

SPIRE

HERSCHEL Ref: SPIRE-RAL-PRC-002748

Author: **D.L. Smith**

Issue: **1.0**

Date:18-Oct-2006

PFM4 Cold Test – Master Procedure

Frepared by.			
	D.L. Smith (RAL)	Date	
Checked:			
	B.J. Swinyard (RAL)	Date	
Approval:			
	E. Sawver (RAL)	Date	

Page**: 2 /30** Issue: 1.0

Date: 18-Oct-2006

Distribution

RAL Eric Sawyer

Eric Clark Alan Pearce

Anne Sophie Goizel

Marc Ferlet
Bruce Swinyard
Doug Griffin
Tanya Lim
Ken King
Sunil Sidher

UOL Asier Aramburu

Peter Davies Imhof

UCW Matt Griffin

Peter Hargrave Tim Waskett

LAM Dominique Pouliquen

ATC Phil Parr-Burman

Brian Stobie

IC Dave Clements

Davide Rizzo

Host system	Windows 2000 SP2
Word Processor	Microsoft Word 2000 SR1
File	PFM4 Cold Test Procedure - Issue 1.0.Doc

Page: **3 / 30** Issue: 1.0

Date: **18-Oct-2006**

Document Change Record

Date	Index	Affected Pages	Changes
18-Oct-2006	1.0	All	

Page: **4 / 30** Issue: 1.0

Date: 18-Oct-2006

1 Scope of Document

This procedure describes the activities to be performed during the PFM-4 cold thermal test campaign, which is a key inspection point (AD 1). The details of the instrument integration and cryostat operations are given in AD 7 and AD 8 respectively. The sequence of the performance testing is a an overview based on the SPIRE FM Calibration and Performance Test Plan (AD 3) which defines the flow and detailed procedures. The aim of this document is to ensure that the test objectives are achieved.

2 Documents

2.1 Applicable Documents

	Title	Author	Reference	Date
AD 1	SPIRE AIV Plan	B.J. Swinyard	SPIRE-RAL-DOC-000410 Issue 3	May 2003
AD 2	As Built Configuration List	Eric Sawyer	SPIRE-RAL-DOC-002326 Issue 2.8	Oct 2006
AD 3	SPIRE FM Calibration and Performance Test Plan	T. Lim	SPIRE-RAL-DOC-002535 Draft 0.2	15-Sep-2006
AD 4	Functional Test Specification	S. Ronayette Asier Abreu	SPIRE-RAL-NOT-1652 Issue 1.4	10-Dec-2004
AD 5	PFM2 Thermal Balance Test Specification	A.S. Goizel	SPIRE-RAL-DOC-002435 Issue 1	Dec 2005
AD 6	Input to SPIRE PFM3 Thermal Test Specification	A.S. Goizel	SPIRE-RAL-MEM-002563 Draft A	Feb 06
AD 7	SPIRE Harness Integration Procedures	D.L. Smith	SPIRE-RAL-PRC-2122 Issue 0.4D	Dec 2004
AD 8	SPIRE Cryostat Operating Procedures	D.L. Smith	SPIRE-RAL-DOC-001556 Issue 1.0	12-Jan-2005
AD 9	SPIRE Cryolab Risk Assesment	D.L. Smith	SPIRE-RAL-DOC-002103 Issue 2.0	28-July-2004
AD 10	SPIRE Instrument Operations Procedures	S. Sidher		
AD 11	SPIRE EGSE ILT Startup Procedures	S. Sidher and M. Requena	SPIRE-RAL-DOC-001630	24-Jun-2003
AD 12	DRCU Switch On Procedure	A. Aramburu	SPIRE-RAL-NOT-002222	
AD 13	SPIRE Cleanliness Plan	B.J. Swinyard	SPIRE-RAL-DOC-001070 Issue 1.0	9-Jan-2002
AD 14	RAL Safety Codes	CCLRC	http://www- internal.clrc.ac.uk/staff/notices/clr c_safety_codes/sc2.html	July-2003

Page: **5 / 30** Issue: 1.0

Date: 18-Oct-2006

3 Test Objectives

The PFM-4 test campaign will be the final verification and calibration of the SPIRE instrument before delivery for spacecraft integration.

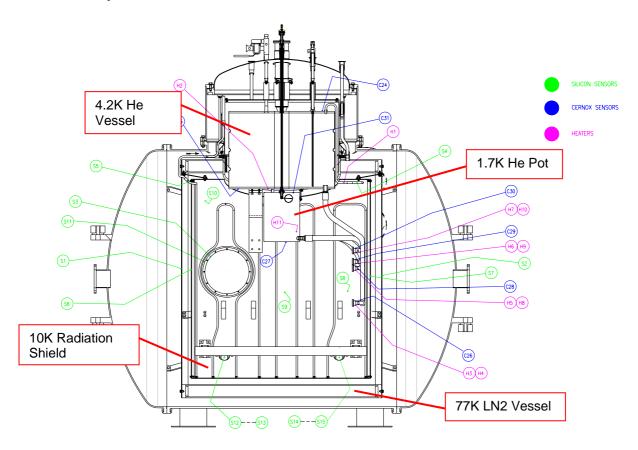
4 Test Configuration

4.1 Instrument Build

The model to be tested consists of the full flight model configuration of the FPU, DPU and DRCU. The table below provides a summary of the build standard of the PFM-4 instrument for information only. A more detailed breakdown of the components is given in the as built configuration list AD 2.

Unit	Build Standard		
/component			
HSFPU			
Structure/baffles/standoffs etc	PFM		
L0 straps	MGSE – New for PFM-4 with flight like flexible interface and light trap.		
Mirrors	PFM		
Filters	CFIL-1 – PFM SFIL2 – PFM SBS1 – PFM SBS2 - PFM SFIL3 to 5S – PFM SFIL3 to 5L – PFM CFIL1 - PFM PFIL-2 - PFM PFIL-3 - PFM PDIC-1 – PFM PDIC-1 – PFM PDIC-5 – PFM PFIL-4S - PFM PFIL-5S - PFM PFIL-5S - PFM PFIL-5D - PFM PFIL-5D - PFM PFIL-5D - PFM PFIL-5L - PFM PFIL-5L - PFM		
Beam steering mirror	PFM		
3He Cooler	PFM		
300 mK thermal straps and supports	PFM		
300 mK Thermal control system	PFM		
Photometer LW array	PFM		
Photometer MW array	PFM		
Photometer SW array	PFM		
SMEC	PFM		
Spectrometer SW array	PFM		
Spectrometer LW array	PFM		
Photometer Calibrator	PFM		
Spectrometer Calibrator	PFM – with 2% and 4% source redundant side disconnected for phot box GSE heater		
FPU RF Filters	PFM		
Thermometry	PFM		

Page**: 6 / 30** Issue: 1.0


Unit	Build Standard
/component	
FPU internal harnesses	Spectrometer side – PFM
	Photometer side - PFM
HSJFP	
JFET Structure	PFM
JFET Modules	PFM – except one non flight but functional module
JFET box RF filter modules	PFM
JFET Backharness	PFM
JFET/FPU Harness	PFM
HSJFS	
JFET Structure	PFM
JFET Modules	PFM
JFET box RF filter modules	PFM
JFET Backharness	PFM
JFET/FPU Harness	PFM

Subsystem	Requirement	
/component		
HSDCU		
DCU Structure	FM	
Electrical Interfaces	Flight	
Functionality	Full functionality	
Electrical Component Level	Flight	
HSFCU		
FCU Structure	FM	
MCU	FM	
Electrical Interfaces	Flight	
Functionality	Full functionality	
Electrical Component Level	Flight	
SCU	FM	
Electrical Interfaces	Flight	
Functionality	Full functionality	
Electrical Component Level	Flight	
PSU	FM	
Electrical Interfaces	Flight	
Functionality	Full functionality	
Electrical Component Level	Flight	
HSDPU	FM	
DPU Structure	Flight	
Electrical Interfaces	Flight	
Functionality	Full functionality	
Electrical Component Level	Flight	
On Board Software		
Functionality	Full functionality but no autonomy required	
·	Refer to table in section 4.4 for version numbers and patches	
HSWIH		
Length/Connector type	Test harness	
Electrical Interfaces	Form; fit; function	
Functionality	Full functionality on prime side only	
Electrical Component Level	Commercial	

Page: **7 / 30** Issue: 1.0

Date: 18-Oct-2006

4.2 Cryostat

Figure 1: Cross section of SPIRE test cryostat showing the different temperature stages and thermometer locations.

The SPIRE Calibration Cryostat has four stages of cooling, an outer liquid nitrogen cooled vessel at 77K, a 10K radiation shield, a 4.2K liquid He vessel and a 1.7K pumped liquid He pot, Figure 1. A more detailed description of the cryostat and its operation is given in AD 8

Page: **8 / 30** Issue: 1.0

Date: 18-Oct-2006

4.3 Optical Equipment

4.3.1 Telescope Simulator

The telescope simulator will reproduce the Herschel telescope f8.68 beam, such that a point source is imaged at the SPIRE input focal plane. Many of the test & calibration procedures will require this beam to be steered & focused over the field-of-view range of the instrument, in order to check or measure such properties as pixel response, spatial resolution and image scale. A beam control system will use a series of movable mirrors to steer & focus the beam according to geometric 'control laws'.

4.3.2 Cold Blackbody

A 4K-20K-blackbody source provided by Cardiff University will be used as an absolute radiance standard. This will be mounted within the 4K enclosure of the cryostat and viewed via a relay mirror.

4.3.3 Hot Blackbody

An ISOTEC Pegasus hot, 1000°C blackbody with wavelength coverage over 200µm to 700µm will be used to back illuminate a point source at the input of the telescope simulator.

4.3.4 FIR Laser

An Edinburgh Instruments PR5 gas FIR laser with lines from 30µm to 1000µm and power up to 100mW will be used.

4.3.5 Beam Monitor

The output of the telescope simulator (i.e. input signal to SPIRE) will be picked off by a beam splitter and measured using a Golay cell. The output of the detector will be logged by the TFCS to allow correlation with the SPIRE measurements.

4.3.6 Photomixer SourceOn loan from Alma project

This source is loaned from the ALMA project and uses Tuneable over SPIRE LW spectral range. The device produces CW terahertz radiation by photomixing two diode lasers in a photoconductor. The frequency difference of the lasers is tuned to the terahertz region and the conductance of the device is modulated at the difference frequency.

Although the output is of a low power, SPIRE is sensitive enough to detect the signals.

Page**: 9 / 30** Issue: 1.0

Date: 18-Oct-2006

4.4 EGSE Configuration

The following table gives the build standard of the EGSE software at the start of the test campaign.

System	Version	Updated
SCOS-2000	2.3E patch 5	
HCSS	Build 1023 (Version 0.3.6)	
QLA	3.1	
MIB	PFM4	
OBS	2.2D	
TFCS	2.6	Oct-2006
TFTS server	1.6	25-Nov-2006

Page: **10 / 30** Issue: 1.0

Date: 18-Oct-2006

5 Constraints

5.1 Safety

All personnel working in the SPIRE test facility must read the facility risk assessment, especially as there are particular hazards associated with the cryostat and laser.

Great care should be taken when handling liquid nitrogen and helium. The main hazards associated with liquid Nitrogen and Helium are:

- Cold "burns" to the person.
- Explosions due to the vaporization of the liquefied gas into an enclosed space.
- Asphyxiation due to exclusion of oxygen.
- Spillage onto structural materials, which can cause thermal contraction of the metal, say steelwork, with resultant cracking.

All people working with the cryostat should have instruction on the safe handling of cryogenic liquids and familiarise themselves with the laboratory safety code CCLRC Safety Code 2 which can be found on http://www-internal.clrc.ac.uk/staff/notices/clrc_safety_codes/sc2.html The safety code must be followed at all times when handling cryogenic liquids. A risk assessment shall be performed before operating the cryostat.

The personal oxygen monitors provided must be used when entering the lab when the cryostat is cold. These are calibrated every 6 months by the manufacturers (Crowcon in Abingdon).

When the oxygen monitor alarm sounds leave the room immediately and call ext 5996. DO NOT attempt to enter the room afterwards until the all clear has been given.

The gloves provided shall be worn when transferring liquid helium and nitrogen into the tank.

Any dewars with worn or damaged castors or which are difficult to wheel safely should be taken out of service and returned to stores immediately for repair or maintenance.

5.2 Cleanliness

To minimise the level of contamination, the FPU should remain covered until the particulate count is below that for a class 6 (old class 1000) clean room. The maximum concentration limits as specified by ISO EN 14644-1 1999 Standard (particles per m³ of air) for particles greater than the considered sizes are

Size	Specification
0.1µm	1000000
0.2µm	237000
0.3µm	102000
0.5µm	35200
1.0µm	8320
5.0µm	293

The following clothing shall be worn at all times when working in the clean room to avoid contamination of the instrument or surfaces that the instrument will come into contact with.

Page**: 11 / 30** Issue: 1.0

Date: 18-Oct-2006

Facemasks Hats Coats

Overshoes

Gloves – to prevent cross contamination via tools and test equipment

Personnel working in the clean room must first attend the RAL SSTD training session on clean room practice.

Where possible, personnel should work downstream of the instrument from the air-filters.

As space is extremely limited, only essential personnel are permitted to work in the clean room.

Tools for use in the clean room must first be cleaned using IPA wipes.

5.3 ESD Precautions

The SPIRE FPU, JFETS, DRCU and DPU are sensitive to electrostatic discharge. To prevent accidental damage to sensitive components, the units shall be grounded via a suitable earth strap while work is being performed. The earth straps may only be removed once the electronics have been connected together in accordance with the harness integration procedure. **ESD wrist straps shall** be worn at all times when working either directly or within 1m of the instrument.

All personnel who are working on or in the vicinity of the instrument must have attended the RAL SSTD training session on ESD.

Page: **12 / 30** Issue: 1.0

Date: 18-Oct-2006

6 Organisation

Once cold the typical daily plan for the test campaign is shown as follows

07:30-08:30 (2 people)

Top up He vessels

08:30-10:30 (2 people)

Top up LN2 vessel

Allow temperatures to stabilise

Recycle cooler if necessary

Switch on test equipment (laser) and allow temperatures to stabilise

Order Helium for next day

10:30-15:00

Instrument Testing – Team A (3 people, SCOS driver, QLA driver, Equipment driver)

15:00-15:30

Daily planning meeting Full team required report on previous 24 hours highlight major issues

plan next 24 hours activities

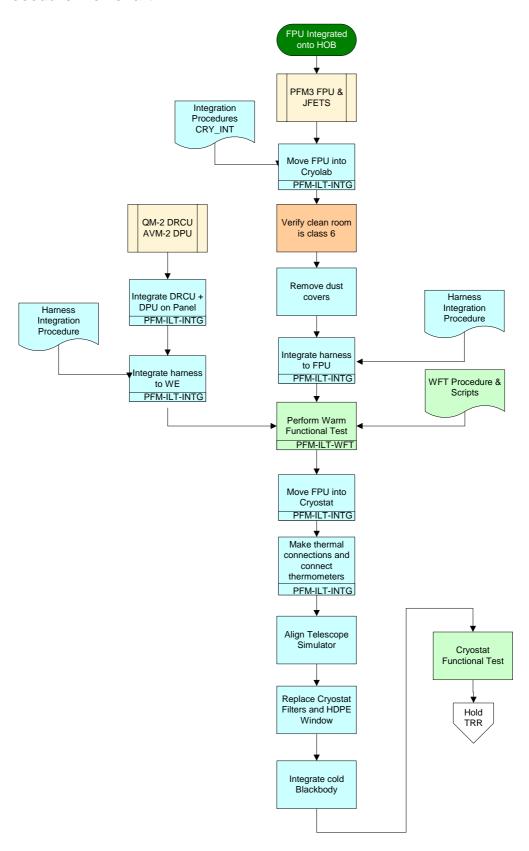
15:30-22:00

Instrument Testing – Team B (3 people)

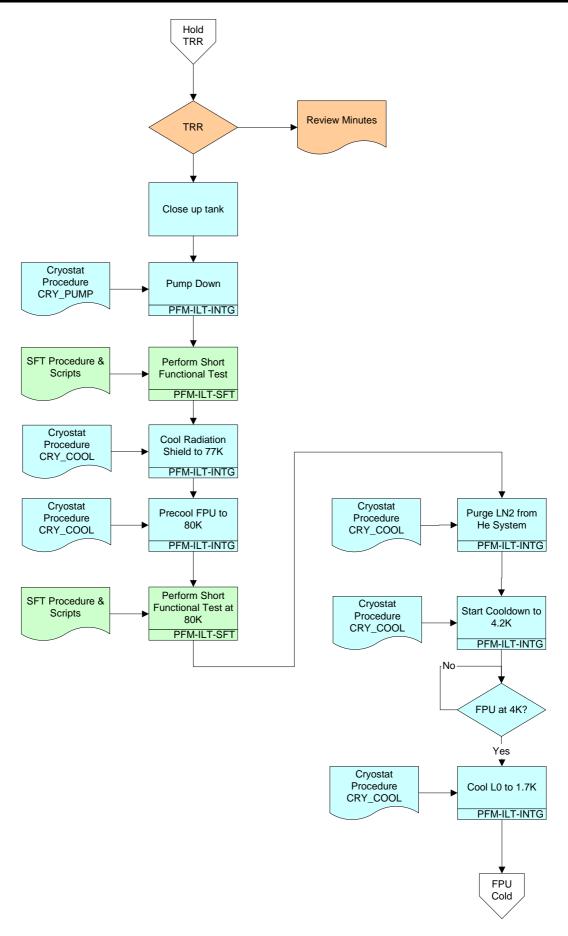
22:00-23:00 - Team B

Prepare to store instrument for night

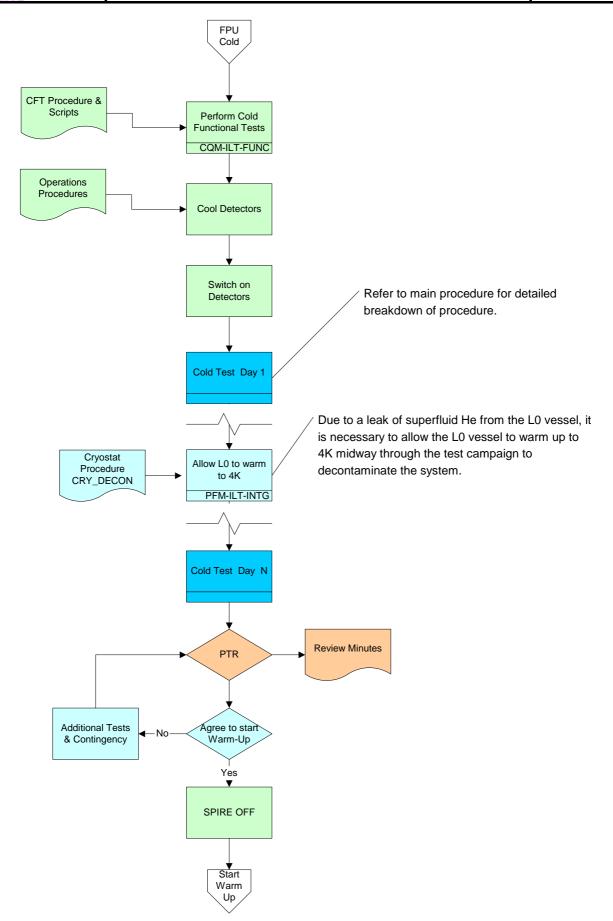
23:00-07:30

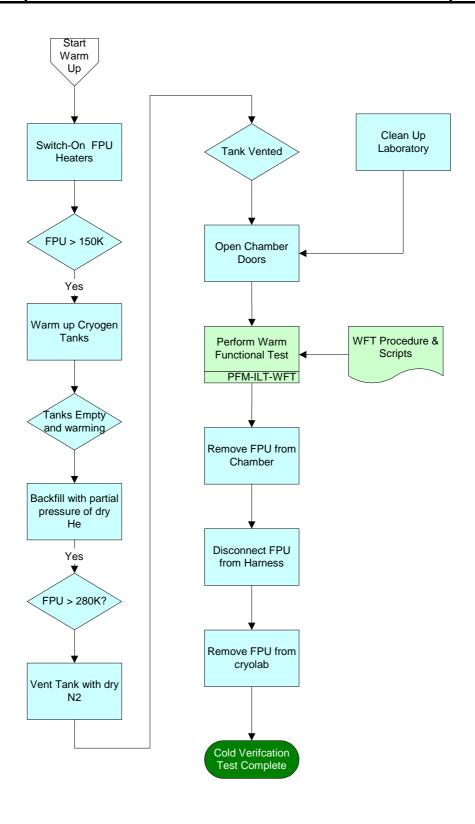

Thermal balance tests

Quiet Performance Tests (e.g. TFTS scans, noise tests)


Page**: 13 / 30** Issue: 1.0

Date: 18-Oct-2006


7 Procedure Flowchart


Page**: 14 / 30** Issue: 1.0

Page: **15 / 30** Issue: 1.0

Page**: 16 / 30** Issue: 1.0

Page: **17 / 30** Issue: 1.0

Date: 18-Oct-2006

8 Test Procedure

Objectives: See section 3

This is a key inspection point.

Initial Conditions: SPIRE PFM2

Chamber at Atmospheric Pressure (~1000mbar)

Tank doors open

Vacuum system control electronics OFF

Turbo Pump fan unit power OFF

N2 supply closed 3 Phase supply OFF EGSE ILT OFF

Final Conditions: As before

Constraints: Pumping must not start until a test readiness review has been held and authorisation

to proceed has been given.

Grounding straps provided must be worn at all times when working on FPU and WE

Total Duration: 10 weeks

Page: **18 / 30** Issue: 1.0

Step.	Action			Comments	Task Complete
1	Hold Tes	t Readiness Review			
1.1	Required Personnel				
	Instrument Manager – Eric Sawyer				
	A	IV Manager – Dave Smith			
	Р	A Manager – Eric Clark			
	S	ystem Engineer – Doug Griffin			
	Т	hermal Engineer – Anne Sophie	e Goizel		
	C	alibration Scientist - Tanya Lim	ı		
	Ir	nstrument Specialist – Sunil Sidl	ner		
	Ir	strument Scientist – Bruce Swi	nyard		
2	Move FP	U into Cryolab			
2.1	Open Lab	Doors and Move FPU into Lab	on MGSE		04-Oct-06
2.2	Monitor Particulate levels in laboratory				04-Oct-06
	Particulat	e levels for class 6 clean room ((old class 1000)		
	Maximum	concentration limits (particles p	per m³ of air) for particles > than the		
	considered sizes below.				
	Size	Specification	Measured		
	0.1µm	1000000			
	0.2µm	237000			
	0.3µm	102000			
	0.5µm	35200			

Page: **19 / 30** Issue: 1.0

Step.	Action			Comments	Task Complete
	1.0µm	8320			
	5.0µm	293			
2.3		the MGSE frame to the facility s grounded.	grounding point - this will ensure that		04-Oct-06
2.4	Remove i	nstrument covers when levels f	or class 6 clean room are achieved.	Covers left over instrument while unattended	
3	Integrate	Harness to FPU and Warm E	lectronics		
3.1		Cryo-Harness to FPU acco G_ HARN (AD 7)	ording to integration procedure ref	JFET Gain test performed on 10 th October	09-Oct- 2006
3.2	Ensure th	at FPU is oriented in the +Y do	wn		
3.3	Remove t	he grounding link between the	FPU and the HOB.		
4	Perform \	Perform Warm Functional Test PFM_ILT-WFT			
4.1	Perform S	SPIRE Warm Functional Test		Refer to document SPIRE-RAL-PRC-002322	
4.2	Check tha	at all SPIRE subsystems have b	een switched OFF	Done as part of SPIRE-RAL-PRC-002322	
5	Integrate	FPU Into Cryostat			
5.1	Ensure co	overs are on the FPU			
5.2	Move FPI	J off MGSE into Cryostat		Activity performed ahead of WFT	13-Oct- 2006
5.3	Remove N	MGSE from Laboratory and stor	re in G56 clean room		13-Oct- 2006
5.4	Secure MGSE to Cryostat Rails			13-Oct- 2006	
5.5	Connect (CBB to cold strap and harness			17-Oct- 2006
5.6	Connect L	_2 straps to HOB Plate and MG	SE frame		17-Oct- 2006

Page: **20 / 30** Issue: 1.0

Step.	Action	Comments	Task Complete
5.7	Connect L3 straps to JFET Units		17-Oct- 2006
5.8	Connect FPU Thermal Interfaces to Cryostat Links		17-Oct- 2006
5.9	Connect remaining cryostat thermometers		
5.10	Mount and Connect Heaters to HOB simulator and FPU		
5.11	Check Electrical Isolation of FPU to Cryostat		
6	Align Telescope Simulator with SPIRE	Activity performed by Marc Ferlet	16-Oct-06
6.1	Check that alignment cubes are attached to HOB simulator and FPU		
6.2	Remove HDPE window, 10K and 77K filters if not already done.		
6.3	Mount optical window on cryostat		
6.4	Set MAT to be aligned with centre mark on imaging mirror of telescope simulator.		
6.5	Adjust position of telescope simulator so that CFIL1 comes into view and focus		
6.6	Adjust MAT to locate cubes on FPU and HOB		
6.7	Adjust telescope simulator so that cubes and MAT are autocollimated		
6.8	Move MAT back to position where CFIL1 is observed and check field of view		
6.9	Repeat process until full FOV of CFIL1 is covered AND both alignment cubes are auto-collimated with MAT		
6.10	Use white light source in MAT to illuminate CFIL1 through optics – point should be in focus – adjust if necessary		
6.11	Replace fold mirror and illuminate TS with HeNe laser – adjust fold mirror so that beam is at centre of CFIL-1.		
6.12	Run telescope simulator to scan over full field of view to verify scan table.		

Page: **21 / 30** Issue: 1.0

Step.	Action	Comments	Task Complete
6.13	Remove alignment cubes		
7	Install Cold Blackbody		
7.1	Place CBB on MGSE Frame		
7.2	Connect thermal strap to cold I/F of CBB – torque to TBD NM		
7.3	Secure feet to MGSE baseplate		
7.4	Connect electrical harness to CBB		
7.5	Power on CBB EGSE		
7.6	Switch on CBB control from TFCS Main Menu		
7.7	Send command to close flip mirror (to allow SPIRE to view room)		
7.8	Illuminate Telescope Simulator with HeNe laser		
7.9	Run telescope simulator to scan over full field of view and check for any vignetting by CBB aperture.		
7.10	Send command to open flip mirror (to allow SPIRE to CBB)		
7.11	Power off CBB electronics		
7.12	Replace 10K, 77K filters		17-Oct-06
7.13	Replace HDPE window		17-Oct-06
8	Cryostat Functional Test		
8.1	Verify operation of cryostat instrumentation using procedure CRY_CHECK (ref AD 8)		
8.1	Verify correct operation of Pump System		
8.2	Verify thermometer connections		
8.3	Verfiy cryostat heater operations		
8.4	Verify cold-blackbody function		

Page: **22 / 30** Issue: 1.0

Step.	Action	Comments	Task Complete
9	Close Cryostat		
9.1	Replace 10K end-cap at west end of cryostat		
9.2	Connect thermometer harness and check function		
9.3	Replace 77K end-cap at west end of cryostat		
9.4	Connect thermometer harness and check function		
9.5	Replace 10K end-cap at east end of cryostat		
9.6	Connect thermometer harness and check function		
9.7	Clamp instrument cryoharness to 10K shield and verify electrical isolation		
9.8	Replace cowl on 10K end plate		
9.9	Replace 77K end-cap at east end of cryostat		
9.10	Place loose harness between MLI and 77K shield – ensuring that electrical isolation is maintained.		
9.11	Close doors of vacuum chamber and fasten clamps.		
10	Pump-Down Cryostat		
10.1	Start cryostat pump-down using procedure CRY_PUMP (ref AD 8)		
11	Perform Short Functional Test – PFM-ILT-SFT		
11.1	Vacuum chamber at 10 ⁻⁵ mbar?		
11.2	Perform Short Functional Test	Refer to document SPIRE-RAL-PRC-002322	
11.3	Leave SCU DC thermometry on for cooldown	Done as part of SPIRE-RAL-PRC-002322	
12	Purge He Vessels		
12.1	Purge He vessels with dry N2 gas according to procedure CRY_COOL (ref AD 8)		
12	Cool LN2 Radiation Shield		

Page: **23 / 30** Issue: 1.0

Step.	Action	Comments	Task Complete
13.1	Fill LN2 Radiation shield according to procedure CRY_COOL (ref AD 8)		
14	Pre-cool FPU to 80K		
14.1	Cool SPIRE FPU to 80K using procedure CRY_COOL (ref AD 8) – NOTE This procedure will take several days to complete		
14.2	Once FPU has reached 80K remove liquid nitrogen from 1.7K and 4K vessels using step 4 of the cryostat operating procedure CRY_COOL (ref AD 8)		
14.3	Confirm that all liquid nitrogen has been removed from 1.7K and 4K vessels.		
	Do not proceed with pump/purge cycle without signing off this step!		
14.4	Purge He vessels with He gas according to step 5 of cryostat operating procedure CRY_COOL (ref AD 8)		
15	Perform Short Functional Test Before Filling with He – PFM-ILT-SFT		
15.1	FPU thermometers below 100K?		
15.2	Perform Cool Functional Test	Refer to document SPIRE-RAL-PRC-002322	
15.19	Leave SCU DC Thermometry Running	Done as part of SPIRE-RAL-PRC-002322	
16	Cool instrument to 4.2K		
16.1	Cool SPIRE to 4.2K using procedure CRY_COOL (ref AD 8)		
16.2	Allow temperatures to stabilise		
16.3	Measure steady state temperatures and check thermometry		
17	Perform Cold Full Functional Tests - Part 1		
17.1	FPU Below 5K?		
17.2	Perform SPIRE Cold Functional Tests – step 1 to X inclusive	Refer to document SPIRE-RAL-PRC-002322	
18	Cool to 2K		
18.1	FPU below 5K?		

Page: **24 / 30** Issue: 1.0

Date: 18-Oct-2006

Step.	Action	Comments	Task Complete
18.2	Cool L0 interface to 2K using procedure CRY_COOL (ref AD 8)		
18.3	If FPU L0 at 2K proceed to step 19		
19	Perform Cold Full Functional Tests - Part 2		
19.1	All L0 temperatures at 2K and stable?		
19.2	Recycle cooler holding L0 vessel at 2K		
19.3	When evaporator temperature at 300mK, lower L0 vessel temperature to 1.7K.		
19.4	Continue cold functional tests from step X+1	Refer to document SPIRE-RAL-PRC-002322	
20	Start Cold Test Activities		

The following is a rough outline of the main activities to be performed for the first two weeks of the test campaign. The eventual flow of the test campaign will depend on schedule and the availability of key personell.

A spreadsheet with a detailed step-by-step sequence to be followed by the test team will be produced on a daily basis.

Day 1	Tests	Priority	Cat
	Cooler recycle, thermal engineer present	High	2
	Photometer - Phase up 130 Hz, load curve then standard noise test	High	3
	Spectrometer - Phase up 160 Hz, load curve then standard noise test	High	3
	Repeat for Photometer in priority order 70, 190, 90, 155 Hz	High	3
	Overnight noise test	Medium	2
Day 2			
	Initial focus test using hot black body	High	2
	Photometer Peakups using hot black body	High	2
	BSM pixel finding	High	3
	Overnight TFTS Scans	Medium	2
Day 3			
	Flight Temperature Sensors Recalibration	High	1
	Cooler recycle	High	3
	Overnight noise test	Medium	2
Day 4			
	Photometer load curve	High	3

Page: **25 / 30** Issue: 1.0

Step.	Action		Comments		Task Complete
		Spectrometer set up load curves and noise test at 160 Hz, 240 Hz	High	3	
		Spectrometer cold black body load curves and scans	High	1	
		Overnight noise test			
	Day 5				
		Spectrometer SCAL tests load curves plus scans	Medium	2	
		Cooler recycle, set up nominal thermal balance case	High	2	
		Weekend thermal balance case			
	Day 6				
		Cooler recycle	High	3	
		Photometer load curve	High	3	
		Set up PTC	High	3	
		Complete optical performance verification with laser	High	1	
		Overnight TFTS Scans	Medium	2	
	Day 7				
		L1 Strap Characterisation	High	1	
		Overnight TBD			
	Day 8				
		BSM tuning	High	3	
		Cooler recycle	High	3	
		Overnight noise test	Medium	2	
	Day 9				
		Photometer load curve	High	3	
		BSM tuning	High	3	
		Overnight TFTS scans	Medium	2	
	Day 10				
		SMEC velocity and range tests	High	2	
		SMEC scans with laser lines	High	1	
		Cooler recycle, set up nominal thermal balance case	High	2	
		Weekend thermal balance case			
20	Post Test I	Review			

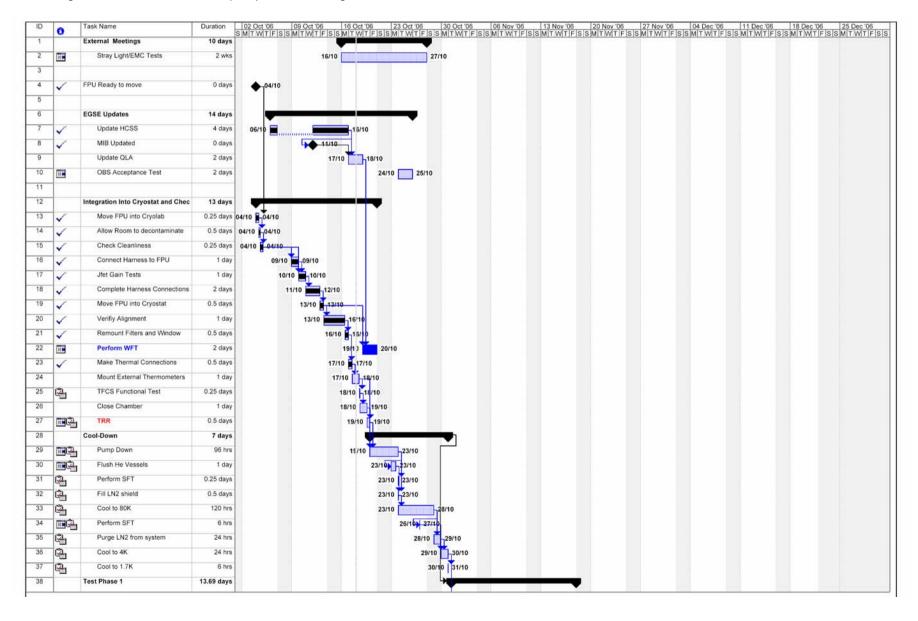
Page: **26 / 30** Issue: 1.0

Step.	Action	Comments	Task Complete
20.1	Hold test review to assess need for additional/repeat tests before warming up.		
21	Switch OFF SPIRE		
21.1	Switch OFF SPIRE, leaving SCU DC thermometry running.		
22	Warm Up		
22.1	Warm SPIRE to ambient using procedure CRY_WARM (ref AD 8)		
23	Let Up to Atmosphere		
23.1	Let up chamber to atmospheric pressure using procedure CRY_LETUP (ref AD 8)		
24	Perform Warm Functional Test		
24.1	Chamber at atmospheric pressure?		
24.2	Perform warm functional test	Refer to document SPIRE-RAL-PRC-002322	
24.3	Check that all SPIRE subsystems have been switched OFF	Done as part of SPIRE-RAL-PRC-002322	
25	Open Cryostat		
25.1	Return MGSE from G56 clean room		
25.2	Connect MGSE to facility ground		
25.3	Monitor Particulate levels in laboratory		
25.4	Particulate levels for class 6 clean room (old class 1000)		
	Maximum concentration limits (particles per m³ of air) for particles > than the		
	considered sizes below.		

Page: **27 / 30** Issue: 1.0

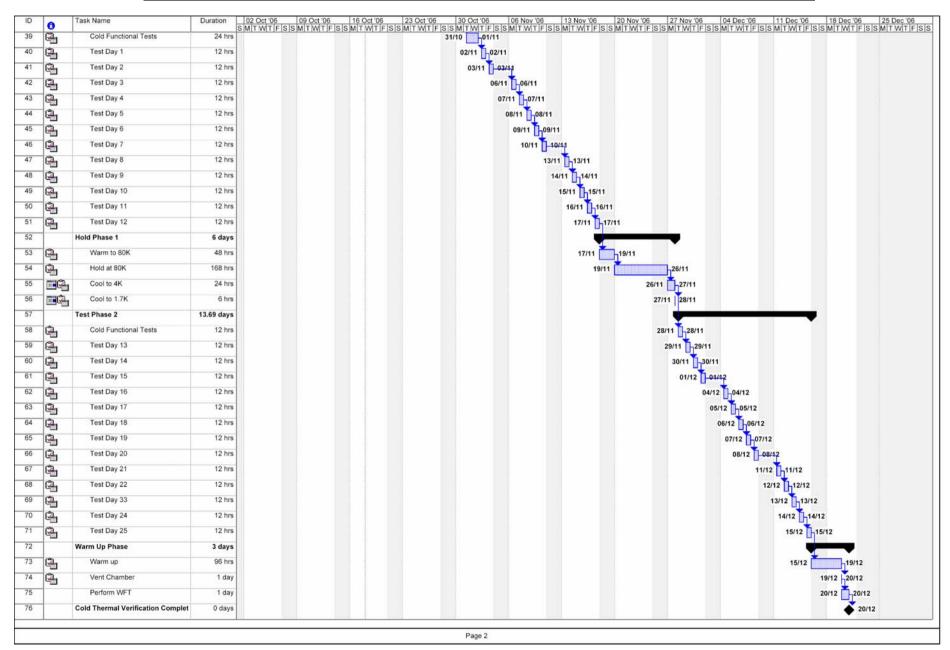
Step.	Action			Comments	Task Complete
	Size	Specification	Measured		
	0.1µm	1000000			
	0.2µm	237000			
	0.3µm	102000			
	0.5µm	35200			
	1.0µm	8320			
	5.0µm	293			
25.5		s – ensure that Oxygen monitor is re as the chamber will be full of nit fore returning to lab			
25.6	Remove 77K end ca	aps and store in cryostat doors			
25.7	Remove cowl from	10K shield			
25.8	Unclamp instrumen	t harness from 10K shield			
25.9	Remove 10K end-ca	aps			
26	Remove FPU from	Cryostat			
26.1	Remove CBB from	cryostat – bag and return to G56 c	elean room		
26.2	Replace aperture co	over			
26.3	Disconnect cryostat	flexibles from the FPU and move	out of way		
26.4	·	the FPU and HOB frame onto who	eels		
26.5		ley rails to cryostat rails			
26.6		yostat onto MGSE trolley.			
26.7	Secure FPU and H0	OB assembly onto MGSE			
26.8	Connect FPU to HC	B plate using grounding strap			

Page: **28 / 30** Issue: 1.0


Step.	Action	Comments	Task Complete
26.9	Disconnect Cryo-Harness to FPU according to integration procedure ref ILT_INTG_HARN (AD 7)		
26.10	Replace covers on FPU		
26.11	Disconnect MGSE from facility ground		
26.12	Return FPU to G56 clean room		

Page: **29 / 30** Issue: 1.0

Date: 18-Oct-2006


Schedule

The following schedule is based on the pump-down starting on 19th October 2006

Page: **30 / 30** Issue: 1.0

