| Prepared by: | Planck Reflector Team |
| :--- | :--- | :--- | :--- |
| Checked by: | |
| Configuration Control | |
| Product Assurance: | |
| Th. Stute | |

Distribution:
DSRI
ESA/ESTEC

EADS Astrium GmbH internal
EADSS ${ }_{\text {ASTRUM }}^{+}$
Planck-Reflectors
Doc. No.: PLA-ASED-RP-078
Issue: 3 Rev.: -
Date: 20.03.2006
Sheet: 2

Document Change Record

Iss / Rev	Date	Sheet	Description of Change
1	26.07 .2004	all	First issue
2	31.10 .2005	all	Update with DRB comments
3	20.03 .2006	$\S 5$	Update after thermal hardware mounting (final work)

Planck-Reflectors

Doc. No.: PLA-ASED-RP-078
Issue: 3 Rev.:
Date: 20.03.2006
Sheet: 4

Table of Contents

1. SCOPE... 5
2. DOCUMENTS ... 5
2.1 Applicable Documents ... 5
2.2 Reference Documents .. 5
3. ABBREVIATIONS \& ACRONYMS .. 6
4. GENERAL INTERFACES.. 7
4.1 Description of the Planck Reflectors .. 7
4.2 Coordinate Systems.. 7
5. MECHANICAL INTERFACES .. 8
5.1 Dimensions ... 8
5.2 Reflector Mounting Interfaces .. 9
5.2.1 Measured Mounting Interface Positions ... 11
5.2.2 Measured Pinball Positions of the PRFM .. 12
5.3 Hoisting and Handling Point Interfaces.. 13
5.4 Optical Cube Interface ... 14
5.5 Thermistor Interface... 14
5.6 Grounding Interface ... 15
5.7 Heater Harness Interface.. 15
6. MASS PROPERTIES... 16
6.1 Primary Reflector FM mass .. 16
6.2 Primary reflector FM Centre of Gravity and Moments of Inertia.. 16
7. THERMAL INTERFACES... 17
8. ELECTRICAL INTERFACE.. 17
9. OPTICAL INTERFACES .. 18
9.1 Reflector Front Surface... 18
9.2 Alignment Cube ... 19
10. OPERATIONAL INTERFACES .. 20
10.1 Handling and Transportation .. 20
10.2 Hoisting Device Interface ... 20
10.3 Transport Container Interface .. 20
10.3 Transport Container Interface .. 21
10.4 Protection Cover... 22
11. INTERFACE DRAWINGS PLANCK REFLECTORS ... 23

ASTRIUM

Planck-Reflectors

1. Scope

This document, describes the interfaces of the Planck Primary Reflector FM with respect to the telescope. The interfaces are defined considering mechanical, thermal, electrical, optical and operational characteristics.

2. Documents

2.1 Applicable Documents

AD1 \quad Planck Telescope Primary Reflector/Primary Reflector Specification
AD2
Planck Telescope Reflectors Contract, DSRI/100-12/2001

2.2 Reference Documents

RD 1 Mass and Power Budgets, PLA-ASED-RP-005
RD 2 Interface measurement on the Planck PR FM after CSL incident, PLA-ASED-TN-100
RD 3 3D measurement of the Planck PR FM surface, PLA-ASED-TR-031
RD 4 Mass properties test PRFM, B-TR60-0277
RD 5 Design Report, PLA-ASED-RP-001
RD 6 Mechanical Analyses Report, PLA-ASED-RP-003
RD 7 PR Interfaces at Operating Temperature, Drawing 2540-4100-00-A00O
RD 8 PR Interfaces at Room Temperature, Drawing 2540-4100-00-A00A
RD 9 Mechanical Ground Support Equipment Specification, PLA-ASED-RP-012
RD 10 Thermal hardware PR, Drawing 2540-4100-30-A00C
RD 11 Measurement of the Planck PRFM after the CSL incident

Planck-Reflectors

3. Abbreviations \& Acronyms

ASED Astrium GmbH
BOL Begin of Life
CFRP Carbon Fibre Reinforced Plastic
DSRI Danish Space Research Institute
EOL End of Life
FM Flight Model
FEM Finite Element Model
H/W Hardware
ISM Isostatic Mount
MLI Multi Layer Insulation
OT Operating Temperature
PR Primary Reflector
FM Qualification Model
SR Primary Reflector
TBC To be confirmed
TBD To be defined

4. General Interfaces

4.1 Description of the Planck Reflectors

The Planck Primary Reflector is an elliptical off-axis reflector. The required contour accuracy is guaranteed by a sandwich design consisting of CFRP face sheets and a carbon fibre epoxy core with hexagonal cells. The front surface reflectivity is provided by a protected aluminium coating. The reflector is designed to operate in the frequency range of 25 GHz to 1000 GHz in space at temperatures of around 40 K . Heaters for contamination release are foreseen on the rear side of the reflector. Thermal sensors are provided for temperature monitoring. The rear side with heaters are covered by MLI. Each reflector is mounted via three isostatic mounts onto the interface plane of the telescope structure. For alignment purposes one removable optical cube and three removable reference spheres per reflector are provided.

A detailed description of the Planck Reflectors is provided in RD 5

4.2 Coordinate Systems

The PR co-ordinate system ($\mathrm{O}_{\mathrm{M} 1}, \mathrm{X}_{\mathrm{M} 1}, \mathrm{Y}_{\mathrm{M} 1}, \mathrm{Z}_{\mathrm{M1}}$) is defined as follows, see chapter 11:

- The origin $\mathrm{O}_{\mathrm{M} 1}$ is the vertex of the PR and is laying outside of the reflector surface
- The $X_{M 1}$-axis is tilted 8.751° with respect to the telescope x-axis $X_{T e l}$ and points towards the PR.
- $Z_{\text {M1 }}$, tilted by 8.751° w.r.t $Z_{\text {Tel }}$, points along the major ellipsoid axis with positive direction on the reflecting side of the PR.
- $\mathrm{Y}_{\mathrm{M} 1}$ completes the co-ordinate system.

Figure 4.2-1 Telescope Reference Frame and OM1-System

Planck-Reflectors

5. Mechanical Interfaces

Mounting and alignment interfaces are sketched in the picture below. In the following paragraphs these and other interfaces are discussed.

Figure 5-1: Mounting and alignment Interfaces of the PR

5.1 Dimensions

The Planck Reflectors display the following overall dimensions at nominal operational temperature:

- Primary Reflector	long axis:	$1886.940 \mathrm{~mm}(\mathrm{RD} 2)$
	short axis:	$1556.177 \mathrm{~mm}(R D 2)$
	height:	270 mm including Thermal H/W
	thickness:	81 mm CFRP + 15 mm Thermal H/W

The envelope including the thermal hardware is shown in chapter 11.

Planck-Reflectors

5.2 Reflector Mounting Interfaces

The mounting interfaces of each reflector comprise three ISM's (designated A, B, C as in the picture below) which together form the interface plane for reflector mounting onto the Planck Telescope structure. There are two types of ISM's which are used on both reflectors to generate the interface plane, the short ISM and the long ISM, see Figure 5-2 and Figure 5-3.

Figure 5-2: SHort ISM embedded in reflector sandwich

Figure 5-3 Long ISM embedded in reflector sandwich

The footprints of the interface attachment area of each of the ISM's show one central $\varnothing 8 \mathrm{H} 7$ fit hole and four $\mathrm{M} 8 \times 12 \mathrm{~mm}$ threads for fixation. Each reflector is bolted to the telescope structure at each ISM interface with four M8 screws according to LN 29949.

Planck-Reflectors

An example of the hole pattern for a short ISM is shown in Figure 5-4 below, an example of the hole pattern of a long ISM is depicted in Figure 5-5.

Figure 5-4 Hole Pattern of a Short ISM

Figure 5-5 Hole Pattern of a Long ISM

Planck-Reflectors

```
Doc. No.: PLA-ASED-RP-078
Issue: 3 Rev.: -
Date: 20.03.2006
Sheet: }1
```


5.2.1 Measured Mounting Interface Positions

The designation of the ISM-interfaces is as follows:
Primary or Primary Reflector - interface location - hole number example: \quad Primary Reflector, ISM A, fit hole $\mathbf{1} \rightarrow \quad$ PR-A-1

The measured coordinates (RD 2) of the ISM's Center Holes in the M1C reflector co-ordinate system are:

PR-A-1:	$-273.245,-473.717,-0.110$
PR-B-1:	$-273.395,473.631,-0.110$
PR-C-1:	$546.874,0.000,0.000$

The measured and transformed coordinates of the ISM-Centre-Holes are:

PR-A-1	$\mathrm{X}_{\text {Tel }}$	1244.918	$\mathrm{X}_{\mathrm{M} 1 \mathrm{C}}$	-273.245	$\mathrm{X}_{\mathrm{M} 1}$	856.651
	$\mathrm{Y}_{\text {Tel }}$	-473.717	$\mathrm{Y}_{\mathrm{M} 1 \mathrm{C}}$	-473.717	$\mathrm{Y}_{\mathrm{M} 1}$	-473.717
	$\mathrm{Z}_{\text {Tel }}$	-53.030	$\mathrm{Z}_{\mathrm{M} 1 \mathrm{C}}$	-0.110	$\mathrm{Z}_{\mathrm{M} 1}$	189.164

PR-B-1	$\mathrm{X}_{\text {Tel }}$	1244.786	$\mathrm{X}_{\mathrm{M} 1 \mathrm{C}}$	-273.395	$\mathrm{X}_{\mathrm{M} 1}$	856.531
	$\mathrm{Y}_{\text {Tel }}$	473.631	$\mathrm{Y}_{\mathrm{M} 1 \mathrm{C}}$	473.631	$\mathrm{Y}_{\mathrm{M} 1}$	473.631
	$\mathrm{Z}_{\text {Tel }}$	-53.101	$\mathrm{Z}_{\mathrm{M} 1 \mathrm{C}}$	-0.110	$\mathrm{Z}_{\mathrm{M} 1}$	189.073

PR-C-1	$\mathrm{X}_{\text {Tel }}$	1964.956	$\mathrm{X}_{\mathrm{M} 1 \mathrm{C}}$	546.874	$\mathrm{X}_{\mathrm{M} 1}$	1508.576
	$\mathrm{Y}_{\text {Tel }}$	0.000	$\mathrm{Y}_{\mathrm{M} 1 \mathrm{C}}$	0.000	$\mathrm{Y}_{\mathrm{M} 1}$	0.000
	$\mathrm{Z}_{\text {Tel }}$	339.576	$\mathrm{Z}_{\mathrm{M} 1 \mathrm{C}}$	0.000	$\mathrm{Z}_{\mathrm{M} 1}$	686.746

All positions of the ISM's are within the tolerance of $\pm 2 \mathrm{~mm}$.
The local planarity of the ISM's is below the required 0.05 mm . PR-A and PR-B are 0.11 mm shifted w.r.t. PR-C, 0.11 mm is required. The parallelism of PR-A and PR-B w.r.t. PR-C is below 0.05 mm .

The length of the reflector is 1886.686 mm , required is $1887.1-2.5 \mathrm{~mm}$. The width of the reflector is 1556.015 mm , required is $1556.26-2.5 \mathrm{~mm}$.

ASTRIUM

Planck-Reflectors

5.2.2 Measured Pinball Positions of the PRFM

For alignment purposes the PRFM is equipped with three $\varnothing 6 \mathrm{~mm}$ steel pin balls in the aperture plane. The locations of the reference pin balls are shown in the interface drawings RD 7 and RD 8. The measured coordinates of the pinballs in the M1C system, after the CSL incident are (RD11):

Pinball 1: \quad-345.689; -703.257; 218.117
Pinball 2: $\quad-343.714 ; 702.839 ; 216.143$
Pinball 3: \quad 1086.093; 52.291; 216.013

The measured and transformed positions of the pinball centres are:

Pinball 1	$\mathrm{X}_{\text {Tel }}$	1076.687	$\mathrm{X}_{\mathrm{M} 1 \mathrm{C}}$	-345.689	$\mathrm{X}_{\mathrm{M} 1}$	666.679
	$\mathrm{Y}_{\text {Tel }}$	-703.257	$\mathrm{Y}_{\mathrm{M} 1 \mathrm{C}}$	-703.257	$\mathrm{Y}_{\mathrm{M} 1}$	-703.257
	$\mathrm{Z}_{\text {Tel }}$	103.909	$\mathrm{Z}_{\mathrm{M} 1 \mathrm{C}}$	218.117	$\mathrm{Z}_{\mathrm{M} 1}$	318.708

Pinball 2	$\mathrm{X}_{\text {Tel }}$	1079.545	$\mathrm{X}_{\mathrm{M} 1 \mathrm{C}}$	-343.714	$\mathrm{X}_{\mathrm{M} 1}$	669.446
	$\mathrm{Y}_{\text {Tel }}$	702.839	$\mathrm{Y}_{\mathrm{M} 1 \mathrm{C}}$	702.839	$\mathrm{Y}_{\mathrm{M} 1}$	702.839
	$\mathrm{Z}_{\text {Tel }}$	103.121	$\mathrm{Z}_{\mathrm{M} 1 \mathrm{C}}$	216.143	$\mathrm{Z}_{\mathrm{M} 1}$	318.337

Pinball 3	$\mathrm{X}_{\text {Tel }}$	2335.025	$\mathrm{X}_{\mathrm{M} 1 \mathrm{C}}$	1086.093	$\mathrm{X}_{\mathrm{M} 1}$	1806.218
	$\mathrm{Y}_{\text {Tel }}$	52.291	$\mathrm{Y}_{\mathrm{M} 1 \mathrm{C}}$	52.291	$\mathrm{Y}_{\mathrm{M} 1}$	52.291
	$\mathrm{Z}_{\text {Tel }}$	787.312	$\mathrm{Z}_{\mathrm{M} 1 \mathrm{C}}$	216.013	$\mathrm{Z}_{\mathrm{M} 1}$	1185.573

The reference pin balls are removable and shall be removed before flight, so that only a small interface bracket remains with the reflector.

The remaining bracket is shown in Figure 5-6.

Planck-Reflectors

Figure 5-6 Remaining Pinball Attachment Plate

5.3 Hoisting and Handling Point Interfaces

The points for the hoisting device fixation are indicated in the interface drawings. Each reflector has three interfaces for mounting the hoisting device. A cross-sectional view of the reflector hoisting device mounted to the reflector is stated in the picture below.

Figure 7: Cross-sectional view of the hoisting interface (PR)

5.4 Optical Cube Interface

PR will be equipped with one optical alignment cube each. The alignment cubes are designed so that they are removable for launch. Only small INVAR adapter brackets remain with the reflectors. The locations of the alignment cubes can be extracted from the PR interface drawings. The exact coordinates for the cube are established by 3D-measurement and is given in the table in Chapter 9.2. The PR alignment cube adapter bracket remaining on the reflector is shown in Figure 5-8

Figure 5-8 PR Alignment Cube Adapter Bracket

5.5 Thermistor Interface

For temperature monitoring and decontamination control the reflectors are equipped with thermal sensors according to the following scheme:

Thermistor	X, Y location in M1C system	Calibration No.	Function	Type
TS1	$900,-50$	9904 AXH 87	nominal	Decontamination Control
TS2	$-900,0$	9904 AXH 84	redundant	Decontamination Control
TS3	900,50	9904 AXH 96	nominal	Decontamination Control
TC1	$-460,-410$	9907 AXJ 41	nominal	Temperature Control
TC2	$+220,-150$	9907 AXM 06	nominal	Temperature Control
TC3	$-460,+410$	9904 AXI 20	redundant	Temperature Control
TC4	$+220,+150$	9904 AXI 18	redundant	Temperature Control

The respective cabling is of AWG 28 brass type. The 2-wire cables will be routed on the reflector rear sides below the heater mats and the MLI towards ISM PR-A. The cable length after the ISM will be 3 m . The thermistor cables end in bare ends.

Planck-Reflectors

5.6 Grounding Interface

The bonding I/F is built by AWG 26 (TBC) bonding straps with bare ends.
The grounding cables will be routed on the reflector rear sides below the heater mats and the MLI towards the ISM's on PR and SR, hence the groundings are located near the ISM's (see RD 10). The free length of the grounding straps after the ISM's is 1 m .

5.7 Heater Harness Interface

The PRFM is equipped on its rear side with foil heaters which are sitting on stand-offs as shown in RD10.
Each heater provides a nominal and a redundant circuit with an AWG 28 brass wire.
The nominal and the redundant heater lines are grouped on reflector level.
The electrical interface to the S/C are built by two pairs of brass AWG 24 lines with bare ends routed to the telescope/spacecraft via the ISM PR-B $\left(-\mathrm{X}_{\mathrm{M} 1 \mathrm{C}},+\mathrm{Y}_{\mathrm{M1C}}\right)$.

Measured Heater Group Resistances PRFM

Group 1 Heater No. 1 to Heater No. 8

Group 2 Heater No. 9 to Heater No. 14

Group 3 Heater No. 15 to Heater No. 21

Group 4 Heater No L1 to Heater No. L4

Group 5 Heater No R1 to Heater No. R4

All heaters together

main line	60	Ω
redundant line	60	Ω
main line	79.7	Ω
redundant line	80.8	Ω
main line	68.5	Ω
redundant line	68.8	Ω
main line	96.0	Ω
redundant line	95.0	Ω
main line	96.0	Ω
redundant line	96.0	Ω

Main line $\quad 18.0 \Omega$

Redundant line
18.1Ω

ASTRIUM

Planck-Reflectors

6. Mass Properties

6.1 Primary Reflector FM mass

The measured total mass (RD 4) of the PR FM including MLI, alignment cube and reference balls is:

27.84 kg

including heaters 29.24 kg

The requirement (incl. heaters, excl. alignment cube and reference balls) is 30.6 kg . The dismountable parts (alignment cube \& reference balls) have a mass of 0.428 kg .

6.2 Primary reflector FM Centre of Gravity and Moments of Inertia

The mass properties of the PRFM are summarized in Table 6-1 below:

	COG in system M1C			moments of inertia (axes parallel to M1C passing through COG)			
	mass (kg)	$\mathrm{x}(\mathrm{mm})$	$\mathrm{y}(\mathrm{mm})$	$\mathrm{z}(\mathrm{mm})$	$\mathrm{I}_{\mathrm{xx}}\left(\mathrm{kg}^{\star} \mathrm{m}^{2}\right)$	$\mathrm{I}_{\mathrm{yy}}\left(\mathrm{kg}^{\star} \mathrm{m}^{2}\right)$	$\mathrm{I}_{\mathrm{zz}}\left(\mathrm{kg}^{\star} \mathrm{m}^{2}\right)$
PRFM (ICD)	27.84	125.8	0.2	88.6	4.67	6.87	10.87
heaters (catia)	1.40	153.4	0.0	56.6	0.24	0.33	0.56
total	29.24	127.1	0.2	87.1	4.91	7.20	11.43

Table 6-1: Mass Properties of the PRFM

Planck-Reflectors

7. Thermal Interfaces

Reference is made to the thermal hardware drawings
2540-4100-30A00C, Iss. B Primary Reflector Thermal Hardware

The reflector front sides provide a low emissivity of $\varepsilon=0,02$. The edges and rear side are covered by VDA coated foils and by MLI respectively, both with nominal $\varepsilon=0,05$ (with an assumed variation of 0,025 to 0,1 considered in the thermal analysis).

Except for the harness the ISM's are the only conductive I/Fs to the telescope structure.

NOTE:

It is not allowed to use the ISM's for conductive cooling or heating; i.e. the temperature of the support structure has to be similar to the reflector temperature. Conductive cooling will cause irreparable damage to the reflectors.

8. Electrical Interface

The heater power needed for contamination release depends on the philosophy, see RD 1. The nominal voltage for the heater mats is 28 V DC with a range between 26 V and 28 V . The heater power values are:

	nominal	worst case	redundant line	redundant line worst case
PR	$49,5 \mathrm{~W}$	60 W	$49,5 \mathrm{~W}$	60 W

Planck-Reflectors

9. Optical Interfaces

9.1 Reflector Front Surface

The front surfaces of the CFRP-reflectors are coated with a vacuum deposited of aluminium as a reflective layer and a protection layer of PLASIL (silicon oxides).

The emissivity of the reflective front surface is $\varepsilon \leq 0.05$ (nominal $\varepsilon=0,02$)
The roughness of the reflector optical surface is
$\mathrm{Rq}<1 \mu \mathrm{~m}$ RMS at any scale up to 0.8 mm
$\mathrm{Rq}<2 \mu \mathrm{~m}$ RMS at any scale up to 10 mm

The reflectivity for the frequency range 25 GHz to 900 GHz is $>99,5 \% \mathrm{BOL}$ and $>97,5 \% \mathrm{EOL}$.

Planck-Reflectors

9.2 Alignment Cube

The planes on the reference cube have following normal vectors in the M1 system (for plane numbering see picture below):
normal vectors in the M1 system

	Plane 1	Plane 2	Plane 3
U	0.988	0.157	-0.012
V	0.014	-0.009	1.000
W	0.157	-0.988	-0.012

inner midpoint coordinates in system M1 (10mm from plane 1, 10mm from plane 2, 10mm from plane 3)

X	1869.359
Y	0.253
Z	1079.885

EADPSTRIUM

10. Operational Interfaces

10.1 Handling and Transportation

Reference is made to the document "Planck Reflectors Handling \& Transportation Procedure", to be issued after CDR.

10.2 Hoisting Device Interface

Each Planck Reflector provides three handling/hoisting points at the reflector rim. These handling/hoisting points are designed to handle the fully equipped reflector during all AIT activities.

The design of the handling/hoisting interfaces are depicted in the interface drawings RD 7 to Fehler! Verweisquelle konnte nicht gefunden werden..
The hoisting devices for PR is shown in the figure below.

Figure 10-1: PR Hoisting Device

10.3

EADS ASTRIUM	Planck-Reflectors	Doc. No.: PLA-ASED-RP-078 Issue: $3 \quad$ Rev.: - Date: 20.03 .2006 Sheet: 21

Transport Container Interface

Reference is made to the document "Planck Reflectors MGSE Specification", PLA-ASED-RP-012. In the pictures below one can see a view of the container opened and closed.

Figure 2: Opened transport container for the SR (incl. hoisting device)

Figure 3: Closed transport container

Planck-Reflectors

10.4 Protection Cover

The front side of the reflectors will be protected by a foil cover against contamination. The cover is removable for testing and flight and will be attached to the reflectors with Velcro's and elastic cords. In the picture below one can see the different views of the protection cover.

Figure 4: Protection cover of the PR

Planck-Reflectors

11. Interface Drawings Planck Reflectors

The below listed interface drawings are annexed hereafter:

- RD 7 PR Interfaces at Operating Temperature, Drawing 2540-410-000A000
- RD 8 PR Interfaces at Room Temperature, Drawing 2540-410-000A00R
- RD 10 Thermal hardware PR, Drawing 2540-4100-30-A00C sheet, Iss. B

