

SPIRE PFM

THERMAL PERFORMANCE FLIGHT PREDICTIONS

THERMAL ENGINEERING GROUP					
PREPARED BY	A.S. GOIZEL	(RAL)	08-03-06		
CHECKED BY	J. Fereday	(RAL)	08-03-06		
SPIRE PROJECT					
APPROVED BY	E. SAWYER	(RAL)			

PFM THERMAL PERFORMANCE FLIGHT PREDICTIONS

SPIRE-RAL-NOT-002588 Issue: Issue 1 Date: 08/03/2006 Page: 2 of 23

"Page intentionally left blank"

CHANGE RECORD

Issue	Date	Section	Change
Draft A	06/03/06	-	New Document.
Issue 1	08/03/06	-	First Issue

PFM THERMAL PERFORMANCE FLIGHT PREDICTIONS

ACRONYMS

Acronym	Definition	
AD	Applicable Document	
BDA	Bolometer Detector Arrays	
BSM	Beam Steering Mechanism	
CBB	Cold Black Body	
CQM	Cryogenic Qualification Model	
DRCU	Digital Readout Control Unit	
DTMM	Detailed Thermal Mathematical Model	
EGSE	Electronic Ground Support Equipment	
FM	Flight Model	
FPU	Focal Plane Unit	
FS	Flight Spare	
HCSS	Herschel Common Science System	
Hel	Helium I	
Hell	Helium II	
HOB	Herschel Optical Bench	
l/F	Interface	
IIDB	Instrument Interface Document Part B	
IRD	Instrument Requirement Document	
ILT	Instrument Level Testing	
JFET	Junction Field Effect Transistor	
L0	Level-0	
L1	Level-1	
L2	Level-2	
L3	Level-3	
LN2	Liquid Nitrogen	
MGSE	Mechanical Ground Support Equipment	
PFM	Proto Flight Model	
RD	Reference Document	
SMEC	Spectrometer Mechanism	
SCU	Subsystem Control Unit	
SOB	SPIRE Optical Bench	
SPIRE	Spectral and Photometric Imaging Receiver	
TBT	Thermal Balance Test	

PFM THERMAL PERFORMANCE FLIGHT PREDICTIONS

CONTENTS

1	Intre	oduction	7
	1.1	Scope	7
	1.2 1.2. 1.2.	Documents 1 Applicable Documents 2 Reference Documents	7 7 7
2	Ana	lysis Methodology	8
2	2.1	Background	8
2	2.2 2.2. 2.2.	Methodology1Cooler Thermal Model Validation2Herschel Thermal Environment – Interface Temperatures Predictions	8 8 9
3	Ana	lysis Results	10
:	3.1. 3.1. 3.1. 3.1. 3. 3. 3. 3.1. 3.1.	Cooler Thermal Model Validation1Overview2Cooler Hold Time – Validation3Evaporator Parasitic Loads - Validation1.3.1Kevlar Parasitic Load1.3.2Heat Switch Parasitic Load1.3.3Cooler Total Parasitic Loads4Evaporator Additional 300mK Loads - Validation5Cooler Thermal Model Validation - Conclusions	10 10 11 12 12 12 13 13 13
÷	3.2. 3.2. 3.2. 3.2. 3.2. 3.2. 3.2.	 Herschel Thermal Environment – Interface Temperatures Predictions Overview Evaporator - Temperature of Condensation L1 Temperature L0 Enclosures Temperature HERSCHEL Thermal Environment – Summary 	18 18 18 19 19 21
	3.3 3.3. 3.3.	SPIRE PFM2 Flight Thermal Performance Predictions1Herschel "Goal" Interface Temperatures Predictions2Herschel "Requirement" Interface Temperatures Predictions	22 22 23
4	Con	clusion	23

PFM THERMAL PERFORMANCE FLIGHT PREDICTIONS

LIST OF TABLES

Table 1-1- Applicable Documents	7
Table 1-2 - Reference Documents	7
Table 2-1 – SPIRE Thermal Performance Requirements [AD1]	8
Table 2-2 – Herschel Cryostat Interface Temperatures [AD2]	9
Table 3-1 – SPIRE Cooler Performance Correlation Criteria	11
Table 3-2- Measured versus Predicted Cooler Hold Time for Unit Level Testing	11
Table 3-3 – SPIRE Cooler Model Prediction of Kevlar Parasitic Loads	12
Table 3-4 – Measured Evaporator Heat Switch OFF Conductance at 1.6K	12
Table 3-5 – Evaporator Heat Switch OFF Conductance	13
Table 3-6 – Correlated Cooler TMM Predictions versus Cooler Performances measured at Unit Leve	el 13
Table 3-7 – Cooler Total Load Characterized for the 1.7K/4K Environment during PFM2 ILT	14
Table 3-8 – Cooler Total Load Predictions versus Measured Load during PFM2 ILT	14
Table 3-9 – Cooler Hold Time Performances during PFM2 ILT	14
Table 3-10- Predicted Total Cooler Load based on Measured Hold Time	16
Table 3-11 - Cooler Total Load Predicted from Measured Hold Time and from the Thermal Model	16
Table 3-12 - Predicted Total Cooler Load based on Measured Hold Time	16
Table 3-13 – Predicted Evaporator Temperature of Condensation	18
Table 3-14 - Predicted L1 Interface Temperature	19
Table 3-15 – Temperature Drop between Photometer Enclosure and MGSE Strap Adaptor during	the
CQM2 ILT	19
Table 3-16- SPIRE CQM2 L0 Interbox Strap Conductance Characterisation	20
Table 3-17 – L0 Interbox Strap Temperature Drop to MGSE Adaptor Strap for PFM2	20
Table 3-18 - Predicted L0 Detector Strap Interface Temperature	21
Table 3-19 – Expected Herschel Thermal Interface Temperatures - Summary	21
Table 3-20 – SPIRE Flight Thermal Performance Predictions for the Goals Interface Temperatures	_ 22
Table 3-21 – SPIRE Flight Thermal Performance Predictions for the Requirement Interf	ace
Iemperatures	23

LIST OF FIGURES

Figure 3-1 Cooler Recycling Profile during PFM2 ILT	15
Figure 3-2 – Adsorption Rate as a function of Evaporator and Pump Temperature	15
Figure 3-3 - SPIRE CQM2 L0 Interbox Strap Conductance Characterisation	20

1 INTRODUCTION

1.1 Scope

This technical note presents the results of the SPIRE Proto Flight Model (PFM) thermal flight performances prediction analysis. These predictions have been based on thermal performances measured during the instrument level PFM2 test campaign at RAL on September 2005.

1.2 Documents

1.2.1 Applicable Documents

ID	Title	Number
		SPIRE-RAL-PJR-002075
AD1	SPIRE Thermal Design Requirements	Issue 1
		13/01/06
	CRIRE Instrument Interface Desument Part B (IIDR)	SPIRE-ESA-DOC-000275
AD2	SPIRE Instrument Intenace Document Part B (IIDB)	01-Mar-04
		Issue 3.2

Table 1-1- Applicable Documents

1.2.2 Reference Documents

ID	Title	Number
RD1	SPIRE & PACS Sorption Cooler	HSO-SBT-RP-085 Issue 1
RD2	SPIRE & PACS Sorption Cooler Heat Switch [1-10] Tests Report	13/08/2003 HSO-SBT-RP-107 Issue 1
RD3	SPIRE Sorption Cooler FM1 Tests Report	HSO-SBT-RP-118 Issue 1 15/11/2004
RD4	SPIRE PFM2 Thermal Test Report	SPIRE-RAL-REP-002534 Issue 1 06/03/06
RD5	Adsorption de L'Helium 4 Par le Charbon Actif Colloque International Vide et Froid, SFITV, Grenoble.	P. Roubeau 1969
RD6	PACS Sorption Cooler FM2 Tests Report	HSO-SBT-RP-123 Issue 1 17/08/2005
RD7	Flight L0 Thermal Straps Test Report	Cardiff 15/11/05

Table 1-2 - Reference Documents

2 ANALYSIS METHODOLOGY

2.1 Background

The thermal performances of SPIRE have been measured as part of the PFM2 thermal balance test campaign for a nominal 1.7K/4K thermal environment. In this configuration, the instrument cooler hold time and its detectors absolute temperatures both met their design requirement as described in Table 2.1.

1.7K / 4K Thermal Environment	Requirements [AD1]	Measured during PFM2
Cooler Hold Time	> 46 hr	50 hr 25 m
Detector Temperature	< 310mK	All < 304mK

Table 2-1 -	SPIRE	Thermal	Performance	Requirements	[AD1]
-------------	-------	---------	-------------	--------------	-------

This 1.7K/4K environment corresponds to the "goal" interface temperatures of the Herschel cryostat. The Herschel "requirement" interface temperatures however are different from the "goal" and represent the hottest thermal environment SPIRE is likely to experience during the mission. It is therefore of interest to predict how the SPIRE thermal performances will be affected by this worst case scenario. To this end, a flight performance prediction analysis has been carried out, the methodology used and results obtained will be discussed in the following sections.

2.2 Methodology

2.2.1 Cooler Thermal Model Validation

The instrument cooler hold time performance depends on two important parameters:

- The total operational heat load on the evaporator for a given thermal environment,
- The evaporator temperature of condensation at the start of the cooler cryo-pumping phase.

In order to obtain accurate flight predictions based on these parameters, it is important that the thermal model of the cooler is as accurate and representative as possible of the flight cooler. The first stage of this analysis was therefore to correlate the predicted thermal performances of the cooler thermal model with performances of the cooler measured at unit level and during the PFM2 test campaign.

2.2.2 Herschel Thermal Environment – Interface Temperatures Predictions

Table 2-2 describes the agreed interface temperatures of SPIRE with the Herschel cryostat.

SPIRE	Requirement Interface	Goal Interface	
Thermal Interface	Temperatures	Temperatures	
Level-0 (L0) Detector Box	2 K for 4 mW	1.71K for 1mW	
Level-0 (L0) Cooler Pump	2 K for 2mW	2 K for 2mW	
Level-0 (L0) Cooler Evaporator	1.85K for 15mW	1.75K for 15mW	
Level-1 (L1)	5.5 K for 15mW	3.7K for 15mW	
Level-2 (L2)	12K	12K	
Level-3 (L3) Photometer	15 K for 50mW	15 K for 50mW	
Level-3 (L3) Spectrometer	15 K for 25mW	15 K for 25mW	

Table 2-2 – Herschel Cryostat Interface Temperatures [AD2]

As it can be seen from the table, the Herschel thermal interface temperatures have been defined as a function of SPIRE's operational heat loads. Some of these heat loads have been measured during the PFM2 test campaign at RAL and will be used as an input to this analysis to define the worst case interface temperature that can be expected in flight.

3 ANALYSIS RESULTS

3.1 Cooler Thermal Model Validation

3.1.1 Overview

As part of the cooler thermal model validation, the following activities have been carried out:

• Validation of the assumptions used for the cooler hold time calculations:

Assuming the evaporator total load and temperature of condensation are well known, it is important to ensure that correct assumptions are used to then estimate the cooler hold time. The cooler hold time has been measured in known conditions and for different loads as part of the unit test level. These test results have been used as test cases to verify and validate the approach used to predict the cooler hold time, based on the evaporator total load and temperature of condensation.

• Validation of the cooler thermal model parasitic heat loads:

The cooler parasitic loads have been measured at unit level for two different thermal environments. These test results have been used as test cases to verify and validate the cooler thermal model.

• Validation of the cooler additional 300mK heat loads:

In addition to its own parasitic loads, the cooler is subjected to an additional heat load from the 300-mK subsystem, which consists of five detectors and two busbars suspended from the L0 temperature stage on Kevlar strings. This additional load has been characterised as part of the instrument PFM2 test campaign and will be used to verify and validate the thermal modelling of the 300mK system.

The following uncertainties are applicable to the cooler performances [RD3]:

- The cooler Helium charge has been estimated to be 6.3L at +/-5%,
- A 6.3L helium charge has been assumed for the theoretical predictions,
- When the cooler runs out of helium, there is not sharp temperature rise and thus it will be assumed that the cooler has run out of helium as soon as its evaporator temperature has risen by 1%,
- A +/-3.3% correlation was achieved during the characterisation tests of the flight cooler hold time at unit level.

Based on this, the following observations could be made:

- When comparing the hold time performance predicted by the cooler thermal model with the one measured as part of the instrument level testing, one should expected a similar level of agreement as the one experienced at unit level testing (+/-3.3%).
- This +/-3.3% uncertainty in cooler hold time can be translated into a cooler total load uncertainty of +/- 1uW (based on a 30uW total cooler load which is the current cooler baseline [AD1]).

Table 3-1 summarises the correlation performance criteria which have been used as a reference in the following analyses. Please note also that the correlation factor will be obtained by dividing the performance predicted with the thermal model by the one measured during testing.

	Good Correlation Factor	Comments
Cooler Hold Time [hr]	≤ +/- 3.3%	Similar correlation factor as for the unit level testing.
Cooler Total Load [uW]	≤ +/- 1 uW	Based on a 30uW total cooler load.

Table 3-1 – SPIRE Cooler Performance Correlation Criteria

3.1.2 Cooler Hold Time – Validation

The following parameters are taken into account when estimating the cooler hold time with the thermal model:

- Cooler initial Helium3 charge: 6.3L,
- Evaporator total operational heat load,
- Evaporator temperature of condensation,
- Condensation efficiency based on the evaporator temperature at the end of the condensation phase,
- Cryo-pumping efficiency based on the evaporator temperatures at the end of both the condensation and the cryo-pumping phase,
- Latent heat of evaporation based on the evaporator cold base temperature.

Note: Please note that the pump temperature is assumed to be at 45K to match the test done at cooler unit level.

Table 3-2 describes the cooler hold times measured at unit level for different test cases and the hold time predicted by the thermal model for the same evaporator total load and temperature of condensation.

	Units	Case1	Case2	Case1-2	Case2-2	Case 3
L1 / L0 Thermal Environment	[K]	1.6K / 1.8K			1.7K / 4K	
Evaporator Parasitic Load	[uW]	6.87	6.87	6.87	6.87	11.30
Evaporator Applied Load	[uW]	200.00	30.00	200.00	30.00	10.00
Evaporator Total Load	[uW]	206.87	36.87	206.87	36.87	21.30
Temperature of Evaporator at End of Condensation	[K]	2.15	2.15	2.1	2.1	2.1
Temperature of Pump at End of Condensation	[K]	45	45	45	45	45
Measured Hold Time at Unit Level	[hr]	7.07	39.63	7.08	40.45	69.08
Estimated Hold Time with TMM	[hr]	7.16	38.34	7.30	39.10	67.01
Agreement	[%]	-1.3	3.3	-3.1	3.3	3.0

Table 3-2- Measured versus Predicted Cooler Hold Time for Unit Level Testing

One can see that the model agrees with the measured data to within +/-3% which is an acceptable level of correlation.

3.1.3 Evaporator Parasitic Loads - Validation

3.1.3.1 Kevlar Parasitic Load

The Kevlar contribution to the cooler total parasitic load was measured for the PACS CQM unit [RD1] for a varying L1 thermal environment. The only difference between the PACS and the SPIRE cooler is the diameter of the Kevlar cords. PACS uses a 0.5mm cord diameter versus 0.29mm for SPIRE. Test data from the PACS cooler unit level test have therefore been used to validate the cooler thermal model. Table 3.3 describes the Kevlar parasitic loads predicted by the thermal model for the SPIRE cooler operating in two different L1 environments, 2K and 4K respectively. Based on these predictions, the Kevlar parasitics of the PACS cooler can be determined by applying a 2.97 factor (to replicate the increase in the Kevlar cords cross section from a 0.29mm to a 0.5mm diameter). When compared with the test data from the PACS CQM unit, one can see that the thermal model predictions for the Kevlar parasitics agree with the PACS test data to within 0.2 uW which is an acceptable level of correlation.

Thermal Environment 300mK / L1	SPIRE Kevlar Parasitic Load	PACS Kevlar Parasitic Load
0.28K / 2K	0.32 uW	0.95 uW
0.28K / 4K	1.534uW	4.555 uW
Predicted increase in Kevlar Parasitic Load for L1 varying from 2K to 4K	1.214 uW	3.605 uW
Measured increase in Kevlar Parasitic Load for L1 varying from 2K to 4K	-	3.4 uW
Agreement	-	0.2 uW = + 6 %

Table 3-3 – SPIRE Cooler Model Prediction of Kevlar Parasitic Loads

3.1.3.2 Heat Switch Parasitic Load

The parasitic load from the evaporator heat switch is also another contributor to the cooler total parasitic load. The SPIRE evaporator heat switch OFF conductance was measured at unit level for the flight cooler and for a 1.6K thermal environment as described in Table 3.4 [RD2].

Evaporator Heat Switch OFF Conductance	SPIRE FM	Comments
Applied Heater Load	4.7 uW	-
Measured Temperature Increase	0.833 K	-
OFF Conductance	5.64x10 ⁻⁶ W/K	At 1.6K

Table 3-4 – Measured Evaporator Heat Switch OFF Conductance at 1.6K

This conductance was checked with the thermal model for the evaporator heat switch in OFF state and running at 1.6K.

Table 3-5 describes the predicted conductance versus the measured one and shows that the predicted data is currently underestimated by 27.5%.

Heat Switch Held At 1.6K	OFF Conductance
Measured during FM Unit Level Test	5.64x10 ⁻⁶ W/K
Predicted with Thermal Model	4.09 x10 ⁻⁶ W/K
Agreement	-27.5 %

Table 3-5 – Evaporator Heat Switch OFF Conductance

Based on this, the OFF conductance of the evaporator heat switch has been adjusted by a factor 1.3795 in the thermal model.

3.1.3.3 Cooler Total Parasitic Loads

The SPIRE flight cooler total parasitic loads have been measured at unit level for two thermal environments, 1.6K/1.8K and 1.7K/4K respectively [RD3]. Table 3.6 shows the cooler total parasitic load predicted with the thermal model versus the ones measured at unit level.

L0 / L1	1.6K / 1.8K		1.7K / 4K		Correlation
Thermal Environments	Measured	Predicted	Measured	Predicted	Factor
L1 Kevlar Parasitic [uW]	-	0.24	-	1.534	1
Shunt Parasitic [uW]	-	4.906	-	5.738	1.3795
Heat Switch [uW]	-	3.472	-	4.061	0.8
Total Parasitic [uW]	6.9	8.618	11.3	11.33	-
Agreement	+ 24.9%		+ 0.3%		-

Table 3-6 – Correlated Cooler TMM Predictions versus Cooler Performances measured at Unit Level

Note: A 1.3795 correlation factor was applied on the evaporator heat switch OFF conductance in order to match the unit level test result (see previous section). No test data were available to cross check the parasitic load from the shunt titanium tube. A 0.8 factor was applied to the shunt tube conductance to match the total parasitic load measured at unit level for the 1.7K/4K test case.

Table 3-6 shows that while the correlated model is in good agreement with the measured performances for the 1.7K/4K environment, higher discrepancies have been noted for the 1.6K/1.8K case. These are probably linked to higher uncertainties in the data used for the titanium thermal conductivity for the 0.2K-0.3K range i.e. the titanium thermal conductivity has been assumed constant within this range.

Note: Lionel Duband's theoretical model predicted a total parasitic load of 8.5uW for the 1.6K/1.8K test case [RD3]. This value is within 1.3% of the data predicted by the thermal model and therefore in good agreement again despite the discrepancy with the actual measured value.

3.1.4 Evaporator Additional 300mK Loads - Validation

The cooler total load consists of the evaporator own parasitic loads plus the load coming from the 300mK subsystem (five detectors and two busbars). The cooler total load has been characterised as

part of the PFM2 ILT test campaign (using the pump characterisation test) for the 1.7K/4K thermal environment [RD5]. Results from the pump test are summarised in Table 3.7.

Thermal Environment	Parameters	Comments
Shunt/Evaporator L0 Interface	1.701K	-
L0 Photometer Enclosure Strap Interface	1.715K	-
L0 Spectrometer Enclosure Strap Interface	1.711K	-
L1 Enclosure	4.375K	4.275K at the L1 Thermal Interface plus 0.1K to the cooler L1 enclosure.
Pump Characterisation Test	Parameters	Comments
Pump Temperature	1.868 K	-
Estimated Pump Adsorption Load (Qads)	~ 1.21mW	Qads = (1.868-1.73) x 8.78
Estimated Total Evaporator Load	26.9uW	Using a 45 amplification factor [RD3]

Table 3-7 – Cooler Total Load Characterized for the 1.7K/4K Environment during PFM2 ILT

A comparison of the measured cooler total heat load and the one predicted with the cooler thermal model is given in Table 3-8.

L0 / L1	1.7	(/ 4K
Thermal Environment	Measured	Predicted
Photometer 300mK System [uW]	-	12.53
Spectrometer 300mK System [uW]	-	5.07
L1 Kevlar Parasitic [uW]	-	1.89
Shunt Parasitic [uW]	-	5.76
Heat Switch Parasitic [uW]	-	4.08
Total Cooler Load [uW]	26.9	29.33
Agreement	+	9%

Table 3-8 – Cooler Total Load Predictions versus Measured Load during PFM2 ILT

A 9% agreement on the cooler total load was not satisfactory so further analysis was carried out to try understand where this discrepancy might be coming from. The first step was to verify that the measured cooler total load was sensible for the measured cooler hold time. Table 3.9 summarises the parameters applicable to the measured cooler hold time and Figure 3-1 describes the cooler temperature profiles during the recycling.

	Parameters	Comments
Evaporator Temperature at end of condensation	1.86K / 2.1K	Here a range is given because of uncertainties in the test setup.
Pump temperature at end of condensation	41.6K	Versus 45K at Unit Level
Measured Hold Time	50 hr 25 min	-
Cooler Cold Base Temperature	288.5mK	-

Table 3-9 – Cooler Hold Time Performances during PFM2 ILT

PFM THERMAL PERFORMANCE FLIGHT PREDICTIONS

SPIRE-RAL-NOT-002588 Issue: Issue 1 Date: 08/03/2006 Page: 15 of 23

Figure 3-1 Cooler Recycling Profile during PFM2 ILT

The L0 interface temperature of the calibration cryostat was slightly varying during the cooler recycling and the pump temperature had been left unregulated. In order to define which temperature the evaporator was at the end of the condensation phase, the cooler adsorption curve was plotted as a function of the pump and evaporator temperatures for the end of the condensation period, as described in Figure 3-2 [RD5].

Figure 3-2 – Adsorption Rate as a function of Evaporator and Pump Temperature

One can see that the adsorption Q is still decreasing after 17:35, meaning the evaporator was still condensing. From 17:39 however, Q stabilises and the temperature of the evaporator at that time was used as the temperature of end of condensation \sim 1.89K. Using this parameter, the expected load on

the cooler for the measured hold time could be checked as described in Table 3-10. This analysis shows that there is also a mismatch between the cooler total load calculated from the "pump characterisation test" and the total load expected based on the measured hold time and recycling conditions.

Hold Time [hr]	50.42
Temperature of Condensation [K]	1.89
Expected Total Evaporator Load [uW]	30.65
Measured Total Evaporator Load [uW]	26.9
Agreement	+ 13.9%

Table 3-10- Predicted Total Cooler Load based on Measured Hold Time

Overall it appears that the cooler total load when calculated based on the pump characterisation test is underestimated by 9% to 14%. This means that new ways of assessing the cooler total load should be considered for the PFM3 ILT test campaign. When comparing the cooler total load predicted from the measured hold time with the one predicted with the thermal model (Table 3-11), a better agreement was found, with the thermal model currently under-estimating the cooler total load by 1.32uW.

Total	Evaporator	Load	Expected	30.65 uW
based	on Measured	d hold ti	ime	
Total	Evaporator	Load	Predicted	29.33 uW
with TI	hermal Mode	I		
Agree	ment			- 4.3%

Table 3-11 - Cooler Total Load Predicted from Measured Hold Time and from the Thermal Model

As mentioned previously, the pump was unregulated during the cooler recycling and its temperature had reached 41.6K when the cryo-pumping phase started (versus 45K during all tests at unit level). Some testing with the PACS FM cooler suggested that there is a 1%/1K relation between the cooler hold time and the temperature of the pump during recycling i.e. a reduction of 1K in the pump temperature from 45K reduces the cooler hold time by 1% [RD6]. With this in mind, the cooler total load predicted from the measured hold time was adjusted to account for the fact that the pump was not at 45K and compared again with the one predicted with the thermal model, as described in Table 3-12.

Measured Hold Time	[hr]	50.42
Pump Temperature at End of	[K]	41.6K
Condensation Phase		
Expected Reduction of Hold Time	[%]	3.4K
		=> 3.4%
Predicted Hold Time with Pump	[hr]	52.19
at 45K		
Temperature of Condensation	[K]	1.89
Expected Cooler Total Load	[uW]	29.62
based on effective hold time.		
Predicted Cooler Total Load with	[uW]	29.33
Thermal Model.		
Agreement	[%]	- 1%

Table 3-12 - Predicted Total Cooler Load based on Measured Hold Time

This analysis suggests that the expected total cooler load (based on the hold time measured during the PFM2 test campaign) is in good agreement with the load predicted by the thermal model for a similar thermal environment.

3.1.5 Cooler Thermal Model Validation - Conclusions

It was demonstrated in the previous sections that:

- The cooler parasitic loads predicted by the thermal model are in good agreement with the cooler performances measured at unit level,
- The additional 300mK heat load predicted by the thermal model is also in good agreement with test data from the ILT PFM2 test campaign,
- The pump characterisation test appears to underestimate the cooler total load by 9% and a new way of assessing the cooler total load should be considered for the PFM3 ILT test campaign.

This analysis completes the validation of the cooler thermal model.

3.2 Herschel Thermal Environment – Interface Temperatures Predictions

3.2.1 Overview

As mentioned in section 2.2.2, the Herschel interface temperatures during the mission will depend on SPIRE owns operational heat loads. Some of these loads have been characterised as part of the ILT PFM2 test campaign and will be used to define the worst case thermal environment the instrument is likely to experience during the mission. As the evaporator temperature of condensation, the L1 and L0 temperature stages of the instrument are the main drivers for the cooler hold time, they will be investigated in more details in the following sections.

3.2.2 Evaporator - Temperature of Condensation

The evaporator temperature of condensation during recycling is driven by the following parameters:

- Herschel L0 Evaporator interface temperature,
- Temperature drop along the SPIRE L0 evaporator strap,
- Temperature drop internal to the cooler.

The heat load flowing on the instrument evaporator strap at the end of the condensation phase has been measured during unit test level with the flight cooler and is about 15mW. For this heat load, the worst case interface temperature agreed at the Herschel L0 evaporator interface is 1.85K (1.75K as a goal).

The conductance of the SPIRE L0 evaporator strap has been measured at unit level and is about 0.125W/K at 1.7K [RD7]. It is important to note that this measurement includes the spacecraft interface but not the evaporator heat switch interface. According to the Herschel Thermal Model (Issue 4), the spacecraft interface conductance should be \sim 2.4W/K at 1.7K. This means that the evaporator strap conductance (excluding interface at heat switch) should be \sim 0.132W/K at 1.7K. This leads to a 0.114K temperature drop along the strap for a 15mW heat load.

Finally, the temperature drop internal to the cooler (and including the interface conductance at the evaporator heat switch) has been measured during the CQM2 test campaign and is ~0.23K at 1.7K.

Table 3-13 summarises the range of temperatures that can be expected at the evaporator towards the end of a recycling condensation phase during the mission:

	Requirement / Goal
Herschel L0 Evaporator Interface Temperature	1.85K / 1.75K
Temperature Drop along L0 Evaporator strap	0.114K
Temperature Drop Internal to Cooler	0.23K
Temperature of Evaporator at end of condensation	2.2K / 2.1K

Table 3-13 – Predicted Evaporator Temperature of Condensation

3.2.3 L1 Temperature

As described in Table 2-2, the L1 interface temperature will be about 5.5K for a 15mW operational load (3.7K as a goal). The Instrument L1 heat load has been characterised during the PFM2 test campaign and further correlation with the thermal model is required to define the parasitic load through the L1 supports. A recent change in the material of one of these supports will also have to be evaluated as part of the PFM3 ILT test campaign. In addition, the SPIRE L1 operational load is also highly dependent on others parameters such as:

- The thermal environment in the Herschel cryostat (HOB temperature and radiation load),
- The parasitic load from the Herschel housekeeping cryo-harness.

For the purpose of this study, it is assumed that the SPIRE L1 operational heat load is equal to the required 15mW. Based on this, Table 3-14 summarises the thermal interface temperatures that can be expected during the mission.

	Requirement / Goal
Herschel L1 Interface Temperature	5.5K / 3.7K

Table 3-14 - Pro	edicted L1	Interface	Temperature
------------------	------------	-----------	-------------

3.2.4 L0 Enclosures Temperature

As described in Table 2-2, the temperature at the Herschel L0 Detector interface has been defined for a given instrument operational heat load at this interface. This heat load has been characterised under various conditions as part of the CQM2 and PFM2 test campaign. A summary of the method used to estimate this load is presented hereafter.

The interbox strap conductance was characterised during the ILT CQM2 test campaign using an EGSE heater on the L0 photometer enclosure. This test could not be repeated during the PFM2 test campaign as the EGSE heater failed during cool down. The test from the CQM2 test campaign will therefore be used as an input to this analysis. The temperature drop between the temperature sensor on the L0 photometer box (at the interbox strap interface) and the sensor on the MGSE L0 enclosure strap (on the adaptor) was monitored for different heater power dissipation as described in Table 3-15.

Heater Dissipation	0mW	5 mW	10mW
Temperature at the Photometer Box (at Strap IF)	1.764K	1.938K	2.100K
Temperature at the L0 MGSE Detector Strap (on Adaptor)	1.728K	1.799K	1.869K
Temperature Gradient	0.0359K	0.1395K	0.231K

Table 3-15 – Temperature Drop between Photometer Enclosure and MGSE Strap Adaptor during the CQM2 ILT

Table 3-16 and Figure 3-3 on the following page describe the characterisation of the L0 interbox strap conductance using a linear curve fit through the test data presented in Table 3-15.

PFM THEF	MAL PERFOR	MANCE FLIGH	F PREDICTIONS

Average Temperature	Qh [mW]	Delta [K]	G [mW/K]
1.746	0	0.0359	54.5
1.868	4.865	0.1395	48.3
1.985	9.9	0.231	50.6

Table 3-16- SPIRE CQM2 L0 Interbox Strap Conductance Characterisation

Figure 3-3 - SPIRE CQM2 L0 Interbox Strap Conductance Characterisation

The interbox strap for the PFM2 model has been made from the same batch of material as for the CQM2 and the temperature sensors have been fitted at the same locations. The temperature drop between the photometer enclosure and the L0 strap adaptor has therefore been measured again as part of the PFM2 test campaign as described in Table 3-17.

Temperature at the Photometer Box (at Strap IF)	1.715K
Temperature at the L0 MGSE Detector Strap (on Adaptor)	1.707K
Temperature Gradient	0.008K

Table 3-17 – L0 Interbox Strap Temperature Drop to MGSE Adaptor Strap for PFM2

The worst case L0 interbox strap conductance estimated from the CQM2 characterisation test was used to estimate the heat load flowing on the L0 detector strap:

0.008K x 0.055W/K = 0.44mW for a 1.7K/4.3K thermal environment

In addition, an additional heat load of 0.241mW has been predicted with the thermal model coming from the L0 detector strap own Torlon supports off the L1 temperature stage. A total of 0.68mW is therefore currently predicted at the L0 detector strap interface for a 1.7K/4.3K thermal environment. For a L1

interface temperature of 5.5K, this load would increase by a factor 1.462 ([5.5-1.7] / [4.3-1.7]), leading to an overall heat load of 0.994 mW at the L0 detector strap interface for a 1.7K/5.5K thermal environment.

For the purpose of this study, it is assumed that the SPIRE L0 detector strap operational heat load will be equal to 1mW for the worst case thermal environment. Based on this, Table 3-16 summarises the thermal interface temperatures that can be expected during the mission at the SPIRE L0 detector strap interface.

	Requirement	Goal
Interface Definition in IIDB	2K for 4mW with Hell Base Temperature of 1.7K	1.71K for 1mW with Hell Base Temperature of 1.7K
Herschel L0 Detector Strap Interface Temperature	1.775K	1.71K

Table 3-18 - Predicted L0 Detector Strap Interface Temperature

3.2.5 HERSCHEL Thermal Environment – Summary

Table 3-19 summarises the interface temperatures which should be used in order to predict SPIRE flight thermal performances.

	Requirements	Goals
L0 Evaporator Interface Temperature	1.75K	1.85K
Expected Evaporator Temperature at the end of condensation phase	2.2K	2.1K
L0 Detector Interface Temperature [*]	1.775K	1.71K
Expected L0 spectrometer Enclosure Strap Interface Temperature	1.787K	1.718K
Expected L0 Photometer Enclosure Strap Interface Temperature	1.795K	1.722K
L1 Temperature [**]	5.5K	3.7K

Table 3-19 – Expected Herschel Thermal Interface Temperatures - Summary

[*] This interface temperature was transformed into an interface temperature at each L0 enclosures based on the 1mW maximum heat load and on the measured L0 Detector strap performance (0.26W/K at 1.7K excluding the interface at the spectrometer enclosure [RD7]).

[**] A maximum 0.1K temperature gradient has been measured between the cooler L1 enclosure and the L1 thermal interface. This has been accounted for in the analysis.

3.3 SPIRE PFM2 Flight Thermal Performance Predictions

3.3.1 Herschel "Goal" Interface Temperatures Predictions

Table 3-20 summarises the predicted thermal performance of SPIRE from the test data measured during the ILT PFM2 test campaign to the expected interface temperatures based on the IIDB goal interface temperatures.

	PFM2	Case 1	Case 2	Case 3	Goals
Pump Temperature at the end of condensation	41.6K	41.6K	45K	45K	45K
Evaporator Temperature at the end of condensation	1.89K	2.1K	2.1K	2.1K	2.1K
L0 Enclosures Interface	1.702K	1.702K	1.702K	1.710K	1.710K
Temperature Cryostat					
L0 Detector Strap Adaptor	1.707K	1.707K	1.707K	1.714K	1.714K
Temperature at the Spectrometer Box (at Strap IF)	1.711K	1.711K	1.711K	1.718K	1.718K
Temperature at the Photometer Box (at Strap IF)	1.715K	1.715K	1.715K	1.722K	1.722K
L1 I/F Temperature	4.275K	4.275K	4.275K	4.275K	3.7K
Delta T between TSOB and Cooler L1 enclosure	0.1K	0.1K	0.1K	0.1K	0.1K
Cooler L1 Enclosure	4.375K	4.375K	4.375K	4.375K	3.8K
Total Cooler Load	29.32uW	29.32uW	29.32uW	29.59uW	29 uW
Cooler Hold Time	50.92 hr	47.49 hr	49.16 hr	48.72 hr	49.71 hr

Table 3-20 – SPIRE Flight Thermal Performance Predictions for the Goals Interface Temperatures

3.3.2 Herschel "Requirement" Interface Temperatures Predictions

Table 3-21 summarises the predicted thermal performance of SPIRE from the goal predicted performances to the expected interface temperatures based on the IIDB requirement interface temperatures.

	Case 4	Case 5	Requirements
Pump Temperature at the end of condensation	45K	45K	45K
Evaporator Temperature at the end of condensation	2.2K	2.2K	2.2K
L0 Enclosures Interface	1.710K	1.710K	1.775K
Temperature Cryostat			
L0 Detector Strap Adaptor	1.714K	1.714K	1.779K
Temperature at the Spectrometer Box (at Strap IF)	1.718K	1.722K	1.787K
Temperature at the Photometer Box (at Strap IF)	1.722K	1.730K	1.795K
L1 I/F Temperature	4.275K	5.5K	5.5K
Delta T between TSOB and Cooler L1 enclosure	0.1K	0.1K	0.1K
Cooler L1 Enclosure	4.375K	5.6K	5.6K
Total Cooler Load	29.59uW	31.43uW	32.85uW
Cooler Hold Time	46.81 hr	44 hr	42.16 hr

Table 3-21 – SPIRE Flight Thermal Performance Predictions for the Requirement Interface Temperatures

4 CONCLUSION

This analysis shows that:

- SPIRE currently meets its 46hr hold time requirement in the Herschel "goal" thermal environment and even exceeds it by 3.71 hr.
- SPIRE does not currently meet its 46hr hold time requirement in the Herschel "requirement" thermal environment and is short of 3.84 hr.

It is important to note that:

- This analysis assumes that the SPIRE L1 operational heat load will not exceed 15mW. This will be confirmed by correlation of the PFM3 test campaign results with the thermal model.
- Any additional load from the Photometer Thermal Control (PTC) has not been accounted for.