CLRC	HERSCHEL	Ref: SPIRE-RAL-PRC-002816	lssue: 1.0
	SPIRE	Author: D.L. Smith	Date: 31-Jan-2007
PFM5 Cold Test – Master Procedure			

Prepared by:			
	D.L. Smith (RAL)	Date	
Checked:			
	B.J. Swinyard (RAL)	Date	
Approval:			
	E. Sawyer (RAL)	Date	

Distribution

RAL	Eric Sawyer
	Eric Clark
	Alan Pearce
	Anne Sophie Goizel
	Marc Ferlet
	Bruce Swinyard
	Doug Griffin
	Tanya Lim
	Ken King
	Sunil Sidher
UOL	Asier Aramburu
	Peter Davies Imhof
UCW	Matt Griffin
	Peter Hargrave
	Tim Waskett
LAM	Dominique Pouliquen
ATC	Phil Parr-Burman
	Brian Stobie
IC	Dave Clements
	Davide Rizzo

Host system	Windows 2000 SP2
Word Processor	Microsoft Word 2000 SR1
File	PFM4 Cold Test Procedure - Issue 1.0.Doc

Document Change Record

Date	Index	Affected Pages	Changes
31-Jan-2007	1.0	All	

1 Scope of Document

This procedure describes the activities to be performed during the PFM-4 cold thermal test campaign, which is a key inspection point (AD 1). The details of the instrument integration and cryostat operations are given in AD 7 and AD 8 respectively. The sequence of the performance testing is a an overview based on the SPIRE FM Calibration and Performance Test Plan (AD 3) which defines the flow and detailed procedures. The aim of this document is to ensure that the test objectives are achieved.

2 Documents

2.1 Applicable Documents

	Title	Author	Reference	Date
AD 1	SPIRE AIV Plan	B.J. Swinyard	SPIRE-RAL-DOC-000410 Issue 3	May 2003
AD 2	As Built Configuration List	Eric Sawyer	SPIRE-RAL-DOC-002326 Issue 2.8	Oct 2006
AD 3	SPIRE FM Calibration and Performance Test Plan	T. Lim	SPIRE-RAL-DOC-002535 Draft 0.2	15-Sep-2006
AD 4	Functional Test Specification	S. Ronayette Asier Abreu	SPIRE-RAL-NOT-1652 Issue 1.4	10-Dec-2004
AD 5	PFM2 Thermal Balance Test Specification	A.S. Goizel	SPIRE-RAL-DOC-002435 Issue 1	Dec 2005
AD 6	Input to SPIRE PFM3 Thermal Test Specification	A.S. Goizel	SPIRE-RAL-MEM-002563 Draft A	Feb 06
AD 7	SPIRE Harness Integration Procedures	D.L. Smith	SPIRE-RAL-PRC-2122 Issue 0.4D	Dec 2004
AD 8	SPIRE Cryostat Operating Procedures	D.L. Smith	SPIRE-RAL-DOC-001556 Issue 1.0	12-Jan-2005
AD 9	SPIRE Cryolab Risk Assesment	D.L. Smith	SPIRE-RAL-DOC-002103 Issue 2.0	28-July-2004
AD 10	SPIRE Instrument Operations Procedures	<mark>S. Sidher</mark>		
AD 11	SPIRE EGSE ILT Startup Procedures	S. Sidher and M. Requena	SPIRE-RAL-DOC-001630	24-Jun-2003
AD 12	DRCU Switch On Procedure	A. Aramburu	SPIRE-RAL-NOT-002222	
AD 13	SPIRE Cleanliness Plan	B.J. Swinyard	SPIRE-RAL-DOC-001070 Issue 1.0	9-Jan-2002
AD 14	RAL Safety Codes	CCLRC	http://www- internal.clrc.ac.uk/staff/notices/clr c_safety_codes/sc2.html	July-2003

3 Test Objectives

The PFM-5 test campaign is an additional test of the SPIRE PFM instrument to evaluate the stray light performance under dark conditions.

4 Test Configuration

4.1 Instrument Build

The model to be tested consists of the full flight model configuration of the FPU, DPU and DRCU. The table below provides a summary of the build standard of the PFM-4 instrument for information only. A more detailed breakdown of the components is given in the as built configuration list AD 2.

Unit	Build Standard
/component	
HSFPU	
Structure/baffles/standoffs etc	PFM
L0 straps	MGSE – New for PFM-4 with flight like flexible interface and
	light trap.
Mirrors	PFM
Filters	CFIL-1 – PFM
	SFIL2 – PFM
	SBS1 – PFM
	SBS2 - PFM
	SFIL3 to 5S – PFM
	SFIL3 to 5L – PFM
	CFIL1 - PFM
	PFIL-2 - PFM
	PFIL-3 - PFM
	PFII -51 - PFM
	PFIL-6L - PFM
Beam steering mirror	PFM
3He Cooler	PFM
300 mK thermal straps and supports	PFM
300 mK Thermal control system	PFM
Photometer LW array	PFM
Photometer MW array	PFM
Photometer SW array	PFM
SMEC	PFM
Spectrometer SW array	PFM
Spectrometer LW array	PFM
Photometer Calibrator	PFM
Spectrometer Calibrator	PFM – with 2% and 4% source
	redundant side disconnected for phot box GSE heater
FPU RF Filters	PFM
Thermometry	PFM

PFM5 Cold Test – Master Procedure SPIRE-RAL-PRC-002816

l Init	Duild Standard
Unit	Bulla Standard
/component	
FPU internal harnesses	Spectrometer side – PFM
	Photometer side - PFM
HSJFP	
JFET Structure	PFM
JFET Modules	PFM – except one non flight but functional module
JFET box RF filter modules	PFM
JFET Backharness	PFM
JFET/FPU Harness	PFM
HSJFS	
JFET Structure	PFM
JFET Modules	PFM
JFET box RF filter modules	PFM
JFET Backharness	PFM
JFET/FPU Harness	PFM

Subsystem	Requirement
/component	
HSDCU	
DCU Structure	FM
Electrical Interfaces	Flight
Functionality	Full functionality
Electrical Component Level	Flight
HSFCU	
FCU Structure	FM
MCU	FM
Electrical Interfaces	Flight
Functionality	Full functionality
Electrical Component Level	Flight
SCU	FM
Electrical Interfaces	Flight
Functionality	Full functionality
Electrical Component Level	Flight
PSU	FM
Electrical Interfaces	Flight
Functionality	Full functionality
Electrical Component Level	Flight
HSDPU	FM
DPU Structure	Flight
Electrical Interfaces	Flight
Functionality	Full functionality
Electrical Component Level	Flight
On Board Software	
Functionality	Full functionality but no autonomy required
	Refer to table in section 4.4 for version numbers and patches
HSWIH	
Length/Connector type	Test harness
Electrical Interfaces	Form; fit; function
Functionality	Full functionality on prime side only
Electrical Component Level	Commercial

4.2 Cryostat

Figure 1: Cross section of SPIRE test cryostat showing the different temperature stages and thermometer locations.

The SPIRE Calibration Cryostat has four stages of cooling, an outer liquid nitrogen cooled vessel at 77K, a 10K radiation shield, a 4.2K liquid He vessel and a 1.7K pumped liquid He pot, Figure 1. A more detailed description of the cryostat and its operation is given in AD 8

4.3 OGSE

No optical equipment will be used for this test campaign as the entrance aperture of the instrument will be covered.

4.4 EGSE Configuration

The following table gives the build standard of the EGSE software at the start of the test campaign.

System	Version	Updated
SCOS-2000	2.3E patch 5	
HCSS	Build 1106 (Version 0.4.1)	
QLA	3.3	
MIB	PFM5	
OBS	2.2G	
TFCS	2.8	Nov-2006
TFTS server	1.6	25-Nov-2006

5 Constraints

5.1 Safety

All personnel working in the SPIRE test facility must read the facility risk assessment, especially as there are particular hazards associated with the cryostat and laser.

Great care should be taken when handling liquid nitrogen and helium. The main hazards associated with liquid Nitrogen and Helium are:

- Cold "burns" to the person.
- Explosions due to the vaporization of the liquefied gas into an enclosed space.
- Asphyxiation due to exclusion of oxygen.
- Spillage onto structural materials, which can cause thermal contraction of the metal, say steelwork, with resultant cracking.

All people working with the cryostat should have instruction on the safe handling of cryogenic liquids and familiarise themselves with the laboratory safety code CCLRC Safety Code 2 which can be found on http://www-internal.clrc.ac.uk/staff/notices/clrc_safety_codes/sc2.html The safety code must be followed at all times when handling cryogenic liquids. A risk assessment shall be performed before operating the cryostat.

The personal oxygen monitors provided must be used when entering the lab when the cryostat is cold. These are calibrated every 6 months by the manufacturers (Crowcon in Abingdon).

When the oxygen monitor alarm sounds leave the room immediately and call ext 5996. DO NOT attempt to enter the room afterwards until the all clear has been given.

The gloves provided shall be worn when transferring liquid helium and nitrogen into the tank.

Any dewars with worn or damaged castors or which are difficult to wheel safely should be taken out of service and returned to stores immediately for repair or maintenance.

5.2 Cleanliness

To minimise the level of contamination, the FPU should remain covered until the particulate count is below that for a class 6 (old class 1000) clean room. The maximum concentration limits as specified by ISO EN 14644-1 1999 Standard (particles per m³ of air) for particles greater than the considered sizes are

Size	Specification
0.1µm	1000000
0.2µm	237000
0.3µm	102000
0.5µm	35200
1.0µm	8320
5.0µm	293

The following clothing shall be worn at all times when working in the clean room to avoid contamination of the instrument or surfaces that the instrument will come into contact with.

Facemasks Hats Coats Overshoes Gloves – to prevent cross contamination via tools and test equipment

Personnel working in the clean room must first attend the RAL SSTD training session on clean room practice.

Where possible, personnel should work downstream of the instrument from the air-filters.

As space is extremely limited, only essential personnel are permitted to work in the clean room.

Tools for use in the clean room must first be cleaned using IPA wipes.

5.3 ESD Precautions

The SPIRE FPU, JFETS, DRCU and DPU are sensitive to electrostatic discharge. To prevent accidental damage to sensitive components, the units shall be grounded via a suitable earth strap while work is being performed. The earth straps may only be removed once the electronics have been connected together in accordance with the harness integration procedure. **ESD wrist straps shall be worn at all times when working either directly or within 1m of the instrument.**

All personnel who are working on or in the vicinity of the instrument must have attended the RAL SSTD training session on ESD.

6 Organisation

Once cold the typical daily plan for the test campaign is shown as follows

07:30-08:30 (2 people) Top up He vessels

08:30-10:30 (2 people)

Top up LN2 vessel Allow temperatures to stabilise Recycle cooler if necessary Switch on test equipment (laser) and allow temperatures to stabilise Order Helium for next day

10:30-15:00

Instrument Testing – Team A (3 people, SCOS driver, QLA driver, Equipment driver)

15:00-15:30

Daily planning meeting Full team required report on previous 24 hours highlight major issues plan next 24 hours activities

15:30-22:00

Instrument Testing – Team B (3 people)

22:00-23:00 – Team B

Prepare to store instrument for night

23:00-07:30

Thermal balance tests Quiet Performance Tests (e.g. TFTS scans, noise tests)

7 Procedure Flowchart

8 Test Procedure

Objectives:	See section 3
	This is a key inspection point.
Initial Conditions:	SPIRE PFM
	Chamber at Atmospheric Pressure (~1000mbar) FPU in cryostat Vacuum system control electronics OFF Turbo Pump fan unit power OFF N2 supply closed 3 Phase supply OFF EGSE ILT OFF
Final Conditions:	FPU Removed from Cryolab
Constraints:	Pumping must not start until a test readiness review has been held and authorisation to proceed has been given.
	Grounding straps provided must be worn at all times when working on FPU and WE
Total Duration:	5 weeks

II.	HERSCHEL	PFM5 Cold Test – Master Procedure	Page: 16 / 23
	SDIDE	SPIRE-RAL-PRC-002816	Issue: 1.0
CLRC	SFILL		Date: 31-Jan-2007

Step.	Action	Comments	Task Complete
1	Hold Test Readiness Review		
1.1	Required Personnel		
	Instrument Manager – Eric Sawyer		
	AIV Manager – Dave Smith		
	PA Manager – Eric Clark		
	System Engineer – Doug Griffin		
	Thermal Engineer – Anne Sophie Goizel		
	Calibration Scientist – Tanya Lim		
	Instrument Specialist – Sunil Sidher		
	Instrument Scientist – Bruce Swinyard		
2	Reconfigure Instrument from PFM-4 campaign		
2.1	Remove cold blackbody		
2.2	Replace filters with Aluminium blanks		
2.3	Replace HDPE window with Metal vacuum plate		
2.3	Fit aperture cover to SPIRE		
3	Cryostat Functional Tests		
3.1	Verify operation of cryostat instrumentation using procedure CRY_CHECK (ref AD 8)		
3.1	Verify correct operation of Pump System		
3.2	Verify thermometer connections		
3.3	Verfiy cryostat heater operations		

HER	SCHEL	PFM5 Cold Test – Master Procedure	Page: 17 / 23
	DIRF	SPIRE-RAL-PRC-002816	Issue: 1.0
CLRC			Date: 31-Jan-2007

Step.	Action	Comments	Task Complete
4	Close Cryostat		
4.1	Replace 10K end-cap at west end of cryostat		
4.2	Connect thermometer harness and check function		
4.3	Replace 77K end-cap at west end of cryostat		
4.4	Connect thermometer harness and check function		
4.5	Replace 10K end-cap at east end of cryostat		
4.6	Connect thermometer harness and check function		
4.7	Clamp instrument cryoharness to 10K shield and verify electrical isolation		
4.8	Replace cowl on 10K end plate		
4.9	Replace 77K end-cap at east end of cryostat		
4.10	Place loose harness between MLI and 77K shield – ensuring that electrical isolation is maintained.		
4.11	Close doors of vacuum chamber and fasten clamps.		
5	Pump-Down Cryostat		
5.1	Start cryostat pump-down using procedure CRY_PUMP (ref AD 8)		
6	Perform Short Functional Test – PFM-ILT-SFT		
6.1	Vacuum chamber at 10 ⁻⁵ mbar?		
6.2	Perform Short Functional Test	Refer to document SPIRE-RAL-PRC-002322	
6.3	Leave SCU DC thermometry on for cooldown	Done as part of SPIRE-RAL-PRC-002322	
7	Purge He Vessels		
7.1	Purge He vessels with dry N2 gas according to procedure CRY_COOL (ref AD 8)		
8	Cool LN2 Radiation Shield		

Il.	IERSCHEL	PFM5 Cold Test – Master Procedure	Page: 18 / 23
	SDIDE	SPIRE-RAL-PRC-002816	Issue: 1.0
CLRC	SFILL		Date: 31-Jan-2007

Step.	Action	Comments	Task Complete
8.1	Fill LN2 Radiation shield according to procedure CRY_COOL (ref AD 8)		
9	Pre-cool FPU to 80K		
10.1	Cool SPIRE FPU to 80K using procedure CRY_COOL (ref AD 8) – NOTE This procedure will take several days to complete		
10.2	Once FPU has reached 80K remove liquid nitrogen from 1.7K and 4K vessels using step 4 of the cryostat operating procedure CRY_COOL (ref AD 8)		
10.3	Confirm that all liquid nitrogen has been removed from 1.7K and 4K vessels.		
	Do not proceed with pump/purge cycle without signing off this step!		
10.4	Purge He vessels with He gas according to step 5 of cryostat operating procedure CRY_COOL (ref AD 8)		
11	Perform Short Functional Test Before Filling with He – PFM-ILT-SFT		
11.1	FPU thermometers below 100K?		
11.2	Perform Cool Functional Test	Refer to document SPIRE-RAL-PRC-002322	
11.3	Leave SCU DC Thermometry Running	Done as part of SPIRE-RAL-PRC-002322	
12	Cool instrument to 4.2K		
12.1	Cool SPIRE to 4.2K using procedure CRY_COOL (ref AD 8)		
12.2	Allow temperatures to stabilise		
12.3	Measure steady state temperatures and check thermometry		
13	Perform Cold Full Functional Tests - Part 1		
13.1	FPU Below 5K?		
13.2	Perform SPIRE Cold Functional Tests – step 1 to X inclusive	Refer to document SPIRE-RAL-PRC-002322	
14	Cool to 2K		
14.1	FPU below 5K?		

HERSCHEL	PFM5 Cold Test – Master Procedure	Page: 19 / 23
SDIPE	SPIRE-RAL-PRC-002816	Issue: 1.0
CLBC		Date: 31-Jan-2007

Step.	Action	Comments	Task Complete
14.2	Cool L0 interface to 2K using procedure CRY_COOL (ref AD 8)		
14.3	If FPU L0 at 2K proceed to step 19		
15	Perform Cold Full Functional Tests - Part 2		
15.1	All L0 temperatures at 2K and stable?		
15.2	Recycle cooler holding L0 vessel at 2K		-
15.3	When evaporator temperature at 300mK, lower L0 vessel temperature to 1.7K		
15.4	Continue cold functional tests from step X+1	Refer to document SPIRE-RAL-PRC-002322	
16	Start Cold Test Activities		
The follo depend A spread	owing is a rough outline of the main activities to be performed for the first two we on schedule and the availability of key personell. dsheet with a detailed step-by-step sequence to be followed by the test team wi	eks of the test campaign. The eventual flow of the test cam I be produced on a daily basis.	paign will
	Day 1		
	Phase up for photometer		
	Day 2		
	PTC optimisation		
	Overnight photometer load curves at higher		
	temp		
	Day 3 DTC optimisation		
	Overnight noise test		
	Day 4		
	EMC		
	Overnight photometer load curves at higher		
	temp Day 5		
	EMC		
	Overnight photometer load curves at higher		
	temp		

lle.	HERSCHEL	PFM5 Cold Test – Master Procedure	Page: 20 / 23
	SPIRE	SPIRE-RAL-PRC-002816	Issue: 1.0
CLRC			Date: 31-Jan-2007

Step.	Action	Comments	Task Complete
	Day 6		
	Phase up Spectrometer		
	Overnight spectrometer load curves		
	Day 7		
	Phase up Spectrometer		
	Load Curves		
	Overnight noise tests		
	Day 8		
	SMEC Operations		
	Overnight load curves at higher temp		
	Day 9		
	SMEC Step and look tuning		
	Day 10 Microphonics		
	Microphonics		
17	Post Test Review		
17.1	Hold test review to assess need for additional/repeat tests before warming up.		
18	Switch OFF SPIRE		
18.1	Switch OFF SPIRE, leaving SCU DC thermometry running.		
18	Warm Up		
18.1	Warm SPIRE to ambient using procedure CRY_WARM (ref AD 8)		
19	Let Up to Atmosphere		
19.1	Let up chamber to atmospheric pressure using procedure CRY_LETUP (ref AD		
	8)		
20	Perform Warm Functional Test		
20.1	Chamber at atmospheric pressure?		
20.2	Perform warm functional test	Refer to document SPIRE-RAL-PRC-002322	

HERSCHEL	PFM5 Cold Test – Master Procedure	Page: 21 / 23
SDIDE	SPIRE-RAL-PRC-002816	Issue: 1.0
CLRC		Date: 31-Jan-2007

Step.	Action	Action		Comments	Task Complete
20.3	Check that all SPIR	Check that all SPIRE subsystems have been switched OFF		Done as part of SPIRE-RAL-PRC-002322	
21	Open Cryostat				
21.1	Return MGSE from	G56 clean room			
21.2	Connect MGSE to f	facility ground			
21.3	Monitor Particulate	levels in laboratory			
21.4	Particulate levels for	or class 6 clean room (old cla	ss 1000)		
	Maximum concentra	ation limits (particles per m ³	of air) for particles > than the		
	considered sizes be	elow.			
	Size	Specification	Measured		
	0.1µm	1000000			
	0.2µm	237000			
	0.3µm	102000			
	0.5µm	35200			
	1.0µm	8320			
	5.0µm	293			
21.5	Open cryostat doors – ensure that Oxygen monitor is on person at all times during this procedure as the chamber will be full of nitrogen gas – allow oxygen levels to recover before returning to lab				
21.6	Remove 77K end caps and store in cryostat doors				
21.7	Remove cowl from 10K shield				
21.8	Unclamp instrument harness from 10K shield				
21.9	Remove 10K end-c	aps			
22	Remove FPU from	Cryostat			

HERSCH	PFM5 Cold Test – Master Procedure	Page: 22 / 23
SDIDE	SPIRE-RAL-PRC-002816	Issue: 1.0
CLRC		Date: 31-Jan-2007

Step.	Action	Comments	Task Complete
22.1	Remove CBB from cryostat – bag and return to G56 clean room		
22.2	Replace aperture cover		
22.3	Disconnect cryostat flexibles from the FPU and move out of way		
22.4	Unclamp and lower the FPU and HOB frame onto wheels		
22.5	Connect MGSE trolley rails to cryostat rails		
22.6	Move FPU out of cryostat onto MGSE trolley.		
22.7	Secure FPU and HOB assembly onto MGSE		
22.8	Connect FPU to HOB plate using grounding strap		
22.9	Disconnect Cryo-Harness to FPU according to integration procedure ref ILT_INTG_HARN (AD 7)		
22.10	Replace covers on FPU		
22.11	Disconnect MGSE from facility ground		
22.12	Return FPU to G56 clean room		

II. HE	ERSCHEL	PFM5 Cold Test – Master Procedure	Page: 23 / 23
	SDIRE	SPIRE-RAL-PRC-002816	Issue: 1.0
CLRC			Date: 31-Jan-2007

Schedule

The following schedule is based on the pump-down starting on 23-Jan-2007.

