Fy_E_bp3	472.976
DSP_Mz_E_bp1	10.4225	DSP_Mz_E_bp2	20.8216	DSP_Mz_E_bp3	24.116
DSP_Fs_F_bp1	215.021	DSP_Fs_F_bp2	384.814	DSP_Fs_F_bp3	390.802
DSP_Ft_F_bp1	231.731	DSP_Ft_F_bp2	468.364	DSP_Ft_F_bp3	478.6
DSP_Fu_F_bp1	254.814	DSP_Fu_F_bp2	662.224	DSP_Fu_F_bp3	724.371
DSP_Fv_F_bp1	616.218	DSP_Fv_F_bp2	387.272	DSP_Fv_F_bp3	381.941
DSP_Fw_F_bp1	436.307	DSP_Fw_F_bp2	274.204	DSP_Fw_F_bp3	270.43
DSP_Mv_F_bp1	11.225	DSP_Mv_F_bp2	27.4066	DSP_Mv_F_bp3	27.5627
DSP_Mw_F_bp1	15.8537	DSP_Mw_F_bp2	38.7078	DSP_Mw_F_bp3	38.9282
DSP_Fs_G_bp1	18.6851	DSP_Fs_G_bp2	47.1509	DSP_Fs_G_bp3	50.2276
DSP_Ft_G_bp1	336.681	DSP_Ft_G_bp2	802.739	DSP_Ft_G_bp3	787.068
DSP_Fy_G_bp1	502.635	DSP_Fy_G_bp2	441.628	DSP_Fy_G_bp3	472.976
DSP_Fx_G_bp1	74.7404	DSP_Fx_G_bp2	188.604	DSP_Fx_G_bp3	200.91
DSP_Mz_G_bp1	6.58955	DSP_Mz_G_bp2	20.7589	DSP_Mz_G_bp3	19.822
DSP_Fs_H_bp1	38.0547	DSP_Fs_H_bp2	52.0213	DSP_Fs_H_bp3	56.3647
DSP_Ft_H_bp1	191.089	DSP_Ft_H_bp2	432.77	DSP_Ft_H_bp3	432.199
DSP_Fu_H_bp1	228.328	DSP_Fu_H_bp2	312.128	DSP_Fu_H_bp3	338.188
DSP_Fv_H_bp1	453.976	DSP_Fv_H_bp2	364.942	DSP_Fv_H_bp3	386.911
DSP_Mw_H_bp1	8.25121	DSP_Mw_H_bp2	25.1555	DSP_Mw_H_bp3	24.5316
DSP_Fs_I_bp1	18.6851	DSP_Fs_I_bp2	47.1509	DSP_Fs_I_bp3	50.2276
DSP_Ft_I_bp1	259.743	DSP_Ft_I_bp2	769.356	DSP_Ft_l_bp3	659.266
DSP_Fy_I_bp1	375.994	DSP_Fy_I_bp2	639.351	DSP_Fy_I_bp3	656.269
DSP_Fx_I_bp1	74.7404	DSP_Fx_I_bp2	188.604	DSP_Fx_l_bp3	200.91
DSP_Mz_I_bp1	6.94719	DSP_Mz_I_bp2	18.5589	DSP_Mz_I_bp3	14.8977
DSP_Fs_J_bp1	769.682	DSP_Fs_J_bp2	1405.35	DSP_Fx_J_bp3	200.91
DSP_Fx_J_bp1	74.7404	DSP_Fx_J_bp2	188.604	DSP_Fy_J_bp3	656.269
DSP_Fy_J_bp1	375.994	DSP_Fy_J_bp2	639.351	DSP_Mz_J_bp3	17.3625
DSP_Mz_J_bp1	7.59324	DSP_Mz_J_bp2	20.85	DSP_Fs_J_bp3	1224.34
DSP_Fs_K_bp1	18.6851	DSP_Fs_K_bp2	47.1509	DSP_Fs_K_bp3	50.2276
DSP_Ft_K_bp1	433.787	DSP_Ft_K_bp2	836.079	DSP_Ft_K_bp3	1065.93
DSP_Fy_K_bp1	375.994	DSP_Fy_K_bp2	639.351	DSP_Fy_K_bp3	656.269
DSP_Fx_K_bp1	74.7404	DSP_Fx_K_bp2	188.604	DSP_Fx_K_bp3	200.91
DSP_Mz_K_bp1	11.8996	DSP_Mz_K_bp2	20.8675	DSP_Mz_K_bp3	26.5359
DSP_Fs_L_bp1	25.8587	DSP_Fs_L_bp2	27.1207	DSP_Fs_L_bp3	20.1705
DSP_Ft_L_bp1	220.501	DSP_Ft_L_bp2	475.436	DSP_Ft_L_bp3	588.945
DSP_Fu_L_bp1	155.152	DSP_Fu_L_bp2	162.724	DSP_Fu_L_bp3	121.023
DSP_Fv_L_bp1	350.55	DSP_Fv_L_bp2	646.422	DSP_Fv_L_bp3	675.579
DSP_Mw_L_bp1	13.508	DSP_Mw_L_bp2	25.2523	DSP_Mw_L_bp3	31.2618

ANNEX 6

Dynaworks script for LFI FPU links loads recovery

	Doc. nº H-P-3-ASP-TR-0866
	Issue : UI
	Date : 31/01/2005
	$P_{qqe} \cdot 47$
#	loadmacrofile(nom_macro, ADD)
#	nom_macro = pretix//"liaison_type_e"
# Essais vibrations aléatoires PLANCK	loadmacrofile(nom_macro, ADD)
#	
#	nom_macro = prefix//"liaison_type_d_mod"
#Calcul des torseurs d'efforts aux IF des bipodes.	loadmacrofile(nom_macro, ADD)
#Calcul des DSP des efforts et des valeurs RMS.	
#	nom_macro = prefix//"liaison_type_h"
#	loadmacrofile(nom_macro, ADD)
#	
# Gilles Carte, BE SYSTEM (2004).	#======================================
# Denis Rébuffat, ALCATEL (2004).	
#======================================	# Initialisations
	#
.begin	# n def = registre par défaut (initialisation à 0 ou 1)
	# n ig = registre de la liste des iguges
torseur jauges()	# ni0 = la lère iquae est stockée à ni0+1 (les autres suivent)
#======================================	
"	
#	debug = 0 Chargement des macros
<i>"</i> <i>#</i>	
π	classe ren – "Temporel"
profix - " /Macros PLANICK/"	
prenz = ./Macros_rearen	a dat = 2
$nom_macro = pretix// cnoix_essal$	n_lg = 3
Iodamacrofile(nom_macro, ADD)	n_screw = 4
6 / //11 1	n_tors = 5
nom_macro = prefix//"load_or_create_tab"	
loadmacrofile(nom_macro, ADD)	$n_{\rm I}0 = 10$
nom_macro = pretix//"registre_detaut"	n_ta = 20
loadmacrofile(nom_macro, ADD)	$n_{tb} = 21$
	n_ts = 22
nom_macro = prefix//"setlabel_gc"	n_ft = 23
loadmacrofile(nom_macro, ADD)	n_mt = 24
	n_ma = 25
nom macro = prefix//"view2d gc1"	n mb $= 26$
loadmacrofile(nom macro, ADD)	n mc = 27
	n fta = 28
nom macro = prefix//"view2d gc2"	$n \operatorname{fna} = 29$
loadmacrofile(nom macro ADD)	n ffc = 30
	n fnc = 31
nom macro = prefix//"view2d ac3"	n tmp = 32
loadmacrofile/nom_macro_ADD)	11_111P = 02
	#
nom macro = $\operatorname{profix}//\operatorname{"ligison} f$	π
non_macro – prenz// ilason_i	

	Doc. n° H-P-3-ASP-TR-0866
	Issue · 01
	Data $: \frac{31}{01} / \frac{2005}{2005}$
	Dule . 51/01/2005
	Page: 40
# Création du tableau de synthèse pour les vis	theta = 41.4
#	theta $2 = \text{theta}/2.0$
	beta = theta2
nh svat-0	# Conversion des angles en radians
115_3V11=0	$\frac{1}{2}$ conversion des diffees en radians
r(n. screw) = create, array("Réponse", "Link", STRING, 27)	beta = pii^* beta /180.
	theta2 = pii *theta2/180.
addcolumn(r(n_screw), AFTER, 1, "Bipode", INTEGER)	
addcolumn(r(n_screw), AFTER, 2, "F_shear", FLOAT)	#======================================
addcolumn(r(n_screw), AFTER, 3, "spec_shear", FLOAT)	
addcolumn(r(n_screw), AFTER, 4, "SM_shear" , FLOAT)	#
addcolumn(r(n_screw), AFTER, 5, "F_tension" , FLOAT)	#======================================
addcolumn(r(n_screw), AFTER, 6, "spec_tension", FLOAT)	
addcolumn(r(n_screw), AFTER, 7, "SM_tension" , FLOAT)	
	ichoix = 1
#	liste = dbselect(WORK, classe_essai)
# Caractéristiques géométriques des bipodes	choix_essai(liste, ichoix)
#	idassai — aatlabal/listo(isbaix) "IdEssai")
	essai – genabel(liste(ichoix), tacsai)
f1=1100	date = getlabel(liste(ichoix), "DateFssai")
$f_2 = 3200.$	niv_exc = getlabel(liste(ichoix), "Niveau")
pii = 3.141592	#======================================
# Rayon, épaisseur et module d'Young du matériau du tube	#
rayon = 31.75e-3/2.	#======================================
ep = 1.75e-3	
young = $87.00e+9$	
section = 2.0*pii*rayon*ep	unite_det=menu("Unite des deformations", "m", "cm", "mm", "micron", 4)
# Distances entre jauges et aux points d'IF	if (unite_def=="cm") then
d ab = 86.80e-3	coeff def=1.e-2
d ad = 59.00e-3	elseif (unite def=="mm") then
d ae = 71.40e-3	coeff def=1.e-3
d af = 87.15e-3	elseif (unite def=="micron") then
d_bg = 59.00e-3	coeff_def=1.e-6
d_bh = 82.60e-3	endif
d ci = d cd	#======================================
$d_{ci} = d_{ae}$	
d = d = d	#
d ck = d ab + d ba	 #===================================
d cl = d ab + d bh	
# Angle ferrure côté sommet, angle au sommet et angle ferrure base alpha = 54.7	registre_defaut(n_def, classe_rep, idessai)

while(k < = kmax)

Choix des paramètres de la fonction GXX

nb_pts = menu("Nombre de points par segments", "128", "256", "512", "1024", 2) fenetre = menu("Choix de la fenêtre", "RECTANG", "HANNING", "HAMMING", "PARZEN", "BLACKMAN", "LAPLACE", 2)

nb_pts=atoi(nb_pts)

n bipod = 1

#message_win("Attention: démarrage au bipode 3")

while(n bipod $\leq = 3$)

text bipod=sprintf("Bipode no %d: ",n bipod)

nom_tab = sprintf("jauges_bipode_%d", n_bipod)
nom_macro = nom_tab

load_or_create_tab(prefix, n_jg, nom_tab, nom_macro, 0)

nj = nj0 nb_jg = nbx(r(n_jg))

k=1 kmax=nb_jg $nom = r(n_{jg})."jauge"(k)$

crit1="Fonction == \"Temporel\"" crit2=sprintf("PointMesure == \"%s\"",nom) crit3=sprintf("IdEssai == %d",idessai)

crit=sprintf("%s et %s et %s",crit1,crit2,crit3)

liste=dbselect(WORK,classe_rep,crit) n_select=dbnbselect(liste)

Si la jauge est introuvable
if (n_select<=0) then
 text="Jauge "//nom//" introuvable...\nMise à zéro."
 message_win(text)
 nj+=1
 r(nj)=r(n_def)</pre>

S'il y a plus d'une jauge répondant au critère dans la BD elseif (n_select>=2) then text=sprintf("%d jauges satisfont le critère\nChoix de la dernière\n",n_select) message_win(text) nj+=1 r(nj)=dbreadselected(liste,n_select)

S'il y a une et une seule jauge répondant au critère dans la BD elseif (n_select==1) then nj+=1 r(nj)=dbreadselected(liste, 1) endif

Ajustement par rapport aux unités r(nj)*=coeff def

Incrémentation du compteur de boucle k+=1

endwhile

Chargement des jauges, type temporel

Doc. nº H-P-3-ASP-TR-0866 Issue: 01 Date : 31/01/2005 Page: 50 $r(n_ftc) = r(n_fta)*r(n_mc)/r(n_ma)$ #_____ _____ endif # Point A close2d(vue) ni1 = ni0 + 1CURVE2D CAPTION="\Essai.Essai\" \"PointMesure\" \"Type\" \"RMS\"" nj2 = nj0 + 2r(n fa) = young*section*0.5*(r(nj2) + r(nj1))CURVE2D CAPTION SYNONIMS="\"Essai\" \"PointMesure\" \"Type\" \"RMS\"" r(n ma) = rayon*young*section*0.5*(r(nj2) - r(nj1))#______ # Point B _____ ni1 = ni0 + 3# Torseur en F et calcul efforts vis semelle ferrure sommet ni2 = ni0 + 4r(n fb) = young*section*0.5*(r(nj2) + r(nj1))_____ r(n mb) = rayon*young*section*0.5*(r(nj2) - r(nj1))liaison f() # Point C nj1 = nj0 + 5#______ ni2 = ni0 + 6_____ r(n fnc) = young*section*0.5*(r(nj2) + r(nj1))# Torseurs en E et J: calcul efforts vis équerres - ferrure sommet #______ r(n mc) = rayon*young*section*0.5*(r(nj2) - r(nj1))_____ # Effort tranchant (dérivée du moment) r(n fta) = (r(n ma) - r(n mb))/d abliaison type e(n fna, n fta, n ma, d ae, "E") liaison type e(n fnc, n ftc, n mc, d cj, "J") # Effort normal (moyenne entre A et B) $r(n fna) = 0.5^*(r(n fa) + r(n fb))$ _____ #_____ # Torseurs en D, G, I et K: calcul efforts vis équerres - embout tube #_____ _____ # Comparaison des moments en A et C pour estimation effort tranchant en C _____ _____ liaison type d(n fna, n fta, n ma, d ad, "D") liaison type d(n fna, n fta, n mb, -d bg, "G") liaison_type_d(n_fnc, n_ftc, n_mc, d_ci, "l") X AXIS=LIN Y AXIS=LIN liaison type d(n fnc, n ftc, n mc, -d ck, "K") setlabel(r(n_ma),"PointMesure", "Moment de flexion en A") #______ setlabel(r(n mc),"PointMesure", "Moment de flexion en C") _____ # Torseurs en H et L: calcul efforts vis semelle ferrure base vue = text bipod//"comparaison des moments de flexion en A et C" #______ r(n tmp) = abs(r(n mc))_____ view2d(r(n ma), r(n tmp), vue, 0, 0, 700, 500) liaison type h(n fna, n fta, n mb, -d bh, "H") liaison type h(n fnc, n ftc, n mc, -d cl, "L") rep = prompt("Comparaison satisfaisante ?") n bipod +=1if (rep = = 1) then endwhile $r(n_{ftc}) = r(n_{fta})$ else # Fin de la boucle sur les bipodes

#======================================	setlabel(r(n_tors),"Commentaire","Tableau synthèse des composantes RMS des torseurs")
	setlabel(r(n_tors),"PointMesure","tab_RMS_torseur")
# Affichage et sauvegarde du tableau de synthèse pour les vis	setlabel(r(n_tors),"Fonction","synthese")
#======================================	seflabel(r(n_tors),"IdEssai",idessai)
	eait(r(n_tors))
setiabel(r(n_screw), "Commentaire", "Lableau synthese efforts KMS dans les vis")	
setiabel(r(n_screw), "PointMesure", "tab_KMS_screw")	message_win("renses a imprimer le tableau\nde synthese des torseurs !\n")
setiabel(r(n_screw), "Fonction", "synthese")	
sefiabei(r(n_screw), "iaEssai", iaessai)	abwrite(r(n_tors), wOKK, "keponse")
adit//a arrow)	enan
edil((II_screw))	#
mossaga, win/"Pansas à imprimer la tablagu\nda synthèsa pour les vis l\n")	#
message_win(renses a imprimer le lableau (lide symmese pour les vis ! (ir)	# Fin de la macro
dhwrite(r(n. screw) WORK "Rénonse")	
	<i>π</i>
#======================================	
"	text] = "Tableaux de synthèse des efforts RMS dans les vis\n"
# Construction, affichage et sauvegarde du tableau de synthèse pour les vis	text?="et des composantes RMS des torseurs sauveaardés\n"
	$text3 = "dans la BD_ca peut servir_s'ngs 2 \ln \pi"$
"	text4="Fin de la macro_ciao.l\n"
	text=text1//text2//text3//text4
crit] = sprintf("IdEssai == %d", idessai)	message win/text)
$crit2 = "Fonction = = \"postrait"$	<u> </u>
crit = crit1//" et "//crit2	.end
liste = dbselect(WORK, "DSP", crit)	
n_select = dbnbselect(liste)	
if (n_select > 0) then	

Création du tableau de synthèse pour les torseurs r(n_tors) = create_array("Réponse", "Component", STRING, n_select)

AddColumn(r(n_tors), AFTER, 1, "IdEssai", INTEGER) AddColumn(r(n_tors), AFTER, 2, "RMS", FLOAT)

k=1

while(k<=n_select)
nom = getlabel(liste(k),"PointMesure")
rms1 = getlabel(liste(k),"RMS")
r(n_tors)."Component"(k)=nom
r(n_tors)."IdEssai"(k)=idessai
r(n_tors)."RMS"(k)=rms1
k+=1
endwhile</pre>

#
#
Calculs des éléments de la liaison type F
#
- torseur au point F
#- tension et cisaillement des vis de la liaison
#- DSP et valeurs RMS
#- marges de sécurité
#
Gilles CARTE, BE SYSTEM (2004)

#-----

.begin liaison f()

Initialisation n fx = 60n_fy = 61 n fu = 62 n fv = 63n fw = 64n mv = 65n mw = 66dsp fs = 67dsp ft = 68dsp fu = 69 $dsp_fv = 70$ dsp fw = 71dsp mu = 72dsp mv = 73dsp mw = 74n fx1 = 75 $n fx^2 = 76$ n fy1 = 77n fy2 = 78 $n \, fs1 = 79$ $n \, fs2 = 80$ $n \, fs3 = 81$ $n \, fs4 = 82$ n fs = 83n ft1 = 84 n ft2 = 85 n ft = 86 dsp fs = 87dsp fs1 = 88 dsp fs2 = 89dsp fs3 = 90dsp fs4 = 91dsp ft = 92

Doc. nº H-P-3-ASP-TR-0866 Issue : 01 Date : 31/01/2005 Page: 52 dsp ft1 = 93dsp ft2 = 94# Valeurs limites RMS à 3 sigmas des efforts dans les vis spec fs = 2500./3. spec ft = 2000./3. # Calcul du cisaillement dans les vis (plan (u,w)) # Hypothèse: les 2 vis centrales ne reprennent aucun cisaillement d u = 21.50e-3d w = 9.73e-3d uw = sqrt(d u*d u+d w*d w) # Projection sur la médiatrice du bipode et sa normale (point F) # Axe Y = médiatrice, axe X = normale à droite à Y dans le plan du bipode # Theta2 = demi angle au sommet du bipode $r(n_fx) = sin(theta2)*(r(n_fna)-r(n_fnc)) + cos(theta2)*(r(n_fta)+r(n_ftc))$ $r(n_fy) = cos(theta2)^*(r(n_fna) + r(n_fnc)) + sin(theta2)^*(-r(n_fta) + r(n_ftc))$ # Projection sur la semelle de la ferrure et sa normale (point F) r(n f u) = r(n f x)r(n fv) = sin(alpha)*r(n fy)r(n fw) = cos(alpha)*r(n fy)# Calcul du moment en F (moment en A + C + contribution efforts tranchants) $r(n mt) = r(n ma) + d af^*r(n fta) + r(n mc) + d cf^*r(n ftc)$ # Projection du moment sur les axes v et w r(n mv) = -cos(alpha)*r(n mt)r(n mw) = sin(alpha)*r(n mt) $\cos g = d u/d uw$ sing=d w/d uw $r(n fx1) = r(n fu)/6. + sing^{*}r(n mv)/(4.*d uw)$ $r(n fx2) = r(n fu)/6. - sing^{*}r(n mv)/(4.*d uw)$ $r(n fy1) = r(n fw)/6. + cosg^{*}r(n mv)/(4.*d uw)$ $r(n_{fy2}) = r(n_{fw})/6. - cosg^{r}(n_{mv})/(4.*d_{uw})$ r(n fs1) = sqrt(r(n fx1)*r(n fx1)+r(n fy1)*r(n fy1))r(n fs2) = sqrt(r(n fx1)*r(n fx1)+r(n fy2)*r(n fy2)) $r(n_{fs3}) = sqrt(r(n_{fx2})*r(n_{fx2})+r(n_{fy1})*r(n_{fy1}))$ r(n fs4) = sqrt(r(n fx2)*r(n fx2)+r(n fy2)*r(n fy2))

Calcul de la traction dans les vis

Hypothèse: les deux vis centrales ne reprennent aucun effort dû au moment

 $\begin{array}{l} r(n_{ft1}) = r(n_{fv})/6. + r(n_{mw})/(4.^{*}d_{u}) \\ r(n_{ft2}) = r(n_{fv})/6. - r(n_{mw})/(4.^{*}d_{u}) \end{array}$

DSP traction command="r(dsp_ft1) = gxx(r(n_ft1), "//fenetre//", nb_pts, 0.05)" exec(command) command="r(dsp_ft2) = gxx(r(n_ft2), "//fenetre//", nb_pts, 0.05)" exec(command)

DSP cisaillement command="r(dsp_fs1) = gxx(r(n_fs1), "//fenetre//", nb_pts, 0.05)" exec(command) command="r(dsp_fs2) = gxx(r(n_fs2), "//fenetre//", nb_pts, 0.05)" exec(command) command="r(dsp_fs3) = gxx(r(n_fs3), "//fenetre//", nb_pts, 0.05)" exec(command) command="r(dsp_fs4) = gxx(r(n_fs4), "//fenetre//", nb_pts, 0.05)"

Troncature des DSP
cut(r(dsp_ft1),X,f1,f2)
rms1=psdrmsval(r(dsp_ft1))
setlabel(r(dsp_ft1),"RMS",rms1)
rms_ft1=rms1

cut(r(dsp_ft2),X,f1,f2) rms1=psdrmsval(r(dsp_ft2)) setlabel(r(dsp_ft2),"RMS",rms1) rms ft2=rms1

Recherche du max de la tension
rms_ft = rms_ft1
r(dsp_ft)=r(dsp_ft1)
if (rms_ft2 >= rms_ft) then
rms_ft = rms_ft2
r(dsp_ft) = r(dsp_ft2)
endif

Troncature des DSP cisaillement cut(r(dsp_fs1),X,f1,f2) rms1=psdrmsval(r(dsp_fs1)) setlabel(r(dsp_fs1),"RMS",rms1) rms_fs1=rms1

cut(r(dsp_fs2),X,f1,f2) rms1=psdrmsval(r(dsp_fs2)) setlabel(r(dsp_fs2),"RMS",rms1)

Doc. nº H-P-3-ASP-TR-0866 Issue : 01 Date : 31/01/2005 Page: 53 rms fs2=rms1 cut(r(dsp fs3),X,f1,f2) rms1 = psdrmsval(r(dsp fs3))setlabel(r(dsp fs3),"RMS",rms1) rms fs3=rms1 cut(r(dsp fs4),X,f1,f2) rms1 = psdrmsval(r(dsp fs4))setlabel(r(dsp fs4),"RMS",rms1) rms fs4=rms1 # Recherche du max du cisaillement rms fs = rms fs1r(dsp fs) = r(dsp fs1)if (rms fs2 > = rms fs) then rms fs = rms fs2 r(dsp fs) = r(dsp fs2)endif if (rms fs3 > = rms fs) then rms fs = rms fs3r(dsp fs) = r(dsp fs3)endif if (rms $fs4 \ge rms fs$) then rms fs = rms fs4 r(dsp fs) = r(dsp fs4)endif # Marges de sécurité SM fs = 100.*(spec fs/rms fs - 1.)SM ft = 100.*(spec ft/rms ft - 1.)# Tableau de synthèse nb synt+=1 r(n screw)."Link" (nb synt) = "F" r(n screw)."Bipode" (nb synt) = n bipod r(n screw)."F shear" (nb synt) = rms fs r(n screw)."spec shear" (nb synt) = spec fs r(n screw)."SM shear" (nb synt) = SM fs r(n screw)."F tension" (nb synt) = rms ft r(n screw)."spec tension"(nb synt) = spec ft r(n screw)."SM tension" (nb synt) = SM ft

Affectation des LABEL

setlabel_gc(dsp_fs,"DSP cisailt vis liaison F","DSP_Fs_F","postrait",n_bipod,idessai) setlabel_gc(dsp_ft,"DSP tension vis liaison F","DSP_Ft_F","postrait",n_bipod,idessai) # Sauvegarde des DSP dans la BD dbwrite(r(dsp_fs),WORK,"DSP") dbwrite(r(dsp_ft),WORK,"DSP")

Message d'infos

text0 = "Link F\nRMS values and spec.\n\n"
text1 = sprintf("Fs=%7.2f N (spec=%7.2f N, SM=%6.1f %)\n",rms_fs,spec_fs,SM_fs)
text2 = sprintf("Ft=%7.2f N (spec=%7.2f N, SM=%6.1f %)\n",rms_ft,spec_ft,SM_ft)
text=text0//text1//text2

if (debug == 1) then message_win(text) endif

command="r(dsp_fu) = gxx(r(n_fu), "//fenetre//", nb_pts, 0.05)"
exec(command)
command="r(dsp_fv) = gxx(r(n_fv), "//fenetre//", nb_pts, 0.05)"
exec(command)
command="r(dsp_fw) = gxx(r(n_fw), "//fenetre//", nb_pts, 0.05)"
exec(command)
command="r(dsp_mv) = gxx(r(n_mv), "//fenetre//", nb_pts, 0.05)"
exec(command)
command="r(dsp_mw) = gxx(r(n_mw), "//fenetre//", nb_pts, 0.05)"

cut(r(dsp_fu),X,f1,f2) rms1=psdrmsval(r(dsp_fu)) setlabel(r(dsp_fu),"RMS",rms1)

cut(r(dsp_fv),X,f1,f2) rms1=psdrmsval(r(dsp_fv)) setlabel(r(dsp_fv),"RMS",rms1)

cut(r(dsp_fw),X,f1,f2) rms1=psdrmsval(r(dsp_fw)) setlabel(r(dsp_fw),"RMS",rms1)

cut(r(dsp_mv),X,f1,f2) rms1=psdrmsval(r(dsp_mv)) setlabel(r(dsp_mv),"RMS",rms1)

cut(r(dsp_mw),X,f1,f2)

Doc. n° H-P-3-ASP-TR-0866 Issue : 01 Date : 31/01/2005 Page : 54

rms1=psdrmsval(r(dsp_mw))
setlabel(r(dsp_mw),"RMS",rms1)

Affectation des LABEL

setlabel_gc(dsp_fu,"DSP Fu plan torseur F","DSP_Fu_F","postrait",n_bipod,idessai) setlabel_gc(dsp_fv,"DSP Fv perp torseur F","DSP_Fv_F","postrait",n_bipod,idessai) setlabel_gc(dsp_fw,"DSP Fw plan torseur F","DSP_Fw_F","postrait",n_bipod,idessai) setlabel_gc(dsp_mv,"DSP Mv perp torseur F","DSP_Mv_F","postrait",n_bipod,idessai) setlabel_gc(dsp_mv,"DSP Mv perp torseur F","DSP_Mv_F","postrait",n_bipod,idessai)

Sauvegarde des DSP dans la BD dbwrite(r(dsp_fu),WORK,"DSP") dbwrite(r(dsp_fv),WORK,"DSP") dbwrite(r(dsp_fw),WORK,"DSP") dbwrite(r(dsp_mv),WORK,"DSP") dbwrite(r(dsp_mw),WORK,"DSP")

.end

Calculs des éléments de la liaison type D # # - torseur au point D #- tension et cisaillement des vis de la liaison #- DSP et valeurs RMS #- marges de sécurité # # Gilles CARTE, BE SYSTEM (2004)

.begin

liaison_type_d(n1, n2, n3, dist, nom)

Initialisation no des registres nfn=n1 nft=n2 nm =n3

n_mt = 80 n_ft1 = 81 n_ft2 = 82 dsp_ft = 83 dsp_ft1 = 84 dsp_ft2 = 85 dsp_ft2 = 85 dsp_fs = 86 dsp_fn = 87 dsp_mt = 88

Distance entre les vis d_x=7.20e-3

Valeurs cisaillement RMS seuil à 3 sigma spec_fs = 2555./3. spec_ft = 1366./3.

Moment en D ou G (ou I ou K) suivant la barre considérée r(n_mt) = r(nm) + dist*r(nft)

Cisaillement dû à l'effort tranchant uniquement réparti entre 4 vis $r(n_fs)=r(nft)/4$.

Tensions dues à l'effort normal et au moment Mz répartie entre 4 vis $r(n_{ft1})=r(nfn)/4. + r(n_mt)/(4.*d_x)$ $r(n_{ft2})=r(nfn)/4. - r(n_mt)/(4.*d_x)$

DSP cisaillement

Doc. nº H-P-3-ASP-TR-0866 Issue : 01 Date : 31/01/2005 Page: 55 command="r(dsp fs) = gxx(r(n fs), "//fenetre//", nb pts, 0.05)" exec(command) # DSP tension command = r(dsp ft1) = gxx(r(n ft1), "//fenetre//", nb pts, 0.05)"exec(command) command = r(dsp ft2) = gxx(r(n ft2), "//fenetre//", nb pts, 0.05)"exec(command) # Troncature ft1 cut(r(dsp ft1),X,f1,f2) rms1 = psdrmsval(r(dsp ft1))setlabel(r(dsp ft1),"RMS",rms1) rms ft1=rms1 # Troncature ft2 cut(r(dsp ft2),X,f1,f2) rms1=psdrmsval(r(dsp ft2)) setlabel(r(dsp ft2),"RMS",rms1) rms ft2=rms1 # Recherche du max entre ft1 et ft2 rms ft = rms ft1r(dsp ft) = r(dsp ft1)if (rms ft2 > = rms ft) then $rms ft = rms ft^2$ r(dsp ft) = r(dsp ft2)endif # Troncature fs cut(r(dsp fs),X,f1,f2) rms1 = psdrmsval(r(dsp fs))setlabel(r(dsp fs), "RMS", rms1) rms fs=rms1 # Marges de sécurité SM fs = 100.*(spec fs/rms fs - 1.)SM ft = 100.*(spec ft/rms ft - 1.)# Tableau de synthèse nb synt+=1 r(n screw)."Link" (nb synt) = nom r(n screw)."Bipode" (nb synt) = n bipod r(n screw)."F shear" (nb synt) = rms fs r(n screw)."spec shear" (nb synt) = spec fs r(n screw)."SM shear" (nb synt) = SM fs r(n screw)."F tension" (nb synt) = rms ft r(n screw)."spec tension"(nb synt) = spec ft r(n screw)."SM tension" (nb synt) = SM ft

Affectation des LABEL
comment = "DSP cisailt vis liaison "//nom
nom_pt = "DSP_Fs_"//nom
setlabel_gc(dsp_fs,comment,nom_pt,"postrait",n_bipod,idessai)

comment = "DSP tension vis liaison "//nom nom_pt = "DSP_Ft_"//nom setlabel_gc(dsp_ft,comment,nom_pt,"postrait",n_bipod,idessai)

Sauvegarde des DSP dans la BD dbwrite(r(dsp_fs),WORK,"DSP") dbwrite(r(dsp_ft),WORK,"DSP")

Message d'infos

 $\label{eq:text0} text0 = sprintf("Link %s\nRMS values and spec.\n\n", nom) \\ text1 = sprintf("Fs=%7.2f N (spec=%7.2f N, SM=%6.1f %)\n",rms_fs,spec_fs,SM_fs) \\ text2 = sprintf("Ft=%7.2f N (spec=%7.2f N, SM=%6.1f %)\n",rms_ft,spec_ft,SM_ft) \\ text=text0//text1//text2 \\ \end{tabular}$

if (debug == 1) then message_win(text) endif

#-----

Calcul des DSP

command="r(dsp_fn) = gxx(r(nfn), "//fenetre//", nb_pts, 0.05)"
exec(command)
command="r(dsp_ft) = gxx(r(nft), "//fenetre//", nb_pts, 0.05)"
exec(command)
command="r(dsp_mt) = gxx(r(n_mt), "//fenetre//", nb_pts, 0.05)"
exec(command)

Troncature des DSP
cut(r(dsp_fn),X,f1,f2)
rms1=psdrmsval(r(dsp_fn))
setlabel(r(dsp_fn),"RMS",rms1)
rms fax=rms1

cut(r(dsp_ft),X,f1,f2) rms1=psdrmsval(r(dsp_ft)) setlabel(r(dsp_ft),"RMS",rms1) rms_flat=rms1 Doc. n° H-P-3-ASP-TR-0866 Issue : 01 Date : 31/01/2005 Page : 56

cut(r(dsp_mt),X,f1,f2) rms1=psdrmsval(r(dsp_mt)) setlabel(r(dsp_mt),"RMS",rms1) rms_mt=rms1

Affectation des LABEL cm1="DSP Fy perp torseur "//nom cm2="DSP Fx plan torseur "//nom cm3="DSP Mz perp torseur "//nom

pm1="DSP_Fy_"//nom pm2="DSP_Fx_"//nom pm3="DSP_Mz_"//nom

setlabel_gc(dsp_fn,cm1,pm1,"postrait",n_bipod,idessai) setlabel_gc(dsp_ft,cm2,pm2,"postrait",n_bipod,idessai) setlabel_gc(dsp_mt,cm3,pm3,"postrait",n_bipod,idessai)

Sauvegarde des DSP du torseur dans la BD dbwrite(r(dsp_fn),WORK,"DSP") dbwrite(r(dsp_ft),WORK,"DSP") dbwrite(r(dsp_mt),WORK,"DSP")

.end

Doc. n° H-P-3-ASP-TR-0866 Issue : 01 Date : 31/01/2005 Page : ⁵⁷

> # DSP cisaillement command="r(dsp_fs1) = gxx(r(n_fs1), "//fenetre//", nb_pts, 0.05)" exec(command) command="r(dsp_fs2) = gxx(r(n_fs2), "//fenetre//", nb_pts, 0.05)" exec(command)

Troncature des signaux pourris
cut(r(dsp_fs1),X,f1,f2)
rms1=psdrmsval(r(dsp_fs1))
setlabel(r(dsp_fs1),"RMS",rms1)
rms_fs1=rms1

cut(r(dsp_fs2),X,f1,f2) rms1=psdrmsval(r(dsp_fs2)) setlabel(r(dsp_fs2),"RMS",rms1) rms_fs2=rms1

Recherche du max entre fs1 et fs2
rms_fs = rms_fs1
r(dsp_fs)=r(dsp_fs1)
if (rms_fs2 >= rms_fs) then
rms_fs = rms_fs2
r(dsp_fs) = r(dsp_fs2)
endif

Marges de sécurité SM_fs = 100.*(spec_fs/rms_fs - 1.)

Tableau de synthèse nb_synt+=1 r(n_screw)."Link" (nb_synt) = nom r(n_screw)."Bipode" (nb_synt) = n_bipod r(n_screw)."F_shear" (nb_synt) = rms_fs r(n_screw)."spec_shear" (nb_synt) = spec_fs r(n_screw)."SM_shear" (nb_synt) = SM_fs r(n_screw)."F tension" (nb_synt) = 0.

r(n_screw)."spec_tension"(nb_synt) = 0. r(n_screw)."SM_tension" (nb_synt) = 0. # Affectation des LABEL

comment = "DSP cisailt vis liaison "//nom nom_pt = "DSP_Fs_"//nom setlabel_gc(dsp_fs,comment,nom_pt,"postrait",n_bipod,idessai)

Sauvegarde des DSP dans la BD dbwrite(r(dsp_fs),WORK,"DSP")

Message d'infos

#
Calculs des éléments de la liaison type E
#
- torseur au point E
- tension et cisaillement des vis de la liaison
- DSP et valeurs RMS
#- marges de sécurité
#
Gilles CARTE, BE SYSTEM (2004)
#

.begin

liaison_type_e(n1, n2, n3, dist, nom)

nfn=n1 nft=n2 nm =n3

 $\begin{array}{rl} n_mt &= 78\\ n_fy &= 79\\ n_fx1 &= 80\\ n_fx2 &= 81\\ n_fs1 &= 82\\ n_fs2 &= 83\\ dsp_fs &= 84\\ dsp_fs1 &= 85\\ dsp_fs2 &= 86\\ dsp_fu &= 87\\ dsp_fv &= 88\\ dsp_mu &= 89 \end{array}$

Aucune composante du torseur n'entraîne d'effort de tension
Valeurs cisaillement RMS seuil à 3 sigma
spec_fs = 6475./3.

Distance entre les vis d_axe=9.e-3

Moment en E (ou J) suivant la barre considérée r(n_mt) = r(nm) + dist*r(nft)

Cisaillement dû aux efforts normal et tranchant et au moment de flexion r(n_fx1) = r(nft)/2. + r(n_mt)/(2.*d_axe) r(n_fx2) = r(nft)/2. - r(n_mt)/(2.*d_axe) r(n_fy) = r(nfn)/2. r(n_fs1) = sqrt(r(n_fx1)*r(n_fx1) + r(n_fy)*r(n_fy)) r(n_fs2) = sqrt(r(n_fx2)*r(n_fx2) + r(n_fy)*r(n_fy)) Doc. n° H-P-3-ASP-TR-0866 Issue : 01 Date : 31/01/2005 Page : 58 dbwrite(r(dsp fv),WORK,"DSP")

dbwrite(r(dsp_mu),WORK,"DSP")

text0 = sprintf("Link %s\nRMS values and spec.\n\n", nom) text1 = sprintf("Fs=%7.2f N (spec=%7.2f N, SM=%6.1f %)\n",rms_fs,spec_fs,SM_fs) text=text0//text1

.end

if (debug == 1) then message_win(text) endif

Calcul des DSP command="r(dsp_fu) = gxx(r(nft), "//fenetre//", nb_pts, 0.05)" exec(command) command="r(dsp_fv) = gxx(r(nfn), "//fenetre//", nb_pts, 0.05)" exec(command) command="r(dsp_mu) = gxx(r(n_mt), "//fenetre//", nb_pts, 0.05)" exec(command)

cut(r(dsp_fu),X,f1,f2) rms1=psdrmsval(r(dsp_fu)) setlabel(r(dsp_fu),"RMS",rms1)

cut(r(dsp_fv),X,f1,f2) rms1=psdrmsval(r(dsp_fv)) setlabel(r(dsp_fv),"RMS",rms1)

cut(r(dsp_mu),X,f1,f2) rms1=psdrmsval(r(dsp_mu)) setlabel(r(dsp_mu),"RMS",rms1)

Affectation des LABEL cm1="DSP Fx plan torseur "//nom cm2="DSP Fy plan torseur "//nom cm3="DSP Mz perp torseur "//nom

pm1="DSP_Fx_"//nom pm2="DSP_Fy_"//nom pm3="DSP_Mz_"//nom

setlabel_gc(dsp_fu,cm1,pm1,"postrait",n_bipod,idessai) setlabel_gc(dsp_fv,cm2,pm2,"postrait",n_bipod,idessai) setlabel_gc(dsp_mu,cm3,pm3,"postrait",n_bipod,idessai)

Sauvegarde des DSP dans la BD dbwrite(r(dsp_fu),WORK,"DSP")
Calculs des éléments de la liaison type H
Calculs des éléments de la liaison type H
- torseur au point H
- tension et cisaillement des vis de la liaison
- DSP et valeurs RMS
- marges de sécurité
#
Gilles CARTE, BE SYSTEM (2004)
#

.begin

liaison_type_h(n1, n2, n3, dist, nom)

nfn=n1 nft=n2 nm =n3

 $\begin{array}{rl} n_{m}t &= 60\\ n_{f}u &= 61\\ n_{f}v &= 62\\ n_{f}s &= 63\\ n_{f}f1 &= 64\\ n_{f}f2 &= 65\\ n_{f}f2 &= 65\\ n_{f}f1 &= 66\\ dsp_{f}s &= 67\\ dsp_{f}f1 &= 68\\ dsp_{f}f2 &= 69\\ dsp_{f}f2 &= 69\\ dsp_{f}u &= 71\\ dsp_{f}v &= 72\\ dsp_{f}w &= 73\\ \end{array}$

Valeurs cisaillement RMS seuil à 3 sigma spec_rms_fs = 2537./3. spec_rms_ft = 1366./3.

Distance entre les vis d_u1=14.89e-3 d_u2= 5.89e-3 d_w = 7.00e-3

Moment en D ou G (ou I ou K) suivant la barre considérée r(n_mt) = r(nm) + dist*r(nft)

Projection des efforts dans le repère local (u,v,w) de la semelle
beta = angle d'inclinaison de la semelle (cf plan MEC 700101040)

Doc. nº H-P-3-ASP-TR-0866 Issue : 01 Date : 31/01/2005 Page: 59 # beta est défini dans "torseur jauges mod" # Le moment est inchangé (axes z et w confondus) r(n fu) = cos(beta)*r(nft) + sin(beta)*r(nfn)r(n fv) = -sin(beta)*r(nft) + cos(beta)*r(nfn)# Cisaillement dû à l'effort Fu uniquement réparti entre les 6 vis r(n fs) = r(n fu)/6. # Tension due à l'effort normal et au moment Mz réparti entre 6 vis r(n ft) = r(n fv)/6. + r(n mt)*d u/(4.*d u)*d u+2.*d u2*d u2)r(n ft2) = r(n fv)/6. - r(n mt)*d u1/(4.*d u1*d u1+2.*d u2*d u2)# DSP cisaillement command="r(dsp fs) = gxx(r(n fs), "//fenetre//", nb pts, 0.05)" exec(command) # DSP tension command = r(dsp ft1) = gxx(r(n ft1), "//fenetre//", nb pts, 0.05)"exec(command) command = r(dsp ft2) = qxx(r(n ft2), "//fenetre//", nb pts, 0.05)"exec(command) # Troncature des DSP de la tension cut(r(dsp ft1),X,f1,f2) rms1 = psdrmsval(r(dsp ft1))setlabel(r(dsp ft1),"RMS",rms1) rms ft1=rms1 cut(r(dsp ft2),X,f1,f2) rms1 = psdrmsval(r(dsp ft2))setlabel(r(dsp ft2),"RMS",rms1) rms ft2=rms1 # Recherche du max de la tension rms ft = rms ft1r(dsp ft) = r(dsp ft1)if (rms ft2 > = rms ft) then rms ft = rms ft2 r(dsp ft) = r(dsp ft2)endif # Troncature de la DSP du cisaillement cut(r(dsp fs),X,f1,f2) rms1=psdrmsval(r(dsp fs)) setlabel(r(dsp fs),"RMS",rms1) rms fs=rms1 # Marges de sécurité

 $SM_{fs} = 100.*(spec_fs/rms_fs - 1.)$ SM ft = 100.*(spec_ft/rms_ft - 1.)

Tableau de synthèse nb_synt+=1 r(n_screw)."Link" (nb_synt) = nom r(n_screw)."Bipode" (nb_synt) = n_bipod r(n_screw)."F_shear" (nb_synt) = rms_fs r(n_screw)."SM_shear" (nb_synt) = spec_fs r(n_screw)."SM_shear" (nb_synt) = SM_fs r(n_screw)."F_tension" (nb_synt) = rms_ft r(n_screw)."spec_tension"(nb_synt) = spec_ft r(n_screw)."SM_tension" (nb_synt) = SM_ft

Affectation des LABEL
comment = "DSP cisailt vis liaison "//nom
nom_pt = "DSP_Fs_"//nom
setlabel_gc(dsp_fs,comment,nom_pt,"postrait",n_bipod,idessai)

comment = "DSP tension vis liaison "//nom nom_pt = "DSP_Ft_"//nom setlabel_gc(dsp_ft,comment,nom_pt,"postrait",n_bipod,idessai)

Sauvegarde des DSP dans la BD dbwrite(r(dsp_fs),WORK,"DSP") dbwrite(r(dsp_ft),WORK,"DSP")

Message d'infos

 $\label{eq:text0} text0 = sprintf("Link %s\nRMS values and spec.\n\n", nom) \\ text1 = sprintf("Fs=%7.2f N (spec=%7.2f N, SM=%6.1f %)\n",rms_fs,spec_fs,SM_fs) \\ text2 = sprintf("Ft=%7.2f N (spec=%7.2f N, SM=%6.1f %)\n",rms_ft,spec_ft,SM_ft) \\ text=text0//text1//text2 \\ \end{tabular}$

```
if (debug == 1) then
message_win(text)
endif
```

DSP des composantes du torseur local

Calcul des DSP
command="r(dsp_fu) = gxx(r(n_fu), "//fenetre//", nb_pts, 0.05)"
exec(command)
command="r(dsp_fv) = gxx(r(n_fv), "//fenetre//", nb_pts, 0.05)"
exec(command)
command="r(dsp_mw) = gxx(r(n_mt), "//fenetre//", nb_pts, 0.05)"

Doc. n° H-P-3-ASP-TR-0866 Issue : 01 Date : 31/01/2005 Page : 60

exec(command)

cut(r(dsp_fu),X,f1,f2) rms1=psdrmsval(r(dsp_fu)) setlabel(r(dsp_fu),"RMS",rms1) rms_fu=rms1

cut(r(dsp_fv),X,f1,f2) rms1=psdrmsval(r(dsp_fv)) setlabel(r(dsp_fv),"RMS",rms1) rms_fv=rms1

cut(r(dsp_mw),X,f1,f2) rms1=psdrmsval(r(dsp_mw)) setlabel(r(dsp_mw),"RMS",rms1) rms_mw=rms1

Affectation des LABEL cm1="DSP Fu plan torseur "//nom cm2="DSP Fv perp torseur "//nom cm3="DSP Mw plan torseur "//nom

pm1="DSP_Fu_"//nom pm2="DSP_Fv_"//nom pm3="DSP_Mw_"//nom

setlabel_gc(dsp_fu,cm1,pm1,"postrait",n_bipod,idessai)
setlabel_gc(dsp_fv,cm2,pm2,"postrait",n_bipod,idessai)
setlabel_gc(dsp_mw,cm3,pm3,"postrait",n_bipod,idessai)

Sauvegarde des DSP dans la BD dbwrite(r(dsp_fu),WORK,"DSP") dbwrite(r(dsp_fv),WORK,"DSP") dbwrite(r(dsp_mw),WORK,"DSP")

.end

#setlabel

.begin

setlabel_gc(nn1,commentaire,pointmesure,fonction,nn2,idessai)

n=nn1

comment =sprintf("Bipode %d : %s", nn2, commentaire)
ptmesure=sprintf("%s_bp%d", pointmesure, nn2)

setlabel(r(n),"UnitéValeurs", "N2/Hz") setlabel(r(n),"UnitéValeurs", "N2/Hz") setlabel(r(n),"Commentaire", comment) setlabel(r(n),"PointMesure", ptmesure) setlabel(r(n),"Fonction", fonction) setlabel(r(n),"IdEssai", idessai)

.end

ANNEX 7

Astrium data for PR subsystem acoustic test

Acoustic test of PLANCK Primary reflector QM

Location and Channel Allocation of Accelerometers

The location of the accelerometers and a detailed description is defined in Fig. 9.1, Fig. 9.2 and in Tab. 9.1. For easy definition of the accelerometer locations the angle ϕ was introduced (see Fig. 9.1). For simple alignment of the accelerometer directions local coordinate systems were defined, which all have the z-axis normal to the back face surface and the x-axis pointing to the reflector center (see Fig. 9.1).

Fig. 91: Locations and local coordinate systems of accelerometers on the reflector

Channel No.	No,	Name	Coord Sys	Dir.	Position	φ[deg]	g RMS	max psd g²/Hz
1	A-01	A-MBC	Global	X	mounting bracket for PR-C	0		
2				γ				
3				Z				
4	A-02	A-MBA	Global	х	mounting bracket for PE-A	120		
6				Y				
6			8 B	Z)	2		
1	A-03	A-MBB	Global	х	mounting bracket for PR-B	240		
0		2		Y		-	_	
10	4.04	A REPORT	Land	×.	and from place in DD P		_	
10	<i>N</i> -04	MOPHU	Local	X	Dack face close to PH-C	0		<u> </u>
12				7		-		
13	A-05	A-RPRA	Local	X	back face close to PR.A	120	-	
14	1.00	ANDINA	LOUIS	v	DIRAY TROP CAOPE OF ETHINK S	14.4		
15		2	a	z				
16	A-06	A-BPRB	Local	x	back face close to PR-B	240	-	
17				Y				
18		S	S	Z	2			
19	A-07	A-BC	Giobal	Х	back face center			
20				Y		1		
21				Z				
22	A-08	A-BE000	Local	Y	back face close to edge	0	- marine and	· · · · · ·
23				Z			24.4	12
24	A-09	A-BE045	Local	Y	back face close to edge	45		
25				Z			17.6	4.5
26	A-10	A-BE090	Local	Y	back face close to edge	90		
27				Z			20.8	10
28	A-11	A-BE135	Local	Y	back face close to edge	135		
29				Z	and the second sec		18.8	2.3
30	A-12	A-BE180	Local	Y	back face close to edge	180		
31				Z			28.8	20
32	A-13	A-BE225	Local	Y	back face close to edge	225		
33				Z			15.8	.2.3
34	A-14	A-BE270	Local	Y	back face close to edge	270		
35				Z			20.0	10.0
36	A-15	A-BE315	Local	Y	back face close to edge	315		
37		100 million (1990)		Z.			17.0	4.3

Tab. 9 1: Channel allocation, locations and maximum seen test levels of accelerometers (channels with highest accelerations marked blue)

ANNEX 8

Astrium data for SR subsystem acoustic test

Acoustic test of PLANCK Secondary reflector QM

Location and Channel Allocation of Accelerometers

The location of the accelerometers and a detailed description is defined in Fig. 9.1, Fig. 9.2 and in Tab. 9.1. For easy definition of the accelerometer locations the angle ϕ was introduced (see Fig. 9.1). For simple alignment of the accelerometer directions local coordinate systems were defined, which all have the z-axis normal to the back face surface and the x-axis pointing to the reflector center (see Fig. 9.1).

Fig. 91: Locations and local coordinate systems of accelerometers on the reflector backside

Channel No.	No.	Name	Coord Sys	Dir.	Position	ę (deg)	g RMS	max psd g ² /Hz
1	A-01	A-MBA	Global	X	mounting bracket for SRA	0		
2				γ				1
3		Sec. 1		Z	i			1
4	A-02	A-MBB	Global	х	mounting bracket for SR-B	1.20		
5				γ				
6		Summer	and the second	Z	Same manual			1
7	A-03	A-MBC	Global	х	mounting bracket for SR-C	240	(- N
В				Υ				
9	Sec.	harank	2	z	ii i			33
10	A-04	A-BSRA	Local	х	back face close to SR-A	0		
11				γ				
12		in month	1.1.1	Z	S			
13	A-05	A-BSRB	Local	х	back face close to SR-B	1.20		
14		3 8		γ	2 · · · · · · · · · · · · · · · · · · ·			
15				Z			1	
16	A-06	A-BSRC	Local	х	back face close to SR-C	240		
17		1 1		γ	3			1
18		2 - 2	2	Z	2		3	3
19	A-07	A-BC	Global	х	back face center			
20		1 1		γ	8			38
21		3 8	1	Z	2 <u>.</u>			- 33
22	A-08	A-BE000	Local	γ	back face close to edge	0		
23				Z			16.5	2.5
24	A-09	A-BE045	Local	Y	back face close to edge	46		
25				Z			19.8	11.0
26	A-10	A-BE090	Local	γ	back face close to edge	90	X.	
27				Z			15.8	4.1
28	A-11	A-BE135	Local	γ	back face close to edge	135	e la construction de la construction de la construcción de la construc	
29				Z			18.0	2.5
30	A-12	A-BE180	Local	γ	back face close to edge	1.80		
31				Z			17.0	5.0
32	A-13	A-BE225	Local	γ	back face close to edge	225		
33				Z			16.3	2.2
34	A-14	A-BE270	Local	γ	back face close to edge	270	1.1.1.1	
36				z			15.2	3.3
36	A-15	A-BE315	Local	γ	back face close to edge	315		
37				z			17.8	6.0

Tab. 9 1: Channel allocation, locations and maximum seen test levels of accelerometers (channels with highest accelerations marked blue)

ANNEX 9

NIA6 PSD plots

PC/Analysis 2.29é (25/08/2004)

Edité le: 03/02/2005 à 11H20

Teralog 1999-2004

Derive Schutzlich de Pussane and by = (d-1-1);						(c	g)^2/	Hz2/	Hz							
View La Subgry - Donas & Security a de Flussance Advoy 1 de S. 1 Hz 30 40 40 40 40 40 40 40 40 40 4	2e-06 1e-06	1e-05 5e-06	0.0001 5e-05 2e-05	0.0005	0.001	0.002	0.005	0.02	0.05	0.2	0.5	2	(J)	10	2	100
T SUBCY L Dentis Spectrale de Plussame May Full 31 H L	Voie 1												· · · ·			
VT - Donate Secretaria de Puesanos filos 204-FILos - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	4: SUE						:									
Sector Labor 2000 Puesande 1010 22-111 (VIUE)	12Y - D							·								
Secretaria de Plussance.nh0j=t,t=t.1 Hz 100 00 00 00 00 00 00 00 00 00 00 00 00)ensité											1	•			
The Desards Spectrale de Plussance.n/Moy =1,df=1, Hz	50 Spect								· · · · · · · · · · · · · · · · · · ·	·						
Polisance (m ²) ²⁰⁰ 20 10 200 200 200 200 200 200 200 200 2) rale de										• • • • •					
ance (g) ²² PH21(MA9) 20 50 100 20 20 20 20 20 20 20 20 20 20 20 20 2	Puiss			· · ·				a.								
Deristie Spiedrate de Puissance nMoy=1,dt=3 1 Hz 200 500 100 500 100 200 200 200 200 200 200 200 200 2	ance			· · · · · ·		en el er		• •		e.						
Tel (MMAG) 200 100 100 100 100 100 100 100 100 100	(g)^2/H				+											
ACD The state of the sector of	N) [zh				<	\sum								-1		
200 500 100 200 200 10 200 200 200 200 200 20	A6)															
200 500 100 2001 14							*									
Densité Spectrale de Puissance.nMoy=1.df=3.1 Hz	200					2										
50 100 100 2001 Hz						W	\geq									
Densité Spectrale de Puissance. $MM0y=1,dt=3.1 Hz$							M	> i								
Densité Spectrale de Puissance.nMoy=1,df=3.1 Hz							•									
Densité Spectrale de Puissance. $nMoy=1,df=3.1$ Hz								-								
tie Spectrale de Puissance.n $Moy=1,df=3.1 Hz$	500					2		•							Uens)
local de Puissance nMoy=1, df=3.1 Hz						_<					• • •				ite ope	,
de Puissance,nMoy=1,df=3.1 Hz															ectrale	
Issance.nMoy=1,df=3.1 Hz															de Pu]
e.nMoy=1,df=3.1 Hz	1000								· · · · · · · · · · · · · · · · · · ·						Issanc	
2000) Y=1,df=3.1 Hz															e, nivio	
					-										y=1,ar	
	- - -														ц Ц Ц	
															2	
	T.															

															(g	r) ^	2/1	Hz2	2/Н	z												
2	1e-06_	2e-06	5e-06	1e-05	2e-05		5e-05	0.0001	0.0002		0.0005	0	0 001	0.002		0.005	0.01	0.02	3	0.05	<u>c</u>) 	0.2 	0.5		 ې ب	сл	10	20	2	50	
Vnie (. 1																		
S S	÷																							-								
1232-			•••			: •							-						•		· · • • • •											
Dens	-	-						~					-												: : : .							
site Sr)					-									i								. 1	+	
ectral			•		<	_				,											· · · ·							•				
0 1 0 7				L					\geq	>		•													:							
Juissa							\geq														• • •										т., 4	
ince [-	<	/							k.							: : • · ·			+								
10/^2/1					+-	4					7					· · · ·								 		 						
N 145 0					-	\ll			<u> </u>																					-		
IA6)							\leq		>																							A COMPANY OF A COMPANY
)																										
N	1					-	-			7		۱		:																	- 1	
UC	5	· ·····•••••••••••••••••••••••••••••••					• • :		<	_				-	-	1						+									-	
											=		~	-	-																	
										V													·							· • · · ·	4 -	
	i i									. 4	M.		*		5											4 - 14 -						
											2			-										:								•
000	1 700		• 1 •							-	×				-																Dens	
			-r								• • •	A M									1 1 *							: · · ·			ité Sp	
												۲																			ectral	
												-			5										:						e de F	
100																								.							uissa	
C	0																										•				nce.nl	
							•																								Vloy=1	
	-											•	 .																		_df=3.	
20	20						2				8 74.																				$1 H_Z$	
00	รี -						-																									
- IN	1																															

PC/Analysis 2.29é (25/08/2004)

Edité le: 03/02/2005 à 11H20

ALCATEL SPACE

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

PC/Analysis 2.29é (25/08/2004)

Edité le: 03/02/2005 à 11H20

Teralog 1999-2004

ALCATEL SPACE

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

PC/Analysis 2.29é (25/08/2004)

Edité le: 03/02/2005 à 11H20
Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

No. Deprive Spectration of Parison Spectratio Parison Spectratio Parison Spectration of Parison S										(g)	^2/	Hz	2/H	Iz						-					
	2e-06 1e-06	1e-05 5e-06	2e-05	5e-05	0.0001-	0.0002-	0.0005-	0.001-	0.002-		0.01)	0.02-	0.05	0.1	0.2	0.5	د	N	U	n C	10	2	50	-00
	ŏ										:								Lain Hand			1			
Devices Subortials de Pluseanon Antinge I (f. T. 1 Hz)		• • • • •													••••;									• 1	• • • •
20 00 00 00 00 00 00 00 00 00 00 00 00 0	_																								
				7	•		· • •									• •									•
500 900 900 900 900 900 900 900 900 900	50	\langle																	;				•		
100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200					>	> •		.1	,															÷	
100 200 100 200 100 200 200 200 200 200			\searrow		. : 																			• •	
boo 200 900 1000 200 200			λ					-															+ +	•	
0 200 900 100 200 200 200 200 200 200 200 200 2	1		\subseteq			-	~								· · · ·]		·			+			- 		
200 500 1000 2012	õ				\leq																				
200 500 1000 2012						7											-								
200 500 1000 200				\leq			>																		
200 500 1000 200						2	>										-								
$_{500}$ $_{1000}$ $_{1000}$ $_{200}$	200						~~~~																		
500 1000 2000						V																:			
Densite Spectrale de Puissance.nMoy=1.df=3.1 Hz							2						1			1 	1 1 1 1 1 1								
Densite Spectrale de Puissance.nMoy=1.df=3.1 Hz	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4						~		-										-						
500 1000 1000 2000				1		· · · ·	A.	>						:		· .							: I		
site Spectrale de Puissance.nMoy=1.df=3.1 Hz	500					\leq																	-	Den	
1000 2000								*		·														sitė S	- -
1000 2000				: : : : : :		 																	1	pectra	
Puissance.nMoy=1.df=3.1 Hz								5																le de	
ance, nMoy=1.df=3.1 Hz	10			• • • • •						<u>></u>	XXXXXX	-						•••			•••••••••••••••••••••••••••••••••••••••		-	Puiss	
hMoy=1.df=3.1 Hz	8								-									-						ance,	
									-									:						nMoy₌	
																								=1.df=	
																								3.1 H.	
	2000					Ĩ																		2	
	r				Januari																				

PC/Analysis 2.29é (25/08/2004)

Edité le: 03/02/2005 à 11H20

Edité le: 03/02/2005 à 11H20

PC/Analysis 2.29é (25/08/2004)

Edité le: 03/02/2005 à 11H20

Edité le: 03/02/2005 à 11H20

Voie 27: GVA30Z - Densité Spectrale de Puissance [(g)^2/Hz] (NIA6) 50 100 Edité le: 03/02/2005 à 11H20 200 500 1000 0000 Teralog 1999-2004

0.0002

5e-05

0.0005

0.001

0.002

^2/Hz2/Hz

0.05

0.2

0.5

100

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

ALCATEL SPACE

Densité Spectrale de Puissance,nMoy=1,df=3.1 Hz

50

5 10 20

(g)

0.005

0.02

1e-06^{...} 20 2e-06

2e-05 1e-05 5e-06

PC/Analysis 2.29é (25/08/2004)

PC/Analysis 2.29é (25/08/2004)

Teralog 1999-2004

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

PC/Analysis 2.29é (25/08/2004)

Edité le: 03/02/2005 à 11H20

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

PC/Analysis 2.29é (25/08/2004)

Edité le: 03/02/2005 à 11H20

PC/Analysis 2.29é (25/08/2004)

Edité le: 03/02/2005 à 11H20

PC/Analysis 2.29é (25/08/2004)

Edité le: 03/02/2005 à 11H20

Edité le: 03/02/2005 à 11H20

PC/Analysis 2.29é (25/08/2004)

Edité le: 03/02/2005 à 11H30

				(g)^2/Hz2,	Hz	 	
1e-06	5e-06	0.0001 5e-05 2e-05	0.002	0.02 0.01	0.05	бл. <mark>1</mark> 	50
				· · · · · · · · · · · · · · · · · · ·			
				\sum			
				M N			
							Densité
							Spectral
							e de Pui
							ssance,r
							nMoy=1,c
1							3f=3.1 H
ANNA' A							N
1.							

Edité le: 03/02/2005 à 11H30

ALCATEL SPACE

PC/Analysis 2.29é (25/08/2004)

Edité le: 03/02/2005 à 11H30

ALCATEL SPACE

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

PC/Analysis 2.29é (25/08/2004)

Edité le: 03/02/2005 à 11H30

												(g)^2	2/H	z2/H	Iz									
1e-06	2e-06		5e-06	1e-05	2e-05	5e-05	0.0001	0.0002		0,0005	0.001	0.002	0.005	0.01	0.02	0.05	0.1	0.2	0.5	بــــــــــــــــــــــــــــــــــــ	2	ŋ	10	20-	
20		· · · · ·		·:+·:-		an complex			, a, an a u				1						:		r				
л ?: ?																									
100																	••••			: • • · · ·			: 		
- - 																									
												\geq				· · · ·					· ·				
ა ი ა ე	 																								
	-									-				\geq											
	-				• •							L			-	,									
1000						· · · ·			•		-				. 2										
													· · · ·				· · ·								
100																		$\langle $							
N) [7]																		5							
1261																		Ę							
																		\leq	-						
200																	~		X						
																		i							
																		-						- dan - h	
	-			+				-										Ŵ		/	-	•			
																	5	~	-						
																4	VMA								
500	+ .									• • • • • • •		14				-	5								
										· · ·					.				: 						
			·· · · · · ·				1															· · · ·			÷
1000							: بریستین ا								, 		5								
														5											
220														-											
مینی مر													-1												
Ţ														-											

ALCATEL SPACE

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

PC/Analysis 2.29é (25/08/2004)

PC/Analysis 2.29é (25/08/2004)

0.0001 0.0005 0.0002 0.005 2e-06 5e-06 2e-05 5e-05 0.001 0.002 1e-05 1e-06; 0.01 0.02 0.05 0.1 0.2 Voie 64: GVC86Z - Densité Spectrale de Puissance [(g)^2/Hz] (NIA6) 50 100 Edité le: 03/02/2005 à 11H30 200 500 1000 2000 Teralog 1999-2004 Ţ,

20-50

10 G

100

ALCATEL SPACE

Densite Spectrale de Puissance, nMoy=1, df=3.1 Hz

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

PC/Analysis 2.29é (25/08/2004)

(g)²/Hz2/Hz

0.5

N

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

PC/Analysis 2.29é (25/08/2004)

											(g) ^2	/H	z2/H	łz										
1e-06 2(2e-06	5e-06	1e-05	2e-05	00-90 C0-90	0.0001	0.0002	0.0005	0.001	0.002	- 20	0.005	0.01	0.02	0.05	0.1	0.2	0.5	د یہ ا	2	5	10	20	0	5
0 (V71,																-									
Réf.:																									
PRP1												: ,		. :		· · · · · ·								- 1	
20//*)					-				>											;					
[(g)]							\leq		i			• • • • •												1	
50 2/Hz]																					•••				
(NIA6	1		t.				·		- - -			· · · ·	11.	\geq	د				:			: 			
)												~			-				1.1.1					· · · · · · · ·	
												: [~ ^ ,	\leq	7					- -						• • •
10							, 1.	·· · · ·			<	\leq	· · · /			······			4.6., 1 1						
0											<	>		-											
	10							2	+++++			-													
		-									•	V	5												
N													K												
8												~	\geq	7											
										-	\leq							· ·							
														-	^	· · · · · ·		• • • • •							
								- 				2													
500								N.V.											• • •						
											<u></u>				· · · · · · · · · · · · · · · · · · ·					. L					
									-											• •				: ' 	
		:								~		<u></u>													
10													4 - 4 4 - 4 4 - 4												
00								-		K	-														
	-										Beann														
										6000	-														
N											lik met det er														
0.00										Witer-															
Ĩ						н « Ка																			

PC/Analysis 2.29é (25/08/2004)

Edité le: 03/02/2005 à 11H30

PC/Analysis 2.29é (25/08/2004)

PC/Analysis 2.29é (25/08/2004)

PC/Analysis 2.29é (25/08/2004)

 $(g)^{2/Hz2/Hz}$

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

ALCATEL SPACE

100 50

20 õ m

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

PC/Analysis 2.29é (25/08/2004)

Edité le: 03/02/2005 à 11H30

PC/Analysis 2.29é (25/08/2004)

PC/Analysis 2.29ė (25/08/2004)

Edité le: 03/02/2005 à 11H30

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

PC/Analysis 2.29é (25/08/2004)

Edité le: 03/02/2005 à 11H30

PC/Analysis 2.29é (25/08/2004)

Edité le: 03/02/2005 à 11H30

PC/Analysis 2.29ė (25/08/2004)

PC/Analysis 2.29é (25/08/2004)

Edité le: 03/02/2005 à 11H30

Edité le: 03/02/2005 à 11H30

ALCATEL SPACE

ALCATEL SPACE

Edité le: 03/02/2005 à 11H30

PC/Analysis 2.29é (25/08/2004)

Edité le: 03/02/2005 à 11H30

PC/Analysis 2.29é (25/08/2004)

PC/Analysis 2.29é (25/08/2004)

PC/Analysis 2.29é (25/08/2004)

PC/Analysis 2.29é (25/08/2004)

Edité le: 03/02/2005 à 11H35

ALCATEL SPACE

Ę

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

ALCATEL SPACE

100 -

50

20

0.5

PC/Analysis 2.29é (25/08/2004)

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

1e-06	2e-06	5e-06	1e-05	2e-05	5e-05	0.0001	0.0002	0.0005	0.001	0.002	0,000 	0 005	0.01	0.02	0.05	0.1	0.2	ç	<u>о</u> д	 2		5	10	20		50	
													-								· · · · · · · · · · · · · · · · · · ·			10			
50					· · · · · · · · · · · · · · · · · · ·	 a set of the set of							:				•										
10							· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	• • • •									· · · · · · · · · · · · · · · · · · ·			-		· · · · · · · · · · · · · · · · · · ·	
200							4 -			• • •								a a constante de la constante de		and a second						· · · · · · · · · · · · · · · ·	
																									-	· · · · · · · · · · · · · · · · · · ·	
500																		e de la companya en anno en año	all an and a second and a secon	 	· · · · · · · · · · · · · · · · · · ·						
1000								· · · ·				• • • • •			 In the second sec											· · · · · · · · · · · · · · · · · · ·	
2000																											

 $(g)^2/Hz^2/Hz$

PC/Analysis 2.29é (25/08/2004)

Edité le: 03/02/2005 à 11H35

PC/Analysis 2.29é (25/08/2004)

Edité le: 03/02/2005 à 11H36

PC/Analysis 2.29é (25/08/2004)

PC/Analysis 2.29é (25/08/2004)

PC/Analysis 2.29é (25/08/2004)

Edité le: 03/02/2005 à 11H36

PC/Analysis 2.29é (25/08/2004)

(V118, Réf.: FPU220//*) [(g)^2/Hz] (NIA6)

50

100

200

500

1000

2000

77

Teralog 1999-2004

2e-06 1e-06 20

5e-06

1e-05

2e-05

0.0005-

0.0002

5e-05

PC/Analysis 2.29é (25/08/2004)

PC/Analysis 2.29é (25/08/2004)

Edité le: 03/02/2005 à 11H36

Teralog 1999-2004

PC/Analysis 2.29é (25/08/2004)

Teralog 1999-2004

PC/Analysis 2.29é (25/08/2004)

Edité le: 03/02/2005 à 11H36

Teralog 1999-2004

Edité le: 03/02/2005 à 11H36

Teralog 1999-2004

PC/Analysis 2.29é (25/08/2004)

PC/Analysis 2.29é (25/08/2004)

PC/Analysis 2.29é (25/08/2004)

PC/Analysis 2.29é (25/08/2004)

PC/Analysis 2.29é (25/08/2004)

Edité le: 03/02/2005 à 11H36

Teralog 1999-2004

PC/Analysis 2.29é (25/08/2004)

PC/Analysis 2.29é (25/08/2004)

Edité le: 03/02/2005 à 11H41

ALCATEL SPACE

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

Edité le: 03/02/2005 à 11H41

Teralog 1999-2004

eral
ĝ
666
-200

ALCATEL SPACE

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

	•							(1	Micr	odet)	2/	HZZ/H	IZ								
1e-06	2e-06	1e-05 5e-06	2e-05	0.0001 5e-05	0.0002	0.0001	0.002	0.005	0.02	0.05	0.2	0.5 -	Ν	υĒ	20	50	100	200	1000 500	2000	5000
20 (V15	ti	a dan ang ang ang ang ang ang ang ang ang a							-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -									···· • • • • • • • • • • • • • • • • •	****		
50, Ré								. /	\rangle												
E B3																					* * * * *
-1) [[N																					i.
licrode			-					$\sum_{i=1}^{n}$												•	
50 50																				P	
IN) [7]								Ć													
A6)									···· ·				• •							÷	
								. /	<u></u>												
100						-	۲	5													
							3)	1. 1												
							:	۷	1												1
200	-								3												
	-								NV	>											
								N.													
							\leq	5													
							~			· · · · · · · · · · · · · · · · · · ·	: . :										
50				: : : : : :				M													· · ·
Ō							Umy	5								، بر سر اند					40
			·] ·			, , , , , , , , ,	W. W.														-
																			· · · · · · ·		
100			· .			J	N.	• • • • • •		· · · · · · · · · · · · · · · · · · ·									· · · · · · · · · · · · · · · · · · ·		
õ							jima 														
					Part of the second seco																
icić																					
				ANNI,	- -																
ţ																					

PC/Analysis 2.29é (25/08/2004)

Γ,	
ÍO.	
5	
li I	
S	
I ∑	
5	
12	
1111	

Edité le: 03/02/2005 à 11H41

Teralog 1999-2004

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

PC/Analysis 2.29é (25/08/2004)

(Microdef)²/Hz2/Hz PC/Analysis 2.29é (25/08/2004) 0.0001-0.0002 0,0005 -1e-06⁺⁺20 0.001 0.005 0.002 10000 5e-06 2e-05 5e-05 2e-06-1e-05 5000 2000 0.01 0.02 1000-0.05-0.1 100 200 500 0.2 0.5 50 20 10 υn (V154, Réf.: B6-1) [(Microdef)^2/Hz] (NIA6) 50 100 Edité le: 03/02/2005 à 11H41 200 500 1000 2000 Teralog 1999-2004 ar Na

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

ALCATEL SPACE

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

PC/Analysis 2.29é (25/08/2004)

Edité le: 03/02/2005 à 11H41

Teralog 1999-2004

PC/Analysis 2.29é (25/08/2004)

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

PC/Analysis 2.29é (25/08/2004)

(Microdef)²/Hz2/Hz PC/Analysis 2.29é (25/08/2004) 0.0005 0.0001 0.0002 1e-06° 20 10000 0.001 0.002 0.005 5e-06 1e-05 2e-05 5e-05 2e-06 5000 2000 0.01 0.02 0.05-1000 500-100 200 0.1 0.2 0.5 50 20 10 (V158, Réf.: SG01) [(Microdef)^2/Hz] (NIA6) 50 Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6 100 Edité le: 03/02/2005 à 11H41 200 500 1000 2000 Teralog 1999-2004 Т. М

ALCATEL SPACE

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

PC/Analysis 2.29ė (25/08/2004)

												(M:	icr	ode	e£)	^2/	Hz2	2/H	z										
	1e-06	2e-06	5e-06	2e-05		0.0001	0.0002	0.0005	0.001	0.002	0.005	0.01	0.02	0.05	0.1	0.2	0.5	<u> </u>	N	ហ	10	20	50	200-	500-	1000-	2000-	5000	10000-
(V16	20	•••••• <u>•</u>		+			1.1.1.1 (Mart 11					la nestr La la La la														-			
0, Réf.													/	\rangle															
: SG1 .	ŀ							· · · ·			• - •		L					••••						· ·					· · · · · · ·
1) [(Mio			1 4 1 -				-	 												7				-					- -
prodef)																/				-									
^2/Hz]	50	•							• • • • • • •								>												
(NIA6)								·						• • • • • • • •	×							• ;							
			- • ‡-	+	•			- 			- ÷.				•			ζ	\sim						1.44			· · · · · · · ·	
	100						· •	· · · · · ·					•					÷					$\langle \rangle$)					:
	0									:	. :								5									i	
													i											~		•			
																				V	\langle					-			
	200									. :																			
											1						· · ·		X	T I									
					i					· 1-																			
																		<u>+</u>							-				
																	M.M.	>											
	500				· • • • •			:	 										Z										
												- 															• •	• • • • •	
								- 1			· ·	•		Ų						·		•••• i •		 				· · · · ·	
	10												_										•					•	
	000							-					, P		5	-		•				• •				1			· · · · · ·
													Martin .																
	:												SZE																
	200											THE REAL PROPERTY IN THE REAL PROPERTY INTO THE REA																	
												TE STATE																	
	Ţ,																												

ALCATEL SPACE

-2004

															(M	iC	rc	de	et)		2/1	IZ.	2/1	HZ														
1e-06- 2	2e-06-	00-9C	1e-05	2e-05)) 	5e-05	0.0001	0.0002		0,0005	0.001-	0.004	- 200 0	0.005	0.01	0.02	2	0.05-	0.1) 2	0.5	د .	N	J	ហ្	10-	20)	50	100	200-		500-	1000	2000	0000	- 2002
0 						i . T				1			ir. 10																							1		
N a R																																						
f. 00						• • •	! • • • •			: • •										_						• •										-	•	
2111																						~			-													
Microv																											J								· · ·	. :		
50 tef											-											<) : · · · ·				•											
/Hz] (I																							<u>،</u>				· · · ·											
								÷		:									<		-		· · · · ·			-												
		****												:							5)								÷								
1		, p																					,		-	2						•	÷					
8																							C		-	لسب	X											
																										2	, , ,											
																											-		3	> :								
														:	-									~	3													
200																	• •			•					• •		/~~ Y	\geq		-								
																													-	5	>							
										· ·		 : ,					•										5	2		_	++	-+						
111000 UK 10000						1																			< Y			• •										
											· · · · ·	-							1	: :	•						2			••••••								
50		÷																							, v	2			1									
0		1.						:															n N		~													
					: : ~		-		-							-									-		a ·											
	-																				ALM.		5			•						•	-	 				
10												-	:							, AL	Ś				•	•	-							• • •				
8	+																		7	Ē	Z																	
																		W.	<i>R</i>																			
× 1																	· · · · · · ·	-																				
9005																	WH I																					
																	Å	*																				

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

Teralog 1999-2004

Edité le: 03/02/2005 à 11H41

(Microdef)²/Hz2/Hz PC/Analysis 2.29é (25/08/2004) 0.0002 0.0005 0.0001 1e-06⁻20 5e-05-0.001 0.002 0.005 10000 5e-06 2e-05 2e-06. 1e-05 5000-0.01 1000-2000 0.02 0.05 500 0.1 200 0.2 100 0.5 50 10 20 σ (V163, Réf.: SG22) [(Microdef)^2/Hz] (NIA6) 50 Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6 100 200 500 1000 2000 1 N

PC/Analysis 2.29é (25/08/2004)

Teralog	
1999-2004	

											(M:	icr	od	ef)	^2	/H2	2/	Hz									
1e-06	2e-06	1e-05 5e-06	2e-05	5e-05	0.0001	0.0002	0.0005	0.001	0.002	0.005	0.01	0.02	0.05	0.1	0.2	0.0) n	· N	U	10	20	50	100	200	500	1000	2000
20 20	<u>+</u>		····· 117						·····			e nin				Init-word				1	eren stars				1		
25											4																
éf S														-			: ! · · ·		. 1	•							
G24)																											
r(Mic)					· · · ·	.1																					
ndef)																											
->/Hz																					·						
											 					ᠥ		•									
6										. : .				· · · · · · ·													
															!	· * 1					· •	•					
100								 .			4.4							•									
							i													•							
2																											
00																			,							1	
						1															1						
																.			·		4	-					
													1														
: 																-											
50							-	:: !																: 			
ŏ																											
		· · · · · · · · · · · · · · · · · · ·		1 a.					:																		
-		· · · • • · · · · · · · · · · · · · · ·																									
		: 									· · · ·																Martin
1000				·	ان. مدينين او															- + ++++++++++++++++++++++++++++++++++							A A
1																										A WE	5
																										WWW.	
																									N.M.	A. A.A.A.	
200																								· -			
0																											
Ň																								e			

Edité le: 03/02/2005 à 11H41

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

PC/Analysis 2.29é (25/08/2004)

PC/Analysis 2.29é (25/08/2004)

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

				_										(Mi	cr	ode	ef)	^2	/H2	22/	Ήz						_			-				-
	1e-06	2e-06	56-06	1e-05	2e-05	0	5e-05	0 0001	0.0002	0.0005	0.001	0.002	1	0.005	0.01	0.02	0.05	0.1	0.2		с л-		0	UI	10	20	00		100	200	500	1000	2000	5000	0000
×0 (V1												to conserve the	r: "T				Ţ						- 		n d	niir	- 	h	+ 					, and the second se	
69, R																																			
éf∴ S(.:						•••••••••••••••••••••••••••••••••••••••				$\sum_{i=1}^{n}$:		
343) [l																	
(Micro			a				•	••		т. т 	•																	· ; • • • • •							•
ر v(def)	بر														:															:					
2/Hz]	- -																																-		
(NIA6																	e			L	X			· • •			1								· · · · · · · · · · · · · · · · · · ·
٣						-										•						ζ							i.						
								14 1 ¹			·			:							<		:						-				0		
	100																				۲	5													
																					<		ζ												
		1																					<	•	-		- /								
																								Y			5							1	
	200																		*	- 1			\leq	>	>										-
	-		1 :																			×													
									:					. •								V V	5	5					-						
							-		\$.	- (5	3													
																			:		< 4 <	\sim	:												
																					×	~~													
	500 -			• • • • • • •		•	- 1- 1 - -								rin Tir			i			And I	-			· • • • • · ·										
									1	-					·						MAN						•								•
											••••••										Ary .							• •	1				-		
														· · .						- Mary					· - 					: .					
	1000						1 - 1 - 1 - 1 - 1 1 - 1 - 1		. 3							~				When	7	-					•			·			:		
																												•							
																				-															
																			Man	• .															
	20								,										The second secon																
	00																	Ţ																	
	Т. N									: -							99 19 19 19 19 19 19 19 19 19 19 19 19 1	£																	

PC/Analysis 2.29ė (25/08/2004)

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

																	(M	ic	ro	de	E)	^2,	/Hz	2/	Hz												
	1e-06	2e-06	5e-06	1e-05	20-97		5e-05	0.0001		0 0002-	0.0000	0 0005	0,001-	0.002 -	2	0.005-	0.01	0.02	2	0.05	0.1	0.2	0.5	, I	- N)	տ	10	20	50-	100	200	500 -	1000 -	2000 -	0000	5000-
	-	in tora																÷	:							1.											
5																												:									
2										1	1 1						•		. :						,									•	i		••••
		:									•								•					$\left(\right)$								1			- 1 2		
- 												:									р : .1.																
50							• •																7			-								-			
												· ļ					•						Ì				• • • •										
							• •	•••			• •								•				1		\langle			- 4									
																÷										ζ						÷			- 1		
100	, , ,						T													+++			+				7									140 - L L	
																									<	\leq				i -							
			•													•										2	•		-	:							
																													5	\geq							
20	3																								-		Z S	Å			- 						
0	> -	-																								<	$\overline{\ }$	>						¢.			
																										V V	N.										
		····; — ·				: : :		+ + + + + + + + + + + + + + + + + + + +		. ,																<	\mathbb{N}^{n}					<u>-</u>	•		}		- ·
														:		1								-		\mathbf{X}	\$										
		i .	•••								1		-ļsip I						,	1	-							-	•		•						
000																									 <	3	: 			:	••••			· · · · · · · · · · · · · · · · · · ·			
										•	- - - -														A W	λ 			· ·		:	-+					
									1	•															Mm			÷									
																								-	Trunk-			1	•						-		: .
											1														Mumul	- -	••••										
ODC	3+		· ··· ·								1 .00														And a			1.	+-					· • • • •		+	
																								Munn													
																								WWW.	1												
2000	5000																						Ţ	2									÷				
																						~	Ž														

PC/Analysis 2.29é (25/08/2004)

ш
121
T.
ICO
14
10
(\mathbf{O})

														(Μ1	cr	od	et)	2/	HZ	2/1	Ηz												
1e-06	2e-06	5e-06	1e-05	2e-05	ch-ac		0.0001	0.0002	0.0005		0.001	0.002-	0.000	0 005-	0.01-	0.02		0.05-	0	0.2	0.5-	<u> </u>	2	c	ນຸ	10	20	50-	100	200	000		1000-	2000-	5000-
-	lsiles is					- - - - -		1916				ţ.; :	6											- H - 1				: :							1
							• •																	- 1		· .•				•					
																		-	-	-														1	
							-	,	• •	,		; .										· · · · ·]				 		-	- +	••••		•	• •
																			\leq													- 1 - 1 - 1 - 1			
-						:															\sim	\sum										i			
													• •				•	7	-		-					i : . '						- 1			
				•	• •					••••											7	ر_					•				 				1 1
		· · · ·													•					:	~	Ζ													
+																	•						-				>			1					
																	•						-	/		-	>								
																										<	3				-				
														-											<	E	>							1	
																	· · ·						-	<	5	5									
																									N		N	>							1
																										_	2	>							
											• •		;													5	_	$\sum_{i=1}^{n}$							
																										Z		>							
			-											****					*					•+	ÅÅ			.							
2.4		- 1 				· · ·																Å.M.													
					1.1					-										•	WV.	n. A						: : : :		-					
																								•	-	 									
		• •																																	
	•			1										: 			•				5				••••		4								• •
		•																	- Why	J.														• •	
																		ALA.																	
																		ž	F																
																	W.																		
																	*																		

PC/Analysis 2.29é (25/08/2004)

Edité le: 03/02/2005 à 11H41

Teralog 1999-2004

													(M)	icr	ode	ef)	^2/	Hz2	2/н	z										
1e-06 ₂	2e-06	5e-06	1e-05	2e-05	co-ac		0.0002	- cuuu U	0.0005	0.001	0.002	0.005	0.01	0.02	0.05	0.1	0.2	0.5		2	σı	10	20	50	100	200	500	1000	2000+	
000					- - - -			:							Innel -								-				. ,	:		
-														1																
							•				•	• •	•••••	·	1				- 								•••	••••		
																						7					•••			
			· · · ·			•		: .					· · · ·									1					• • •			
50															•••		2													
														·			- [1.1										
	:											· ·							\sum									:		
											·····						 			5										
100					+									· •	•					<u>}</u>										
																				~	- / v	\mathbf{N}								
																							~	\geq	•					
												i								<		-								
200															· · · · · · ·		an and		-				\leq					•		
																						-	V.							į
					· :																	Y	~	<u> </u>	/\	٨			-	
																				<	نخر									
										• • • •					•	-+			5	5	a • • • • •									
500			· · · · · · · · · · · · · · · · · · ·							i i i i i i								-	2											
0			Here					-	: ••• : •									M W	2			: 				1 • •	- 1 	-		
									: • •								N.	R.								:				
																	MWW	•												
100				- #	•												M. M.	. : [• • • •	11). -1 		 	· · · · ·		· ! ·			
0	-										;					hull a	È.													
	-																													
															4 f.															
200C															iuli															
`*															ALLEN A															
j. Ko																														

e
03/
22
200
ລ.
17
41

Teralog 1999-2004

Edité le: 03/02/2005 à 11H41

0.0005 0.0001 0.0002 1e-06^{...} 20 0.001 0.002 0.005 2e-06 5e-06 1e-05 2e-05 5e-05 10000 5000-0.01 0.02 0.05 1000-2000 500-200 0.1 0.2 100 0.5 50 20 10 (V174, Réf.: SGVA2) [(Microdef)^2/Hz] (NIA6) 50 100 200 500 1000 2000 T.

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

ALCATEL SPACE

PC/Analysis 2.29é (25/08/2004)

(Microdef)²/Hz2/Hz

eralo	1
9	
1	1
- 93	1
ō	÷
- Ń	1
ġ.	
2	
-	

000 00 00 00 00 00 00 00 00 00	
	2000 1000
	-+
100 to the test of the test of	
	a 1 ta.
	:
	+

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

PC/Analysis 2.29é (25/08/2004)

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

ALCATEL SPACE

1e-06	2e-06-	5e-06	2e-05	5e-05	0.0001	0.0002-	0.0005	0.001	0.002	0.005	0,01	0.02-	0.05	0.1) 7 <u></u>	N	U	10	20.	50	200-	500	1000	2000	5000-
	··• •• ·•• ••• ·								1 11 14 11 1		: : : : :															
						ł	•	•••••	-					/												
																/								-		
1											. :								>							
-																	-	5	↑							
-						•											<							 		
																						n. 40 1				
			:	•		• •			-		· · · · ·							5	· · · · · · · · · · · · · · · · · · ·							
															Y			\leq	N							
			L													<u> </u>	$\overline{\boldsymbol{\lambda}}$									
																		<								
			-				-					1						\sim	2							
									1							-										
																-	S S S									
		· • • • • • • • • • • • • • • • • • • •				•								· · · · · · · · · · · · · · · · · · ·		\sim	2									· · · · · · · · · · · · · · · · · · ·
													: : : : : :													
1		-										-			M~~								· · · · · · · · · · · · · · · · · · ·			
) .														¶ vv												
														W MN		· · · ·										
-														Minn							• • • •					
									-					-THAN -								· · · ·				• • • •
						:								4 min												
														MWMM												
														:												
																Ł										

PC/Analysis 2.29é (25/08/2004)

Edité le: 03/02/2005 à 11H41

Teralog 1999-2004

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

PC/Analysis 2.29é (25/08/2004)

Teralog 1999-2004

PC/Analysis 2.29é (25/08/2004)

Edité le: 03/02/2005 à 11H41

Teralog 1999-2004

ALCATEL SPACE

1e-06 2	20-00	2	5e-06	1e-05	2e-05		5e-05	0 0001	0.0002	0.0005	0.001	0.002	1 1 1	0.005	0.01	0.02	ç	0 0	0 1	د د	0,5	<u>د</u>	2	د	лc	10		50	100		500 1	1000	2000 +	5000	0000
0								1					100		. : 171-			- T*111			: 		· · · · · · · · · · · · · · · · · · ·					 				e fra F			
anna Shaanata a shaan												;																			•				
											• • • • •			• • •				· · · · ·															•		
														• • •	:								7						1						۰۰ ز
50							· · · · ·									-			I I 	l															
								:						:				• • •		. 4	- -		$\langle - \rangle$	\geq	>										
																									\geq			· · ·							•
								 										i · ·						4		\geq	>			• : • :					
100		-										-		• • •					1				ξ	\geq	>										
									ł										<	2														•	
						-			-				1							V	5	\geq													
	-		1																			7		\sim	>	7									
200							-							•								-		V	\geq	>	-						1. - -		
	1																				¥	V		-											
				- 	100 () () .								•							 			-	-			- - -			•		+.	-		
							1													VI VIV	×			-				:							
(2)																			2.2	A ~ A														:	
00	-					*			-				··· ·					· · · ·	m																
						. i.													M.M.	•	÷ -					··· ·							49 10		
	-																		M		• • •					· ·								· · ·	
100							 			 					- - -				MMM			1 1 			••••	•			· ;] · 	· · ·					••••
0	-																		MAN WAY	L.,															
	-																					X	-												
200																								~~~	~										
90																				2				-			be Specific Actor								
1																			• =																

PC/Analysis 2.29é (25/08/2004)

9-2004

	-				_										(M:	ic	ro	de	£)	^2/	Hz	2/	Hz													
	1e-06;	2e-06	5e-06	1e-05	2e-05		50-001		-<000	0.0005	0.001-	0.002		0.005	0.01	0.02		0.05	0.1	0.2	0.5	> 1	L P	S.	ហ	10-	20	00		100	2000	500	1000	2000	5000	10000
N18	0												h	. je		1								-	:								-			
2 Dof	-					-										(-			
SGI									: 1					• •	· · · · · ·					1								- - •	-			· · · ·			• • •	
EIS1)																					7				:											
[[Mic]							 				1 1									1											· ·			· • • · · ·		
'ndefl'	50										••••							:		L								: .					•••			
12/Hz]													;	• •					k -k 	<															. 1	
AUN/A																									>								:::			
_							· · · · ·																			\geq							 			
	100																						5		ב 										e	
														1						<	\downarrow	A														
					:					- - :										: 			5	\geq	ł.,											
																							\sim													
	200					- 1								:									2		>											
																						M v	~													
																		-			~		-													
																					∇V	Λ														
																		· · · ·	< v	Mv K												 				
	ភ្																		MW.	N					-										:	
	00																		No.	2																
						 			***	1 * 1 * 1 * 1	· · · · ·								M W	•																· · ·
								-											WWW																	
	10					-			÷										NHUMN	•												. ! *				
	00																		M.														1			
																				mylyn																
																						×														
	Ņ																						E	8		>										
	000																				ž	and the second second	<u> </u>													
	Ţ					.0 G														Ż	<u>.</u>		.													

ALCATEL SPACE

(Microdef)²/Hz2/Hz

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

PC/Analysis 2.29é (25/08/2004)

99-2004

Ealle le: U.S 52000 a 71714

						0	0	0				()	lic	ero	de	£)′	2/	Hz	2/H	z												
1e-06 20	2e-06	5e-06	1e-05	2e-05	5e-05	.0001	.0002	0005	0.001	0.002	1210	0.005	0.01	0 0 2 7	0.05	0.1	0.2	0,5	د ا	N	u U	10 Harit	20+	30	100	200				2000 	5000	0000 T .
 ۱۷187																														-		н
₽óf.														1																		
														Ľ	/	- 																
63) [(N		: - • •				•	 :		د : چند د							· · · ·		2												-		
50 100000							-												\searrow					:								•••
f)/0/Hz										:		:	; -										-	>							· · · · ·	•
	-	: • • •									• :	· ; ì ·														,					•	••
						ЦЦ 							1 								•		<u></u>		•	• •						
100											,								5		 ! !									•		
	-						-										\leq	2		-												
							:													-	$\overline{}$	\rightarrow	7									
	-																					$\Lambda \Lambda$										
200																				×	2	>			-							-
																				2		١٧										. . -
											:			••				~		•	>			_		· · • . I I				-		
												-									-	· · · · · · · ·		:				:		-	-	
(ה																1 A 7	P															
00																. .	Mr. J												1	· · · · ·		
						+										V.	M AN						·				*		· · · · · · · · · · · · · · · · · · ·			- - - - -
																	Am Num												-			
100		· · · ·		:												•	A Luran						•		 	•	: : . 4					
0																	MWWW															
																																I .
																				-	×.	>	**									
2000																		Æ	- Z					-								-
																	• • •	Ĩ														

ALCATEL SPACE

PC/Analysis 2.29é (25/08/2004)

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

PC/Analysis 2.29é (25/08/2004)

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

PC/Analysis 2.29é (25/08/2004)

ALCATEL SPACE

į

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

_														(Mi	lcr	od	lef	E) ^	2/	Ήz	2/	Ήz														
	1e-06,	2e-06	5e-06	1e-05	2e-05		5e-05	0.0001	0.0002		0.0005	0.001	0.002	0 005	0.01	0.02		0.05	0.1	0.2	0.5) 1 -	ا ب ـ	2	U	10	20		50	100	200	000	1000	1000	2000	5000-	10000
(V18	20						ord:+***							 +			ſ				- 11 - 11 -							al ania et e				1		 	terre e I		
39, Réf																																					
l: SGI			:						-			-	•	 			L	· · · · · · · · · · · · · · · · · · ·														: : : :					
-FI71)															-						_	7															-
[(Micn				i kana i T													•			5														* • •	•		
odef)^;	50						•••••••••••••••••••••••••••••••••••••••											• • •	• •		_		-											•			
2/Hz] (•											•				4 1 1 4 1 1 4	-	:	\leq															- 	
NIA6)																							2	-												::::	
									-																\wedge	\sim	\geq	>	-								
	100										- + • ;	1.		 				-						<		>	•										
																						\sum_{i}	_							•							
						-																	:			>											
	200																	44		2		L N			• •		•••			•							
																		•		-		 8															
		Ţ																		V I	=		,						: :	 		t t					
																		-	N.	ر ع							;			- P 							
														 	+ - ·				Ϋ́Υ,											1							
	500									-	• • • • •				i di I tim				July /							· · · · · · · · · · · · · · · · · · ·	•							4			
			a			: : : :	· · · ·				+								Munh	•										• • • • • •				• •		i 	
					-					a - 1 1				 				1	NWW I							1											
																				MWWW																 	
	1000											:								A MANAGER	E .								- + + - 					÷		;	
																					Myrydd																
																					MMM																
	~	f																																			
	(100)																																				
	T.																				.4			-													
																	_																				

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

PC/Analysis 2.29é (25/08/2004)

eralog	
1999-2	Ì
004	

•••
0
ω
2
Ň
S
\sim
~
2
ວ
~
T
ã.

													((Mi	cro	ode	f)	2/	Ηz	2/E	Ιz										
1e-06	2e-06	1	5e-06		20-72-	5e-05 -	0.0001	0.0002-	0.0005	0.001	0.002	. cuu u	0.005	0.01 -	0.02	0.05	0.1	0.2-	0.5	- -	2	ر	n 10	20-	50	100	200	500-	1000-	2000-	0000
0												h : 1.																			
י ק ק								-																							
ר. ה					• •					· · · . · · · .		• •	1	• • • •															•	: .	
			· • • • •	:	• •	• • •		-									$\langle \rangle$			i engli i						17.11					
50			۰ ۰				• • • •		-										2		:				· · ·				• • •		
																					5		\geq								
11/11														1	÷	:	:														. 1
				-					•					ц.,	·					-						>					
	-							- 4				•	1						. 1	· 		· 	5		: :		-				
00													•							$\left\{ \right\}$		\geq			1						
																				<	>	_									
	:																							>							
																					\sum	>									
200																			-	× -	\leq	• •	···· · · ·	-							
						• •				•••	; ; ;		•					V	\geq		>					· · · · · · · · · · · · · · · · · · ·					
																	<		>												
																- 1															
50(-			1 												~	M m	•				• • •						• ••			
)											•			:			MAN								:		:				
				1 1				•					6				North A			* I VI											
				-				1									NV-M														
10			ر در دا د در دا د		•												Julia	-				•					:				• •
00	-																ad a start														
		-															- 11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	MIN												1	
	•																	T	ł												
21																			MALL												
000																					T	grandino ca									
,î.																					-	* S	•								

(Microdef)²/Hz2/Hz PC/Analysis 2.29é (25/08/2004) 0.0001 0.0002 0.0005 1e-06⊤ 20 5e-06 2e-05 5e-05-0.001 0.002 0.005 10000 2e-06 1e-05 5000-0.01 0.02 1000-2000. 0.05 200 500 0.1 0.2 100 0.5 50 20 5 (V192, Réf.: SGLFI74) [(Microdef)^2/Hz] (NIA6) 50 100 Edité le: 03/02/2005 à 11H41 200 M. W. J. Manus Manus 500 1000 2000 Teralog 1999-2004 $\frac{1}{2}$

ALCATEL SPACE

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

PC/Analysis 2.29é (25/08/2004)

Dossier: planck_CQMA - Engin: HERSCHEL PLANCK - Spécimen: QMA - Essai: NIA6

PC/Analysis 2.29é (25/08/2004)

Edité le: 03/02/2005 à 11H41

Teralog 1999-2004