SPIRE

PREPARED BY: E Sawyer

DOCUMENT No: SPIRE-RAL-PRC-002802

ISSUE: 2 Date: 21 March 2007

CHECKED BY: APPROVED BY:

SPIRE FPU Handling and Mechanical Integration Procedure

Ref: SPIRE-RAL-PRC-

002802

Issue: 2

Date: 21/3/07 **Page:** 2 of 35

Distribution

SPIRE FPU Handling and Mechanical Integration Procedure

Ref: SPIRE-RAL-PRC-

002802

Issue: 21/3/07 Date: 3 of 35

Page:

Change Record

ISSUE	DATE	SECTION		
1	17/1/07	all	First issue	
2	21/3/07	2	Ref to sect 8 changed to sect 7	
		2	Note on L0 strap added	
		5.2	Ref to RD1 added	
		5.3.2	Section re-worded for clarity	
		5.4.2	Section deleted	
		5.5	Step one now refers to section 6.3	
		5.5	Step 3 removed	
		6.2.1	Step 3 reworded	
		6.3.3.2	Step 7 added	

SPIRE

Project Document

SPIRE FPU Handling and Mechanical Integration Procedure

Ref: SPIRE-RAL-PRC-

002802

Issue: 2 Date: 21/3/07 Page: 4 of 35

Table of Contents

C	CHANGE RECORD	3
T.	ABLE OF CONTENTS	4
G	LOSSARY	6
G	GLOSSARY	6
R	REFERENCES	7
A	PPLICABLE DOCUMENTS	7
A		
1.	. SCOPE	8
2.	. DELIVERY CONDITION	8
	2.1 Shock recorders	8
3.	. TRANSPORT	8
٠.	3.1 IN DEDICATED EXPERIMENT CONTAINERS	
	3.2 AFTER INTEGRATION ON THE SPACECRAFT (IN SPACECRAFT CONTAINER)	
4.		
••	4.1 IN DEDICATED EXPERIMENT CONTAINER	
	4.1 IN DEDICATED EXPERIMENT CONTAINER 4.2 OUT OF CONTAINER (IN RR100 CLEANROOM, AWAITING INTEGRATION)	
5	. HANDLING	
٥.		
	5.1 GENERAL	
	5.3 UNPACKING FROM DEDICATED EXPERIMENT CONTAINER	
	5.3.1 Removal from outer container:	
	5.3.2 Removal from inner container:	11
	5.4 Preparation for integration	
	5.4.1 Fitting of MGSE and JFET supports	
	5.4.2 Removal of detector LO strap	
	5.4.3 Removal from transit base plate	
	5.5 PACKING IN THE DEDICATED EXPERIMENT CONTAINER	13
6.	. INTEGRATION	14
	6.1 REQUIRED TOOLS/MGSE	14
	6.2 MECHANICAL INTEGRATION TO SPACECRAFT	
	6.2.1 FPU and JFETs	14
	6.2.2 L0 straps	15
	6.2.3 L1 straps	16
	6.2.4 L3 straps	16
	6.2.5 Isolation test	
	6.3 REMOVAL FROM SPACECRAFT	
	6.3.1 L3 straps	
	6.3.2 L1 straps	
	6.3.3 L0 straps	18
7.	. RED TAG ITEMS	19

SPIRE

Project Document

Ref: SPIRE-RAL-PRC-

002802

Issue: 2

Date: 21/3/07 **Page:** 5 of 35

SPIKE FPU Handling a	na Mechanicai
Integration Prod	cedure

8.	GREEN TAG ITEMS	19
AN	NEX A - DRAWINGS OF SPIRE FPU MGSE	20
AN	NEX B - L0 THERMAL STRAP ASSEMBLY	26
AN	NEX C FPU INTERFACE DRAWING	28

SPIRE FPU Handling and Mechanical Integration Procedure

Ref: SPIRE-RAL-PRC-

002802

Issue: 2 **Date:** 21/3

Date: 21/3/07 **Page:** 6 of 35

Glossary

Cold Units SPIRE FPU, JFP and JFS
CQM Cold Qualification Model
DCU Detector Control Unit
DPU Digital Processing Unit

DRCU SPIRE DCU and FCU, i.e the two units with interfaces with the SIH-SS

ESD Electro static Discharge FCU Focal plane Control Unit

FPU Focal Plane Unit

HOB Herschel Optical Bench

JFP Herschel Spire JFET Photometer Module JFS Herschel Spire JFET Spectrometer Module

JFET Junction Field Effect Transistor

L0 Level 0 (Zero)

MSSL Mullard Space Science Laboratory

OBA Optical Bench Assembly PFM Proto Flight Model

RAL Rutherford Appleton Laboratory

SIH-CS Cryogenic Cryoharness between CVV-CB and Instrument SIH-IS Intermediate Cryoharness between CVV-CB and SVM-CB

SIH-SS SVM Cryoharness between SVM-CB and DRCU SPIRE Spectral and Photometric Imaging REceiver

TBC To Be Confirmed

Warm Units SPIRE DPU, FCU and DCU

WIH (SPIRE) Warm Interconnection Harness

SPIRE FPU Handling and Mechanical Integration Procedure

Ref: SPIRE-RAL-PRC-

002802

Issue: 2

Date: 21/3/07 **Page:** 7 of 35

References

Applicable Documents

AD1

AD 2

AD 3

Reference Documents

RD1 . "Making SPIRE ESD Safe - SPIRE-RAL-NOT-002028

SPIRE FPU Handling and Mechanical Integration Procedure

Ref: SPIRE-RAL-PRC-

002802

Issue: 2 Date: 21/3/07 Page: 8 of 35

1. SCOPE

This document describes the procedures to be followed when handing the SPIRE FPU after delivery to ESA/Industry.

It covers the handling and integration procedures to be followed.

It covers the PFM only.

2. DELIVERY CONDITION

The SPIRE instrument is delivered in the following condition:-

The FPU is supplied in a dedicated, re-useable, container.

The container consists of an inner and outer box.

The inner box is mounted on shock attenuating mounts.

Alignment cube is fitted to the FPU. (red tag item). See section 7 for further details.

FPU aperture cover fitted (red tag item). See section 7 for further details.

Harnesses between the FPU and JFETs fitted.

FPU and JFETs attached to a baseplate.

The FPU is attached to the base plate using transit supports, these will be exchanged for the flight supports during the integration process.

Shorting plus or covers will be fitted to all electrical connectors See section 7 for further details.

FPU and JFETs double wrapped in dissipative film.

Witness mirrors and/or PFO plates will be fitted to the baseplate

Silica gel moisture control devices will not be used.

The detector L0 strap is not fitted to the FPU, it is attached to the base plate in a special fixture for transit.

2.1 Shock recorders

Attached to the inner box, inside the transportation container are re-settable shock indicators These operate in three axis and are set to 5,10 and 25g.

Upon inspection, if any of these recorders have triggered the project team at RAL should be informed. 'Tip and Tell' tilt sensors are attached to the outside of the FPU container.

Upon inspection, if any of these recorders have triggered the project team at RAL should be informed

3. TRANSPORT

3.1 In dedicated experiment containers

Protect from rain and moisture.

Transport in closed vehicles only.

Protect from extremes of temperature, -10°C to +50°C, and prevent the formation of dew at any time.

SPIRE FPU Handling and Mechanical Integration Procedure

Ref: SPIRE-RAL-PRC-

002802

Issue: 2 Date: 21/3/07 Page: 9 of 35

3.2 After integration on the spacecraft (in spacecraft container)

Equivalent to Cleanroom 100 conditions

Assuming that the cryostat is closed:

FPU Aperture cover (red-tag item) shall be removed

Alignment cube (red-tag item) shall be removed

No other specific requirement.

For transport the CVV is closed, evacuated, cooled, OBA in vertical position, z-axis downwards.

4. STORAGE

4.1 In dedicated experiment container

Ensure aperture cover (red-tag item) is fitted.

Protect from rain and moisture.

Protect from extremes of temperature, 10° C to $+30^{\circ}$ C.

Alignment cube is fitted.

4.2 Out of container (in RR100 cleanroom, awaiting integration)

Ensure aperture cover (red-tag item) is fitted. Alignment cube is fitted

5. HANDLING

5.1 General.

The FPU is a delicate optical instrument and should be handled with extreme care at all time. Contamination of the optical surfaces within the instrument is prevented by the aperture cover. This cover should remain in place unless it is necessary to remove it.

WARNING: The bipod legs on two corners of the instrument are very thin section and easily damaged. Care must be taken at all times not to put side loads into these items. These are at risk at all times when the FPU is not attached to a rigid plate. When it is attached to a rigid plate i.e. the HOB or its transport plate then it is tolerant of loads from vibration, lateral expansion, thermal tests, etc.

5.2 ESD protection

The SPIRE instrument contains very sensitive detectors that are susceptible to damage by Electro Static Discharge. On delivery all connectors will be protected by covers or shorting plugs as appropriate.

When handling, all personnel shall wear anti static protection (wrist straps or other suitable method) When the cryoharness is not connected to the DRCU and the FPU Faraday Shield Link connected to Backshell at the warm end, then the FPU is electrically floating and prone to ESD damage. To avoid this, the FPU should at all time be connected to an electrical ground, when removed from its container and not bagged in dissipative film. Refer to RD 1 for further information.

SPIRE FPU Handling and Mechanical Integration Procedure

Ref: SPIRE-RAL-PRC-

002802

Issue: 2
Date: 21/3/07
Page: 10 of 35

5.3 Unpacking from dedicated experiment container

The FPU is supplied attached to a baseplate together with the JFETs and the JFET harness already integrated. It is bagged in dissipative film.

This base plate is then covered by an inner container, which is mounted via shock attenuating mounts to the outer container base.

To remove the FPU and JFETs from the container, the following procedure should be followed: -

Outer container

Inner container

SPIRE FPU Handling and Mechanical Integration Procedure

Ref: SPIRE-RAL-PRC-

002802

Issue: 2
Date: 21/3/07
Page: 11 of 35

5.3.1 Removal from outer container:

Step	Description	Sign off	comments
1	This first stage can be carried out in a non clean area.		
2	Clean the outer surfaces of the outer container with a		
	vacuum cleaner and an IPA wipe to remove the worst of the		
	contamination accumulated during transit and storage.		
3	Undo the nine latches that secure the container lid and		
	remove the lid.		
4	Attach a grounding strap to the instrument baseplate.		
5	Undo the 28, M8 bolts that secure the inner container to the		
	secondary base plate.		
6	Clean the outer surfaces of the inner container with a		
	vacuum cleaner and an IPA wipe.		
7	Attach the lifting MGSE to the 4 eye bolts on the base plate.		
8	Lift the inner container clear of the outer.		
9	Wipe the under surface of the inner container.		
10	The inner container can now be moved into a cleaner		
	environment (class 100,000)		
11	Position the inner container on a convenient table for next		
	phase.		

5.3.2 Removal from inner container:

Step	Description	Sign off	comments
1	Remove the 40 screws that attach the inner container lid to		
	its base plate.		
2	Lift off the inner container lid		
3	There are two layers of protective bagging which enclose		
	the FPU, JFETs and harness and is taped to the base plate		
4	Remove the outer bagging material, leaving the inner film in		
	place		
5	Attach the MGSE to the lifting eyes on the base plate.		
	Move the instrument and base plate in to the class 100 clean		
	area.		
6	When the instrument is in the class 100 area, the inner		
	bagging material can be removed		
7	Shorting plugs on the JFP and JFS provide ESD protection		
	at this stage.		

.

SPIRE FPU Handling and Mechanical Integration Procedure

Ref: SPIRE-RAL-PRC-

002802

Issue: 2 Date: 21/3/07 Page: 12 of 35

5.4 Preparation for integration

The FPU is supplied with the JFETs and associated harness already fitted.

The following tasks need to be carried out before integration onto the spacecraft.

Only standard tools are required at this stage.

5.4.1 Fitting of MGSE and JFET supports

The JFETs will be fitted to the spacecraft together with the FPU. They will need supporting during this activity.

The SPIRE supplied MGSE provides provision to support the JFETS during integration.

Step	Description	Sign off	comments
1	Fit the lifting attachment to the FPU as shown in annex A.		
2	Attach the JFETS to the MGSE using lacing cord.		

5.4.2 Removal of detector L0 strap

Section deleted

5.4.3 Removal from transit base plate

WARNING: The flight bipod legs on two corners of the instrument are very thin section and easily damaged. Care must be taken at all times not to put side loads into these items. These are at risk at all times when the FPU is not attached to a rigid plate.

Step	Description	Sign off	comments
1	Attach a ground strap directly to the FPU		
2	Undo the five M4 fasteners which secure the Photometer		
	JFET rack (HSJP) (8 JFETs) to the baseplate.		
	Leave the screws in position as they cannot be removed		
	form the JFET rack.		
3	Undo the four M4 fasteners that secure the Spectrometer		
	JFET rack (HSJS) (2 JFETs) to the baseplate. Note that two		
	of these fasteners are studs with nuts on the top, the nuts		
	should be removed and the studs left in place.		
4	Two L0 straps are secured to the baseplate. To release these		
	from the baseplate, undo the 4 off M4 fasteners on each		
	strap and remove the fasteners. NOTE. The undersides of		
	these straps form the thermal interface to the spacecraft		
	helium tank pods. Their surfaces are flat and soft gold		
	plated, these surfaces can easily be damaged and the thermal		
	performance of the instrument may suffer as a result.		
5	Unbolt the cone from the FPU by undoing the M8 nut, thus		
	leaving the cone on the baseplate.		
6	Undo and remove the 8 fasteners on the transit blade mounts		
	that attach the FPU to the baseplate.		
7	The FPU and JFETs can now be lifted from the baseplate.		
8	While suspended from the crane, remove the transit blade		

SPIRE FPU Handling and Mechanical Integration Procedure

Ref: SPIRE-RAL-PRC-

002802

Issue: 2
Date: 21/3/07
Page: 13 of 35

	mounts	
9	Fit the flight blade mounts.	To be carried out by SPIRE team.
10	Torque the screws to 8.1 Nm. +/- 10% above running torque	
11	The FPU and JFETs are now ready for integration.	

5.5 Packing in the dedicated experiment container

Step	Description	Sign off	comments
1	Assuming activities described in section 6.3 (removal from		
	spacecraft) have been carried out, and the FPU and JFETs		
	are supported on a crane,		
2	The Spectrometer JFET studs (2 off) as indicated on		
	interface drawing 0-KE-0104-360. Should still be fitted to		
	the baseplate		
3	This step removed		
4	Remove the Flight blade mounts if fitted		
5	Fit the transit blade mounts		
6	Very gently lower the assembly onto the baseplate, ensuring		
	that the JFET studs engage on the JFETs and the cone		
	mount engages in its location on the FPU.		
7	When all units are resting on the baseplate, fit the		
	attachment screws (M6X21) to the bipod feet, torque the		
	screws to 8.1 Nm. +/- 10% above running torque.		
8	Fit the M8 nut and Belleville washer to the mounting cone.		
	Torque to 8.25 Nm. +/- 10% above running torque.		
9	Remove the lifting/handling fixture.		
10	Fit the two long bolts and two nuts to secure the		
	spectrometer JFET. Torque the screws to 2.1 Nm. +/- 10%		
	above running torque.		
11	Fit the 5 long bolts to secure the photometer JFET. Torque		
	the screws to 2.1 Nm. +/- 10% above running torque.		
12	Secure the L0 straps to the baseplate using M4X20 socket		
	head cap screws. Torque the screws to 1.5 Nm. +/- 10%		
	above running torque.		
13	Fit the electrical grounding strap between the FPU and the		
	baseplate.		
14	Cover the FPU and JFETs with a double layer of clean		
	lumaloy film and secure each one with tape to the baseplate.		
15	Fit the inner container lid and secure with the 40 fasteners		
	supplied		
16	Fit the lifting frame Ref MSSL/5264/404 to the four		
	eyebolts in the plate.		
17	Lift the plate into the base of the outer container.		
18	Attach with the 28 fasteners provided		
19	Check the shock monitors and reset if necessary		
20	Fit the outer lid and secure with the 9 catches.		

SPIRE FPU Handling and Mechanical Integration Procedure

Ref: SPIRE-RAL-PRC-

002802

Issue: 2
Date: 21/3/07
Page: 14 of 35

6. INTEGRATION

6.1 Required tools/MGSE

SPIRE supplied tools/MGSE:-

Supplied by spacecraft

FPU and JFET handling frame. FPU/JFET/baseplate lifting gear

JFET fixation hardware

Isolation washers, special screws and studs

L3 pressure plates 2-off

L1 strap screws M8 2off, M3 4off (these screws will be prepared for wire locking)

Wire for locking above screws.

L1 bushes for the vent line end (already supplied) Temporary FPU Grounding Strap including M4 x 6mm fastener to connect to OBA

NOTE, Could possibly be attached to the unused harness support bracket holes, or any other

convenient tapped hole.

Crane, with low speed capability

Fixation bolts,

FPU M6 12 off -L0 straps M4 16 off -L0 pressure plate 4 off L3 strap M4 4off

Torque wrench to cover 1.5 to 8.25 Nm

Allan key, spanners etc

DVM for electrical isolation testing

6.2 Mechanical integration to spacecraft

6.2.1 FPU and JFETs

Assuming activities described in section 5.4 have been carried out, and the FPU and JFETs are supported on a crane.

Step	Description	Sign off	comments
1	Fix the Spectrometer JFET studs (2 off) as indicated on		
	interface drawing 0-KE-0104-360. Note these should be		
	screwed into the HOB until 45mm of stud are protruding		
	from the surface.		
2	Fit the flight cone to the spacecraft OBA. Note: there are		
	special washers (part number A3/5264/302-3) under the		
	head of each screw and also Vespel insulating bushes		
	(A3/5264/302-2) either side of the mounting flange.		

SPIRE FPU Handling and Mechanical Integration Procedure

Ref: SPIRE-RAL-PRC-

002802

Issue: 2 Date: 21/3/07 Page: 15 of 35

3	Position the FPU over the HOB	
4	Very gently lower the assembly onto the HOB, ensuring that	
	the JFET studs engage on the JFETs and the cone mount	
	engages in its location on the FPU.	
5	The flexible ends of the L0 straps are unsupported at this	
	stage and will need to be guided by hand into place as the	
	FPU is lowered	
6	NOTE: the cone is very thin walled section and large	
	moments can be applied if the FPU is not lowered with its	
	interface plane parallel to the HOB	
7	When all units are resting on the HOB, fit the attachment	
	screws (M6X21) to the bipod feet as for the cone mount.	
8	Fit the two Bellville washers and the M8 Kaylock nut to the	
	cone mount. Torque to 8.25Nm.	
9	Remove the lifting/handling fixture.	

6.2.2 L0 straps

6.2.2.1 The cooler pump and evaporator straps

Step	Description	Sign off	comments
1	These will be in place at this stage.		
2	Ensure that the lower flexibles of these two straps align with		
	the pod interfaces. Fit the spreader plates together with their		
	temperature sensors. Fit the attachment screws (ten M4 For		
	the evaporator strap, six M4 screws for the pump		
3	Torque to specification defined by Astrium		

6.2.2.2 Detector strap

Step	Description	Sign off	comments
1	Offer up the strap assembly to the FPU and fit the two M4		SPIRE activity
	screws that attach the strap to the FPU cold interface,		
	detector		
3	Torque the attachment screws 2.2 Nm +/- 10% above		SPIRE activity
	running torque		
4	Attach the torlon frames with the 5 off 4-40 UNC screws		SPIRE activity
	previously removed.		
5	Torque the screws to 0.76 Nm +/- 10% above running torque		SPIRE activity
7	Ensure that the lower flexibles align with the pod interface.		
	Fit the spreader plate and temperature sensor with the six		
	M4 attachment screws.		
8	Torque in accordance with Astrium specification.		

SPIRE FPU Handling and Mechanical Integration Procedure

Ref: SPIRE-RAL-PRC-

002802

Issue: 2
Date: 21/3/07
Page: 16 of 35

6.2.3 L1 straps.

Step	Description	Sign off	comments
1	Fit the two L1 straps to the FPU as indicated in annex C,		
	using at each location, one insulating bush, one Bellville		
	washer type B0750-056-S and one M8 bolt		
2	Torque the M8 bolt to 10.5 Nm +/- 10% above running		
	torque		
3	Fit the two M4 bolts with isolating bushes and two Bellville		
	washers (type B0375-020-S) under each screw head		
4	Torque the M4 bolts to 1.5 Nm +/- 10% above running		
	torque		
5	On final assembly the M8 fasteners are to be wire locked to		
	the M4 fasteners. Screws will be prepared for wire locking		

6.2.4 L3 straps.

Step	Description	Sign off	comments
1	Fit the two L3 straps to the JFETs using the attachment		
	hardware (L3 thermal strap clamp provided by SPIRE) as		
	shown in interface drawings 0-KE-0104-350 and 0-KE-		
	0104-360, annex 3		
2	Torque to 2.5 Nm.		
3	Note. Spacecraft temperature sensors, two sensors on each		
	clamp, fit to this interface.		

6.2.5 Isolation test

This test is to be carried out with a witness from the SPIRE project team. The removal of the safeing plugs from the JFET units places the instrument in a state where it is more susceptible to ESD damage. The process is to be carried out with particular attention to safe ESD procedures, including the use of ionized air flow over the connectors during mating/demating operations.

Step	Description	Sign off	comments
1.	Remove the temporary earth strap between the FPU and the		
	cryostat		
	FPU/OBA Isolation		
2.	Measure and record the electrical isolation between the		
	chassis of the FPU and the cryostat. Pass criteria is >=		
	1 M? isolation.		
3.	Remove the safeing plugs form JFP J25, J26, J27 and J28		
	while maintaining ionized air flow over the unit.		
4.	Cover JFP J25, J26, J27 and J28 with black, dissipative dust		
	covers.		
5.	Remove the safeing plugs from JFS J09 and J10 while		
	maintaining ionized air flow over the unit.		
6.	Cover JFS J09 and J10 with black, dissipative dust covers.		
	Spect. Det. Box / OBA Isolation		

SPIRE FPU Handling and Mechanical Integration Procedure

Ref: SPIRE-RAL-PRC-

002802

Issue: 2
Date: 21/3/07
Page: 17 of 35

		1	1
7.	Measure the isolation between the OBA and the Detector		
	Boxes Thermal Strap (on the instrument side of the		
	electrical isolation joint). Pass criteria is >= 1MOhm		
	Phot. Det. Box / OBA Isolation		
8.	Measure the isolation between the OBA and the Evaporator		
	Thermal Strap (on the instrument side of the electrical		
	isolation joint). Pass criteria is >= 1MOhm		
	Spect. Det. Box / FPU Isolation		
9.	Measure the isolation between the FPU and the Detector		
	Boxes Thermal Strap (on the instrument side of the		
	electrical isolation joint). Pass criteria is >= 1MOhm		
	Phot. Det. Box / FPU Isolation		
10.	Measure the isolation between the FPU and the Evaporator		
	Thermal Strap (on the instrument side of the electrical		
	isolation joint). Pass criteria is >= 1MOhm		
	Phot. Det. Box / Spect. Det. Box Isolation		
11.	Measure the isolation between the Detector Boxes Thermal		
	Strap and the Evaporator Thermal Strap (both on the		
	instrument side of the electrical isolation joints). Pass		
	criteria is >= 1MOhm		
12.	Fix the temporary grounding strap from the FPU to the OBA		
13.	Repeat the measurement of the resistance between the		
	cryostat and the FPU to ensure that grounding has been		
	successful, reading should be less than 3?		

6.3 Removal from spacecraft

6.3.1 L3 straps.

Step	Description	Sign off	comments
1	Note. Spacecraft temperature sensors, two sensors on each		
	clamp, fit to this interface.		
2	Loosen and remove the two M4 fasteners attaching the		
	clamp block and L3 strap to the JFETS		
3	L3 thermal strap clamp is provided by SPIRE and should		
	remain with the instrument		
4	Remove the two L3 straps from the JFETs		

6.3.2 L1 straps.

Step	Description	Sign off	comments
1	Remove the wire locking from the two M8 fasteners and the		
	four M4 fasteners.		

SPIRE FPU Handling and Mechanical Integration Procedure

Ref: SPIRE-RAL-PRC-

002802

Issue: 2 Date: 21/3/07 Page: 18 of 35

2	Loosen the two M8 and four M4 fasteners	
3	Remove the fasteners	
4	Retract the L1 straps from the FPU.	
5	Keep the fasteners and insulating bushes with the FPU	

6.3.3 L0 straps

6.3.3.1 The cooler pump and evaporator straps

Step	Description	Sign off	comments
1	These straps to be left attached to the FPU		
2	Remove the fasteners (ten M4 For the evaporator strap, six		
	M4 screws for the pump) which attach the lower flexibles to		
	the pod interfaces.		
3	Remove the spreader plates together with their temperature		
	sensors.		
4	These spreaders and sensors are spacecraft supplied		

6.3.3.2 Detector strap

Step	Description	Sign off	comments
1	This strap to be removed before deintegration of the FPU		SPIRE activity
2	Remove the fasteners (six M4 screws) which attach the		SPIRE activity
	lower flexible to the pod interfaces.		
3	Remove the spreader plate together with the temperature		SPIRE activity
	sensor.		
4	Loosen and remove the two M4 fasteners that connect the		SPIRE activity
	strap to the detector box		
5	Loosen and remove the 5 4-40 UNC fasteners that attach the		SPIRE activity
	Torlon supports to the FPU		
6	Remove the strap assembly.		SPIRE activity
7	Place strap in its fixture on the transit base plate		

6.3.3.3 FPU and JFETs

Step	Description	Sign off	comments
1	Remove all electrical connections, see section separate		
	procedure		
2	Unbolt the cone from the FPU by undoing the M8 nut, thus		
	leaving the cone on the OBA		
3	Undo the five M4 fasteners which secure the Photometer		
	JFET rack (HSJFP) to the HOB.		
4	Undo the four M4 fasteners that secure the Spectrometer		
	JFET rack (HSJFS)to the HOB. Note that two of these		
	fasteners are studs with nuts on the top.		
5	Undo and remove the 8 fasteners that attach the FPU to the		

SPIRE FPU Handling and Mechanical Integration Procedure

Ref: SPIRE-RAL-PRC-

002802

Issue: 2 Date: 21/3/07 Page: 19 of 35

	OBA, 4 on each bipod.	
6	The FPU and JFETs can now be lifted from the HOB	

7. RED TAG ITEMS

The following red tag items are fitted to the FPU when delivered.

- 1. An aperture cover To be removed at the latest opportunity prior to closure of the cryostat taking into account the possibility that the cover may not be able to be removed once the Instrument Shield is integrated.
- 2. Alignment cube To be removed after alignment activities has ended and prior to closure of the cryostat taking into account the possibility that the cover may not be able to be removed once the Instrument Shield is integrated.
- 3. Temporary grounding strap Removed during the Cryoharness Integration Procedure. (must be removed prior to integration of Instrument Shield)
- 4. Shorting plugs Removed during the Cryoharness Integration Procedure.

When removed all red tag items shall be bagged and stored in the dedicated "red tag box".

The aperture cover is removed by unscrewing the four 2-56 UNC (imperial) cap head screws, which are captive in the cover, and lifting the cover clear.

The alignment cube is removed by unscrewing the three fixing screws and lifting clear.

8. GREEN TAG ITEMS

There are no green tag items

SPIRE FPU Handling and Mechanical Integration Procedure

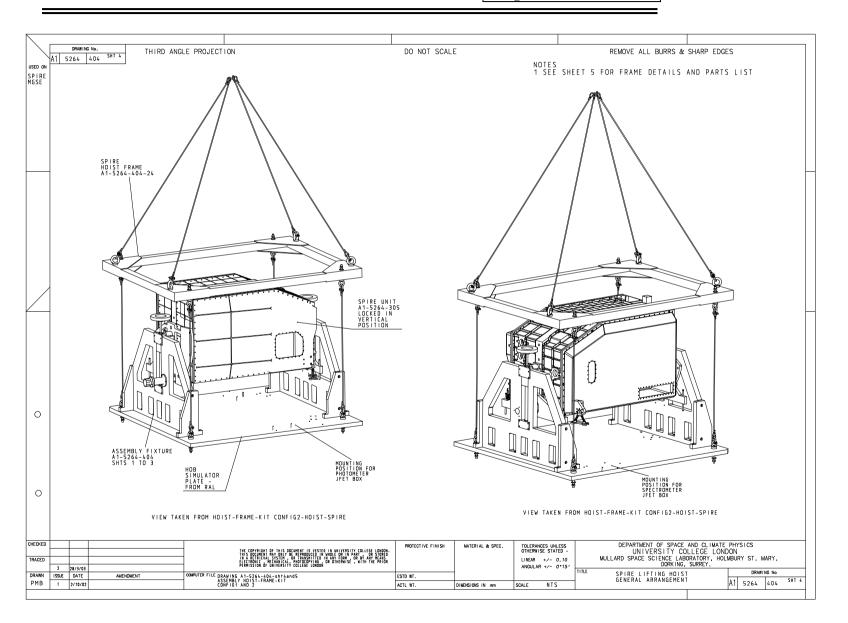
Ref: SPIRE-RAL-PRC-

002802

Issue: 2

Date: 21/3/07 **Page:** 20 of 35

ANNEX A - DRAWINGS OF SPIRE FPU MGSE

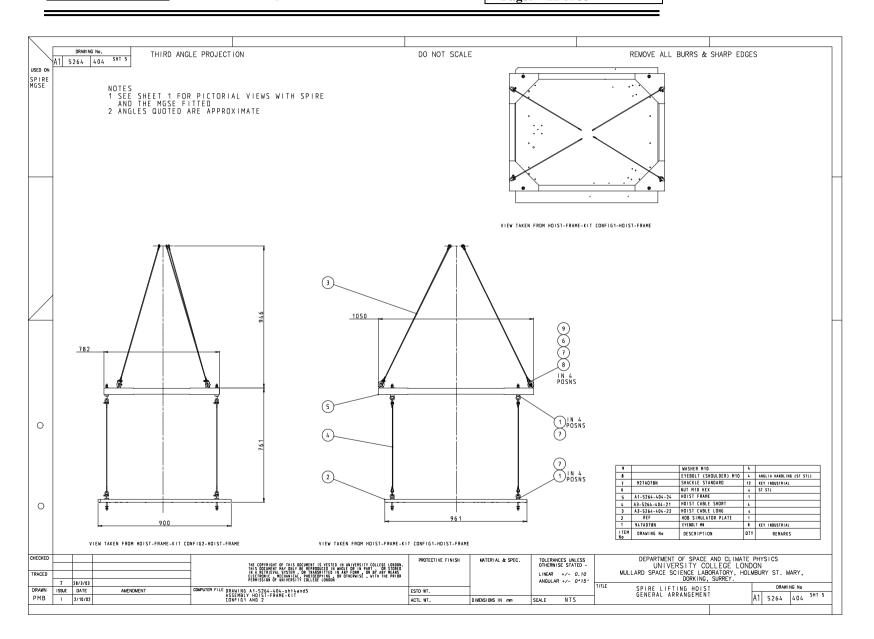

SPIRE FPU Handling and Mechanical Integration Procedure

Ref: SPIRE-RAL-PRC-

002802

Issue: 2

Date: 21/3/07 **Page:** 21 of 35

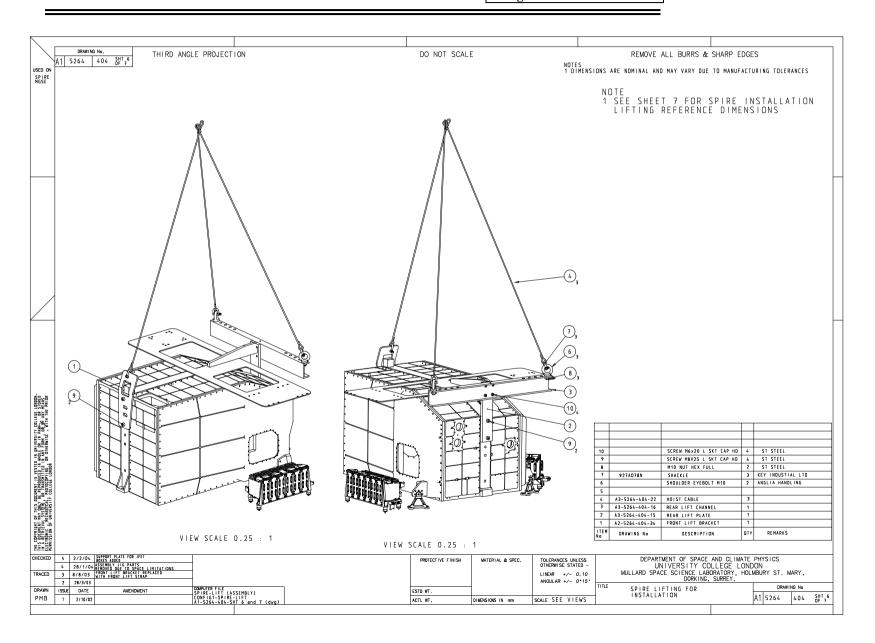

SPIRE FPU Handling and Mechanical Integration Procedure

Ref: SPIRE-RAL-PRC-

002802

Issue: 2

Date: 21/3/07 **Page:** 22 of 35

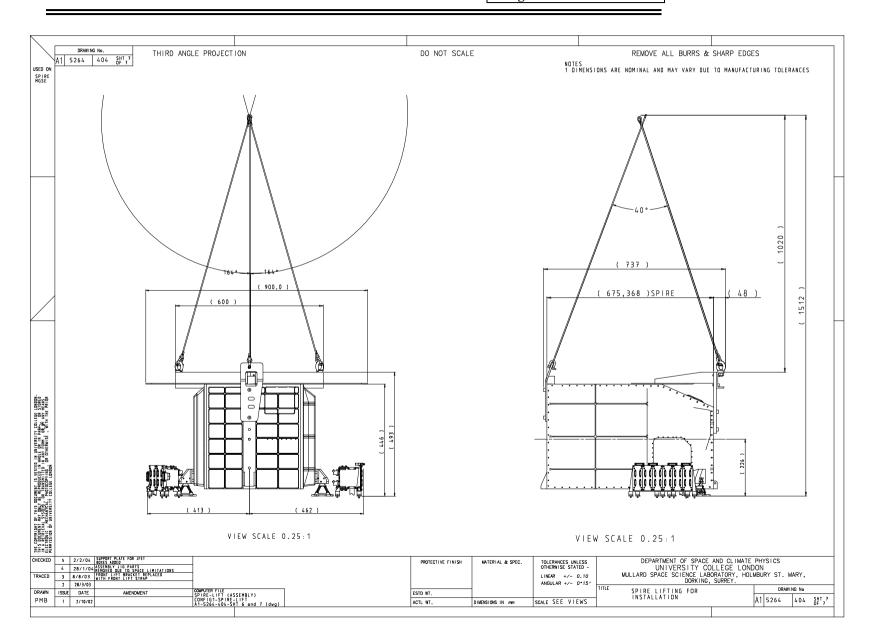

SPIRE FPU Handling and Mechanical Integration Procedure

Ref: SPIRE-RAL-PRC-

002802

Issue: 2

Date: 21/3/07 **Page:** 23 of 35

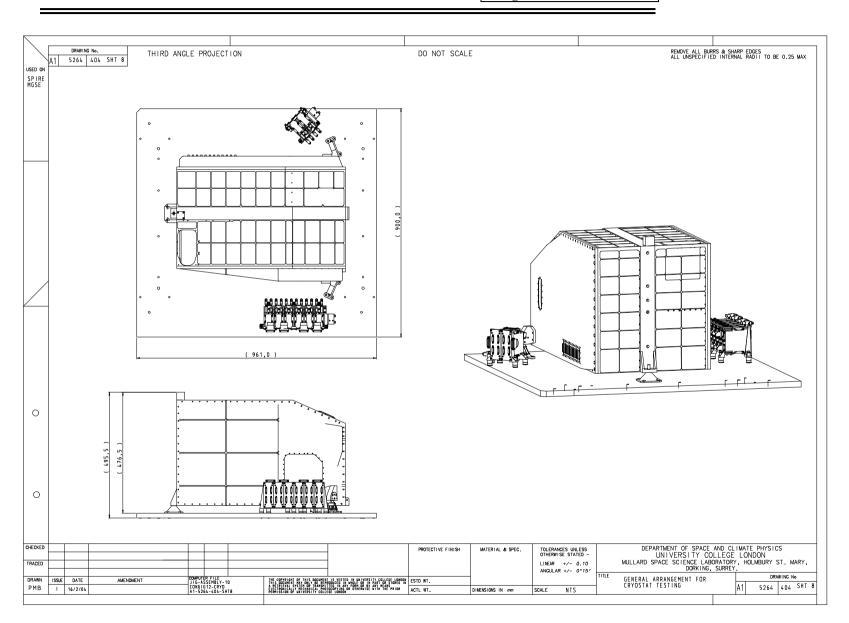

SPIRE FPU Handling and Mechanical Integration Procedure

Ref: SPIRE-RAL-PRC-

002802

Issue: 2

Date: 21/3/07 **Page:** 24 of 35


SPIRE FPU Handling and Mechanical Integration Procedure

Ref: SPIRE-RAL-PRC-

002802

Issue: 2

Date: 21/3/07 **Page:** 25 of 35

SPIRE FPU Handling and Mechanical Integration Procedure

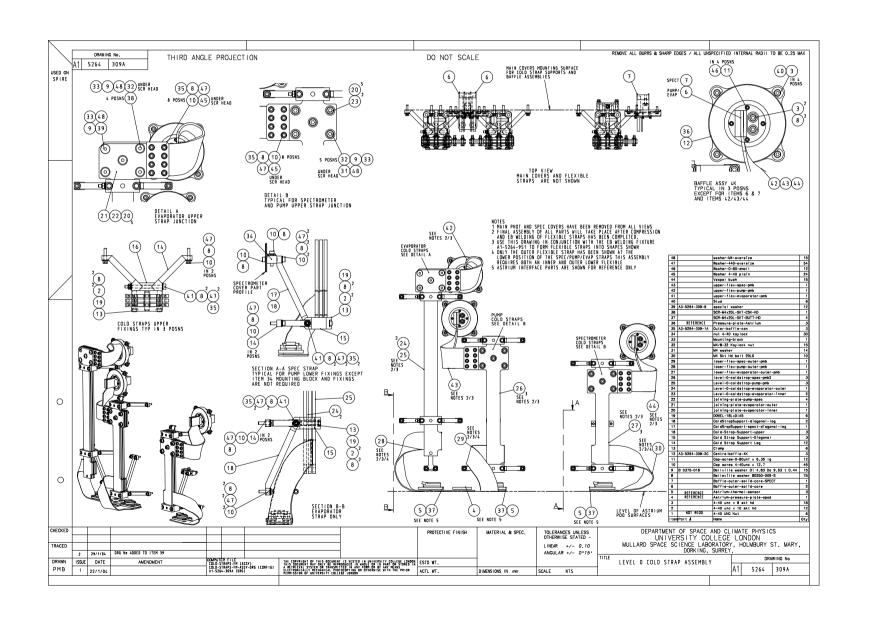
Ref: SPIRE-RAL-PRC-

002802

Issue: 2

Date: 21/3/07 **Page:** 26 of 35

ANNEX B - LO THERMAL STRAP ASSEMBLY


SPIRE FPU Handling and Mechanical Integration Procedure

Ref: SPIRE-RAL-PRC-

002802

Issue: 2

Date: 21/3/07 **Page:** 27 of 35

SPIRE FPU Handling and Mechanical Integration Procedure

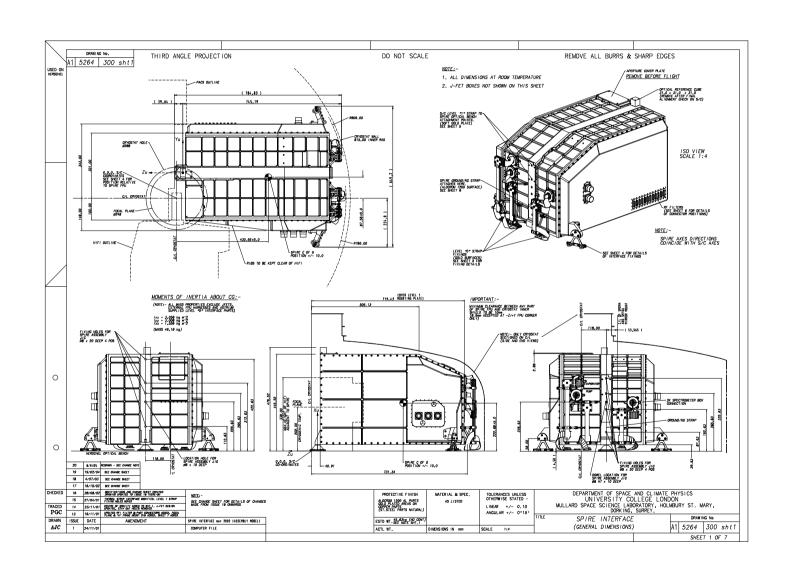
Ref: SPIRE-RAL-PRC-

002802

Issue: 2

Date: 21/3/07 **Page:** 28 of 35

ANNEX C FPU INTERFACE DRAWING

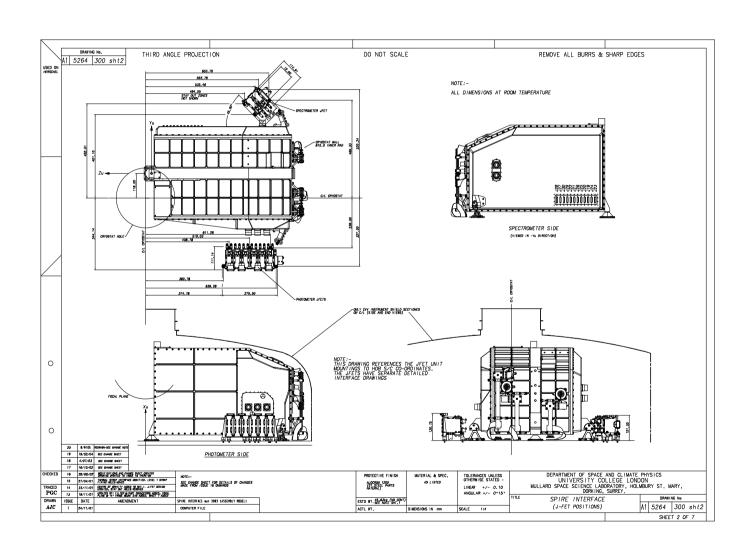

SPIRE FPU Handling and Mechanical Integration Procedure

Ref: SPIRE-RAL-PRC-

002802

Issue: 2

Date: 21/3/07 **Page:** 29 of 35

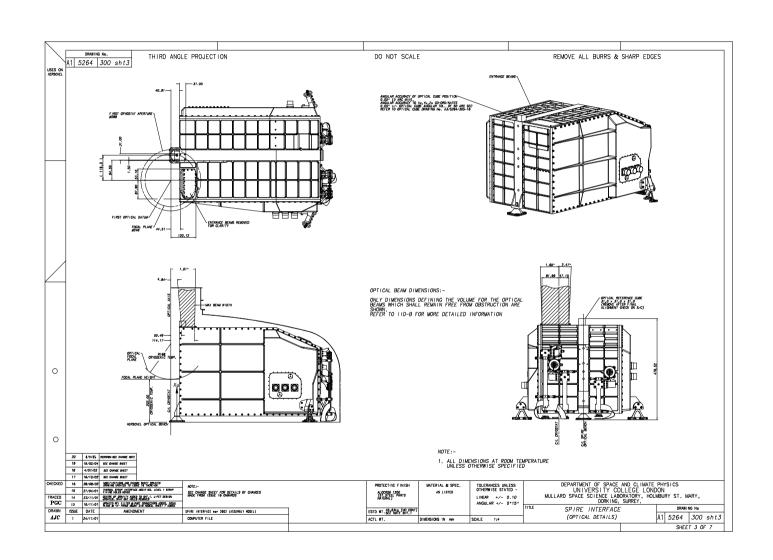

SPIRE FPU Handling and Mechanical Integration Procedure

Ref: SPIRE-RAL-PRC-

002802

Issue: 2

Date: 21/3/07 **Page:** 30 of 35

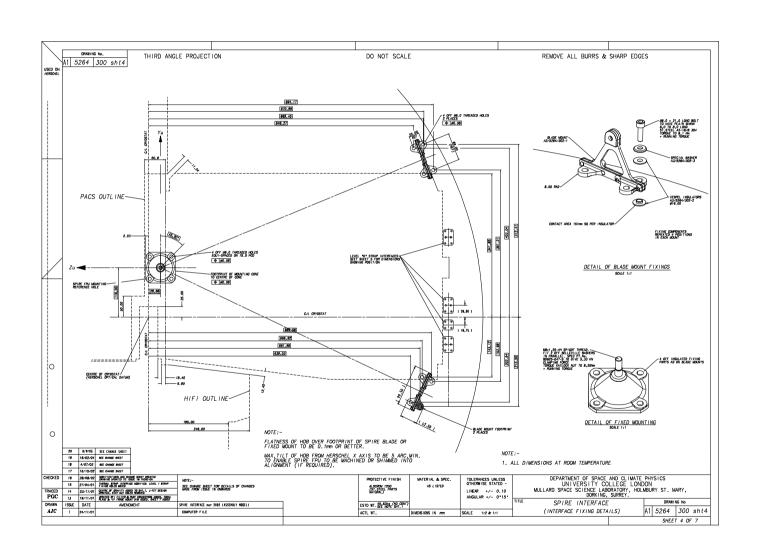

SPIRE FPU Handling and Mechanical Integration Procedure

Ref: SPIRE-RAL-PRC-

002802

Issue: 2

Date: 21/3/07 **Page:** 31 of 35

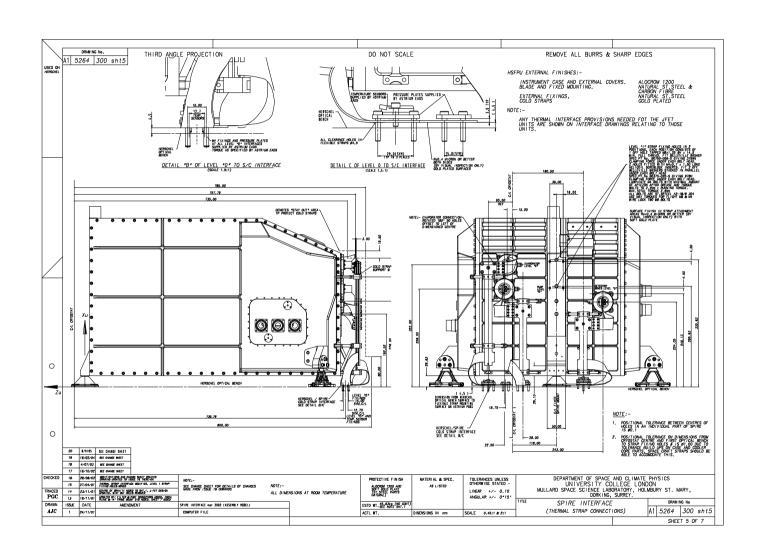

SPIRE FPU Handling and Mechanical Integration Procedure

Ref: SPIRE-RAL-PRC-

002802

Issue: 2

Date: 21/3/07 **Page:** 32 of 35

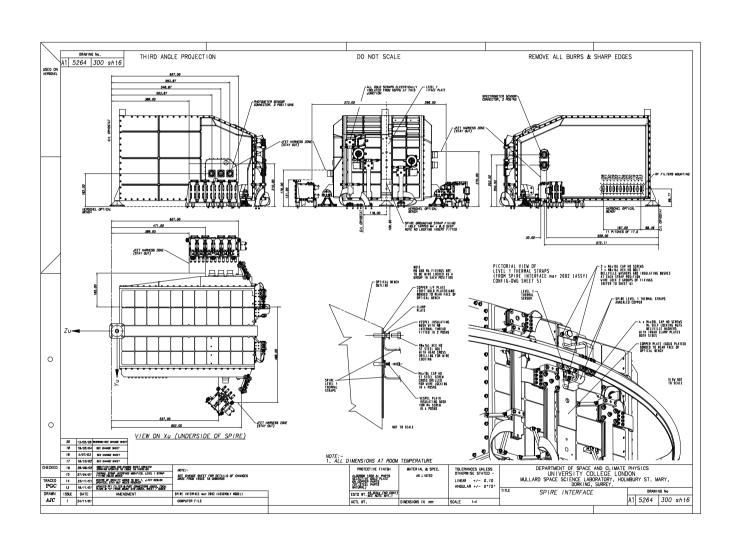

SPIRE FPU Handling and Mechanical Integration Procedure

Ref: SPIRE-RAL-PRC-

002802

Issue: 2

Date: 21/3/07 **Page:** 33 of 35

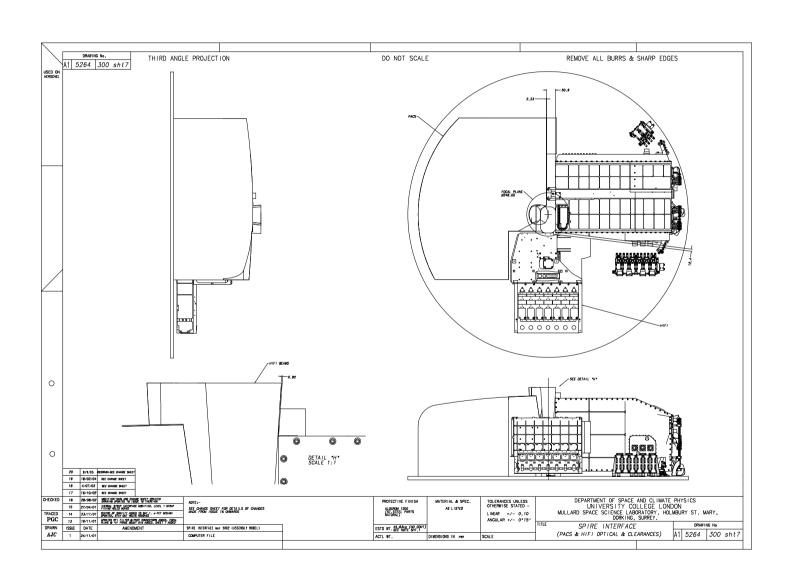

SPIRE FPU Handling and Mechanical Integration Procedure

Ref: SPIRE-RAL-PRC-

002802

Issue: 2

Date: 21/3/07 **Page:** 34 of 35


SPIRE FPU Handling and Mechanical Integration Procedure

Ref: SPIRE-RAL-PRC-

002802

Issue: 2

Date: 21/3/07 **Page:** 35 of 35

