06 DEC 07

2 **Page :** 1/49

SPIRE-ESA-DOC-003049

# HERSCHEL / PLANCK

:

lssue :

HERSCHEL FM TV/TB TEST SPECIFICATION

| Written by   | <b>Responsibility</b> + handwritten signature if no informatic workflow tool |
|--------------|------------------------------------------------------------------------------|
| B. DEMOLDER  | Thermal architect                                                            |
|              |                                                                              |
| Verified by  |                                                                              |
| Y. ROCHE     | Herschel Technical Responsible                                               |
| B. COLLAUDIN | Herschel/Planck Instrument Manager                                           |
| D. MONTET    | Herschel Satellite Manager                                                   |
|              |                                                                              |
| Approved by  |                                                                              |
| T. GRASSIN   | PA manager                                                                   |
| JM. REIX     | Herschel/Planck Programme Manager                                            |
| T. PAßVOGEL  | ESA Programme Manager                                                        |

The validations evidence are kept through the documentation management system.

| Reference | H-P-2-ASP-TS-0997 |                    |  |
|-----------|-------------------|--------------------|--|
| :         | 06 DEC 07         |                    |  |
| lssue :   | 2                 | <b>Page :</b> 2/49 |  |

### **DISTRIBUTION RECORD**

| DOCUMENT NUMBER : H-P-2-ASP-TS-0997 |   | Issue : 2             |       |
|-------------------------------------|---|-----------------------|-------|
| EXTERNAL DISTRIBUTION               |   | INTERNAL DISTRIBUTION |       |
| ESA                                 | x | HP team               | Х     |
| ASTRIUM                             | x |                       |       |
| THALES ALENIA SPACE -Italia         | x |                       |       |
| Instrument teams                    |   |                       |       |
|                                     |   |                       |       |
|                                     |   |                       |       |
|                                     |   |                       |       |
|                                     |   |                       |       |
|                                     |   |                       |       |
|                                     |   |                       |       |
|                                     |   |                       |       |
|                                     |   |                       |       |
|                                     |   |                       |       |
|                                     |   |                       |       |
|                                     |   | Clt Documentation     | Orig. |
|                                     |   |                       |       |

# CHANGE RECORDS

| ISSUE | DATE      | § CHANGE RECORDS                                                                                                                                        | AUTHOR      |
|-------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1     | 31 AUG 05 | Initial issue                                                                                                                                           | B. Demolder |
|       |           | A non official issue 2 (non signed) had been sent, dated<br>29 Oct 07. This version has been commented and<br>modified, to become the official issue 2. |             |
| 2     | 06 DEC07  | Issue taking into account the latest programmatic development (as PLM STM campaings), as well as ESA and ASED comments.                                 | B. Demolder |
|       |           | Due to the depth of changes, change bars are not shown in this issue.                                                                                   |             |
|       |           |                                                                                                                                                         |             |
|       |           |                                                                                                                                                         |             |
|       |           |                                                                                                                                                         |             |
|       |           |                                                                                                                                                         |             |
|       |           |                                                                                                                                                         |             |
|       |           |                                                                                                                                                         |             |
|       |           |                                                                                                                                                         |             |

# TABLE OF CONTENTS

| 1. Te                                         | ests objectives                                                                                                                                | 7                                       |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 1.1                                           | Introduction                                                                                                                                   | 7                                       |
| 1.2                                           | Requirements                                                                                                                                   | 7                                       |
| <b>1.3</b><br>1.3<br>1.3<br>1.3               | Thermal balance tests objectives3.1H-EPLM3.2SVM3.3System objectives                                                                            | <b>9</b><br>9<br>9<br>10                |
| <b>1.4</b><br>1.4<br>1.4<br>1.4               | Thermal cycling tests objectives4.1H-EPLM4.2SVM4.3System objectives                                                                            | <b>10</b><br>10<br>10<br>10             |
| 1.5                                           | other objectives                                                                                                                               | 10                                      |
| 1.6                                           | Adequacy of objectives wrt test phases                                                                                                         | 10                                      |
| 2. AF                                         | PPLICABLE AND REFERENCE DOCUMENTS                                                                                                              | 12                                      |
| 2.1                                           | Applicable documents                                                                                                                           | 12                                      |
| 2.2                                           | Reference documents                                                                                                                            | 12                                      |
| 3. Te                                         | est specimen definition                                                                                                                        | 13                                      |
| <b>3.1</b><br>3.1<br>3.1                      | Satellite configuration<br>1.1 HPLM configuration<br>1.2 SVM configuration                                                                     | <b>13</b><br>13<br>14                   |
| <b>3.2</b><br>3.2<br>3.2<br>3.2<br>3.2<br>3.2 | Instrumentation2.1HPLM instrumentation2.2Cold instruments instrumentation2.3SVM instrumentation2.4TTAS instrumentation2.5Other instrumentation | <b>14</b><br>14<br>15<br>15<br>15<br>15 |
| 3.3                                           | Test environment definition                                                                                                                    | 17                                      |
| 3.4                                           | Environment in Test Chamber                                                                                                                    | 17                                      |
| 3.5                                           | Set-up in LSS                                                                                                                                  | 17                                      |
| 3.6                                           | Specific requirement for instrument testing                                                                                                    | 19                                      |
| <b>3.7</b><br>3.7<br>3.7                      | <b>GSE</b><br>7.1 Mechanical<br>7.2 Electrical                                                                                                 | <b>19</b><br>19<br>20                   |

**Reference** H-P-2-ASP-TS-0997 **HERSCHEL FM TV/TB TEST** : **SPECIFICATION** 06 DEC 07 2 **Page :** 5/49 Issue : 23 3.7.3 Thermal 3.7.3.1 With test adapter 23 3.7.3.2 With test harness 23 3.7.4 Cryogenic 23 handling 23 3.8 4. Test definition 23 24 thermal phases 4.1 4.1.1 PLM 24 4.1.2 SVM 26 Thermal cycling test 4.2 27 4.2.1 SVM 27 4.2.2 Instruments testing 28 4.3 28 Other phases 4.4 Summary of phases and overall chronology 29 4.5 S/C and test chamber status 32 4.6 Parameters to be measured/Measurement accuracy 40 4.6.1 S/C TM/TC data 40 4.6.2 S/C test instrumentation 40 4.6.3 Facility parameters 40 4.7 **Emergency procedures** 40 5. Success criteria – Test approval 41 5.1 **Success criteria** 41 5.1.1 External HPLM thermal balance success criteria 41 5.1.2 SVM thermal balance success criteria 42 5.1.3 Instrument functional testing success criteria 42 5.1.4 SVM functional testing / cycling success criteria 42 Videogrammetry 42 5.1.5 LOU/HIFI FPU alignment using HACS 42 5.1.6 Telescope Decontamination 5.1.7 42 5.1.8 LOU Baffle decontamination 42 6. Organisation & responsibilities 42 6.1 Organisation 42 6.2 **Tasks and responsibility** 43 6.3 Test Readiness Review, Post Test Review and Running meeting 44

7. Documentation457.1 Documents required before the test45

**Reference** H-P-2-ASP-TS-0997 **HERSCHEL FM TV/TB TEST** : 06 DEC 07 **SPECIFICATION** 2 **Page :** 6/49 lssue : Data acquired during the test Logbooks 7.2 45 7.2.1 45 7.2.2 S/C sensors 45 7.2.3 Test environment sensors (ETS) 46 7.2.4 Test environment heaters (ETS) 46 Documents issued after the test 7.3 46 7.3.1 Specimen AIT reports - ASED 46

46

47

7.3.2

Test facility - ETS

7.3.3 Evaluation reports

#### 1. Tests objectives

#### 1.1 Introduction

The Herschel FM tests in thermal/vacuum conditions will be composed of four types of tests :

- Thermal balance tests (SVM tests in steady and transient phase)
- Thermal verification tests (PLM tests, see §1.3.1)
- Thermal cycling tests (PLM and SVM tests)
- Instrument functional and performance verification in near flight conditions.

In addition, some specific features are tested:

- PLM alignment verification during cool down
- videogrammetry,
- LOU windows decontamination,
- telescope decontamination.

This document is the specific test specification for the Thermal Vacuum (TV) / Thermal Balance (TB) test of the Herschel satellite flight model. This test will be done at ESTEC in the Large Space Simulator (LSS).

It also provides environmental and test facility requirements for other tests listed above.

This specification deals in particular with the following points :

- Test objectives / test definition
- Definition of the tested specimen and deviation from flight configuration
- Success criteria
- Requirements towards test facilities
- Organisation and responsibilities
- Input / output data

#### **1.2 Requirements**

The following requirements of RD4 have to be verified by the TV/TB test. This section 1.2 is addressed to ESA for verification purpose. It shall not be considered by ASED.

| Requirement | Requirement |
|-------------|-------------|
| reference   |             |

HERSCHEL FM TV/TB TEST<br/>SPECIFICATIONReferenceH-P-2-ASP-TS-0997.06 DEC 07Issue :2Page : 8/49

| SFUN-010 H   | The Herschel Payload Module shall:<br>Provide the necessary interfaces (mechanical, optical and electrical) with the<br>Agency's provided Telescope and other elements of the spacecraft.<br>Accommodate the focal plane units (FPU) of the instruments, the Local<br>Oscillator Unit (LOU) of HIFI and the Buffer Amplifier Unit (BOLA) of PACS in<br>accordance with the requirements and interface specification of the IID's Part B<br>Provide to the instruments FPU's, the required thermal environment, through a<br>cryogenic subsystem |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SENV-070 H/P | The spacecraft shall be designed to withstand any external air pressure between ambient (0.105 Mpa) and vacuum (< 10-4 Pa).                                                                                                                                                                                                                                                                                                                                                                                                                     |
| STHE-080 H/P | The TCS shall ensure that all equipment temperatures remain within the<br>thermal design limits defined for each unit, during all phases of the mission,<br>including ground testing. If applicable, it shall also ensure the required<br>temperature stability for equipment. It shall maintain the structural parts with<br>the required temperatures and temperature stabilities such that the necessary<br>alignments are met between units involved in the pointing or alignment<br>required performances.                                 |
| STHE-110 H/P | Heaters shall be used when necessary. All heaters shall be capable of being commanded from ground                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SCVE-175 H/P | The thermal design of the spacecraft shall be validated by a thermal balance test.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SCVE-180 H/P | The test cases shall cover, as far as practical, the extreme environmental conditions envisaged for the complete mission and the most critical predicted thermal situations.                                                                                                                                                                                                                                                                                                                                                                    |
| SCVE-185 H/P | The spacecraft thermal sensors (e.g. thermistors, thermo-couples) shall be<br>continuously monitored during the test and be used for the assessment of the<br>stabilisation. In addition, they shall be used for the correlation. Additional<br>measurement points shall be provided by test thermal sensors, mainly for<br>complementing the flight measurement plan and monitoring local or general<br>environmental data.                                                                                                                    |
| SCVE-190 H/P | The environment induced by the test facility shall be continuously monitored during the test with a level of details, as it will be required by the thermal mathematical model for the prediction of the test.                                                                                                                                                                                                                                                                                                                                  |
| SCVE-195 H/P | The Thermal Vacuum test at system level shall be designed to bring all the S/C<br>and Payload units to their worst predicted flight environment without exceeding<br>their qualification range                                                                                                                                                                                                                                                                                                                                                  |
| SMRC-125 H/P | Heating capability shall be provided to prevent the freezing of the propellants.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MISS-110 H   | The Herschel spacecraft shall be compatible with any of the following combination of sun aspect angles away from the +Z-axis during all observational modes: +/-30 degrees about the Y-axis and +/-1 degrees about the X-axis.                                                                                                                                                                                                                                                                                                                  |

# Table 1-1 Requirements verified by TV/TB test

### **1.3 Thermal balance tests objectives**

#### 1.3.1 H-EPLM

The qualification of the H-EPLM cryostat has been performed at STM level and was confirmed at MQR step 2 (see RD6).

For the internal part of the cryostat, no "classical" balance phase (quasi steady state) is introduced. The verification of the related objectives will be performed through the comparison prediction/measurements in transient phases.

It was agreed that the correlation of the external model of the H-PLM could not be performed using the LSS results of STM1 or FM test (see RD7). Nevertheless, a comparison between prediction and measurements will of course be performed after test to validate the external thermal model.

The objectives of the HEPLM FM test are:

| Acceptance | of CVV internal Thermal control                                                     |
|------------|-------------------------------------------------------------------------------------|
| OBJ EPLM 1 | evaluation of FM built status and workmanship, internal temperature distribution of |
|            | EPLM, including LEOP (maximum temperature of HTT and big to small nozzle            |
|            | switching).                                                                         |
| OBJ EPLM 2 | Validation of TMM and subsequent confirmation of lifetime prediction made on        |
|            | STM                                                                                 |
| OBJ EPLM 3 | acceptance of FM FPU thermal interfaces with H-EPLM                                 |
| OBJ EPLM 4 | Verification of pre-launch and launch sequence                                      |
| Acceptance | of CVV external Thermal control                                                     |
| OBJ EPLM 5 | Consistency check of external temperature distribution of H-EPLM                    |
| OBJ EPLM 6 | Consistency check of telescope I/F temperature                                      |
| OBJ EPLM 7 | Consistency check of HIFI LOU I/F temperatures                                      |

#### 1.3.2 SVM

The qualification of the SVM thermal control has been performed during the H-SVM STM thermal balance. The aim of the thermal balance at system level is to perform acceptance of the SVM and the delta qualification .

The objectives of the SVM FM test are :

| Qualification of SVM thermal control |                                                                                                                                          |  |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|
| OBJ SVM 1                            | Validation of the HIFI control law in near to flight configuration                                                                       |  |
| OBJ SVM 2                            | validation of the thermal control design changes between STM and FM configuration (RCS heaters, STR baffle heaters, CRS thermal control) |  |
| Acceptance of SVM thermal control    |                                                                                                                                          |  |
| Acceptance                           | of SVM thermal control                                                                                                                   |  |
| Acceptance<br>OBJ SVM 3              | of SVM thermal control<br>validation of the thermal Mathematical Model (TMM) in steady state and transient<br>conditions                 |  |

#### 1.3.3 System objectives

| Acceptance | of spacecraft                               |
|------------|---------------------------------------------|
| OBJ SYS 1  | Verification of SVM/PLM thermal interfaces. |

#### 1.4 Thermal cycling tests objectives

#### 1.4.1 H-EPLM

| Acceptance of CVV internal |                                                             |  |
|----------------------------|-------------------------------------------------------------|--|
| OBJ EPLM 8                 | Verification of DLCMs (end to end validation)               |  |
| OBJ EPLM 9                 | Consistency check of HSS temperatures in cold/hot condition |  |

#### 1.4.2 SVM

The objectives of the SVM FM test are :

| Acceptance of SVM |                                                   |  |
|-------------------|---------------------------------------------------|--|
| OBJ SVM 5         | SVM functional acceptance at extreme temperatures |  |
|                   |                                                   |  |

#### 1.4.3 System objectives

The system objectives of the FM test are:

| Acceptance of FM equipments |                                                                                                                            |  |  |  |  |  |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| OBJ SYS 2                   | Verification of instrument performance in nearly flight conditions (except SPIRE spectrometer which needs 90 deg rotation) |  |  |  |  |  |
| OBJ SYS 3                   | Acceptance of FM equipments in high/low temperature range (warm units)                                                     |  |  |  |  |  |
| OBJ SYS 4                   | Verification of telescope temperatures during decontamination phase                                                        |  |  |  |  |  |
| OBJ SYS 5                   | Functional verification of LOU baffle heating                                                                              |  |  |  |  |  |

#### 1.5 other objectives

The other objective of the thermal test are :

| Alignment check |                                          |  |  |  |  |  |  |
|-----------------|------------------------------------------|--|--|--|--|--|--|
| OBJ TV 1        | LOU/HIFI FPU alignment using HACS        |  |  |  |  |  |  |
| OBJ TV 2        | telescope alignment using videogrammetry |  |  |  |  |  |  |

#### **1.6 Adequacy of objectives wrt test phases**

The cross-check of each of the previous objectives with respect to the test phase is given in Table 1-2 herunder.

:

# HERSCHEL FM TV/TB TEST SPECIFICATION

06 DEC 07

**Issue :** 2 **Page :** 11/49

|              | PHASE NAME                                                                          | <b>PLM</b> | PLM      | ₽LM           | PLN      | <b>INS</b>     | PLM        | PLM        | - dP               | TEL-  | LOU   | -Lau  | SVM             | SVM      | SVM    | SVM   | SVM      | INS         | INS          | INS      | INS                 | AFT         | WU   | VID      | ALIGN    |
|--------------|-------------------------------------------------------------------------------------|------------|----------|---------------|----------|----------------|------------|------------|--------------------|-------|-------|-------|-----------------|----------|--------|-------|----------|-------------|--------------|----------|---------------------|-------------|------|----------|----------|
|              |                                                                                     | launa      | laun     | LEO           | RC       | Т-             | EXT        | EXT        | mea                | DEC   | DEC   | nch   | SAF             | TB-      | TB-    | TV-   | TV-      | Т-          | Т-           | Т-       | Т-                  |             | Р    | EO       | 1        |
|              |                                                                                     | h-         | ch-      | Ρ             |          | THE            | COL        | нот        | sure               |       |       | Mod   | E               | COL      | нот    | COL   | нот      | HIFI        | PAC          | SPIR     | PAR                 |             |      | ,        | 1        |
|              |                                                                                     | auton      | dela     |               |          | RM-            | D          |            |                    |       |       | е     |                 | D        |        | D     |          |             | S            | E        | Α                   |             |      | ,        | 1        |
|              |                                                                                     | omy        | У        |               |          | I/F            |            |            |                    |       |       |       |                 |          |        |       |          |             |              |          |                     |             |      |          | 1        |
|              |                                                                                     | Į .        |          | <b>DI</b> 1 1 | <b>_</b> |                | <b>-</b> . | <b>-</b> . | 1.1.               |       |       | 0.4.4 | <b>C</b> ) (1 4 | 0.4.4    | 0.4.4  | 0.0.4 | 0.4.4    |             | <b>D</b> + 0 | CDID     | <b>D</b> ( <b>C</b> |             |      |          |          |
| objective n° | description                                                                         | launch     | laun     | PLM           | Kap      | Instr          | Exter      | Exter      | delta              | deco  | deco  | SVM   | SVM             | SVM      | SVM    | SVM   | SVM      |             | PAC          | SPIR     |                     | Abbr        | War  | Vide     |          |
|              |                                                                                     | auton      | cn       |               | a        | ume            | nai        | nai        | press              | ntam  | ntam  | laun  | frans           | cold     | "Hof   | °cold | not      |             | )<br>Ту/Т    |          | 0/3PI               | eviat       | n up | ogra     |          |
|              |                                                                                     | omy        | aeia     | Г<br>nhaa     | cool     | i nî<br>i thor | cola       | nor        | ure                | Inati | Inati | cn    | to              | etabi    | ata bi | ovel: | cycii    | D           |              |          | KE                  | ea<br>Euroc |      | mme      | alignm   |
|              |                                                                                     |            | У        | prius         | n        | mal            | lisati     | lisati     | sure               | of    | of    |       | safe            | lisati   | lisati | ng    | ng       | iesiii<br>a | tostin       | tostin   | puru<br>IIal        | tiona       |      | пу       |          |
|              |                                                                                     |            |          | e             |          | inter          | on         | on         | ment               | teles |       | e     | mod             | on       | on     | ng    |          | y           | a            | a        | TV/T                | l test      |      | ,        | HACS     |
|              |                                                                                     |            |          |               |          | ace            | 011        | 011        | mom                | cope  | baffl |       | e               | 011      | 011    |       |          |             | 9            | 9        | B.                  | 1 1001      |      | ,        | 1,0,000  |
|              |                                                                                     |            |          |               |          | chec           |            |            |                    | copo  | e     |       | Ŭ               |          |        |       |          |             |              |          | testin              |             |      | ,        | 1        |
|              |                                                                                     |            |          |               |          | king           |            |            |                    |       | _     |       |                 |          |        |       |          |             |              |          | g                   |             |      | ,        | 1        |
| OBJ EPLM 1   | evaluation of FM built status and workmanship, internal temperature distribution of | Х          | Х        | Х             |          |                |            |            | Х                  |       |       |       |                 |          |        |       |          |             |              |          | Ŭ                   |             |      |          |          |
|              | EPLM, including LEOP (maximum temperature of HTT and big to small nozzle            |            |          |               |          |                |            |            |                    |       |       |       |                 |          |        |       |          |             |              |          |                     |             |      | ,        | 1        |
|              | switching).                                                                         |            |          |               |          |                |            |            |                    |       |       |       |                 |          |        |       |          |             |              |          |                     |             |      |          | l        |
| OBJ EPLM 2   | Validation of TMM and subsequent confirmation of lifetime prediction made on STM    | Х          | Х        | Х             |          |                |            |            | X                  |       |       |       |                 |          |        |       |          |             |              |          |                     |             |      |          |          |
| OBJ EPLM 3   | acceptance of FM FPU thermal interfaces with H-EPLM                                 |            |          |               |          | Х              |            |            |                    |       |       |       |                 |          |        |       |          |             |              |          |                     |             |      |          |          |
| OBJ EPLM 4   | Verification of pre-launch and launch sequence                                      | Х          | Х        |               |          |                |            |            |                    |       |       | Х     |                 |          |        |       |          |             |              |          |                     |             |      |          |          |
| OBJ EPLM 5   | Consistency check of external temperature distribution of H-EPLM                    |            |          |               |          |                | Х          | Х          |                    |       |       |       |                 |          |        |       |          |             |              |          |                     |             |      |          | i        |
| OBJ EPLM 6   | Consistency check of telescope I/F temperature                                      |            |          |               |          |                | Х          | Х          |                    |       |       |       |                 |          |        |       |          |             |              |          |                     |             |      |          | <u> </u> |
| OBJ EPLM 7   | Consistency check of HIFI LOU I/F temperatures                                      |            |          |               |          |                | Х          | Х          |                    |       |       |       |                 |          |        |       |          |             |              |          |                     |             |      |          | <u> </u> |
| OBJ EPLM 8   | Verification of DLCMs (end to end validation)                                       |            |          |               |          |                |            |            |                    |       |       |       |                 |          |        | Х     | Х        |             |              |          |                     |             |      |          |          |
| OBJ EPLM 9   | Consistency check of HSS temperatures in cold/hot condition                         |            |          |               |          |                | Х          | Х          |                    |       |       |       |                 |          |        |       |          |             |              |          |                     |             |      |          | L        |
| OBJ SVM 1    | Validation of the HIFI control law in near to flight configuration                  |            |          |               |          |                |            |            |                    |       |       |       |                 | X        |        |       |          |             |              |          |                     |             |      |          | L        |
| OBJ SVM 2    | validation of the thermal control design changes between STM and FM configuration   |            |          |               |          |                |            |            |                    |       |       |       | Х               | Х        | Х      |       |          |             |              |          |                     |             |      | ,        | 1        |
|              | RCS heaters, STR baffle heaters, CRS thermal control)                               |            |          |               |          |                |            |            |                    |       |       |       |                 |          |        |       |          |             |              |          |                     |             |      | <u> </u> | L        |
| OBJ SVM 3    | validation of the thermal Mathematical Model (TMM) in steady state and transient    |            |          |               |          |                |            |            |                    |       |       |       | Х               | Х        | х      |       |          |             |              |          |                     |             |      | ,        | 1        |
|              | conditions                                                                          |            |          |               |          | _              |            | -          |                    | -     |       |       |                 |          | v      |       |          |             |              |          |                     |             |      | <b></b>  |          |
| OBJ SVM 4    | validation of the thermal control design concept and thermal performances           |            |          |               |          | _              |            | -          |                    | -     |       |       | X               | Х        | Х      |       |          |             |              |          |                     |             |      | I        |          |
| OBJ SVM 5    | 5VM functional acceptance at extreme temperatures                                   |            |          |               |          | -              |            |            |                    |       |       |       |                 |          |        | X     | X        |             |              |          |                     |             |      |          |          |
| OBJ SYS I    | Verification of SVM/PLM thermal interfaces.                                         |            |          |               |          | -              |            |            |                    |       |       |       |                 | X        | X      |       |          |             |              |          | v                   |             |      |          |          |
| OBJ SYS 2    | Verification of instrument performance in nearly flight conditions (except SPIRE    |            |          |               |          |                |            |            |                    |       |       |       |                 |          |        |       |          | х           | X            | х        | х                   |             |      | ,        | 1        |
|              | spectrometer which needs 90 deg rotation)                                           |            |          |               |          |                |            |            |                    |       |       |       |                 |          |        | v     | v        |             |              |          |                     |             |      |          |          |
| ORI 212 3    | Acceptance of FM equipments in high/low temperature range (warm units)              | <u> </u>   |          |               | <u> </u> |                |            | <u> </u>   |                    | v     |       |       | <u> </u>        |          |        | X     | X        |             |              |          |                     |             |      | ]        |          |
|              | verification of telescope temperatures during decontamination phase                 |            | <u> </u> | <u> </u>      |          |                |            | <u> </u>   |                    | X     | v     |       | <u> </u>        | <u> </u> |        |       | <u> </u> |             |              | <u> </u> |                     |             |      |          |          |
|              | runctional verification of LOU battle heating                                       |            |          |               |          |                |            |            | $\left  - \right $ |       | X     |       |                 |          |        |       |          |             |              |          |                     |             |      |          | v        |
|              |                                                                                     |            |          |               |          |                |            |            |                    |       |       |       |                 |          |        |       |          |             |              |          |                     |             |      |          |          |
| ORT IA 5     | relescope alignment using videogrammetry                                            |            |          | 1             |          |                |            |            |                    |       |       |       | 1               |          |        |       | 1        |             |              |          |                     |             |      | X        |          |

 Table 1-4 Verification of objectives wrt test phase

#### 2. APPLICABLE AND REFERENCE DOCUMENTS

#### 2.1 Applicable documents

AD1 SCI-PT-IIDB/HIFI-02125 "instrument interface document part b instrument HIFI", Iss 3.2 AD2 SCI-PT-IIDB/PACS-02126 "instrument interface document part b instrument PACS", Iss 3.2 AD3 SCI-PT-IIDB/SPIRE-02124 "instrument interface document part b instrument SPIRE", Iss 3.2 AD4 H-P-2-ASP-TS-0939 "Herschel integrated satellite test specification"", iss. 4 AD6 H-P-2-ASP-TS-1083, Test Specification for Herschel Instruments AVM and FM tests performed at satellite level, iss. 1 AD7 H-P-2-ASP-PL-0054 Instrumentation Plan for Thermal Testing of Herschel satellite AD8 H-P-TN-AI-0135 Herschel SVM-FM TV/TB test thermocouples location, iss. 2 AD9 H-P-2-ASP-TN-1336 Guideline for routing instrumentation harnesses in the SVM, iss. 1 AD10 H-P-2-ASP-SP-1268 HERSCHEL FM TV harness PW & 1553, iss. 3 AD11 H-P-2-ASP-SP-1288 HERSCHEL FM TV harness ACMS for Power & Z panel, iss. 3 AD15 HP-2-ASED-PL-0023 HERSCHEL FM TV harness ACMS for Power & Z panel, iss. 3 AD15 HP-2-ASED-PS-0054 videogrammetry requirement specification, iss. 1 AD17 HP-1-ASPI-SP-0030 Environment and Test Requirements, iss. 5.0 AD18 HP-2-ASP-TS-xxxx Herschel FM TV/TB Emergency procedures, TBI

AD19 H-P-2-ASP-TN-1462 HERSCHEL SVM thermal interfaces for herschel fm tv-tb test, iss.1 AD20 H-P-2-ASP-TN-1480 HERSCHEL PLM thermal interfaces for herschel fm tv-tb test, iss.1

#### 2.2 Reference documents

RD1 H-P-1-ASPI-PL-0225 Verification Programme Plan, iss.3

RD2 HP-2-APCO-MA-0022 User's manual thermal test adapter for S/C I/F (TTAS), iss. 2 RD3 H-P-RP-AI-0040 SVM TCS thermal analysis report, iss.7

RD4 SCI-PT-RS-05991 System Requirements Specification, iss. 3.3

RD5 H-P-2-ASED-TS-0017, HSS Thermal Control Rig Specification, iss. 1

RD6 MQR step2 board report, TBI

RD7 H-P-ASP-MN-8845, Herschel internal correlation after STM2 campaign and external modelisation

RD8 H-P-TN-AI-0100, H/P SVM housekeeping packets definition, iss. 1

RD9 H-P-1-ASPI-TN-0386, Unit Switching Status, iss.2

RD10 H-P-2-ASP-SP-1411, HERSCHEL SFT and AFT specification, iss.2

RD11 H-P-1-ASPI-LI-0058 "Hardware matrix", iss. 4

RD12 H-P-ASP- LT-6601 Herschel satellite thermal cycling test

RD13 H-P-ASP-TN-9429 ACR CTA panel-Y

RD14 H-P-2-ASP-TS-1454 Herschel ATC health check specification

### 3. Test specimen definition

#### 3.1 Satellite configuration

The test specimen is HERSCHEL FM satellite. The configuration is given in RD11, except regarding to some topics listed hereafter.

The satellite specimen is equipped for the TV/TB with AIT test instrumentation consisting in (see AD7) :

- Thermocouples and thermal sensors and its associated harness
- Test heaters and associated harness (including power supply and voltage measurement cables).

The spacecraft shall be grounded by means of a thermal braid connected on the insert MGSE-34-05 of the SVM +Y panel.

Nota : Protective covers (telescope, OSRs, solar array, sensors, thrusters...) shall be removed as late as possible before test and reinstalled as soon as possible after test for cleanliness reasons.

#### 3.1.1 HPLM configuration

The differences between HEPLM STM 1 and FM test are :

| ltem                          | STM 1 level   | FM level |
|-------------------------------|---------------|----------|
| Telescope                     | Thermal model | PFM      |
| HSS                           | None (IR Rig) | FM       |
| HSS struts                    | None          | FM       |
| I/F for HSS struts MLI on CVV | test MLI      | FM       |
| STR Assembly                  | None          | FM       |
| I/F for STR struts MLI on CVV | test MLI      | FM       |
| He adsorbers                  | none          | FM       |
| LOU                           | MTD           | FM       |
| LOU internal baffle on TS2    | None          | FM       |
| LOU internal baffle on TS1    | None          | FM       |
| LOU external baffle           | None          | FM       |
| SVM MLI                       | test MLI      | FM       |
| SVM/PLM I/F                   | MGSE          | FM       |
| Cryocover                     | QM            | FM       |
| FPUs                          | MTDs          | FM       |
| Nozzles                       | STM 1         | FM       |
| Videogrammetry targets        | none          | yes      |
| HIFI coax cable               | test          | FM       |

| HERSCHEL FM TV/TB TEST | Reference<br>: | H-P-:     | 2-ASP-TS-0997                |
|------------------------|----------------|-----------|------------------------------|
| SPECIFICATION          | Issue :        | 06 D<br>2 | EC 07<br><b>Page :</b> 14/49 |
|                        |                |           |                              |

Due to the absence of sun-like illumination during the test, a HSS thermal control RIG will be installed on the +Z side of the HSS to heat up both Solar Array and sunshade (see RD5).

### 3.1.2 SVM configuration

The SVM is installed on the TTAS (see §3.2.4) .

The differences between SVM STM and FM test are :

| ltem                  | STM level  | FM level         |
|-----------------------|------------|------------------|
| WU                    | MTDs       | FM               |
| Radiator sizing       | STM def    | FM def           |
| RCS heating           | STM def    | FM               |
| HIFI panel heater     | STM def    | FM               |
| Catalytic bed heaters | None       | FM               |
| I/F on lower side     | None       | TTAS             |
| I/F on upper side     | TAS        | FM (CVV struts)  |
| I/F to HSS            | STM        | FM               |
| I/F to SVM shield     | None       | FM               |
| Radiative area        | STM (SSM)  | FM (osr)         |
| Thermal sensors       | STM (TCs)  | FM (Thermistors) |
| Paint on radiators    | STM (Z306) | FM( Z307)        |

The tanks are pressurised at 2 bars absolute with GN2.

Details on SVM TCS thermal lines are provided in Annex 1.

#### 3.2 Instrumentation

This paragraph describes all the sensors and heaters monitored or commanded, but not directly by the spacecraft.

#### 3.2.1 HPLM instrumentation

The PLM instrumentation is described in AD7.

The PLM thermal instrumentation is made of:

- 44 PT100,
- 209 TCs
- 17 heating lines on S/C
- 38 heating lines on IR-RIG
- TBD heating lines on harness.

#### 3.2.2 Cold instruments instrumentation

No test instrumentation is foreseen.

#### 3.2.3 SVM instrumentation

The SVM thermocouple instrumentation is described in AD8 and AD9.

The SVM test heater instrumentation is described in RD12 and RD13 (see drawings referenced in RD12) and reported below. These heater lines shall be connected to an external commanding bay to be provided by ETS. It shall be possible to manually tune the voltage of each channel to any desired value lower than the maximum defined in Table 3-1.

| label                        | Power (W), | Resistance (Ohms) | Voltage (V), |
|------------------------------|------------|-------------------|--------------|
|                              | maximum    |                   | maximum      |
| panel (+Y) -ACC              | 31         | 208               | 80           |
| panel (+Y) -battery          | 32         | 200               | 80           |
| panel (+Y) -CDMU             | 64         | 100               | 80           |
| panel (+Y) –PCDU             | 192        | 33,33             | 80           |
| panel (-Z) –SPIRE            | 61         | 104               | 80           |
| panel (-Y-Z) -HIFI 2 (short) | 92         | 69,33             | 80           |
| Panel (+Y-Z) -DECMEC         | 46         | 138,7             | 80           |
| panel (+Y-Z) -BOLC           | 54         | 118,9             | 80           |
| panel (-Y+Z) -RWS            | 224        | 28,57             | 80           |
| panel (-Y) -HIFI 1 (long)    | 342        | 18,7              | 80           |

table 3-1: Test heater dissipation on SVM

The SVM instrumentation is made of 271 TCs and 10 external heater lines.

#### 3.2.4 TTAS instrumentation

The TTAS instrumentation is described in the AD8.

Two heating lines (nominal and redundant) are installed on the TTAS.

| label  | Power (W), | Resistance (Ohms) | Voltage (V), |
|--------|------------|-------------------|--------------|
|        | maximum    |                   | maximum      |
| TTAS N | 240        | 14                | 60           |
| TTAS R | 240        | 14                | 60           |

table 3-3: Test heater dissipation on TTAS

The TTAS shall be covered with test MLI on both sides. The TTAS holes shall remain uncovered for Star Tracker cooling reasons.

The dome inside the TTAS (part of spin box) shall be covered with test MLI after connection of

| HERSCHEL FM TV/TB TEST<br>SPECIFICATION | :       | 06 E | DEC 07              |  |
|-----------------------------------------|---------|------|---------------------|--|
|                                         | lssue : | 2    | <b>Page :</b> 16/49 |  |

heaters on dome.

### 3.2.5 Other instrumentation

It is expected that the harness between the S/C and the LSS ports will pump heat from the S/C. In order to maintain this heat loss acceptable, some bundles should be covered by heaters in a constant powering mode while in vacuum and cold conditions of the LSS. The definition of these heaters is TBD in accordance with analyses to be performed by TASF.

The test harness, such as TCs, heaters, strain gauge, accelerometers..., installed on the spacecraft has to be included in the thermal models for the thermal performance verification.

| SPECIFICATION | leeue . | 06 DEC 07 |                     |  |  |  |
|---------------|---------|-----------|---------------------|--|--|--|
|               | Issue : | 2         | <b>Page :</b> 17/49 |  |  |  |

#### 3.3 Test environment definition

Preparation, test and post-test activities of the Herschel PLM shall be carried out in cleanroom class 100.000 conditions acc. US Fed. Std. 209 B to prevent degradation and contamination of surfaces.

The cleanroom conditions shall be, in accordance with ENVM-040 of [AD17]:

- temperature between 19 and 25°C
- relative humidity between 40 and 60%
- pressure between 970 and 1050 mbar

The facility ambient conditions shall be continuously monitored and recorded.

#### 3.4 Environment in Test Chamber

The sun simulator will not be used during the Herschel FM test.

The chamber pressure shall be lower than 10-5 mbar to be reached in the minimum possible time, with the test specimen installed. During the test, the pressure shall be maintained at this value or below.

The LSS shrouds shall be operated in LN2 mode to guarantee the following values:

- LSS wall temperature: 93 K  $\pm$  5 K
- LSS wall emissivity: 0.9  $\pm$  0.05 at LSS cold condition

The gaps of the LSS shall be covered by MLI patches.

The emissivity shall be measured before the test in at least 20 positions on the walls of the chamber around the test specimen.

For cleanliness purpose, during warm up, the coldest external element of the specimen shall be maintained as much as possible hotter than the hottest point of the shroud with a minimum gradient of 10°C.

The chemical contamination shall be measured by appropriate items according to AD15.

### 3.5 Set-up in LSS

The test set-up principle is shown in Figure 3-1.

The +Z axis of the S/C shall be oriented towards the LSS collimator mirror.

Before transport in LSS,

|                                         | Reference | H-P-2     | 2-ASP-TS-0997       |  |  |
|-----------------------------------------|-----------|-----------|---------------------|--|--|
| HERSCHEL FM TV/TB TEST<br>SPECIFICATION | :         | 06 DEC 07 |                     |  |  |
|                                         | Issue :   | 2         | <b>Page :</b> 18/49 |  |  |

- the HTT will be topped-up with He-II to at least 98% filling ratio. This ratio shall be measured by LLP and DLCM.
- The HOT will be refilled.

After installation of the S/C in the LSS and before chamber closure:

- The scaffolding will be installed after installation of spacecraft in LSS chamber to allow Top-Up and/or HOT refilling. Top-up is not nominally planned, but could be performed in case of important delay in LSS in order to ensure proper start conditions (temperature/filling ratio) for the TV/TB test.
- the CVSE will be removed from the chamber, except the parts strictly necessary to ensure helium pumping during the test.
- all GSEs, tools, harness, red tag items that are not necessary for the test shall be removed from the chamber.
- the scaffolding will be removed from the chamber.



Figure 3-1 : TV/TB test set-up principle

#### 3.6 Specific requirement for instrument testing

| HERSCHEL FM TV/TB TEST | Reference | H-P-2     | 2-ASP-TS-0997       |  |  |
|------------------------|-----------|-----------|---------------------|--|--|
| SPECIFICATION          | •         | 06 DEC 07 |                     |  |  |
|                        | lssue :   | 2         | <b>Page :</b> 19/49 |  |  |

During the test phase, the spacecraft has to be tilted to immerse the Passive Phase Separator (PPS) or to regenerate the SPIRE/PACS sorption coolers.

To achieve this, the S/C has to be tilted around the S/C Z axis (+Y axis points slightly up for PPS immersion and points slightly down for Sorption cooler regeneration). The maximum tilting angle will be verified before closure of chamber (during PLM-launch-delay phase).

This set-up shall be achieved by rotating the LSS gimbals stand by 90° to allow tilting in the plane parallel to the LSS collimator mirror. During the PPS operation phases, regular tilting angle adjustments have to be performed.

#### 3.7 GSE

The purpose of this chapter is to describe the interfaces between the specimen and its environment.

#### 3.7.1 Mechanical

The spacecraft is hosted in LSS via the Thermal Test Adapter for Spacecraft, see RD 2. The MGSE needed for spacecraft TV/TB FM testing or its preparation are listed in table 3-5

| Origin         | Item                                           | No. | Reference                 |
|----------------|------------------------------------------------|-----|---------------------------|
| MGSE reused    | ISO PLM Integration dolly                      | 1   | ISO-VV-ZYYR-SP-0043       |
| from ISO       | ISO Hoisting equipment SN02 / SN 01            | 1   | ISO-VV-ZYYY-SP-0048141121 |
|                | ISO Test dolly SN02                            | 1   | ISO-VV-ZYYX-SP-0473       |
|                | ISO Test dolly (enlarged) SN03                 | 1   | -                         |
|                | Heavy duty working platform                    | 1   | -                         |
|                | Load cells with strap pretension gauge         | 16  | -                         |
|                | Small overhead crane ( CR 100)                 | 1   | 142127                    |
| HERSCHEL PLM   | Transport Container H-TSC                      | 1   | 141110                    |
| and Spacecraft | Vertical Lifting Device VLD                    | 1   | 142122                    |
| MGSE           | Horizontal Lifting Device (beams) HLDB         | 1   | 142124                    |
| HERSCHEL SVM   | General Purpose hoisting Device GPHD           | 1   | 142125                    |
| MGSE           | Hoisting sling set HSL                         | 2   | 142126                    |
|                | Mobile Access Platform MAP                     | 1   | 142115                    |
| Subsystem and  | Handling and Transport Adapter for PLM I/F ADA | 1   | 142133                    |
| Equipment      | Thermal test Adapter for S/C I/F TTAS          | 1   | 141140                    |
| MGSE           | Equipment Panel Trolley EPT                    | 1-8 |                           |
|                | Panel Tilting Trolley PTT                      | 1+2 |                           |
|                | Equipment Panel Lifting Device ELD             | 1   |                           |
|                | SVM Stiffener Set SSS                          | 1   |                           |
|                | Multi Purpose Trolley MPT                      | 1+3 |                           |
|                | Vertical Integration Stand VIS                 | 1+3 |                           |
|                | Handling Clamp Band CB                         | 1+3 |                           |
|                | Test Clamp Band TCB                            | 1+3 |                           |
|                | ACMS Sensor protective covers                  | 1+2 |                           |
|                | Thruster protective covers                     | 1+2 |                           |
|                | OSR protective covers                          | 1+2 |                           |
|                | Equipment Drive Unit EDU                       | 1   |                           |
|                | SSD Protective Devices                         |     |                           |
|                | HERSCHEL Telescope Protective Cover            | 1   |                           |

Origin MGSE reused from ISO HERSCHEL PLM and Spacecraft

| Reference H-P-2-ASP-1S-099/ |
|-----------------------------|
|-----------------------------|

06 DEC 07

Issue :

:

2 **Page :** 20/49

| Item                                           | No. | Reference                 |
|------------------------------------------------|-----|---------------------------|
| ISO PLM Integration dolly                      | 1   | ISO-VV-ZYYR-SP-0043       |
| ISO Hoisting equipment SN02 / SN 01            | 1   | ISO-VV-ZYYY-SP-0048141121 |
| ISO Test dolly SN02                            | 1   | ISO-VV-ZYYX-SP-0473       |
| ISO Test dolly (enlarged) SN03                 | 1   | -                         |
| Heavy duty working platform                    | 1   | -                         |
| Load cells with strap pretension gauge         | 16  | -                         |
| Small overhead crane ( CR 100)                 | 1   | 142127                    |
| Transport Container H-TSC                      | 1   | 141110                    |
| Vertical Lifting Device VLD                    | 1   | 142122                    |
| Horizontal Lifting Device (beams) HLDB         | 1   | 142124                    |
| General Purpose hoisting Device GPHD           | 1   | 142125                    |
| Hoisting sling set HSL                         | 2   | 142126                    |
| Mobile Access Platform MAP                     | 1   | 142115                    |
| Handling and Transport Adapter for PLM I/F ADA | 1   | 142133                    |
| Thermal test Adapter for S/C I/F TTAS          | 1   | 141140                    |
| Equipment Panel Trolley EPT                    | 1-8 |                           |
| Panel Tilting Trolley PTT                      | 1+2 |                           |
| Equipment Panel Lifting Device ELD             | 1   |                           |
| SVM Stiffener Set SSS                          | 1   |                           |
| Multi Purpose Trolley MPT                      | 1+3 |                           |
| Vertical Integration Stand VIS                 | 1+3 |                           |
| Handling Clamp Band CB                         | 1+3 |                           |
| Test Clamp Band TCB                            | 1+3 |                           |
| ACMS Sensor protective covers                  | 1+2 |                           |

#### table 3-5: FM satellite MGSE for TV/TB testing

#### 3.7.2 Electrical

The electrical ground support equipment needed for spacecraft TV/TB testing is given in table 3-7 The Herschel alignment camera is operated by its own EGSE.

A schematic of the FM satellite EGSE is shown in Figure 3-2.

| Equipment                   | from        | Reference n° | Procurement |
|-----------------------------|-------------|--------------|-------------|
| Instrument EGSE HIFI        | instruments | 111520       | Done        |
| EGSE HIFI harness           | instruments |              |             |
| Instrument EGSE SPIRE       | instruments | 112530       | Done        |
| EGSE SPIRE harness          | instruments |              |             |
| Instrument EGSE PACS        | instruments | 113520       | Done        |
| EGSE PACS harness           | instruments |              |             |
| Cryo SCOE                   | ASED        | 142220       | Done        |
| Cryo SCOE harness           | ASED        |              | Done        |
| S/C central checkout system | S/C         | 141210       | Done        |
| SCOE LAN                    | S/C         |              |             |
| S/C CDMU SCOE               | S/C         | 141220       | Done        |
| CDMU SCOE harness           |             |              |             |
| S/C power SCOE              | S/C         | 141230       | Done        |

06 DEC 07

lssue :

:

2 **Page :** 21/49

| power SCOE harness          |      |             |            |
|-----------------------------|------|-------------|------------|
| S/C ACMS SCOE               | S/C  | 141240      | Done       |
| ACMS SCOE harness           |      |             |            |
| S/C TT & C SCOE             | S/C  | 141250      | Done       |
| TT & C SCOE harness         |      |             |            |
| S/C TM/TC front end         | S/C  | 141260      | Done       |
| TM/TC front end harness     |      |             |            |
| HACS SCOE                   | ASED | TBD by ASED | Done       |
| HACS SCOE harness           | ASED | TBD by ASED | Done       |
| Videogrammetry SCOE         | ETS  | TBD by ASED | TBC by ETS |
| Videogrammetry SCOE harness | ETS  | TBD by ASED | TBC by ETS |

#### table 3-7: EGSE for FM satellite TV/TB testing

lssue :

2 **Page :** 22/49





### 3.7.3 Thermal

3.7.3.1 With test adapter

See RD 2

3.7.3.2 With test harness

The heat leaks through test harness have to be minimised by maintaining its temperature close to its interface temperature with the specimen.

All TCs (SVM, PLM, IR rig) will be routed via the LSS Spin Box connectors. PLM PT 100 will be routed to the via the feedthrough connectors (on main chamber walls).

### 3.7.4 Cryogenic

The CVSE shall allow :

- the filling and top up of the cryostat during test preparation on test floor and while in the chamber
- the nominal/safety exhaust of helium gas and pressure measurement on "deer head" during TV/TB test.

### 3.8 handling

The specimen has to be moved from test floor into the LSS before the test, and from the LSS to the test floor after the test. When on the test floor, the S/C shall be either on the VIS or the MPT. The transportation from test floor to the LSS shall be made in He II conditions.

It shall be possible to transport Herschel from the LSS to the test floor in He II conditions.

### 4. Test definition

A special physical test configuration is needed to achieve the objectives defined above :

- A LEOP test is foreseen in this TV/TB. It will allow to verify the maximum temperature reached after launch in the HTT.
- In order to get the right initial conditions for the simulated launch, a launch autonomy phase + launch delay has to be implemented at the beginning of the test.
- A Balance phase on the HTT is not foreseen as qualification of the cryostat has been performed at STM2 level (see RD6).
- The –Z side shall therefore be exposed to the coldest possible environment in the LSS during the test phases. The CVV will not reach the predicted in-orbit temperature during the test (lowest temp on CVV~100K).
- The helium vented by the cryostat is routed outside the chamber via one corrugated hose to special large external vacuum pumps for helium. In addition, three pressure pick-up lines will

|                        | Reference | H-P-: | 2-ASP-TS-0997       |
|------------------------|-----------|-------|---------------------|
| HERSCHEL FM TV/TB TEST | :         |       |                     |
| SPECIFICATION          |           | 06 D  | EC 07               |
|                        | lssue :   | 2     | <b>Page :</b> 24/49 |

be routed from the cryostat to the measurement devices outside the LSS.

- For He-II top-up, HOT evacuation, PPS operation, nozzle switching CCU oparations (S/C ON) are mandatory.
- For safety reasons (overpressure inside the cryostat) another corrugated tube must be routed from the cryostat to a safety device outside the LSS. This tube will be filled with helium with slight overpressure.
- Two special alignment cameras will be mounted at the LOU support plate outside the CVV looking through two alignment windows into the cryostat. Illumination is achieved with two external Laser diodes (red and green) routed by optical fibres.
- A camera will be installed in the chamber for videogrammetry measurements.

Sections 4.1 to 4.3 gather for each phase of the TV/TB:

- the start and stop criteria,
- the activities to be performed,
- the expected duration.

These sections shall be read in conjunction with:

- the overall chronology, described in section 4.4,
  - the detailed S/C and test chamber status chronology in section 4.5:
    - S/C state and transitions (referring to already tested sequences in AD4),
    - o activation of external heaters
    - $\circ$  S/C tilt angle.

### 4.1 thermal phases

#### 4.1.1 PLM

•

| PLM-<br>launch-<br>autonom<br>y | <b>Title</b> : launch autonomy                                                                                      |                       | Duration : 2 (TBC)<br>days |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------|
|                                 | Start criteria : preparation phase completed                                                                        | Stop criteria : end o | f launch autonomy          |
|                                 | Activity : - refill of HOT<br>- Follow on of POC scenario<br>- Perform HOT depletion<br>- FPUs must NOT be switched | d ON during this pho  | ıse                        |

| PLM-             | Title : launch delay                    |                       | Duration : 1 day |
|------------------|-----------------------------------------|-----------------------|------------------|
| launch-<br>delay |                                         |                       |                  |
|                  | Start criteria : end of launch autonomy | Stop criteria : end o | f launch delay   |

| Activity : - | Wait 24 hours                                                            |
|--------------|--------------------------------------------------------------------------|
| -            | FPUs must NOT be switched ON during this phase (exception of             |
| SA           | AEC)                                                                     |
| -            | Perform Launch lock simulation on SPIRE SMEC (2h before launch +         |
| 45           | 5 min + 25min + 18 min, see LAUNCH-MODE on SVM)                          |
| -            | Tilting capability in LSS have to be checked at the end of this phase in |
| bo           | oth directions. A titling capability of 20° shall be demonstrated.       |
| -            | Perform HOT evacuation and PPS start-up                                  |
| -            | Close LSS chamber                                                        |

| PLM-<br>LEOP | Title : PLM    | LEOP phase                                               | Duration : 5 days |                 |
|--------------|----------------|----------------------------------------------------------|-------------------|-----------------|
|              | Start criteria | Start criteria : preparation phase Stop criteria : maxin |                   | num temperature |
|              | completed      |                                                          |                   |                 |
|              | Activity : -   | Evacuate LSS chamber                                     |                   |                 |
|              | -              | cooldown of LSS shroud                                   |                   |                 |
|              | -              | perform videogrammetry                                   |                   |                 |
|              | -              | Set SVM and HSS temp to la                               |                   |                 |
|              | -              | wait for maximum temperature on HTT                      |                   |                 |
|              | -              | FPUs must not be switched                                | e                 |                 |

| PLM-RC | Title : Rapid cooldown                                                                 | Duration : 2 days                             |  |  |
|--------|----------------------------------------------------------------------------------------|-----------------------------------------------|--|--|
|        | Start criteria : preparation phase                                                     | Stop criteria : -Thtt <1,75K, drift<0.21mK/1h |  |  |
|        | completed                                                                              | -Tlvl1 <5K, drift<0.21mK/1h                   |  |  |
|        |                                                                                        | -Tlvl2 <12K, drift<0.54mK/1h                  |  |  |
|        | <b>Activity</b> : - Perform rapid cooldown of HTT down to T <sub>htt</sub> =1.7K (TBC) |                                               |  |  |
|        | - During RC, perform two                                                               | switching from all to small nozzle with PPS   |  |  |
|        | operating :<br>- after LEOP phase (max temp of HTT)                                    |                                               |  |  |
|        |                                                                                        |                                               |  |  |
|        | - at 1.8K or higher (TBC).                                                             |                                               |  |  |

| INST-<br>THERM-<br>I/F | <b>Title</b> : instrument thermal interface checking         |                                                                                                                                                                                                                                                | Duration : 1 day |                  |  |
|------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|--|
|                        | Start criteria : HIFI testing completed Stop criteria : Comp |                                                                                                                                                                                                                                                |                  | pletion of tests |  |
|                        | Activity : -<br>-<br>-<br>-                                  | Set massflow to 2,2 mg/s<br>Set HIFI dissipations (TBD) for the validation of thermal interface<br>Set PACS dissipations (TBD) for the validation of thermal interface<br>Set SPIRE dissipations (TBD) for the validation of thermal interface |                  |                  |  |

| PLM-EXT- | Title : External cold stabilisation                                         |  | Duration : 10 days |
|----------|-----------------------------------------------------------------------------|--|--------------------|
| COLD     |                                                                             |  | tbc                |
|          | Start criteria : preparation phaseStop criteria : externcompletedstabilised |  | nal temperature    |

06 DEC 07

Issue :

:

2 **Page :** 26/49

### Activity : - Set IR-RIG temperature to 20°C for sunshield, -80°C for sunshade - wait for stabilisation of CVV temperature

| PLM-EXT-<br>HOT | Title : Extern | nal hot stabilisation                                                                         |  | Duration : 10 days<br>tbc |
|-----------------|----------------|-----------------------------------------------------------------------------------------------|--|---------------------------|
|                 | Start criteria | a : PLM-COLD completed Stop criteria : extern<br>stabilised                                   |  | nal temperature           |
|                 | Activity : -   | Set IR-RIG temperature to 100°C for sunshield, 2<br>wait for stabilisation of CVV temperature |  | 20°C for sunshade         |

| dP      | Title : delta pressure measurement                                                     |  | Duration : 8 hours |
|---------|----------------------------------------------------------------------------------------|--|--------------------|
| measure |                                                                                        |  |                    |
|         | Start criteria : end of activities onStop criteria : test perinstrument FPUs           |  | erformed           |
|         | Activity : - perform dP measurement with big and small nozz<br>- request PPS operation |  | zzles              |

| TEL-DEC | Title : decontamination of telescope                    |                                   | Duration : 1 days       |
|---------|---------------------------------------------------------|-----------------------------------|-------------------------|
|         | Start criteria :                                        | Stop criteria : Telescope cycling |                         |
|         | Activity : - Warm up telescope (decontamination mode) u |                                   | using flight thresholds |
|         | <ul> <li>Wait for telescope cycling</li> </ul>          | (M1 and M2)                       |                         |

| LOU-DEC | Title : decontamination of LOU baffle     [            |  | Duration : 8hours |
|---------|--------------------------------------------------------|--|-------------------|
|         | art criteria : Stop criteria : Lou cyc                 |  | ycling            |
|         | Activity : - Warm up LOU baffle (decontamination mode) |  | with reduced      |
|         | thresholds (200°C TBC) (functional verification only)  |  |                   |
|         | - Wait for LOU baffle cycling                          |  |                   |

#### 4.1.2 SVM

| Launch-<br>Mode | Title : SVM launch mode                             |                                                            | Duration : 1 day    |  |
|-----------------|-----------------------------------------------------|------------------------------------------------------------|---------------------|--|
|                 | Start criteria : cooling of LSS Stop criteria : SVM |                                                            | n quasi equilibrium |  |
|                 | Activity : -                                        | Activity : - SVM ON in LAM mode 3 (see RD 9)               |                     |  |
|                 | -                                                   | TCS non operating, dissipation TBD W on SVM                |                     |  |
|                 | -                                                   | Launch lock dissipation ON for 2h + 45 min +25min + 18 min |                     |  |

| SVM- | Title : SVM transition to safe mode               |                                              | Duration : 1 days  |
|------|---------------------------------------------------|----------------------------------------------|--------------------|
| SAFE |                                                   |                                              |                    |
|      | Start criteria : Launch mode completed            | Stop criteria : Verification of thermal line |                    |
|      |                                                   | completed, stability                         | criferia fulfilled |
|      | Activity : - Switch to survival mode              |                                              |                    |
|      | <ul> <li>wait for cycling on TCS lines</li> </ul> |                                              |                    |
|      |                                                   |                                              |                    |

| Reference | H-P-2-ASP-TS-0997 |
|-----------|-------------------|
|           |                   |

06 DEC 07

Issue :

:

2 **Page :** 27/49

| SVM-TB- | TB-     Title : SVM "cold" stabilisation                                                                                                                             |                     | Duration : 3 days       |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------|
| COLD    |                                                                                                                                                                      |                     |                         |
|         | Start criteria : SVM safecompleted Stop criteria : activitie                                                                                                         |                     | ties completed          |
|         | Activity : - SVM ON, instruments dissipation in mode 4 (par                                                                                                          |                     | rallel mode), wait for  |
|         | stabilisation                                                                                                                                                        |                     |                         |
|         | <ul> <li>SVM ON, HIFI prime (check STB to prime switching<br/>stabilisation</li> <li>Add TBD W on HIFI panels heaters (simulate cho<br/>for stabilisation</li> </ul> |                     | g), wait for            |
|         |                                                                                                                                                                      |                     | ange of attitude), wait |
|         | Validation of RCS design modification by                                                                                                                             | tuning test heaters |                         |

| SVM-TB-<br>HOT | Title : SVM "Hot" stabilisation                                           |  | Duration : 2 days   |
|----------------|---------------------------------------------------------------------------|--|---------------------|
|                | Start criteria : SVM i                                                    |  | n quasi equilibrium |
|                | Activity : - DTCP simulation (New Norcia, duration 12h)                   |  |                     |
|                | - STR validation (2 STRs in parallel TBC by analysis)                     |  |                     |
|                | Validation of RCS design modification by tuning test heaters and LVA ring |  |                     |
|                | temperature (if necessary)                                                |  |                     |

# 4.2 Thermal cycling test

### 4.2.1 SVM

| SVM-TV-<br>COLD | Title : SVM "cold" cycling                                                  |                                                                                 | Duration : 1 days      |
|-----------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------|
|                 | Start criteria : SVM equipments at cold acceptance level –0/+5°C on coldest | rt criteria : SVM equipments at cold<br>ceptance level –0/+5°C on coldest tests |                        |
|                 | one Activity : - Perform SVM unit functional tests                          |                                                                                 |                        |
|                 |                                                                             |                                                                                 |                        |
|                 | - Perform SFT on instruments                                                | (at the end of the se                                                           | quence in order not to |
|                 | blur LEOP phase by FPUs dissip                                              | pation)                                                                         |                        |
|                 | - perform DLCM                                                              |                                                                                 |                        |
|                 | - Perform as a minimum one switch ON/OFF for ea                             |                                                                                 | each heater (with      |
|                 | possible exception of RCS)                                                  |                                                                                 |                        |

| SVM-TV-<br>HOT | <b>Title</b> : SVM "hot" cycling                                                      |                               | Duration : 1,5 days   |
|----------------|---------------------------------------------------------------------------------------|-------------------------------|-----------------------|
|                | Start criteria : SVM equipments at cold<br>acceptance level –0/+5°C on coldest<br>one | Stop criteria : Comp<br>tests | bletion of functional |

06 DEC 07

**Issue :** 2 **Page :** 28/49

| Activity : -<br>-<br>- | perform DLCM<br>Perform SVM unit functional tests<br>Perform SFT on instruments<br>Perform CCU testing |
|------------------------|--------------------------------------------------------------------------------------------------------|
|                        |                                                                                                        |

#### 4.2.2 Instruments testing

| <b>INST-HIFI</b> | Title : HIFI TV/TB testings                                                       |                      | Duration : 7 days     |
|------------------|-----------------------------------------------------------------------------------|----------------------|-----------------------|
| 0-1-2-3-4        |                                                                                   |                      |                       |
|                  | Start criteria : TBD by HIFI                                                      | Stop criteria : Comp | pletion of functional |
|                  |                                                                                   | tests                |                       |
|                  | Activity : - Perform functional/performance test on HIFI, see AD6                 |                      |                       |
|                  | This phase is split in five sub phases. The HIFI sub phases and other instruments |                      |                       |
|                  | phases are alternated in order to save time.                                      |                      |                       |

| INST- | Title : PACS TV/TB testing                                                |                      | Duration : 2 days     |
|-------|---------------------------------------------------------------------------|----------------------|-----------------------|
| PACS  |                                                                           | -                    |                       |
|       | Start criteria : TBD by PACS                                              | Stop criteria : Comp | pletion of functional |
|       |                                                                           | tests                |                       |
|       | Activity : - Perform functional/performance test on PACS, see AD6         |                      |                       |
|       | - S/C tilted by 20° mini to -Y during cooler recycling. Depending on the  |                      |                       |
|       | filling level of the HTT, it may be requested to close the HTT to prevent |                      |                       |
|       | LHe from flowing out of tank.                                             |                      |                       |

| <b>INST-SPIRE</b> | Title : SPIRE TV/TB testing                                           | Duration : 2 days                        |
|-------------------|-----------------------------------------------------------------------|------------------------------------------|
|                   | Start criteria : TBD by SPIRE                                         | Stop criteria : Completion of functional |
|                   |                                                                       | tests                                    |
|                   | Activity : - Perform functional/perform                               | nance test on SPIRE, see AD6             |
|                   | - S/C tilted by 20° mini to -۱                                        | during cooler recycling. Depending on    |
|                   | the filling level of the HTT, it may be requested to close the HTT to |                                          |
|                   | prevent LHe from flowing out                                          | of tank                                  |

| INST-PARA | <b>Title</b> : PACS/SPIRE parallel TV/TB testing |                                                      | Duration : 1/3 days |
|-----------|--------------------------------------------------|------------------------------------------------------|---------------------|
|           | Start criteria : TBD by PACS/SPIRE               | Stop criteria : Completion of functional             |                     |
|           |                                                  | tests                                                |                     |
|           | Activity : - Perform functional/perfor           | mance test on PACS/                                  | SPIRE, see AD6      |
|           | - S/C tilted by 20° mini to -                    | S/C tilted by 20° mini to -Y during cooler recycling |                     |

# 4.3 Other phases

| eted succesfully |
|------------------|
| te               |

| Reference H-P-2-ASP-TS |
|------------------------|
|------------------------|

06 DEC 07

Issue: 2

:

2 **Page :** 29/49

# Activity : - perform AFT as per RD 10

| WUP | Title : Warm up                          | Duration : 3 days                         |
|-----|------------------------------------------|-------------------------------------------|
|     | Start criteria : TEL-DEC phase completed | Stop criteria : LSS ready to open chamber |
|     | Activity : - Warm up of IR rig to 20     | )°C                                       |
|     | - Warm-up of SVM, CVV                    | and external parts to ambient temperature |
|     | - Keep S/C temperature                   | above shrouds level by 10°C               |
|     | - Re-pressurization of LSS               | ა when S/C is warm                        |

| VIDEO | Title : Videogrammetry              |                       | Duration : 1 days |
|-------|-------------------------------------|-----------------------|-------------------|
|       | Start criteria : Closure of chamber | Stop criteria : comp  | letion of test    |
|       | Activity : - perform videogrammetry |                       |                   |
|       | - Measurements shall be taken :     |                       |                   |
|       | - before closure of chamber         |                       |                   |
|       | - after pump down                   |                       |                   |
|       | - at the end of PLM-EXT-            | COLD                  |                   |
|       | - at the end of WARM-U              | P, before repressuris | ation             |
|       | - and after opening of ch           | namber.               |                   |
|       |                                     |                       |                   |

| ALIGN | Title : LOU/HIFI FPU alignment using HACS |                                                | Duration : N/A        |
|-------|-------------------------------------------|------------------------------------------------|-----------------------|
|       | Start criteria : TBD                      | Stop criteria : comp                           | letion of test        |
|       | Activity : - verify LOU/HIFI FPU alignn   | r : - verify LOU/HIFI FPU alignment using HACS |                       |
|       | - This measurement is perfor              | med automatically th                           | roughout the all test |
|       | duration.                                 |                                                |                       |

# 4.4 Summary of phases and overall chronology

| Test phase          | Description                           |
|---------------------|---------------------------------------|
|                     |                                       |
| AFT                 | Abbreviated Functional test           |
| PLM-launch-autonomy | launch autonomy                       |
| PLM-launch-delay    | launch delay                          |
| PLM-LEOP            | PLM LEOP phase                        |
| PLM-RC              | Rapid cooldown                        |
| INST-THERM-I/F      | instrument thermal interface checking |
| PLM-EXT-COLD        | External cold stabilisation           |
| PLM-EXT-HOT         | External hot stabilisation            |
| dP measure          | delta pressure measurement            |
| TEL-DEC             | decontamination of telescope          |
| LOU-DEC             | decontamination of LOU baffle         |

06 DEC 07

Issue :

:

2 **Page :** 30/49

| Launch-Mode         | SVM launch mode                   |
|---------------------|-----------------------------------|
| SVM-SAFE            | SVM transition to safe mode       |
| SVM-TB-COLD         | SVM "cold" stabilisation          |
| SVM-TB-HOT          | SVM "Hot" stabilisation           |
| SVM-TV-COLD         | SVM "cold" cycling                |
| SVM-TV-HOT          | SVM "hot" cycling                 |
| INST-HIFI 0-1-2-3-4 | HIFI TV/TB testings               |
| INST-PACS           | PACS TV/TB testing                |
| INST-SPIRE          | SPIRE TV/TB testing               |
| INST-PARA           | PACS/SPIRE parallel TV/TB testing |
| WUP                 | Warm up                           |
| VIDEO               | Videogrammetry                    |
| ALIGN               | LOU/HIFI FPU alignment using HACS |

In order to optimize the schedule, SVM and PLM activities will be performed as much as possible in parallel.

The proposed sequence is shown in Table 4-1.

The total duration of the test is 31 days:

- 4 days before chamber closure
- 27 days after chamber closure.

The sequence of test phases driving the vacuum phase of the test are :

PLM LEOP PLM RC INST-HIFI 0-1 INST-PACS INST-HIFI 2 INST-SPIRE INST-HIFI 3 INST-PARA INST-HIFI 4 INSTR I/F SVM-TB-HOT SVM-TV-HOT LOU-DEC TEL-DEC WUP

The driving sequence of the vacuum phase is indicated in bold in Table 4-1

# HERSCHEL FM TV/TB TEST SPECIFICATION

06 DEC 07

**Issue :** 2 **Page :** 31/49

| Day           | -3 |   | -2          | -1          | 0      |                | 1    | 2           | 3     | 4    | 4    | 5   | 6         | 7            |               | 8         | 9 | 10          | 1     | 1          | 12 | 13 | 1           | 4 | 15        | 16 | 17          | , I., | 18   | 19        | 20       | ) 2        | 1 | 22          | 23       | 24      | 2 | 5 2 | 26 | 27 |
|---------------|----|---|-------------|-------------|--------|----------------|------|-------------|-------|------|------|-----|-----------|--------------|---------------|-----------|---|-------------|-------|------------|----|----|-------------|---|-----------|----|-------------|-------|------|-----------|----------|------------|---|-------------|----------|---------|---|-----|----|----|
| shift         |    |   |             |             |        |                |      |             |       |      |      |     |           |              |               |           |   |             |       |            |    |    |             |   |           |    |             |       |      |           |          |            | Π |             |          |         |   |     |    | Π  |
| PLM external  |    |   |             |             |        |                |      |             |       |      |      |     | PLM       | I-EXT-       | со            | DLD       |   |             |       |            |    |    |             |   |           |    |             | PLM   | -EXT | -HO       | Т        |            |   |             |          | TEL-DEC |   | w   | UP |    |
| PLM internal  |    | a | lau<br>iuto | nch<br>nomy | launch | delay          |      | Ρ           | LM LI | EOP  |      |     | PLI       | M RC         |               |           |   |             |       |            |    |    |             |   |           |    |             |       |      | Instr I/F |          |            |   |             |          |         |   |     |    |    |
| instruments   | AF | Г |             |             |        |                |      |             |       |      |      |     |           |              | INST-HIFI 0-1 | INST-PACS |   | INST-HIFI 2 |       | INST-SPIRE |    |    | INST-HIFI 3 |   | EANA-IGNI |    | INST-HIFI 4 |       |      |           |          |            |   |             |          |         |   |     |    |    |
| SVM           | AF | Г |             |             |        | hannah         | mode | svm<br>Safe | SV    | M-TE | 3-CC | DLD | SVA<br>CO | M-TV-<br>OLD |               |           |   |             |       |            |    |    |             |   |           |    |             |       |      |           | SVM<br>H | -ТВ-<br>ЭТ | S | VM-1<br>HO1 | rv-<br>r |         |   |     |    |    |
| miscellaneous |    |   |             |             |        | VIDEO<br>VIDEO |      |             |       |      |      |     |           |              |               |           |   |             | VIDEO |            |    |    |             |   |           |    |             |       |      |           |          |            |   |             |          |         |   |     |    |    |

:

 Table 4-1 : Diagram of the main sequence of operation

Nota : ALIGN phase is not included in the sequence. It is performed continuously throughout the TV/TB.

| Reference | H-P- | 2-ASP-TS-0997       |
|-----------|------|---------------------|
| :         |      |                     |
|           | 06 E | DEC 07              |
| Issue :   | 2    | <b>Paae :</b> 32/49 |

### 4.5 S/C and test chamber status

HERSCHEL FM TV/TB TEST SPECIFICATION

Table 4-2 hereunder gives a detailed chronology of the test, including the S/C and facility status in the different phases.

| Pha        | se key               | Phase                      | Satellite Step                             |                             | SVM state                    | •              | Instr   | ument s | states  | Τe      | emperatu        | res     | N                          | lon fligh      | t heaters       | ;          | Tilt         | Remark                                                                        |
|------------|----------------------|----------------------------|--------------------------------------------|-----------------------------|------------------------------|----------------|---------|---------|---------|---------|-----------------|---------|----------------------------|----------------|-----------------|------------|--------------|-------------------------------------------------------------------------------|
| pe<br>lea  | ders                 | &<br>Estimated<br>duration | SVM Step PLM Step                          |                             |                              |                |         |         |         |         |                 |         |                            |                |                 |            |              |                                                                               |
| TAA<br>SFE | STA IN<br>SI ST<br>R | (h)                        |                                            | CDMS<br>Mode /<br>active PM | ACMS<br>Mode /<br>lactive PM | TT&C /<br>XPND | HIFI    | PACS    | SPIRE   | SVM     | PLM<br>external | HSS     | SVM<br>external<br>heaters | PLM<br>heaters | Infrared<br>rig | TTAS       |              |                                                                               |
| х )        |                      | Phase 0                    | Functional tests & pre-TVTB<br>activities  |                             |                              |                |         |         |         |         |                 |         |                            |                |                 |            |              |                                                                               |
|            |                      | 24                         | Satellite AFT                              | various                     | various                      | various        | various | various | various | ambient | ambient         | ambient | OFF                        | OFF            | N/A             | N/A        | 0°           | refer to RD10.                                                                |
|            |                      | 8                          | Satellite to Launch Mode                   | Launch / A                  | S. By / A                    | OFF            | OFF     | OFF     | OFF     | ambient | ambient         | ambient | OFF                        | OFF            | N/A             | N/A        | 0°           |                                                                               |
|            |                      |                            | Heater line verification                   | Launch / A                  | S. By / A                    | OFF            | OFF     | OFF     | OFF     | ambient | ambient         | ambient | OFF                        | OFF            | N/A             | N/A        | 0°           | per **                                                                        |
|            |                      | 72                         | Launch Autonomy                            | Launch / A                  | S. By / A                    | OFF            | OFF     | OFF     | OFF     | ambient | ambient         | ambient | OFF                        | OFF            | N/A             | N/A        | 0°           |                                                                               |
|            |                      |                            | HOT depletion                              | Launch / A                  | S. By / A                    | OFF            | OFF     | OFF     | OFF     | ambient | ambient         | ambient | OFF                        | OFF            | N/A             | N/A        | 0°           |                                                                               |
|            |                      |                            | Switch ON SPIRE LPU                        | Launch / A                  | S. By / A                    | OFF            | OFF     | OFF     | OFF     | ambient | ambient         | ambient | OFF                        | OFF            | N/A             | N/A        | 0°           | 2 hours before Launch                                                         |
|            |                      |                            | Switch OFF SPIRE LPU                       | Launch / A                  | S. By / A                    | OFF            | OFF     | OFF     | OFF     | ambient | ambient         | ambient | OFF                        | OFF            | N/A             | N/A        | 0°           | at the time of the aborted launch                                             |
|            |                      | 24                         | Launch Delay                               | Launch / A                  | S. By / A                    | OFF            | OFF     | OFF     | OFF     | ambient | ambient         | ambient | OFF                        | OFF            | N/A             | N/A        | 0° to<br>20° | 25 hours of launch delay shall include phases 1 and 2                         |
|            |                      |                            | Videogrammetry measurement                 | Launch / A                  | S. By / A                    | OFF            | OFF     | OFF     | OFF     | ambient | ambient         | ambient | OFF                        | OFF            | N/A             | N/A        | 0°           | during launch delay                                                           |
|            |                      |                            | Switch ON SPIRE LPU                        | Launch / A                  | S. By / A                    | OFF            | OFF     | OFF     | OFF     | ambient | ambient         | ambient | OFF                        | OFF            | N/A             | N/A        | 0°           | 2 hours TBC before Launch #2                                                  |
|            |                      |                            | HOT evacuation                             | Launch / A                  | S. By / A                    | OFF            | OFF     | OFF     | OFF     | ambient | ambient         | ambient | OFF                        | OFF            | N/A             | N/A        | 0°           |                                                                               |
|            |                      |                            | Switch OFF SPIRE LPU                       | Launch / A                  | S. By / A                    | OFF            | OFF     | OFF     | OFF     | ambient | ambient         | ambient | OFF                        | OFF            | N/A             | N/A        | 0°           | 3,5 hours after previous switch ON (simulating<br>post separation switch OFF) |
| )          |                      | Phase 1                    | Final check before chamber<br>closure      |                             |                              |                |         |         |         |         |                 |         |                            |                |                 |            |              |                                                                               |
|            |                      |                            | LSS Check                                  | Launch / A                  | S. By / A                    | OFF            | OFF     | OFF     | OFF     | ambient | ambient         | ambient | OFF                        | OFF            | OFF             | TTAS-<br>A | 0°           | TTAS-A mode = consisitent with SVM cold (20°C TBC)                            |
|            |                      |                            | Final check before pumping & Close<br>door | Launch / A                  | S. By / A                    | OFF            | OFF     | OFF     | OFF     | ambient | ambient         | ambient | OFF                        | OFF            | OFF             | TTAS-<br>A | 0°           |                                                                               |

# HERSCHEL FM TV/TB TEST SPECIFICATION

06 DEC 07

Issue :

:

2 **Page :** 33/49

|   | x  | Phase 2 | PUMP DOWN                                                          | & LEOP start    |            |           |        |       |     |     |                 |                 |                 |       |     |      |            |              |                                                                                                          |
|---|----|---------|--------------------------------------------------------------------|-----------------|------------|-----------|--------|-------|-----|-----|-----------------|-----------------|-----------------|-------|-----|------|------------|--------------|----------------------------------------------------------------------------------------------------------|
|   |    | 24      | Pump down and<br>facility leak check                               | Cool down       | Launch / A | S. By / A | OFF    | OFF   | OFF | OFF | ambient         | ambient         | ambient         | OFF   | OFF | OFF  | TTAS-<br>A | 0°           |                                                                                                          |
|   |    |         | Facility Leak check                                                | Cool down       | Launch / A | S. By / A | OFF    | OFF   | OFF | OFF | ambient         | ambient         | ambient         | OFF   | OFF | OFF  | TTAS-<br>A | 0°           |                                                                                                          |
|   |    |         | Videogrammetr                                                      | y measurement   | SAM / A    | SAM / A   | ON / A | OFF   | OFF | OFF | flight,<br>cold | flight,<br>cold | ambient         | OFF   | OFF | OFF  | TTAS-<br>A | 0°,<br>TBC   |                                                                                                          |
|   |    |         | Start LEOP (iniate<br>separation by<br>Power SCOE),<br>CDMS to SAM | LEOP, Cool down | SAM / A    | SAM / A   | ON / A | OFF   | OFF | OFF | flight,<br>cold | flight,<br>cold | ambient         | OFF   | OFF | OFF  | TTAS-<br>A | 0° to<br>20° |                                                                                                          |
|   |    |         | Shrouds ON                                                         | LEOP, Cool down | SAM / A    | SAM / A   | ON / A | OFF   | OFF | OFF | flight,<br>cold | flight,<br>cold | cooling<br>down | SVM-A | OFF | IR-A | TTAS-<br>A | 0° to<br>20° | SVM mode A = SVM panels to TBD cold<br>temps (SM), manual.<br>IR mode A = HSS to TBD cold temps, manual. |
| x |    | Phase 3 | SAFE MODE AN                                                       | D RECOVERY TO   |            |           |        |       |     |     |                 |                 |                 |       |     |      |            |              |                                                                                                          |
|   |    | 24      | Transition to Safe<br>Mode                                         | LEOP, Cool down | SM / B     | SM / B    | ON / B | OFF   | OFF | OFF | flight,<br>cold | flight,<br>cold | cold            | SVM-A | OFF | IR-A | TTAS-<br>A | 0°           | by set of telecommands to mimic RM sequence (sequence done during IST debug)                             |
|   |    |         | Safe Mode,<br>stabilised                                           | LEOP, Cool down | SM / B     | SM / B    | ON / B | OFF   | OFF | OFF | flight,<br>cold | flight,<br>cold | cold            | SVM-A | OFF | IR-A | TTAS-<br>A | 0°           | Use coax link to test XPND B                                                                             |
|   |    |         | Transition to SAM                                                  | LEOP, Cool down | SAM / B    | SAM / B   | ON / B | OFF   | OFF | OFF | flight,<br>cold | flight,<br>cold | cold            | SVM-B | OFF | IR-A | TTAS-<br>A | 0°           | SVM mode B = SVM panels to TBD cold temps (NOM cold), manual.                                            |
|   |    |         | Transition to CDMU<br>NOM                                          | LEOP, Cool down | NOM / B    | SAM / B   | ON / B | OFF   | OFF | OFF | flight,<br>cold | flight,<br>cold | cold            | SVM-B | OFF | IR-A | TTAS-<br>A | 0°           |                                                                                                          |
|   |    |         | Transition to ACC<br>OCM                                           | LEOP, Cool down | NOM / B    | OCM / B   | ON / B | OFF   | OFF | OFF | flight,<br>cold | flight,<br>cold | cold            | SVM-B | OFF | IR-A | TTAS-<br>A | 0°           |                                                                                                          |
|   |    |         | Transition to ACC<br>SCM                                           | LEOP, Cool down | NOM / B    | SCM / B   | ON / B | OFF   | OFF | OFF | flight,<br>cold | flight,<br>cold | cold            | SVM-B | OFF | IR-A | TTAS-<br>A | 0°           |                                                                                                          |
|   |    |         | CDMU<br>Reconfiguration B<br>to A                                  | LEOP, Cool down | SAM / A    | SAM / B   | ON / B | OFF   | OFF | OFF | flight,<br>cold | flight,<br>cold | cold            | SVM-B | OFF | IR-A | TTAS-<br>A | 0°           |                                                                                                          |
|   |    |         | ACC<br>Reconfiguration B<br>to A                                   | LEOP, Cool down | SAM / A    | SAM / A   | ON / B | OFF   | OFF | OFF | flight,<br>cold | flight,<br>cold | cold            | SVM-B | OFF | IR-A | TTAS-<br>A | 0°           |                                                                                                          |
|   |    |         | TTC<br>Reconfiguration to<br>A                                     | LEOP, Cool down | SAM / A    | SAM / A   | ON / A | OFF   | OFF | OFF | flight,<br>cold | flight,<br>cold | cold            | SVM-B | OFF | IR-A | TTAS-<br>A | 0°           |                                                                                                          |
|   |    |         | Transition to CDMU<br>NOM                                          | LEOP, Cool down | NOM / A    | SAM / A   | ON / A | OFF   | OFF | OFF | flight,<br>cold | flight,<br>cold | cold            | SVM-B | OFF | IR-A | TTAS-<br>A | 0°           |                                                                                                          |
|   |    |         | Transition to ACC<br>OCM                                           | LEOP, Cool down | NOM / A    | OCM / A   | ON / A | OFF   | OFF | OFF | flight,<br>cold | flight,<br>cold | cold            | SVM-B | OFF | IR-A | TTAS-<br>A | 0°           |                                                                                                          |
|   |    |         | Transition to ACC<br>SCM                                           | LEOP, Cool down | NOM / A    | SCM / A   | ON / A | OFF   | OFF | OFF | flight,<br>cold | flight,<br>cold | cold            | SVM-B | OFF | IR-A | TTAS-<br>A | 0°           |                                                                                                          |
|   | xx | Phase 4 | SVM TB COLD                                                        | and LEOP END    |            |           |        |       |     |     |                 |                 |                 |       |     |      |            |              |                                                                                                          |
|   |    | 72      | Switch ON<br>instruments (//<br>mode)                              | LEOP, Cool down | NOM / A    | SCM / A   | OFF    | S. By | 11  | 11  | flight,<br>cold | flight,<br>cold | cold            | SVM-B | OFF | IR-A | TTAS-<br>A | 0°           | // mode test to be confirmed by instruments                                                              |

•

### HERSCHEL FM TV/TB TEST SPECIFICATION

#### 06 DEC 07

**Page :** 34/49 2 Issue : Stabilisation in // LEOP, Cool down NOM / A SCM / A OFF S. By  $\parallel$ 11 flight, flight, cold SVM-B OFF IR-A TTAS-0° mode cold cold Α LEOP. Cool down NOM / A SCM / A HIFI Prime OFF Prime S. Bv S. Bv fliaht. fliaht. cold SVM-B OFF IR-A TTAS 0° cold cold Α Stabilisation 1 in // LEOP. Cool down NOM / A SCM / A OFF Prime S. By S. By flight, flight, cold SVM-B OFF IR-A TTAS-0° HIFI prime cold cold Α Add power on HIFI LEOP, Cool down NOM / A SCM / A OFF OFF Prime S. By S. By flight, flight, cold SVM-B IR-A TTAS-0° panels cold cold Α Stabilisation 2 in // LEOP, Cool down NOM / A SCM / A Prime S. By S. By OFF IR-A TTAS OFF flight, flight, SVM-B 0° cold HIFI prime cold cold Α Phase 5 SVM TV COLD, RCD XX NOM / A SCM / A SVM-B OFF 48 Instruments in Rapid Cool Down OFF S. By S. By S. By fliaht. fliaht. cold IR-A TTAS-0° cold cold Stand By Α TV cold, TT&C cell Rapid Cool Down NOM / A SCM / A ON / A SVM - C OFF IR-A SVM Order of 6 TV steps to be optimised. Use coax S. By S. By S. By flight. flight, cold 0° ink to test XPND B. Mode SVM-C to have cold cold С minimum temperature in the TT&C cell. TV cold, Power cell Rapid Cool Down NOM / A SCM / A OFF S. By S. By S. By SVM - D OFF IR-A Order of 6 TV steps to be optimised. Use coax flight, flight, cold SVM 0° link to test XPND B. Mode SVM-D to have cold cold D minimum temperature in the Power cell. TV cold, RW cell Rapid Cool Down NOM/A SCM/A OFF S. By S. By S. By flight, flight, cold SVM - E OFF IR-A SVM 0° Order of 6 TV steps to be optimised. Use coax link to test XPND B. Mode SVM-E to have cold cold Е minimum temperature in the RW cell TV cold, HIFI cells Rapid Cool Down NOM/A SCM/A Order of 6 TV steps to be optimised. Use coax OFF Prime S. By S. By SVM - F OFF IR-A SVM 0° flight. flight. cold link to test XPND B. Mode SVM-F to have cold cold F minimum temperature in the HIFI cells. TV cold, PACS cell Rapid Cool Down Order of 6 TV steps to be optimised. Use coax NOM/A SCM/A OFF S. By Prime S. By flight, flight, cold SVM - G OFF IR-A SVM 0° link to test XPND B. Mode SVM-G to have cold cold G minimum temperature in the PACS cell. TV cold. SPIRE cell Rapid Cool Down Order of 6 TV steps to be optimised. Use coax NOM/A SCM/A OFF S. By S. By Prime flight, flight, cold SVM - H OFF IR-A SVM 0° ink to test XPND B. Mode SVM-G to have cold cold н minimum temperature in the SPIRE cell. NOM/A SCM/A 0° Switch big =>OFF S. By S. By S. By flight. flight, cold SVM-A OFF IR-A TTASsmall nozzles cold cold Α DLCM & LLP measurement NOM / A SCM / A OFF S. By S. By S. By flight, flight, SVM-A OFF IR-A TTAS cold 0° cold cold А X Phase 6 **HIFI TEST** SCM / A OFF Test defined in AD6, section \*\*. Duration TBC HIFI TVTB test 1 NOM / A OFF Prime S. By S. By ight, hot SVM-A IR-A TTAS-0° 11 flight. hot (negotiation in progress with HIFI). cold А NOM / A SCM / A OFF S. By S. By SVM-A OFF IR-A TTAS-HIFI to Stand By mode S. By fliaht. light, hot hot 0° cold А Y Phase 7 PACS TEST PACS TVTB test NOM/A SCM/A SVM-A OFF IR-B TTAS- 0° to Test defined in AD6, section \*\* 32 OFF S. By Prime S. By fliaht. light, hot hot cold А 20° PACS to Stand By mode NOM / A SCM / A OFF OFF IR-B TTAS-0° to S. By S. By S. By fliaht. light, hot hot SVM-A cold А 20° **HIFI TEST** X Phase 8

# HERSCHEL FM TV/TB TEST SPECIFICATION

06 DEC 07

Issue :

:

2 **Page :** 35/49

|    |   | 28       | HIFI TVTB test 2                                           | NOM / A | SCM / A | OFF | Prime | S. By | S. By | flight,<br>cold | flight, hot | hot | SVM-A | OFF | IR-A | TTAS-<br>A | 0°           | Test defined in AD6, section **. Duration TBC (negotiation in progress with HIFI).    |
|----|---|----------|------------------------------------------------------------|---------|---------|-----|-------|-------|-------|-----------------|-------------|-----|-------|-----|------|------------|--------------|---------------------------------------------------------------------------------------|
|    |   |          | HIFI to Stand By mode                                      | NOM / A | SCM / A | OFF | S. By | S. By | S. By | flight,<br>cold | flight, hot | hot | SVM-A | OFF | IR-A | TTAS-<br>A | 0°           |                                                                                       |
|    | x | Phase 9  | SPIRE TEST                                                 |         |         |     |       |       |       |                 |             |     |       |     |      |            |              |                                                                                       |
|    | - | 48       | SPIRE TVTB test                                            | NOM / A | SCM / A | OFF | S. By | S. By | Prime | flight,<br>cold | flight, hot | hot | SVM-A | OFF | IR-B | TTAS-<br>A | 0° to<br>20° | Test defined in AD6, section **                                                       |
|    |   |          | SPIRE to Stand By mode                                     | NOM / A | SCM / A | OFF | S. By | S. By | S. By | flight,<br>cold | flight, hot | hot | SVM-A | OFF | IR-A | TTAS-<br>A | 0°           |                                                                                       |
| x  | x | Phase 10 | HIFI TEST and START EXTERNAL<br>PLM HOT                    |         |         |     |       |       |       |                 |             |     |       |     |      |            |              |                                                                                       |
|    |   | 53       | HIFI TVTB test 3                                           | NOM / A | SCM / A | OFF | Prime | S. By | S. By | flight,<br>cold | flight, hot | hot | SVM-A | OFF | IR-A | TTAS-<br>A | 0°           | Test defined in AD6, section **. Duration TBC<br>(negotiation in progress with HIFI). |
|    |   |          | HIFI to Stand By mode                                      | NOM / A | SCM / A | OFF | S. By | S. By | S. By | flight,<br>cold | flight, hot | hot | SVM-A | OFF | IR-A | TTAS-<br>A | 0°           |                                                                                       |
|    |   |          | Videogrammetry measurement                                 | NOM / A | SCM / A | OFF | S. By | S. By | S. By | flight,<br>cold | flight, hot | hot | SVM-A | OFF | IR-A | TTAS-<br>A | 0° TBC       |                                                                                       |
|    |   |          | - Heat up PLM                                              | NOM / A | SCM / A | OFF | S. By | S. By | S. By | flight,<br>cold | flight, hot | hot | SVM-A | OFF | IR-B | TTAS-<br>A | 0° to<br>20° | Mode IR-B to have maximum HSS<br>temperature (100°C on SA, 20°C on<br>Sunshade)       |
|    | x | Phase 11 | PARALLEL TEST                                              |         |         |     |       |       |       |                 |             |     |       |     |      |            |              |                                                                                       |
|    |   | 8        | Parallel test                                              | NOM / A | SCM / A | OFF | S. By | 11    | //    | flight,<br>cold | flight, hot | hot | SVM-A | OFF | IR-B | TTAS-<br>A | 0° to<br>20° | Test defined in AD6, section **.<br>// mode test to be confirmed by instruments       |
|    |   |          | PACS to St. By (TBC, depending on definition of phase 10)  | NOM / A | SCM / A | OFF | S. By | S. By | Prime | flight,<br>cold | flight, hot | hot | SVM-A | OFF | IR-B | TTAS-<br>A | 0° to<br>20° |                                                                                       |
|    |   |          | SPIRE to St. By (TBC, depending on definition of phase 10) | NOM / A | SCM / A | OFF | S. By | S. By | S. By | flight,<br>cold | flight, hot | hot | SVM-A | OFF | IR-B | TTAS-<br>A | 0° to<br>20° |                                                                                       |
|    | x | Phase 12 | HIFI TEST                                                  |         |         |     |       |       |       |                 |             |     |       |     |      |            |              |                                                                                       |
|    |   | 78       | HIFI TVTB test 4                                           | NOM / A | SCM / A | OFF | Prime | S. By | S. By | flight,<br>cold | flight, hot | hot | SVM-A | OFF | IR-A | TTAS-<br>A | 0°           | Test defined in AD6, section **. Duration TBC (negotiation in progress with HIFI).    |
|    |   |          | HIFI to Stand By mode                                      | NOM / A | SCM / A | OFF | S. By | S. By | S. By | flight,<br>cold | flight, hot | hot | SVM-A | OFF | IR-A | TTAS-<br>A | 0°           |                                                                                       |
| x  | x | Phase 13 | INSTRUMENT I/F TEST                                        |         |         |     |       |       |       |                 |             |     |       |     |      |            |              |                                                                                       |
| •  |   | 24       | Set mass flow to 2.2 mg/s                                  | NOM / A | SCM / A | OFF | S. By | S. By | S. By | flight,<br>cold | flight, hot | hot | SVM-A | OFF | IR-B | TTAS-<br>A | 0° to<br>20° | Test defined in AD6, section **                                                       |
|    |   |          | Switch ON/OFF HIFI instrument for<br>thermal I/F test      | NOM / A | SCM / A | OFF | Prime | S. By | S. By | flight,<br>cold | flight, hot | hot | SVM-A | OFF | IR-B | TTAS-<br>A | 0° to<br>20° | Test defined in AD6, section **                                                       |
|    |   |          | Switch ON/OFF PACS instrument for thermal I/F test         | NOM / A | SCM / A | OFF | S. By | Prime | S. By | flight,<br>cold | flight, hot | hot | SVM-A | OFF | IR-B | TTAS-<br>A | 0° to<br>20° | Test defined in AD6, section **                                                       |
|    |   |          | Switch ON/OFF SPIRE instrument for thermal I/F test        | NOM / A | SCM / A | OFF | S. By | S. By | Prime | flight,<br>cold | flight, hot | hot | SVM-A | OFF | IR-B | TTAS-<br>A | 0° to<br>20° |                                                                                       |
| XX |   | Phase 14 | SVM TB HOT & dP measurement                                |         |         |     |       |       |       |                 |             |     |       |     |      |            |              |                                                                                       |

# HERSCHEL FM TV/TB TEST SPECIFICATION

06 DEC 07

Issue :

:

2 **Page :** 36/49

|   | 48       | Transition to instrun               | nent parallel mode               | NOM / A | SCM / A | ON / A | S. By | //    |       | flight, hot | flight, hot | hot | SVM-M   | OFF | IR-B | TTAS-<br>B | 0° | // mode = maximum dissipation of<br>instruments. // mode test TBC by instruments.<br>SVM-M: SVM panels to TBD hot temps (NOM<br>cold), manual.<br>TTAS-B mode = consisitent hot SVM cold<br>(temperature = TBD, can be equal to TTAS-A) |
|---|----------|-------------------------------------|----------------------------------|---------|---------|--------|-------|-------|-------|-------------|-------------|-----|---------|-----|------|------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |          | Stabilisation in //<br>mode         | external hot                     | NOM / A | SCM / A | ON / A | S. By | 11    |       | flight, hol | flight, hot | hot | SVM-M   | OFF | IR-B | 20°C       | 0° |                                                                                                                                                                                                                                         |
|   |          | HIFI Prime                          | external hot                     | NOM / A | SCM / A | ON / A | Prime | S. By | S. By | flight, hol | flight, hot | hot | SVM-M   | OFF | IR-B | 20°C       | 0° |                                                                                                                                                                                                                                         |
|   |          | Stabilisation 1 in //<br>HIFI prime | external hot                     | NOM / A | SCM / A | ON / A | Prime | S. By | S. By | flight, hol | flight, hot | hot | SVM-M   | OFF | IR-B | 20°C       | 0° |                                                                                                                                                                                                                                         |
|   |          | Add power on HIFI<br>panels         | external hot                     | NOM / A | SCM / A | ON / A | Prime | S. By | S. By | flight, hol | flight, hot | hot | SVM-M   | OFF | IR-B | 20°C       | 0° |                                                                                                                                                                                                                                         |
|   |          | Stabilisation 2 in //<br>HIFI prime | external hot                     | NOM / A | SCM / A | ON / A | Prime | S. By | S. By | flight, hot | flight, hot | hot | SVM-M   | OFF | IR-B | 20°C       | 0° |                                                                                                                                                                                                                                         |
|   |          | -                                   | dP measurement                   | NOM / A | SCM / A | ON / A | Prime | S. By | S. By | flight, hot | flight, hot | hot | SVM-M   | OFF | IR-B | 20°C       | 0° |                                                                                                                                                                                                                                         |
| x | Phase 15 | SVM T\                              | / НОТ                            |         |         |        |       |       |       |             |             |     |         |     |      |            |    |                                                                                                                                                                                                                                         |
|   | 48       | DLCM & LLP r                        | neasurement                      | NOM / A | SCM / A | ON / A | S. By | S. By | S. By | flight, hot | flight, hot | hot | SVM-M   | OFF | IR-B | 20°C       | 0° |                                                                                                                                                                                                                                         |
|   |          | TV hot, TT&C cell                   | external hot                     | NOM / A | SCM / A | ON / A | S. By | S. By | S. By | flight, hot | flight, hot | hot | SVM - N | OFF | IR-B | SVM -<br>N | 0° | Order of 6 TV steps to be optimised. Use coax<br>link to test XPND B. Mode SVM-N to have<br>minimum temperature in the TT&C cell.                                                                                                       |
|   |          | TV hot, Power cell                  | external hot                     | NOM / A | SCM / A | ON / A | S. By | S. By | S. By | flight, hol | flight, hot | hot | SVM - O | OFF | IR-B | SVM -<br>O | 0° | Order of 6 TV steps to be optimised. Use coax<br>link to test XPND B. Mode SVM-O to have<br>minimum temperature in the Power cell.                                                                                                      |
|   |          | TV hot, RW cell                     | external hot                     | NOM / A | SCM / A | ON / A | S. By | S. By | S. By | flight, hot | flight, hot | hot | SVM - P | OFF | IR-B | SVM -<br>P | 0° | Order of 6 TV steps to be optimised. Use coax<br>link to test XPND B. Mode SVM-P to have<br>minimum temperature in the RW cell.                                                                                                         |
|   |          | TV hot, HIFI cells                  | external hot                     | NOM / A | SCM / A | ON / A | S. By | S. By | S. By | flight, hof | flight, hot | hot | SVM - Q | OFF | IR-B | SVM -<br>Q | 0° | Order of 6 TV steps to be optimised. Use coax<br>link to test XPND B. Mode SVM-Q to have<br>minimum temperature in the HIFI cells.                                                                                                      |
|   |          | TV hot, PACS cell                   | external hot                     | NOM / A | SCM / A | ON / A | S. By | S. By | S. By | flight, hol | flight, hot | hot | SVM - R | OFF | IR-B | SVM -<br>R | 0° | Order of 6 TV steps to be optimised. Use coax<br>link to test XPND B. Mode SVM-R to have<br>minimum temperature in the PACS cell.                                                                                                       |
|   |          | TV hot, SPIRE cell                  | external hot                     | NOM / A | SCM / A | ON / A | S. By | S. By | S. By | flight, hol | flight, hot | hot | SVM - S | OFF | IR-B | SVM -<br>S | 0° | Order of 6 TV steps to be optimised. Use coax<br>link to test XPND B. Mode SVM-S to have<br>minimum temperature in the SPIRE cell.                                                                                                      |
|   |          | Switch OFF i                        | instruments                      | NOM / A | SCM / A | ON / A | S. By | S. By | S. By | flight, hol | flight, hot | hot | SVM-M   | OFF | IR-B | 20°C       | 0° |                                                                                                                                                                                                                                         |
|   |          | Transition                          | to SAM                           | NOM / A | SCM / A | ON / A | S. By | S. By | S. By | flight, hol | flight, hot | hot | SVM-M   | OFF | IR-B | 20°C       | 0° |                                                                                                                                                                                                                                         |
| x | Phase 16 | LOU Decont                          | amination                        |         |         |        |       |       |       |             |             |     |         |     |      |            |    |                                                                                                                                                                                                                                         |
|   | <br>8    | Swith instru                        | ments OFF                        | NOM / A | SCM / A | ON / A | OFF   | OFF   | OFF   | flight, hol | flight, hot | hot | SVM-M   | OFF | IR-B | 20°C       | 0° | in order not to stress the windows, limited temperature threshold = 200°C                                                                                                                                                               |
|   |          | Reset max temper<br>select heater   | rature threshold,<br>r lines 1+2 | NOM / A | SCM / A | ON / A | OFF   | OFF   | OFF   | flight, hol | flight, hot | hot | SVM-M   | OFF | IR-B | 20°C       | 0° | in order not to stress the windows, limited temperature threshold = 200°C                                                                                                                                                               |

### HERSCHEL FM TV/TB TEST SPECIFICATION

06 DEC 07

Issue :

:

2 **Page :** 37/49

|      |          | Switch ON LOU decontamination (line                                                                              | s NOM / A | SCM / A | ON / A | OFF | OFF | OFF | flight, ho       | flight, hot | hot     | SVM-M      | OFF | IR-B | 20°C | 0° |                                                                        |
|------|----------|------------------------------------------------------------------------------------------------------------------|-----------|---------|--------|-----|-----|-----|------------------|-------------|---------|------------|-----|------|------|----|------------------------------------------------------------------------|
|      |          | Switch OFF decontamination                                                                                       | NOM / A   | SCM / A | ON / A | OFF | OFF | OFF | flight, ho       | flight, hot | hot     | SVM-M      | OFF | IR-B | 20°C | 0° |                                                                        |
|      |          | select heater lines 1+3                                                                                          | NOM / A   | SCM / A | ON / A | OFF | OFF | OFF | flight, ho       | flight, hot | hot     | SVM-M      | OFF | IR-B | 20°C | 0° |                                                                        |
|      |          | Switch ON LOU decontamination (line<br>1+3)                                                                      | s NOM / A | SCM / A | ON / A | OFF | OFF | OFF | flight, ho       | flight, hot | hot     | SVM-M      | OFF | IR-B | 20°C | 0° |                                                                        |
|      |          | Switch OFF decontamination                                                                                       | NOM / A   | SCM / A | ON / A | OFF | OFF | OFF | flight, ho       | flight, hot | hot     | SVM-M      | OFF | IR-B | 20°C | 0° |                                                                        |
|      |          | Reset max temperature threshold to default value                                                                 | NOM / A   | SCM / A | ON / A | OFF | OFF | OFF | flight, ho       | flight, hot | hot     | SVM-M      | OFF | IR-B | 20°C | 0° | HPSDB default value TBD, following LOU baffle assembly thermal testing |
| x    | Phase 17 | Telescope Decontamination                                                                                        |           |         |        |     |     |     |                  |             |         |            |     |      |      |    |                                                                        |
|      | 24       | Initiate Tel decontamination with heate<br>line mask                                                             | r NOM / A | SCM / A | ON / A | OFF | OFF | OFF | flight, ho       | flight, hot | hot     | SVM-M      | OFF | IR-B | 20°C | 0° | Mask = all lines enabled, except lines 5 and 9<br>disabled             |
|      |          | Set mask to all lines active                                                                                     | NOM / A   | SCM / A | ON / A | OFF | OFF | OFF | flight, ho       | flight, hot | hot     | SVM-M      | OFF | IR-B | 20°C | 0° | Mask = all lines enabled                                               |
|      |          | Tel decontamination                                                                                              | NOM / A   | SCM / A | ON / A | OFF | OFF | OFF | flight, ho       | flight, hot | hot     | SVM-M      | OFF | IR-B | 20°C | 0° |                                                                        |
| xxxx | Phase 18 | PLM warm up                                                                                                      |           |         |        |     |     |     |                  |             |         |            |     |      |      |    |                                                                        |
|      | 72       | - Switch ON CVV<br>warm-up heaters                                                                               | NOM / A   | SCM / A | ON / A | OFF | OFF | OFF | flight, ho       | flight, hot | hot     | SVM-M      | ON  | IR-B | 20°C | 0° | During warm-up, control shroud temperature <<br>CVV temperature - 10 K |
|      |          | Videogrammetry measurement                                                                                       | NOM / A   | SCM / A | ON / A | OFF | OFF | OFF | flight, ho       | flight, hot | hot     | SVM-M      | ON  | IR-B | 20°C | 0° |                                                                        |
|      |          | - Switch OFF CVV<br>warm-up heaters                                                                              | NOM / A   | SCM / A | ON / A | OFF | OFF | OFF | flight, hoi      | flight, hot | hot     | SVM-M      | OFF | IR-B | 20°C | 0° |                                                                        |
| x    | Phase 19 | End of test                                                                                                      |           |         |        |     |     |     |                  |             |         |            |     |      |      |    |                                                                        |
|      | 10       | Chamber repressurisation                                                                                         | NOM / A   | SCM / A | ON / A | OFF | OFF | OFF |                  |             | targe   | et = ambie | ent |      |      | 0° |                                                                        |
|      |          | Videogrammetry measurement                                                                                       | NOM / A   | SCM / A | ON / A | OFF | OFF | OFF |                  |             | targe   | et = ambie | ent |      |      | 0° |                                                                        |
|      |          | Chamber opening                                                                                                  | NOM / A   | SCM / A | ON / A | OFF | OFF | OFF |                  |             | targe   | et = ambie | ent |      |      | 0° |                                                                        |
|      | 2        | S/C switch OFF                                                                                                   | OFF       | OFF     | OFF    | OFF | OFF | OFF | target = ambient |             |         |            |     |      |      | 0° |                                                                        |
| x    | Phase 20 | Preparation of S/C removal from<br>LSS                                                                           |           |         |        |     |     |     |                  |             |         |            |     |      |      |    |                                                                        |
|      |          | Installation of basic scaffolding,<br>installation of Tel cover, cryo SCOE<br>activities, harness disconnection, | OFF       | OFF     | OFF    | OFF | OFF | OFF | ambient          | ambient     | ambient | OFF        | OFF | OFF  | OFF  | 0° |                                                                        |

|                                         | Reference | H-P-2 | 2-ASP-TS-0997       |
|-----------------------------------------|-----------|-------|---------------------|
| HERSCHEL FM TV/TB TEST<br>SPECIFICATION | :         | 06 D  | EC 07               |
|                                         | lssue :   | 2     | <b>Page :</b> 38/49 |

#### 4.6 Parameters to be measured/Measurement accuracy

#### 4.6.1 S/C TM/TC data

During all test phases, housekeeping TM and all TC will be acquired and archived.

The TM/TC shall be received and sent through the TM/TC DFE and the umbilical during all phases, with the following exception:

During the SVM hot and cold TV tests, when the TT&C equipment is tested, the TM and TC signals will pass through coax cables at the interface of the TT&C subsystem (antennas are short circuited, no antenna test caps will be used).

When the S/C is in survival mode, in order to receive more than just the essential housekeeping telemetry (see RD8), the Tx rate will be commanded to 5 kbps.

The acquisition frequencies shall be :

CCU, 8sec

CDMU, baseline acquisition frequency is 64 sec. A 8 sec acquisition frequency is needed for verification of Fine Control Law on HIFI units and STR stability during SVM thermal balance phases. Please note that a packet with 8sec frequency has to be developed.

A special packet is defined for DLCM testing with 1 sec of acquisition frequency. See RD8 and HPSDB.

#### 4.6.2 S/C test instrumentation

The S/C test sensors are divided in two families, CRYO SCOE acquired sensors and ETS acquired sensors.

For CRYO SCOE sensors, the acquisition frequency shall be 30sec. For ETS sensors, the acquisition frequency shall be 120sec.

#### 4.6.3 Facility parameters

Monitoring of sensors shall be started/recorded as soon as thermocouples are connected to the data logger. Frequency of acquisition shall be 1 minute.

#### **4.7 Emergency procedures**

Some specific measures are applicable through AD18 to cover the following failure cases to be treated urgently:

- partial loss of power,
- loss of umbilical link,

HERSCHEL FM TV/TB TEST<br/>SPECIFICATIONReferenceH-P-2-ASP-TS-099706 DEC 0706 DEC 07Issue :2Page : 40/49

- CDMU failure,
- CDMU 1553 bus failure,
- unit temperature outside allowed range,
- LSS failure (shroud temperature, abnormal pressure).

#### 5. Success criteria – Test approval

#### 5.1 Success criteria

The execution of the S/C FM TB/TV test will be declared successful if:

- No major damage occurs to the test specimen as a result of testing (including visual inspection)
- All test phase have been performed with required test conditions as defined in the test procedure and recorded

#### 5.1.1 External HPLM thermal balance success criteria

The equilibrium to be reached at the end of the PLM-EXT-COLD/HOT phases shall be used for verification of the cryostat external TMM. Steady-state is reached when the equilibrium temperature sensors fulfil the following criteria :

With

| Value              | Δt     | Threshold |
|--------------------|--------|-----------|
| Temperature of CVV | 24 hrs | 0.3 K     |

The equilibrium criterion illustrated in the following figure shall be checked continuously via the LSS TDH and the Cryo SCOE, respectively.



#### 5.1.2 SVM thermal balance success criteria

The Steady State will be considered reached when the temperature of the TC's relevant to the S/C will not vary by more than  $1^{\circ}C$  / 8 hrs.

For units controlled by fine control law the above criterion shall be applied to nearby units or average temperature.

#### 5.1.3 Instrument functional testing success criteria

Refer to relevant specification to be issued by the instruments.

#### 5.1.4 SVM functional testing / cycling success criteria

All nominal heating lines have been switched ON/OFF. The verification of redundant heater circuit will be performed before and after TV/TB test. See RD14

As per cycling procedure.

Refer to relevant specification to be issued.

#### 5.1.5 Videogrammetry

Refer to AD16.

#### 5.1.6 LOU/HIFI FPU alignment using HACS

Refer to relevant specification to be issued.

#### 5.1.7 Telescope Decontamination

Telescope decontamination phase is considered successful when stable duty cycle is observed in M1/M2 heaters

#### 5.1.8 LOU Baffle decontamination

LOU baffle decontamination is considered successful when cycling is observed on the heating lines.

#### 6. Organisation & responsibilities

#### 6.1 Organisation

The general organisation is as follows :



### 6.2 Tasks and responsibility

The tasks definition and responsibility during the test are defined here-after. The responsibilities linked to the test progress shall be mentioned in the ASED test leading procedure.

| Title               | Tasks/Responsibility                                                                                                                                                                                                                                                     |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ESA project         | ESA point of contact                                                                                                                                                                                                                                                     |
| representative      | I/F with TAS-F Project representative                                                                                                                                                                                                                                    |
|                     | Approve the test strategy                                                                                                                                                                                                                                                |
| TAS-F Test Director | TAS-F Project point of contact                                                                                                                                                                                                                                           |
|                     | Manage all activities performed in the frame of the test campaign                                                                                                                                                                                                        |
|                     | I/F with ESA representative                                                                                                                                                                                                                                              |
|                     | Issue the test specifications                                                                                                                                                                                                                                            |
|                     | <ul> <li>Manage all test activities including evaluation done during the tests in co-operation with the Test Conductor and the engineering support team</li> <li>Approve the test strategy</li> <li>Gives an abead for the test reviews (TRR, key point, PTR)</li> </ul> |
|                     | Cives go diledu for the lest reviews (TKK, key point, FTK)                                                                                                                                                                                                               |

| Reference | H-P-2-ASP-TS-0997 |
|-----------|-------------------|
|           |                   |

06 DEC 07

Issue :

:

2 **Page :** 43/49

| TAS-F PA                 | TAS-F PA point of contact                                    |
|--------------------------|--------------------------------------------------------------|
|                          | Manage all NCR raised in the frame of the test campaign      |
|                          | I/F with ESA PA                                              |
|                          | I/F with ASED QA                                             |
| ASED Test Conductor      | ASED point of contact                                        |
|                          | Issue the leading ( sequence of tests, calling up the        |
|                          | individual test procedures) procedure of combined activities |
|                          | I/F point with the Test Facility Responsible                 |
|                          | Approve the test strategy                                    |
|                          | Gives go ahead for the test reviews (TRR, key point, PTR)    |
| TAS-F thermal Evaluation | Evaluate the test data in order to help the test director    |
| Team                     | concerning the "key point" status                            |
| ASED Thermal Evaluation  | Evaluate the test data in order to help the test director    |
| Team                     | concerning the "Key point" status.                           |
|                          | Thermal control of PLM during all phases                     |
| TAS-I Thermal Evaluation | Evaluate the test data in order to help the test director    |
| Team                     | concerning the "Key point" status.                           |
|                          | Thermal control of SVM during all phases                     |
| ASED AIT responsible     | Responsible of the ASED AIT Team                             |
|                          | Contributes to the test procedures                           |
|                          | Organise the running meetings                                |
|                          | Initiate NCR                                                 |
| ASED AIT Team            | Contributes to the test procedures                           |
|                          | Operate the Satellite with relevant GSE                      |
|                          | Issue the test summary report e.g. historical record, main   |
|                          | events, major NCRs                                           |
| ASED QA                  | Management of the quality of operations                      |
|                          | Organise the review (TRR/PTR)                                |
|                          | Minute the running meeting (Key point)                       |
| ETS Test Facility        | I/F with ASED Test Conductor                                 |
| Responsible              |                                                              |
| ETS test facility team   | Operate the ETS Test facilities                              |
|                          | Provide the ETS test data for online evaluation              |
|                          | Issue the ETS test report.                                   |

#### 6.3 Test Readiness Review, Post Test Review and Running meeting

The people involved in TRR, PTR and running meetings shall be at least:

- ESA Representative,
- TAS-F Project representative,
- TAS-F PA,
- TAS-F Test Director,
- ASED Test Conductor,
- TAS-F Evaluation Team representative,

|               | Issue :        | 2     | <b>Page :</b> 44/49 |
|---------------|----------------|-------|---------------------|
| SPECIFICATION | :<br>06 DEC 07 |       |                     |
|               | Reference      | H-P-2 | 2-ASP-TS-0997       |

- ASED AIT responsible,
- ASED QA,
- ETS Test Facility representative.

During running meeting, evaluation of test results shall be presented by TAS-F Test Director as well as the test strategy form for next run to be approved by all parties.

#### 7. Documentation

#### 7.1 Documents required before the test

- S/C configuration (CIDL, etc)
- Test set-up configuration (CIDL, Definition drawings)
- Test Set-up validation and calibration status
- Test specification
- Test predictions
- Instrumentation plan (thermal sensors list and location)
- Test leading procedure + elementary procedures

AD19 describes the thermal interfaces to be taken into account for SVM test predictions by TAS-I AD20 describes the thermal interfaces to be taken into account for H-EPLM test predictions by ASED.

### 7.2 Data acquired during the test

# 7.2.1 Logbooks

The following logbooks shall be written:

- LSS Facility Test Logbook
- Thermal Control and Cryo-SCOE Logbook, including a close following of the LSS basements activities.
- Power Supply and Data Handling Logbook
- EGSE Logbook
- Instruments Logbook

All activities, deviations etc. shall be described in these logbooks in "real time" under supervision of the Test Director and reviewed by PA.

# 7.2.2 S/C sensors

A record (paper and electronic format) will provide the following information about each type of specimen sensors (thermal, pressure):

- Test phase designation
- Acquisition date/time
- Temperature sensor number

HERSCHEL FM TV/TB TEST<br/>SPECIFICATIONReferenceH-P-2-ASP-TS-0997.06 DEC 07Issue :2Page : 45/49

- Sensor designation
- Measured value
- Alarms status

An excel file gathering:

• information <Time, Temperature> of all specimen thermal sensors will be updated at a given frequency (TBD) and delivered on request to TAS-F thermal team.

An excel file grouping <Time, Power / Amperage> of all specimen heating lines will be updated at a given frequency (TBD) and delivered on request to TAS-F evaluation team.

### 7.2.3 Test environment sensors (ETS)

A record (paper and electronic format) will provide the following information about test environment sensors:

- Test phase designation
- Acquisition date/time
- For each sensor (temperature, pressure, vacuum etc.)
  - Sensor number
  - Sensor designation
  - Measured value
  - Alarms status

### 7.2.4 Test environment heaters (ETS)

A record (paper and electronic format) will provide the following information about test heaters (SVM, Infrared Rig, CVV Warm Up heaters, TTAS):

- Test phase designation
- date/time
- For each heater line:
  - heater line number
  - voltage
  - alarm

### 7.3 Documents issued after the test

### 7.3.1 Specimen AIT reports - ASED

Test progress description. Contamination control report. Logbook reporting all significant events about specimen. Pictures taken on the specimen in test configuration. Record (CD-ROM) of all acquired data during test. Test measurements devices calibration reports.

#### 7.3.2 Test facility - ETS

|                        | lssue :   | 2    | <b>Page :</b> 46/49 |
|------------------------|-----------|------|---------------------|
| SPECIFICATION          | 06 DEC 07 |      |                     |
| HERSCHEL FM TV/TB TEST | :         |      |                     |
|                        | Reference | H-P- | 2-ASP-TS-0997       |

Test progress description Pictures taken on the test set-up Logbook reporting all significant events about test set-up Record (CD-ROM) of all acquired data during test Test measurements devices calibration reports

This report shall be issued within 4 weeks after the completion of test.

#### 7.3.3 Evaluation reports

TAS-F will provide the overall Assessment Report of the Spacecraft TV/TB test. ASED will provide assessment inputs of the H-EPLM parts. TAS-I will provide assessment inputs of the SVM parts. ESA will provide assessment inputs of the instruments parts.

# ANNEX 1 : Thermal Control Tables (TCT)

The following table provides default values in the HPSDB for the minimum and maximum thresholds of each TCS line. Two cases are distinguished:

- Survival: applicable only to S/C survival mode,
- Nominal: applicable to all other S/C modes.

| HERSCHEL    | HEATER's location          | Threshold Nom.  | Threshold Surv. |
|-------------|----------------------------|-----------------|-----------------|
| Heater line |                            | [°C]            | [°C]            |
| TCS Line 01 | close to XPND1             | -9/-6           | -9/-6           |
| TCS Line 02 | close to XPND2             | -9/-6           | -9/-6           |
| TCS Line 03 | inside BATTERY             | 1/4             | 1/4             |
| TCS Line 04 | TANKS                      | N/A             | N/A             |
| TCS Line 05 | close to FPSPU, FPDPU      | -14/-11         | -14/-11         |
| TCS Line 06 | close to FPBOLC            | -14/-11         | -14/-11         |
| TCS Line 07 | CRS 1                      | 49./49.5        | 49./49.5        |
| TCS Line 08 | close to FPDECMEC          | -14/-11         | -14/-11         |
| TCS Line 09 | RCS PIPES                  | 23/24           | 23/24           |
| TCS Line 10 | close to CCU, HSDCU, HSFCU | -9/-6           | -9/-6           |
| TCS Line 11 | RCS PIPES                  | 23/24           | 23/24           |
| TCS Line 12 | close to FHWOV             | C.L. set at 4.5 | -2.5/+0.5       |
| TCS Line 13 | close to FHHRV             | -9/-6           | -9/-6           |
| TCS Line 14 | STR1 Primary Baffle        | 14/14.5         | 14/14.5         |
| TCS Line 15 | close to FHWEV, FHICU      | 1/4             | 1/4             |
| TCS Line 16 | close to FHWOH             | C.L. set at 3.5 | -3.5/-0.5       |
| TCS Line 17 | close to FHWEH             | 1/4             | 1/4             |
| TCS Line 18 | close to FHHRH             | -9/-6           | -9/-6           |
| TCS Line 19 | close to FHLCU, FHIFH      | -9/-6           | -9/-6           |
| TCS Line 20 | close to FHLSU             | 11/14           | 11/14           |
| TCS Line 21 | on RWL2                    | 1/4             | 1/4             |
| TCS Line 22 | on RWL4                    | 1/4             | 1/4             |
| TCS Line 23 | on RWL1                    | 1/4             | 1/4             |
| TCS Line 24 | on RWL3                    | 1/4             | 1/4             |
| TCS Line 25 | on TANK +Y                 | 11/14           | 11/14           |
| TCS Line 26 | on TANK -Y                 | 11/14           | 11/14           |
| TCS Line 27 | close to STR's             | C.L. set at 0.0 | -7/-4           |
| TCS Line 28 | close to FHIFV             | -9/-6           | -9/-6           |
| TCS Line 29 | on FCV A1A                 | 11/17           | 11/17           |
| TCS Line 30 | on FCV C2A                 | 11/17           | 11/17           |
| TCS Line 31 | on FCV C1A                 | 11/17           | 11/17           |
| TCS Line 32 | on FCV A2A                 | 11/17           | 11/17           |
| TCS Line 33 | on FCV C4A                 | 11/17           | 11/17           |
| TCS Line 34 | on FCV C3A                 | 11/17           | 11/17           |
| TCS Line 35 | on RCS PIPES               | 23/24           | 23/24           |
| TCS Line 36 | STR2 Primary Baffle        | 14/14.5         | 14/14.5         |
| TCS Line 37 | on RCS PIPES               | 23/24           | 23/24           |
| TCS Line 38 | close to GYRO              | 62.5/63.0       | 62.5/63.0       |
| TCS Line 39 | on FCV A1B                 | 11/17           | 11/17           |
| TCS Line 40 | on FCV C2B                 | 11/17           | 11/17           |
| TCS Line 41 | on FCV C1B                 | 11/17           | 11/17           |
| TCS Line 42 | on FCV A2B                 | 11/17           | 11/17           |
| TCS Line 43 | on FCV C4B                 | 11/17           | 11/17           |
| TCS Line 44 | on FCV C3B                 | 11/17           | 11/17           |
| TCS Line 45 | on RCS PIPES               | 23/24           | 23/24           |
| TCS Line 46 | on RCS PIPES               | 23/24           | 23/24           |
| TCS Line 47 | on RCS PIPES               | 23/24           | 23/24           |
| TCS Line 48 | on unit: PT, LF, LV1, LV2  | 23/24           | 23/24           |
| TCS Line 49 | CRS 2                      | 49,/49,5        | 49./49.5        |

| Reference | H-P-2-ASP-TS-0997 |                    |  |
|-----------|-------------------|--------------------|--|
| :         | 06 DEC 07         |                    |  |
| Issue :   | 2                 | <b>Page:</b> 48/49 |  |

# END OF DOCUMENT