FADS

Trite:	Procedure for PFM Alignment of
Herschel Instruments writ. PLM	

Clio: $\quad 120000$
D. sens

Prepared by:
E. Hölzle/D. Schink G////0ate: $\quad 23.72001$

Checked by:
Product Assurance:
Configuration
Control:
Project
Management:

Distribution:
See Distribution List (last page)

| Issue | Date | Sheet | Description of Change | Release |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 20.07 .07 | All | First formal issue | |

Procedure

Table of Content

1 INTRODUCTION
 7

1.1 Scope 7
1．2 Objective 7
2 Applicable Documents 8
2．1 Applicable Documents 8
2.2 Reference Documents 9
3 Requirements to be verified 10
4 Alignment Activities Description 12
4．1 Alignment Overview 12
4．2 Adjustment Capabilities 14
4．3 Angle Measurements of Alignment cubes 14
4.4 Distance Measurements 15
4.5 Alignment Procedure 15
5 Test Article Description 17
6 Test Set－Up Configuration 19
$7 \quad$ Test Equipment 22
7.1 Used Test Equipment 23
8 Test Conditions 24
8.1 Environmental Conditions 24
8.2 Other conditions 24
8.3 Personnel 24
8.4 General and Special Precautions／Safety 25
9 Specific Conditions for PFM Instrument Alignment 26
10 Test Procedures 27
10.1 Rotary Table Levelling 28
10.2 Check of OB Position 28
10.3 Check of OB Orientation from + Y-direction 34
10.4 OB Position Measurement: Repetition after OB Re-Adjustment 42
10.5 Check of OB Orientation from +y-direction 48
10.6 Angular Alignment Measurements of HIFI from + Y Side 55
10.7 Angular Alignment Measurements of PACS from + Y Side 56
10.8 Angular Alignment Measurements of SPIRE from + Y Side 57
10.9 Angular Alignment Measurements of CVVRC2 Cube from + Y Side 58
10.10 Angular Alignment Measurements of HIFI from $+Z$ Side 58
10.11 Angular Alignment Measurements of PACS from + Z Side 60
10.12 Angular Alignment Measurements of SPIRE from + Z Side 61
10.13 Angular Alignment Measurements of CVVRC4 Cube from + Z Side 61
10.14 Angular Alignment Measurements of CVVRC2 from - Z Side 62
10.15 Horizontal Distance Measurements with LMD on + Y Side 63
10.16 Horizontal Distance Measurements with LMD on +Z Side 68
10.17 Vertical Distance Measurements with LMD 72
10.18 Vertical Distance Measurements with LMD -Z Side 75
11 Procedure Variation/NCR Summary 76
11.1 Procedure Variation Summary 76
11.2 Non-Conformance Report (NCR) Summary 77
11.3 Test Configuration Record 78
12 Alignment Sign-off Sheet 79
13 Open Work Summary 80
14 Annex 1: Position of Alignment Cubes 81
14.1 Alignment Cube Reference Table 81
15 Annex 2: OB Cube Reference Data 87

List of Tables

Table 7-1: Alignment Equipment List 22
Table 7-2: Identification of used Optical Alignment Equipment 23
Table 8-1: Environmental Conditions 24
Table 8-2: Personnel 24
Table 14-1: Alignment Cube Identification 81
Table 14-2: Alignment cube positions 84
Table 14-3: Expected theodolite readings for OB ref. cube 85
Table 14-4: Expected theodolite readings for HIFI FPU ref. cube 85
Table 14-5: Expected theodolite readings for PACS ref. cubes. 85
Table 14-6: Expected theodolite readings for PACS ref. cube. 86
Table 14-7: Expected distances of instrument and selected master references. 86
Table of Figures
Figure 4-1: Azimuth Reading 16
Figure 4-2: Elevation Reading 16
Figure 5-1: Herschel OBA with alignment references 18
Figure 6-1: Principle Sketch: Alignment Measurement Test Set-Up 19
Figure 6-2: Lateral Distance Measurement with LMD 20
Figure 6-3: Linear Measurement Device 20
Figure 10-1: Principle set up for vertical distance measurement with LMD from +Y 29
Figure 10-2: Principle set up for horizontal distance measurement from +Y 31
Figure 10-3: Principle set up for horizontal distance measurement from +Z. 33
Figure 10-4: Principle set up for angle measurement from +Y 35
Figure 10-5: Principle set up for angle measurement from +Z 38
Figure 10-6: (Analogous to Fig 10-1) Principle set up for vertical distance measurement with LMD from +Y 43
Figure 10-7: (Analogous to Fig 10-2) Principle set up for horizontal distance measurement from +Y 45
Figure 10-8: (Analogous to Fig 10-3) Principle set up for horizontal distance measurement from +Z 47
Figure 10-9: (Analogous to Fig 10-4) Principle set up for angle measurement from +Y 49
Figure 10-10: (Analogous to Fig 10-5) Principle set up for angle measurement from +Z. 52
Figure 10-11: (Analogous to Fig 10-4) Principle set up for angle measurement from +Y 55
Figure 10-12: (Analogous to Fig. 10-5) Principle set up for angle measurement from +Z 59
Figure 10-13: Principle set up for angle measurement from -Z 63
Figure 10-14: (Analogous to Fig. 10-2) Principle set up for distance measurements from +Y side 64
Figure 10-15: (Analogous to Fig. 10-3) Principle set up for distance measurements from $+Z$ side 69
Figure 10-16: (Analogous to Fig. 10-1) Principle set up for vertical distance measurements with LMD from $+y$ side 73
Figure 14-1: Alignment References for Instruments and Optical Bench. 82
Figure 14-2: CVV Reference Cubes: 83
Figure 15-1: Measured positions of cross hair on OB reference cube 87
Figure 15-2: Nominal ("As Designed") Alignment Cube positions 88

1 INTRODUCTION

1.1 Scope

This document describes the instrument level alignment measurements to be made after instrument integration onto OB. These measurements shall verify the correct positioning of the OB wrt. the CVV and of the instruments wrt. each other and wrt. the CVV/OB. The procedure for performing these activities is reflected in chapter 10 of this document.

Alignment adjustments and measurements have to be performed with the PFM.
The guidelines and requirements applicable to the PFM alignment activities are explained in [RD 1].

Lessons learned with the STM and EQM have been implemented for the PFM.

1.2 Objective

The alignment adjustment and verification measurements with the flight hardware are required in order to show that the alignment requirements specified in [AD 1] are met.

The alignment requirements as specified in [AD 1] are applicable for in-orbit conditions if not stated otherwise. The final verification of these requirements is a combination of on-ground alignment measurements and calculations taking into account in-orbit effects and launch loads. This analysis is performed in [RD 1] whereas this procedure covers the alignment activities for on-ground verification measurements.

Alignment measurements are carried out on several stages during the H-EPLM qualification and acceptance testing. A test plan and sequence for PFM is given in [RD 1], [RD 5] and [RD 6].

2 Applicable Documents

2.1 Applicable Documents

[AD 1]	H-EPLM requirements Specification (HERS) H-P-2-ASPI-SP-0250, issue 3.3, dated 20.10.2004
[AD 2]	Instrument Interface Document IID Part A SCI-PT-IIDA-04624, issue 4.0, dated 30.04.2006
[AD 3]	Instrument Interface Document Part B, Instrument HIFI SCI-PT-IIDB/HIFI-02125, issue 3.3, dated 21.10.2005
[AD 4]	Instrument Interface Document Part B, Instrument PACS SCI-PT-IIDB/PACS-02126, issue 4.0, dated 02.06.2006
[AD 5]	Instrument Interface Document Part B, Instrument SPIRE SCI-PT-IIDB/SPIRE-02124, issue 4.0, dated 01.04.2006
[AD 6]	FIRST Telescope Specification SCI-PT-RS-04671, issue 7.0, dated 26.07.2004

2.2 Reference Documents

[RD 1]	Alignment Method, Plan \& Results HP-2-ASED-TN-0097
[RD 2]	Herschel System Alignment Plan H-P-2-ASPI-PL-0276
[RD 3]	HIFI - LOU Alignment Plan (Annex 2 in IID Part A, SCI-PT-IIDA-04624, Issue 1/0, dated 1.09.2000)
[RD 4]	Satellite AIT Plan (Part 1: STM Qualification Phase) HP-2-ASED-PL-0025
[RD 5]	Herschel Satellite AIT Plan (Part 2: PFM Acceptance Phase) HP-2-ASED-PL-0026
[RD 6]	Handling and Integration Procedure, Herschel EPLM Support Structures \& SVM Thermal Shield HP-2-ECAS-PR-0001
[RD 7]	HIFI Alignment Camera System User Manual HP-2-TER-MA-0001
[RD 8]	Herschel Optical Bench Assembly Dimensional Check Report HP-2-SEN-TR-0009, Issue 1_3, dated 28.10.04
[RD 9]	HP-2-ECAS-PR-0014, Issue 02
[RD 10]	Report of the Measurements of the HIFI External Alignment Devices; FPSS-01068 Issue 3.0
[RD 11]	Distance Measurements Validity Check HP-2-ASED-TR-0174, Issue 1-0
[RD 12]	Inputs to System Level Alignment PACS-ME-TN-069, Issue 3
[RD 13]	SPIRE FPU External Alignment Report SPIRE-RAL-PEP-002946, Issue 1

3 Requirements to be verified

With this alignment procedure the on-ground alignment contribution of instruments and $O B$ to the overall alignment requirement as specified in [AD 1] will be verified. The overall verification of the alignment requirements can only be performed per analysis and will be provided with an update of [RD 1] after the on-ground alignment activities have been performed including the HACS and videogrammetry measurements during TB/TV testing.

- HERS 0680 Alignment cubes

The H-EPLM shall be equipped with at least 2 optical cubes (1 nominal, 1 for redundancy). They shall represent the H-EPLM optical reference frame.

- HERS 1240 Visibility of Alignment Cubes The optical references used for focal plane alignment shall be accessible during module and system AIT operations.
- HERS 1220 Focus Alignment

The absolute in-orbit focus alignment shall be less than:

Instrument	Absolute alignment requirement
PACS	$\pm 7.0 \mathrm{~mm}$
SPIRE	$\pm 7.7 \mathrm{~mm}$
HIFI	$\pm 8.5 \mathrm{~mm}$

- HERS 1230 Pupil Mismatch

Instrument	Absolute alignment requirement
PACS	$\pm 7.0 \mathrm{~mm}$
SPIRE	$\pm 9.5 \mathrm{~mm}$
HIFI	$\pm 24.0 \mathrm{~mm}$

- HERS 0640 PACS LOS Bias

The alignment bias of PACS Line of Sight with regard to the PLM-SVM interface frame shall be lower than ± 5 arcmin (including ground and in-orbit effects).

- HERS 0645 Around-LOS Bias

The maximum around-LOS alignment bias of each instrument with regard to PLM-SVM interface shall not exceed 12 arcmin (including on-ground positioning accuracy, thermoelastic behaviour).

- HERS 0650a SPIRE and HIFI LOS w.r.t. PACS LOS

SPIRE and HIFI in-orbit LOS shall be known with regard to PACS LOS with an accuracy better than ± 6 arcsec (2б) each axis (including on-ground alignment knowledge, in-orbit stability knowledge). In addition ASED's RfD 'HP-2-ASED-RD-0006 Issue 2.0' has to be considered.

Note: This requirement is related to the in-orbit knowledge accuracy of HIFI (resp. SPIRE) FPU cube w.r.t. the PACS FPU cube. it includes:

- On-ground relative position knowledge accuracy (y-z plane)
- In-orbit relative stability knowledge during cool (y-z plane)
- In-orbit thermoelastic behaviour (y-z plane)
- The relation between the yz instrument relative position knowledge and relative in-orbit LOS is the worst case length of the Telescope.
- HERS 0660 Around LOS Knowledge

The around LOS alignment of each instrument with regard to the PLMSVM interface frame shall be known with an accuracy better than ± 0.5 arcmin at 68 \% confidence level (including on-ground alignment knowledge, in-orbit stability knowledge):

NOTE:

From the above description, it is clear that this document covers only instrument to OB and CVV alignment and will, therefore, provide only inputs for the verification of the above compiled requirements.

At the time of preparation of this procedure, specific measured FPU reference cube positions and orientations are only available for OB, HIFI and PACS. Based on these measured data, nominal values for positions and orientations of these units have been calculated and will be used for comparison with the measurements as defined in this procedure.

For SPIRE, only measured rotations about y and z-axis exist. Therefore, for displacements, the "as designed values" together with the related tolerances for system level alignment as given in RD 13 have been used to derive "nominal values" for comparison with the measurements.

Should FPU data become available at a later point in time, even after integration, these measured alignment data can still be used to perform a detailed evaluation of the PLM alignment a posteriori, if desired. The data used for above mentioned position/orientation determination and the resulting values are compiled in Section 14.

4 Alignment Activities Description

4.1 Alignment Overview

The purpose of the instrument alignment is to precisely adjust the OBA, i. e. OB with the three Herschel instruments HIFI, PACS and SPIRE with respect to the CVV and hence with the telescope focus. For instrument position and orientation, the procedure defines certain tolerances (see. Sect 10 and its sub-sections). These tolerances are compatible with the performance budget. A part of the margin of the alignment budget (focus, pupil mismatch) is allocated to final OB misalignment tolerance: $\pm 1 \mathrm{~mm}$.

The LOU must be aligned very precisely to the HIFI FPU. Both elements are aligned to each other by a specific activity (covered by a dedicated LOU alignment procedure HP-2-ASED-TP-0112, tbi). The mounting tolerances (i. e. position/orientation deviations) mentioned above, therefore, do not apply to the HIFI FPU/LOU configuration. i. e., they have no impact on HIFI performance aspects.

During the Herschel integration, however, the telescope is the last subsystem which will be mounted onto the cryostat. At this integration stage the cryostat cover is already closed and therefore the optical reference cubes from the instruments can no longer be seen. Consequently the instruments must be aligned to a common intermediate optical reference, the CVV cubes, to which the telescope is aligned later on (covered by a separate telescope related procedure).

This procedure covers the following alignment tasks:

- Alignment of OB w.r.t. CVV
- Alignment measurements of instruments w.r.t. CVV alignment cubes

Main Integration and Alignment Steps:

1. Mounting of a reference cube at the optical bench (OB manufacturer) and CVV cubes at the CVV.
2. Integration of the OB into the cryostat.
3. Adjustment of the OB wrt. CVV.
4. Integration of the three instruments onto the optical bench. Each instrument is equipped with an alignment cube, in principle representing the instrument's internal alignment (see AD 3, 4, 5). Instruments, for which presently no specific measured alignment data exist (SPIRE) will be aligned to their nominal position (as per ICD) on the OB and their relation to the CVV reference cubes will be measured. When specific

FPU data become available, the alignment measurements will used to evaluate the PLM alignment a posteriori.
5. Alignment of the instruments is measured w.r.t. the CVV reference cube No 4 (CVVRC4) as shown in Figure 14-2 to obtain the knowledge about the actual orientation (position and angle), from which their relation to the OB reference cube is obtained (see step 6 below). 1)

1) According to IID-A the instruments shall be delivered with dowel pins. This is actually the case for PACS and HIFI. For SPIRE special screws will be used. That means, that the actual lateral position will be measured w.r.t. the OB and CVV but shimming is only possible in x direction. The instrument internal alignment error must be compliant with this alignment strategy.
6. Alignment measurement of $O B$ reference cube w.r.t. a reference cube mounted outside the CVV (see Figure 14-2). If necessary correction of OB via the tank straps.

NOTE:
Initially, all instruments/PLM related alignment measurements are made wrt. the CVVRC: CVVRC2 and CVVRC4. After mounting the PLM to the SVM, the final transfer to S/C coordinate system is then performed by measuring the relation of the CVVRCs wrt. the SVM related master reference cubes MRC3 (and MRC 4) and applying the appropriate transfer matrices computed in the MRC3 coordinate system. The determination of S/C axis will be performed by TAS-F.

The complete integration, alignment and test logic flow for PFM is shown in the Satellite AIT Plan, RD 5.

To compensate instrument internal dimensional tolerances, the instruments will be delivered with shimming plates. It is assumed, that the instruments will be delivered with adapted shims, i. e. a potential instrument internal misalignment is directly corrected by the correspondingly modified shims.

Dowel pins mounted at the OB shall serve as alignment reference to allow to find the alignment position again after removing of the instruments (e.g. for reproducible reintegration).

This procedure is valid for the PFM. The filled in test procedure establishes the main part of the alignment test report.

Instruments and OB will be delivered with alignment references and will be internally aligned w.r.t. these references (already performed before integration).

For the CVV the alignment reference cubes have been mounted during STM alignment activities according to the positions as shown in the annex.

The alignment methods are described in detail in RD 1. Here only a short overview is given for completeness of this document. Two types of alignment measurements are needed to perform all alignment tasks.

- Angle measurements between alignment cubes (using an auto-collimation theodolite and an angle transfer prism).
- Distance measurements between cross hairs marked at the surface of the alignment cubes (Linear Measurement Device along with theodolite and an angle transfer prism).

4.2 Adjustment Capabilities

For actual correction of the instrument alignment the following adjustment capabilities are foreseen:

1. Shimming plates for each instrument

- PACS shim thickness $\pm 3 \mathrm{~mm}$ in x direction
- HIFI shim adjustment range $\pm 3 \mathrm{~mm}$ in x direction
- SPIRE: No Shimming plates are foreseen

2. Optical Bench adjustment range in each direction 1.5 mm via the 16 tank straps. Additional $\pm 2 \mathrm{~mm}$ in x direction using shimming plates between OB and upper Spatial Frame Work.

4.3 Angle Measurements of Alignment cubes

The Angle measurements between different alignment cubes are based on the principle of auto-collimation. A theodolite with illuminated cross hair is used as autocollimator. The cross hair image is projected on a flat mirror (face of alignment cube) the angular orientation of which has to be determined. When the line of sight of the theodolite is parallel to the flat mirror normal, the reflected image of the cross hair is refocused in the cross hair plane and coincides with the theodolite cross hair. The corresponding azimuth and elevation angle from the flat mirror normal can than be read from the theodolite scales.

In the vertical plane this reading is related to the earth gravity field. The horizontal reading has to be related to a reference direction, for which an Angle Transfer Prism (ATP) will be used.

Since the alignment cubes are mounted on different heights the theodolite can be moved vertically on an alignment stand (see Figure 6-1).

4.4 Distance Measurements

The distance measurements are based on measurements using the Linear Measurement Device (LMD).

4.4.1 Linear Measurement Device

A scale tape (steel) is mounted onto a rail under a defined mechanical tension. On the tape surface engraved code bars which provide an absolute linear position code. The actual length is defined by aiming sequentially at position reference cubes with cross hair and an alignment target at the linear measurement device with a theodolite. The actual position is read by a scanning head mounted at the LMD (see Figure 6-3).
A validity check was performed with the LMD to demonstrate that the device is a tool adequate for distance measurements within the Herschel PFM AIT programme.
Details of the validity check (re-qualification) are given in RD 11.

4.5 Alignment Procedure

An alignment sequence consists of the following steps:

- Measurement process, auto-collimation or distance measurement. For an angular measurement the elevation and azimuth angles will be measured w.r.t. the alignment cube axes.
- Determination of the unit misalignment w.r.t. the nominal position and orientation and comparison to the alignment requirement.
- Final alignment check (only necessary if corrections, e. g. by shimming, have been made).

4.5.1 Theodolite Readings

The theodolite defines the reference frame for the elevation angles (internal levelling of the theodolite). For the azimuth the reference frame will be determined by an Angular Transfer Prism (ATP). This ATP defines the zero for the azimuth reading.

The elevation can vary between 0 and 180 degree and the azimuth is between 0 and 360 degree. The definition for elevation and azimuth is given in the following figures.

Each normal to a reference cube surface is defined by the elevation and the azimuth angle as shown in Figure 4-1 and 4-2. These are the raw measurement data that will be provided with the filled in Test Procedure.

The X, Y and Z -axis are here represented by the respective normals of the cube faces of CVVRC4.

Figure 4-1: Azimuth Reading

Figure 4-2: Elevation Reading

5 Test Article Description

Figure $5-1$ shows the Herschel Optical Bench Assembly（OBA）．The OBA is mounted in the centre of the CVV．For optical reference measurements it is equipped with a reference cube．With the upper bulkhead still open，the instrument positions can be measured wrt．the OBA reference cube．The OBA reference cube can be measured wrt．the outer CVV reference cubes．By the thus established relations between instruments and the CVV references further relations，e．g．wrt．TMS and telescope can be established later，when the upper bulkhead is closed．
After closure of upper bulkhead PACS and SPIRE are no longer accessible．Their position and orientation is considered being represented by the HIFI FPU AD which can be viewed via two alignment windows close to the LOU windows．In this way，the position of the telescope relative to PACS and SPIRE can be determined via measurements of the relation of HIFI＇s LOU wrt．FPU．
The LOU is mounted on the outer -y side of the CVV．
The involved alignment reference locations are compiled in Annex 1

Figure 5-1: Herschel OBA with alignment references
The OBA and instrument positions will be measured wrt. the outer CVV reference cubes (not shown here) on +y and $-z$ side of the CVV. By the thus established relations between instruments and the CVV references, further relations, e. g. wrt. TMS and telescope can be established later (after CVV is closed).
Solid lines indicate optical access (of theodolite) to the individual reference cubes.

6 Test Set-Up Configuration

The configuration of the test set-up for the PFM is shown in a principle Sketch in Figure 6-1

The EPLM is shown on the rotary table with the upper bulkhead not yet mounted. The right side shows the theodolite adjustable to the required working heights by vertical and horizontal shifts along guiding rails of the tripod.

For the purpose of the measurements of this procedure, the PLM is not mounted on the SVM but on the TTAP. The TTAP is equipped with a coordinate system, which makes sure that the PLM is mounted in one unique relation to the TTAP.

The alignment stand is located at a convenient distance (appr. 1-5m from the EPLM). Auto-collimation will be performed to the CVV reference cube and each unit equipped with an alignment reference, such as OB and instruments.

Figure 6-1: Principle Sketch: Alignment Measurement Test Set-Up

Procedure
Herschel

Figure 6-2 and Figure 6-3 show a typical set-up for the Linear Measurement Device.

Figure 6-2: Lateral Distance Measurement with LMD

Figure 6-3: Linear Measurement Device

Configuration PLM relative to TTAP:

To be noted prior to begin of measurements:

7 Test Equipment

In the following table the main equipment needed for Herschel instrument level alignment activities is shown.

Nr.	Qty	Equipment	Description	Remark
1	2	Theodolite	Wild T2000 S or equivalent	
2	1	Linear Measurement Device	For axial and lateral distance measurements	
3	2	Angular Transfer Prism	As reference for azimuth	
5	3	Alignment reference cubes	1 on OB, 2 on CVV cylinder. part	1 1)
6	1	Support Structure for LMD	For vertical and horizontal measurements	
7	1	Alignment Stand	For Theodolite Height appr. 7,5m	Metop Equipment
8	1	Adjustable support for PLM or use of a rotary	For precise levelling of the PLM	
9	1	Adapter	For SVM I/F	
10	1	Adapter	For PLM I/F	
11	1	Rotary Table		

Table 7-1: Alignment Equipment List
1 pair of theodolite/ATP will be used for measurements, the other pair is foreseen as backup.

The units to be aligned (instruments) will be delivered already with alignment cubes mounted. Their relation to the unit has to be determined by the manufacturer.

The CVV is equipped with 4 master reference cubes with the following characteristics:

- Flatness better than lambda/4
- The reflecting surfaces are orthogonal to each other with an angle of $90^{\circ} \pm$ 10arcsec
- Reflectivity better than 75%
- Material characteristics to survive environmental testing without performance degradation.
- The alignment cubes are protected by caps.

1) The CVV is equipped with 4 reference cubes (MRC). Two of them (nominal and redundant cube) will be mounted on the cylindrical part of the CVV: CVVRC2 and CVVRC4). The other two CVVRC 1 and CVVRC3 (auxiliary cubes) are mounted at the upper bulkhead for back up reasons (instability of nominal cube after re-tensioning of struts).

During the STM alignment a stability test was already performed. During integration of the instruments onto the OB only CVVRC2 and CVVRC 4 are available.
After re-tensioning of the straps (after cool down) the alignment of HIFI - and hence also of the OB - will be checked using the alignment devices of HIFI as references.

All measurements will be made relative to CVVRC4 as "Master Reference Cube". Thus, at later stages, e. g. after the CVV has been closed the positional relation of all aligned units can be retrieved by measurements referenced to CVVRC4.

Since CVVRC4 (and CVVRC2) is not fully accessible at system level alignment activities (obstruction by other equipment) additional references have to be introduced at later project stages, e.g. before the obstructing external cryo-equipment and cabling is mounted to the CVV after integration of the upper bulkhead with two reference cubes CVVRC1 and CVVRC3. By measuring their relation to CVVRC4, CVVRC 1,3 will provide full knowledge of the alignment relations of other equipment such as TMS or telescope wrt. the $O B$ and instruments.

7.1 Used Test Equipment

The theodolites and ATPs used for the alignment measurements are identified in the following table. The Table shall be filled in prior to test, when the actually used equipment has been prepared.

Equipment	Short designation/calibration	Serial No.
Theodolite	Theo A	
Theodolite	Theo B	
Angle Transfer Prism	ATP A	
Angle Transfer Prism	ATP B	

Table 7-2: Identification of used Optical Alignment Equipment

8 Test Conditions

8.1 Environmental Conditions

Environmental	Nominal	Remark
Clean Room Class	100	CVV open
Temperature	$22^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$	
Rel. Humidity	$40 \%-60 \%$	
Pressure	Ambient	

Table 8-1: Environmental Conditions

8.2 Other conditions

The alignment shall be performed on a stable, vibration free floor.

8.3 Personnel

The following personnel is required to perform the alignment measurements.

Responsibility	Name
Test Manager	
Handling and Integration Engineer	
Alignment Engineers (2 Persons)	
PA Responsible	

Table 8-2: Personnel

8.4 General and Special Precautions/Safety

The following shall be considered:
The handling of the test set-up shall be in accordance with controlled procedure only.
Handling, mechanical and electrical, has to be done only by qualified personnel.

- The test personnel should pay attention that the complete test is carried out following the procedure steps exactly. This will be confirmed by a signature on the corresponding procedure sheet.
- Correct set-up of the test equipment has to be checked carefully prior to the test.
- Any changes to the alignment sequence have to be recorded in the procedure variation sheet.
- Wherever nominal values and dedicated tolerances are defined, actual measured values shall be recorded to document that the test step was successful. If any actual measured value is out-of-limits or if any step cannot be completed correctly, a Non-Conformance-Report (NCR) shall be written. All deviations during the integration have to be handled with NCR's and have to be noted in the NCR summary table.

Please note: There is one exception to the above rule: In Sect. 10.2 and 10.3 the position and orientation of the OB is measured. Since at this stage, the OB need not necessarily be precisely adjusted, the procedure calls for a re-adjustment and a corresponding re-measurement. Also, in case the re-measurement (Sect. 10.4, 10.5) does not yet yield the desired position and accuracy, another re-adjustment may become necessary. All re-measurements after re-adjustment activities will be recorded and appended to the "as run procedure". Thus a complete visibility of all measurements and adjustment steps is guaranteed.

9 Specific Conditions for PFM Instrument Alignment

The involved instruments will be mounted according to their relevant integration procedures. All instruments and the OB have their optical reference cubes or mirrors already mounted.

10 Test Procedures

This chapter describes the necessary steps to perform the angular and distance measurements as described in chapter 4. The principal measurement steps are analogous for all cubes.

The angular and distance measurements as described in Section 4.3 and 4.4 shall be performed for each alignment cube (surface) as listed in Table 14-1 (Appendix).

Measurements:

1. For each measurement (position and orientation) the measurement is performed three times.
a. For position, the LMD reticle is set in position again, the theodolite is readjusted accordingly.
b. For orientation, the theodolite is set into auto-collimation wrt. the ATP and re-orientated back to the reference cube.
2. The standard deviation between the three measurements shall be within the measurement accuracy (see below).
3. The mean value of the three measurements shall be within the specified tolerance (e. g. $\pm 1 \mathrm{~mm}$ of OB).

Measurement Accuracies:

For the tasks to be performed according to this procedure, the following accuracies shall be considered ($\mathbf{2} \sigma$-values) for a single measurement:

$$
\begin{array}{ll}
\text { Linear measurements with LMD: } & \pm 0.4 \mathrm{~mm} \\
\text { Angle measurements: } & \pm 20 \text { arcsec. }
\end{array}
$$

To achieve the requested measurement accuracy, the theodolites have to be levelled adequately before the measurements. The typical levelling accuracy is ≤ 2 arcsec.

Zero-Points of Linear Distance Measurements:

For the linear distance measurements, usually the first of the two reference points to be measured is defined as zero-point, i. e., its coordinate is set to zero. The procedure contains tables, to record also these values. Although these values will be (typically) zero throughout the measurements, they are recorded in order to make sure, that the measurement was performed correctly, i. e. that no reset of the zeropoint was erroneously omitted.

Checks of ATP Position:

The positioning of the ATP will be checked after each measurement (as far as relevant), i. e., after angle measurements.
With the linear distance measurements, such a check is only helpful when the LMD is horizontal. For vertical measurements, the only relevant measurement reference is the theodolite-internal plumb-line.

Before Begin of alignment measurements:

0. Complete form "Configuration PLM relative to TTAP" in Sect 6 and Table 7-2 in Sect 7.

10.1 Rotary Table Levelling

1. Place the rotary table on the foreseen place at the test floor.
2. Connect the operating and read out electronics
3. Adjust (levelling) the rotation axis as per rotary table manual. The aimed accuracy is ± 2 arcsecs for any position.

Rotary table levelling:	Level1
Date/Time:	Level2

10.2 Check of OB Position

See Fig. 10-1.

4. Mount LMD vertically close to CVVRC4 $+Y$ face. The distance to the OB cube shall be in the range of (approximately) $1-5 \mathrm{~m}$. Check verticality with water balance on two orthogonal sides of the LMD beam. Deviations from verticality shall not be larger than ± 0.5 deg.

LMD verticality:	Elevation1
Date/Time:	Elevation2

5. Mount theodolite such that CVVRC4 +Y face can be viewed in autocollimation.
6. Achieve auto-collimation with CVVRC4, and set theodolite Hz reading to 0.0000 deg. Rotate theodolite to the left until 270.0000 azimuth is reached. Mount ATP such that theodolite achieves auto-collimation wrt. ATP. Rotate theodolite back to CVVRC4 and achieve auto-collimation. Theodolite reading must be $\mathrm{Hz}=0.0000$ deg. ± 10 arcsec. If this is not the case, repeat step 6 until condition is fulfilled.
7. Direct theodolite towards CVVRV4, set $V=90.0000$ deg. and adjust theodolite height with x translation stage to centre of reticle. Rotate theodolite towards LMD.
8. Move the scanning head of the LMD until the elevation bar of the cross hair coincides with the elevation bar of theodolite cross hair.

Figure 10-1: Principle set up for vertical distance measurement with LMD from +Y
9. Set the LMD reading to zero at this point. Record the following value:

CVVR4 + Y Linear Position in X		Mean
X(CVVRC4+Y)		
Measurement Date:	Time:	

10. Adjust theodolite with elevation set to 90.0000 deg. in height to upper edge of CVV I/F flange and rotate theodolite towards LMD.
11. Move the scanning head of the LMD until the upper edge of the I/F-flange coincides with the elevation bar of theodolite cross hair. Record the following
value:

CVV I/F flange plane Linear Position in X			Mean
X(CVV I/F)			
Measurement Date:	Time:		

12. Adjust theodolite with lateral stages to the centre of the next reference point: OB RC + Y side and rotate theodolite towards LMD.
13. Move the scanning head of the LMD until the elevation bar of the cross hair coincides with the elevation bar of the theodolite cross hair and record the following value:

| OB+y face Linear Position in X | Mean | |
| :--- | :--- | :--- | :--- |
| $X(O B+y)$ | Time: | |
| Measurement Date: | | |

Re-check LMD orientation:	Elevation1
Date/Time:	Elevation2

Re-check Rotary table levelling:	Level1
Level2	

Check of OB position in Z-direction

See Fig. 10-2.

14. Mount LMD horizontal in front of $+Y$ side. Set theodolite in front of LMD reference mirror and direct theodolite towards ATP. Achieve auto-collimation with ATP and set theodolite azimuth reading to $\mathrm{Hz}=270.0000$ deg. Rotate theodolite back to LMD reference mirror until azimuth 0.0000 deg. is reached. Adjust LMD such that auto-collimation mark from reference mirror is visible within theodolite's FoV. If this is achieved, the LMD is parallel to the Z-axis by better than ± 0.5 deg. Check horizontal orientation of LMD beam with water balance. Deviation from exact horizontal orientation shall be less than ± 0.5 deg.

LMD horizonztality:	Elevation1
Date/Time:	Elevation2

15. Switch on the LMD display according to the LMD manual.
16. Check the levelling of the theodolite. Level if necessary.
17. Direct theodolite towards ATP, achieve auto-collimation and set $\mathrm{Hz}=270.0000$.
18. Rotate theodolite back to $\mathrm{Hz}=0.0000$ deg. and adjust theodolite with lateral stage to azimuth bar of cross hair of CVVRC4 +y face.
19. Move the scanning head of the LMD until the azimuth of the cross hair coincides with the azimuth of theodolite cross hair.
20. Set the LMD reading to zero at this point. Record the following value:

CVVRC4 Linear Position in Z	Mean		
Z(CVVRC4+y)			
Measurement Date:	Time:		

Figure 10-2: Principle set up for horizontal distance measurement from +Y .
21. Move the theodolite to the next reference: $O B R C$, check the levelling in this position. Level if necessary.
22. Move the scanning head of the LMD until the azimuth cross of the hair coincides with the azimuth of the theodolite cross hair.
23. Read-out the LMD display. Record the following value:

OB +y face Linear Position in Z	Mean		
Z(OB+y)		Time:	
Measurement Date:			

24. Check ATP position:

ATP Position: $\mathrm{Hz}=$	
Date:	Time:

Re-check LMD orientation:	Azimuth:
Date/Time:	Elevation

Re-check Rotary table levelling:	Level1
Level2	

Check of OB position in Y-direction

See Fig. 10-3:

25. Rotate PLM such that $+Z$ side points towards theodolite and check Rotary Table levelling

Rotary table levelling:	Level1
Date/Time:	Level2

26. Adjust theodolite with lateral stage to the centre of the first reference point: CVVRC4 + Z side and achieve auto-collimation.
27. Set theodolite reading to $\mathrm{Hz}=0.0000$ deg. Rotate theodolite through 90 deg. to the left until theodolite reading $\mathrm{Hz}=270.0000$ deg. is reached

28．Check that ATP is in auto－collimation，adjust if necessary．Set $\mathrm{Hz}=270.0000 \mathrm{deg}$ ．

29．Rotate theodolite back to $\mathrm{Hz}=0.0000$ deg．and adjust theodolite with lateral stage to azimuth bar of cross hair of CVVRC4＋z face．

Re－check LMD orientation： | Azimuth： | |
| :--- | :--- |
| | Elevation |

Date／Time：

Figure 10－3：Principle set up for horizontal distance measurement from $+Z$ ．

30．Move the scanning head of the LMD until the azimuth of the cross hair coincides with the azimuth of theodolite cross hair．
31. Set the LMD reading to zero at this point. Record the following value:

CVVRC4+z face Linear Position in Y		Mean	
Y(CVVRC4+z)			
Measurement Date:	Time:		

32. Move the theodolite to the next reference: $O B R C$, check the levelling in this position. Level if necessary.
33. Move the scanning head of the LMD until the azimuth bar of the cross hair coincides with the azimuth of the theodolite cross hair in the OB position.
34. Read-out the LMD display. Record the following value:

OB +z face Linear Position in Y		Mean	
$\mathrm{Z}(\mathrm{OB}+\mathrm{z})$		Time:	
Measurement Date:			

35. Check ATP position:

ATP Position: $\mathrm{Hz}=$	
Date:	Time:

Re-check LMD orientation:	Azimuth: Elevation
Date/Time:	

Re-check Rotary table levelling:	Level1 Level2
Date/Time:	

10.3 Check of OB Orientation from + Y-direction

See Fig 10-4:

36. Rotate PLM such that $+Y$ side points towards theodolite and check Rotary Table levelling

Rotary table levelling:	Level1
Date/Time:	Level2

37. Point the theodolite to CVVRC4 and achieve auto-collimation.
38. Set theodolite reading to $\mathrm{Hz}=0.0000$ deg. Rotate theodolite through 90 deg. to the left until theodolite reading $\mathrm{Hz}=270.0000$ is reached.
39. Place ATP such that it can be viewed from theodolite at 270.0000 deg. position and level it.
40. Adjust ATP such that theodolite achieves auto-collimation.

Figure 10-4: Principle set up for angle measurement from +Y .
41. Rotate theodolite back to CVVRC4 until auto-collimation is achieved. Theodolite reading shall be $\mathrm{Hz}=0.0000$ deg. ± 10 arcsec. If this is not the case, repeat steps 37-43 until this condition is fulfilled. Record the following values:

CVVRC4+y face				
$\mathrm{HZ}=$				
$\mathrm{V}=$				
	Measurement Date:	Measurement Time:		

42. Check ATP position:

ATP Position: $\mathrm{Hz}=$	
Date:	Time:

43. Set up theodolite in front of OB RC face +y such that ATP can be viewed from this position and level theodolite.
44. Direct theodolite to the ATP, achieve auto-collimation and set theodolite reading to $\mathrm{Hz}=270.0000 \mathrm{deg}$.
45. Rotate theodolite back to OB RC, achieve auto-collimation and record the following values:

$\mathrm{OB}+\mathrm{y}$ face				Mean
$\mathrm{HZ}=$				
$\mathrm{V}=$				
	Measurement Date:	Measurement Time:		

46. Check ATP position:

ATP Position: $\mathrm{Hz}=$	
Date:	Time:

Re-check Rotary table levelling:	Level1 Level2
Date/Time:	

Check of OB orientation from +Z-direction

See Fig 10-5.

47. Rotate Rotary table through 90.0000 deg., such that PLM $+Z$ side points towards theodolite and check Rotary Table levelling.

Re-check Rotary table levelling:	Level1
Level2	

48. Set up theodolite in front of CVV RC 4 such that ATP can be viewed from this position and level theodolite.
49. Direct theodolite towards ATP and achieve auto-collimation. Set $\mathrm{Hz}=270.0000 \mathrm{deg}$.
50. Rotate theodolite back to CVVRC4 until auto-collimation occurs. and record the following values:

CVVRC4+y face				Mean
$\mathrm{HZ}=$				
$\mathrm{V}=$				
	Measurement Date:	Measurement Time:		

51. Check ATP position:

ATP Position: $\mathrm{Hz}=$	
Date:	Time:

Figure 10-5: Principle set up for angle measurement from $+Z$.
52. Move theodolite to the next reference: OB RC, check the levelling in this position. Level if necessary.
53. Direct theodolite to the ATP, achieve auto-collimation and set theodolite reading to $\mathrm{Hz}=270.0000 \mathrm{deg}$.
54. Rotate theodolite back to OB RC, achieve auto-collimation and record the following values:

$\mathrm{OB}+\mathrm{z}$ face			Mean	
$\mathrm{HZ}=$				
$\mathrm{V}=$				
	Measurement Date:	Measurement Time:		

55. Check ATP position:

ATP Position: $\mathrm{Hz}=$	
Date:	Time:

Re-check Rotary table levelling:	Level1
Date/Time:	

56. Compare the values measured in steps 4 through 55 to their target values. If any of the measured values is not reached within its given tolerance range, the OB has to be adjusted accordingly and the measurement steps 4 through 55 have to be repeated. The re-adjustment will be made by the mechanical integration personnel (according to company-internal procedure).

Value Comparison: ΔX of CVV I/F Flange	Value OK	Value not OK
Measured Distance to CVVRC4: $\Delta X=\quad \mathbf{m m}$ Nominal Distance to CVVRC4: $\Delta X=\mathbf{5 7 . 5 ~ m m ~} \pm \mathbf{1 ~ m m}$		
If value is not achieved adjust OB to above value and repeat		
steps 4-56.		

Value Comparison: $\Delta \mathrm{X}$ of OB +Y face	Value OK	Value not OK
Measured Distance to CVVRC4: $\Delta X=\quad \mathbf{m m}$ Nominal Distance to CVVRC4: $\Delta X=\mathbf{5 6 0 . 5} \mathbf{~ m m ~} \pm \mathbf{1 ~ m m}$ If value is not achieved adjust OB to above value and repeat steps 4-56.		

Value Comparison: ΔZ of OB +y face	Value OK	Value not OK
Measured Distance to CVVRC4: $\Delta Z=$ Nominal Distance to CVVRC4: $\Delta Z=\mathbf{7 2 . 1 ~ m m ~} \pm \mathbf{1 . 0} \mathbf{~ m m ~}$ If value is not achieved adjust OB to above value and repeat steps $4-56$.		

Value Comparison: $\Delta \mathrm{Y}$ of $\mathrm{OB}+\mathrm{Z}$ face	Value OK	Value not OK
Measured Distance to CVVRC4: $\Delta \mathrm{Y}=\quad \mathrm{mm}$ Nominal Distance to CVVRC4: $\Delta \mathrm{Y}=\mathbf{2 5 6 . 7} \mathbf{~ m m ~} \pm \mathbf{1 . 0} \mathbf{~ m m ~}$ If value is not achieved adjust OB to above value and repeat steps 4-56		

Value Comparison: Rot of OB +Y face	Value OK	Value not OK
$\mathrm{Hz}=\quad$ deg.		
$V=\quad$ deg.		
Nominal theodolite readings shall be:		
$\mathrm{Hz}=359.9551$ deg. ± 120 arcsec		
$\mathrm{V}=90.0652 \mathrm{deg} . \pm 120$ arcsec		
If value is not achieved adjust $O B$ to above value and repeat steps 4 - 56 .		

Value Comparison: Rot of OB +Z face	Value OK	Value not OK
Measured theodolite readings:		
$\mathrm{Hz}=\quad$ deg.		
$V=\quad$ deg.		
Nominal theodolite readings shall be:		
$\begin{aligned} \mathrm{Hz} & =359.9547 \text { deg. } \pm 120 \text { arcsec } \\ \mathrm{V} & =89.9229 \text { deg. } \pm 120 \text { arcsec } \end{aligned}$		
If value is not achieved adjust $O B$ to above value and repeat steps 4-56.		

The subsequent Sections 10.4 and 10.5 are intended for REPETION OF MEASUREMENTS OF OB POSITION AND ORIENTATION AFTER OB-ADJUSTMENT

If an adjustment of the $O B$ is not necessary, these two sections shall be omitted.

10.4 OB Position Measurement: Repetition after OB Re-Adjustment

See Fig. 10-6.

4. Mount LMD vertically close to CVVRC4 $+Y$ face. The distance to the OB cube shall be in the range of (approximately) $1-5 \mathrm{~m}$. Check verticality with water balance on two orthogonal sides of the LMD beam. Deviations from verticality shall not be larger than 0.5 deg.

LMD verticality:	Elevation1
	Elevation2

Date/Time:
5. Mount theodolite such that CVVRC4 +Y face can be viewed in autocollimation.
6. Achieve auto-collimation with CVVRC4, and set theodolite reading to $\mathrm{Hz}=$ 0.0000 deg. Rotate theodolite to the left until $\mathrm{Hz}=270.0000$ is reached. Mount ATP such that theodolite achieves auto-collimation wrt. ATP. Rotate theodolite back to CVVRC4 and achieve auto-collimation. Theodolite reading must be Hz $=0.0000$ deg. ± 10 arcsec. If this is not the case, repeat step 6 until condition is fulfilled.
7. Direct theodolite towards CVVRV4, set $\mathrm{V}=90.0000$ deg. and adjust theodolite height with x translation stage to centre of reticle. Rotate theodolite towards LMD.
8. Move the scanning head of the LMD until the elevation bar of the cross hair coincides with the elevation bar of theodolite cross hair.

Figure 10-6: (Analogous to Fig 10-1) Principle set up for vertical distance measurement with LMD from + Y
9. Set the LMD reading to zero at this point. Record the following value:

CVVR4 + Y Linear Position in X		Mean
X(CVVRC4+Y)		
Measurement Date:	Time:	

10. Adjust theodolite with elevation set to 90.0000 deg. in height to upper edge of CVV I/F flange and rotate theodolite towards LMD.
11. Move the scanning head of the LMD until the upper edge of the I/F-flange coincides with the elevation bar of theodolite cross hair. Record the following value:

CVV I/F flange plane Linear Position in X			Mean
X(CVV I/F)			
Measurement Date:	Time:		

12. Adjust theodolite with lateral stages to the centre of the next reference point: OB RC + Y side and rotate theodolite towards LMD..
13. Move the scanning head of the LMD until the elevation bar of the cross hair coincides with the azimuth bar of the theodolite cross hair and record the following value:

| OB+y face Linear Position in X | Mean | |
| :--- | :--- | :--- | :--- |
| $X(O B+y)$ | | |
| Measurement Date: | Time: | |

Re-check LMD orientation:	Azimuth: Elevation
Date/Time:	

Re-check Rotary table levelling:	Level1 Level2
Date/Time:	

Check of OB position in Z-direction

See Fig. 10-7.

14. Mount LMD horizontal in front of $+Y$ side. Set theodolite in front of auto-LMD reference mirror and direct theodolite towards ATP. Achieve auto-collimation with ATP and set theodolite azimuth reading to $\mathrm{Hz}=270.0000$ deg. Rotate theodolite back to LMD reference mirror until azimuth 0.0000 deg. is reached. Adjust LMD such that auto-collimation mark from reference mirroris visible within theodolite's FoV. If this is achieved, the LMD is parallel to the Z-axis by better than ± 0.5 deg. Check horizontal orientation of LMD beam with water balance. Deviation from exact horizontal orientation shall be less than ± 0.5 deg.

LMD horizonztality:	Elevation1
Date/Time:	Elevation2

15. Switch on the LMD display according to the LMD manual.
16. Check the levelling of the theodolite. Level if necessary.
17. Direct theodolite towards ATP, achieve auto-collimation and set $\mathrm{Hz}=270.0000$.
18. Rotate theodolite back to $\mathrm{Hz}=0.0000$ deg. and adjust theodolite with lateral stage to azimuth bar of cross hair of CVVRC4 +y face.
19. Move the scanning head of the LMD until the azimuth of the cross hair coincides with the azimuth of theodolite cross hair.
20. Set the LMD reading to zero at this point. Record the following value:

CVVRC4 Linear Position in Z			Mean
Z(CVVRC4+y)			
Measurement Date:	Time:		

Figure 10-7: (Analogous to Fig 10-2) Principle set up for horizontal distance measurement from +Y .
21. Move the theodolite to the next reference: $O B R C$, check the levelling in this position. Level if necessary.
22. Move the scanning head of the LMD until the azimuth cross of the hair coincides with the azimuth of the theodolite cross hair
23. Read-out the LMD display. Record the following value:

OB +y face Linear Position in Z	Mean		
Z(OB+y)			
Measurement Date:	Time:		

24. Check ATP position:

ATP Position: $\mathrm{Hz}=$	
Date:	Time:

Re-check LMD orientation:	Azimuth:
	Elevation
Date/Time:	

Re-check Rotary table levelling: | Level1 |
| :--- |
| |
| Level2 |

Date/Time:

Check of OB position in Y-direction

See Fig. 10-8:

25. Rotate PLM such that $+Z$ side points towards theodolite and check Rotary Table levelling

Rotary table levelling:	Level1
Date/Time:	Level2

26. Adjust theodolite with lateral stage to the centre of the first reference point: CVVRC4 + Z side and achieve auto-collimation.

Figure 10-8: (Analogous to Fig 10-3) Principle set up for horizontal distance measurement from $+Z$.
27. Set theodolite reading to $\mathrm{Hz}=0.0000$ deg. Rotate theodolite through 90 deg. to the left until theodolite reading $\mathrm{Hz}=270.0000$ deg is reached.
28. Check that ATP is in auto-collimation, adjust if necessary. Set $\mathrm{Hz}=270.0000$ deg.
29. Rotate theodolite back to $\mathrm{Hz}=0.0000$ deg. and adjust theodolite with lateral stage to azimuth bar of cross hair of CVVRC4 +z face.

Re-check LMD orientation:	Azimuth:
Date/Time:	Elevation

30. Move the scanning head of the LMD until the azimuth of the cross hair coincides with the azimuth of theodolite cross hair.
31. Set the LMD reading to zero at this point. Record the following value:

CVVRC4+z face Linear Position in Y		Mean	
Y(CVVRC4+z)			
Measurement Date:	Time:		

32. Move the theodolite to the next reference: OB RC, check the levelling in this position. Level if necessary.
33. Move the scanning head of the LMD until the azimuth bar of the cross hair coincides with the azimuth of the theodolite cross hair in the OB position.
34. Read-out the LMD display. Record the following value:

OB +z face Linear Position in Y	Mean		
$Z(O B+z)$		Time:	
Measurement Date:			

35. Check ATP position:

ATP Position: $\mathrm{Hz}=$	
Date:	Time:

Re-check LMD orientation:	Azimuth:
	Elevation
Date/Time:	

Re-check Rotary table levelling:	Level1 Level2
Date/Time:	

10.5 Check of OB Orientation from +y-direction

See Fig 10-9:

36. Rotate PLM such that $+Y$ side points towards theodolite and check Rotary Table levelling

Rotary table levelling：	Level1
	Level2

Date／Time：
37．Point the theodolite to CVVRC4 and achieve auto－collimation．
38．Set theodolite reading to $\mathrm{Hz}=0.000$ deg．Rotate theodolite through 90 deg．to the left until theodolite reading $\mathrm{Hz}=270.0000$ deg．is reached．

39．Place ATP such that it can be viewed from theodolite at $\mathrm{Hz}=270.0000$ deg． position and level it．

40．Adjust ATP such that theodolite achieves auto－collimation．

Figure 10－9：（Analogous to Fig 10－4）Principle set up for angle measurement from +Y ．
41. Rotate theodolite back to CVVRC4 until auto-collimation is achieved. Theodolite reading shall be $\mathrm{Hz}=0.0000$ deg. ± 10 arcsec. If this is not the case, repeat steps $37-41$ until this condition is fulfilled and record the following values:

CVVRC4 +y face				Mean
$\mathrm{HZ}=$				
$\mathrm{V}=$				
	Measurement Date:	Measurement Time:		

42. Check ATP position:

ATP Position: $\mathrm{Hz}=$	
Date:	Time:

43. Set up theodolite in front of OB RC face +y such that ATP can be viewed from this position and level theodolite.
44. Direct theodolite to the ATP, achieve auto-collimation and set theodolite reading to $\mathrm{Hz}=270.0000$ deg
45. Rotate theodolite back to OB RC, achieve auto-collimation and record the following values:

$\mathrm{OB}+\mathrm{y}$ face							Mean
$\mathrm{HZ}=$							
$\mathrm{V}=$							
	Measurement Date:	Measurement Time:					

46. Check ATP position:

ATP Position: $\mathrm{Hz}=$	
Date:	Time:

Re-check Rotary table levelling:	Level1 Level2
Date/Time:	

Check OB orientation from +Z-direction

See Fig 10-10.

47. Rotate Rotary table through 90.0000 deg., such that PLM + Z side points towards theodolite and check Rotary Table levelling.

Re-check Rotary table levelling: | Level1 |
| :--- |
| |
| Level2 |

Date/Time:
48. Set up theodolite in front of CVV RC 4 such that ATP can be viewed from this position and level theodolite
49. Direct theodolite towards ATP and achieve auto-collimation. Set $\mathrm{Hz}=270.0000 \mathrm{deg}$
50. Rotate theodolite back to CVVRC4 and achieve auto-collimation. Record the following values:

CVVRC4+z face				Mean
$\mathrm{HZ}=$				
$\mathrm{V}=$				
	Measurement Date:	Measurement Time:		

51. Check ATP position:

ATP Position: $\mathrm{Hz}=$	
Date:	Time:

Figure 10-10: (Analogous to Fig 10-5) Principle set up for angle measurement from $+Z$.
52. Move theodolite to the next reference: OB RC, check the levelling in this position. Level if necessary.
53. Direct theodolite to the ATP, achieve auto-collimation and set theodolite reading to $\mathrm{Hz}=270.0000 \mathrm{deg}$.
54. Rotate theodolite back to OB RC, achieve auto-collimation and record the following values:

$\mathrm{OB}+\mathrm{z}$ face			Mean	
$\mathrm{HZ}=$				
$\mathrm{V}=$				
	Measurement Date:	Measurement Time:		

55. Check ATP position:

ATP Position: $\mathrm{Hz}=$	
Date:	Time:

Re-check Rotary table levelling: Level1 \quad| Level2 |
| ---: |

Date/Time:
56. Compare the values measured in steps 4 through 55 to their target values. If any of the measured values is not reached within its given tolerance range, the OB has to be adjusted accordingly and the measurement steps 4 through 53 have to be repeated. The re-adjustment will be made by the mechanical integration personnel (according to company-internal procedure).

Value Comparison: $\Delta \mathrm{X}$ of CVV I/F Flange	Value OK	Value not OK
Measured Distance to CVVRC4: $\Delta X=\quad \mathbf{m m}$ Nominal Distance to CVVRC4: $\Delta X=57.5 \mathbf{~ m m ~} \pm \mathbf{1 ~ m m}$		
If value is not achieved adjust OB to above value and repeat		
steps $4-56$.		

Value Comparison: $\Delta \mathrm{X}$ of OB +Y face	Value OK	Value not OK
Measured Distance to CVVRC4: $\Delta X=\quad \mathbf{m m}$ Nominal Distance to CVVRC4: $\Delta X=\mathbf{5 6 0 . 5} \mathbf{~ m m ~} \pm \mathbf{1 ~ m m}$ If value is not achieved adjust OB to above value and repeat steps $4-56$.		

Value Comparison: ΔZ of OB +y face	Value OK	Value not OK
Measured Distance to CVVRC4: $\Delta Z=$ Nominal Distance to CVVRC4: $\Delta Z=\mathbf{7 2 . 1 ~ m m ~} \pm \mathbf{1 . 0} \mathbf{~ m m ~}$ If value is not achieved adjust OB to above value and repeat steps $4-56$.		

Value Comparison: $\Delta \mathrm{Y}$ of $\mathbf{O B}+\mathrm{Z}$ face	Value OK	Value not OK
Measured Distance to CVVRC4: $\Delta \mathrm{Y}=\quad \mathrm{mm}$ Nominal Distance to CVVRC4: $\Delta \mathrm{Y}=\mathbf{2 5 6 . 7 ~ \mathbf { m m } \pm \mathbf { 1 . 0 } \mathbf { ~ m m ~ }}$ If value is not achieved adjust OB to above value and repeat steps 4-56		

Value Comparison: Rot of $\mathbf{O B}+\mathbf{Y}$ face	Value OK	Value not OK
$\mathrm{Hz}=\quad$ deg.		
$\mathrm{V}=\quad$ deg.		
Nominal theodolite readings shall be: $\mathrm{Hz}=359.9551$ deg. ± 120 arcsec $\mathrm{V}=90.0652$ deg. ± 120 arcsec If value is not achieved adjust OB to above value and repeat steps $4-56$.		

Value Comparison: Rot of OB +Z face	Value OK	Value not OK
Measured theodolite readings:		
$\mathrm{Hz}=\quad$ deg.		
$V=\quad$ deg.		
Nominal theodolite readings shall be:		
$\begin{gathered} \mathrm{Hz}=359.9547 \text { deg. } \pm 120 \text { arcsec } \\ \mathrm{V}=89.9229 \text { deg. } \pm 120 \text { arcsec } \end{gathered}$		
If value is not achieved adjust OB to above value and repeat steps 4-56.		

If the adjustment of the $O B$ has become necessary again, the

 measurements shall be recorded on separate sheets and be appended to the "AS RUN PROCEDURE".Procedure

10.6 Angular Alignment Measurements of HIFI from + Y Side

57. Rotate PLM such that $+Y$ side points towards theodolite and check Rotary Table levelling

Rotary table levelling:	Level1
Date/Time:	Level2

See Fig. 10-11.

Figure 10-11: (Analogous to Fig 10-4) Principle set up for angle measurement from +Y .
58. This step has been cancelled.
59. Achieve auto-collimation with CVVRC4 and set $\mathrm{Hz}=0.0000$ deg.
60. Rotate the theodolite to the ATP and adjust it such that auto-collimation occurs. Set theodolite reading to $\mathrm{Hz}=270.0000$ deg.
61. Rotate theodolite back to HIFI +y face until auto-collimation occurs. Theodolite reading shall be $\mathrm{Hz}=0.0000$ deg. ± 10 arcsec. If this is not the case, repeat steps 58-61 until this condition is fulfilled and record the following values:

$\mathrm{HIFI}+\mathrm{y}$ face			Mean	
$\mathrm{HZ}=$				
$\mathrm{V}=$				
	Measurement Date:	Measurement Time:		

Measured theodolite reading	$\begin{array}{r} \mathrm{Hz}= \\ \mathrm{V}= \end{array}$
Nominal theodolite reading:	$\mathrm{Hz}=0.0011 \pm 140 \mathrm{arcsec}$ (incl. OB-offset)
	$\mathrm{V}=90.0019 \pm 140 \mathrm{arcsec}$ (incl. OB-offset)

62. Check ATP position

ATP Position: $\mathrm{Hz}=$	
Date:	Time:

Re-check Rotary table levelling: | Level1 |
| ---: |
| |
| Level2 |

Date/Time:

10.7 Angular Alignment Measurements of PACS from + Y Side

See Fig. 10-11

63. Set up theodolite in front of PACS cube surface $+y$ such that ATP can be viewed from this position in auto-collimation.
64. Rotate the theodolite to the ATP achieve auto-collimation and set theodolite reading to $\mathrm{Hz}=270.0000$ deg. Rotate theodolite back to +y face, achieve auto-collimation and record the following values:

PACS + face				Mean
$\mathrm{HZ}=$				
$\mathrm{V}=$				
		Measurement Date:	Measurement Time:	

```
Measured theodolite readings: Hz=
    V =
Nominal theodolite reading: Hz=0.0347 }\pm140\mathrm{ arcsec (incl. OB-offset)
    V = 89.9828 }\pm140\mathrm{ arcsec (incl. OB-offset)
```

65. Check ATP position

ATP Position: $\mathrm{Hz}=$	
Date:	Time:

Re-check Rotary table levelling:	Level1
Level2	

10.8 Angular Alignment Measurements of SPIRE from + Y Side

See Fig. 10-11

66. Set up theodolite in front of SPIRE cube surface $+y$ such that ATP can be viewed from this position in auto-collimation.
67. Rotate theodolite to ATP achieve auto-collimation and set theodolite reading to $\mathrm{Hz}=270.0000$ deg. Rotate theodolite back to +y face, achieve autocollimation and record the following values:

SPIRE +y face				Mean
$\mathrm{HZ}=$				
$\mathrm{V}=$				
Measurement Date:		Measurement Time:		

$$
\begin{aligned}
& \text { Measured theodolite readings: } \mathrm{Hz}= \\
& \text { V = } \\
& \text { Nominal theodolite reading: } \mathrm{Hz}=\text { not available } \\
& \mathrm{V}=89.9383 \text { deg. } \pm 8.8 \mathrm{arcmin}
\end{aligned}
$$

68. Check ATP position

ATP Position: $\mathrm{Hz}=$	
Date:	Time:

Re-check Rotary table levelling:	Level1
Level2	

10.9 Angular Alignment Measurements of CVVRC2 Cube from + Y Side

See Fig. 10-11

69. Set up theodolite in front of CVVRC2 surface +y such that ATP can be viewed from this position in auto-collimation and level theodolite.
70. Rotate the theodolite to the ATP achieve auto-collimation and set theodolite reading to $\mathrm{Hz}=270.0000$ deg. Rotate theodolite back to +y face, achieve auto-collimation and record the following values:

$\mathrm{CVVRC} 2+y$			Mean	
$\mathrm{HZ}=$				
$\mathrm{V}=$				
Measurement Date:				Measurement Time:

71. Check ATP position

ATP Position: $\mathrm{Hz}=$	
Date:	Time:

Re-check Rotary table levelling: | Level1 |
| :--- |
| |
| Level2 |

Date/Time:

10.10 Angular Alignment Measurements of HIFI from + Z Side

See Fig 10-12.

72. Rotate PLM through 90.0000 deg. such that $+Z$ axis points towards theodolite and check Rotary Table levelling:

Re-check Rotary table levelling:	Level1
Level2	

73. Set up theodolite in front of HIFI cube surface +z such that ATP can be viewed from this position in auto-collimation. Level theodolite.
74. Rotate the theodolite to the ATP achieve auto-collimation and set theodolite reading to $\mathrm{Hz}=270.0000$ deg. Rotate theodolite back to $+z$ face, achieve auto-collimation and record the following values:

Figure 10-12: (Analogous to Fig. 10-5) Principle set up for angle measurement from $+Z$

$\mathrm{HIFI}+\mathrm{z}$ face			Mean	
$\mathrm{HZ}=$				
$\mathrm{V}=$				
	Measurement Date:	Measurement Time:		

Measured theodolite readings: $\mathrm{Hz}=$
V =
Nominal theodolite reading:
$\mathrm{Hz}=0.0011 \pm 140 \operatorname{arcsec}$ (incl. OB-offset)
$\mathrm{V}=89.9789 \pm 140$ arcsec (incl. OB-offset)
75. Check ATP position

ATP Position: $\mathrm{Hz}=$	
Date:	Time:

Re-check Rotary table levelling:	Level1 Level2
Date/Time:	

Date/Time:

10.11 Angular Alignment Measurements of PACS from + Z Side

See Fig 10-12.

76. Set up theodolite in front of PACS cube surface +z such that ATP can be viewed from this position in auto-collimation. Level theodolite.
77. Rotate the theodolite to the ATP achieve auto-collimation and set theodolite reading to $\mathrm{Hz}=270.0000$ deg. Rotate theodolite back to $+z$ face, achieve auto-collimation and record the following values:

PACS +z face		Mean		
$\mathrm{HZ}=$				
$\mathrm{V}=$				
Measurement Date:			Measurement Time:	

> Measured theodolite readings: $\mathrm{Hz}=$
> V =
> Nominal theodolite reading: $\quad \mathrm{Hz}=0.0347 \pm 140 \operatorname{arcsec}$ (incl. OB-offset)
> $\mathrm{V}=90.0208 \pm 140 \operatorname{arcsec}$ (incl. OB-offset)
78. Check ATP position

ATP Position: $\mathrm{Hz}=$	
Date:	Time:

Re-check Rotary table levelling:	Level1 Level2
Date/Time:	

10.12 Angular Alignment Measurements of SPIRE from + Z Side

See Fig 10-12.

79. Set up theodolite in front of SPIRE cube surface $+z$ such that ATP can be viewed from this position in auto-collimation. Level theodolite.
80. Rotate the theodolite to the ATP achieve auto-collimation and set theodolite reading to $\mathrm{Hz}=270.0000$ deg. Rotate theodolite back to $+z$ face, achieve auto-collimation and record the following values:

SPIRE +z face			Mean		
$\mathrm{HZ}=$					
$\mathrm{V}=$					
Measurement Date:				Measurement Time:	

Measured theodolite readings: $\mathrm{Hz}=$

Nominal theodolite reading: $\quad \mathrm{Hz}=$ not available

$$
V=90.1217 \text { deg. } \pm 8.8 \operatorname{arcmin}
$$

81. Check ATP position

ATP Position: $\mathrm{Hz}=$	
Date:	Time:

10.13 Angular Alignment Measurements of CVVRC4 Cube from $+Z$ Side

See Fig 10-12.

82. Set up theodolite in front of CVVRC4 surface $+z$ such that ATP can be viewed from this position in auto-collimation. Level theodolite.
83. Rotate the theodolite to the ATP achieve auto-collimation and set theodolite reading to $\mathrm{Hz}=270.0000$ deg. Rotate theodolite back to $+z$ face, achieve auto-collimation and record the following values:

CVVRC4 +z				
$\mathrm{HZ}=$				Mean
$\mathrm{V}=$				
Measurement Date:			Measurement Time:	

84. Check ATP position

ATP Position: $\mathrm{Hz}=$	
Date:	Time:

Re-check Rotary table levelling: Level1
Level2
Date/Time:

10.14 Angular Alignment Measurements of CVVRC2 from - Z Side

See Fig 10-13.

85. Rotate PLM through 180.0000 deg, such that -z points towards theodolite. Check Rotary Table levelling.

Re-check Rotary table levelling:	Level1
Level2	

86. Shift theodolite such that it can view front of CVVRC2 -z face and the ATP in auto-collimation. Level theodolite and set it in auto-collimation with ATP. Set azimuth reading to $\mathrm{Hz}=270.0000$ deg. Rotate theodolite back to CVVRC2 face -z, achieve auto-collimation and record the following values:

CVVRC2 -z face			Mean	
$\mathrm{HZ}=$				
$\mathrm{V}=$				
	Measurement Date:	Measurement Time:		

87. Check ATP position

ATP Position: $\mathrm{Hz}=$	
Date:	Time:

Re-check Rotary table levelling:	Level1 Level2
Date/Time:	

Procedure

Figure 10-13: Principle set up for angle measurement from -Z

10.15 Horizontal Distance Measurements with LMD on + Y Side

See Fig 10-14.

88. Rotate PLM such that +Y side points towards theodolite position and check Rotary Table levelling:

Re-check Rotary table levelling:	Level1 Level2
Date/Time:	

89. Level theodolite, direct it towards ATP and achieve auto-collimation. Set theodolite $\mathrm{Hz}=270.0000 \mathrm{deg}$ and rotate theodolite back to azimuth 0.0000 deg. Install the LMD in front of the $S / C+Y$ side such that theodolite at 0.0000 deg azimuth is in auto-collimation with reference mirror on horizontal LMD beam (auto-collimation mark shall be within theodolite's FOV.) The LMD is then parallel to the PLM axes to better than ± 0.5 deg. Check horizontal orientation of LMD beam with water balance. Deviation from exact horizontal orientation shall be less than ± 0.5 deg.
90. Switch on the LMD display according to the LMD manual.

Figure 10-14: (Analogous to Fig. 10-2) Principle set up for distance measurements from $+Y$ side
91. Direct theodolite to the first reference point: CVVRC4. Check the levelling of the theodolite, Level if necessary.
92. Direct theodolite towards ATP, achieve auto-collimation and set $\mathrm{Hz}=$ 270.0000 deg. and rotate theodolite back to $\mathrm{Hz}=0.0000$ deg. and adjust it with lateral stage to the centre of the first reference point: CVVRC4 +Y side.
93. Move the scanning head of the LMD until the azimuth of the cross hair coincides with the azimuth of theodolite cross hair.
94. Set the LMD reading to zero at this point. Record the following value:

CVVRC4 +Y face Linear Position in Z		Mean	
Z(CVVRC4+y)			
Measurement Date:	Time:		

95. Check ATP Position:

ATP Position: $\mathrm{Hz}=$	
Date:	Time:

Re-check LMD orientation: Azimuth:

Date/Time:

Re-check Rotary table levelling: | Level1 |
| :--- |
| Level2 |

Date/Time:
96. Move the theodolite to the next reference: HIFI, check the levelling in this position. Level if necessary.
97. Rotate theodolite towards ATP and achieve auto-collimation. Set $\mathrm{Hz}=270.0000$ deg. Rotate theodolite back to +y face of HIFI.
98. Move the scanning head of the LMD until the azimuth cross of the hair coincides with the azimuth of the theodolite cross hair in the HIFI position.
99. Read-out the LMD display. Record the following value:

HIFI + y face Linear Position in Z		
Z(HIFI+y)		
Measurement Date:	Time:	

Measured distance to CVVRC4: $\Delta Z=$

Nominal distance to CVVRC4;
100. Check ATP Position:

ATP Position: $\mathrm{Hz}=$	
Date:	Time:

Re-check LMD orientation:	Azimuth:
Date/Time:	Elevation

Re-check Rotary table levelling:	Level1
Date/Time:	Level2

101. Move the theodolite to the next reference: PACS, check the levelling in this position. Level if necessary.
102. Rotate theodolite towards ATP and achieve auto-collimation. Set $\mathrm{Hz}=270.0000$ deg. Rotate theodolite back to +y face of PACS.
103. Move the scanning head of the LMD until the azimuth of the cross hair coincides with the azimuth of the theodolite cross hair in the PACS position.
104. Read-out the LMD display. Record the following value:

PACS + y face Linear Position in Z		Mean
$Z(P A C S+y)$		Time:
Measurement Date:		

Measured distance to CVVRC4: $\quad \Delta Z=$

Nominal distance to CVVRC4; $\quad \Delta Z=7.7 \pm 1.1 \mathrm{~mm}$
105. Check ATP Position:

ATP Position: $\mathrm{Hz}=$	
Date:	Time:

Re－check LMD orientation：	Azimuth：
Date／Time：	Elevation

Re－check Rotary table levelling：	Level1 Level2
Date／Time：	

106．Move the theodolite to the next reference：SPIRE，check the levelling in this position．Level if necessary．

107．Rotate theodolite towards ATP and achieve auto－collimation．Set $\mathrm{Hz}=270.0000$ deg．Rotate theodolite back to +y face of SPIRE．

108．Move the scanning head of the LMD until the azimuth of the cross hair coincides with the azimuth of the theodolite cross hair in the SPIRE position．

109．Read－out the LMD display．Record the following value：

SPIRE + y face Linear Position Z	Mean	
Z（SPIRE＋y）		
Measurement Date：	Time：	

Measured distance to CVVRC4：$\quad \Delta Z=$
Nominal distance to CVVRC4；$\quad \Delta Z=128.4 \mathrm{~mm} \pm 5.2 \mathrm{~mm}$
110．Check ATP Position：

ATP Position： $\mathrm{Hz}=$	
Date：	Time：

Re－check LMD orientation：	Azimuth：
	Elevation

Date／Time：

Re－check Rotary table levelling：	Level1 Level2
Date／Time：	

10.16 Horizontal Distance Measurements with LMD on +Z Side

See Fig. 10-15.

111. Rotate PLM such that $+Z$ side points towards theodolite position and check Rotary Table levelling:

Rotary table levelling:	Level1 Level2
Date/Time:	

112. Level theodolite, direct it towards ATP and achieve auto-collimation. Set theodolite azimuth to 270.0000 deg and rotate theodolite back to $\mathrm{Hz}=0.0000 \mathrm{deg}$.
113. Rotate theodolite towards ATP and achieve auto-collimation. Set $\mathrm{Hz}=270.0000$ deg. Rotate theodolite back to $+z$ face of CVVRC4.
114. Adjust theodolite with lateral stage to the centre of the first reference point: CVVRC4 + Z side.
115. Move the scanning head of the LMD until the azimuth of the cross hair coincides with the azimuth of theodolite cross hair.
116. Set the LMD reading to zero at this point. Record the following value:

CVVRC4 +z face Linear Position in Y		Mean
Y(CVVRC4+z)		
Measurement Date:	Time:	

117. Check ATP Position:

ATP Position: $\mathrm{Hz}=$	
Date:	Time:

Re-check LMD orientation: Azimuth:

Date/Time:

Re-check Rotary table levelling: | Level1 |
| :--- |
| Level2 |

Date/Time:
118. Move the theodolite to the next reference: HIFI, check the levelling in this position. Level if necessary.
119. Rotate theodolite towards ATP and achieve auto-collimation. Set $\mathrm{Hz}=270.0000$ deg. Rotate theodolite back to $+z$ face of HIFI
120. Move the scanning head of the LMD until the azimuth cross of the hair coincides with the azimuth of the theodolite cross hair in the HIFI position.

Figure 10-15: (Analogous to Fig. 10-3) Principle set up for distance measurements from $+Z$ side
121. Read-out the LMD display. Record the following value:

HIFI + z face Linear Position in Y		Mean	
Y(HIFI+z)			
Measurement Date:	Time:		

Measured distance to CVVRC4: $\quad \Delta \mathrm{Y}=$
Nominal distance to CVVRC4; $\quad \Delta Y=1088.1 \pm 1.1 \mathrm{~mm}$
122. Check ATP Position:

ATP Position: $\mathrm{Hz}=$	
Date:	Time:

Re-check LMD orientation:	Azimuth: Elevation
Date/Time:	

Re-check Rotary table levelling:	Level1
Date/Time:	

123. Move the theodolite to the next reference: PACS, check the levelling in this position. Level if necessary.
124. Rotate theodolite towards ATP and achieve auto-collimation. Set $\mathrm{Hz}=270.0000$ deg. Rotate theodolite back to $+z$ face of PACS.
125. Move the scanning head of the LMD until the azimuth of the cross hair coincides with the azimuth of the theodolite cross hair in the PACS position.
126. Read-out the LMD display. Record the following value:

PACS + z face Linear Position in Y		Mean
Y(PACS+z)		
Measurement Date:	Time:	

Measured distance to CVVRC4: $\quad \Delta Y=$

Nominal distance to CVVRC4; $\quad \Delta Y=852.5 \pm 1.1 \mathrm{~mm}$
127. Check ATP Position:

ATP Position: $\mathrm{Hz}=$	
Date:	Time:

Re-check LMD orientation: Azimuth:

Date/Time:
Elevation

Re-check Rotary table levelling:	Level1 Level2
Date/Time:	

128. Move the theodolite to the next reference: SPIRE, check the levelling in this position. Level if necessary.
129. Rotate theodolite towards ATP and achieve auto-collimation. Set $\mathrm{Hz}=270.0000$ deg. Rotate theodolite back to $+z$ face of SPIRE.
130. Move the scanning head of the LMD until the azimuth of the cross hair coincides with the azimuth of the theodolite cross hair in the SPIRE position.
131. Read-out the LMD display. Record the following value:

SPIRE +z face Linear Position in Y			Mean
Y(SPIRE+z)			
Measurement Date:	Time:		

Measured distance to CVVRC4: $\quad \Delta Y=$
Nominal distance to CVVRC4; $\quad \Delta Y=861.8 \mathrm{~mm} \pm 5.2 \mathrm{~mm}$
132. Check ATP Position:

ATP Position: $\mathrm{Hz}=$	
Date:	Time:

Re-check LMD orientation:	Azimuth:
Date/Time:	Elevation

Re-check Rotary table levelling:	Level1
Level2	

10.17 Vertical Distance Measurements with LMD

See Fig 10-16.

133. Rotate PLM + Y side towards theodolite and check Rotary Table levelling:

Re-check Rotary table levelling:	Level1
Level2	

134. Mount LMD vertical according to step 4 of this procedure.

LMD verticality:	Elevation1
Date/Time:	Elevation2

135. Direct theodolite towards CVVRV4 and level it, set $\mathrm{V}=90.0000$ deg. and adjust theodolite height with x translation stage to centre of reticle. Rotate theodolite towards LMD.
136. Move the scanning head of the LMD until the elevation bar of the cross hair coincides with the elevation bar of theodolite cross hair.
137. Set the LMD reading to zero at this point. Record the following value:

CVVR4 +Y Linear Position in X	Mean	
X(CVVRC4+Y)		
Measurement Date:	Time:	

138. Adjust theodolite with translation stages to the centre of the next reference point: HIFI+ Y side and level it, set $\mathrm{V}=90.0000$ deg. and rotate theodolite towards LMD.
139. Move the scanning head of the LMD until the height mark of the cross hair coincides with the elevation bar of the theodolite cross hair and record the following value:

HIFI+Y vertical Position in X			
X(HIFI+Y) Mean			
Measurement Date:		Time:	

Figure 10-16: (Analogous to Fig. 10-1) Principle set up for vertical distance measurements with LMD from +y side.

Measured distance to CVVRC4:	$\Delta X=$
Nominal distance to CVVRC4:	$\Delta X=903.3 \mathrm{~mm} \pm 1.1 \mathrm{~mm}$

Re-check LMD orientation:	Elevation1:
	Elevation2:

Date/Time:
140. Adjust theodolite with translation stages to the centre of the next reference point: PACS +Y side and level it, set $\mathrm{V}=90.0000$ deg. and rotate theodolite towards LMD.
141. Move the scanning head of the LMD until the height mark of the cross hair coincides with the elevation bar of the theodolite cross hair and record the following value:

PACS+Y vertical Position in X			
X(PACS+Y) Mean			
Measurement Date:		Time:	

Measured distance to CVVRC4:

Nominal distance to CVVRC4:

Re-check LMD orientation:
Date/Time:
$\Delta X=$
$\Delta X=1000.6 \mathrm{~mm} \pm 1.1 \mathrm{~mm}$
Elevation1: Elevation2:
\qquad
142. Adjust theodolite with translation stages to the centre of the next reference point: SPIRE +Y side and level it, set $V=90.0000$ deg. and rotate theodolite towards LMD.
143. Move the scanning head of the LMD until the height mark of the cross hair coincides with the elevation bar of the theodolite cross hair and record the following value:

SPIRE + Y vertical Position in X			
X(SPIRE+Y)		Mean	
Measurement Date:	Time:		

Measured distance to CVVRC4:	$\Delta X=$
Nominal distance to CVVRC4:	$\Delta X=1021.0 \mathrm{~mm} \pm 5.2 \mathrm{~mm}$

Re-check LMD orientation:
Elevation1:
Elevation2:
Date/Time:

Re-check Rotary table levelling: | Level1 |
| :--- |
| |
| Level2 |

Date/Time:

10.18 Vertical Distance Measurements with LMD -Z Side

See Fig 10-16

Note: The following measurement will be performed for redundancy reasons only. For comparison, the measurement for CVVRC4 of section 10.17 will be used as reference.
144. Rotate PLM such that -z-axis points towards theodolite
145. Check Rotary Table levelling:

Re-check Rotary table levelling:	Level1
Level2	

146. Adjust theodolite with lateral stages to the centre of the next reference point: CVVRC2-Z side and level it, set $\mathrm{V}=90.0000$ deg. and rotate theodolite towards LMD.
147. Move the scanning head of the LMD until the elevation bar of the cross hair coincides with the elevation bar of the theodolite cross hair and record the following value:

CVVRC2-Z vertical Position in X			Mean
X(CVVRC2-Z)	Time:		
Measurement Date:			

Measured distance to CVVRC4:
$\Delta \mathrm{X}=$

Nominal distance to CVVRC4:
$\Delta \mathrm{X}=0 \mathrm{~mm} \pm 0.8 \mathrm{~mm}$

Re-check LMD orientation:	Elevation1:
	Elevation2:

Date/Time:

11 Procedure Variation/NCR Summary

11.1 Procedure Variation Summary

No.	Page	Variation Description	Action required

11.2 Non-Conformance Report (NCR) Summary

NCR No.	Non Conformance Description	Date generated	Originator	Date closed

11.3 Test Configuration Record

1. Facility:
2. Model:
3. Temperature:
4. Humidity:
5. Test Start Date:
6. Test End Date:
7. Remarks:

12 Alignment Sign-off Sheet

The alignment has been performed according to this procedure. Deviations in the procedure and/or in the sequence are noted in the procedure variation sheets. Non conformances are listed in the NCR-Summary sheets.

	Date	Signature
Alignment Engineer		
PA Responsible		

13 Open Work Summary

No.	Page	Open Work Description	Closure Date

14 Annex 1: Position of Alignment Cubes

This chapter gives an overview about the positions of the alignment reference cubes for OB; Instruments and CVV.

14.1 Alignment Cube Reference Table

The angular and distance measurements as described in Section 4.3 and 4.4 shall be performed for each alignment cube (surface) as listed in Table 14-1.

No.	Alignment Cube (reference)	Surface ID	Angular Measurement	Distance Measurement	
1	OB	$\begin{aligned} & +y \\ & +z \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline R z, R x \\ R y, ~(R x) \\ \hline \end{array}$	$\begin{aligned} & \hline \text { Tz, Tx } \\ & \text { Ty, (Tx) } \\ & \hline \end{aligned}$	
2	HIFI	$\begin{aligned} & +y \\ & +z \\ & \hline \end{aligned}$	$\begin{aligned} & \hline R z, R x \\ & R y,(R x) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Tz, Tx } \\ & \text { Ty, (Tx) } \end{aligned}$	
3	SPIRE	$\begin{aligned} & +y \\ & +z \\ & \hline \end{aligned}$	$\begin{aligned} & \hline R z, R x \\ & R y,(R x) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Tz, Tx } \\ & \text { Ty, (Tx) } \end{aligned}$	
4	PACS	$\begin{aligned} & +y \\ & +z \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Rz}, \mathrm{Rx} \\ & \mathrm{Ry},(\mathrm{Rx}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Tz, Tx } \\ & \text { Ty, (Tx) } \end{aligned}$	
5	CVVRC2 (Bu 1)	$\begin{aligned} & -\mathrm{z} \\ & +\mathrm{y} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline R y, R x \\ R z,(R x) \\ \hline \end{array}$	Tz,	
6	CVVRC4 (Bu 2)	$\begin{aligned} & +y \\ & +z \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Rz}, \mathbf{R x} \\ & \mathrm{Ry},(\mathrm{Rx}) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Tz, Tx } \\ & \text { Ty, (Tx) } \\ & \hline \end{aligned}$	

Table 14-1: Alignment Cube Identification
Explanation: +y: cube, surface visible from +y side
-z: cube visible from -z side
BU: Back up cube 1 and 2 (see Sect. 7)
The columns Angular and Distance Measurement indicate from which cube surface the measurements for Rx, Ry, Rz and Tx, Ty, and Tz shall be performed (Rx means rotation about the x axis; Tx distance measurement in x direction etc.).
Rx, Ry, Rz, Tx, Ty, TZ: These values are measured and will be used for test evaluation
(Rx), (Tx): These values will be measured, however, they are redundant and will not be used for test evaluation.

Figure 14-1: Alignment References for Instruments and Optical Bench

Figure 14－2：CVV Reference Cubes：
Only cubes in pos． 2 and 4 will be available here：CVVRC2 and CVVRC4．

Cube Positions and Orientations

Positions and orientations of the involved optical reference cubes are compiled below.

The related values of OB, HIFI and PACS are measured data, whereas the positions of the CVV reference cubes are design data (from CATIA model). For SPIRE, nominal positions have been taken from related ICD.

This means that for references, for which measured data are not available, alignment measurements will be performed wrt. their nominal positions (as per ICD) related to CVVRC4 as master reference. When FPU data become available at a later point in time, these will used to evaluate the PLM alignment a posteriori. For OB, HIFI and PACS actually measured data of alignment reference position and orientation are already included.

Cube	X	Y	Z	Remark
HIFI Transl. Measmt. error	$\begin{gathered} 353.80 \mathrm{~mm} \\ \pm 0.1 \mathrm{~mm} \\ \hline \end{gathered}$	$\begin{gathered} -116.30 \mathrm{~mm} \\ \pm 0.1 \mathrm{~mm} \\ \hline \end{gathered}$	$\begin{aligned} & \mathbf{0 . 0 0 ~ m m} \\ & \pm 0.1 \mathrm{~mm} \\ & \hline \end{aligned}$	RD 10
HIFI Rotation. Measmt. error	-4 arcsec ± 20 arcsec	-76 arcsec ± 5 arcsec	-7 arcsec ± 5 arcsec	RD 10
PACS TransI. Measmt. error	$\begin{gathered} 451.10 \mathrm{~mm} \\ \pm 0.1 \mathrm{~mm} \\ \hline \end{gathered}$	$\begin{gathered} 119.28 \mathrm{~mm} \\ \pm 0.1 \mathrm{~mm} \end{gathered}$	$\begin{aligned} & 64.27 \mathrm{~mm} \\ & \pm 0.1 \mathrm{~mm} \end{aligned}$	RD 12
PACS Rotation Measmt. error	$\begin{aligned} & -125 \operatorname{arcsec} \\ & \pm 20 \operatorname{arcsec} \\ & \hline \end{aligned}$	$\begin{gathered} 75 \text { arcsec } \\ \pm 20 \operatorname{arcsec} \\ \hline \end{gathered}$	$\begin{gathered} 62 \text { arcsec } \\ \pm 20 \text { arcsec } \\ \hline \end{gathered}$	RD 12
SPIRE Transl.	471.52 mm	110.00 mm	-56.41 mm	RD 13
Spire Rotation Measmt. error	Not measured	7.3 arcmin $\pm 0.5 \mathrm{arcmin}$	3.7 arcmin ± 0.5 arcmin	Measured RD 13
$\begin{aligned} \hline \text { OB } & -z \text { face } \\ & +y \text { face } \\ & +z \text { face } \end{aligned}$	10.97 mm 10.97 mm 10.97 mm	715.08 mm 725.08 mm 715.08 mm	$\begin{gathered} -10.05 \mathrm{~mm} \\ -0.05 \mathrm{~mm} \\ 9.96 \mathrm{~mm} \end{gathered}$	RD 9 and Annex 2
CVV I/F flange	1479 mm	NA	NA	after CATIA data
CVVRC2	-549.50 mm	72.00 mm	-971.80 mm	after CATIA data
CVVRC4	-549.50 mm	971.80 mm	72.00 mm	after CATIA data

Table 14-2: Alignment cube positions
Positions are w.r.t. OB coordinate system.
The coordinates are related to intersection point of cross hairs. Rotations are about indicated axes.

The positions and orientations of the cross hairs on the OB, HIFI and PACS reference cubes are measured values and have been taken from RD 9 (see Annex 2), RD 10 and RD 12

The positions of the cross hairs of the SPIRE reference cube are "as designed values", not measured values! Therefore, no measurement accuracy is given in above table. The values are taken from RD 13. The adjustment tolerances for SPIRE are as follows (see RD 13):
Displacements: $\pm 5.2 \mathrm{~mm}$
Rotations: ± 8.8 arcmin
These tolerance values are used to define "success criteria" for the procedure above.
The instruments PACS and HIFI were mounted with dedicated shimming plates (delivered by the Instruments):
PACS: 1-way foot: 5.24 mm ; 2-way foot: 4.97 mm ; 3-way foot: 5.32 mm (RD 12)
HIFI: Front feet: 16 mm ; rear feet: 10 mm (e-mail from Robert Huisman, dated 13.07.07).

Translated into theodolite readings, the OB rotation values from annex 2/RD 9 become:

Cube OB	+Y sideX [deg.]	+Z side [deg.]	Remark
Theodolite	$\Delta \mathrm{V}=\mathbf{9 0 . 0 6 5 2}$	$\Delta \mathrm{V}=\mathbf{8 9 . 9 2 2 9}$	RD 9
Readings	$\Delta \mathrm{Hz}=359.9551$	$\Delta \mathrm{~Hz}=359.9547$	

Table 14-3: Expected theodolite readings for OB ref. cube.
Based on actual ref. cube measurements (see RD 9/annex 2).

Translated into theodolite readings, the above HIFI rotation values from Table 14-2 become:

Cube HIFI	+Y side [deg.]	+Z side [deg.]	Remark
Theodolite	$\Delta \mathrm{V}=\mathbf{9 0 . 0 0 1 9}$	$\Delta \mathrm{V}=\mathbf{8 9 . 9 7 8 9}$	RD 10
Readings	$\Delta \mathrm{Hz}=\mathbf{0 . 0 0 1 1}$	$\Delta \mathrm{Hz}=\mathbf{0 . 0 0 1 1}$	

Table 14-4: Expected theodolite readings for HIFI FPU ref. cube
Based on actual HIFI ref. cube orientation according to RD 10.
Translated into theodolite readings, the above PACS rotation values from Table 14-2 become:

Cube PACS	+ Y side [deg.]	+Z side [deg.]	Remark
Theodolite	$\Delta \mathrm{V}=\mathbf{8 9 . 9 8 2 8}$	$\Delta \mathrm{V}=\mathbf{9 0 . 0 2 0 8}$	RD 12
Readings	$\Delta \mathrm{Hz}=\mathbf{0 . 0 3 4 7}$	$\Delta \mathrm{Hz}=\mathbf{0 . 0 3 4 7}$	

Table 14-5: Expected theodolite readings for PACS ref. cubes.
Based on actual PACS ref.-cube orientation (taking into account PACS shims).

Cube SPIRE	+Y side [deg.]	+Z side [deg.]	Remark
Theodolite	$\Delta V=89.9383$	$\Delta V=\mathbf{9 0 . 1 2 1 7}$	RD 13
Readings	$\Delta H z=$ not measured	$\Delta H z=$ not measured	

Table 14-6: Expected theodolite readings for PACS ref. cube.
Based on actual PACS ref.-cube orientation (taking into account PACS shims).

From Table 14-2 and following ones we find the distances between certain references by determining the related coordinate differences.
Since all measurements are referred to the CVVRCs the distances are given in relation to CVVRC4 ("Master Reference Cube").
Some analogous values determined in relation to CVVRC2 are included for potential later use in the context of system alignment measurements.

Distances to Master Reference Cube CVVRC4				
Cube	$\Delta \mathrm{X}$ [mm]	$\Delta \mathrm{Y}$ [mm]	$\Delta \mathrm{Z}$ [mm]	Remark
HIFI actual	903.30	1088.1	72.00	Based on measured instrument ref. data
PACS actual	1000.60	852.52	7.73	
SPIRE	1021.02	861.80	128.41	Based on nominal instr. ref. data (ICD)
$\begin{array}{r} \hline \text { OB +y face } \\ +7 \text { face } \end{array}$	$\begin{aligned} & 560.47 \\ & 560.47 \end{aligned}$	256.72	72.05	Based on measured OB ref. data
CVV I/F flange	57.50	NA	NA	CATIA model data
Distances to Secondary Reference Cube CVVRC2 (for later use)				
HIFI	NA	NA	NA	Not accessible from -Z side
PACS	NA	NA	NA	
SPIRE	NA	NA	NA	
OB -z face	560.47	643.08	961.75	

Table 14-7: Expected distances of instrument and selected master references.
OB, HIFI and PACS data refer to measured positions of related reference cross hairs.
SPIRE data are based on nominal ICD values.

15 Annex 2: OB Cube Reference Data

The measured positions of the cross hair on OB reference cube have been taken from RD 9. The values as compiled in Fig. 15-1 are shown for EQM and PFM, however for the procedure, only PFM values are relevant.

6. MISCELLANEA

6.1 Coordinate System Marking

The OBA coordinate system is marked on the OBP (as per R-OBA-495).

6.2 Alignment Cube

The direction (normal to face) and position (cross hairs) of the optical active faces of the OBA alignment cube is presented in the following table:

Alignment Cube		Required				PFM Actual				EQM Actual			
		X	Y	Z	arc min	X	Y	Z	arc min	X	Y	Z	arc min
FACE -Z	Posit.					10.97	715.08	-10.05		11.18	714.96	-10.07	
	Dir.	0	0	-1	2.00	0.001377	0.000595	-1	5.16	0.000458	0.000832	-1	3.26
FACE +Y	Posit.					10.97	725.08	-0.05		11.18	724.97	-0.06	
	Dir.	0	1	0	2.00	0.001138	1	0.000783	4.75	0.000948	1	0.000771	4.20
FACE + Z	Posit.					10.97	715.08	9.96		11.18	714.96	9.95	
	Dir.	0	0	1	2.00	-0.001346	-0.000791	1	5.37	-0.000250	-0.000795	1.000000	2.86

The direction measurement accuracy is 20 arc sec w.r.t. each axis (10 arc sec required). The direction deviation after dismounting and mounting alignment cube onto OBP is less than 20 arc sec.

The position measurement accuracy is 0.003 mm w.r.t. OBP coordinate system $(0.1 \mathrm{~mm}$ required). The position deviation after dismounting and mounting alignment cube onto OBP is 0.024 mm (still less than required 0.1 mm).

Figure 15-1: Measured positions of cross hair on OB reference cube
(Taken from HP-2-ECAS-PR-0014, Issue 02).
These figures are used to calculate "nominal positions" for the instruments in the sense that nominal (or measured for HIFI) instrument data are referred to the actual, i. e. measured OB data.

Figure 15-2: Nominal ("As Designed") Alignment Cube positions

Note. Drawing only gives design values (nominal).
Cube position from the above drawing are used to calculate the nominal distances related to CVVRC4 (and CVVRC2) and SPIRE.
For OB, HIFI and PACS measured positions/orientations are available and have been use throughout the procedure (Sect. 10 and subsections). The measured values of OB, HIFI and PACS are included in Tables 14-2 and in Fig 15-1.

Procedure

	Name	Dep./Comp.		Name	Dep./Comp.
	Alberti von Mathias Dr.	ASG22		Schweickert Gunn	ASG22
	Baldock Richard	FAE12	x	Sonn Nico	ASG51
	Barlage Bernhard	AED13		Steininger Eric	AED32
x	Bayer Thomas	ASA42	x	Stritter Rene	AED11
	Brune Holger	ASA45		Suess Rudi	OTN/ASA44
	Edelhoff Dirk	AED2		Wagner Klaus	ASG22
	Fehringer Alexander	ASG13	x	Wietbrock Walter	AET12
x	Fricke Wolfgang Dr.	AED 65		Wöhler Hans	ASG22
	Geiger Hermann	ASA42		Wössner Ulrich	ASE252
	Grasl Andreas	OTN/ASA44			
	Grasshoff Brigitte	AET12			
	Hamer Simon	Terma			
	Hendry David	Terma			
	Hengstler Reinhold	ASA42			
	Hinger Jürgen	ASG22			
X	Hohn Rüdiger	AED65			
X	Hölzle Edgar Dr.	AED32			
	Huber Johann	ASA42			
	Hund Walter	ASE252			
x	Idler Siegmund	AED312			
	Ivády von András	FAE12			
	Jahn Gerd Dr.	ASG22			
	Kalde Clemens	ASM2			
	Kameter Rudolf	OTN/ASA42			
X	Kettner Bernhard	AET42			
	Knoblauch August	AET32	X	Thales Alenia Space Cannes	TAS-F
	Koelle Markus	ASA43		Thales Alenia Space Torino	TAS-I
x	Koppe Axel	AED312	X	ESA/ESTEC	ESA
X	Kroeker Jürgen	AED65			
	La Gioia Valentina	Terma		Instruments:	
	Lang Jürgen	ASE252	x	MPE (PACS)	MPE
	Langenstein Rolf	AED15	x	RAL (SPIRE)	RAL
	Langfermann Michael	ASA41	X	SRON (HIFI)	SRON
	Maukisch Jan	ASA43			
	Much Christoph	ASA43			
	Müller Jörg	ASA42		Subcontractors:	
x	Müller Martin	ASA43		Thales Alenia Space Antwerp	ABSP
	Peltz Heinz-Willi	ASG13		Austrian Aerospace	AAE
	Pietroboni Karin	AED65		Austrian Aerospace	AAEM
	Platzer Wilhelm	AED2		BOC Edwards	BOCE
	Reichle Konrad	ASA42		Dutch Space Solar Arrays	DSSA
	Runge Axel	OTN/ASA44		EADS Astrium Sub-Subsyst. \& Equipment	ASSE
X	Schink Dietmar	AED32		EADS CASA Espacio	CASA
	Schlosser Christian	OTN/ASA44		EADS CASA Espacio	ECAS
	Schmidt Rudolf	FAE12		European Test Services	ETS
	Schmidt Thomas	ASA42		Patria New Technologies Oy	PANT
	Schuler Günter	ASA42		SENER Ingenieria SA	SEN

Issue:
1
Date:

