SUBJECT: Herschel/SPIRE Instrument Cold Workmanship Vibration Test Report FM acceptance

PREPARED BY: B. Winter and E. Sawyer

DISTRIBUTION LIST

B. Winter	MSSL
C. Brockley-Blat	MSSL
A. Spencer	MSSL
E. Sawyer	RAL
K. Mercier	CNES
D. Pouliquen	LAM
T. van der Laan	ESTEC

MSSL-technote-SPIRE-

SPIRE-MSS-REP-002824

CHANGE RECORD

ISSUE SECTIONS REASON FOR CHANGE

1.0	all	First Issue
2.0	4	X axis changed to Z (typo)
	7.4	Details of applied notch added
	9	Conclusions added

Table of contents

1.	SCOPE	L
2	DOCUMENTS	1
4.	DOCUMENTS	L
3.	DEFINITIONS	1
		1
3	.1. ABBREVIATIONS	L
4.	TEST PHILOSOPHY	1
5.	TEST OBJECTIVES	2
-		_
6.	FIXTURE	2
7	TEST DEALIDEMENTS	2
/.	IESI REQUIREMENTS	2
7	.1. SUMMARY	2
7	.2. FIXTURE QUALIFICATION RUNS	2
7	.3. RESONANCE SEARCH	2
7	.4. RANDOM VIBRATION TEST	2
7	.5. MEASUREMENT OF SUBSYSTEM LEVELS	1
7	.6. POST TEST INSPECTION	∔ ₄
/	./. MIAIN RESONANCE FREQUENCIES FOUND	ŧ
8.	REJECTION AND RETEST	1
9.	CONCLUSIONS	5
9	.1. PROBLEMS ENCOUNTERED	5
	9.1.1. SMEC unlatching	5
	9.1.2. Overtest	5
А	APPENDIX A – INTRUMENTATION SPECIFICATION	5
A	$\label{eq:ppendix} PPEPOST SINE AND RANDOM COMPARISON \dots $	7
A	APPENDIX C – RUN LIST	3
A	APPENDIX D - SUMMARY OF EVENTS)
A	APPENDIX E - FULL LEVEL RANDOM RESPONSES)

MSSL-technote-SPIRE-		
	Instrument Cold	Issue 2.0, April 2007
SPIRE-MSS-REP-002824	WorkmanshipVibration Test Report	

1. SCOPE

This document lists the acceptance test results of the cold workmanship vibration test of the Herschel SPIRE instrument flight model (FM). This test was carried out as the flight model SMEC had now been fitted.

This is now the full flight standard.

2. DOCUMENTS

20000		
AD (1)	Instrument Interface Document, part A	IID-A, issue 3
AD (2)	Technote 9 Random Vibration SPIRE February	
	2003 issue 3.doc	
AD (3)	Instrument Interface Drawing	5264-300 sheet 1 to 7, issue 18
AD (5)	As built status	SPIRE-RAL-DOC-002326 issue 2.6
AD (7)	HERSCHEL : SPIRE STM QUALIFICATION	AIV-2003-027-VIB
AD (8)	TRR minutes of meeting	SPIRE-RAL-MOM-002710
AD (9)	Cold vibration test plan	SPIRE-RAL-PRC-002597, issue 2
AD (10)	Cold vibration test procedure	SPIRE-RAL-PRC-002598, issue 2
AD (11)	SPIRE FPU Handling and integration procedure	SPIRE-RAL-PRC-001923
AD (12)	Cryo-vibration test report SPIRE FM 1	RP-CSL-CRYOV-06007, version 1
AD(13)	Instrument cold vibration test report	SPIRE-MSS-REP-002596
AD(14)	Cryo vibration test report (CSL)	RP-CSL-CRYOV-06007
AD(15)	PFM Electrical Interface Checkout	SPIRE-RAL-NOT-002318v10

3. **DEFINITIONS**

3.1. Abbreviations

- AD Applicable Document
- BSM Beam steering mirror
- CQM Cold Qualification Model
- EM Engineering Model
- FM Flight Model
- ICD Interface Control Document
- PFM Proto-Flight Model
- STM Structural Thermal Model
- S/C Spacecraft
- TBC To be confirmed
- TBDTo be definedTDDTo be defined
- TRB Test Review Board
- TRR Test Readiness Review
- TML Total Material Loss
- VCD Verification Control Document
- VCM Volatile Condensable Material

4. TEST PHILOSOPHY

The test item is the FM model of the SPIRE instrument as it will be flown, the instrument was acceptance tested with a non flight SMEC in December 2005. This test is a workmanship test carried out after fitting of the FM SMEC. It is tested in one axis only (X) at acceptance levels for acceptance duration.

MSSL-technote-SPIRE-		
	Instrument Cold	Issue 2.0, April 2007
SPIRE-MSS-REP-002824	WorkmanshipVibration Test Report	

AD(5) As built configuration list applies.

5. TEST OBJECTIVES

- To carry out a workmanship test on the SPIRE instrument.
- The test sequence was dictated by the cryo-vibration facility. It consisted of:
 - Cool down
 - complete X-axis tests
 - Warm up

6. FIXTURE

The fixture for this cold vibration test was provided for by CSL

7. TEST REQUIREMENTS

7.1. SUMMARY

Resonance search, and random vibration tests were carried out in X axis only. Resonance searches and intermediate random tests were performed before the instrument was subjected to acceptance level runs.

7.2. Fixture qualification runs

Runs on just the bare fixture were carried out to prove that the fixture (and cold vibration facility) behaviour was suitable for the test. This was carried out before the instrument test. Test was successful.

7.3. Resonance search

A resonance search was performed before and after the random tests.

7.4. Random vibration test

See AD(14) for all response curves.

As stated in AD(9) the acceptance levels were defined as follows.

X axis

Frequency Range Hz	Qualification level
20-100	+3dB/Oct
100-150	0.032 g ² /Hz
150-300	0.0128g ² /Hz
300-2000	-12 dB/Oct
Global	2.8 g-rms

 Table 8.5-2: X axis input definition random acceptance

MSSL-technote-SPIRE-		
	Instrument Cold	Issue 2.0, April 2007
SPIRE-MSS-REP-002824	WorkmanshipVibration Test Report	

Test duration 1 minute

Input definition (control)

For each test the input was specified via the average response of the accelerometers located on the shaker table near the feet of the instrument. For all tests this was the average over 3 accelerometers.

Notching

The notching was performed on the FPU_X accelerometer in line with the instrument test in January 2006. As defined in AD (9)

Response measured in January 2006.

The control followed the input specification with a notch level specified on the top of the FPU (FPU_X):

Notch Channel	Frequency range	Level
FPU_X	110-150 Hz	0.001 g²/Hz
FPU_X	150-600 Hz	0.01 g²/Hz

MSSL-technote-SPIRE-		
	Instrument Cold	Issue 2.0, April 2007
SPIRE-MSS-REP-002824	WorkmanshipVibration Test Report	

Force Notching

No direct force notching was used, only a predefined notch on the top accelerometer, copied from the cold FM vibration test in January 2006.

7.5. Measurement of subsystem levels

N.A.

7.6. Post test inspection

On removal of the instrument from the cryostat an interface checkout was performed (AD15) All systems checked out OK with the exception of the SMEC, which was found to be in an unlatched condition. HR-SP-RAL-NCR-159 was raised. The latch was relatched for transport back to RAL.

7.7. Main resonance frequencies found

Main frequ	encies	Hz	
X-axis			
	Cold	COLD FM	COLD FM
Warm	CQM	Jan 06	Sep 06
176	158	145	159
206	193		
219	212	207	204
314	300	300	300

8.7-1: Main frequencies (X-axis)

The listed frequencies are from the warm STM test, the cold CQM test and the cold FM test (Jan and Sep 2006). There are a few things that are different between the warm and the cold STM test. First of all the instrument mass went up with about 12%, but this is countered by the increase in stiffness due to the lower temperatures (typically 5% to 10%). The rest is the influence of the coupled vibration with the CSL shaker, which in general lowers the frequencies or clusters modes. The cold FM test has again slightly lower frequencies due to the slightly more flexible A-frames. The original stainless steel A-frames (CQM) were replaced by CFRP re-engineered frames (FM). The main X response frequencies are at 205 Hz and at 300 Hz, the others are cross-coupled modes.

8. **REJECTION AND RETEST**

No test run was rejected or a re-test performed. Several attempts were made to continue an aborted low level sine-sweep. But because of the inherent problem of the shaker (flexibility of the table mounting) it was decided to accept sweeps up to 500 Hz as a minimum, but all sweeps were successful up to 2000 Hz.

MSSL-technote-SPIRE-		
	Instrument Cold	Issue 2.0, April 2007
SPIRE-MSS-REP-002824	WorkmanshipVibration Test Report	

9. CONCLUSIONS

The tests specified in AD(9) were carried out. The FPU behaved as expected

9.1. Problems encountered

9.1.1. SMEC unlatching

The Spectrometer mechanism (SMEC) which was found to be in an unlatched at the end of the test. This was discovered during the electrical meaurements of the latch status line. It was then verified by tipping the FPU to listen for the sound of the mechanisn running into its' end stop. HR-SP-RAL-NCR-159 was raised. The latch was relatched for transport back to RAL.

9.1.2. Overtest

After the test it was discovered that the input spectrum had been specified incorrectly which resulted in an over test in the region 80 to 100Hz.

Appendix A – Intrumentation specification

The instrumentation consisted of CSL provided cryogenic accelerometers at the following locations

- At each mounting point of the instrument (interface with vibration fixture for control, 3 tri-ax cold-vibration accelerometers in total)
- Top of the optical bench in instrument coordinates: FPU X,Y and Z (tri-ax co-aligned with S/C coordinates)

The implemented instrumentation:

The numbering used during the tests was as follows (only accelerometers mounted in/on the instrument are listed):

Acceletometer	Acceleronicier anocation				
Location	Туре	Code	Axis		
FPU top of optics bench	7724	FPUX	Х		
over cone					
FPU top	7724	FPUY	Y		
FPU top	7724	FPUZ	Z		

Accelerometer allocation

MSSL-technote-SPIRE-		
SPIRE-MSS-REP-002824	Instrument Cold WorkmanshipVibration Test Report	Issue 2.0, April 2007
STILL WISS KEI 002024	vorkinaliship violation rest report	

A-3: Triax on SOB outside (FPU)

Additionally provided by the facility were accelerometers located at each interface point measuring out of plane at each interface point and in plane at two locations for each direction.

The instrument instrumentation was limited since the instrument will not be opened/disassembled again, which excludes the use of internal monitor accelerometers.

Figure B-1 pre-post comparison in launch direction (X)

Figure B-2 pre-post comparison in lateral direction (Y)

MSSL-technote-SPIRE-		
	Instrument Cold	Issue 2.0, April 2007
SPIRE-MSS-REP-002824	WorkmanshipVibration Test Report	

Figure B-3 pre-post comparison in lateral direction (Z)

Appendix C – Run list

See AD12 for a complete overview.

Below is a list of vibration runs and their identification code.

Run	Date	Time	Axis	Description
BNS04X.rsn	4/9/06	10.30	Х	Resonance search
NIA03X.rrrn	4/9/06	10.56	Х	-12 dB random
NIA04X.rrn	4/9/06	11.07	Х	-6 dB random
NIA05X.rrn	4/9/06	11.15	Х	Full level Random

Appendix D - Summary of events

Date	Activity
22/8/06	Delivery of SPIRE to CSL
24/8/06	Mount FPU on VTA in Y axis
25/8/06	Warm low level run
4/9/06	SPIRE cold, X axis test
5 to 10/9/06	Warm up
11/9/06	Remove SPIRE, Pack
13/9/06	Ship to RAL

Appendix E - Full level random responses

Figure E-1: Full level random, FPU responses (X-axis vibration)