
FOR SPACE STANDARDIZATION

EUROPEAN COOPERATION

ECSS

Space engineering

Software

ECSS Secretariat
ESA--ESTEC

Requirements & Standards Division
Noordwijk, The Netherlands

ECSS-E-40B Draft
28 July 2000

ECSS28 July 2000
ECSS--E--40B Draft

2

Published by: ESA Publications Division
ESTEC, P.O. Box 299,
2200 AG Noordwijk,
The Netherlands

ISSN: 1028--396X
Price: DFl 35
Printed in The Netherlands
Copyright 2000 E by the European Space Agency for the members of ECSS

ECSS 28 July 2000
ECSS--E--40B Draft

3

Foreword

This Standard is one of the series of ECSS Standards intended to be applied to-
gether for the management, engineering and product assurance in space projects
and applications. ECSS is a cooperative effort of the European Space Agency,
National Space Agencies and European industry associations for the purpose of
developing and maintaining common standards.
Requirements in this Standard are defined in terms of what shall be accomplished,
rather than in terms of how to organize and perform the necessary work. This al-
lows existing organizational structures and methods to be applied where they are
effective, and for the structures and methods to evolve as necessary without re-
writing the standards.
The formulation of this Standard takes into account the existing ISO 9000 family
of documents, and the ISO 12207:1995 standard.
This Standard has been prepared by the ECSS Software Engineering Working
Group, reviewed by the ECSS Technical Panel and approved by the ECSS Steering
Board.

ECSS28 July 2000
ECSS--E--40B Draft

4

(This page is intentionally left blank)

ECSS 28 July 2000
ECSS--E--40B Draft

5

Foreword 3. .

1 Scope 7. .

2 References 9. .

3 Terms, definitions and abbreviated terms 11. .

3.1 Terms and definitions 11. .
3.2 Abbreviated terms 14. .

4 Space system software engineering 17. .

4.1 Introduction 17. .
4.2 Space system software engineering processes 18. .
4.3 Organization of this standard 23. .
4.4 Relation to ECSS-M and ECSS-Q standards 24. .
4.5 Tailoring of this standard 26. .

5 General requirements 29. .

5.1 Introduction 29. .
5.2 System engineering processes related to software 29. .
5.3 Software management process 34. .
5.4 Software requirements engineering process 37. .
5.5 Software design engineering process 40. .
5.6 Software validation and acceptance process 43. .
5.7 Software operations engineering process 46. .
5.8 Software maintenance process 48. .
5.9 Software verification and validation (supporting) processes 52.

6

Special requirements 61. .

6.1 Introduction 61. .
6.2 Space segment software 61. .
6.3 Ground segment software 68. .

ECSS28 July 2000
ECSS--E--40B Draft

6

6.4 Software reuse 68. .
6.5 Man-machine interfaces 69. .
6.6 Critical software 70. .

Annex A (normative)

Software documentation 71. .

A.1 Introduction 71. .
A.2 The Requirements Baseline (RB) 72. .
A.3 Technical Specification (TS) 73. .
A.4 Design Justification File (DJF) 74. .
A.5 Design Definition File (DDF) 77. .
A.6 System level documentation 79. .
A.7 Contribution to management documentation 79. .

Annex B (informative)

References to other ECSS Standards 81.

Annex C (informative)

Tailoring Guidelines 83. .

C.1 Introduction 83. .
C.2 Tailoring templates 85. .

Figures

Figure 1: Life cycle processes in ECSS standards 18. .
Figure 2: The recursive customer - supplier model 19. .
Figure 3: Overview of the software development processes 20. .
Figure 4: Process constraints 21. .
Figure 5: Accomodation of different software life cycles 21. .
Figure 6: Structure of this standard 24. .
Figure A-1: Overview of software engineering documents 71. .

ECSS 28 July 2000
ECSS--E--40B Draft

7

1

Scope

This software engineering standard concerns the “Product software”, i.e. software
that is part of a space system product tree and developed as part of a space project.
This standard is applicable to all the elements of a space system, including the
space segment, the launch service segment and the ground segment.
This standard covers all aspects of space software engineering including require-
ments definition, design, production, verification and validation, and transfer,
operations and maintenance.
It defines the scope of the space software engineering process and its interfaces
with management and product assurance, which are addressed in the Manage-
ment (-M) and Product assurance (-Q) branches of the ECSS System, and explains
how they apply in the software engineering process.
This standard reflects the specific methods used in space system developments,
and the requirements for the software engineering process in this context. To-
gether with the requirements found in the other branches of the ECSS Standards,
this standard provides a coherent and complete framework for software engineer-
ing in a space project.
This standard is intended to help the customers to formulate their requirements
and suppliers to prepare their response and to implement the work.
This standard is not intended to replace textbook material on computer science or
technology, and such material has been avoided in this standard. The readers and
users of this standard are assumed to possess general knowledge of computer
science.
The scope of this standard is the software developed as part of a space project, i.e.
“Space system product software”. It is not intended to cover software develop-
ments out of scope with the ECSS System of standards. An example is the develop-
ment of commercial software packages, where software is developed for a (large)
volume market and not just for a single customer, and the main requirement
analysis consists of market analysis, combined with a marketing strategy.
This standard also applies to the development of non--deliverable software which
affects the quality of the deliverable product.
Other classes of software products not covered are: management information sys-
tems (e.g. finance, planning), technical information systems (e.g. CAD/CAM,
analysis packages) and supporting software products for documentation systems,
database systems, spread-sheets. These usually result from the procurement or
adaptation of existing commercial products, and are not part of the space system

ECSS28 July 2000
ECSS--E--40B Draft

8

development. Such software products will, however, often be part of a supporting
infrastructure for space systems.
When viewed from the perspective of a specific project context, the requirements
defined in this Standard should be tailored to match the genuine requirements of
a particular profile and circumstances of a project.

NOTE Tailoring is a process by which individual requirements or spec-
ifications, standards and related documents are evaluated and
made applicable to a specific project, either by deletion, addition
or modification.

ECSS 28 July 2000
ECSS--E--40B Draft

9

2

References

This ECSS Standard incorporates by dated or undated reference, provisions from
other publications. These references are cited at the appropriate places in the text,
and publications are listed hereafter. For dated references, subsequent amend-
ments to or revisions of any of these apply to this ECSS Standard only when incor-
porated in it by amendment or revision. For undated references the latest edition
of the publication referred to applies.
ECSS--P--001 Glossary of terms
ECSS--E--00 Space engineering -- Policy and principles
ECSS--E--10 Space engineering -- System engineering
ECSS--M--00 Space project management -- Policy and principles
ECSS--M--00--02 Selection and Tailoring Process
ECSS--M--10 Space project management -- Project breakdown structures
ECSS--M--20 Space project management -- Project organization
ECSS--M--30 Space project management -- Project phasing and planning
ECSS--M--40 Space project management -- Configuration management
ECSS--M--50 Space project management -- Information/documentation

management
ECSS--M--60 Space project management -- Cost and schedule manage-

ment
ECSS--M--70 Space project management -- Integrated logistic support
ECSS--Q--20 Space product assurance -- Quality assurance
ECSS--Q--80 Space product assurance -- Software product assurance
ISO/IEC 12207:1995 Information technology -- Software life cycle processes
ISO 8402:1994 Quality management and quality assurance -- Vocabulary
IEEE 612.10--1990 IEEE Standard Glossary of software engineering terminol-

ogy IEEE Std 612.10 1990
IEEE 1062--1993 IEEE Standard Recommended practices for software ac-

quisition

These are the level 3 documents referenced by this standard:
ECSS--E--40--01 Space engineering -- Space segment software .

ECSS28 July 2000
ECSS--E--40B Draft

10

ECSS--E--40--03 Space engineering -- Ground segment software.
ECSS--E--40--04 Space engineering -- Software life cycles
ECSS--E--40--DRD Space engineering -- Software Document Requirement De-

finitions

ECSS 28 July 2000
ECSS--E--40B Draft

11

3

Terms, definitions and abbreviated terms

3.1 Terms and definitions
Terms for which the ECSS--P--001 definitions have been further expanded to cover
software specific issues (without changing the general definition in ECSS--P--001),
and terms particular for ECSS--E--40:

3.1.1 Acceptance Testing
The test of a system or functional unit usually performed by the customer on his
premises after installation with the participation of the supplier to ensure that the
contractual requirements are met [ISO 2382].

3.1.2 (Top-level) Architecture
The highest level(s) structure of the components of a program or system, their in-
terrelationships, and principles and guidelines governing their design and evol-
ution over time.

3.1.3 Assessment
An action of applying specific documented assessment criteria to a specific soft-
ware module, package, or product for the purpose of determining acceptance or re-
lease of the software module, package or product [ISO 9126].

3.1.4 Configurable code
Code that can be configured to be used by the user or by the developer.

3.1.5 Critical Software
Software supporting a safety or dependability critical function that if incorrect or
inadvertently executed would result in catastrophic or critical consequences. (For
the definition of catastrophic and critical see ECSS--Q--40 and ECSS--Q--30).

3.1.6 Deactivated code
code that, although incorporated through correct design and coding is not intended
to execute in any software product configuration. Examples of this can be legacy
code or code intended for future development.

ECSS28 July 2000
ECSS--E--40B Draft

12

3.1.7 Integration Test (IT)
a. The progressive linking and testing of programs or modules in order to ensure

their proper functioning in the complete system [ISO 2382].
b. Testing in which software components, hardware components, or both are

combined and tested to evaluate the interaction between them [IEEE 610.12
1990].

3.1.8 Margin philosophy
The margin philosophy describes the rationale for margins allocated to the per-
formance parameters and computer resources of a development, and how these
margins shall be managed during the execution of the project.

3.1.9 Metric
The defined measurement method and the measurement scale [ISO 9126].

3.1.10 Migration
Porting of a software product to a complete new opportunely environment

3.1.11 Portability (a Quality Characteristic)
The capability of software to be transferred from one environment to another [ISO
9126].

3.1.12 Quality Characteristics (Software)
A set of attributes of a software product by which its quality is described and evalu-
ated. A software quality characteristic may be refined into multiple levels of sub-
characteristics [ISO 9126].

3.1.13 Quality Model (Software)
The set of characteristics and the relationships between them which provides the
basis for specifying quality requirements and evaluating quality [ISO 9126].

3.1.14 Regression testing (Software)
Selective retesting to detect faults introduced during modification of a system or
system component, to verify that the modifications have not caused unintended
adverse effects, or to verify that a modified system or system component still meets
its specified requirements [IEEE 610.12 1990].

3.1.15 Reusability
The degree to which a software module or other work product can be used in more
than one computer program or software system [IEEE 610.12 1990].

3.1.16 Singular input
Individual parameter stress testing.

3.1.17 Software
Refer to Software Product.

3.1.18 Software component
General term for a part of a software system. Components may be assembled and
decomposed to form new components. In the production phase, components are im-
plemented as modules, tasks or programs, any of which may be configuration
items. This usage of the term is more general than in ANSI/IEEE parlance, which
defines a component as a ”basic part of a system or program”; in ECSS--E--40, com-
ponents may not be ”basic”as they can be decomposed.

ECSS 28 July 2000
ECSS--E--40B Draft

13

3.1.19 Software item
See Software product.

3.1.20 Software intensive system
A space system where the dominant part of the constituents are software el-
ements. In such systems, sub--systems consists mainly of software. For this type
of system, the majority of interfaces are software--software interfaces.

3.1.21 Software observability
The property of a system for which observations of the output variables always is
sufficient to determine the initial values of status variables.

3.1.22 Software Product
The set of computer programs, procedures and possibly associated documentation
and data [ISO 12207].

3.1.23 Software Product Assurance
The totality of activities, standards, controls and procedures in the lifetime of a
software product which establishes confidence that the delivered software prod-
uct, or software affecting the quality of the delivered product, will conform ade-
quatly to customer requirements.

3.1.24 Software unit
A separately compilable piece of code (ISO/IEC 12207). In ECSS--E--40 no distinc-
tion is made between a software unit and a database; both are covered by the same
requirements.

3.1.25 Stress test
A test that evaluates a system or software component at or beyond the limits of its
specified requirements.

3.1.26 Unit Test
A test of individual programs or modules in order to ensure that there are no analy-
sis or programming errors [ISO 2382].

3.1.27 Unreachable code
Code that cannot be reached due to design or coding error.

3.1.28 Usability (a Quality Characteristic)
The capacity of the software to be understood, learned, used and liked by the user,
when used under specified conditions [ISO 9126]..

3.1.29 Validation
Confirmation by examination and provision of objective evidence that the particu-
lar requirements for a specific intended use are fulfilled (ISO 8402:1994).
The validation process (for software): to ensure that the requirements baseline
functions and performances are correctly and completely implemented in the final
product.

3.1.30 Verification
Confirmation by examination and provision of objective evidence that specified re-
quirements have been fulfilled (ISO 8402:1994).

ECSS28 July 2000
ECSS--E--40B Draft

14

The verification process (for software): to establish that adequate specifications
and inputs exist for any activity, and that the outputs of the activities are correct
and consistent with the specifications and input.

3.2 Abbreviated terms
The following abbreviation is defined and used within this standard.
Abbreviation Meaning
AR Acceptance Review

NOTE The term SW-AR may be used for clarity to denote ARs that solely
involve software products.

CDR Critical Design Review

NOTE The term SW-CDR may be used for clarity to denote CDRs that
solely involve software products.

COTS Commercial off-the-shelf Software

NOTE It denotes finished software products, that are procured from
third parties.

CPU Central Processing Unit
DDF Design Definition File
DJF Design Justification File
FMECA Failure Mode Effect and Criticality Analysis
HSIA Hardware Software Interaction Analysis
ICD Interface Control Document
IRB Interface Requirements Baseline
IRD Interface Requirements Document
ISV Independent Software Validation
ISVV Independent Software Verification and Validation
MGT Management
MF Maintenance File
MOTS Modifiable off-the-Shelf
OP Operational Plan
ORR Operational Readiness Review
PDR Preliminary Design Review

NOTE The term SW-PDR may be used for clarity to denote PDRs that
solely involve software products.

QR Qualification Review

NOTE The term SW-QR may be used for clarity to denote QRs that solely
involve software products.

RB Requirements Baseline
SDE Software Development Environment.

NOTE Software tools that are supporting the software engineering pro-
cess.

SPR Software Problem Report
SRR System Requirements Review

NOTE The term SW-SRR may be used for clarity to denote SRRs that
solely involve software products.

ECSS 28 July 2000
ECSS--E--40B Draft

15

SW Software
TS Technical Specification

ECSS28 July 2000
ECSS--E--40B Draft

16

(This page is intentionally left blank)

ECSS 28 July 2000
ECSS--E--40B Draft

17

4

Space system software engineering

4.1 Introduction
This clause 4 introduces the structure of this standard and the framework of the
space software engineering process that form its basis.
The context of space software engineering is the overall space system engineering
process. This clause 4 defines the general relationships between the software en-
gineering processes and the general engineering processes of space systems.
The software engineering standard differs from the other engineering disciplines
covered by ECSS in one important aspect: software does not in itself produce heat,
have mass or any other physical characteristics. The software engineering activity
is a purely intellectual activity and a principle output of the activity is documenta-
tion. If the software code itself is considered as a specialized form of electronic
documents, all visible outputs are in fact documentation.
It follows that this standard focuses on requirements for the structure and content
of the documentation produced.
Software is used for the implementation of highly complex functions. The ability
to deal with a high level of complexity in a flexible way makes software an essential
and increasing part of space segment and ground segment products. In space sys-
tems, software engineering is found at all levels ranging from system level func-
tions down to the firmware of a space system part.
Therefore the requirements engineering process, in which the software require-
ments and specifications are defined, has a special emphasis in this standard. The
software requirements engineering process consumes a large and often underesti-
mated amount of effort in the development of software for space systems.
As a result of the complexity of the functional and performance requirements,
special measures and emphasis are required for software verification and vali-
dation, especially for space segment software. The functions assigned to software
may be critical to the space mission.
The maintenance of software for space systems also poses special problems, be-
cause they imply operational lifetimes that far exceed what is expected of general
computer software products. For the space segment, this is further complicated by
the fact that software in general is the only part of the space segment that under-
goes major maintenance and repair, sometimes even re-design, after launch. In ex-

ECSS28 July 2000
ECSS--E--40B Draft

18

treme cases, the space system mission itself is redesigned, implementing new
space segment software after launch. Ground segment software is similarly char-
acterized.
This standard is complemented by ECSS--Q--80B, Software Product Assurance,
with product assurance aspects as defined in ECSS--Q--80B. Together the two
documents either define or refer to the definition of all software relevant processes
for space projects.
The coverage of all software life cycle processes by the different ECSS standards
is illustrated in Figure 1.

ORGANIZATIONAL LIFE CYCLE PROCESSES

SUPPORTING

LIFE CYCLE PROCESSES

Configuration management

PRIM A R Y

LIFE CYCLE PROCESSES

Details for
SPA and/or
SWE

Acquisition

Development

Operatio n

Maintenance

Problem Reso lution

Quality Assurance

Verification

Validatio n

Joint Review

Audit

Improvement

Infrastructure

T raining

Q-80

Supply

Documentatio n

Management

E-40

Other ECSS

Figure 1: Life cycle processes in ECSS standards

4.2 Space system software engineering processes
The software engineering processes regulated by this standard are based on the
definitions and requirements given in the ECSS--M series (in particular M--20,
M--30, M--40 and M--50), and the general engineering process requirements of
ECSS--E--00. These requirements have been used to define the top-level software
engineering processes. This general framework defines the processes (that are
later treated in detail in the following subclauses) and the top-level interface be-
tween the software engineering processes and other space development processes.
The fundamental principle of this standard is the customer-supplier relationship,
assumed for all software developments. The organizational aspects of this are de-
fined in ECSS--M--20. The customer is, in the general case, the procurer of two
strongly associated products: the hardware and the software for a system, subsys-
tem, set, equipment or assembly (see ECSS--E--00). The concept of the customer--
supplier relationship is applied recursively, i.e. the customer may himself be a
supplier to a higher level in the space system as shown in Figure 2. The software
customer therefore has two important interfaces. The first interface is to his soft-
ware and hardware suppliers and this includes the functional analysis required
for the adequate allocation of function and performance requirements to his

ECSS 28 July 2000
ECSS--E--40B Draft

19

suppliers. The other where he is in his role as supplier at a higher level, where he
shall ensure higher level system requirements are adequately taken into account.
The customer derives the functional and performance requirements for the hard-
ware and software, based on system engineering principles and methods. The cus-
tomer also controls the interface between the software and hardware. Software
items are defined in the system breakdown at different levels. Nevertheless, it is
important to manage the software-software interfaces irrespective of the level at
which they occur. The customer’s requirements are defined by this initializing pro-
cess, and provide the starting point for the software engineering.

...
Customer

Supplier
Customer

Supplier
Customer

Supplier
Customer

Supplier
Customer

H/W S/W S/W

H/W S/W

Level n

Level n+1

Level n+2

Figure 2: The recursive customer -- supplier model
Reviews are the main interaction points between the customer and supplier. The
reviews relevant to the software engineering process are the SRR, PDR, CDR, QR
and AR, as defined by ECSS--M--30. All reviews are applicable to software. The re-
views occur at different levels in the customer-supplier hierarchy and are se-
quenced according to the overall system level planning. This standard is designed
to be applied at any level, without explicit assumptions of how these reviews shall
be integrated with other reviews in the development of a space system. The term
system in this standard shall be interpreted as system or subsystem at any decom-
position level. An overview is shown in Figure 3. The commonly designated
mission phases (e.g. 0, A, B) are used for the overall mission phases, and play no
direct role in the software engineering activities as such. This means that the
software engineering processes, together with their reviews and attached mile-
stones as defined in this standard, are not to be scheduled as the higher-level sys-
tem mission phases. They should be planned in relation to the immediate higher
level development processes.

ECSS28 July 2000
ECSS--E--40B Draft

20

The notion of engineering processes is fundamental to this standard, as the pro-
cesses provide the means to describe the overall constraints and interfaces to the
software engineering process at system level, and at the same time, provide the
necessary freedom to the supplier to implement the individual activities implied
by the processes. The freedom given to the supplier to implement the engineering
processes is especially important for software engineering, because of the
requirement to organize the work in accordance with a well defined software life
cycle. There is a requirement to accommodate different types of software life
cycles, both for reasons of efficient organization of the work and also for reasons
related to competitiveness and choice of software engineering technology. Differ-
ent software life cycle types can be accommodated within the requirements in this
standard. Figure 3 illustrates the constraints imposed. Figure 4 shows examples
of variations within these constraints.

Validation
and Acceptance

(5.6)Design
Engineering

(5.5)Requirements
Engineering

(5.4)

SRR PDR CDR QR AR

Requirements
Baseline
DJF

Technical
Specification
ICD
DJF

DDF
DJF

DDF
DJF

DJF
DDF

Legend:

Process

Review

Product flow

Generated Products:
Requirements Baseline (RB)
Technical Specification (TS)
Interface Control Document (ICD)
Design Definition file (DDF)
Design Justification File (DJF)

System Engineering
(5.2)

Figure 3: Overview of the software development processes

ECSS 28 July 2000
ECSS--E--40B Draft

21

Processes

Requirements engineering

Verification

SRR PDR CDR QR AR

Functional state
Specified state

Defined state
Qualified state

Accepted state

Legend:

Float limit of process (earliest limit for the start of the process)

State of project

Time

Design engineering

Validation

System engineering

Validation and Acceptance

Figure 4: Process constraints

Design engineering

Verification

SRR PDR CDR QR AR

Validation

Time

(a) “Waterfall”life cycle

Requirements eng.
Design eng.

Verification

SRR PDR QR AR

Validation

(b) Evolutionary life cycle

CDR

Requirements eng.
Design eng.

Verification

SRR PDR QR AR

Validation

CDR
Optional process early
in the life-cycle

Legend:

Final and completing
invocation of the process

Requirements engineering
System engineering

System eng.

System eng.

Validation and
Acceptance

Validation and
Acceptance

Figure 5: Accomodation of different software life cycles

ECSS28 July 2000
ECSS--E--40B Draft

22

4.2.1 Software requirements engineering process
The System Engineering processes produce the information required for input to
System Requirements Review (SRR).. This establishes the functional and per-
formance requirements baseline of the software development, and the preliminary
interface requirements.
A second part of the software requirements engineering process is the elaboration
of the technical specification, which is the supplier’s response to the Requirements
Baseline. This process may start in parallel or after the elaboration of the Require-
ments Baseline. The software product tree is defined by this process. The Techni-
cal Specification shall contain a precise and coherent definition of functions, per-
formances, cost, schedule and implementation plans for all levels of the software
to be developed. The preliminary Interface Control Document (ICD) is generated
by this process.
During the software requirements engineering activity, the result of all significant
trade-offs, feasibility analyses, make-or-buy decisions and supporting technical
assessments shall be documented in a Design Justification File (DJF)
The software requirements engineering process is completed by the Preliminary
Design Review (PDR). The input to the PDR is the technical specification, prelimi-
nary ICD and the DJF. The top-level architectural design is reviewed at the PDR.
If the customer requires an additional review of the software architecture, this
may be specifically included in the organization of the project.
The state of the software development after PDR is called “specified state”.

4.2.2 Software design engineering process
The “Design and configuration engineering process”mentioned in ECSS--E--10 is
in software developments referred to as the “Design engineering process”.
This process should not start before SRR. It may start before the PDR, but it is
after the PDR when the results of the Requirements Engineering Process are re-
viewed and baselined to be used as inputs to the Design Engineering Process.
The process produces the design of each element of the software product tree, in
response to the requirements contained in the Technical Specification, ICD and
DJF. All elements of the software design shall be documented in the Design Defini-
tion File (DDF). The DDF contains all the levels of design engineering results, in-
cluding software code listings.
The rationale for important design choices, and analysis and test data that shows
that the design meets all requirements, is added to the DJF by this process. The
results of this process are the input to the Critical Design Review (CDR). The CDR
signals the end of the design phase. For large software projects, all software sub-
systems shall undergo a CDR before they are integrated with the next highest
level in the system hierarchy. Large software developments should be partitioned
in smaller manageable projects that are managed like any other subsystem devel-
opment in space projects.

4.2.3 Validation and acceptance process
The validation and acceptance process may start after the CDR and when the vali-
dation with respect to TS is complete.
The state of the software project after CDR is called “defined state”.
The process shall include a Qualification Review (QR), with the DJF as input.The
state of the software project after QR is called the “qualified state”.

4.2.4 Software operations engineering process
The operations process may start after completion of the Acceptance Review of the
software. Since software products form an integrated part of a space system, the
phasing and management of operations shall be determined by the overall system

ECSS 28 July 2000
ECSS--E--40B Draft

23

requirements and applied to the software products. The operations engineering
processes are not directly connected to the overall mission phase E, but are, in-
stead, determined by the requirement at system level to operate the software prod-
uct at a given time.
General requirements for Operations are found in ECSS--E--70 Ground Systems
and Operations.

4.2.5 Software maintenance process
This separate process is started after the completion of the AR.
This process is activated when the software product undergoes any modification
to code or associated documentation as a result of correcting an error, a problem
or implementing an improvement or adaptation. The process ends with the retire-
ment of the software product.

NOTE The software analysis process (as a general engineering process
defined in the ECSS--M standards) is invoked by the require-
ments and design engineering processes. No separate output is
produced by this process. The results produced by the analysis
process are integrated with the requirements and design engin-
eering outputs.

4.2.6 Software verification and validation (supporting)
process

The software verification and validation process may start any time after the SRR.
This process is intended to confirm that the customer’s requirements have been
properly addressed, that all requirements have been met and that all design con-
straints are respected.
The result of this process is included in the DJF.
A sub-process of this process is the transfer and acceptance of the software to the
customer. This latter sub-process is completed by an Acceptance Review (AR), that
shall take place after QR. The Acceptance Review is a formal event in which the
software product is evaluated in its operational environment. It should be carried
out after the software product has been installed and transferred to the customer
and installed on an operational basis. Software validation activities terminate
with the Acceptance Review.
This state of the software after AR is called the “accepted state”.

NOTE The term “qualification engineering”is often used synonymously
with the term “verification engineering” in projects delivering
hardware. For the sake of clarity, “qualification engineering”is
used in this Standard to denote “the total set of verification and
validation activities”. This should be consistent with other ECSS
Standards outside the software engineering discipline, and to
avoid confusion with the general verification engineering acti-
vities that are invoked in many places in software projects.

4.3 Organization of this standard
This standard is organized in two main parts:
D General Requirements. These are the core normative requirements for any

space system software engineering activity.
D Special Requirements. These are additional requirements for specific ap-

plication areas. These requirements are always applicable, but are only active
in developments where the addressed disciplines or application areas occur.
This separation serves to make the general requirements core compact and
clear.

Software documentation summaries are included in annex A for information.

ECSS28 July 2000
ECSS--E--40B Draft

24

In the preparation of this standard the ISO/IEC 12207:1995 standard has been
used extensively, providing a common internationally recognized framework for
the terminology and engineering process description.
The organisation of the the general requirements of this standard is reflected in
detail in the following chart:

5.8 Maintenance Process

5.3.2 Life Cycle definition 5.3.3 Interface management 5.3.4 Technical Budget and margin management

5.3 Software management process

5.7 SW Operations eng. process

5.7.2 Process implementation

5.7.3 Operational testing

5.7.4 System
Operation

5.7.5 User
Support

5.8.2 Process implementation

5.8.3 Problem and modification analysis

5.8.4 Modification implementation

5.9.6 Software migration

5.9.7 Software retirement

Development processes

5.2 System engineering processes related to SW

5.4 Software requirement engineering process

5.6 SW validation and acceptance process

5.5 Software design engineering process

5.5.2 Design of SW items

5.5.3 Coding and testing

5.5.4 Integration

5.4.2 SW requirement analysis

5.4.3 SW top level architectural design

5.4.4 SW V&V

5.6.2 Validation w.r.t. RB

5.5.5 Validation w.r.t. TS

5.9.3 Validation
process

implementation

5.9.2
Verification

Process
implementation

5.9.5 Maintenance review / acceptance

5.6.4 Software delivery and
Installation

5.6.5 Software acceptance

5.6.3 Validation and
acceptance milestones

5.9 SW V&V
Processes

5.9.4
Verification

activity

5.9.5 Validation
activity

5.9.6 Joint
technical
reviews

Figure 6: Structure of this standard

4.4 Relation to ECSS-M and ECSS-Q standards
This subclause discusses how this standard interfaces with other ECSS series,
namely the ECSS--Q series of standards (Product assurance) and the ECSS--M
series of standards (Project management).

4.4.1 Software product assurance
Requirements on software product assurance are defined in ECSS--Q--80B, which
is the entry level document of the ECSS--Q series (Product assurance) for software
projects.
This standard covers all aspects of space software product assurance including the
implementation aspects of the software product assurance process, and both soft-
ware process and product--related assurance activities.
It defines the scope of the space software product assurance process and its inter-
faces with management, engineering and other system--level product assurance
activities, which are addressed in the Management (--M), engineering (--E) and
Product assurance (--Q) branches of the ECSS System, and explains how they
apply in the software product assurance process.

ECSS 28 July 2000
ECSS--E--40B Draft

25

4.4.2 Software project management
ECSS--M standards define the requirements to be applied to the management of
space projects. The following subclauses describe how the ECSS--M standards
apply to the management of software projects.
In addition, normative requirements which cannot be found in M-series, because
they are specific to software project management, are provided in subclause 5.3.

4.4.2.1 ECSS-M-00: Policy and principles
ECSS--M--00 is a top-level document which defines project management principles
and general requirements to be applied to all aspects of a space project including
software.
Risk management is covered by ECSS--M--00. Some risk factors, such as exceeding
the assigned memory budget or CPU load, are specific to software.
The terms “customer”and “supplier”used in ECSS--E--40 are defined in ECSS--
M--00A, subclause 5.2.

4.4.2.2 ECSS-M-10: Project breakdown structures
The provisions of ECSS--M--10 shall apply to software, taking account of the spe-
cific features of the software.
The products of a software project are usually documents (including code) but may
also include computer devices in the case of software intensive systems.
“Model matrix”in ECSS--M--10A, subclause 5.2, is concerned with material mo-
dels and therefore is not relevant to software. However, these models shall not be
confused with logical and physical software models which may be produced as part
of a software specification and design, respectively.

4.4.2.3 ECSS-M-20: Project organization
ECSS--M--20 provides a clear definition of the role and responsibility of each party
to the project. ECSS--M--20 covers the requirements for software projects.

4.4.2.4 ECSS-M-30: Project phasing and planning
ECSS--M--30 defines the phasing and planning requirements for an entire space
project. But some requirements also affect software development, because they
are specified in ECSS--M--30 as applicable at any level of the project organization.
Project phases as defined in ECSS--M--30 are top-level (mission) phases, used to
structure the whole space project. They do not apply recursively to software devel-
opment. They should not be confused with the phases which are defined to give
structure to software development life cycles, and for which no specific definition
is imposed in ECSS--E--40.
Similarly, the reviews as defined in ECSS--M--30 do not apply directly to software
even though the concept of review applies recursively to all levels of a space project.
The terms “SRR”, “PDR”, “CDR”, “QR”and “AR”are defined in ECSS--M--30 , and
these are reused to define joint technical reviews for a software development as
described in subclause 4.2.
These reviews shall be synchronized with higher level reviews in a way which is
project dependant. In clause 6, interface requirements are given for particular
types of software. Requirements concerning phasing and reviews, and which are
specific to software are given in subclause 5.3.

4.4.2.5 ECSS-M-40: Configuration management
The requirements, also for software developments, are contained in ECSS--M--40.
One facet of software configuration management is that all configuration items
may be regarded as documents (even code). Therefore, the software configuration
management may easily be automated.

ECSS28 July 2000
ECSS--E--40B Draft

26

4.4.2.6 ECSS-M-50: Information/documentation management
The objectives of information and documentation management are particularly re-
quired to ensure the accessibility of information to all parties of the project and to
ensure the coherence of this information. These objectives also apply to software
projects, and the relevant requirements are to be found in ECSS--M--50.

4.4.2.7 ECSS-M-60: Cost and schedule management
ECSS--M--60 contains requirements on software projects, although requirements
on schedule management are more directly applicable to software, than costing re-
quirements.

4.4.2.8 ECSS-M-70: Integrated logistic support
ECSS--M--70 is mainly of concern to large or software-intensive systems.

4.4.3 Engineering

4.4.3.1 ECSS-E-00: Policy and principles
This standard, which is informative in nature, contains the basic rules and over--
all principles to be applied to all engineering activities during performance of a
space project. It addresses the establishment, based on customer needs, of mission
objectives, requirements, and specifications for space systems, and the design, de-
finition, production, verification, operation, and eventual disposal of the systems
themselves. It defines the scope and interfaces of these activities relative to the
domains of management and product assurance which are addressed in the Man-
agement (-- M) and Product Assurance (-- Q) branches of the ECSS system, and ex-
plains how they may apply in different ways depending on the type of space sys--
tem concerned.

4.4.3.2 ECSS-E-10: System Engineering
This standard is intended to guide the development of Systems (including hard-
ware, software, man--in--the--loop, facilities and services) for space applications.
It specifies implementation requirements for the responsible System Engineering
organisation consistent with the assumption that the System Engineering process
defined in Standard ECSS--E--10--01 is to be applied.

4.4.3.3 ECSS-E-70: Ground Segment
This Standard provides a high level description of all ground segment elements,
the domain specific aspects of the associated engineering processes and defines re-
lated guidelines and requirements.

4.5 Tailoring of this standard
The general requirements for selection and tailoring of applicable standards are
defined in ECSS--M--00.
This standard is intended to be applied to the customer/supplier interfaces for a
specific contract, in its tailored form.
The purpose of this clause is to give to the customer general guidance on tailoring
the standard for a specific contract or project (see clause 1 and ECSS--M--00).
Tailoring may be done by deleting requirements, limiting applicability to a specific
part of the system or modifying outputs or proofs to be provided, refining or specify-
ing existing requirements or in exceptional cases adding new requirements.
Tailoring should include the definition of project--specific standards and pro-
cedures as appropriate.
There are several drivers for tailoring, i.e. software development constraints, de-
pendability and safety aspects and commercial parameters.

ECSS 28 July 2000
ECSS--E--40B Draft

27

Tailoring for software development constraints should take account of technical,
operational and management factors.
Technical factors include:

S Novelty of the domain of application

S Complexity of the software and the system

S Criticality level

S Size of the software

S Reusability required of the software being developed

S Interface to system development projects

S Degree of use of COTS or existing software

S Maturity of the COTS and completeness or stability of the user
requirements.

The operational factors comprise:
S Type of application (platform, payload, experiment)

S Number of potential users of the software

S Criticality of the software as measured by the consequences of its failure

S Expected lifetime of the software

S Number of sites where the software is used

S Operation, maintenance, migration and retirement constraints

Management factors:
S Amount of time and effort required to develop the software

S Budget requirements for implementing and operating the software

S Accepted risk level for the project

S Type of lifecycle

S Schedule requirements for delivering the software

S Number of people required to develop, operate and maintain the
software

S Complexity of the organisation

S Experience of the supplier

ECSS28 July 2000
ECSS--E--40B Draft

28

(This page is intentionally left blank)

ECSS 28 July 2000
ECSS--E--40B Draft

29

5

General requirements

5.1 Introduction
This clause 5 defines the requirements for engineering software for space systems.
They shall be applied to any space projects producing computer software.
Each requirement can be identified by a hierarchical number. The text of the re-
quirement is followed, where necessary, by further explanation of the aim. For
each requirement the associated output is given in the output section. With each
output (e.g. “a.”, “b.”), the required destination (document) of the output is indi-
cated in brackets together with the corresponding review. For example: “[DDF,
DJF; QR]”denotes an output to the Design Definition File and the Design Justi-
fication File. The output in this example is required for the qualification review.

5.2 System engineering processes related to software
5.2.1 Introduction
This subclause 5.2 describes activities which are under the customer responsibil-
ity. The customer shall be responsible for the delivery of a system in which the de-
veloped software will be integrated (refer to the recursive customer-supplier model
described in 4.2).
The customer activities described here are only those that require introduction of
additional requirements particular for software development:
D system requirement analysis;
D system partitioning;
D system level requirements for software verification and validation;
D system level integration of software;
D software operations;
D software maintenance.
System level documentation is a prerequisite to the requirements engineering of
the software. The requirements given in this subclause shall ensure the complete-
ness and correctness of the customer’s system level documentation and to
establish a complete and verified requirements baseline for the software project.

ECSS28 July 2000
ECSS--E--40B Draft

30

5.2.2 System requirements analysis
This activity consists of the following tasks:
D system requirements specification;
D system and functional criticality analysis.

5.2.2.1
System requirements shall be derived from an analysis of the specific intended use
of the system to be developed. All system requirements shall be documented.
EXPECTED OUTPUT: a. functions and performance requirements of the system

[RB; SRR];
b. interface requirements [IRD(RB); SRR];
c. design constraints and verification and validation

requirements [RB; SRR];
d. identification of lower level software engineering

standards that will be applied [RB; RB] (see Q-80
clauses 6.3.2 and 6.3.3).

5.2.2.2
System criticality analysis and critical functions analysis shall be performed for
the system (in accordance with ECSS--Q--30).

EXPECTED OUTPUT: Overall safety and reliability requirements of the
software to be produced [RB; SRR];

5.2.3 System partitioning

5.2.3.1 Introduction
As part of the System Design process, a physical architecture and design (includ-
ing HW, SW and manual operations) of the system shall be derived: this is called
top-level partitioning of the system. This system design is derived from an analysis
of the requirements on the system and its functions. Conformance to the system
design with all system requirements shall be verified. All system requirements
shall be allocated and shall be traceable to the different system design partitions.

5.2.3.2
A top-level partitioning of the system shall be established. This partitioning shall
identify items of hardware, software and manual operations. It shall be ensured
that all the system requirements are allocated to items. Hardware configuration
items, software configuration items, and manual operations shall be subsequently
identified from these items. The system partitioning and the system requirements
allocated to the individual items shall be documented.
EXPECTED OUTPUT: a. system partition with definition of items [RB; SRR];

b. software/hardware interface requirements [IRD(RB);
SRR];

c. system configuration items list [RB; SRR];
d. traceability to system partitioning [DJF; SRR].

5.2.4 System level requirements for software verification and
validation

5.2.4.1 Introduction
The general ECSS approach to the verification process is described in ECSS--
E--10A clauses 4 and 5, covering both verification and validation activities.

ECSS 28 July 2000
ECSS--E--40B Draft

31

NOTE 1 It is assumed that for all space projects certain verification and
validation activities will always be applied. Therefore the ISO/
IEC 12207 requirements to determine if validation and verifica-
tion is required have no equivalent here (tailoring of ISO/IEC
12207).

NOTE 2 The supplier process verification is handled as part of the ECSS
management and is therefore not covered as part of the software
activities (tailoring of ISO/IEC 12207:1995 6.4.2.2). In addition,
ECSS--Q standards provide requirements related to the supplier
process assessment which are not repeated in this standard.

5.2.4.2
The customer shall adapt the requirement for qualification engineering given in
subclause 5.6 to system level requirements.

AIM: To identify the customer’s verification and validation process requirements
at system level, and to prepare for software acceptance and software
integration by introducing the corresponding verification and validation
process requirements in the requirements baseline.

EXPECTED OUTPUT: Verification and validation process requirements [RB;
SRR].

5.2.4.3
The customer shall include requirements for validation of all elements of the soft-
ware at system level, including validation at mission level.
In general, no prototype flights are possible, the software shall be fully operational
at first flight. Therefore the aim of this subclause is to ensure that the software is
validated at system level with realistic mission data and operational environ-
ments, and to minimize the functions that can only be validated by actual flight.

EXPECTED OUTPUT: Functional requirements for support to system and
mission level validation [RB; SRR].

5.2.4.4
The customer shall verify the requirements baseline.
In cases where the customer’s product is an integrated hardware and software
product, this shall be performed as required by the ECSS system engineering stan-
dards. In cases where the customer’s product is a software product, the customer
shall apply this standard in his role as “supplier”at a higher level in the product
tree.

EXPECTED OUTPUT: Requirements justifications [Customer DJF for system
level].

NOTE This output is a special case:
The output is not part of the customer-supplier interface to the
software engineering processes, and is therefore not part of any
milestone input. Instead the output is part of the customer’s own
system DJF, and should be used only by the customer in his role
as supplier to the next higher level in the product tree. The output
is mentioned here for completeness only.

5.2.4.5
The customer shall conduct a System Requirements Review (SRR) in accordance
with subclause 5.3.2.6.

EXPECTED OUTPUT: SRR milestone report [RB;SRR]

ECSS28 July 2000
ECSS--E--40B Draft

32

5.2.5 System level integration of software
This activity consists of the following tasks, which the customer shall perform or
support as required for system level activities, in the customer’s role as supplier
of the overall system:
D identification of required software observability for the support of software in-

tegration;
D required control and data interfaces for system level integration;
D data media requirements for integration;
D functional software integration support requirements;
D system level inputs required for the supplier’s preparation of integration of

the software;
D supplier software engineering outputs required for system level integration

preparation;
D required supplier for system level integration.
The software product integration at system level takes place only after completion
of the CDR of the software product, whereas the engineering, design and planning
activities supporting the later system level integration are completed for the prod-
uct before CDR.

5.2.5.1
If a software product is integrated into a system, all software observability re-
quirements, necessary to facilitate the software integration, shall be specified by
the customer.

EXPECTED OUTPUT: Software observability requirements [RB; SRR].

5.2.5.2
If the software is integrated into a system, all the interfaces between the software
and the system shall be specified by the customer, including the static and dynamic
aspects, for nominal and degraded modes (e.g. behaviour in case of failure).
The external interfaces, specific to software integrated in a system, may be:
D software interface with other software on the system (operating system, files,

database management system or other applications software);
D hardware interfaces to the specific hardware configuration;
D communication interfaces (particular network protocol for example).

NOTE Space segment software is in general integrated with highly spe-
cialised processors and electrical equipment. The IRD and ICD
therefore have a special importance and shall be controlled sep-
arately to ensure consistent design throughout the hardware and
software life cycle

EXPECTED OUTPUT: System level interface requirements [IRD(RB); SRR].

5.2.5.3
The customer shall identify the interface data medium and prepare the require-
ments accordingly.
For example, the interface data may be defined and structured in such a way that
interface data may be automatically acquired by the supplier SDE. Trade-offs
shall be performed, taking into account the number of software packages in the
system, the evolution of interface data, and the number of interface data sets.

EXPECTED OUTPUT: System level data interfaces [IRD(RB); SRR].

ECSS 28 July 2000
ECSS--E--40B Draft

33

5.2.5.4
If necessary, the customer shall define specific development constraints on the
supplier required to support the integration of the software into the system.
When the software is integrated into a system, some harmonization constraints
may be required such as:
D specification of the operating system to be used;
D specification of COTS to be used (e.g. Database, MMI generator);
D specification of the SDE to be used.

EXPECTED OUTPUT: Development constraints [RB; SRR].

5.2.5.5
Where necessary, the customer shall identify and plan the specific inputs he shall
provide to the supplier to support the integration of the software into the system,
and he shall prepare the requirements baseline accordingly.
When the software is integrated into a system, the customer may provide the
supplier with specific inputs for validating the software in a representative envi-
ronment. These inputs can be:
D breadboard or computer model;
D a simulator of the hardware and/or software environment.

EXPECTED OUTPUT: System level integration support products [IRD(RB);
SRR].

5.2.5.6
The customer shall identify and plan the specific outputs which the supplier shall
deliver to support the integration of the software into the system, and he shall pre-
pare the requirements baseline accordingly.
When software is integrated into a system, some prototype versions or intermedi-
ate versions may be required by the customer to prepare for integration. Func-
tionalities and delivery dates required for each of these versions shall be defined.

EXPECTED OUTPUT: System level integration preparation requirements
[IRD(RB); SRR].

5.2.5.7
The customer shall plan the support from the software supplier in order to inte-
grate the software at system level.
This can include activities such as: training, maintenance, configuration, test sup-
port.

EXPECTED OUTPUT: System level integration support requirements [MGT;
SRR].

5.2.6 Software operations
Since software products are an integrated part of the space system, the phasing
and management of operations shall be determined by the overall system require-
ments and shall be applied to software products.

5.2.6.1
The customer shall establish system requirements for the operation of software
products. The supplier’s response shall be agreed with the customer in the System
Requirements Review (SRR), intended to release the operational plans for execu-
tion as established in subclause 5.7.

EXPECTED OUTPUT: software operations requirements [RB; SRR];

ECSS28 July 2000
ECSS--E--40B Draft

34

5.2.7 Software maintenance
The customer shall establish system requirements for the maintenance of soft-
ware products. The supplier’s response shall be agreed with the customer in the
System Requirements Review (SRR), intended to release the maintenance plans
for execution as established in subclause 5.8.

EXPECTED OUTPUT: software maintenance requirements [RB; SRR];

5.3 Software management process
5.3.1 Introduction
Most of the specific requirements for the management and control of space systems
software projects exist in the ECSS--M series of documents. They are not repeated
here. In addition, the software product assurance requirements described in
ECSS--Q--80 are also used for the control of space systems software projects. Man-
agement plans shall be produced in relation with the following activities:
D development;
D configuration and documentation management;
D verification and validation;
D maintenance;
D quality assurance on process and product.
The requirements described in this subclause 5.3 are necessary for the engineer-
ing and control of software development in a space systems project, and they
bridge the gap between the other ECSS Standards mentioned above and the soft-
ware engineering activities in space projects.
The management and control described in this subclause are:
D software life cycle;
D interface management;
D technical budget and margin management.
The requirements in this subclause 5.3 shall be applied to any type of software in
a space project.
As defined in more detail in following subclauses, the software shall undergo the
overall software milestone reviews SRR, PDR, CDR, QR and AR as a minimum.
Further reviews (e.g. review of project plans, before the PDR) may be required by
the customer and they should follow requirements mentioned in subclause 5.9.6.

5.3.2 Software life cycle

5.3.2.1
To assure effective phasing and planning, the software development life cycle shall
be broken into phases, each having its associated milestones. Detailed software
lifecycle requirements are found in the level 3 standard ECSS--E--40--04.

5.3.2.2
The software supplier shall define and follow a software development life cycle in
accordance with subclause 4.2, and covering all activities from the statement of
requirement to the entry of the software into service. The definition of the life cycle
shall be associated with choices of techniques used during the development, oper-
ations and maintenance processes (e.g. database management system, extensive
product reuse), with the risks inherent to the project (e.g. highly changeable spec-
ification, stringent schedule constraints) and with synchronization points with the
upper level.
The choice of software life cycle shall be in accordance with the overall project re-
quirements, and the process model of subclause 4.2 and ECSS--M--30 shall be used.

ECSS 28 July 2000
ECSS--E--40B Draft

35

EXPECTED OUTPUT: Project software development life cycle definition,
included in the software project development plan [MGT;
SRR].

5.3.2.3
The development life cycle shall define the input and output required for each
phase and its associated milestones.

EXPECTED OUTPUT: Review Plan/Milestones (included in the software
development plan) [TS;SRR]

5.3.2.4
The output for each phase shall consist of documents in complete or outline ver-
sions, including the results of verification of the technical outputs of the phase.
Milestones are the joint technical reviews required by the customer (SRR, PDR,
CDR, QR and AR) and internal reviews at the supplier level.
The outputs for each milestone are documents submitted for examination and are
explicitly listed in the software life cycle definition.

5.3.2.5
The interface between development and maintenance (e.g. documents to be pro-
duced, tools to be kept for maintenance) shall be identified for the software life
cycle.

AIM: Define and prepare during development input necessary for maintenance
process for the software product. See subclause 5.8.

EXPECTED OUTPUT: Elements of the software maintenance plan [TS; PDR].

5.3.2.6
The customer’s release of the software requirements baseline shall be included in
the material submitted to the SRR.
The software requirements baseline results from a system requirements analysis
and a system partitioning conducted by the customer. It represents the customer’s
requirements towards the software to be developed:
D customer’s requirements;
D external interfaces of the software.

EXPECTED OUTPUT: Customer approval of requirements baseline [RB; SRR]

5.3.2.7
A software technical specification phase shall be included at the beginning of the
development life cycle.

AIM: To establish the technical specification for the project. This is the software
suppliers response to the requirements baseline. The technical specification
captures all technical requirements for the software product, and it is aimed
to establish the technical specification early in the project.

EXPECTED OUTPUT: a. technical specification of the software [TS; PDR];
b. top-level architectural design [DDF; PDR];
c. interface control document [ICD(TS); PDR];
d. top-level design trade-offs [DJF; PDR].

5.3.2.8
On completion of the specification phase, the software supplier shall hold a Pre-
liminary Design Review (PDR) to which the customer shall be invited to attend.

AIM: S Agree with the customer or their representatives that all requirements
with respect to the requirements baseline are captured in the technical
specification.

ECSS28 July 2000
ECSS--E--40B Draft

36

S Review the top-level software architecture.

EXPECTED OUTPUT: Customer approval of technical specification and
top-level architecture [TS, DDF, ICD(TS), DJF; PDR].

5.3.2.9
At the end of the design, the software supplier shall hold a Critical Design Review
(CDR) to which the customer shall be invited to attend.

AIM: During the CDR, the design definition file, operations manual and the asso-
ciated design justification file are reviewed.

The completeness of the software validation activities with respect to the Techni-
cal Specification and their relevant products (e.g. test case specification,
simulators) shall be reviewed.
EXPECTED OUTPUT: a. customer approval of the design definition file (e.g.

architectural design and detailed design, code) [DDF;
CDR];

b. customer approval of the design justification file (e.g.
results of unit and integration testsand results of
validation with respect to the technical specifications)
[DJF; CDR];

c. customer approval of the design of system level
interfaces and the system level integration plan [DDF,
DJF; CDR];

d. customer approval of the operations manual [TS;
CDR].

e. customer approval of the validation with respect to TS
report [DJF;CDR]

5.3.2.10
To ensure that the software product conforms with its technical specification,
verification and validation shall be carried out at the end of the development life
cycle.

AIM: To ensure, by means of verification and validation processes in a
representative environment, that the software product conforms to its
technical specification before integration in the system.

5.3.2.11
The software supplier shall hold a Qualification Review to verify that the software
product meets all of its specified requirements.

AIM: To verify that the software meets all of its specified requirements, and in
particular that verification and validation process outputs enable transition
to “qualified state”for the software products.

During QR, a summary of tests reports and operations manual are reviewed. The
consistency of all software documentation (TS, DDF, ICD, DJF, operations man-
ual) shall be verified.

EXPECTED OUTPUT: Customer’s approval of qualified state [DJF; QR].

5.3.2.12
After the Qualification Review, the customer shall hold an Acceptance Review.

AIM: Acceptance of the software with respect to the intended operational
environment.

EXPECTED OUTPUT: Customer’s approval of accepted state [DJF; AR].

ECSS 28 July 2000
ECSS--E--40B Draft

37

5.3.3 Interface management
Interfaces shall be defined in the requirements baseline in an interface require-
ments document, which defines the requirements applicable to various elements
of the system product tree.
Interface management procedures shall be defined in accordance with ECSS--
M--40 requirements.

AIM: Define procedures which guarantee the consistency of the system
interfaces.

EXPECTED OUTPUT: a. interface management procedures [RB; SRR];
b. part of configuration managemen t requirements [RB;

SRR].

5.3.4 Technical budget and margin management
Software budgets considered in this subclause are those associated with computer
resources (CPU load, maximum memory size) and performance requirements.

5.3.4.1
Technical budget targets and margin philosophy dedicated to the software shall
be specified by the customer in the requirements baseline.

AIM: Define the limits to be considered by the supplier.

EXPECTED OUTPUT: Technical budgets and margin philosophy for the project
[RB; SRR].

5.3.4.2
The supplier shall manage margins regarding the technical budgets and present
their status at each milestone.
The margins shall be established by analysis in the early phases of development
and consolidated by performance measurements commensurate with the software
implementation.
Hypothesis with which analysis are performed shall be described as part of the
evaluation results.

EXPECTED OUTPUT: Margins and technical budgets status [DJF; PDR, CDR,
QR, AR].

5.4 Software requirements engineering process

5.4.1 Introduction
The software requirements engineering process consists of the following activities:
D software requirements analysis;
D software top-level architectural design;
D software verification and validation.

5.4.2 Software requirements analysis
For each software item, this activity consists of the following tasks:
D establish and document software requirements;
D build an implementation--independent model of software requirements.
D identify each requirement;
D evaluate the software requirements.

ECSS28 July 2000
ECSS--E--40B Draft

38

5.4.2.1
The supplier shall establish and document software requirements, including the
software quality requirements.

EXPECTED OUTPUT: (Technical specification)
a. functional and performance specifications, including

hardware characteristics, and environmental
conditions under which the software item will execute
[TS; PDR];

b. interfaces external to the software item [ICD(TS);
PDR];

c. safety specifications, including those related to
methods of operation and maintenance,
environmental influences, and personnel injury [TS;
PDR];

d. security specifications, including those related to
factors which might compromise sensitive
information [TS; PDR];

e. human-factors engineering (ergonomics)
specifications, including those related to manual
operations, human-equipment interactions,
constraints on personnel, and areas requiring
concentrated human attention, that are sensitive to
human errors and training [TS; PDR];

f. data definition and database requirements [TS;
PDR];

g. installation and acceptance requirements of the
delivered software product at the operation and
maintenance site(s) [TS; PDR];

5.4.2.2
The supplier shall build an implementation-- independent model of Software items
in order to analyse and document software requirements.

EXPECTED OUTPUT: Software logical model [TS; PDR]

5.4.2.3
Each requirement shall be separately identified in order to allow for traceability.

5.4.2.4
The supplier shall evaluate the software requirements invoking clause 5.9.4.1
EXPECTED OUTPUT: a. requirement traceability matrices [DJF; PDR];

b. requirements verification report [DJF; PDR].

5.4.3 Software top-level architectural design
For each software item, this activity consists of the following tasks:
D transformation of software requirements into an architecture;
D development and documentation of the top-level design of the software inter-

faces (external and internal);
D development and documentation of preliminary versions of the operations

manual;
D definition and documentation of preliminary test requirements and a

software integration plan;
D evaluation of the top-level architectural design;
D conducting a Preliminary Design Review.

ECSS 28 July 2000
ECSS--E--40B Draft

39

5.4.3.1
The supplier shall transform the requirements for the software item into an archi-
tecture that describes its top-level structure and identifies the software compo-
nents. It shall be ensured that all the requirements for the software item are allo-
cated to its software components and further refined to facilitate detailed design.
The top-level architecture of the software item shall be documented.

EXPECTED OUTPUT: software architectural design [DDF; PDR];

5.4.3.2
The design description shall as a minimum cover hierarchy, dependency and inter-
faces for the software components.

5.4.3.3
The design description shall document the process, data and control aspects of the
product.

5.4.3.4
The supplier shall develop and document a top-level design for the interfaces ex-
ternal to the software item and between the software components of the software
item.
EXPECTED OUTPUT: a. preliminary (top-level) external interfaces design

[ICD(TS); PDR];
b. preliminary (top-level) internal interfaces design

[DDF; PDR].

5.4.3.5
The supplier shall develop and document preliminary versions of the operations
manual.

EXPECTED OUTPUT: Preliminary version of operations manual [TS; PDR].

5.4.3.6
The supplier shall define and document preliminary test requirements and the
plan for software integration.

EXPECTED OUTPUT: Software integration test plan (preliminary) [DJF;
PDR].

5.4.3.7
The supplier shall evaluate the architecture of the software item and the interface
designs invoking clause 5.9.4.2 .
EXPECTED OUTPUT: a. Architecture and interface verification report [DJF;

PDR].
b. Top-Level Architectural Design to Requirements

Traceability Matrices [DJF;PDR]

5.4.3.8
The supplier shall conduct a Preliminary Design Review (PDR) in accordance with
subclause 5.3.2.8. The successful completion of the review establishes a baseline
for the development of the software item.

EXPECTED OUTPUT: PDR milestone report [DJF; PDR].

5.4.4 Software verification and validation

5.4.4.1
The technical specifications shall include specification of verification and vali-
dation of the software product. These specifications are determined by the cus-
tomer’s requirements baseline (subclause 5.2.4.2) and by invoking the relevant
verification and validation processes.

ECSS28 July 2000
ECSS--E--40B Draft

40

The processes invoked are:
a. verification process implementation (subclause 5.9.2);
b. validation process implementation (subclause 5.9.3).
EXPECTED OUTPUT: a. software verification plan -independence, criticality

and effort [DJF; PDR];
b. software verification plan - methods and tools [DJF;

PDR];
c. software verification plan - organization [DJF; PDR];
d. software validation plan - independence, criticality

and effort [DJF; PDR];
e. software validation plan - methods and tools [DJF;

PDR];
f. software validation plan - independent validation

[DJF; PDR];
g. software validation plan - organization [DJF; PDR].

5.5 Software design engineering process
5.5.1 Introduction
The software design engineering process consists of the following activities:
D design of software items;
D coding and testing;
D integration;
D validation with respect to the technical specification.

5.5.2 Design of software items
For each software item, this activity consists of the following tasks:
D design of each software component;
D development and documentation of a design for the interfaces;
D updating of the operations manual;
D definition and documentation of a unit test specification and plan;
D updating the test specification and the schedule for integration;
D evaluation of the software detailed design and test specification.

5.5.2.1
The supplier shall develop a detailed design for each component of the software.
Each software component shall be refined into lower levels containing software
units that can be coded, compiled, and tested. It shall be ensured that all the soft-
ware requirements are allocated from the software components to software units.
The design shall be documented.

EXPECTED OUTPUT: Software components design documents [DDF; CDR].;

5.5.2.2
The supplier shall develop and document a detailed design for the interfaces exter-
nal to the software item, between the software components, and between the soft-
ware units. The detailed design of the interfaces shall permit coding without the
requirement for further information.
EXPECTED OUTPUT: a. external interfaces design (update) [ICD(TS); CDR];

b. internal interfaces design (update) [DDF; CDR].

5.5.2.3
The supplier shall update the operations manual as necessary.

ECSS 28 July 2000
ECSS--E--40B Draft

41

EXPECTED OUTPUT: operations manual (update) [TS; CDR].

5.5.2.4
The supplier shall define and document test requirements and plan for testing
software units. The test specifications shall include stressing the software at the
limits of its requirements.

EXPECTED OUTPUT: Software unit test plan [DJF; CDR].

5.5.2.5
The supplier shall update the test requirements and the plan for software integra-
tion.

EXPECTED OUTPUT: Software integration test plan (update) [DJF; CDR].

5.5.2.6
The supplier shall evaluate the software design and test requirements invoking-
clause 5.9.4.3)
EXPECTED OUTPUT: a. design verification report [DJF; CDR];

b. design traceability matrices [DJF; CDR].

5.5.3 Coding and testing
For each software item, this activity consists of the following tasks:
D development and documentation of software units, test procedures and test

data;
D testing of each software unit and database;
D updating the operations manual;
D updating the test requirements and the schedule for integration;
D evaluation of software code and test results.

5.5.3.1
The supplier shall develop and document the following:
a. the coding of each software unit;
b. test procedures and data for testing each software unit.
EXPECTED OUTPUT: a. software component design documents and code

(update) [DDF; CDR];
b. software unit test plan (update) [DJF; CDR].

5.5.3.2
The supplier shall test each software unit ensuring that it satisfies its require-
ments. The test results shall be documented.
EXPECTED OUTPUT: a. software component design document and code

(update) [DDF; CDR];
b. software unit test reports [DJF; CDR].

5.5.3.3
The supplier shall update the operations manual as necessary.

EXPECTED OUTPUT: Operations manual (update) [TS; CDR].

5.5.3.4
The supplier shall update the test requirements and the plan for software integra-
tion.

AIM: To make the test requirements and integration plan consistent with the
results of the code design process.

EXPECTED OUTPUT: Software integration test plan (update) [DJF; CDR].

ECSS28 July 2000
ECSS--E--40B Draft

42

5.5.3.5
The supplier shall evaluate software code and test results, invoking clause
5.9.4.4):
EXPECTED OUTPUT: a. software code verification report [DJF; CDR];

b. software code traceability matrices [DJF; CDR].

5.5.4 Integration
The following refers to the software integration of the software product, i.e. the
software product delivered by the supplier to the customer. The integration pro-
cess shall include preparation for validation testing of the integrated product.
At system level, which is the next higher level in the product tree, the system level
integration takes place. The system level integration nominally takes place after
completion of the QR for the software product to be integrated with the system.
However, depending on the system level life cycle and risk sharing approach, the
system integration process may be specified invoked earlier (see for example
subclause 5.2.5.6), but not earlier than the software CDR.
For each software item, this activity consists of the following tasks:
D development of an integration plan;
D integration and testing of the software units and software components;
D updating the operations manual;
D evaluation of the integration plan, design, code, tests, test results, and oper-

ations manual.

5.5.4.1
The supplier shall develop an integration plan to integrate the software units and
software components into the software item. The plan shall include test require-
ments, procedures, data, responsibilities, and schedule. The plan shall be docum-
ented.

EXPECTED OUTPUT: Software integration test plan [DJF; CDR].

5.5.4.2
The supplier shall integrate the software units and software components and test,
as the aggregates are developed, in accordance with the integration plan. It shall
be ensured that each aggregate satisfies the requirements of the software item and
that the software item is integrated at the conclusion of the integration activity.
The integration and test results shall be documented.

EXPECTED OUTPUT: Software integration test report [DJF; CDR].

5.5.4.3
The supplier shall update the operations manual as necessary.

EXPECTED OUTPUT: Operations manual (update) [TS; QR].

5.5.4.4
The supplier shall evaluate the integration plan, design, code, tests, test results,
and operations manual invoking clause 5.9.4.5 and 5.9.4.6).

EXPECTED OUTPUT: Software integration verification report containing the
reports a. and c. below:
a. software integration verification report [DJF; CDR];
b. test completeness and code conformance report [DJF;

CDR];
c. software documentation verification report [DJF;

CDR];

ECSS 28 July 2000
ECSS--E--40B Draft

43

d. feasibility confirmation of validation testing,
operations and maintenance [DJF; CDR];

5.5.5 Validation with respect to the technical specification
This activity consists of the following tasks:
D validation with respect to the Technical Specification;
D conducting a joint review (CDR).

5.5.5.1
The supplier shall evaluate the software with respect to the Technical Specifica-
tion. The validation process (5.9.5) should be invoked.

EXPECTED OUTPUT: Validation with respect to the Technical Specification
testing report [DJF;CDR]

5.5.5.2
The supplier shall conduct a Critical Design Review (CDR) in accordance with sub-
clause 5.3.2.9. All outputs required for CDR shall be prepared and verified by the
process “verification of software documentation”(subclause 5.9.4.6) in prepara-
tion of the CDR.

AIM: That the supplier baselines his design documentation for the project to
transit from “specified state”to the “defined state”, thereby achieving the
milestone of a completed design.

Every problem detected during the review shall be subject of a problem resolution
process (invoking clause 5.9.5.5).

EXPECTED OUTPUT: CDR milestone report [DJF;CDR].

5.6 Software validation and acceptance process

5.6.1 Introduction
This process consists of the following activities:
D Validation with respect to the requirements baseline;
D Validation and acceptance milestones;
D Software delivery and installation;
D Software acceptance.

5.6.2 Validation with respect to the requirements baseline
The customer shall evaluate the software with respect to the Requirements Base-
line. The validation process (5.9.5) should be invoked.This validation shall be per-
formed not later than the Acceptance Review.

EXPECTED OUTPUT: Validation with respect to requirements baseline testing
report [DJF;QR/AR]

5.6.3 Validation and acceptance milestones
This activity consists of the following tasks:
D Qualification review;
D Acceptance review.

5.6.3.1
The Qualification Review (QR) shall be conducted in accordance with subclause
5.3.2.11.

ECSS28 July 2000
ECSS--E--40B Draft

44

AIM: To verify that the software meets all the requirements, and in particular
that verification and validation process outputs enable transition to
“qualified state”for the software products.

EXPECTED OUTPUT: a. preliminary software acceptance data package [DJF;
QR];

b. preliminary software release documentation [DDF;
QR];

c. preliminarily software delivery on specified data
medium [DDF; QR];

d. software design and test evaluation report [DJF; QR];
e. validation testing report [DJF; QR];
f. test specification evaluation [DJF; QR];
g. QR milestone report [DJF; QR].

5.6.3.2
The Acceptance Review (AR) shall be conducted in accordance with subclause
5.3.2.12. The software supplier’s acceptance support process shall support the cus-
tomer’s acceptance activities in preparation of the AR.

AIM: To ensure that the customer will receive adequate supplier support to
perform his acceptance and integration activities in preparation of the AR.
“Support to acceptance reviews and testing” (subclause 5.6.5.4@@@@), is
invoked for this.

EXPECTED OUTPUT: a. final software acceptance data package [DJF; AR];
b. acceptance testing documentation [DJF; AR];
c. AR milestone report [DJF; AR];
d. software release documentation [DDF; AR];
e. software delivery on specified data medium [DDF;

AR].

5.6.4 Software delivery and installation
This activity consists of the following tasks:
D Preparation and update of the deliverable software product;
D Training and support;
D Installation planning;
D Installation report.

5.6.4.1
The supplier shall:
a. Prepare and update the deliverable software product as established in the re-

quirements baseline for system integration, system validation testing, soft-
ware installation, or software acceptance support as applicable.

b. Update the established baseline for the design and code of the software item.
EXPECTED OUTPUT: a. software delivery on specified data medium

[DDF;QR];
b. software release documentation [DDF;QR];
c. software acceptance data package [DJF;QR].

5.6.4.2
The supplier shall provide initial and continuing training and support to the cus-
tomer as specified in the technical specification.

EXPECTED OUTPUT: Training material [TS; QR]

ECSS 28 July 2000
ECSS--E--40B Draft

45

5.6.4.3
The supplier shall develop a plan to install the software product in the target envi-
ronment.

EXPECTED OUTPUT: Installation plan [DJF; AR].

5.6.4.4
The resources and information necessary to install the software product shall be
determined and be available.
The supplier shall assist the customer with the set--up activities.
The supplier shall install the software product in accordance with the installation
plan.
It shall be ensured that the software code and databases initialise, execute and ter-
minate as specified in the installation plan.
The installation events and results shall be documented.

EXPECTED OUTPUT: Installation report [DJF; AR].

5.6.5 Software acceptance
This activity consists of the following tasks:
D Acceptance test planning;
D Execution of acceptance tests;
D Generation and installation of the executable code;
D Supplier support to customer’s acceptance review;
D Evaluation of the acceptance tests.

5.6.5.1
The customer shall establish an acceptance test plan specifying the intended ac-
ceptance tests with tests suited to the target environment.

EXPECTED OUTPUT: Acceptance test plan [DJF; AR]

5.6.5.2
The customer shall execute the acceptance testing.

EXPECTED OUTPUT: Acceptance test report [DJF; AR].

5.6.5.3
The acceptance shall include generation of the executable code from configuration
managed source code components and its installation on the target environment.

5.6.5.4
The supplier shall support the customer’s acceptance reviews and testing of the
software product. Acceptance reviews and testing shall consider the results of the
joint reviews, audits, software validation testing (ECSS--Q--80B subclause 6.3.4),
and system validation testing (if performed). The results of the acceptance reviews
and testing shall be documented.

EXPECTED OUTPUT: Acceptance testing documentation [DJF; AR].

5.6.5.5
The acceptance tests shall be evaluated with respect to the Requirements Base-
line.

EXPECTED OUTPUT: Traceability of Acceptance tests to Requirements Baseline
[DJF;AR].

ECSS28 July 2000
ECSS--E--40B Draft

46

5.7 Software operations engineering process
5.7.1 Introduction
The operation process may start after completion of software acceptance. Since
software products are an integrated part of the space system, the phasing and
management of operation should be determined by the overall system require-
ments and applied to the software products. The operation engineering processes
are therefore not directly connected to the overall mission phase E, but are deter-
mined by the system level requirement to operate the software product at a given
time. Ground segment software products are for example in extensive operational
use to qualify the ground segment, well before the actual mission operation occur.
Similarly, for flight segment software, extensive ground operations are, in general,
required for testing flight equipment long before space system flight operations
begin.
Both the documents and the reviews identified as outputs by the subclauses of 5.7
are therefore part of the operations activities for the space systems, and the re-
quirements for these reviews and their documentation forms part of the space sys-
tem operations engineering requirements covered in other ECSS Standards. The
provisions of this subclause 5.7 are intended to produce the required software en-
gineering inputs for the system level activities.
The operation process comprises the activities and tasks of the operator. The pro-
cess covers the operation of the software product and operational support to users.
Because operation of a software product is integrated into the operation of the sys-
tem, the activities and tasks of this process shall refer to the system.
The operator manages the operation process at the project level following the man-
agement process (ECSS--M--30). This process consists of the following activities:
D process implementation;
D operational testing;
D system operation;
D user support.

5.7.2 Process implementation
This activity consists of the following tasks:
D development of operational plans and set standards;
D definition of procedures for problem handling;
D definition of operational testing specifications.

5.7.2.1
The operator shall develop a plan and set operational standards for performing the
activities and tasks of this process. The plan shall be documented and executed.

EXPECTED OUTPUT: Operational plan - plan and standards [OP; ORR].

5.7.2.2
The operator shall establish procedures for receiving, recording, resolving, track-
ing problems, and providing feedback. Whenever problems are encountered, they
shall be recorded in accordance with the change control established and main-
tained in conformance with ECSS--M--40.

EXPECTED OUTPUT: Operational plan - procedures for problem handling [OP;
ORR].

ECSS 28 July 2000
ECSS--E--40B Draft

47

5.7.2.3
The operator shall establish procedures for testing the software product in its
operation environment, for entering problem reports and modification requests to
the maintenance process (subclause 5.8), and for releasing the software product
for operational use in accordance with the change control established and main-
tained in conformance to ECSS--M--40.

EXPECTED OUTPUT: Operational plan - operational testing specifications
[OP; ORR].

5.7.3 Operational testing
This activity consists of the following tasks:
D Perform operational testing;
D demostration of capability to meet operational requirements.

5.7.3.1
For each release of the software product, the operator shall perform operational
testing in accordance with the change control established and maintained in con-
formance to ECSS--M--40. On satisfying the specified criteria, the software prod-
uct shall be released for operational use.

5.7.3.2
The customer shall ensure that prior to the operations phase, the software has
been demonstrated capable of meeting the operational requirements.
This demonstration may be part of the acceptance tests of the system.
This demonstration should be representative in terms of:
D hardware operating environment;
D situations to which the software is designed to be fault tolerant;
D system configuration;
D sequence of operations and phases;
D operator interventions.

5.7.4 System operation
The system shall be operated in its intended environment according to the oper-
ations manual.

5.7.5 User support
This activity consists of the following tasks:
D user assistance and consultation;
D handling of user requests for software maintenance;
D provision of work-around solutions.

5.7.5.1
The operator shall provide assistance and consultation to the users as requested.
These requests and subsequent actions shall be recorded and monitored.

5.7.5.2
The operator shall forward user requests, as necessary, to the maintenance pro-
cess for resolution. These requests shall be addressed and the actions that are
planned and taken shall be reported to the originators of the requests. All resol-
utions shall be monitored to conclusion.

5.7.5.3
If a reported problem has a temporary work-around before a permanent solution
can be released, the originator of the problem report shall be given the option to
use it. Permanent corrections, releases that include previously omitted functions

ECSS28 July 2000
ECSS--E--40B Draft

48

or features, and system improvements shall be applied to the operational software
product using the maintenance process (subclause 5.8).

5.8 Software maintenance process
5.8.1 Introduction
The maintenance process contains the activities and tasks of the maintainer. This
process shall be activated when the software product undergoes modifications to
code and associated documentation due to a problem or the requirement for im-
provement or adaptation. The objective is to modify an existing software product
while preserving its integrity. This process shall include the migration and retire-
ment of the software product. The process shall end with the retirement of the soft-
ware product.
The activities provided in this subclause 5.8 are specific to the maintenance pro-
cess; however, the process may utilize other processes in this standard. If the soft-
ware engineering process (subclause 4.2) is utilized, the term supplier there is in-
terpreted as maintainer.
The maintainer shall manage the maintenance process at the project level follow-
ing the management process (ECCS--M--10), which is instantiated for software in
this process.
Both the documents and the reviews identified by the subclauses in this subclause
5.8 are part of the general maintenance activities for the space systems, and the
requirements for these reviews and documentation is part of the space system
maintenance engineering requirements, covered in other ECSS Standards. The
provisions of this subclause 5.8 shall produce the required software engineering
inputs for these system level activities.
This process consists of the following activities:
D process implementation;
D problem and modification analysis;
D modification implementation;
D in flight modification;
D maintenance review/acceptance;
D software migration;
D software retirement.

5.8.2 Process implementation
This activity consists of the following tasks:
D maintenance procedure development and planning;
D implementation of a configuration control process for problem reporting and

handling.

5.8.2.1
The maintainer shall develop, document, and execute plans and procedures for
conducting the activities and tasks of the maintenance process.

EXPECTED OUTPUT: Maintenance plan - plans and procedures [MF; QR].

5.8.2.2
Software maintenance shall be performed using the same procedures, methods,
tools and standards as used for the development.

5.8.2.3
The maintainer shall establish procedures for receiving, recording and tracking
problem reports and modification requests from the operator and providing feed-
back to the operator. Whenever problems are encountered, they shall be recorded

ECSS 28 July 2000
ECSS--E--40B Draft

49

and entered in accordance with the change control established and maintained in
conformance to ECSS--M--40.

EXPECTED OUTPUT: Maintenance plan - problem reporting and handling
[MF; QR].

5.8.2.4
The maintainer shall implement (or establish the organizational interface with)
the configuration management process (ECSS--M--40) for managing modifica-
tions.

5.8.3 Problem and modification analysis
This activity consists of the following tasks:
D problem analysis;
D problem verification;
D development of options for modifications;
D documentation of problems, analysis and implementation options;
D obtaining customer approval for selected modification option.

5.8.3.1
The maintainer shall analyse the problem report or modification requests for its
impact on the organization, the existing system, and the interfacing systems for
the following:
a. type (e.g. corrective, improvement, preventive, or adaptive to new environ-

ment);
b. scope (e.g. size of modification, cost involved, time to modify);
c. criticality (e.g. impact on performance; safety, or security).

5.8.3.2
The maintainer shall reproduce or verify the problem.

5.8.3.3
Based upon the analysis, the maintainer shall develop options for implementing
the modification.

5.8.3.4
The maintainer shall document the problem/modification request, the analysis re-
sults and implementation options.

EXPECTED OUTPUT: Change justification file - problem analysis report [MF].

5.8.3.5
The maintainer shall obtain approval for the selected modification option in ac-
cordance with procedures agreed with the customer.

5.8.4 Modification implementation
This activity consists of the following tasks:
D analysing and documenting which products require modification;
D document changes according to the procedures for document control and con-

figuration management;
D invoking the software development process to implement the modifications.

5.8.4.1
The maintainer shall conduct analysis and determine which documentation, soft-
ware units, and versions thereof shall be modified. These shall be documented.

EXPECTED OUTPUT: Modification identification [MF].

ECSS28 July 2000
ECSS--E--40B Draft

50

5.8.4.2
All changes to the software product shall be documented in accordance with the
procedures for document control and configuration management.

5.8.4.3
The maintainer shall enter the software engineering process (subclause 4.2) to im-
plement the modifications. The requirements of the development process shall be
supplemented as follows:
a. Test and evaluation criteria for testing and evaluating the modified and the

unmodified parts (software units, components, and configuration items) of the
system shall be defined and documented.

b. The complete and correct implementation of the new and modified require-
ments shall be ensured. It also shall be ensured that the original, unmodified
requirements were not affected. The test results shall be documented.

5.8.5 In flight modification

5.8.5.1
For space segment software where ability to perform software modifications in
flight is required, the special customer requirements for this shall be documented
in the requirements baseline, and the supplier’s response shall be documented in
the technical specification baseline.

AIM: In addition to software maintenance, space segment software may be
required to support reprogramming in flight. In addition to software
maintenance, this implies the software design process is re-invoked to
include changed or added requirements. Therefore, the means to re-invoke
the complete design process is required to be maintained for these cases
additional to the means for maintaining the software end-product.

Space segment software may not always be reprogrammable in flight. In cases
where reprogramming is required, the appropriate requirements shall be cap-
tured already at SRR, and the supplier’s design baseline shall incorporate the
corresponding design at PDR. Due to the long life-time often encountered with
space segment software, special requirements may also exist to ensure the sup-
porting tools (e.g. compilers, engineering tools) can support the reprogramming in
orbit during the required life-time.

EXPECTED OUTPUT: Requirements for in-flight modification capabilities [RB;
SRR].

5.8.5.2
For space segment software requiring in-flight modification, the supplier shall
perform analysis of the specific implications for the software design processes and
include the necessary functional and performance requirements in the Technical
Specification.

EXPECTED OUTPUT: Specifications for in-flight software modifications [TS;
PDR].

5.8.6 Maintenance review/acceptance
The maintainer shall conduct joint review(s) with the organization authorizing
the modification to determine the integrity of the modified system. Upon success-
ful completion of the reviews, a baseline for the change shall be established.

EXPECTED OUTPUT: Change justification file - baseline for changes [MF].

5.8.7 Software migration
This activity consists of the following tasks:
D coherent application of standards for migration;

ECSS 28 July 2000
ECSS--E--40B Draft

51

D developing, documenting and executing a migration plan;
D notifying the space system operator of migration plans and activities;
D provision of training, and parallel operations of existing and migrated system

where required;
D notification of transition to migrated system;
D performance of technical review to assess impact of transition to new environ-

ment;
D maintaining data of former systems.

5.8.7.1
If a system or software product (including data) is migrated from an old to a new
operational environment, it shall be ensured that any software product or data
produced or modified during migration are in accordance with this Standard.

5.8.7.2
A migration plan shall be developed, documented, and executed. The planning
activities shall include the operator. Items included in the plan shall include the
following:
a. requirements analysis and definition of migration;
b. development of migration tools;
c. conversion of software product and data;
d. migration execution;
e. migration verification;
f. support for the old environment in the future.

EXPECTED OUTPUT: Migration plan [MF]

5.8.7.3
The operator shall be given notification of the migration plans and activities.
Notifications shall include the following:
a. statement of why the old environment is no longer to be supported;
b. description of the new environment with its date of availability;
c. description of other support options available, if any, once support for the old

environment has been removed;
d. the date as of which the transition takes place.

EXPECTED OUTPUT: Migration justification file [MF]

5.8.7.4
Parallel operation of the old and new environments may be conducted for smooth
transition to the new environment. During this period, training shall be provided
as necessary and specified in the operational plan.

5.8.7.5
When the scheduled migration takes place, notification shall be sent to all con-
cerned. All associated old environment’s documentation, logs, and code shall be
placed in archives.

5.8.7.6
A post-operation review shall be performed to assess the impact of changing to the
new environment. The results of the review shall be sent to the appropriate auth-
orities for information, guidance, and action.

5.8.7.7
Data used by or associated with the old environment shall be accessible in accord-
ance with the requirements for data protection and audit applicable to the data.

ECSS28 July 2000
ECSS--E--40B Draft

52

5.8.8 Software retirement
The software product will be retired on the request of the customer.
This activity consists of the following tasks:
D retirement planning;
D notification of retirement to the operator;
D parallel operations of the retiring and new software product;
D to allow access to data related with the retired software product.

5.8.8.1
A retirement plan to remove active support by the operator and maintainer shall
be developed and documented. The plan shall address the items listed below. The
plan shall be executed.
a. Cessation of full or partial support after a certain period of time;
b. Archiving of the software product and its associated documentation;
c. Responsibility for any future residual support issues;
d. Transition to the new software product, if applicable;
e. Accessibility of archive copies of data.

EXPECTED OUTPUT: Retirement plan [MF]

5.8.8.2
The operator shall be given notification of the retirement plans and activities.
Notifications shall include the following:
a. Description of the replacement or upgrade with its date of availability;
b. Statement of why the software product is no longer to be supported;
c. Description of other support options available, once support has been re-

moved.

EXPECTED OUTPUT: Retirement notification to operator [MF]

5.8.8.3
Parallel operations of the retiring and the new software product may be conducted
for smooth transition to the new system. During this period, user training shall be
provided as specified in the contract.

5.8.8.4
Data used by or associated with the retired software product shall be accessible
in accordance with the contract requirements for data protection and audit appli-
cable to the data.

5.9 Software verification and validation (supporting) processes
5.9.1 Introduction
These verification and validation processes may be executed with varying degrees
of independence. The degree of independence may range from the same person, or
different person in the same organization, to a person in a different organization,
with varying degrees of separation. In the case where the processes are executed
by an organization independent of the supplier, it is called Independent Software
Verification and Validation (ISVV); or Independent Software Validation (ISV), if
only the Validation Process is independent.
The following subclauses are intended to be invoked by other parts of this stan-
dard. For this reason the output destination is not noted explicitly.

ECSS 28 July 2000
ECSS--E--40B Draft

53

NOTE 1 It is assumed that for all space projects certain verification and
validation activities are always applied. Therefore the require-
ments do not address whether or not these activities are required
(tailoring of ISO/IEC 12207).

NOTE 2 The supplier process verification is handled as part of the ECSS
management and is therefore not covered as part of the software
activities (tailoring of ISO/IEC 12207:1995 6.4.2.2).

The software verification and validation engineering processes consist of:
D verification process implementation;
D validation process implementation;
D verification activity;
D validation activity;
D joint technical reviews process.

5.9.2 Verification process implementation
This activity consists of the following tasks:
D determination of the verification effort for the project;
D establishment of verification process;
D selection of organization responsible for conducting the verification;
D development and documentation of a verification plan.

5.9.2.1 Determination of the verification effort for the project
A determination shall be made concerning the verification effort and the degree
of organizational independence of that effort required. ECSS--M--00A subclause
6.3 (management of risks), and ECSS--Q--80B subclauses 6.2.2 (software depend-
ability and safety) and 6.2.5.14 (independent software verification and validation)
shall be checked for applicability. The project requirements shall be analysed for
criticality. Criticality may be gauged in terms of:
a. the potential of an undetected error in a system or software requirement for

causing death or personal injury, mission failure, or financial or catastrophic
equipment loss or damage;

b. the maturity of and risks associated with the software technology to be used;
c. availability of funds and resources.

EXPECTED OUTPUT: Verification plan - criticality and effort.

5.9.2.2 Establishment of the verification process, methods and tools
A verification process shall be established to verify the software product(s).
Based upon the scope, magnitude, complexity, and criticality analysis above men-
tioned, target life cycle activities and software products requiring verification
shall be determined. Verification activities and tasks defined in subclause 5.9.4,
including associated methods, techniques, and tools for performing the tasks,
shall be selected for the target life cycle activities and software products.

EXPECTED OUTPUT: Verification plan - methods and tool.

5.9.2.3 Selection of the organization responsible for conducting the
verification

If the project warrants an independent verification effort, a qualified organization
responsible for conducting the verification shall be selected. This organization
shall be assured of the independence and authority to perform the verification acti-
vities. ECSS--Q--80B subclause 6.2.5.14 (independent software verification and
validation), ECSS--M--00A subclause 7.2.3 and ECSS--M--20 (project organiz-
ation) contain further requirements relevant for this subclause.

ECSS28 July 2000
ECSS--E--40B Draft

54

AIM: A coherent and consistent approach to project organization within each
project.

EXPECTED OUTPUT: Appropriate element of project requirements documents
dealing with project organization [MGT].

5.9.2.4 Development and documentation of a verification plan covering
the software verification activities

Based upon the verification tasks as determined, a verification plan shall be devel-
oped and documented. The plan shall address the life cycle activities and software
products subject to verification, the required verification tasks for each life cycle
activity and software product, and related resources, responsibilities, and sched-
ule. The plan shall address procedures for forwarding verification reports to the
customer and other involved organizations.

EXPECTED OUTPUT: Software verification plan - organization and activities.

5.9.3 Validation process implementation
This activity consists of the following tasks:
D determination of the validation effort for the project;
D establishment of the validation process;
D selection of validation organization;
D development and documentation of the validation plan.

5.9.3.1 Determination of the validation effort for the project
The validation effort and the degree of organizational independence of that effort
shall be determined, coherent with ECSS--Q--80B subclause 6.3.4.21.

EXPECTED OUTPUT: Software validation plan - effort and independence.

5.9.3.2 Establishment of a validation process
The validation process shall be established to validate the software product. Vali-
dation tasks defined in subclause 5.9.5, including associated methods, techniques,
and tools for performing the tasks, shall be selected.

EXPECTED OUTPUT: Software validation plan - methods and tools.

5.9.3.3 Selection of a validation organization
If the project warrants an independent validation effort, a qualified organization
responsible for conducting the effort shall be selected. The conductor shall be as-
sured of the independence and authority to perform the validation tasks. This sub-
clause shall be applied with ECSS--M--00A subclause 7.2.3 and ECSS--Q--80B,
subclause 6.3.4.21.
EXPECTED OUTPUT: a. Appropriate element of project requirements

documents dealing with project organization [MGT].
b. independent software validation plan.

5.9.3.4 Development and documentation of a validation plan
A validation plan shall be developed and documented. The plan shall include, but
shall not be limited to, the following:
a. items subject to validation;
b. validation tasks to be performed;
c. resources, responsibilities, and schedule for validation;
d. procedures for forwarding validation reports to the customer and other

parties.

EXPECTED OUTPUT: Software validation plan - organization and activities.

ECSS 28 July 2000
ECSS--E--40B Draft

55

5.9.4 Verification activity
This activity consists of the following engineering tasks:
D verification of software requirements;
D verification of the software architectural design;
D verification of the software detailed design;
D verification of code;
D verification of software integration;
D verification of software documentation;
D evaluation of test specifications;
D verification of the software validation with respect to the Technical Specifica-

tion and with respect to the Requirements Baseline;
D problem and nonconformance handling.

5.9.4.1 Verification of software requirements
The requirements shall be verified considering the criteria listed below:
a. Software requirements are traceable to system partitioning and system re-

quirements.
b. Software Requirements are externally and internally consistent (not imply-

ing formal proof consistency).
c. Software Requirements are verifiable.
d. Feasibility of software design.
e. Feasibility of operations and maintenance.
f. The software requirements related to safety, security, and criticality are cor-

rect as shown by suitably rigorous methods.
EXPECTED OUTPUT: a. requirement traceability matrices;

b. requirements verification report.

5.9.4.2 Verification of the software architectural design
The architectural design shall be verified considering the criteria listed below:
a. Traceability from the requirements to the software item.
b. External Consistency with the requirements of the software item
c. Internal Consistency between the software components
d. Feasibility of producing a detailed design
e. Feasibility of operations and maintenance
f. The design is correct with respect to the requirements and the interfaces
g. The design implements proper sequence of events, inputs, outputs, interfaces,

logic flow, allocation of timing and sizing budgets, and error definition, isola-
tion and recovery.

h. The chosen design can be derived from requirements
i. The design implements safety, security and other critical requirements cor-

rectly as shown by suitable rigorous methods.
EXPECTED OUTPUT: a. top-level architectural design to requirements

traceability matrices;
b. architectural design and interface verification report;

5.9.4.3 Verification of the software detailed design
The software detailed design shall be evaluated in accordance with the criteria
listed below:
a. Traceability to the architectural design of the software item.

ECSS28 July 2000
ECSS--E--40B Draft

56

b. External consistency with architectural design.
c. Internal consistency between software components and software units.
d. Feasibility of testing.
e. Feasibility of operation and maintenance.
f. The design is correct with respect to requirements and interfaces.
g. The design implements proper sequence of events, inputs, outputs, interfaces,

logic flow, allocation of timing and sizing budgets, and error definition, isola-
tion, and recovery.

h. The chosen design can be derived from requirements.
i. The design implements safety, security, and other critical requirements cor-

rectly as shown by suitable rigorous methods.
EXPECTED OUTPUT: a. detailed design traceability matrices;

b. detailed design verification report;

5.9.4.4 Verification of code
The code shall be verified considering the criteria listed below:
a. The code is traceable to design and requirements, testable, correct, and in con-

formity to software requirements and coding standards.
b. The code implements proper event sequence, consistent interfaces, correct

data and control flow, completeness, appropriate allocation timing and sizing
budgets, and error definition, isolation, and recovery.

c. The chosen code can be derived from design or software requirements.
d. The code implements safety, security, and other critical requirements correct-

ly as shown by suitable rigorous methods.
e. External consistency with the requirements and design of the software item.
f. Internal consistency between software units.
g. Test coverage of units.
h. Feasibility of software integration and testing.
i. Feasibility of operation and maintenance.
EXPECTED OUTPUT: a. software code traceability matrices;

b. software code verification report.

5.9.4.5 Verification of software integration
The integration shall be verified considering that the software components and
units of each software item have been completely and correctly integrated into the
software item. In addition, the supplier shall evaluate software integration test
plan, design, code, tests, test results and operation manual, considering the cri-
teria specified below:
a. Traceability to software architectural design.
b. External consistency with system requirements.
c. Internal consistency.
d. Interface testing coverage.
e. Requirements test coverage.
f. Conformance to expected results.
g. Feasibility of software validation testing.
h. Feasibility of operation and maintenance.

EXPECTED OUTPUT: Software integration verification report

ECSS 28 July 2000
ECSS--E--40B Draft

57

5.9.4.6 Verification of software documentation
The documentation shall be verified considering the criteria listed below:
a. The documentation is adequate, complete, and consistent.
b. Documentation preparation is timely.
c. Configuration management of documents follows specified procedures.

EXPECTED OUTPUT: Software documentation verification report

5.9.4.7 Evaluation of test specifications
Test requirements, test cases, and test specifications shall demonstrate the cover-
age of all software requirements of the technical specification or the requirements
baseline.
EXPECTED OUTPUT: a. traceability of the requirements baseline to the

validation tests.
b. traceability of the technical specifications to the

validation tests.

5.9.4.8 Verification of software validation with respect to the technical
specifications and the requirements baseline

The validation tests shall be verified considering the criteria listed below:
a. test coverage of the requirements of the software item;
b. conformance to expected results;
c. feasibility of system integration and testing, if conducted;
d. feasibility of operation and maintenance.

EXPECTED OUTPUT: Test results evaluation.

5.9.4.9 Problem and nonconformance handling
Problems and nonconformances detected by the software verification effort shall
be entered into the problem resolution process (ECSS--Q--80B subclause 5.3.5 and
5.3.6). All problems and nonconformances shall be resolved. Results of the verifica-
tion activities shall be made available to the customer and other involved organiz-
ations.

EXPECTED OUTPUT: Problem and nonconformance reports.

5.9.5 Validation activity
This activity consists of the following tasks:
D development and documentation of validation testing specification;
D conducting the validation tests;
D updating the operations manual;
D evaluation of the design, code, tests, test results, and operations manual;
D problem and nonconformance handling;
D test readiness review.

5.9.5.1 Development and documentation of a software validation
testing specification

The supplier shall develop and document, for each validation requirement of the
software item, a set of tests, test cases (inputs, outputs, test criteria), and test pro-
cedures for conducting software validation testing. The supplier shall ensure that
the integrated software item is ready for software validation testing.
The supplier shall evaluate the test specifications in accordance with subclause
5.9.4.6.

EXPECTED OUTPUT: Software validation testing specification.

ECSS28 July 2000
ECSS--E--40B Draft

58

5.9.5.2 Conducting the validation tests
The validation tests shall be conducted as specified in the output of subclause
5.9.4.1 above, including:
a. testing with stress, boundary, and singular inputs;
b. testing the software product for its ability to isolate and minimize the effect

of errors; that is graceful degradation upon failure, request for operator assist-
ance upon stress, boundary and singular conditions;

c. testing that the software product can perform successfully in a representative
operational environment.

EXPECTED OUTPUT: Validation testing report.

5.9.5.3 Updating the operations manual
The supplier shall update the operations manual as necessary.

EXPECTED OUTPUT: Operations manual (update).

5.9.5.4 Evaluation of the design, code, tests, test results, and operations
manual

The supplier shall evaluate the design, code, tests, test results, and operations
manual in accordance with the criteria listed below:
a. test coverage of the requirements of the software item;
b. conformance to expected results;
c. feasibility of system integration and testing, if conducted;
d. feasibility of operation and maintenance.

EXPECTED OUTPUT: Software design and test evaluation report.

5.9.5.5 Problem and nonconformance handling
Problems and nonconformances detected during the validation shall be the subject
of a problem resolution process (ECSS--Q--80B subclauses 5.3.5 and 5.3.6). All
problems and nonconformances shall be resolved. Results of the validation acti-
vities shall be made available to the customer and other involved organizations.

EXPECTED OUTPUT: Problem and nonconformance report.

5.9.5.6 Test readiness review
Test readiness reviews, as established in section 5.9.6, joint technical review pro-
cess, shall be held before the commencement of key test activities.

5.9.6 Joint technical review process
The joint review process is a process for evaluating the status and products of an
activity of a project as appropriate. Joint reviews shall be held throughout the life
cycle of the software. This process may be employed by both parties, where one
party (reviewing party) reviews another party (reviewed party).
This process consists of the following activities:
D support to software reviews;
D document technical reviews.

5.9.6.1 Support to software reviews
The software support to joint technical reviews shall be related to project phasing
and planning (refer to ECSS--M--30). Therefore software shall undergo the overall
software milestone reviews SRR, PDR, CDR, QR and AR as a minimum. Further
reviews may be required by the customer.

NOTE Internal reviews could be replaced by Inspections.

EXPECTED OUTPUT: Milestone review reports.

ECSS 28 July 2000
ECSS--E--40B Draft

59

5.9.6.2
Technical reviews (including milestone reviews) shall be held to evaluate the soft-
ware products or services under consideration and provide evidence that:
a. they are complete;
b. they conform to applicable standards and specifications;
c. changes are properly implemented and affect only those areas identified by

the configuration management process;
d. they adhere to applicable schedules;
e. they are ready for the next activity;
f. the development, operation, or maintenance is being conducted according to

the plans, schedules, standards, and guidelines laid down for the project.
Reviews shall be planned of each identified software product within its defined
software life cycle according to the criteria above.

EXPECTED OUTPUT: Technical review reports.

ECSS28 July 2000
ECSS--E--40B Draft

60

(This page is intentionally left blank)

ECSS 28 July 2000
ECSS--E--40B Draft

61

6

Special requirements

6.1 Introduction
This clause 6 defines the specific requirements for engineering software for space
systems. They are special in the sense that they are only to be applied where the
software engineering disciplines or technologies identified in this clause are
exploited in the project.

6.2 Space segment software
6.2.1 Introduction
The space segment software calls for special engineering requirements, due to the
highly specialized environment and because the software implements functions
that directly relate to space system dependability.
The requirements are presented specifying which is the general activity that con-
tains them.

6.2.2 System level integration of software: system
observability

6.2.2.1
Observability data shall include the data for the system observability and shall
take into account the constraints imposed by the computer such as the bandwidth
allocation, the overloading of the processor, etc.

NOTE 1 The general requirement for software observability data in-
tended to facilitate the software integration or the software
trouble shooting. But space on--board software purpose is gen-
erally to access or control (in a reactive or interactive way) some
hardware, whose visibility is also important.

NOTE 2 Observability requirements might go against the performance
requirements (computer throughput, bandwidth, ground ex-
ploitation rate of telecommands, etc). This has to be taken into ac-
count when specifying the observability requirements (e.g. con-
sidering the need of oversampling).

EXPECTED OUTPUT: System observability requirements [RB;SRR]

ECSS28 July 2000
ECSS--E--40B Draft

62

6.2.2.2
The system team shall specify the system observability data individually. How-
ever the software observability data can only be exhaustively listed in the Techni-
cal Specification. The customer requirements shall give room for a supplier com-
plement of the software observability data.

6.2.2.3
When specifying the observability requirements, the customer shall trade off the
software visibility with the risk of activating undesirable code on--board.

NOTE The software observability requirements, considered only during
the integration -- and not during flight--, might result into some
inactivated code.

6.2.3 System level integration of software: system database

6.2.3.1
The customer shall specify a system database to insure the consistency of common
data, considering the following additional aspects:
a. Specification of the system database use for the supplier. For instance, the

database may be used to produce automatically configured software (gener-
ation of tables, constant data, initial values, etc).

b. Specification of the system database size , the possible modification that can
be foreseen after the Acceptance Review, and the accepted impact in terms of
software maintenance.

EXPECTED OUTPUT: System database specification (content and use)
[RB;SRR]

6.2.4 Software lifecycle: Detailed Design Review

6.2.4.1
At the end of the detailed design, the software supplier shall hold a Detailed De-
sign Review (DDR) to which the customer shall be invited to attend.

AIM:

D Review the detailed design.
D CPU and memory constraints are of particular importance for on board

software. It is necessary to pay much attention to budget evaluation
along the development. However, preliminary evaluations are per-
formed by the PDR. The results are refined with detailed design and
shall be reviewed.

D In line with the concern expressed above on the late arrivalof the re-
quirements, the DDR could be joined if felt necessary with a Delta
PDR. Its purpose will be to review the technical specification, in par-
ticular with respect to its completenes and stability before coding.

EXPECTED OUTPUT: a. customer approval of the design definition file
(architectural design, detailed design)
[DDF,DJF;DDR]

b. customer approval of the design of system level
interface and the system level integration plan
[DDF,DJF;DDR]

c. customer approval of the margins and technical
budget status [DJF;DDR]

d. customer approval of the updated technical
specifications [TS;DDR]

ECSS 28 July 2000
ECSS--E--40B Draft

63

6.2.4.2
In order to avoid that software items are subject to several reviews, the software
elements defined in the general requirements for review at CDR, but actually re-
viewed at DDR, shall be removed from the CDR list.

6.2.5 Software requirements analysis: logical model

6.2.5.1
The supplier shall construct a logical model of the functional requirements of the
future software product. The model may be the result of an iterative process with
verification by the customer. The model will support the requirement capture,
document and formalise the software requirements.

NOTE A logical model is a representation of the specification, indepen-
dent from the implementation, possibly executable, under a for-
malised language. For example, a logical model can use the SADT
notation, or the UML notation following e.g. the HOORA
method. Or it can use the SDL notation or Lotos to make a beha-
vioural view of the specification. It can use formal methods (like
Z, B, Vdm++ Raise, etc.) to prove properties of the specification.
The logical model allows in particular to verify that a specifica-
tion is complete (because every element of the model could be
written from an English text), and consistent (because the model
compiles).
The logical model can be completed by specific feasibility analy-
ses such as benchmarks, in order to check the technical budgets
(memory size, computer throughput). In case the modelling tech-
nique allows for it, preliminary automatic code generation could
be used (e.g. Data Flow Diagrams for AOCS).
The scenario that have been defined to test the logical model can
be reused for the software validation and reported for that pur-
pose into the verification plan (see 5.4.4.1)

EXPECTED OUTPUT: Software logical model [TS;PDR]

6.2.5.2
For space reactive software, the logical model shall include a behavioural view.
Such a view can be given for example by Finite State Machines, Petri Nets, the
UML sequence diagrams, Message Sequence Charts, SDL, Lotos, etc.

NOTE Space reactive software is a software that fulfills the following
characteristics:
It is real--time software.
It runs remotely.
It manages closely a specific limited target computer.
It controls a potentially long living system with visibility
limitation into an hostile environment.
It drives its own availability and reliability.

6.2.5.3
For interactive software, the logical model shall include a prototype of the Man
Machine Interface (see 6.5.4), which will be proposed to the Customer for vali-
dation.

ECSS28 July 2000
ECSS--E--40B Draft

64

NOTE Space interactive software is a software that fulfills the following
characteristics:
Generally it is not real--time, although there can be some
real--time connection from the laptop to the environment
It is loaded into the processor from a external device (a disk, a
floppy)
It doesn’t run remotely.
It does not manage the hardware. It uses a general--purpose
platform with extendable resources as a mean to execute.
It is generally intended to control experiments whose lifetime is
in the range from hours to one year.
It has a Graphical User Interface.
As space reactive software, space interactive software runs into
a hostile environment (radiation)

6.2.6 Verification of software requirements: feasibility of
design and operation

For each software item, this activity consists of the following tasks:
D schedulability analysis;
D technical budget monitoring;
D behaviour model verification.

6.2.6.1
The supplier shall use an analytical model to perform a schedulability analysis
and prove that the design is feasible.

EXPECTED OUTPUT: schedulability analysis [DJF;PDR]

6.2.6.2
The Technical Budget (memory size, CPU utilisation) shall be monitored:
a. The memory size shall be estimated for static code size, static data size and

stack size. These should be estimated for each terminal object in the design.
Stack size must be expressed on a per--thread basis, so it would be applied to
terminal active objects.

b. The CPU utilisation shall be estimated considering the Worst Case Execution
Time of each terminal active object (therefore including the call to the pro-
tected objects).

NOTE The Worst Case Execution Time of each terminal active object is
multiplied by the number of times the object is executed per sec-
ond. The resulting quantity is summed over all non--terminal ob-
jects. The result will be the estimated percentage processor uti-
lisation.

EXPECTED OUTPUT: technical budgets (update) [DJF;PDR]

6.2.6.3
The software behaviour shall be modelled and verified by means of Formal De-
scription Techniques (SDL, Lotos, synchronous languages, etc.) and the support-
ing tools. These techniques can also be used to validate the appropriateness of se-
lected or developed communication protocol.

EXPECTED OUTPUT: software behaviour verification [DJF;PDR]

6.2.6.4
Modelling or simulation shall be used to prove the feasibility of the design, if no
analytical model exists.

ECSS 28 July 2000
ECSS--E--40B Draft

65

6.2.7 Software top level architectural design: static and
dynamic architecture

6.2.7.1
The software top--level architectural design shall describe
a. the static architecture (decomposition into software elements such as pack-

ages and classes in UML or modules in HOOD),
b. the dynamic architecture (which involves active objects such as threads, tasks

and processes),
c. the mapping between the static and the dynamic architecture (typically the

relationship HOOD items and tasks),
d. the software behaviour.
EXPECTED OUTPUT: a. software static architecture [DDF;PDR]

b. selected analysable computational model [DDF;PDR]
c. software dynamic architecture [DDF;PDR]
d. software behaviour [DDF;PDR]

6.2.7.2
An architectural method (e.g. HOOD) shall be used to produce the static architec-
ture including:
D Software elements, their provided and required interfaces.
D Software element relationships (use, inheritance, include...).

6.2.7.3
The dynamic architecture design shall select an analysable computational model
and shall be described (e.g. using HRT--HOOD notation) accordingly.

6.2.7.4
The software architecture design shall also describe the dynamic behaviour of the
software, for instance by means of description techniques based on automata and
scenario. Scheduling simulations will be performed.

6.2.8 Design of software items: physical model

6.2.8.1
The software design shall produce the physical model of the software items de-
scribed during the top--level architecture. The physical model includes the static
design, the dynamic design, the mapping between the static and the dynamic
views, and the behaviour of the software elements.
EXPECTED OUTPUT: a. software static design [DDF;DDR|CDR]

b. software dynamic design [DDF;DDR|CDR]
c. software elements behaviour [DDF;DDR|CDR]
d. compatibility of design methods with the

computational model [DDF;DDR|CDR]

6.2.8.2
One or several design methods (e.g. HOOD, Data Flow Diagram) shall be used to
produce the static design including:
D Software elements, their provided and required interfaces.
D Software element relationships (use, inheritance, include...).

6.2.8.3
The dynamic design shall be based on the computational model selected during the
top--level architecture, and shall describe (using a compatible method, e.g. HRT--
HOOD notation) the dynamic aspect of the physical model accordingly.

ECSS28 July 2000
ECSS--E--40B Draft

66

6.2.8.4
The software design shall also describe the dynamic behaviour of the software el-
ements, for instance by means of description techniques based on automata and
scenario. Scheduling simulations will be performed.

6.2.8.5
In some cases, several design methods might have to be used for different items
of the same software (e.g. HOOD for Data Handling and Data Flow Diagram for
Control). In this case, special care shall be dedicated to check that both methods
are, from a dynamic standpoint, consistent between themselves and consistent
with the selected computational model.

6.2.9 Verification of design: feasibility of operation
For each software item, this activity consists of the following tasks:
D schedulability analysis refinement;
D technical budget monitoring;
D behaviour model verification.

6.2.9.1
The schedulability analysis performed during top--level architecture shall be re-
fined with the fresh design information.

NOTE Estimations will be more precise due to the better knowledge of
the design.

EXPECTED OUTPUT: schedulability analysis (update) [DJF;CDR]

6.2.9.2
The Technical Budget (memory size, CPU utilisation) shall be monitored:
a. The memory size shall be refined for static code size, static data size and stack

size.
b. The CPU utilisation shall be refined.

EXPECTED OUTPUT: technical budgets (update) [DJF;CDR]

6.2.9.3
Software behaviour shall be modelled and verified by means of Formal Description
Techniques (SDL, Lotos, synchronous languages, etc.) and the supporting tools.
These techniques can also be used to validate the appropriateness of selected or
developed communication protocols.

EXPECTED OUTPUT: software behaviour verification [DJF;CDR]

6.2.10 Verification of design: feasibility of testing

6.2.10.1
The feasibility of testing evaluation shall check the following aspects:
a. Appropriate verification points have been foreseen and included in the de-

tailed design in order to prepare the effective verification of the performance
requirements.

b. Some assertions defining computational invariant properties, or temporal
properties (possibly derived from the behavioural model) are added within the
design.

ECSS 28 July 2000
ECSS--E--40B Draft

67

NOTE The feasibility of testing must verify that the performance and
that robustness tests are possible.
The invariant and temporal properties will be used to prepare for
the robustness tests to be performed during unit testing. They
will also help in the verification of safety and reliability require-
ments during software system testing.

EXPECTED OUTPUT: testing feasibility report [DJF;CDR]

6.2.11 Verification of coding and testing: feasibility of
operation

For each software item, this activity consists of the following tasks:
D schedulability analysis refinement;
D technical budget update.

6.2.11.1
The schedulability analysis performed during top--level architecture shall be re-
fined with the actual information extracted from the code.

EXPECTED OUTPUT: schedulability analysis (update) [DJF;CDR]

6.2.11.2
The technical budget shall be updated with the measured values and shall be com-
pared to the margins.

EXPECTED OUTPUT: technical budgets (update) [DJF;CDR]

6.2.12 Evaluation of Validation: complementary system level
validation

6.2.12.1
The Supplier shall identify the requirements that cannot be tested on its own envi-
ronment, and shall forward to the Customer a request for having them validated
on the real system.

NOTE Some of the requirements may not have been verified because the
test environment used for the validation does not allow it. These
requirements must be tested when the software is integrated
within the system (e.g. satellite, launcher).

EXPECTED OUTPUT: Complement of validation at system level [DJF;AR]

6.2.13 Maintenance: long term maintenance

6.2.13.1
The maintenance plan shall take into account the spacecraft lifetime. If this life-
time goes after the expected obsolescence date of the software engineering envi-
ronment, then the maintainer shall propose solution to be able to produce and
upload modifications to the spacecraft up to its end of life.

ECSS28 July 2000
ECSS--E--40B Draft

68

NOTE Examples of such solutions are:
-- To procure enough copies of the development hardware
(workstations, disks, test environment, etc.) to make sure that
statistically, at least one of them will still be working at the space-
craft end of life date.
-- To prepare software simulators of the development hardware
able to run old software development tools on new machines.
-- To port the software development environment on new ma-
chines. When some tools are not running on the new machines,
adopt new tools with equivalent functionality if they exist. Note
that in case of compilers, the software would have to be recom-
piled and extensively tested again.
As these solutions are likely to involve high cost, they must be
traded--off with the customer.

EXPECTED OUTPUT: Long term maintenance solutions [MF]

6.3 Ground segment software
No special requirements concerning the software engineering processes have been
identified at this level. Detailed special software engineering requirements/guide-
lines for ground segments are found in the level 3 standard ECSS--E--40--03.

6.4 Software reuse
6.4.1 Introduction
The following subclauses shall be applied in the software engineering process for
projects where:
D it is intended to reuse the software products being developed for other space

projects;
D it is intended to reuse software products from other space projects and third-

party “commercial off-the-shelf”are intended to be part of the software prod-
uct.

6.4.2 Developing software for intended reuse

6.4.2.1
The customer shall specify the special constraints that apply for the development,
to enable future reuse of the software.

AIM: Specification of the customer’s generic application domain for the parts
where the customer requires reuse of developed software components. This
may for example include requirements on software architecture for given
target computers and operating systems, the interfaces required for reuse
and the level where reuse is required (e.g. function, sub-system, code
modules).

EXPECTED OUTPUT: Requirements for ’design for reuse’[RB; SRR]

6.4.2.2
The supplier shall define procedures, methods and tools for reuse, and he shall
apply these to the software engineering processes to comply with the re--usability
requirements for the software development.

EXPECTED OUTPUT: Software for intended re-use - justification of methods
and tools [DJF;PDR]

6.4.2.3
An evaluation of the re--use potential of the software shall be conducted at PDR
and CDR.

ECSS 28 July 2000
ECSS--E--40B Draft

69

EXPECTED OUTPUT: Software for intended re-use - evaluation of re-use
potential [DJF;PDR,CDR]

6.4.3 Re-use of pre-developed software

6.4.3.1
The supplier shall consider the “reuse”of already developed, commercial off-the-
shelf and modifiable off-the-shelf software. The analysis of the potential reusabil-
ity of existing software components shall be performed through:
a. Identification of the reuse components with respect to the functional require-

ments baseline.
b. A quality evaluation of these components, invoking ECSS--Q--80B subclause

6.2.6.

NOTE There are no special requirements concerning the verification
and validation requirements for reused software. The require-
ments are the same as for software developed without reuse. The
difference is that some already existing verification and vali-
dation plans and results might be available with the reused prod-
ucts. However, the full verification and validation requirement
apply to reused software as for any other part of the software de-
velopment.

EXPECTED OUTPUT: a. Specification of intended reuse [TS; PDR];
b. Justification of reuse with respect to Requirements

Baseline [DJF; PDR].

6.4.3.2
For projects, in which the customer intends to use commercial off-the-shelf soft-
ware products or modified versions thereof, the customer shall tailor the acquisi-
tion process of software destined for reuse as described in document IEEE Stan-
dard 1062--1993 (or in a similar standard, if available) to the project requirements.
The tailored acquisition process shall be documented in the Requirements Base-
line.

AIM: To baseline the procurement process requirements for commercial products
supporting the software development (e.g. compilers, operating system,
development tools).

EXPECTED OUTPUT: Software acquisition process for COTS and MOTS
Products [RB; SRR].

6.4.3.3
The supplier shall implement the software acquisition process for reused software,
and document the process in the Technical Specification.

EXPECTED OUTPUT: Software acquisition process implementation [TS; PDR].

6.5 Man-machine interfaces
6.5.1 Introduction
Software projects which include the development of a significant interactive direct
interface to a human user or operator, require the specialized software engineer-
ing disciplines covering this field, and the requirements of this subclause 6.5 shall
be applied.
The reason for the special subclauses is that modern MMI technology (e.g. graphi-
cal user interfaces, multi-layered choice menus), is not feasible to specify or design
using conventional software engineering documentation methods. The non-linear
and multi-dimensional nature of modern MMI cannot be described adequately
only using two-dimensional documents that by nature are linear in structure. This

ECSS28 July 2000
ECSS--E--40B Draft

70

is very similar to other systems with significant human factors requirements, such
as cars, airplanes, buildings. In those cases a mock-up or model is implemented
during the “requirements engineering”. An analogous approach in software engin-
eering is required for software with extensive human interaction requirements.

6.5.2
For software that requires interface to human operator(s), the customer shall,
based on the complexity and requirements of the MMI, determine if a software
mock-up of the MMI is required to support the requirements engineering pro-
cesses.

EXPECTED OUTPUT: MMI software mock-up requirements [RB; SRR].

6.5.3
The customer shall determine if general MMI standards or guidelines shall be ap-
plicable to the software project and include these requirements in the
requirements baseline.

AIM: To ensure for example that appropriate guidelines and style-guides are
selected for projects in cases where a common MMI style and functionality
is required for several suppliers’products.

EXPECTED OUTPUT: MMI general requirements and guidelines [RB; SRR]

6.5.4
For developments requiring a software mock-up of the MMI, the supplier shall de-
velop a software mock-up to support the requirements engineering process. The
supplier shall use the mock-up to prototype the specifications of man-machine in-
terfaces for the software, such that MMI specifications are consolidated and evalu-
ated with respect to human factors and use.
The aim of this subclause includes:
D proper consideration of human factors;
D that the man-machine interface reach an acceptable state of definition during

requirements engineering activities;
D that the technical performance of the man-machine interface is verified.

NOTE Depending on the nature of the project, the supplier might opt to
later upgrade the software mock-up of the MMI to become part
of the final software product. However, unless the mock-up is
later upgraded to become part of the final product tree, the mock-
up is not required to be a formal delivery to the customer.

EXPECTED OUTPUT: a. MMI specifications for software [TS; PDR];
b. Report on evaluation of MMI specifications using a

software mock-up [DJF; PDR].

6.6 Critical software
This topic is dealt with in depth in ECSS--Q--80.

ECSS 28 July 2000
ECSS--E--40B Draft

71

Annex A (normative)

Software documentation

A--A--

A.1 Introduction
This annex defines the contents of the software engineering documents to be pro-
duced. The contents are defined by the outputs of the clauses in this standard, and
the list of the outputs for each milestone of the project is provided below. The de-
tailed structure of the software documents (e.g. table of contents, number of vol-
umes) are not defined here, but left open to be determined by the size and nature
of the individual software projects. The overall structure is given in Figure A--1.

RB
Requirement

Baseline

Customer’s requirements

Interface requirements

...

...

TS
Technical

Specification

Supplier Specification

Interface Control Document

Operation Manual

Maintenance, ...

Justification of design trades

Verification and Validation plans

Milestone reports, Test results, ...

...

Design of all components

Software Code

Release information

..

DJF
Design

Justification File

DDF
Design

Definition File

Figure A--1: Overview of software engineering documents

ECSS28 July 2000
ECSS--E--40B Draft

72

A.2 The Requirements Baseline (RB)
The RB expresses the customer’s requirements. It is generated by the require-
ments engineering processes, and it is the primary input to the SRR review pro-
cess.

A.2.1 Requirements baseline contents at SRR

Requirement RB Contents at SRR Milestone
5.2.2.1--a. Functions and performance requirements of the system

[RB; SRR]
5.2.2.1--c. Design constraints and verification and validation require-

ments [RB; SRR]
5.2.2.1--d. Identification of lower level software engineering standards

that will be applied [RB; SRR]
5.2.2.2 Overall safety and reliability requirements of the software

to be produced [RB; SRR]
5.2.3.2--a. System partition with definition of items [RB; SRR]
5.2.3.2--c. System configuration items list [RB; SRR]
5.2.4.2 Verification and validation process requirements [RB; SRR]
5.2.4.4 SRR milestone report [RB;SRR]
5.2.5.1 Software observability requirements [RB; SRR]
5.2.5.4 Development constraints [RB; SRR]
5.2.6.1 Operations requirements [RB; SRR]
5.2.7 Maintenance requirements [RB; SRR]
5.3.3--a. Interface management procedures [RB; SRR]
5.3.3--b. Part of configuration management plan [RB; SRR]
5.3.4.1 Technical budgets and margin philosophy for the project

[RB; SRR]
5.8.5.1 Requirements of in--flight modification capabilities

[RB;SRR]
6.2.1.1 System observability requirements [RB;SRR]
6.2.2.1 System database specification (content and use) [RB;SRR]
6.4.1.1 Requirements for ’design for review’[RB;SRR]
6.4.2.2 Software acquisition process for COTS and MOTS Products

[RB;SRR]
6.5.2 MMI software mock--up requirements [RB;SRR]
6.5.3 MMI general requirements and guidelines [RB;SRR]

A.2.2 Interface Requirements Document (IRD)
The IRD expresses the customer’s interface requirements for the software to be
produced by the supplier. It is required in all cases where the software product is
intended for integration with the customer’s hardware or software products. This
document is part of the requirements baseline. Depending on the size and nature
of the project, the IRD sub-document may form separate clauses or separate vol-
umes of the RB.

Requirement IRD contents at SRR milestone
5.2.2.1 b. Interface requirements [IRD(RB); SRR]
5.2.3.2--b. Software/hardware interface requirements [IRD(RB); SRR]

ECSS 28 July 2000
ECSS--E--40B Draft

73

5.2.5.2 System level interface requirements [IRD(RB); SRR]
5.2.5.3 System level data interfaces [IRD(RB); SRR]
5.2.5.6 System level integration preparation requirements

[IRD(RB); SRR]
5.2.5.7 System level integration support requirements [IRD(RB);

SRR]

A.3 Technical Specification (TS)
The TS contains the supplier’s response to the requirements baseline, and is the
primary input to the PDR review process. It includes the plans defined as part of
the software development processes.
Depending on the size and nature of the project, the following sub-documents can
be separate clauses or separate volumes of the TS.

Requirement TS contents at SRR
5.3.2.3 Review Plan / Milestones (included in the software develop-

ment plan) [TS;SRR]

Requirement TS contents at PDR
5.3.2.7--a. Technical specification of the software [TS; PDR]
5.3.2.8 Customer approval of technical specification and top-level

architecture [TS, DDF, ICD(TS), DJF; PDR]
5.4.2.1--a. Functional and performance specifications, including hard-

ware characteristics, and environmental conditions under
which the software item will execute [TS; PDR]

5.4.2.1--c. Safety specifications, including those related to methods of
operation and maintenance, environmental influences, and
personnel injury [TS; PDR]

5.4.2.1--d. Security specifications, including those related to factors
which might compromise sensitive information [TS; PDR]

5.4.2.1--e. Human-factors engineering (ergonomics) specifications, in-
cluding those related to manual operations, human-equip-
ment interactions, constraints on personnel, and areas
requiring concentrated human attention, that are sensitive
to human errors and training [TS; PDR]

5.4.2.1--f. Data definition and database requirements [TS; PDR]
5.4.2.1--g. Installation and acceptance requirements of the delivered

software product at the operation and maintenance site(s)
[TS; PDR]

5.4.2.2 Software logical model [TS;PDR]
5.8.5.2 Specifications for in--flight modifications [TS;PDR]
6.2.4.1 Software logical model [TS;PDR]
6.4.2.1--a. Specification of intended reuse [TS;PDR]
6.4.2.3 Software acquisition process implementation [TS;PDR]
6.5.4--a. MMI specifications for software [TS;PDR]

ECSS28 July 2000
ECSS--E--40B Draft

74

Requirement TS contents at QR
5.6.4.2 Training material [TS; QR]

A.3.1 Interface Control Document (ICD)
The ICD is the suppliers response to the IRD, and is part of the TS.

Requirement ICD contents at PDR
5.3.2.7--c. Interface Control Document [ICD(TS); PDR]
5.3.2.8 Customer approval of technical specification and top-level

architecture [TS, DDF, ICD(TS), DJF; PDR]
5.4.2.1--b. Interfaces external to the software item [ICD(TS); PDR]
5.4.3.4--a. Preliminary (top-level) external interfaces design [ICD(TS);

PDR]

Requirement ICD contents at CDR
5.5.2.2--a. External ICDs (update) [ICD(TS); CDR]

A.3.2 Software maintenance plan

Requirement Maintenance plan contents at PDR
5.3.2.5 Elements of the software maintenance plan [TS; PDR]

A.3.3 Operations manual

Requirement Operations manual contents at PDR
5.4.3.5 Preliminary version of operations manual [TS; PDR]

Requirement Operations manual contents at CDR
5.3.2.9--d. Customer approval of the operations manual [TS; CDR]
5.5.2.3 Operations manual (update) [TS; CDR]
5.5.3.3 Operations manual (update) [TS; CDR]

Requirement Operations manual contents at QR
5.5.4.3 Operations manual (update) [TS; QR]

A.4 Design Justification File (DJF)
The DJF is generated and reviewed at all stages of the development and review
processes. It contains the documents that describe the trade-offs, design choice
justifications, test procedures, test results, evaluations and any other documenta-
tion called for to justify the design of the supplier’s product. The DJF is a primary
input to the QR and AR milestones, and supporting input for the other milestones.

Requirement DJF contents at SRR Milestone
5.2.3.2--d. Traceability to system partitioning [DJF; SRR]

Requirement DJF contents at PDR milestone
5.3.2.5--d. Top-level design trade-offs [DJF; PDR]
5.3.2.6 Customer approval of technical specification and top-level

architecture [TS, DDF, ICD(TS), DJF; PDR]
5.3.4.2 Margins and technical budgets status [DJF; PDR, CDR,

QR, AR]
5.4.2.4--a. Requirement traceability matrices [DJF; PDR]
5.4.2.4--b. Requirements verification report [DJF; PDR]
5.4.3.6 Preliminary software integration test plan [DJF; PDR]

ECSS 28 July 2000
ECSS--E--40B Draft

75

5.4.3.7--a. Architecture and interface verification report [DJF; PDR]
5.4.3.7--b. Top-level architectural design to requirements traceability

matrices [DJF; PDR]
5.4.3.8 PDR milestone report [DJF; PDR]
5.4.4.1--a. Software verification plan -- criticality and effort [DJF;

PDR]
5.4.4.1--b. Software verification plan -- methods and tools [DJF; PDR]
5.4.4.1--d. Software validation plan -- effort and independence [DJF;

PDR]
5.4.4.1--e. Software validation plan -- methods and tools [DJF; PDR]
5.4.4.1--f. Software validation plan -- independent validation [DJF;

PDR]
5.4.4.1--g. Software validation plan --organization [DJF;PDR]
6.2.6.1--a. Schedulability analysis [DJF;PDR]
6.2.6.1--b. Technical budgets (update) [DJF;PDR]
6.2.6.1--c. Software behaviour verification [DJF;PDR]
6.4.1.2 Software for intended reuse -- justification of methods and

tools [DJF;PDR]
6.4.1.3 Software for intended re--use -- evaluation of re--use poten-

tial [DJF;PDR,CDR]
6.4.2.1--b. Justification of reuse with respect to Requirements Base-

line [DJF;PDR]
6.5.4--b. Report on evaluation of MMI specifications using a software

mock--up [DJF;PDR]

Requirement DJF contents at CDR milestone
5.3.2.9--b. Customer approval of the design justification file (e.g. re-

sults of unit and integration tests) [DJF; CDR]
5.3.2.9--c. Customer approval of the design of system level interfaces

and the system level integration plan [DDF, DJF; CDR]
5.3.4.2 Margins and technical budgets status [DJF; PDR, CDR,

QR, AR]
5.5.2.4 Software unit test plan [DJF; CDR]
5.5.2.5 Software integration test plan [DJF;CDR]
5.5.2.6--a Design verification report [DJF; CDR]
5.5.2.6--b. Design traceability matrices [DJF; CDR]
5.5.3.1--b. Software unit test plan (update) [DJF; CDR]
5.5.3.2--b. Software unit test reports [DJF; CDR]
5.5.3.4 Software integration teest plan (update) [DJF;CDR]
5.5.3.5--a. Software code verification report [DJF; CDR]
5.5.3.5--b. Software code traceability matrices [DJF; CDR]
5.5.4.1 Software integration plan [DJF; CDR]
5.5.4.2 Software integration test report [DJF; CDR]
5.5.4.4--a. Software integration verification report [DJF; CDR]
5.5.4.4--b. Test completeness and code conformance report [DJF; CDR]
5.5.4.4--c. Software documentation verification report [DJF; CDR]

ECSS28 July 2000
ECSS--E--40B Draft

76

5.5.4.4--d. Feasibility confirmation of validation testing, operations
and maintenance [DJF; CDR]

5.5.4.5 CDR milestone report [DJF; CDR]
5.5.5.1 Validation with respect to the Technical Specification test-

ing report [DJF;CDR]
5.5.5.1 Software validation with respect to the Technical Specifica-

tion testing specification [DJF;CDR] (invocation of 5.9.5.1)
5.5.5.1 Operations manual (update) [DJF;CDR] (invocation of

5.9.5.3)
5.5.5.1 Software design and test evaluation report [DJF;CDR] (in-

vocation of 5.9.5.4)
5.5.5.2 CDR milestone report [DJF;CDR]
5.5.5.2 Software documentation verification report [DJF;CDR] (in-

vocation of 5.9.5.4.)
5.5.5.2 Problem and nonconformance report [DJF;CDR] (invocation

of 5.9.5.5)
6.2.8.2--a. Schedulability analysis (update) [DJF;CDR]
6.2.8.2--b. Technical budgets (update) [DJF;CDR]
6.2.8.2--c. Software behaviour verification [DJF;CDR]
6.2.8.3 Testing feasibility report [DJF;CDR]
6.2.9.1--a. Schedulability analysis (update) [DJF;CDR]
6.2.9.1--b. Technical budgets (update) [DJF;CDR]
6.4.1.3 Software for intended re--use -- evaluation of re--use poten-

tial [DJF;PDR,CDR]

Requirement DJF Contents at QR Milestone
5.3.2.11 Customer’s approval of qualified state [DJF; QR]
5.3.4.2 Margins and technical budgets status [DJF; PDR, CDR,

QR, AR]
5.6.2 Validation with respect to Requirements Baseline testing

report [DJF; QR|AR]
5.5.5.1 Software validation with respect to the Requirements Base-

line testing specification [DJF;QR|AR] (invocation of
5.9.5.1)

5.5.5.1 Operations manual (update) [DJF;QR|AR] (invocation of
5.9.5.3)

5.5.5.1 Software design and test evaluation report [DJF;QR|AR]
(invocation of 5.9.5.4)

5.6.3.1--a. Preliminary software acceptance data package [DJF; QR]
5.6.3.1--d. Software design and test evaluation report [DJF; QR]
5.6.3.1--e. Validation testing report [DJF; QR]
5.6.3.1--f. Test specification evaluation [DJF; QR]
5.6.3.1--g. QR milestone report [DJF; QR]
5.6.4.1--c. Software acceptance data package [DJF;QR]

Requirement DJF contents at AR milestone
5.3.2.12 Customer’s approval of accepted state [DJF; AR].

ECSS 28 July 2000
ECSS--E--40B Draft

77

5.3.4.2 Margins and technical budgets status [DJF; PDR, CDR,
QR, AR]

5.3.2.12 Customer’s approval of accepted state [DJF; AR]
5.6.2 Validation with respect to Requirements Baseline testing

report [DJF; QR|AR]
5.5.5.1 Software validation with respect to the Requirements Base-

line testing specification [DJF;QR|AR] (invocation of
5.9.5.1)

5.5.5.1 Operations manual (update) [DJF;QR|AR] (invocation of
5.9.5.3)

5.5.5.1 Software design and test evaluation report [DJF;QR|AR]
(invocation of 5.9.5.4)

5.6.3.2--a. Final software acceptance data package [DJF; AR]
5.6.3.2--b. Acceptance testing documentation [DJF; AR]
5.6.3.2--c. AR milestone report [DJF; AR]
5.6.4.3 Installation plan [DJF; AR]
5.6.4.4 Installation report [DJF; AR]
5.6.5.1 Acceptance test plan [DJF; AR]
5.6.5.2 Acceptance test report [DJF; AR]
5.6.5.4 Acceptance testing documentation [DJF; AR]
5.6.5.5 Traceability of Acceptance tests to Requirements Baseline

[DJF; AR]
6.2.10.1 Complement of validation at system level [DJF;AR]

A.5 Design Definition File (DDF)
The DDF is a supplier-generated document that documents the result of the design
engineering processes. The DDF is the primary input to the CDR review process
which shall contain all the documents called for by the design engineering require-
ments.

Requirement DDF contents at PDR
5.3.2.7--b. Top-level architectural design [DDF; PDR]
5.3.2.8 Customer approval of technical specification and top-level

architecture [TS, DDF, ICD(TS), DJF; PDR]
5.4.3.1 Software architectural design [DDF; PDR]
5.4.3.4--b. Preliminary (top--level) internal interfaces design

[DDF;PDR]
6.2.5.1--a. Software static architecture [DDF;PDR]
6.2.5.1--b. Selected analysable computational model [DDF;PDR]
6.2.5.1--b. Software dynamic architecture [DDF;PDR]
6.2.5.1--b. Software behaviour [DDF;PDR]

Requirement DDF contents at DDR
6.2.3.1--a. Customer approval of the design definition file (architectur-

al design, detailed design) [DDF,DJF;DDR]
6.2.3.1--b. Customer approval of the design system level interface and

the system level integration plan [DDF,DJF;DDR]

ECSS28 July 2000
ECSS--E--40B Draft

78

6.2.3.1--c. Customer approval of the margins and technical budget sta-
tus [DJF;DDR]

6.2.3.1--d. Customer approval of the updated technical specification
[TS;DDR]

6.2.7.1--a. Software static design [DDF;DDR|CDR]
6.2.7.1--b. Software dynamic design [DDF;DDR|CDR]
6.2.7.1--c. Software elements behaviour [DDF;DDR|CDR]
6.2.7.1--d. Compatibility of design methods with the computational

model [DDF;DDR|CDR]

Requirement DDF contents at CDR
5.3.2.9--a. Customer approval of the design definition file (e.g. archi-

tectural design and detailed design, code) [DDF; CDR]
5.3.2.9--c. Customer approval of the design of system level interfaces

and the system level integration plan [DDF, DJF; CDR]
5.5.2.1 Software components design documents [DDF; CDR]
5.5.2.2 Internal ICDs (update) [DDF; CDR]
5.5.3.1--a. Software component design documents and code (update)

[DDF; CDR]
5.5.3.2--a. Software component design document and code (update)

[DDF; CDR]
6.2.7.1--a. Software static design [DDF;DDR|CDR]
6.2.7.1--b. Software dynamic design [DDF;DDR|CDR]
6.2.7.1--c. Software elements behaviour [DDF;DDR|CDR]
6.2.7.1--d. Compatibility of design methods with the computational

model [DDF;DDR|CDR]

Requirement DDF contents at QR
5.6.3.1--b. Preliminary software release documentation [DDF;QR]
5.6.3.1--c. Preliminarily software delivery on specified data medium

[DDF; QR]
5.6.4.1--a. Software delivery on specified data medium [DDF;QR]
5.6.3.1--b. Software release documentation [DDF; QR]

Requirement DDF contents at AR
5.6.2.2--d. Software release documentation [DDF; AR]
5.6.2.2--e. Software delivery on specified data medium [DDF; AR]

ECSS 28 July 2000
ECSS--E--40B Draft

79

A.6 System level documentation
A.6.1 Introduction
The system level documentation is governed by the ECSS system engineering
standard. The relevant input for software elements at system level are found in
subclause 5.2. In the special case where the customer is himself a software
supplier (a product consisting solely of software) for the next higher level in the
system product tree, the customer becomes a supplier at that level and the require-
ments of this current standard are applied recursively for that case.

A.6.2 Operations, maintenance, migration and retirement
documentation

The operations, maintenance, migration and retirement processes are system
level activities, defined by the customer’s requirements for the space system. The
corresponding software engineering processes are therefore not independent en-
gineering activities, but are support processes at system level. Hence, the output
of the processes are contributions to system level outputs, and the outputs below
will therefore either be integrated with the software development documentation,
or controlled and developed as part of a system documentation tree. The outputs
are identified and grouped below. The system level documentation tree defines
how the documents shall be included.

Requirement Operational documentation
5.7.2.1 Operational plan -- plan and standards [OP;ORR]
5.7.2.2 Operational plan -- procedures for problem handling [OP;

ORR]
5.7.2.3 Operational plan -- operational testing specifications [OP;

ORR]

Requirement MF contents
5.8.2.1 Maintenance plan -- plans and procedures [MF]
5.8.2.3 Maintenance plan -- problem reporting and handling [MF]
5.8.3.4 Change justification file -- problem analysis report [MF]
5.8.4.1 Modification identification [MF]
5.8.6 Change justification file -- baseline for changes [MF]
5.8.7.2 Migration plan [MF]
5.8.7.3 Migration justification file [MF]
5.8.8.1 Retirement plan [MF]
5.8.8.2 Retirement notification to operator [MF]
6.2.11.1 Long term maintenance solutions [MF]

A.7 Contribution to management documentation
5.2.5.7 System level integration support products [MGT;SRR]
5.3.2.2 Project software development life cycle definition, included

in the software project development plan [MGT;SRR]
5.9.2.3 Appropriate element of project requirements documents

dealing with project organization [MGT]
5.9.3.3 Appropriate element of project requirements documents

dealing with project organization [MGT]

ECSS28 July 2000
ECSS--E--40B Draft

80

(This page is intentionally left blank)

ECSS 28 July 2000
ECSS--E--40B Draft

81

Annex B (informative)

References to other ECSS Standards

Referenced ECSS Standard Page
ECSS--E--00
ECSS--E--10
ECSS--E--40--01
ECSS--E--40--03
ECSS--E--40--04
ECSS--E--70
ECSS--M
ECSS--M--00
ECSS--M--00--02
ECSS--M--10
ECSS--M--20
ECSS--M--30
ECSS--M--40
ECSS--M--50
ECSS--M--60
ECSS--M--70
ECSS--P--001
ECSS--Q
ECSS--Q--20
ECSS--Q--30
ECSS--Q--40
ECSS--Q--80

ECSS28 July 2000
ECSS--E--40B Draft

82

(This page is intentionally left blank)

ECSS 28 July 2000
ECSS--E--40B Draft

83

Annex C (informative)

Tailoring Guidelines

C.1 Introduction
The ECSS family of standard is intended to be tailored for each individual project.
The ECSS--E40 lists exhaustively the requirements that would make the project
following all the best practices in space software engineering.
However, the resources (budget, schedule, manpower, etc) of any project are li-
mited, and all the projects have to trade off the perfection of engineering against
the available resources. The goal of the tailoring is to select, modify or add ad-
equately requirements in order to reach the optimised ratio quality over resources.
Any suppression of requirement is made actually on purpose, with full awareness
of the resulting risk level increase.

C.1.1 How to tailor
The first step is therefore to understand the requested level of quality for the pro-
ject, which starts with the characterisation of the project, the identification of the
needed processes, and the characterisation of the product.
The ECSS--M--00--02 document (Space project management, Guidelines for selec-
tion and tailoring of ECSS standards) gives indication on the general way to tailor
an ECSS standard, in particular the tailoring process and the tailoring templates.
The templates are generic and deserve a more concrete description of the so--called
programmatic and technical factors.
For space software, there are some examples where the full application of the E40
standard would be over killing, and the knowledge of some software project details
(the tailoring factors) allows for some refinements. The main influencing factors,
presented in section 4.5, are the following:
Technical factors:

S Novelty of the domain of application

S Complexity of the software and the system

S Criticality level

S Size of the software

S Reusability required of the software being developed

S Interface to system development projects

ECSS28 July 2000
ECSS--E--40B Draft

84

S Degree of use of COTS or existing software

S Maturity of the COTS and completeness or stability of the user
requirements.

Operational factors:
S Type of application (platform, payload, experiment)

S Number of potential users of the software

S Criticality of the software as measured by the consequences of its failure

S Expected lifetime of the software

S Number of sites where the software is used

S Operation, maintenance, migration and retirement constraints

Management factors:
S Amount of time and effort required to develop the software

S Budget requirements for implementing and operating the software

S Accepted risk level for the project

S Type of lifecycle

S Schedule requirements for delivering the software

S Number of people required to develop, operate and maintain the
software

S Complexity of the organisation

S Experience of the supplier

For each particular project additional factors may be used.
The tailoring can be made during a short discussion between the software engin-
eering engineer and the software project manager. The software engineering en-
gineer will first ask a set of questions to the project manager, in order to set--up
the scope of the tailoring (i.e. the characteristics of the project that influence the
selection or not of each requirements). Examples of questions are:

S Who are the Customer, the Supplier, the User, the Maintainer, and the Op-
erator? Does the Customer intend to delegate some tasks to the Supplier?

S Where is the complexity of the project, in the requirements or in the de-
sign?

S What level of validation is necessary? Should the product be perfect at de-
livery, or is some room allowed for the User to participate to the tests, or
is it a prototype that will be dropped later on (or reused in the next phase)?

S What level of verification is necessary? Is it necessary to verify the require-
ments, or the code, or the test definition, etc?

S What visibility into the design is wished? Does the project manager want
to know everything on the detailed design and unit test, or does he trust
the Supplier for a part of the lifecycle?

S Consequently, what are the necessary reviews to be selected into the pro-
ject? Is it acceptable to merge some of them (as QR and AR, or SRR and
PDR) or to waive others (as CDR or DDR)

S How much are COTS involved? Is the project an assembly of COTS prod-
ucts where the COTS acceptance and integration must have the empha-
sis?

S Is the software critical? Is it included into an hardware environment?
S How will be organised the maintenance? Is it included fully in the current

contract, or is the maintenance limited to the guarantee period?

ECSS 28 July 2000
ECSS--E--40B Draft

85

S How is produced the User Manual, is it the same as the Operation manual?
Then the requirements in section 5 and 6 will be reviewed and made or not appli-
cable in a table.
The tailoring of E40 results in a short document including the project characteris-
tics (as a justification for the tailoring) and the tailoring table.
Note that several E40 requirements remain mandatory for any project, e.g. the
production of a minimum set of software requirements, a PDR to review them, and
the production of the code.
The tables in annex propose tailoring templates for space software. They are to be
considered as indication only, and each project will find its actual factors and will
assess how they influence the requirements. They are available in two presenta-
tions. The first one follows the order of the requirements in E40, and could be more
natural to follow during the tailoring process. The second table follows the M00--02
template order where the first column is the tailoring condition.

C.1.2 Who tailors?
The tailoring of the ECSS--E40 is implicitly a task of the Customer. When prepar-
ing the Invitation to Tender, the Customer may propose a tailored version of the
standard as an indication of the level of software engineering that is required for
the project. However, some tailoring factors (such as criticality, detailed design
complexity) may only be known after the grant of the contract. The Supplier will
also have to be part of the tailoring process and the resulting document will be
baselined in the RB (at SRR). The Customer may also subcontract the tailoring to
the Supplier, then review and accept the tailored version.

C.2 Tailoring templates
The following table discusses the E40 requirements considering their tailoring
conditions and possibilities. The table is sorted in the order of the E40 require-
ments.

E40 Requirement Tailoring condition Tailoring possibility
5.2.2.1 system require-
ment specification

If the system is pure software. The system requirement spec-
ification is reduced to user or
customer requirements (the
software requirement base-
line).

5.2.2.1 system require-
ment specification

If the project is small. The software requirement
baseline may be merged with
the software specification
(software technical baseline).

5.2.2.2 criticality
analysis

If the system is not critical. It does not exist.

5.2.3.2 system parti-
tioning

If the system is pure software. It does not exist.

5.2.4.3 functional re-
quirements for support
to system and mission
level validation

If the system is pure software. It does not exist.

5.2.4.4 requirement
baseline verification

If the complexity of the system
is low.

The verification may be li-
mited to the supplier reading
and commenting.

5.2.4.5 SRR If the Customer and the
Supplier are the same orga-
nisational unit because the
project is small enough.

The SRR may be waived in fa-
vour of the PDR.

ECSS28 July 2000
ECSS--E--40B Draft

86

5.2.5.1 software ob-
servability require-
ments

If the system is pure software. It does not exist.

5.2.5.2 system level in-
terface requirements

If the system is pure software. It does not exist.

5.2.5.3 system level
data interface

If the system is pure software. It does not exist.

5.2.5.4 development
constraints for system
integration

If the system is pure software. It does not exist.

5.2.5.5 system level in-
tegration support
product

If the system is pure software. It is limited to the workstation
running the software.

5.2.5.6 system level in-
tegration preparation
requirements

If the system is pure software. It does not exist.

5.2.5.7 system level in-
tegration support re-
quirements

If the system is pure software. It does not exist.

5.2.6.1 software oper-
ations requirements

Depends on 5.7 tailoring

5.2.7 software main-
tenance requirements

Depends on 5.8 tailoring

5.3.2.2 life cycle defini-
tion

Mandatory

5.3.2.3 Review Plan |
Milestones

Mandatory

5.3.2.4 Outputs from
the milestones

Mandatory

5.3.2.5 elements of the
maintenance plan

If the software is not main-
tained.

It does not exist.

5.3.2.6 SRR If the Customer and the
Supplier are the same orga-
nisational unit because the
project is small enough.

The SRR may be waived in fa-
vour of the PDR.

5.3.2.7 technical spec-
ification

If the software is small
enough and with a straightfor-
ward architecture (e.g. a set of
services).

The specification and the top--
level architecture may be
merged.

5.3.2.8 PDR Mandatory
5.3.2.9 CDR If the project is small enough

and if the design is not com-
plex.

The CDR may be waived.

5.3.2.10 V&V Tailoed according to 5.9
If the criticality is low and the
budget is low.

The verification may be selec-
tive or waived.

5.3.2.10 V&V If the software is a prototype. The validation may be less
intensive or waived (vali-
dation by the users) because
integration is more intensive

5.3.2.11 QR If both Verification and Vali-
dation have been waived.

QR is meaningless. Otherwise,
QR is mandatory.

ECSS 28 July 2000
ECSS--E--40B Draft

87

5.3.2.12 AR If the Customer and the
Supplier are the same orga-
nisational unit because the
project is small enough.

The AR may be merged with
the QR.

5.3.2.12 AR If the V&V environment is the
same as the operational envi-
ronment.

The AR may be merged with
the QR.

5.3.3 system level in-
terface management
procedures

If the system is only software. They do not exist.

5.3.3 system level in-
terface management
procedures

If the system interface has no
possibility to evolve

They may be waived.

5.3.3 system level in-
terface management
procedures

If the budget is low and the
complexity is low.

They may be waived.

5.3.4.1 Technical
budget and margin
philosophy

If the technical budget is un-
limited (memory size, com-
puter throughput, response
time).

It may be waived.

5.3.4.2 Technical
budget and margin
status at each mile-
stone

If the technical budget is un-
limited (memory size, com-
puter throughput, response
time).

It may be waived.

5.4.2.1 software re-
quirements

Mandatory.
Outputs are tailored as ap-
propriate for the project
needs.

5.4.2.2 software logical
model

If the complexity of the system
is low.

It may be waived.

5.4.2.3 requirement
identification

If both Verification and Vali-
dation have been waived for
all the versions of the soft-
ware.

Requirement identification is
not useful and it may be
waived.

5.4.2.4 requirement
verification

If the budget is low and the
criticality is low.

It may be waived.

5.4.3.1 top--level archi-
tecture

If the software is a set of rela-
tively independent services.

The requirement and the top--
level architecture may be
merged.

5.4.3.1 top--level archi-
tecture

If the design is a tree, but
with a low complexity.

The top--level architecture and
the detailed design may be
merged.

5.4.3.2 design mini-
mum requirements:
hierarchy, dependency
and interfaces

Mandatory

5.4.2.3.3 Design docu-
mentation

Mandatory

5.4.3.4 top--level inter-
face design

If the software is a set of rela-
tively independent services.

The requirement and the top--
level interface design can be
merged.

5.4.3.4 top--level inter-
face design

If the interfaces complexity is
low.

The interface top--level archi-
tecture and detailed design
may be merged.

ECSS28 July 2000
ECSS--E--40B Draft

88

5.4.3.5 operation man-
ual

If the software is a set of rela-
tively independent services.

The top--level interface design
and the operation manual
may be merged.

5.4.3.6 integration test
plan

If the software is a set of rela-
tively independent services, or
if there is little or no interface.

The plan may be waived.

5.4.3.6 integration test
plan

If the complexity of the inter-
face is low.

The plan may be delayed to
5.5.2.5.

5.4.3.7 top--level archi-
tecture verification

If the budget is low and the
criticality is low.

The verification may be
waived.

5.4.3.8 PDR Mandatory
5.4.4.1 software verifi-
cation plan -- software
validation plan

Tailored as per 5.3.2.10 V&V
tailoring.
If the budget is low and the
criticality is low.

The verification plan may be
waived.

5.4.4.1 software verifi-
cation plan -- software
validation plan

If the software is a prototype. The validation may be less
intensive or waived (vali-
dation by the users) because
integration is more intensive

5.5.2.1 components de-
tailed design

If the design is a tree, but
with a low complexity.

The top--level architecture and
the detailed design can be
merged.

5.5.2.2 interface de-
tailed design

If the interfaces complexity is
low.

The interface top--level archi-
tecture and detailed design
can be merged.

5.5.2.3 operation man-
ual (update)

If the budget is low. The update may be delayed up
to 5.5.4.3

5.5.2.4 software unit
test plan

If the budget is low or if the
criticality is low.

The plan may be waived.

5.5.2.5 software in-
tegration test plan
(update)

If the software is a set of rela-
tively independent services.

The plan may be waived.

5.5.2.6 design verifica-
tion

If the budget is low and the
criticality is low.

The verification may be
waived.

5.5.3.1 unit code and
software unit test plan

Mandatory.

5.5.3.2 software unit
test

If the budget is low and the
criticality is low.

The unit test reports may re-
main not documented.

5.5.3.2 software unit
test

If the stubs needed to unit test
a component are equivalent to
the real components.

The unit test of this compo-
nent may be replaced by the
integration test of this compo-
nent and its related compo-
nents.

5.5.3.3 operation man-
ual (update)

If the budget is low. The update may be delayed up
to 5.5.4.3

5.5.3.4 software in-
tegration test plan
(update)

If the software is a set of rela-
tively independent services

The plan may be waived.

5.5.3.5 code and unit
test results verifica-
tion

If the budget is low and the
criticality is low

The verification may be
waived.

ECSS 28 July 2000
ECSS--E--40B Draft

89

5.5.4.1 integration test
plan (update) and test
code

If the software is a set of rela-
tively independent services or
there is little or no interface

The integration may be sim-
plified or waived.

5.5.4.2 software in-
tegration test

If the budget is low and the
criticality is low

The integration test reports
may remain not documented.

5.5.4.3 operation man-
ual (update)

Mandatory if there is no vali-
dation.
May be delayed to 5.9.5.3
otherwise

5.5.4.4 software in-
tegration and oper-
ation manual verifica-
tion

If the budget is low and the
criticality is low

The verification may be
waived.

5.5.5.1 validation
against the TS

If the system is pure soft-
ware,. If the project is small

It may be waived when
TS=RB

5.5.5.2 CDR If the budget is low and the
criticality is low

The CDR may be waived.

5.6.2 validation
against the RB

Mandatory. Either at QR or
AR.

5.6.3.1 QR See 5.3.2.11
5.6.3.2 AR See 5.3.2.12
5.6.4.1 preparation of
software delivery

If the budget is low The delivery preparation may
be simplified.

5.6.4.2 training ma-
terial

Only if appropriate

5.6.4.3 installation
plan

Only when installation is re-
quired.

5.6.4.4 installation re-
port

Only when installation is re-
quired.

5.6.5.1 acceptance test
plan

Mandatory.

5.6.5.2 acceptance test
report

Mandatory.

5.6.5.3 generation of
executable code for ac-
ceptance

If no automatic code is gener-
ated

It may be waived

5.6.5.4 acceptance
testing documentation

Only in the terms tailored.

5.6.5.5 traceability ac-
ceptance tests--re-
quirements baseline

If the budget is low and the
criticality is low.

It may be waived.

5.7.2 operation process
implementation

If the operation of the soft-
ware is of low complexity.

The operation process imple-
mentation may be waived.

5.7.3 operational test-
ing

If the operation of the soft-
ware is of low complexity.

The operational testing may
be waived in favor of the Ac-
ceptance Testing.

5.7.4 system operation Mandatory
5.7.5 user support Tailored on a case by case

basis
5.8.2 maintenance pro-
cess implementation

If the software is not main-
tained.

The maintenance process im-
plementation may be waived.

ECSS28 July 2000
ECSS--E--40B Draft

90

5.8.2 maintenance pro-
cess implementation

If the complexity is low and
the organisation simple.

The maintenance process im-
plementation may be waived.

5.8.3 problem and
modification analysis

If the software is not main-
tained.

The implementation may be
waived.
Otherwise it is mandatory, in
a more or less formal way.

5.8.4 modification im-
plementation

If the software is not main-
tained.

The implementation may be
waived.
Otherwise it is mandatory, in
a more or less formal way.

5.8.5 in--flight modifi-
cations

Only for space segment.

5.8.6 maintenance re-
view acceptance

If the organisation is simple. The acceptance may be
waived.

5.8.7 software migra-
tion

If migration is not necessary. The process may be waived.
Otherwise, it is mandatory in
a more or less formal way.

5.8.8 software retire-
ment

If the software is not retired
independently from the sys-
tem.

The process may be waived.
Otherwise, it is mandatory in
a more or less formal way.

5.9.2 Verification pro-
cess implementation

If the budget is low and the
criticality is low.
Note that part of the verifica-
tion process implementation is
the tailoring process.

The verification may be
waived.

5.9.2.1 verification ef-
fort determination

Only necessary if verification
is needed

5.9.2.2 verification
process establishment

Only necessary if verification
is needed

5.9.2.3 verification or-
ganisation

Only necessary if independent
verification is needed

5.9.2.4 activities and
products to verify

Only necessary if verification
is needed

5.9.3.1 validation ef-
fort determination

Only necessary if validation is
needed

5.9.3.2 validation pro-
cess establishment

Only necessary if validation is
needed

5.9.3.3 validation orga-
nisation

Only necessary if an indepen-
dent validation is needed.

5.9.3.4 validation plan Only necessary if validation is
needed.

5.9.4 Verification pro-
cess

Generic process, see each in-
stance.

5.9.5.1 validation test
specification

If the budget is low and the
criticality is low.

The validation may be limited
to a given coverage target, e.g.
by validating only the nominal
behavior.

5.9.5.2 validation tests If the budget is low. The validation report may re-
main non--documented.

5.9.5.3 operation man-
ual (update)

Mandatory.

ECSS 28 July 2000
ECSS--E--40B Draft

91

5.9.5.4 validation
verification

If the budget is low and the
criticality is low.

The verification may be
waived.

5.9.5.5 problem and
non--conformance
handling

Mandatory, in a more or less
formal way.

5.9.5.6 test readiness
review

If the budget is low and the
criticality is low.

The verification may be
waived.

5.9.6.1 support to re-
views

As per review tailoring

5.9.6.2 reviews defini-
tion

If the lifecycle is of type con-
current engineering or with
short and numerous incre-
mental steps

The reviews will be defined as
a set of periodic meetings
whose last one only includes
the formal review success.
The authorisation to start the
next phase disappears.

The next table is sorted considering the tailoring condition.

Tailoring condition E40 Requirement Tailoring possibility
No condition 5.2.6.1 software operations re-

quirements
Depends on 5.7 tailoring.

5.2.7 software maintenance
requirements

Depends on 5.8 tailoring.

5.3.2.2 life cycle definition Mandatory.
5.3.2.3 Review Plan | Mile-
stones

Mandatory.

5.3.2.4 Outputs from the mile-
stones

Mandatory.

5.3.2.8 PDR Mandatory.
5.4.2.1 software requirements Mandatory.

Outputs are tailored as ap-
propriate for the project
needs.

5.4.2.3.3 Design documenta-
tion

Mandatory.

5.4.3.2 design minimum re-
quirements: hierarchy, de-
pendency and interfaces

Mandatory.

5.4.3.8 PDR Mandatory.
5.5.3.1 unit code and software
unit test plan

Mandatory.

5.5.4.3 operation manual (up-
date)

Mandatory if there is no vali-
dation. May be delayed to
5.9.5.3 otherwise.

5.6.2 validation against the
RB

Mandatory. Either at QR or
AR.

5.6.3.1 QR See 5.3.2.11
5.6.3.2 AR See 5.3.2.12

ECSS28 July 2000
ECSS--E--40B Draft

92

5.6.4.2 training material Only if appropriate
5.6.4.3 installation plan Only when installation is re-

quired.
5.6.4.4 installation report Only when installation is re-

quired.
5.6.5.1 acceptance test plan Mandatory.
5.6.5.2 acceptance test report Mandatory.
5.6.5.4 acceptance testing
documentation

Only in the terms tailored.

5.7.4 system operation Mandatory.
5.7.5 user support Tailored on a case by case

basis.
5.8.5 in--flight modifications Only for space segment.
5.9.2.1 verification effort de-
termination

Only necessary if verification
is needed

5.9.2.4 activities and products
to verify

Only necessary if verification
is needed

5.9.3.1 validation effort de-
termination

Only necessary if validation is
needed

5.9.3.2 validation process es-
tablishment

Only necessary if validation is
needed

5.9.3.3 validation organisation Only necessary if an indepen-
dent validation is needed.

5.9.3.4 validation plan Only necessary if validation is
needed.

5.9.4 Verification process Generic process, see each in-
stance.

5.9.5.3 operation manual (up-
date)

Mandatory.

5.9.5.5 problem and non--con-
formance handling

Mandatory, in a more or less
formal way.

5.9.6.1 support to reviews As per review tailoring
If both Verification
and Validation have
been waived

5.3.2.11 QR QR is meaningless. Otherwise,
QR is mandatory.

If both Verification
and Validation have
been waived for all the
versions of the soft-
ware

5.4.2.3 requirement identifica-
tion

Requirement identification is
not useful and it may be
waived.

If migration is not
necessary

5.8.7 software migration The process may be waived.
Otherwise, it is mandatory in
a more or less formal way.

If no automatic code is
generated

5.6.5.3 generation of execut-
able code for acceptance

It may be waived

ECSS 28 July 2000
ECSS--E--40B Draft

93

If the budget is low 5.5.2.3 operation manual (up-
date)

The update may be delayed up
to 5.5.4.3

5.5.3.3 operation manual (up-
date)

The update may be delayed up
to 5.5.4.3

5.6.4.1 preparation of software
delivery

The delivery preparation may
be simplified.

If the budget is low
and the complexity is
low

5.3.3 system level interface
management procedures

They may be waived.

If the budget is low
and the criticality is
low

5.4.2.4 requirement verifica-
tion

It may be waived.
and the criticality is
low 5.4.3.7 top--level architecture

verification
The verification may be
waived.

5.5.2.6 design verification The verification may be
waived.

5.5.3.2 software unit test The unit test reports may re-
main not documented.

5.5.3.5 code and unit test re-
sults verification

The verification may be
waived.

5.5.4.2 software integration
test

The integration test reports
may remain not documented.

5.5.4.4 software integration
and operation manual verifi-
cation

The verification may be
waived.

5.5.5.2 CDR The CDR may be waived.
5.6.5.5 traceability acceptance
tests--requirements baseline

It may be waived.

5.9.5.1 validation test specifi-
cation

The validation may be limited
to a given coverage target, e.g.
by validating only the nominal
behavior.

5.9.5.4 validation verification The verification may be
waived.

5.9.2 Verification process im-
plementation

The verification may be
waived.

5.5.2.4 software unit test plan The plan may be waived.
If the complexity is
low and the organisa-
tion simple

5.8.2 maintenance process im-
plementation

The maintenance process im-
plementation may be waived.

If the complexity of
the interface is low

5.4.3.4 top--level interface de-
sign

The interface top--level archi-
tecture and detailed design
may be merged.

5.4.3.6 integration test plan The plan may be delayed to
5.5.2.5.

5.5.2.2 interface detailed de-
sign

The interface top--level archi-
tecture and detailed design
can be merged.

If the complexity of
the system is low

5.2.4.4 requirement baseline
verification

The verification may be li-
mited to the supplier reading
and commenting.

5.4.2.2 software logical model It may be waived.

ECSS28 July 2000
ECSS--E--40B Draft

94

If the Customer and
the Supplier are the
same organisational

5.2.4.5 SRR The SRR may be waived in fa-
vour of the PDR.the Supplier are the

same organisational
unit because the pro-
ject is small enough

5.3.2.6 SRR The SRR may be waived in fa-
vour of the PDR.ject is small enough

5.3.2.12 AR The AR may be merged with
the QR.

If the design is a tree,
but with a low com-
plexity

5.4.3.1 top--level architecture The top--level architecture and
the detailed design may be
merged.

5.5.2.1 components detailed
design

The top--level architecture and
the detailed design can be
merged.

If the lifecycle is of
type concurrent engin-
eering or with short
and numerous incre-
mental steps

5.9.6.2 reviews definition The reviews will be defined as
a set of periodic meetings
whose last one only includes
the formal review success. The
authorisation to start the next
phase disappears.

If the operation of the
software is of low com-
plexity

5.7.2 operation process imple-
mentation

The operation process imple-
mentation may be waived.software is of low com-

plexity 5.7.3 operational testing The operational testing may
be waived in favor of the Ac-
ceptance Testing.

If the organisation is
simple

5.8.6 maintenance review ac-
ceptance

The acceptance may be
waived.

If the project is small 5.2.2.1 system requirement
specification

The software requirement
baseline may be merged with
the software specification
(software technical baseline).

5.5.5.1 validation against the
TS

It may be waived when
TS=RB.

If the project is small
enough and if the de-
sign is not complex

5.3.2.9 CDR The CDR may be waived.

If the software is a
prototype

5.3.2.10 V&V The validation may be less
intensive or waived (vali-
dation by the users) because
integration is more intensive

5.4.4.1 software verification
plan -- software validation
plan

The validation may be less
intensive or waived (vali-
dation by the users) because
integration is more intensive

ECSS 28 July 2000
ECSS--E--40B Draft

95

If the software is a set
of relatively indepen-
dent services

5.4.3.1 top--level architecture The requirement and the top--
level architecture may be
merged.

5.4.3.4 top--level interface de-
sign

The requirement and the top--
level interface design can be
merged.

5.4.3.5 operation manual The top--level interface design
and the operation manual
may be merged.

5.5.2.5 software integration
test plan (update)

The plan may be waived.

5.5.3.4 software integration
test plan (update)

The plan may be waived.

If the software is a set
of relatively indepen-
dent services or there

5.5.4.1 integration test plan
(update) and test code

The integration may be sim-
plified or waived.

dent services or there
is little or no interface 5.4.3.6 integration test plan The plan may be waived.

If the software is not
maintained

5.3.2.5 elements of the main-
tenance plan

It does not exist.
maintained

5.8.2 maintenance process im-
plementation

The maintenance process im-
plementation may be waived.

5.8.3 problem and modifica-
tion analysis

The analysis may be waived.
Otherwise it is mandatory, in
a more or less formal way.

5.8.4 modification imple-
mentation

The implementation may be
waived. Otherwise it is man-
datory, in a more or less for-
mal way.

If the software is not
retired independently
from the system

5.8.8 software retirement The process may be waived.
Otherwise, it is mandatory in
a more or less formal way.

If the software is small
enough and with a
straightforward archi-
tecture (e.g. a set of
services)

5.3.2.7 technical specification The specification and the top--
level architecture may be
merged.

If the stubs needed to
unit test a component
are equivalent to the
real components

5.5.3.2 software unit test The unit test of this compo-
nent may be replaced by the
integration test of this compo-
nent and its related compo-
nents.

If the system interface
has no possibility to
evolve

5.3.3 system level interface
management procedures

They may be waived.

If the system is not
critical

5.2.2.2 criticality analysis It does not exist.

ECSS28 July 2000
ECSS--E--40B Draft

96

If the system is pure
software

5.3.3 system level interface
management procedures

They do not exist.
software

5.2.2.1 system requirement
specification

The system requirement spec-
ification is reduced to user or
customer requirements (the
software requirement base-
line).

5.2.3.2 system partitioning It does not exist.
5.2.4.2 system V&V process
requirements

It does not exist.

5.2.4.3 functional require-
ments for support to system
and mission level validation

It does not exist.

5.2.5.1 software observability
requirements

It does not exist.

5.2.5.2 system level interface
requirements

It does not exist.

5.2.5.3 system level data inter-
face

It does not exist.

5.2.5.4 development con-
straints for system integration

It does not exist.

5.2.5.5 system level integra-
tion support product

It is limited to the workstation
running the software.

5.2.5.6 system level integra-
tion preparation requirements

It does not exist.

5.2.5.7 system level integra-
tion support requirements

It does not exist.

5.2.5.7 system level integra-
tion support requirements

It does not exist.

If the technical budget
is unlimited (memory
size, computer

5.3.4.1 Technical budget and
margin philosophy

It may be waived.
is unlimited (memory
size, computer
throughput, response
time)

5.3.4.2 Technical budget and
margin status at each mile-
stone

It may be waived.

If the V&V environ-
ment is the same as
the operational envi-
ronment

5.3.2.12 AR The AR may be merged with
the QR.

Tailored according to
5.9. If the criticality is
low and the budget is
low

5.3.2.10 V&V The verification may be selec-
tive or waived.

Tailored as per
5.3.2.10 V&V tailor-
ing. If the budget is
low and the criticality
is low

5.4.4.1 software verification
plan -- software validation
plan

The verification plan may be
waived.

