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1. Introduction 
This is a brief note to describe how to calculate various parameters that are important for properly 
implementing SPIRE scan map mode.  These parameters include the effective integration time for a SPIRE 
scan map observation, as well as the scan direction, scan leg separation distance and the map size that 
results from a particular scan pattern.  Please excuse the random order in which these are dealt with; it should 
all become clear when read as a whole. 

2. Effective Integration Time 
The effective integration time is how long the SPIRE array spends observing any given point of the sky 
during a scan map observation.  This is a distinctly different quantity to the total observing time, which is the 
entire length of time it takes to observe the whole map.  The effective integration time, per map repeat, is 
only dependent on the scan rate of the arrays across the sky, as shall be shown later.  This quantity does not 
increase if  the map is made bigger but will increase if the same area of sky is observed again by subsequent 
map repeats. 
 
Imagine a single point source that lies in the path of a SPIRE scan map observation.  The arrays head straight 
towards it at the scan speed v, assumed to be 30”/s in a nominal observation.  The edge of the array arrives at 
the source and the effective integration time on that source begins to increase (part 1 in Figure 1).  The arrays 
continue across the source until the far edge of the array passes over the source and the arrays head off into 
the distance (part 2).  At this point the effective integration time stops increasing and the source will not be 
observed again during the rest of that map repeat, no matter how large the final map will become.  This is 
because subsequent scan legs will move the arrays far enough away from the source that it will not be passed 
over again.  Sources that lie in the path of the array corner, for example, will ultimately have the same 
effective integration time as the source in this example because the source will be observed a second time by 
a subsequent scan leg. 
 
So, a simple way of calculating the effective integration time is to calculate the time it takes for the SPIRE 
arrays to pass over a point on the sky.  I.e. it will be the width or length of the arrays in the scan direction 
(the red lines in the following schematic), divided by the scan rate, v. 
 
Figure 1.  Schematic showing how effective integration time can be visualised. 
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In fact, this calculation gives identical results to using the method described in section 5 of [1]. 

3. Geometry 
Figure 2 shows a schematic demonstrating how the scan leg separation and the effective integration time can 
be calculated by considering how a scan map is built up, for a diagonal scan direction (the same principle 
applies to the other two scan directions.)  The green rectangles show the effective area of the PSW array and 
how it relates to the feedhorns.  Imagine placing many of these rectangles together so that there is no space 
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between them and so that the feedhorns of adjacent arrays fit neatly beside each other.  This is effectively the 
arrangement we are looking for when we perform a scan map.  It is as if one enormous array has scanned 
across the sky and not one array passing back and forth many times, as is the reality.  You will now see how 
the green rectangle has been defined.  I define the scan leg separation with respect to this PSW rectangle 
because it is the smallest of the three arrays.  The PMW and PLW arrays can have similar rectangles defined 
but they are larger because the detectors are physically larger, which means that there are regions of extra 
overlap in scan maps for these two arrays, which is obviously no bad thing.  
 
Figure 2.  Schematic showing how various scan map parameters can be derived from simple geometric 
arguments.
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The array length in the scan direction (L) can be calculated quite simply from the size of the green rectangle 
and it’s rotation with respect to the Z-axis, θ.  In this example θ = 42.4° and the array width in the Z 
direction is 244.7” (the width of the array in the Z direction = 31.4*0.5*9√3 = 244.7”, where the detector 
spacing is 31.4”, there are 9 rows of detectors and the spacing between the rows is 0.5*√3 times the detector 
spacing), so: 
 

"1.331
)cos(

7.244
==

θ
L  

 
The scan leg separation, S, can be derived in a similar way.  In this case, see how the corners of the two 
rectangles are aligned in the scan direction, to either side of the blue arrows, so that once both scan legs are 
complete the map area in the overlap region has been crossed by as many detectors as the rest of the map, i.e. 
if you took a vertical slice through the middle of the map the integration time is the same at all points, 
because L is constant (except for the extreme top and bottom corners, which taper to a point and hence L 
tends to zero.)  The separation, S, is just the length of one green rectangle in the cross-scan (i.e. vertical) 
direction (or the array centre-to-centre spacing, as indicated by the red vertical arrow), so: 
 

"363
)sin(
7.244
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θ
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Figure 3.  Alternative way of calculating scan leg separation distance. 
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However, there is an alternative way of calculating S that ensures a slightly more robust coverage in the 
overlap region, providing a small degree of extra redundancy, just in case.  This is defined by considering the 
magenta line in Figure 2 and Figure 3, labelled as H.  By using this distance to define the array size, rather 
than the length of the green rectangle, we are effectively overlapping the four detectors at each end of the 
PSW array; the heavily shaded ones in Figure 3.  This has the advantage that there are four strips of data with 
double redundancy in the final map.  To calculate S from H is just as simple, assuming that we know the 
detector spacing for the PSW array, which is 31.4”: 
 

"471154.31 =×=H  
 

"348)cos( =×= θHS  
 

I prefer this value for the separation due to the extra redundancy, but any value between 348” and 363”, for 
diagonal scanning, would be just fine.  Equivalent values can be derived for the short scanning direction (449 
– 455”), but for long axis scanning the geometry is more complicated and to ensure uniform coverage the 
value of 235” was found to be the most satisfactory separation, as calculated from the following equation 
(please don’t ask me to explain where this equation comes from, it’s a nightmare): 
 

"235)6.77cos(
2

4.31)6.77sin(
2

394.31
=−

×
=longS   

 
All these separations have been verified by simulated observations. 
 
Table 1 defines the dimensions of the three array sizes in the same way as the green rectangles in Figure 2.  
The array heights (long axis) are calculated by assuming a half integer number of detectors, i.e. the average 
number between two adjacent rows. 
 

Table 1.  Array sizes defined by the green rectangle in Figure 2.  All dimensions are in arc seconds. 
Array Height Width Detector spacing 
PSW 486.7 244.7 31.4 
PMW 522.5 253.4 41.8 
PLW 533.8 271.9 62.8 

4. Some Numbers 
Table 2 shows the effective integration times calculated for the three arrays and for the three possible scan 
angles, using the array sizes defined in Table 1, i.e. L/v.  These integration times refer to a single map repeat.  
The total effective integration time for an observation with multiple map repeats is simply this number 
multiplied by the number of map repeats.  The different arrays have different effective integration times 
because they actually cover slightly different areas of the sky.  These numbers have all been verified by the 
SPIRE Photometer Simulator to within 2%, using the alternative method described in section 5 of [1]. 
 
Table 2.  summary of the effective integration times for the three SPIRE arrays and for the three allowed 
scan directions.  v is the scan speed in “/s, giving effective integration times per map repeat in seconds. 

Array Short Diagonal Long 
PSW 257/v = 8.57 s 331/v = 11.03 s 498/v = 16.60 s 
PMW 266/v = 8.87 s 343/v = 11.43 s 535/v = 17.83 s 
PLW 285/v = 9.50 s 368/v = 12.27 s 547/v = 18.20 s 

 
These numbers are entirely general for any scan speed, as indicated, but the specific example given in the 
table is for a scan speed of 30”/s. It is no surprise that the effective integration time for long axis scanning is 
about twice that for short axis scanning; the array is roughly twice as long as it is wide. 
 
Caveat:  These effective integration times do not include the effects of vignetting, so for the PMW and 
PLW arrays a small correction may need to be included.  However, since the scan leg separations are 
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calculated for the slightly smaller PSW array, the extra overlap experienced by the other two arrays 
may be enough to offset the effects of vignetting.  

5. Effective Integration Time for PACS-SPIRE Parallel Mode – pMode  
pMode sensitivity is slightly different to that for normal SPIRE scanning because the scan leg separation 
distance is not the same as for SPIRE only scanning.  pMode uses the diagonal scan direction and a 
separation of 155” rather than the 348” used for SPIRE only diagonal scanning.  This increases the effective 
integration time of the SPIRE observation because each point on the sky is observed more than once by the 
SPIRE arrays. 
 
A simple conversion from SPIRE only scanning to pMode can be achieved by multiplying the effective 
integration time by the ratio of the separations: 
 

)(
)()()(

pModeSep
SPIRESepSPIREpMode effeff ττ =  

 
So, for the case of the nominal pMode, using diagonal scanning, the effective integration time for the three 
arrays are as follows: 
 

Array τeff 

PSW 743/v 
PMW 770/v 
PLW 826/v 

 
The method described in section 5 of [1] provides slightly different values for the PMW and PLW arrays 
(11% higher for PMW, 15% higher for PLW) because the SPIRE only separation is optimised for the slightly 
smaller PSW array, meaning that extra integration time exists in the overlap region for the other two arrays.  
This extra time is not included in Table 2 because it only applies to the small overlap region and is not 
indicative of the majority of the map.   I choose to disregard it here too to retain consistency and to err on the 
side of caution.  Also, vignetting may counteract this extra overlap, so in reality these numbers are probably 
quite close to the true value across the whole map. 

6. Sensitivity 
The effective integration time can be used to convert the ∆S_1σ_1s value into a sensitivity per map repeat in 
the usual way: 

5.0

1_1_1_
eff

sSS
τ

σσ ∆
=∆  

Where τeff is the effective integration time. 

6.1 Sensitivity for Combined Observations 
It is possible that more than one observation will need to be combined to integrate to a particular sensitivity.  
For example, a nominal scan direction may need to be combined with an orthogonal scan direction.  In this 
case the final sensitivity will be determined by the total sum of the effective integration times for all the 
separate components added together.  Once the total τeff is found then the final sensitivity can be calculated 
using the formula above.  I shall provide a few examples here for clarification. 
 
Example 1: PSW sensitivity.  Diagonal scanning, two map repeats each of the nominal and orthogonal scan 
directions. 
 
τeff(total) = 2*331/v + 2*331/v = 4*331/v 
 
Example 2: PSW sensitivity.  2 repeats of a long axis observation plus 4 repeats of a short axis observation. 
 
τeff(total) = 2*498/v + 4*257/v = 2024/v 
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In General this can be summarised by the following formula: 
 

( )∑ ⋅=
i

i
eff

i
eff Ntotal ττ )(  

Where τeff
i are the effective integration times per map repeat for the different layers, found in Table 2. 

 
The final sensitivity is given by: 

5.0)(
1_1_1_

total
sSS

effτ
σσ ∆

=∆  

Things are further complicated by using different scan speed for different observations but in this case the 
only care that needs to be taken is to incorporate the scan speed in the calculation of the individual τeff

i  
values before combining them together with the relevant number of map repeats. 

7. Scan Direction 
I have already mentioned the scan direction (θ) above but now I shall justify the particular choice of angle 
and its derivation.  Certain members of the SPIRE instrument team disagree with the current nominal 
scanning angle so I shall present the two arguments and the pros and cons for each. 
 
For simplicity I shall briefly redefine θ as the angle through which the SPIRE arrays must be rotated with 
respect to one of the three symmetry axes.  This is an important distinction as usually angles are defined 
with respect to the Z-axis of the array, which is actually not one of the symmetry axes.  The Y-axis is a 
symmetry axis, however, as are rotations of 60° about the Y-axis.  See [3] for some helpful diagrams 
illustrating the various angles, as well as further arguments for both angles presented here. 
 
The two angles under consideration here are as follows: 
Double Nyquist angle  θ = 12.4° (Figure 4) 
Nyquist angle   θ = 13.9° (Figure 5) 
 
My preference is for the Double Nyquist angle, which when combined with the symmetry axis that is 60° 
around from the Y-axis, gives a scan direction of 42.4° w.r.t. the Z-axis of the arrays. 
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Figure 4.  Double Nyquist scan angle along the diagonal direction (42.4° relative to the Z-axis.)  The red 
arrows indicate the path of each detector in the array, the black arrow is a symmetry axis (the other two are 
not shown but would be 60° rotated with respect to this one), and the blue and green arrows are spacers 
indicating the same lines as shown in Figure 6.  The Large circles show the physical size of the detector 
feedhorns while the smaller circles, both inside and outside of the array, show the size of the beam FWHM. 

 
Figure 5.  Nyquist scan angle along the diagonal direction (43.9° relative to the Z-axis.)  The green arrows 
are now the path of the detectors, and in this case they follow the direction of the green arrows shown in 
Figure 4 and Figure 6, i.e. the path of the peach detector at the bottom of the array passes directly through the 
lower of the two detectors containing the small circles. 

 
Nyquist sampling is defined so that the spacing between any two adjacent data points in a map is no more 
than half of a beam FWHM.  This can be achieved by aiming the path of a detector exactly at another 
detector, as shown by the green line in Figure 6, joining the peach and green detectors (this geometry 
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provides the limiting case of just satisfying Nyquist sampling, see the equation later.)  Inspecting Figure 6 it 
can be seen that this arrangement defines a triangle with 3.5 detectors along a symmetry axis and one 
detector to the side.  In Figure 6 the symmetry axis in question is shown by the black arrow, while the first 
detector is indicated by the peach coloured shading.  The green arrow shows the direction along which the 
array has to be scanned so that the path of the peach detector exactly overlaps with the green detector in 
order to achieve Nyquist sampling.  Figure 5 shows what this looks like when the path of every PLW 
detector is plotted.  The scan angle with respect to the symmetry axis is defined by: 
 

°=







= 9.13

7
3arctanNθ  

 
(The right-angle triangle, in Figure 6, defined by the symmetry axis and the scan direction has an opposite 
length of √3/2 and an adjacent length of 3.5.)  And the distance between adjacent detector paths works out 
as: 
 

FWHMssd ⋅=⋅=°⋅= 48.024.0)9.13sin(  
 
where s is the detector centre-centre spacing.  The strict definition of Nyquist sampling requires one data 
sample for every 0.5 FWHM for the beam to be fully sampled, so this scan angle comfortably satisfies the 
requirement of full beam sampling.  The beam FWHM is indicated in Figure 4, Figure 5 & Figure 6 by the 
smaller circles. 
 
Figure 6. Schematic showing the various angles described in the text. 

θDN

θN 

 
 
Double Nyquist sampling is defined so that the path of the peach detector passes exactly halfway between 
the centres of the blue and green detectors in Figure 6.  The red arrow bisects the angle between the green 
and blue arrows to demonstrate this path.  Figure 4 shows what this looks like when all the detector paths are 
plotted for the PLW array.  The scan angle with respect to the symmetry axis is calculated as follows: 
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⋅= 4.12

9
3arctan

7
3arctan5.0DNθ  

 
i.e. halfway between the green and the blue arrows = the red arrow. 
 
As can be seen in Figure 4 the spacing between adjacent detector paths is now much smaller, for the most 
part.  Pay particular attention to the two small circles just above the array itself to see how the beam FWHM 
is sampled for the PLW array.  You will notice that the spacing is not entirely uniform as there are some 
gaps.  This is only the case for the PLW array, whereas for the PMW and PSW arrays there are no gaps.  The 
spacing between the detector paths works out at: 
 

FWHMssd ⋅=⋅=°⋅⋅= 215.0107.0)4.12sin(5.0  
 

For the PSW and PMW arrays the beam FWHM is being sampled with over double the frequency of Nyquist 
sampling across the whole map.  The PLW map will be mostly sampled at this same high frequency but 
where there are gaps in the PLW coverage the spacing between adjacent detector paths is 0.43 FWHM, 
which is still better than with Nyquist sampling. 
 
Compare Figure 4 and Figure 5 to see how this small change in angle completely changes the coverage of 
data across a scan map.   

7.1 Pros and Cons 
My preference for the Double Nyquist sampling angle is down to uniformity of map coverage.  Not only is 
the beam sampled many times, allowing accurate sky reconstruction, but the coverage of data from one part 
of the map to another is much more uniform than with Nyquist sampling.  See [3] for some interesting 
integration time maps similar to those shown in section 8.  The gaps in coverage for the PLW array are still 
smaller than the spacing between detector paths for Nyquist sampling, so the sky is still better sampled and 
the coverage is still more uniform.   
 
Nyquist sampling has one main advantage over Double Nyquist sampling; data redundancy.  Because the 
path of one detector is scanned again by another detector, this information could be used to remove thermal 
drifts from the detector timelines on the time scale of a few seconds (the time it takes for the paths of the two 
detectors to overlap) to allow better sky reconstruction.  However, thermal drifts should be dealt with pretty 
effectively by the data pipeline and by the mapmaking process (assuming cross-linked observations have 
been performed) so the benefit of this short timescale redundancy is not entirely clear.  In my opinion the 
clear advantages offered by a more uniform sky coverage outweighs the potential benefits of this data 
redundancy. 
 
Both angles are equally affected by missing detectors but by performing cross-linked observations any gaps 
in one map should be filled in by data from the orthogonal map. 
 
At the time of writing, Double Nyquist sampling along the diagonal direction was the default scan strategy.  
Come flight time, if it is deemed that Nyquist sampling is the better bet, along any of the three directions 
(long, diagonal or short), then the information provided in this note should allow adjustment of the other 
parameters (map size, scan leg separation, effective integration time.) 
 
 
 

8. Notes on Map Area Calculation 
This section contains material first presented in [2]. It is repeated here for completeness. 
 
When producing a large map, made up of many scan legs, the separation distance between subsequent scan 
legs is dependent on the scanning angle selected.  These can be summarised as follows: 
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Scan Angle w.r.t. short (Z-) axis (deg) Scan leg separation (arc sec) 
+/- 77.6  (long) 235 

      +/- 42.4  (diagonal) 348 
 +/- 17.6  (short) 449 

 
These separations ensure that the sky coverage of a large map is as uniform as possible.  Because the PSW 
array has the smallest detectors these scan leg separations provide optimum sky coverage for the PSW but a 
slight excess of coverage in the overlap region for the other two arrays.  The following integration time maps 
show examples of these separations for the PSW array (turn around data not included) – the darker the 
shading the greater the integration time.  The red lines passing through the centre of the arrays show the scan 
legs and how they are separated.  
 
 

 

Uniform scan speed distance

235” 

 

348” 

 



 12

 

449” 

 
The green boxes give some indication of the map area that contains only the most uniform data coverage.  
The edges of the map have less integration time because less of the array has passed over those particular 
areas, and so these edges must fall outside of the area requested by the observer when planning their 
observation.  Essentially we must over-scan the desired map area to ensure we cover it uniformly. 
 
Figure 7.  Schematic showing the geometry of the map area covered by a small scan pattern. 
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Figure 7 shows how it is possible to calculate the size of a map using geometric arguments, rather than using 
the integration time maps.  The parameters hLoss and lLoss are CUS parameters designed to ensure the user 
requested map area is covered properly (lLoss is shown in one block here but in reality it will be split in half, 
with the scan leg starting lLoss/2 before the array centre reaches the map edge, and finishing lLoss/2 after the 
map has been passed, as shown by the red lines.)  They are related to the scan direction and the size of the 
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SPIRE arrays, as we shall see.  In fact, Figure 7 is simply a zoomed out version of Figure 2 and we shall be 
using both for this derivation.  Refer also to Table 1 for the dimensions of the array rectangles. 
 

"561)sin()cos( =⋅+⋅= θθ PLWPLW heightwidthlLoss  
 

"194)sin()cos( =⋅−⋅= θθ PSWPSW widthheighthLoss  
 

The lLoss and hLoss parameters are summarised in Table 3.  Note how lLoss is calculated using the size of 
the PLW array; it is better to overestimate lLoss than to underestimate it, so the largest array is used here.  
Also, note how hLoss is calculated using the PSW array; it is better to underestimate hLoss than to 
overestimate it.  In this way, the user will always be happy with the size of their map.  Finally, note how the 
hLoss parameter is the modulus; the sign flips round for long axis scanning, compared to the other two, 
because the left and right corners of the array reverse their order from top to bottom (try it out for yourself!) 
 
Table 3.  lLoss and hLoss parameters for the three different scan directions, in arc seconds. 

Scan Angle lLoss hLoss 
long 580 134 

      diagonal 561 194 
 short 421 390 

 
The cross-scan length of a map is related to the number of scan legs, the separation between them, and 
hLoss.  This is given by the numbers in Table 4, where n = number of scan legs, and the separations and 
hLoss are indicated explicitly. 
 
Table 4.  Calculation of cross-scan length from the number of scan legs. 

Scan Angle ~cross-scan length 
long 235”*(n-1)+134” 

      diagonal 348”*(n-1)+194” 
 short 449”*(n-1)+390” 

 
The scan leg length of the map is related to the length of the scan line performed at uniform scan speed.  
Table 5 summarises this distance for each scan angle, where l = total length of uniform speed scan leg in arc 
seconds and lLoss is indicated explicitly. 
 
Table 5.  Calculation of scan leg length from the distance actually traversed by the arrays while travelling at 
the constant scan speed. 

Scan Angle ~scan leg length 
long l-580” 

      diagonal l-561” 
 short l-421” 

  
To calculate the number of scan legs required, given a requested cross-scan length, the formulae in Table 4 
need to be inverted and n rounded up to the nearest integer. 
 
e.g. user required cross-scan length = 12 arc min, diagonal scanning.   

n = roundup[(12*60 – hLoss)/scan_leg_sep] + 1 
⇒ n = roundup[(12*60 – 194)/348] + 1 = 3 
 
Note the negative in front of the hLoss.  Putting a zero height map returns a value of n = 1, as it should be. 
 
To calculate the distance that the arrays need to travel in the scan leg direction, given a scan leg length, the 
formulae in Table 5 need to be inverted.   
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e.g. user required scan leg length = 12 arc min, diagonal scanning.   
l = (12*60) + lLoss 

⇒ l = (12*60) + 561 = 1281” = 21.35’ 
 
These dimensions do not take cross linked observations in to account – the map area becomes slightly non-
square (or non-rectangular) due to the orthogonal scanning direction being 84.8° (or 95.2° depending on your 
point of view) rather than 90°.  If two square (or rectangular) orthogonal maps are combined the circular 
guaranteed area remains the same however (see Figure 8), so these numbers should still be used for the basis 
of planning observations. 
 
Figure 8. Combining two rectangular 'orthogonal' scan map observations results in a slightly non-rectangular 
map, shown by the bright green area, but the guaranteed area, shown by the dark green inner circle, remains 
unchanged. 

 
 

8.1 hLoss and lLoss for pMode 
pMode follows the diagonal scan direction but uses a scan leg separation of 155” rather than the 348” that 
the equivalent SPIRE only scan direction uses.  
 
Figure 9 demonstrates how the reduction in S leads to a complete change in the assumptions needed to 
calculate the size of the SPIRE map.  lLoss will be the same as with SPIRE only, since the size of the map in 
the scan leg direction is not affected by the different value of S.  hLoss is now negative, however, and now 
three scan legs are required to get a strip of uniform data.  As before: 
 

"194)sin()cos( =⋅−⋅=− θθ PSWPSWp widthheighthLoss  
 
This is the same value as hLoss was before but now it must be subtracted from the map size rather than 
added on.  The size of the uniformly covered map area in the cross-scan direction is now: 
 

"194)1("155__ −−= nlengthscancross  
 

 where n is the number of scan lines. 
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By inverting this we obtain an expression for the number of scan legs given the required cross-scan length of 
the map. 
 
e.g. user required cross-scan length (for the SPIRE part of the pMode map) = 12 arc min.   

n = roundup[(12*60 – hLossP)/scan_leg_sep] + 1 
⇒ n = roundup[(12*60 + 194)/155] + 1 = 7 
 
Following this logic it is easy to see why three is the minimum possible value for n.  For a map with zero 
cross-scan length: 194/155 + 1 = 2.25, round up to the nearest integer = 3. 
 
Figure 9.  Schematic showing how pMode affects the SPIRE scan map geometry. 

0.5*hLossP 

0.5*hLossP 
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Figure 10.  By shifting the array footprints to either side it is clearer how three scan legs are necessary before 
a uniform coverage region is produced. 
 

 

Graduated coverage 

Uniform coverage
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Showing Figure 9 in a slightly different way gives us Figure 10.  Here the top array footprint has been shifted 
to the left while the bottom array footprint has been shifted to the right.  This expanded view shows how the 
coverage map is built up, since the effective integration time across the coverage map is now proportional to 
the horizontal cross-section through the three array footprints, combined together.  Only the central section, 
bounded by the vertical position of the far left and right corners, has a constant horizontal cross-section, and 
hence uniform coverage.  Three scan legs are necessary to achieve any uniform coverage area at all. 
 
Well, this is what the situation would be like if we didn’t have to worry about PACS.  Unfortunately things 
get complicated now because PACS and SPIRE are separated somewhat in the Herschel FoV. 
 
Figure 11 shows what happens to the scan pattern when we add PACS into the mix.  The SPIRE and PACS 
FoV centres are 21 arc minutes apart along the Z-axis.  Therefore the extra lLoss that’s required is made up 
as follows: 21*60*cos(42.4) – 0.5*lLoss(SPIRE) + 0.5*lLoss(PACS). 
 
21*60*cos(42.4) is the horizontal distance between the SPIRE and PACS FoV centres 
 
0.5*lLoss(PACS) is the extra half of the PACS FoV that must be taken into account to ensure that PACS 
completely covers the requested area. 
 
-0.5*lLoss(SPIRE)  is required because the extra lLoss starts at the corner of the SPIRE FoV and not at the 
SPIRE center. 
 
The total lLoss required for pMode is the standard lLoss described earlier plus this extra lLoss. 
 
i.e. ( ) "1321)4.42cos(75.1)4.42sin(5.35.0605615.0)4.42cos(6021 =⋅+⋅⋅⋅+⋅+⋅⋅=PlLoss  
 
The last part is the calculation of the PACS equivalent of lLoss based on the fact that the PACS FoV is 3.5 x 
1.75 arc minutes. 
 
Extra hLoss  is also needed and this can be calculated by looking at Figure 11 again.  The vertical distance 
between the SPIRE and PACS FoV is simply 21*60*sin(42.4) but we need to subtract a small amount to 
account for the top right corner of the PACS FoV being above the PACS centre.   
 
The total hLoss is then calculated by adding on half of the hLoss calculated above, i.e. the bottom 0.5*hLossP 
in Figure 9. 
 
i.e. 

  
"9111945.0)]4.42cos(75.1))4.42sin(75.1)4.42cos(5.3(5.060[)4.42sin(2160 =⋅+−+⋅⋅−⋅⋅

=− PhLoss

 
The 0.5*hLossP at the bottom of Figure 11 is the same as the 0.5*hLossP at the bottom of Figure 9 – because 
of the necessity of having that last scan leg, to ensure that the bottom of the map is covered uniformly – so  
this total hLossP amounts to 5 extra scans before the start of the user requested map area, and one afterwards. 
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Figure 11.  Schematic showing how the SPIRE and PACS FoV fit together, and how this leads to extra hLoss 
and lLoss being required to ensure that both instruments fully cover the user requested area (shown again 
here as the green rectangle.) 

Extra hLossP 

0.5*hLossP 

21’ separation 
Extra lLossP 

 
 
 
Importantly, and in contrast to SPIRE only mode, it is now better to overestimate both lLossP and hLossP, (or 
rather the absolute value of these parameters should be overestimated) because both now account for extra 
space outside of the boundary marked out by the requested map, rather than the map extending beyond the 
area defined by the path of the SPIRE array centre, as with hLoss for SPIRE only.  Essentially this boils 
down to the fact that hLoss now has a negative sense compared to the SPIRE only value, and so the 
value in the calibration table must be negative. 
 
These numbers are summarised in Table 6. 
 
Table 6.  lLossP and hLossP, for parallel mode, in arc seconds. 

Scan Angle lLossP hLossP 

long ? ? 
      diagonal 1321 – 911 

 short ? ? 
 
 
The minimum number of scan legs is clearly more than 3 now.  For a map of zero cross-scan length we now 
have: 
 

n = roundup[(0*60 – hLossP)/scan_leg_sep] + 1 
⇒ n = roundup[(0*60 + 911)/155] + 1 = 7 
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Although, in reality the minimum size of a parallel mode map is 30 arc minutes square, so the minimum 
number of scans would actually be: 
 

n = roundup[(30*60 – hLossP)/scan_leg_sep] + 1 
⇒ n = roundup[(30*60 + 911)/155] + 1 = 19 
 
 
This logic is exactly the same as for SPIRE only, as long as the hLossP parameter is correct in the calibration 
table. 

9. References 
[1] SPIRE Photometer Simulator Verification – Scan Map Sensitivity, Tim Waskett, Bruce Sibthorpe, 
SPIRE-UCF-NOT-002756 
[2] Cross Linked Scan Map Observations, Tim Waskett, Bruce Sibthorpe, SPIRE-UCF-NOT-002759 
[3] Scan Map Scanning Angles and Separations, Tim Waskett, Bruce Sibthorpe, SPIRE-UCF-NOT-002758 


	Introduction
	Effective Integration Time
	GeometryFigure 2
	Some Numbers
	Effective Integration Time for PACS-SPIRE Paralle
	Sensitivity
	Sensitivity for Combined Observations
	Scan Direction
	Pros and Cons
	Notes on Map Area Calculation
	hLoss and lLoss for pMode
	References

