SPIRE	SPIRE Technical Note	Ref: SPIRE-RAL-DOC-002726 Issue: 1.1
SPIRE System Level Test Plan B. Swinyard		 Date: 28/09/07 Page: 1 of 6

0 Change Note

- 1.0 First issued for SVR2
- 1.1 Include PCAL tests; detector thermal stability and detector microphonics reponse.

1 Scope

This document outlines the tests that will be carried out during and after integration of the SPIRE instrument into the Herschel cryostat. This document is intended as an informational note for the purposes of the Science Verification Review (SVR) to allow the review board to comment on the completeness or otherwise of the planned tests.

2 Organisation of the tests

For the system level tests we follow the test campaign organisation proposal by Alcatel vis.

- EIT-WU - Electrical Integration Test - Warm Units - Electrical Integration Test - Warm Functional Test EIT-WFT - Electrical Integration Test - Short Warm Functional Test **EIT-SWFT** UFT-WU - Unit Functional Test - Warm Units IST-CFT - Integrated System Test - Cold Functional Test - Integrated System Test - Short Cold Functional Test IST-SCFT - Integrated System Test - Special Performance Test IST-SPT - Integrated System Test - Cold Functional Test IST-TV **IST-EMC** - Integrated System Test - Cold Functional Test
- **SVT** System Verification Test

When and where each of these phases are carried is not considered in this document, only the tests that SPIRE is required/wishes to be done.

I have broken the SPIRE tests into four sections:

1. Functional Tests

The standard battery of tests designed to ensure everything is connected and functions as seen during instrument level testing (ILT)

2. Performance Verification Tests

Again a standard set of tests designed to ensure that the basic instrument performance is the same as, or can be extrapolated from, the results from ILT

SPIRE	SPIRE Technical Note	Ref: SPIRE-RAL-DOC-002726 Issue: 1.1
SPIRE System Level Test Plan B. Swinyard		 Date: 28/09/07 Page: 2 of 6

3. Instrument Flight Operations

Tests designed to exercise a subset of the instrument in flight operations to provide standard configurations for thermal verification and System Verification Tests (SVT)

4. Special Engineering Tests

These are tests designed to evaluate the parts of SPIRE's performance within the Herschel environment that cannot be tested during ILT – they include things like response to microphonics; EMC and thermal balance.

There is some overlap between the sections but I hope that organising the document in this way will make it more readable. The order that the tests appear in these sections does not imply any sequence of execution.

3 SPIRE System Level Tests

3.1 Functional

Name of test	Description	Purpose	When carried out
Warm Functional Test	Full checkout of SPIRE functionality whilst	Basic electrical integration. instrument	EIT-WU
	the FPU is warm and either under vacuum or	health check and characterisation at	UFT-WU
	at atmospheric pressure.	warm temperature	EIT-WFT
Cold Functional Test	Full checkout of SPIRE functionality once the	Instrument health check and	EIT-CFT
	FPU is cold and either under vacuum or at	functional characterisation at cold	IST-SPT
	atmospheric pressure.	temperatures	IST-TV
Short Functional Test –	Rapid check of SPIRE functionality to be	Functional check the does not require	EIT-SWFT
warm	carried out at key inspection points during	instrument personnel to support.	IST-SPT
	integration with the FPU warm either under		IST-TV
	vacuum or at atmospheric pressure.		
Short Functional Test –	Rapid check of SPIRE functionality to be	Functional check the does not require	EIT-SCFT
cold	carried out at key inspection points during	instrument personnel to support.	IST-SPT
	test with the FPU cold and at operating		IST-TV
	temperature. Does not require instrument		
	support.		

SPIRE	SPIRE Technical Note	Ref: SPIRE-RAL-DOC-002726 Issue: 1.1
SPIRE System Lev B. Swinyard	vel Test Plan	Date: 28/09/07 Page: 3 of 6

3.2 Performance Verification

Name of test	Description	Purpose	When carried out
Photometer Thermal Control Verification	With the instrument in PHOT STBY the photometer thermal control system will be activated using control parameters established during ILT and previous engineering tests (<i>q.v.</i>)	To verify thermal stabilisation performance.	IST-SPT IST-TV
Photometer bias optimisation	Measurement of the photometer noise performance as a function of bias amplitude and frequency	Verification of ILT results and system level noise performance	IST-SPT
PCAL Photometer Characterisation	PCAL is flashed on and off at increasing current settings up to the maximum levl	Check response of photometer BDAs to PCAL at various settings to compare to ILT	IST-SPT
Spectrometer bias optimisation	Measurement of the spectrometer noise performance as a function of bias amplitude and frequency	Verification of ILT results and system level noise performance	IST-SPT
Spectrometer SCAL check	Set each spectrometer calibration source to nominal operating temperature and take spectrum against ambient background set to close to nominal telescope power	Final verification of SCAL nulling and thermal performance	IST-SPT
PCAL Spectrometer Characterisation	PCAL is flashed on and off at increasing current settings up to the maximum level	Check response of spectrometer BDAs to PCAL at various settings to compare to ILT	IST-SPT

SPIRE	SPIRE Technical Note	Ref: SPIRE-RAL-DOC-002726 Issue: 1.1
SPIRE System Lev B. Swinyard	/el Test Plan	Date: 28/09/07 Page: 4 of 6

3.3 Flight Operations

Name of test	Description	Purpose	When carried out
SPIRE to Ready mode (REDY)	Only temperature sensors are switched on and housekeeping is collected.	Required for transition between modes and is the default mode that	IST-SPT IST-TV
		SPIRE will in when not prime instrument	SVT
Cooler Recycle	Once we have established the correct	This will be the standard cooler	IST-SPT
(CREC)	operating parameters for the cooler we can use an automatic procedure.	recycle procedure for the majority of the IST.	IST-TV SVT
Photometer Standby	Sets the instrument to be ready to go into one	This instrument setting will be used	IST-SPT
(PHOT STBY)	of the photometer observation modes.	many times during IST both in	IST-TV
		transitions between test configurations and as a default condition.	SVT
Photometer Scan Mode	This sets the SPIRE instrument to its nominal	We plan using this mode for thermal	IST-SPT
(POF5)	scan mode AOT configuration.	testing and operations checkout.	IST-TV SVT
Photometer 7-Point	This sets the SPIRE instrument to its nominal	We plan using this mode for thermal	IST-SPT
jiggle/chop with nodding (POF2)	chop and jiggle mode AOT configuration.	testing and operations checkout.	IST-TV SVT
Spectrometer Standby	Sets the instrument to be ready to go into one	This instrument setting will be used	IST-SPT
(SPEC STBY)	of the spectrometer observation modes.	many times during IST both in	IST-TV
		transitions between test configurations	SVT
Spectrometer high	This sets the SPIRE instrument to its	We plan using this mode for thermal	IST-SPT
resolution spectrum	spectrometer mode AOT configuration where	testing and operations checkout	IST-TV
(SOF1)	the SMEC is scanned over its full operating range.		SVT
Cooler Hold time	A full 48 hour cycle of flight like operations is conducted following a cooler recycle under close to flight thermal conditions	Check the cooler hold time performance in flight like environment	IST-TV

SPIRE	SPIRE Technical Note	Ref: SPIRE-RAL-DOC-002726
SPIRE System Lev B. Swinyard	el Test Plan	Date: 28/09/07 Page: 5 of 6

3.4 Special Engineering

Name of test	Description	Purpose	When carried out
Ambient background verification	Loadcurves and calibrator flashes with the cryocover set to a number of different conditions. Carried out for both photometer and spectrometer	We need to test the straylight environment within the cryostat under different loading conditions. This test also checks the BDA temperatures.	IST-SPT IST-TV
Spectrometer mechanism micro vibration test	SPIRE set to spectrometer mode with the SMEC continuously scanning. During the test the S/C reaction wheels are activated and taken through a range of rotation speeds while the SMEC performance is monitored for interference	Final verification of the response of the SMEC to spacecraft induced microphonics	IST-SPT
Photometer detector microphonics test	SPIRE set to PHOT STBY with low ambient background. During the test the S/C reaction wheels are activated and taken through a range of rotation speeds while the detector signals are monitored for interference	Characterisation of the response of the photometer detectors to spacecraft induced microphonics	IST-SPT
Spectrometer detector microphonics test	SPIRE set to SPEC STBY with low ambient background. During the test the S/C reaction wheels are activated and taken through a range of rotation speeds while the detector signals are monitored for interference	Characterisation of the response of the spectrometer detectors to spacecraft induced microphonics	IST-SPT
Photometer thermal stability vs bias	SPIRE set to PHOT STBY with low ambient background and highly stable thermal conditions. Photometer detector bias increased in small steps and transient allowed to die away whilst monitoring signal level.	Characterisation long term thermal time constants of detectors in close to flight thermal conditions.	IST-SPT IST-TV
Photometer EMI Susceptibility Tests	SPIRE set to most sensitive photometer mode.	Completion of formal radiative susceptibility tests as specified by IID- A	IST-EMC

SPIRE	SPIRE Technical Note	Ref: SPIRE-RAL-DOC-002726 Issue: 1.1 Date: 28/09/07
SPIRE System Lev B. Swinyard	vel Test Plan	Page: 6 of 6

Name of test	Description	Purpose	When carried out
Spectrometer EMI Susceptibility Tests	SPIRE set to most sensitive spectrometer mode	Completion of formal radiative susceptibility tests as specified by IID- A	IST-EMC
Spectrometer EMC Tests	SPIRE set to most noisy spectrometer mode	Completion of formal radiative emission tests as specified by IID-A	IST-EMC
PTC Headroom Characterisation	The power on the PTC heater is increased in steps whilst observing the response of the BDA and PTC thermistors.	Determine the required PTC power setting required to enable stable operation of the photometer detectors under ground nominal thermal conditions.	IST-SPT
300mK Decontamination Test	The cooler pump is heated with both heat switches off in order to raise the temperature of the 300 mK stage as high as possible	To test efficiency of heating the 300 mK system using the pump in case it is needed to removed Helium condensed on the detectors.	IST-SPT