

HERSCHEL

SPIRE

Ref: SPIRE-RAL-NOT-002829

Author: Asier Abreu Aramburu

Page: 1

Issue: Issue 1.0

Date: 19th Feb 2007

SPIRE Database Management and CUS Configuration Control

Prepared by: Asier Abreu Aramburu Date 12/02/07

Checked by: Date

Approval: Date

HERSCHEL
SPIRE

SPIRE Database Management and CUS Configuration
Control

SPIRE-RAL-NOT-002829

Page: 2 / 23
Issue: Issue 1.0
Date: 19h Feb 2007

Distribution List

Institution Name
RAL Sunil Sidher
 Tanya Lim
 Bruce Swinyard
 Eric Sawyer
 Dough Griffin
 Dave Smith
 Ken King
 Tim Grundy
 Allan Dowel
IC Davide Rizzo
 George Bendo
CU Tim Waskett

List of Acronyms

CUS Common Uplink System
HCSS Herschel Common Science System
CVS Concurrent Versioning System

HERSCHEL
SPIRE

SPIRE Database Management and CUS Configuration
Control

SPIRE-RAL-NOT-002829

Page: 3 / 23
Issue: Issue 1.0
Date: 19h Feb 2007

Table of Contents

Table of Contents...3
1 Introduction ...4

1.1 Intended Audience..4
1.2 Scope ..4
1.3 Assumptions ...4
1.4 Reference Documents...4
1.5 Applicable Documents ...4
1.6 Document Change Record..5

2 Database Management ..5
2.1 Database Creation...5

2.1.1 System/Software Requirements ...5
2.1.2 Creating a database ..6
2.1.3 Creating a new configuration on an existing database...12

2.2 Database Deletion...13
2.2.1 Stopping database transactions ..13
2.2.2 Removing the database ..13

2.3 Database backup and restore process ...13
2.3.1 Backing up an existing database ..13
2.3.2 Restoring a database from a backup file ..14

3 Configuration Control ...15
3.1 Configuration Control Rationale ..15
3.2 Configuration Control Approach..15

3.2.1 The CVS SPIRE repository structure ..15
3.2.2 Versioning of CUS definitions ..16

3.3 Structure and dependencies of the CUS definitions ...20
3.3.1 How this table is used by the different definitions: ...22
3.3.2 Keys explained...22

HERSCHEL
SPIRE

SPIRE Database Management and CUS Configuration
Control

SPIRE-RAL-NOT-002829

Page: 4 / 23
Issue: Issue 1.0
Date: 19h Feb 2007

1 Introduction
This document provides information on various topics related to database management, CUS
usage and configuration control of the CUS and test control/ccs template definitions.

1.1 Intended Audience
The potential users of this document are those persons directly related with the SPIRE testing
on its different scenarios (ILT, AVM, IST) which will be involved in the creation of the test
setup.
The test setup is understood as the ‘system’ that allows the operation of the SPIRE instrument
in real or semi-real time, the monitoring of its behaviour and the archiving of the instrument’s
telemetry.

1.2 Scope
This document is applicable to all test environments, i.e, ILT, AVM, IST, HSC ..

1.3 Assumptions

Despite all SPIRE test environments are run under Linux systems, no assumptions are made
here as to the expertise in Linux environment of the person reading this procedure, i.e., you
don’t need to be a Linux guru to understand it. Nevertheless it would help if you know
something about Linux.

1.4 Reference Documents

Ref# Title Reference Issue

Nb
Date

RD01 Database Administration
Procedures

HSC-HERSCHEL-DOC-0833

0.4 07/11/06

RD02 HCSS Installation
Instructions

HSC-HERSCHEL-DOC-0427 1.18 12/10/06

1.5 Applicable Documents

Ref

Title Author Reference Date

HERSCHEL
SPIRE

SPIRE Database Management and CUS Configuration
Control

SPIRE-RAL-NOT-002829

Page: 5 / 23
Issue: Issue 1.0
Date: 19h Feb 2007

1.6 Document Change Record

Date Issue Nb. Affected Pages Changes
12/02/07 Draft 0.1 Document Created
19/02/07 Issue 1.0 Introduced a section explaining the usage

of the TestSetup.txt caltable.

2 Database Management
2.1 Database Creation

This section specifies how to create a versant database using the available versant and HCSS
functionality.

2.1.1 System/Software Requirements

Operating system:

• The operating system requirements are mainly those imposed by the HCSS and
Versant installation requirements, which can be found in RD01 and RD02

o http://www.rssd.esa.int/SD-

general/Projects/Herschel/hscdt/releases/doc/Install.html
o http://www.rssd.esa.int/SD-

general/Projects/Herschel/hscdt/releases/doc/versant/dba-procedures/index.html
respectively

• On Linux systems the key parameters for database creation (and in general for all

HCSS required operations) can be located in the user.props file located under
${USER_HOME}/.hcss directory

• On Windows systems the key parameters for database creation (and in general for all
HCSS required operations) can be located in the user.props file located under
%USER_PROFILE%/.hcss directory

The following must be installed on the system were the database is to be created:

Third parties software:

• Versant ODBMS (v7.0.1.1 or higher)
• Java Run Time Environment (v1.5.0 or higher)

Note: this is the current (13/02/07) setup on both the ILT setup at RAL and the IST setup
machines.

http://www.rssd.esa.int/SD-general/Projects/Herschel/hscdt/releases/doc/Install.html
http://www.rssd.esa.int/SD-general/Projects/Herschel/hscdt/releases/doc/Install.html
http://www.rssd.esa.int/SD-general/Projects/Herschel/hscdt/releases/doc/versant/dba-procedures/index.html
http://www.rssd.esa.int/SD-general/Projects/Herschel/hscdt/releases/doc/versant/dba-procedures/index.html

HERSCHEL
SPIRE

SPIRE Database Management and CUS Configuration
Control

SPIRE-RAL-NOT-002829

Page: 6 / 23
Issue: Issue 1.0
Date: 19h Feb 2007

SPIRE specific:

• SPIRE Build (#478 or higher) (or equivalent formal release). It is assumed that the
SPIRE release contains the correspondent HCSS release. The SPIRE latest build can
be retrieved @
http://www.rssd.esa.int/herschel_scripts/hscdt/ccInfo2Html.cgi?theProject=SPIRE&th
eDisplay=BUILD

Note: all given URL addresses above will prompt for a user name and password. Please ask
Steve Guest or Sunil Sidher for this information.

2.1.2 Creating a database

The following steps specify how to create a new database and the expected results of each of
the actions performed. The commands should be typed in a terminal of the database server’s.
For a full description on db management refer to RD01.

2.1.2.1 Allocating the physical space:

Command line: db_admin -i db_name@db_server

Expected Result:

02-Feb-07 09:43:42.852 LogInitialiser: Initialising using local log configuation file
/home/sg55/.hcss/userlogging.properties
02-Feb-07 09:43:42.942 Configuration: Build number is 1106
Initializing new database system...
[makedb] New database directory created: db_name@db_server
[profile.be] Updated profile.be for database: db_name@db_server
[createdb] New database created: db_name@db_server
[SchemaTool]
[indexing] Creating default indices.
02-Feb-07 09:43:50.200 DatabaseTools: Could not check for multi-user-mode, check is
disabled.
[DBI]
[initv]
Initializing database "db_name@db_server"
02-Feb-07 09:43:50.518 ReplicatingTransaction: Initializing normal Store:
db_name@db_server (main), shadowing disabled.
Initializing database using herschel.ccm.tools.BasicMissionInitializer
02-Feb-07 09:43:50.643 InstrumentModelRegistryImpl: Create new model registry for
instrument HIFI
02-Feb-07 09:43:50.738 InstrumentModelRegistryImpl: Create new model registry for
instrument PACS

http://www.rssd.esa.int/herschel_scripts/hscdt/ccInfo2Html.cgi?theProject=SPIRE&theDisplay=BUILD
http://www.rssd.esa.int/herschel_scripts/hscdt/ccInfo2Html.cgi?theProject=SPIRE&theDisplay=BUILD

HERSCHEL
SPIRE

SPIRE Database Management and CUS Configuration
Control

SPIRE-RAL-NOT-002829

Page: 7 / 23
Issue: Issue 1.0
Date: 19h Feb 2007

02-Feb-07 09:43:50.739 InstrumentModelRegistryImpl: Create new model registry for
instrument SPIRE
02-Feb-07 09:43:50.906 ReplicatingTransaction: Initializing normal Store:
db_name@db_server (main), shadowing disabled.
Database system initialization finished, system id = 794.
Finished successfully.

2.1.2.2 Adding public access to the database:

Command line: dbuser -add -P db_name@db_server

Expected Result:

VERSANT Utility DBUSER Version 7.0.1.1
Copyright (c) 1989-2005 VERSANT Corporation

2.1.2.3 Telemetry Packet Objects index sorting by time:

Command line:
dbtool -index -create -btree herschel.versant.ccm.TmSourcePacketImpl _time db_name

Note: there is no error, the @ part on the db is not necessary

Expected Result:

VERSANT Utility DBTOOL Version 7.0.1.1
Copyright (c) 1989-2005 VERSANT Corporation

Creating btree index on herschel.versant.ccm.TmSourcePacketImpl._time...

2.1.2.4 Creating a new configuration for this database:

This step is required to associate all changes done to the contents of a database. The
philosophy is that a new database will start with configuration config1 and if changes are
then made to definitions on the database or calibration tables a new configuration will be
required for those changes to have effect. See section 3.1.3 for more information on this.

Command line: missetup -addconfig config1

Expected Result:

02-Feb-07 09:58:32.639 LogInitialiser: Initialising using local log configuation file
/home/sg55/.hcss/userlogging.properties
02-Feb-07 09:58:32.687 Configuration: Build number is 1106

HERSCHEL
SPIRE

SPIRE Database Management and CUS Configuration
Control

SPIRE-RAL-NOT-002829

Page: 8 / 23
Issue: Issue 1.0
Date: 19h Feb 2007

02-Feb-07 09:58:33.776 ReplicatingTransaction: Initializing normal Store:
db_name@db_server (main), shadowing disabled.
02-Feb-07 09:58:33.852 MissionSetup:
Using database "db_name@db_server"
02-Feb-07 09:58:33.947 MissionSetup: Mission configuration "config1" created in
database "db_name@db_server"

2.1.2.5 Ingesting the MIB into the database:

It is necessary to check the current settings for MIB ingestion before ingesting the MIB. The
property which specifies the locations of the MIB files to ingest is hcss.mib.datadir . This can
be found on the user.props file under ${USER_HOME}/.hcss. Make sure it is pointing to the
directory you want.

Command line: ingestmib -settings | grep 'mib'

Expected Result:

02-Feb-07 10:04:33.179 LogInitialiser: Initialising using local log configuation file
/home/sg55/.hcss/userlogging.properties
02-Feb-07 10:04:33.224 Configuration: Build number is 1106
+hcss.mib.dumprawmib.stdout=false (Package default property, source:
herschel/mib/defns/mib.xml)
+hcss.mib.preparemib.outdir=. (Package default property, source:
herschel/mib/defns/mib.xml)
+hcss.binstruct.mib.source=ascii (Package default property, source:
herschel/binstruct/defns/binstruct.xml)
+hcss.mib.logfile=mibchecker.log (Application default property, source:
IngestMib.defaults)
+hcss.mib.readallcmds=true (Package default property, source:
herschel/mib/defns/mib.xml)
+hcss.binstruct.mib=/spires/hcssbld/spire/lib/hcss/data/binstruct/mib (Package default
property, source: herschel/binstruct/defns/binstruct.xml)
+hcss.mib.database=db_name@db_server (Application default property, source:
IngestMib.defaults)
+hcss.binstruct.mib.pal.database=database@server (Package default property, source:
herschel/binstruct/defns/binstruct.xml)
+hcss.binstruct.mib.pal.poolname=mibs (Package default property, source:
herschel/binstruct/defns/binstruct.xml)
+hcss.mib.preparemib.indir=. (Package default property, source:
herschel/mib/defns/mib.xml)
+hcss.mib.tabledefs=/spires/hcssbld/spire/lib/hcss/data/mib/defns/table-defns/
(Application default property, source: IngestMib.defaults)
+hcss.mib.datadir=/home/sg55/PFM5/MIB/ (User global property, source:
/home/sg55/.hcss/user.props)
+hcss.binstruct.mib.pal.tm_version_map=default (Package default property, source:
herschel/binstruct/defns/binstruct.xml)

HERSCHEL
SPIRE

SPIRE Database Management and CUS Configuration
Control

SPIRE-RAL-NOT-002829

Page: 9 / 23
Issue: Issue 1.0
Date: 19h Feb 2007

+var.mib.datadir=/home/sg55/PFM5/MIB/ (User global property, source:
/home/sg55/.hcss/user.props)
+hcss.mib.instrument=SPIRE (Application default property, source:
IngestMib.defaults)
+hcss.mib.cus_file=cus.script (Application default property, source:
IngestMib.defaults)
+hcss.mib.tc_command_list=/home/sg55/PFM5/MIB//auxil/tcmds (Package default
property, source: herschel/mib/defns/mib.xml)
+hcss.mib.errorsonly=false (Application default property, source: IngestMib.defaults)
+hcss.mib.tc_command_durns=/spires/hcssbld/spire/lib/hcss/data/mib/example-
mibs/example-1/auxil/tc-durns (Application default property, source:
IngestMib.defaults)

Command line: ingestmib MIB_LABEL (where MIB_LABEL is a user specified label)

Expected Result: (only the last lines of the output are copied here as it is too long)

If there is an error:

There was one or more serious problems in the semantics of the imported MIB files. Check the
file mibchecker.log for details.
Exception in thread "main" herschel.mib.utils.ValidationProblemsFoundMibException: One or
more serious semantical validation problems encountered.
 at herschel.mib.api.MibFactory.createDefinitions(MibFactory.java:411)
 at herschel.mib.api.MibFactory.createDefinitions(MibFactory.java:93)
 at herschel.mib.tools.IngestMib.exec(IngestMib.java:65)
 at herschel.mib.tools.IngestMib.main(IngestMib.java:100)

This will indicate an error on the MIB files themselves and therefore nothing you can’t do
unless you have some insight onto MIB file correction. If this is not the case Sunil Sidher
should be able to help you. A mibchecker.log file will have been created on the directory
were the ingestmib tool has been run.

If everything went well:

MibFactory: There was one or more problems in the imported MIB files. These are not
judged to be serious. Check the file mibchecker.log for details.
02-Feb-07 12:16:24.187 MibFactory: Semantical checks done.
02-Feb-07 12:16:28.120 IngestMib: MibDefinitions now added to database with label
SPIRE_MIB_2.2.G1
02-Feb-07 12:16:28.127 IngestMib: Ingestion Completed Successfully.

Note: despite the reference to “…one or more problems…” this does not stop the MIB from
being ingested and can be used normally.

2.1.2.6 Open the cusgui and load this MIB:

Command line:

HERSCHEL
SPIRE

SPIRE Database Management and CUS Configuration
Control

SPIRE-RAL-NOT-002829

Page: 10 / 23
Issue: Issue 1.0
Date: 19h Feb 2007

1. cusgui&
2. When the gui appears hit tab labelled Mib then hit the load new mib from the

drop down menu.
3. From the pop up window select the MIB labelled MIB_LABEL

Expected Result:

Ingested MIB commands appear on the MIB commands subwindow of the cusgui (on the
bottom right)

2.1.2.7 Ingesting required calibration tables onto the database:

Command line: ./UploadCaltables.csh

Note: the “./” (dot-slash) is important

Expected Result: (only contains the output of the first table loaded for reference)

Using database db_name
VERSANT Utility DBTOOL Version 7.0.1.1
Copyright (c) 1989-2005 VERSANT Corporation

Volume 0:
 Sysname "sysvol" Size: 8387584K
 Pathname "/spired/versant/db/pfm5_test/system"
 Percentage of volume space free in sysvol : 99%
 Free space in vol sysvol : 8361344KB

 Percentage of free space in DB : 99%
 Total available free space in DB : 8361344KB

02-Feb-07 12:26:23.921 LogInitialiser: Initialising using local log configuation file
/home/sg55/.hcss/userlogging.properties
02-Feb-07 12:26:23.978 Configuration: Build number is 1106
02-Feb-07 12:26:24.962 ReplicatingTransaction: Initializing normal Store:
db_name@db_server (main), shadowing disabled.
02-Feb-07 12:26:26.057 Cus: Calibration table "Flash.txt" successfully uploaded from
"/home/sg55/PFM5/CUS/temp/Caltables/Flash.txt"…
…

one “successfully uploaded from …” message for each calibration table

HERSCHEL
SPIRE

SPIRE Database Management and CUS Configuration
Control

SPIRE-RAL-NOT-002829

Page: 11 / 23
Issue: Issue 1.0
Date: 19h Feb 2007

2.1.2.8 Ingesting the CUS definitions:

It is assumed that a single file containing all latest CUS definitions (building blocks,
procedures and modes) which should be named CUS_Definitions.file is available at CVS for
download.
There are two ways to ingest the CUS definitions, through the cus gui or from command line

Using cusgui:

1. cusgui&
2. Press the tab Registry labelled tab then Import and on the pop-up window selected the

file that contains all the definitions that are to be uploaded.
3. Then commit the changes by pressing the Registry labelled tab, then Commit window

and in the pop-up window insert a comment.

Command line: ./IngestCUSDefinitions.csh

This shell script is part of the files located on the CVS repository and it executes a cus
command to import the same file as specified on the previous step.

2.1.2.9 Setting the initial obsid for this database:

An initial obsid (previously selected based on already existing obsids for different dbs)
should be assigned to the new database.

Command line: java SetObsId db_name@db_server start_obsid

Note: the start_obsid should be given as the hexadecimal value of the start obsid
without the ‘0x’ indicator, i.e., if the initial obsid to set is 0x30012001 the command
should look like: java SetObsId db_name@db_server 30012001

Expected Result:

02-Feb-07 12:40:26.714 LogInitialiser: Initialising using local log configuation file
/home/sg55/.hcss/userlogging.properties
02-Feb-07 12:40:26.763 Configuration: Build number is 1106
02-Feb-07 12:40:27.522 ReplicatingTransaction: Initializing normal Store:
db_name@db_server (main), shadowing disabled.
02-Feb-07 12:40:27.637 IdRegistryCommitThread: Creating new IdRegistry entry
idreg_Observation

2.1.2.10 Associating ALL of the previous (MIB + CUS definitions) by creating and
instrument model on this configuration:

Command line: cus -createinsmodel config1

Expected Result:

HERSCHEL
SPIRE

SPIRE Database Management and CUS Configuration
Control

SPIRE-RAL-NOT-002829

Page: 12 / 23
Issue: Issue 1.0
Date: 19h Feb 2007

02-Feb-07 12:54:31.063 LogInitialiser: Initialising using local log configuation file
/home/sg55/.hcss/userlogging.properties
02-Feb-07 12:54:31.115 Configuration: Build number is 1106
02-Feb-07 12:54:31.968 ReplicatingTransaction: Initializing normal Store:
db_name@db_server (main), shadowing disabled.
02-Feb-07 12:54:32.096 MissionImpl: Using configuration "config1"

2.1.2.11 Checking the currently available instrument models in the database:

The following step assumes that an instrument model defined by the property var.model
located on the user.props file is defined.

Command line: missetup -listmodels

Expected Result:

02-Feb-07 09:59:12.860 LogInitialiser: Initialising using local log configuation file
/home/sg55/.hcss/userlogging.properties
02-Feb-07 09:59:12.907 Configuration: Build number is 1106
02-Feb-07 09:59:13.883 ReplicatingTransaction: Initializing normal Store:
db_name@db_server (main), shadowing disabled.
02-Feb-07 09:59:13.957 MissionSetup:
Using database "db_name@db_server"
02-Feb-07 09:59:13.968 MissionSetup:
Instrument models :-
SPIRE PFM5
PACS WHOCARES
HIFI WHOCARES

2.1.3 Creating a new configuration on an existing database

The following steps specify how to create a new configuration on an already existing
database

1. If ccshandler (IST) or testcontrolserver (ILT) applications are running, stop them, by
pressing Ctrl-C on the correspondent terminal. If not go to step 2.

2. In order to know which configuration number to create, hit the up arrow in order to
get the latest missetup command with the correspondent confign or edit the
user.props file located under ${USER_HOME}/.hcss and look for
hcss.ccm.mission.config property. Then on a terminal type: missetup –addconfig
confign (where n the correspondent incremental number). Wait for completion, then
go to step 3.

3. On a terminal type: cus –createinsmodel confign
4. On the user.props file located under ${USER_HOME}/.hcss update the

hcss.ccm.mission.config property to the newly create configuration confign
5. Restart ccshandler (IST) or testcontrolserver (ILT) applications.

HERSCHEL
SPIRE

SPIRE Database Management and CUS Configuration
Control

SPIRE-RAL-NOT-002829

Page: 13 / 23
Issue: Issue 1.0
Date: 19h Feb 2007

2.2 Database Deletion

The following steps describe how to delete and existing database.

Note: This action should only be performed if you REALLY know what you are doing.

2.2.1 Stopping database transactions

Command line: stopdb –s db_name@db_server

Expected Result:

VERSANT Utility STOPDB Version 7.0.1.1
Copyright (c) 1989-2005 VERSANT Corporation

2.2.2 Removing the database

Command line: removedb –rmdir db_name@db_server

Note: you will be prompted whether you want to go ahead

Expected Result:

Version 7.0.1.1
Copyright (c) 1989-2005 VERSANT Corporation

Are you sure you want to remove the database "db_name@db_server" (y/n) ? : y

2.3 Database backup and restore process

The following steps describe how to backup and existing database and restore it afterwards

2.3.1 Backing up an existing database

1. Command line: stopdb –s db_name@db_server

Expected Result:

VERSANT Utility STOPDB Version 7.0.1.1
Copyright (c) 1989-2005 VERSANT Corporation

2. Command line: dbinfo -1 dbname@db_server

Expected Result:

VERSANT Utility DBINFO Version 7.0.1.1

HERSCHEL
SPIRE

SPIRE Database Management and CUS Configuration
Control

SPIRE-RAL-NOT-002829

Page: 14 / 23
Issue: Issue 1.0
Date: 19h Feb 2007

Copyright (c) 1989-2005 VERSANT Corporation

Database is in DBA-only and single connection mode ...

3. Command line: vbackup -device devicename -backup db_name@db_server

Expected Result:

VERSANT Utility VBACKUP Version 7.0.1.1
Copyright (c) 1989-2005 VERSANT Corporation

Backing up database `db_name@db_server' to device `devicename':

 0% 50% 100%
 | | | | |
 ..

Backup has completed successfully.

Note: this last message may take some time depending on the size of the database you are
trying to backup

2.3.2 Restoring a database from a backup file

1. Create directory to hold the database volumes

Command line: makedb restoreddb_name@db_server

Expected Result:

VERSANT Utility MAKEDB Version 7.0.1.1
Copyright (c) 1989-2005 VERSANT Corporation

2. Restoring the database

Command line: vbackup -device ‘devicename’ -restore restoreddb_name@db_server

Expected Result:

VERSANT Utility VBACKUP Version 7.0.1.1
Copyright (c) 1989-2005 VERSANT Corporation

Restoring database `backedup_db@chichester' from device `temp.bck':

 0% 50% 100%
 | | | | |
 ..

Restore has completed successfully.

Would you like to do another level of restore
on database `backedup_db@chichester'? [default = no]
Cleaning up...

HERSCHEL
SPIRE

SPIRE Database Management and CUS Configuration
Control

SPIRE-RAL-NOT-002829

Page: 15 / 23
Issue: Issue 1.0
Date: 19h Feb 2007

3 Configuration Control

3.1 Configuration Control Rationale

The rationale behind creating and maintaining a configuration control of the software used
during the testing of the SPIRE instrument on any environment was/is to be able to know at
some point in the future, which version of which script was used to produce a particular set of
SPIRE telemetry data.

3.2 Configuration Control Approach

3.2.1 The CVS SPIRE repository structure

With this in mind, the SPIRE software used for different campaigns has been maintained on
the ESA CVS repository:
http://www.rssd.esa.int/herschel_scripts/cvsweb.cgi/?cvsroot=Herschel_CVS under the
following directory: develop/main/herschel/spire/instrument/

Note: Access can be obtained to this repository by means of a user and password
combination. You should contact Rob Zondag at ESA for this (rzondag@rssd.esa.int)

A tree structure based on a folder for each test campaign was created under the main
directory so that changes to definitions could be tracked separately, as it can be seen in the
figure below:

Figure 1. CVS SPIRE repository tree structure

For the ILT level campaigns each of these folders contains two subfolders: CUS and
TestControl in which the CUS definitions and the TestControl scripts are located

http://www.rssd.esa.int/herschel_scripts/cvsweb.cgi/?cvsroot=Herschel_CVS
mailto:rzondag@rssd.esa.int

HERSCHEL
SPIRE

SPIRE Database Management and CUS Configuration
Control

SPIRE-RAL-NOT-002829

Page: 16 / 23
Issue: Issue 1.0
Date: 19h Feb 2007

respectively. For the IST (AVM) level campaigns each of these folders contains two
subfolders: CUS and CCS in which the CUS definitions and the CCS templates are located
respectively.
Experience has shown that keeping separate folders becomes difficult to maintain in the long
term and the future approach is to have a single folder FM that will hold the latest versions of
definitions. The configuration control should be tracked on this folder.

3.2.2 Versioning of CUS definitions

Note: this is not a cvs manual, only a guideline on how the versioning has to be done and
therefore not every single step for using CVS will be explicated here. Useful information
regarding CVS and WinCVS can be found on the links appearing below:

http://sourceforge.net/docman/display_doc.php?docid=766&group_id=1
And
http://www.thathost.com/wincvs-howto/

Note: script refers to both CUS definitions and testcontrol /ccs templates

3.2.2.1 Creating a local repository

Creating a local repository of definitions (if there isn’t one already) should be the first step
towards having a way of tracking changes on scripts. The only assumption on this is that you
can download things onto the server you want to create the repository in, i.e., and internet
connection should be enough. This local repository will have the same structure than the CVS
repository.

Using WinCVS:

On a windows server creating a local repository can easily be done using WinCVS. From the
WinCVS gui hit the Remote labeled tab and then select Checkout module … The pop up
window will look like the figure below:

http://sourceforge.net/docman/display_doc.php?docid=766&group_id=1
http://www.thathost.com/wincvs-howto/

HERSCHEL
SPIRE

SPIRE Database Management and CUS Configuration
Control

SPIRE-RAL-NOT-002829

Page: 17 / 23
Issue: Issue 1.0
Date: 19h Feb 2007

Figure 2. Checking out a module from WinCVS

Using Linux CVS:

On a linux server cvs comman line provides the same functionality as in windows. Just type
in (from the location in which you want to create the repository):
cvs checkout modulename

Note: In both cases (Window/ Linux) it is assumed that the user has specified a CVSROOT
environment variable. An example of it can be seen on Figure2. On a Linux system this
environment variable is usually specified on the .cshrc file located in ${USER_HOME}

See http://www.thathost.com/wincvs-howto/#gettingnew

3.2.2.2 Checking in scripts onto CVS

Prior to the start of a new campaign the definitions that have been verified to be correct using
a dummy database on an alternative test setup have to be configured on CVS.
If the definitions did not exist they will have to be added to the repository, if they existed they
are updated in the correspondent folder in the CVS repository.

Using WinCVS:

On a windows server updating definitions can easily be done using WinCVS. If the defs did
not exist from the WinCVS gui select all new defs then hit the add symbol located on the
button bar. After the defs are added hit the commit button in order to make changes effective.

http://www.thathost.com/wincvs-howto/#gettingnew

HERSCHEL
SPIRE

SPIRE Database Management and CUS Configuration
Control

SPIRE-RAL-NOT-002829

Page: 18 / 23
Issue: Issue 1.0
Date: 19h Feb 2007

If the defs existed, after having made changes only the commit step is required. When
committing changes you will be prompted for comments that will be added to your
definitions.
 This process may require the creation of a new folder on the CVS repository, a new folder is
just as every other file on CVS so the same process of ‘creation’ is applicable for it.

Using Linux CVS:

Two commands will be required:

1. cvs add new_def
2. cvs commits updated_def

If the definitions existed step 1 will not be needed.

See http://www.thathost.com/wincvs-howto/#commit

3.2.2.3 Assigning a ‘tag’ to the versions

The previous step will automatically assign initial (or new) versions to those definitions.
Once they are checked in, a tag must be assigned to these versions so that each definition has
a unique version number + TAG. The way to tag these versions shall comply with the
following specification:

TAG NAME = LABEL_CONFIGN

Where LABEL = a label assigned to the definitions representative of the test for which these
definitions are used, e.g., for the AVM tests LABEL = AVM_TEST

And CONFIGN = the latest configuration corresponding to these definitions
So the full tag would for example look like:

AVM_TEST_CONFIG6

See: http://www.thathost.com/wincvs-howto/#tag

3.2.2.4 Configuration control after the test is started

Because there is the possibility that things (scripts) can change when they start being used for
one reason or another, some approach must be taken to the configuration control of these
changes.
The HCSS provides a good enough mechanism for this.
Every definition or calibration table that is ingested onto a database gets automatically
assigned a version (1). Therefore, if our script had an original cvs version of let’s say 1.2 on
the repository, when it gets ingested onto the db, its full version becomes 1.2.1.

http://www.thathost.com/wincvs-howto/#commit
http://www.thathost.com/wincvs-howto/#tag

HERSCHEL
SPIRE

SPIRE Database Management and CUS Configuration
Control

SPIRE-RAL-NOT-002829

Page: 19 / 23
Issue: Issue 1.0
Date: 19h Feb 2007

From then on any changes made to this script must be ONLY tracked at the database through
the incremental versions automatically assigned by the db whenever a change is done to this
script and then committed.
The reason that this versioning should only be tracked this way is that experience says that
trying to maintain a versioning system using new versions checked in and out every time a
change is made can become highly unstable (i.e. a nightmare) on a system that uses hundreds
of different definitions.

When the tests are finished all latest versions of scripts residing on the database will be
checked in on the CVS repository and this will assign them a new version (1.3 following the
previous example). A tag should also be assigned to these new versions following the
guidelines given in assigning a ‘tag’ to the versions.

Since the introduction of the mission configuration concept a set of scripts + calibration
tables ingested at one point on a database must be assigned a correspondent configuration.
When creating a new configuration this effectively creates a ‘snapshot’ of the database at that
particular moment that freezes those versions and therefore any ‘new’ changes performed to
scripts since the config was created require a new configuration.
In this scenario the concept of automatic versioning by the database still holds as different
versions of scripts will correspond to different configurations.

3.2.2.5 Configuration Control of Test Control/CCS scripts:

Unlike with the CUS scripts which have an automatic ‘tracking system’ provided by the
database, the test control (or ccs templates) scripts cannot be tracked the same way and a
different approach is required for these definitions.
In this case the control must be done explicitly, i.e. any changes performed to test control
scripts or ccs templates must be committed to the general repository every time a change is
done in order to be tracked properly. The only ‘effective’ way of doing this is :

On ILT:

The ‘local test procedures’ folder from which the test control scripts are executed at run time
must become the ‘local repository’, i.e., this folder must be linked directly to the local CVS
repository folder by creating a symbolic link.
For example if the folder where ‘local test procedures’ resides in the ILT setup at RAL is:

Lincoln: /home/sops23e/SCOS2.3eP5/tcl/TC

This folder should be linked through a symbolic link to the correspondent

/develop/main/herschel/spire/instrument/PFM3/TestControl/ for example

On IST:

The ‘ccs templates’ has to be directly the ‘local repository’,i.e., check out the correspondent
module from CVS and the use the CCS directory under this tree structure to create (or
update) the templates. For example at Friedrischaffen:

HERSCHEL
SPIRE

SPIRE Database Management and CUS Configuration
Control

SPIRE-RAL-NOT-002829

Page: 20 / 23
Issue: Issue 1.0
Date: 19h Feb 2007

The folder /develop/main/herschel/spire/instrument/FM/CCS/ should be checked out onto the
database server HOS4-D and the used for tracking changes.

FOR BOTH:

Any changes done to a test control script or ccs template should be done following the
specification given in 3.2.2.2

3.3 Structure and dependencies of the CUS definitions

This section has been written to give an overview on the way the changes have been
implemented on the latest CUS definitions and calibration tables. These can be found in:

/develop/main/herschel/spire/instrument/FM/CUS on the repository

The main change is the introduction of a calibration table that is used generally for several
purposes. The name of this calibration table is TestSetup.txt . This table is very important as
is used by different CUS definitions in order to decide on which commands to produce.The
latest version of this table is showed below.

Table Name : TestSetup.txt
Version : $Revision$
Update Date : $Date$
Purpose : Used generally for uplink parameter setting
Applicability : Applicable for all test environments
Comments :

Keys:
configuration ---> (used as an informative of the current configuration)

The last row on this table will have 'current' as the value of the configuraiton
and it will be a copy of the penultimate row.

Possible values of configuration are 'config1,config2,...confign where n is an
incremental indicator

env --->(used to specify the environment in which the test is taking place)

This key is used by the Proc_SetBBID/Proc_SetOBSID procedures to set (or
not) the test facility ids

Possible values of 'setup' key are: (According to Herschel Ground Segment to
Instruments ICD)
ICD FIRST-FSC-DOC-0200 Issue 2 Rev 3 18/11/04

moc = manual commanding of the instruments during in-flight operations
ilt = scheduled operations (test using TOPE scripts) during instrument level tests

HERSCHEL
SPIRE

SPIRE Database Management and CUS Configuration
Control

SPIRE-RAL-NOT-002829

Page: 21 / 23
Issue: Issue 1.0
Date: 19h Feb 2007

hsc = scheduled operations (real observations using mission timeline)
of the instruments during in-flight operations
ist = scheduled operations (test using CCS templates) during system level tests
par = scheduled operations (test using CCS templates) during multiple instrument
system level tests

test_type --->(used to set the MODE parameter ONLY when test is not ft)

This key is used by the instrument procedures to set (or not) the MODE
parameter

Possible values of 'test_type' are: ft,pr
ft = functional tests
pr = performance test (EVERYTHING THAT IS NOT AN FT CAN BE
CONSIDERED AS PR)

instrument --->(used for calibration table selection of SMEC and CREC configuration
procedures)

This key is used by the instrument procedures to set the correspondent
parameter for different 'instruments'

Possible values of 'instrument' are : prime,redudant

condition --->(used mainly for proper SMEC encoder level setup)

This key is used by the instrument procedures (mainly SMEC related)
to set the correspondent parameter for different instrument condition
(warm/cool/cold)

Possible values of 'condition' are : warm,cool,cold
warm (T_mechanism > 100K)
cool (100K < T_mechanism < 10K)
cold (T_mechanism < 10K)

dbg_level --->(used for switching the behaviour of debug statements inside the cus
scripts)

This key is used by CUS scripts generally

Possible values of 'dbg_level' are:
dbg_level = 0 (means debug statements will NOT be printed to std output)
dbg_level = 1 (means debug statements will BE printed to std output)

string string string string string int
configuration env test_type instrument condition dbg_level
current ist ft prime cold 1

HERSCHEL
SPIRE

SPIRE Database Management and CUS Configuration
Control

SPIRE-RAL-NOT-002829

Page: 22 / 23
Issue: Issue 1.0
Date: 19h Feb 2007

The main advantage of this table compared to previous implementation on CUS scripts
is to make these definitions general enough so that they can be used on any scenario
(ILT, IST) by updating ONLY this table and not the definitions themselves.

3.3.1 How this table is used by the different definitions:

The TestSetup.txt calibration table uses 5 keys to define:

1. The current configuration
2. The environment of the test
3. The type of test being done
4. The instrument being used
5. The instrument condition
6. The current debugging level for the definitions

3.3.2 Keys explained

configuration:

The configuration key should reflect the current configuration number as defined by the
hcss.ccm.mission.config variable on the user.props file of the hcss installation. This is an
informative key that tells of the configurations that have been used so far and which was the
instrument configuration on each of them (by looking at the other keys for each config). A
new row for each new configuration should be created and therefore the table updated with
each new configuration.
A sensible way of doing this would be to create a shell script used for adding a new row on
this table with the new config and uploading the updated table onto the database and then
creating the new configuration. This script is currently not available though.
Possible values of configuration are 'config1,config2,...confign where n is an incremental
indicator

env:

The env key is used to setup the correct null obsids and bbids depending on the current
environment in which the test is being done.(ILT,IST,HSC…)

Possible values of 'setup' key are: (According to Herschel Ground Segment to Instruments
ICD) ICD FIRST-FSC-DOC-0200 Issue 2 Rev 3 18/11/04

moc = manual commanding of the instruments during in-flight operations
ilt = scheduled operations (test using TOPE scripts) during instrument level tests
hsc = scheduled operations (real observations using mission timeline)
of the instruments during in-flight operations
ist = scheduled operations (test using CCS templates) during system level tests
par = scheduled operations (test using CCS templates) during multiple instrument
system level tests

HERSCHEL
SPIRE

SPIRE Database Management and CUS Configuration
Control

SPIRE-RAL-NOT-002829

Page: 23 / 23
Issue: Issue 1.0
Date: 19h Feb 2007

test_type:

The test_type key is used to set (or not) the MODE parameter when operating the instrument.
This key has been introduced to avoid the problems of operating the instrument between non-
nominal configurations during functional tests. During the functional tests, the MODE
parameter is not set.

Possible values of 'test_type' are: ft,pr
ft = functional tests
pr = performance test (EVERYTHING THAT IS NOT AN FT CAN BE CONSIDERED AS
PR)

instrument:

The instrument key is used by (currently) the SMEC switch on/initialisation and the CREC
procedures to set the different parameters required for PRIME or REDUNDANT instrument
operation.

Possible values of 'instrument' are: prime,redudant

condition:

The condition key is used by (currently) the SMEC switch on/initialisation to define different
encoder and signal offsets for the different instrument temperatures.

Possible values of 'condition' are : warm,cool,cold
warm (T_mechanism > 100K)
cool (100K < T_mechanism < 10K)
cold (T_mechanism < 10K)

dbg_level:

And finally, the dbg_level key is used as a general debug level flag currently used by some
procedures (not all). The recommendation is that usage should be extended to all at some
point.

Possible values of 'dbg_level' are:
dbg_level = 0 (means debug statements will NOT be printed to std output)
dbg_level = 1 (means debug statements will BE printed to std output)

	
	Table of Contents
	1 Introduction
	1.1 Intended Audience
	1.2 Scope
	1.3 Assumptions
	1.4 Reference Documents
	1.5 Applicable Documents
	1.6 Document Change Record
	2 Database Management
	2.1 Database Creation
	2.1.1 System/Software Requirements
	2.1.2 Creating a database
	2.1.2.1 Allocating the physical space:
	2.1.2.2 Adding public access to the database:
	2.1.2.3 Telemetry Packet Objects index sorting by time:
	2.1.2.4 Creating a new configuration for this database:
	2.1.2.5 Ingesting the MIB into the database:
	2.1.2.6 Open the cusgui and load this MIB:
	2.1.2.7 Ingesting required calibration tables onto the database:
	2.1.2.8 Ingesting the CUS definitions:
	2.1.2.9 Setting the initial obsid for this database:
	2.1.2.10 Associating ALL of the previous (MIB + CUS definitions) by creating and instrument model on this configuration:
	2.1.2.11 Checking the currently available instrument models in the database:

	2.1.3 Creating a new configuration on an existing database

	2.2 Database Deletion
	2.2.1 Stopping database transactions
	2.2.2 Removing the database

	2.3 Database backup and restore process
	2.3.1 Backing up an existing database
	2.3.2 Restoring a database from a backup file

	
	3 Configuration Control
	3.1 Configuration Control Rationale
	3.2 Configuration Control Approach
	3.2.1 The CVS SPIRE repository structure
	3.2.2 Versioning of CUS definitions
	3.2.2.1 Creating a local repository
	3.2.2.2 Checking in scripts onto CVS
	3.2.2.3 Assigning a ‘tag’ to the versions
	3.2.2.4 Configuration control after the test is started
	3.2.2.5 Configuration Control of Test Control/CCS scripts:

	3.3 Structure and dependencies of the CUS definitions
	3.3.1 How this table is used by the different definitions:
	3.3.2 Keys explained

