

SPIRE Technical Report

SPIRE EQM EMC Test Report Doug Griffin

Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim Date: 20 Jan 2006 Page: 1 of 66

Table of Contents

Change Log	2
1. Scope	3
2. Reference Documents	3
3. Channels monitored during testing	3
4. Nominal detector parameters	3
5. Susceptibility Threshold	4
6. Test uncertainties	4
7. Data analysis and reduction	5
7.1 Analysis of Sweep Survey Tests	5
7.2 Analysis of Spot Tests	6
7.2.1 Direct detector heating	7
7.2.2 Broadband EMI	9
7.2.3 Simultaneous Direct detector heating and broad band noise estimation	10
8. H-Field Testing	12
8.1 H-Field Sweeps	12
8.1.1 Sweep 1 (30Hz-50kHz): 0xB0000018	12
8.1.2 Sweep 2 (30Hz-50kHz): 0xB000001C	13
8.1.3 Sweep 3 (30Hz-50kHz): 0xB000002B	19
8.2 H-Field Spot Frequency Tests	20
8.2.1 H-Field Spots (Full field strength): 0xB000002F	20
8.2.2 Step 2 – 247Hz Full Field Strength	23
8.2.3 Step 3 – 260Hz Full Field Strength	28
9. E-Field 14kHz-30MHz Band	33
9.1 Upper Antenna Position	33
9.2 Lower Antenna Position	33
10. E-Field 30MHz-1GHz Band	33
10.1 Upper Antenna Position	33
10.1.1 Vertical Polarization	34
10.1.2 Horizontal Polarization	35
10.2 Lower Antenna Position	35
10.2.1 Vertical Polarization	36
10.2.1.1 Sweep 1 (30MHz – 1GHz): 0xB0000038	36
10.2.2 Horizontal Polarization	39
11. E-Field 1GHz-18GHz Band	39
11.1 Upper Antenna Position	39
11.1.1 Vertical Polarization	40
11.1.2 Horizontal Polarization	41
11.2 Lower Antenna Position	41
11.2.1 Vertical Polarization	42
11.2.2 Horizontal Polarization	43
12. E-Field Spots (Susceptibility threshold): 0xB000051	53
13. E-Field Spots 0xB00005E	55
14. E-Field Spots 0xB000062	57
15. E-Field Spots 0xB000066	57
16. E-Field Spots 0xB000073	57
17. E-Field Spots 0xB000077	58
18. E-Field Spots 0xB000095	61
19. E-Field Spots 0xB000099	61
20. E-Field Spots 0xB00009D	62
21. E-Field Sweep 1GHz - 6GHz, Vertical Polarization, Antenna loc ⁿ 1 (0xB0000B7)	62
22. E-Field Spots 1GHz - 6GHz, V and H Polarizations, Antenna loc ⁿ 1 (0xB0000BA)	62

23.	E-Field Sweep 1GHz - 6GHz, Horizontal Polarization, Antenna loc ⁿ 1 (0xB0000BE)	. 62
24.	E-Field Sweep 1GHz - 6GHz, Horizontal Polarization, Antenna loc ⁿ 1 (0xB0000C2)	62
25.	E-Field Spots 1GHz - 6GHz, V and H Polarizations, Antenna loc ⁿ 1 (0xB0000C6)	62
26.	E-Field Sweep 1GHz - 6GHz, Vertical Polarization, Antenna loc ⁿ 1 (0xB0000??)	. 62
26	6.1 Example of the sweep continuation test-sheet	. 63
~=		~ -

Change Log

Date	Issue	Change
Tuesday, 06 December 2005	0.1	Initial drafting of document after the completion of the
		first phase of EMC testing

Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim Date: 20 Jan 2006 Page: 3 of 66

1. Scope

This document reports and documents the RS susceptibility tests carried out at Astrium OTN on the SPIRE CQM instrument during the period 28-Nov-2005 to 2-Dec-2005 as well as the supplementary tests carried out during the period 12-Dec-2005 through 14-Dec-2005.

2. Reference Documents

RD1: 'PLM EQM EMC Test Procedure, HP-2-ASED-PR-0033, dated 21.09.05 RD2: "SPIRE EQM EMC Test Procedure" SPIRE-RAL-PRC-002545, Issue: 2.0 pre-release

3. Channels monitored during testing

It was envisaged that R1 could be used as a diagnostic, to differentiate between EMI currents injected across the detector and noise pickup within the DRCU.. This was not possible as R1 is listed as open circuit in the EIDP.

4. Nominal detector parameters

Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim Date: 20 Jan 2006 Page: 4 of 66

Bias frequency: 130Hz Bias amplitude: 16.47mV (0x60) Sampling frequency: 43.26Hz Demodulation phase: 168 (0x119) Vss = -1.49V (0x76)

5. Susceptibility Threshold

The derivation of the susceptibility criteria for SPIRE is contained in RD-2. In Summary, the noise budget for SPIRE is contained in the BDA Sub-system Specification Document where the contribution to the overall noise figure for the detectors is to be less than $5nV/\sqrt{Hz}$ over the signal band (up to ~5Hz). No distinction is made between the noise contribution from direct coupling of EMI into the detectors causing heating and EMI coupling into the warm electronics. The simplifying assumption is therefore made that the total noise (rms) from both contributions must be arithmetically summed.

6. Test uncertainties

The following factors are enumerated that degrade the confidence in the results of the EMC testing. No attempt is made in this document to rank their severity. It is also noted that many of these issues were known and judged to be an acceptable risk during the planning of the test campaign.

- The Warm Electronics is not flight representative, in particular:
 - The DRCU is not form and fit compliant with flight
 - The PSU is not present and the DRCU is powered by a bench power supply connected to the mains
 - Many boards are missing from the DRCU
 - Extra SPIRE harnesses were present (mechanisms test harness and detector bias isolation harness)
- Only the PLW detector chain is implemented. The PSW, PMW, SSW and SLW detector chains are not implemented
 - Only a subset of the SPIRE cryoharness was implemented
- The test was not carried out in an anechoic EMC test facility
- Various items of EGSE (e.g. CCS harnesses) and MGSE (e.g. cryogen pumping ports, cryostat dolly) were present.
- There were several NCRs on the cryoharness manufacture (which were given the disposition use-as-is for the EQM programme)
- There are several (TBD) differences, not covered by the cryoharness NCRs, between the implementation of the EQM cryoharness and the PFM cryoharness
- The detector sampling rate was set to a higher rate than
- The susceptibility of the detectors in flight will depend on both the as-delivered performance of the detector and various environmental variables; in particular the "bath" temperature of the detectors, the photon background, the optimum detector bias level etc. Improvement in these factors between the EQM (i.e. CQM) and the PFM will increase the susceptibility of the detector chain.

Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim Date: 20 Jan 2006 Page: 5 of 66

7. Data analysis and reduction

As outlined in the SPIRE EMC test procedure, there are two basic test methods for EMC testing. The first, is a frequency sweep to carry out a low sensitivity survey of potential susceptibilities within a defined spectral range. The second is a follow up, higher sensitivity test of the susceptibility at spot frequencies identified either in the sweep survey or alternatively in the spacecraft frequency plan.

In order to experimentally differentiate between extraneous signal/noise sources from temperature drifts in the cryostat and/or changes in the ambient stray-light within the cryostat, the EMI source was duty-cycle modulated at 1Hz. The extraneous detector noise sources (temperature and stray-light) are confined to the very low portion of the frequency spectrum (below say 100mHz). Duty cycling the EMI disturbance at 1Hz shifts any pickup out of the very low frequency portion of the spectrum.

7.1 Analysis of Sweep Survey Tests

Parameter	Description
T_{dwell}	The dwell time for each step in the frequency sweep; typically no more than several
	seconds.
Fo	The starting frequency for the sweep
Fn	The last frequency in the sweep
n	The number of steps in the sweep (minus one!)
A	The log-linear frequency step according to: $f_i = f_0 A^i$
t _{on}	time that the signal is switched on during each cycle. In all cases this was 860ms
t _{off}	time that the signal is switched off during each cycle. In all cases this was 140ms
	yielding a repetition frequency of 1/(860 + 140)ms = 1Hz

The test parameters used to generate the spectral and temporal content of the EMI test signal were as follows:

Table 1 – Test parameters for the EMI frequency during the sweep

Prior to the commencement of each sweep, a quiescent reference case was generated over a period of 180sec. The data was time tagged in the telemetry with Step==1. This data was extracted from the database and converted to fits format and then broken down into a series of data segments (of length 2 seconds). The rms noise of the signal was calculated for each of these segments and then the average rms noise over the 180 second period was calculated. This was done by taking the arithmetic average of the noise calculated in each segment. This technique effectively limits the spectral content of the measured noise to be greater than ~ 0.5 Hz and thereby removes any spurious signal modulation observed during the generation of the quiescent reference case data. This was repeated for all 48 detector channels in the PLW array.

During the sweep, the telemetry was time tagged with Step==2. The rms signal noise is calculated at a range of time steps in the sweep using an analogous method to that used in the calculation of the noise in the quiescent reference case. The actual average (log-linear) frequency sweep rate was calculated from the duration of the sweep and the start and ending frequencies. This was then used to relate the time from the start of the sweep to the injection frequency at that particular time.

Two data sets are generated for each sweep. The first is the absolute rms noise for each channel of PLW array vs. frequency. The second set is the increase in rms noise under the test from the quiescent noise figures.

EMI couples into the instrument in two coupling paths; (a) EMI directly injected into the front-end electronics and (b) EMI currents injected into the cryogenic detector circuit giving rise to bolometer heating. As the data analysis technique used during the sweep does retrieve any spectral information from the detector noise data, it is not possible to differentiate between the two sources, and thus the results are not used to make any conclusions about susceptibility thresholds or coupling mechanisms. They can be used, however in a semi-quantitative manner to make conclusions about the relative strengths of any susceptibilities found.

7.2 Analysis of Spot Tests

The spot tests described in RD 2 are used to follow up on the survey and the spacecraft frequency plan to evaluate in more detail the susceptibility of the instrument to EMI. The spot tests are carried out by generating quiescent reference data for each channel of the detector and then comparing these with noise data from the instrument integrated over a period (typically 180s) when the EMI disturbance is switched on.

The technique of duty-cycle modulation of the disturbance at 1Hz in order to shift the EMI pickup in the instrument away from the frequencies where the thermal/stray-light noise sources are located was adopted during the spot frequency tests.

The intention of the spot tests is to obtain a *quantitative* measure of the susceptibility threshold under the particular test conditions seen during the EQM EMC testing. In doing this, it is important to distinguish between the contributions from direct detector heating from EMI coupling into the other parts of the detector chain. These are treated separately below:

Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim Date: 20 Jan 2006 Page: 7 of 66

7.2.1 Direct detector heating

Under the (hypothetical) conditions of an EMC test where there is no detector noise and 0.5uV equivalent heating of the detector, the output from the detector will be as illustrated in Figure 1. When the EMI source is switched on, the detector will heat and the output will fall by 0.5uV. When the source is switched off, the detector output will return to the quiescent level. The time constant of the detector is in the order of several 10^{-3} s, so the signal when sampled at 43.26Hz will closely resemble a perfect square wave. The rms amplitude of a square wave duty cycled at 86% is 0.182uV. There is thus, a factor of 0.5uV/0.182uV=2.75 between the rms voltage seen in the test conditions when the disturbance is modulated and the magnitude of the voltage due to detector heating.

Figure 1 – See text for description.

Fourier analysis can be used to show that this signal is the sum of sinusoids at f=1Hz and every harmonic above this. The theoretical bandwidth of each of the Fourier components is zero and the amplitude of the components decrease with increasing frequency. When a FFT algorithm is applied to the signal illustrated in Figure 1, it can be seen that spectral leakage causes there to be a finite bandwidth to the components of the signal at the primary frequency and its' harmonics (See Figure 2). Aliasing of frequencies above the Nyquist frequencies introduces an amplitude distortion of the computed spectra.

This spectra can be used to calculate a precise value of the rms of the signal by converting the spectral density at each frequency to power spectral density and computing the square root of the sum of squares. However a quick estimate of the rms of the signal can be made by summing only the frequency bins in a narrow band around 1Hz and the first few harmonics. For example, if the rms signal amplitude is estimated by summing the frequency bins within 0.15Hz of 1Hz and the

Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim Date: 20 Jan 2006 Page: 8 of 66

SPIRE EQM EMC Test Report Doug Griffin

harmonics up to 5Hz (i.e. the 3dB point of the SPIRE low-pass filters) contains 94% of the signal content. Thus a quantitative estimate of the amplitude of the detector heating can be estimated by summing a small number of the frequency bins.

Figure 2 – Spectra of the data in Figure 1 computed by an FFT algorithm. The data was converted into seven segments of 1024 points and averaged. The DC offset and very low frequency components of the signal were removed by subtracting a least square first order polynomial from the data.

7.2.2 Broadband EMI

The amplitude of the EMI being injected into the detector signal (without being injected as EMI currents in the bolometer) can be calculated by computing the spectral density of the signal as outlined above. The rms amplitude of the noise can also be calculated by taking the square root of the sum of squares of the power spectral density. As the instrument is irradiated with an 86% duty cycle, the noise measured under test need to be scaled by:

 $noise_{rms|EMI} = noise_{rms|quiescent} + \frac{(noise_{rms|EMI|measured} - noise_{rms|quiescent})}{86\%}$

To validate the data processing procedure, a uniform $30nV/\sqrt{Hz}$ white noise source and a $60nV/\sqrt{Hz}$ source, duty cycled at 86% were analysed (see Figure 3). The calculated spectral density of the modulated signal was $56.5nV/\sqrt{Hz}$, which agrees closely with the theoretical figure.

Figure 3 – Spectral content of a 30nV/√Hz white noise source and of a 60nV/√Hz source duty cycled at 86%, 1Hz.

Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim Date: 20 Jan 2006 Page: 10 of 66

7.2.3 Simultaneous Direct detector heating and broad band noise estimation

It is required that both the direct heating component and broad band EMI noise estimates be made simultaneously. As can be seen from Figure 2, outside the narrow band around 1Hz and the first few harmonics, the calculated spectral density of a strong detector heating noise source modulated at 86%, 1Hz is 20 to 40dB lower than the peak.

Under the condition that the noise spectral density of any direct detector heating is sufficiently higher than the noise level between the 1Hz harmonics, the amplitude of the signal resulting from the EMI currents heating the detector can be estimated by taking the difference between the rms amplitude of the detector signal under test and under quiescent conditions as per §7.2.1.

When the amplitude of any direct heating EMI falls below the noise floor under test, then the estimation of the direct heating becomes unreliable due to the numerical ill conditioned nature of the problem.

The estimate of the broad band noise can be made by subtracting the noise spectral density of the direct heating component of the noise outside the band close to the 1Hz harmonics from the noise measured under test in this band, then subtracting the quiescent noise in this band and then correcting for the 86% duty cycle.

When the amplitude of the direct heating EMI is much larger than the broad band noise, then the estimation of the noise according to this method becomes unreliable due to the ill conditioned nature of the problem.

Figure 4 illustrates many of these concepts. In the narrow band around 1Hz and the harmonics, the composite spectra of the 5uV 'Direct Heating' noise source and the $60nV/\sqrt{Hz}$ white noise source closely matches the spectra of a 5uV 'Direct Heating' noise source and can thus be used to make a good estimate of the level of direct bolometer heating. Outside of these narrow bands, the composite spectra closely resembles the spectra of a $60nV/\sqrt{Hz}$ noise source, and can be used with the appropriate corrections to estimate the increase in the broad band noise.

SPIRE Technical Report

SPIRE EQM EMC Test Report Doug Griffin

Figure 4 – See text for description

The lock-in amplifiers used to readout the SPIRE photometer detectors is low pass filtered with $f_c(-3dB) = 5Hz$ and an attenuation above this of -12dB/oct. For the purpose of the analysis, it is assumed that the filter has a flat response between 0 and 5Hz and has zero pass above this. Thus, only the information in the signal below 5Hz is used to estimate the noise figures.

The code written to process the data analyses the data in the following way:

- 1. The house keeping fits file for the test is scanned to determine the start and end times for each step.
- 2. The data within these two times is extracted from the detector fits file. For each detector, the noise spectral density is calculated along with the estimates of the total rms noise, the rms noise in the narrow bands close to the 1Hz harmonics and the rms noise outside these bands.
- 3. This data is written to a file named; "XXX_YY.csv" where XXX is the (hex) ObsID and YY is the step number.
- 4. The data for each test step is differenced from the data in the appropriate quiescent reference step and the estimates of the voltage offset due to direct bolometer heating and due to an increase in the broad band noise from the detectors is estimated and written to a file named; "XXX_YY_ZZ.csv" where XXX is the (hex) ObsID, YY is the test step number and ZZ is the reference step number.

The key assumption in this data processing procedure is that the spectral intensity of the broad band EMI does not overlap the EMI seen at 1Hz and the harmonics. The degree to which this is true will determine the accuracy of the estimation of the ratio of broad band EMI and bolometer heating EMI.

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim
SPIRE EQM EMC Tes Doug Griffin	st Report	Page: 12 of 66

8. H-Field Testing

8.1 H-Field Sweeps

8.1.1 Sweep 1 (30Hz-50kHz): 0xB0000018

Sweep aborted due to temperature oscillations in the EQM cryostat.

SPIRE Technical Report		Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim Date: 20 Jan 2006	
SPIRE EQM EMC Tes Doug Griffin	at Report	Page: 13 of 66	

8.1.2 Sweep 2 (30Hz-50kHz): 0xB000001C

SPIRE EQM EMC Swee	p Test Sheet			Sheet Number	Sheet 1 of 2	
Test Location:		EADS OTTOBRUNN		Field Type	H-FIELD	
Date of Test:		28 NOVEMBER 2005		Antenna location	LOCATION # 1	
Start Frequency		30 Hz		Photograph of set-up	1838, 1839, 1840	
Stop Frequency		50 кНz		Polarization	NA	
Amplitude modulation		86%, IHZ DUTY CYCLE		Antenna Ref	IABG LOOP ANTENNA	1
Test Start time (CCS)		SPIRE-IMT-START-TE 15:55:38	ST.TCL	SPIRE Signature		
Test End Time (CCS)		SPIRE-IMT-END-TEST 16:31:58	.TCL	ESA Signature		
Start quiescent reference duration	e case	180 s		Astrium Signature		
End quiescent reference duration	case	180 s		F(n+1) = Fn * 1.05		
Step dwell time		5 SECONDS				
Number of steps in swee	p	~154				
Estimated sweep duratio	n					
Observation ID		0xB00000IC				
Channels monitored in Q	LA	C5				
Observations (suscept	ibilities during	g test)				
Time	Estimated F	requency	Notes			
15:56:29 (QLA)	NA		QUIESC	ENT REFERENCE CASE STA	ART	
15:59:27 (QLA)	NA		QUIESC	ENT REFERENCE CASE END)	
15:59:51 (QLA)	59:51 (QLA) STAR		START SWEEP			
START + 2:55	T + 2:55 63.3 Hz AC N		AC No	ISE		
START + 03:46	80.7 Hz		SIGNAL	RETURNS TO NORMAL		
START + 05:23	T + U5:25 I25.2 HZ POSSIBI		LE DC SHIFT			
START + 7:06	204.0 HZ AC NO		ISE			
START + 9:00	366.4 HZ		AC NO	ISE		
START + 10:06	491.0 Hz		AC NO	ISE		

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim Date: 20, Jan 2006
SPIRE EQM EMC Tes Doug Griffin	st Report	Page: 14 of 66

START + 10:		NORMAL AGAIN
START + 10:55		
Start + 11:40	76I.6 Hz	AC FOR 10 SEC
Start + 13:17	1240.6 Hz	AC
START + 14:35	1745.7 Hz	AC FOR 10 SEC
Start + 15:		AC FOR SEC
Start + 19:		DC SHIFT
START + 23:24	21019.2 Hz	DC SHIFT
16:26:21 (QLA)		END SWEEP
START + 26:56		QUIESCENT REFERENCE CASE START
(16:26:45 QLA)		
16:29:44(QLA)		END QUIESCENT REFERENCE CASE

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim
SPIRE EQM EMC Tes Doug Griffin	st Report	Page: 15 of 66

Figure 5 – Quiescent noise for Step 1 of Sweep 0xB000001C

SPIRE SPIRE Technical Repo		Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim
SPIRE EQM EMC Tes Doug Griffin	st Report	Page: 16 of 66

Figure 6 – Noise during sweep 0xB000001C

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim
SPIRE EQM EMC Tes Doug Griffin	st Report	Page: 17 of 66

Noise increase

Figure 7 – Noise increase above the quiescent levels for sweep 0xB000001C

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim	
SPIRE EQM EMC Tes Doug Griffin	st Report	Page: 18 of 66	

~134Hz	
~257Hz	
~400Hz	
~517Hz	
~652Hz	
~1.34kHz	
~2.41kHz	
~2.97kHz	
increasing between 4-19kHz	
increasing between 20-50kHz	

 Table 2 - Principal susceptible frequencies identified during sweep 0xB000001C

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim
SPIRE EQM EMC Tes Doug Griffin	st Report	Page: 19 of 66

8.1.3 Sweep 3 (30Hz-50kHz): 0xB000002B

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim	
SPIRE EQM EMC Tes Doug Griffin	st Report	Page: 20 of 66	

8.2 H-Field Spot Frequency Tests

8.2.1 H-Field Spots (Full field strength): 0xB000002F

SPIRE EQM EMC	Spot Te	est Sheet		Sheet Num	ber	SHEET of 2	
Test Location:		EADS OTTOBRUNN		Observation ID		0xB000002F	
Date of Test:		29 NOVEMBER 2005		Channels			
				monitored i	n QLA		
Start Frequency		N.A.		Field Type		B – FIELD	
Stop Frequency		N.A.		Antenna loo	ation		
Amplitude modulati	ion	86%, IHZ DUTY CYCLE		Photograph	of set-	1838, 1839, 1840	
				up			
Test Start time (CC	CS)	SPIRE-IMT-START-TE	ST.TCL	Polarizatior		NA	
		10:25:40					
Test End Time (CC	CS)	SPIRE-IMT-END-TEST	.TCL	Antenna Re	ef	IABG SELF MADE LOOP	
		12:34:00					
Start quiescent refe	erence	180 SEC		SPIRE Sigr	ature		
case duration							
End quiescent refe	rence	180 SEC		ESA Signat	ure		
case duration							
Step dwell time		180 SEC		Astrium Sig	nature		
Estimated test dura	ation						
Observations (susceptibilities during test)							
Step	Step Time Freque		ency Notes				
I 10:27:45 (CCS) NA		QUIESCENT REFEREN		ENT REFERENCE TEST			
5	S: 10:27	:14 (QLA)					
E	E: 10:30	:13 (QLA)					

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim		
SPIRE EQM EMC Tes Doug Griffin	t Report	Page: 21 of 66		

2	S: 10:31:05 (QLA)	247 Hz	NO GROSS EFFECT
	E: 10:34:04 (QLA)		
3	10:35:00 (CCS)	260 Hz	SUSCEPTIBILITY SEEN (FULL 3 MINUTES)
	S: 10:34:28 (QLA)		
	E: 10:37:27 (QLA)		
4	10:38:36 (CCS)	273 Hz	NO GROSS EFFECT
5	10:41:58 (CCS)	348 Hz	NO GROSS EFFECT
6	10:45:12 (CCS)	366 Hz	NO GROSS EFFECT
7	10:48:24 (CCS)	384 Hz	SUSCEPTIBILITY SEEN
	S: 10:47:53 (QLA)		
	E: 10:50:52 (QLA)		
8	10:51:42 (CCS)	445 Hz	NO GROSS EFFECT
9	10:54:59 (CCS)	467Hz	NO GROSS EFFECT
10	10:58:16 (CCS)	490 Hz	POSSIBLY SMALL
ll l	11:02:32 (CCS)	NA	QUIESCENT REFERENCE TEST
12	11:06:41 (CCS)	1020 Hz	POSSIBLY SMALL
13	11:10:01 (CCS)	1071 Hz	NO GROSS
4	11:13:34 (CCS)	II25 Hz	NO GROSS
15	II:16:53 (CCS)	1367 Hz	SMALL INCREASE (SUB-K INCREASING DURING SPOT)
16	II:20:05 (CCS)	1436 Hz	NOISE INCREASE
17	II:23:34 (CCS)	1507 Hz	NO GROSS
18	II:27:13 (CCS)	2020 Hz	NO GROSS
19	11:30:34 (CCS)	2986 Hz	LARGE INTERFERENCE SEEN
	S: II:30:03 (QLA)		
	E: II:33:01 (QLA)		
20	11:34:02 (CCS)	4631 Hz	NO GROSS
21	II:37:17 (CCS)	4863 Hz	NO GROSS
22	11:40:30 (CCS)	5106 Hz	NO GROSS
23	II:43:47 (CCS)	NA	QUIESCENT REFERENCE TEST
24	11:47:08 (CCS)	19065 Hz	NO GROSS
25	II:50:29 (CCS)	20018 Hz	
26	II:54:09 (CCS)	21019 Hz	
27			MIS-TEST IGNORE

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim Date: 20, Jan 2006		
SPIRE EQM EMC Tes Doug Griffin	st Report	Page: 22 of 66		

28	12:01:09 (CCS)	48 176 Hz	NO GROSS EFFECT (SLIGHTLY MORE DC SHIFT THAN PREVIOUS)
29	12:04:19 (CCS) S: 12:03:48 (QLA) E: 12:06:46 (QLA)	50 000 Hz	NO GROSS EFFECT (SLIGHTLY MORE DC SHIFT THAN PREVIOUS)
30	12:08:00 (CCS)	45882 Hz	REPEAT OF STEP 27 NO GROSS EFFECT (SLIGHTLY MORE DC SHIFT THAN PREVIOUS)
31	12:11:31 (CCS)	NA	QUIESCENT REFERENCE TEST
32	12:14:36 (CCS)	657 Hz	OVERALL RMS NOISE INCREASE
33	12:17:43 (CCS)	690 Hz	NOISE REDUCED WRT TO PREVIOUS
34	12:21:02 (CCS)	NA	QUIESCENT REFERENCE TEST

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim	
SPIRE EQM EMC Tes Doug Griffin	st Report	Page: 23 of 66	

8.2.2 Step 2 – 247Hz Full Field Strength

Figure 8 – Spectral density of detector output for oxB000002F – Step 2 (247Hz)

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim	
SPIRE EQM EMC Tes Doug Griffin	st Report	Page: 24 of 66	

Bolometer Heating

Figure 9 – Estimate of the Δ voltage induced on the detector signal due to heating.

SPIRE Technical Report		Ref: SPIR Issue: 0.1 Date: 20 s	E-RAL-REP-00257 Interim Jan 2006	7				
SPIRE EQM E Doug Griffin	EMC Test Rep	ort		Page: 25	of 66			
A1*	A2	A3	A4	A5	A6	A7	A8	A9
7915.7 nV	0.6 nV	-2.8 nV	3.1 nV	-0.3 nV	4.2 nV	0.2 nV	1.4 nV	1.7 nV
			<u> </u>	D.5+			50	I
B1	B2	B3	B4	<u>B5*</u>	B6*	<u>B/</u>	B8	
1.4 nV	3.3 nV	1.1 nV	-0.6 nV	0.0 nV	0.4 nV	-0.3 nV	-1.1 nV	
C1	C2	C3	C4	C5	C6	C7	C8	C9
-1.0 nV	1.1 nV	-1.0 nV	-2.2 nV	0.7 nV	1.6 nV	-0.5 nV	5.1 nV	1.0 nV
D1	D2	D3	D4	D5*	D6	D7	D8*	
-76.2 nV	-2.2 nV	1.3 nV	9.8 nV	-1.1 nV	-0.4 nV	13.2 nV	-1.4 nV	
	F 2	E0*		FF	Го	F 7	F 0	E0*
	EZ	E3		ED	EO	E/	Eð	E9"
1.1 NV	3.7 nV	4.2 nV	0.1 NV	7.0 NV	3.2 nV	-4./ NV	-1.6 NV	0.1 NV
DP1	DP2*	T1	T2	R1	1			
3.0 nV	-419.0 nV	1.6 nV	8.6 nV	56.6 nV				

Figure 10 - Estimate of the Δ voltage induced on the detector signal due to heating.

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim
SPIRE EQM EMC Test Report Doug Griffin		Page: 26 of 66

Figure 11 – Estimate of the excess noise injected onto the detector due to direct coupling into the detector readout electronics.

SPIRE EQM EMC Test Report Doug Griffin			Ref: SF	PIRE-RAL-REP-00 0.1 Interim	02577			
			Page:	27 of 66				
A1*	A2	A3	A4	A5	A6	A7	A8	A9
7409.5nV/vHz	4.3 nV	4.3 nV	5.7 nV	4.9 nV	3.7 nV	4.1 nV	3.5 nV	3.9 nV
· · ·								
B1	B2	B3	B4	B5*	B6*	B7	B8	
4.7 nV	5.5 nV	3.6 nV	3.2 nV	8.0 nV	8.5 nV	2.9 nV	4.1 nV	
C1	C2	C3	C4	C5	C6	C7	C8	<u>C9</u>
10.8 nV	2.7 nV	6.4 nV	4.1 nV	3.4 nV	4.1 nV	3.8 nV	19.6 nV	3.0 nV
D1	D2	D3	D4	D5*	D6	D7	D8*	
20.1 nV	15.7 nV	10.5 nV	36.0 nV	13.2 nV	3.9 nV	25.9 nV	9.3 nV	
⊏1*	E2	⊏2*	E4	E5	E6	E7	ΕQ	E0*
1.9 nV	2.0 nV	2.6 nV	1.3 nV	65 nV	5.9 nV	3.4 nV	4 8 nV	9 38 nV
	2.0	2.0		0.0 11	0.0 111	0.111		0.0 11
DP1	DP2*	T1	T2	R1	Ĩ			
6.5 nV	474.7 nV	6.3 nV	55.8 nV	27.8 nV				

Figure 12 - Estimate of the excess noise injected onto the detector due to direct coupling into the detector readout electronics

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim
SPIRE EQM EMC Tes Doug Griffin	st Report	Page: 28 of 66

8.2.3 Step 3 – 260Hz Full Field Strength

Figure 13 Spectral density of detector output for oxB000002F – Step 3 (260Hz)

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim
SPIRE EQM EMC Test Report Doug Griffin		Page: 29 of 66

Figure 14– Estimate of the Δ voltage induced on the detector signal due to heating.

SPIRE Technical Report Ref: SPIRE-RAL- Issue: 0.1 Interim Date: 20 Jan 200 Page: 30 of 66					RE-RAL-REP- 1 Interim Jan 2006 9 of 66	002577			
A1*	A2	A3	A4	A	5	A6	A7	A8	A9
1491.8 nV	1.4 nV	-5.7 nV	3.8 nV	1.0	nV	-0.9 nV	0.8 nV	0.2 nV	0.0 nV
B1	B2	B3	B4	B5	5*	B6*	B7	B8	
3.4 nV	0.8 nV	0.9 nV	2.8 nV	22.7	'nV	-0.3 nV	0.6 nV	1.8 nV	
C1	C2	C3	C4		5	6	C7	C8	60
207.2 nV	1 2 nV	31.2 nV	-3.9 nV	10.4	nV	11 7 nV	-3.8 nV	354 9 nV	-0.9 nV
		0.12.11	0.0				0.0		0.0
D1	D2	D3	D4	D5	5*	D6	D7	D8*	
498.6 nV	297.6 nV	201.5 nV	599.3 nV	127.6	6 nV	61.4 nV	451.3 nV	80.5 nV	
	-								
E1*	E2	E3*	E4	E	5	E6	E7	E8	E9*
2.4 nV	2.3 nV	3.2 nV	-1.9 nV	5.9	nV	28.3 nV	5.4 nV	9.8 nV	2.9 nV
	DDOt			-					
	DP2*	11	12	R	1				
0.5 nV	48.3 nV	-3.4 nV	1020.5 nV	74.0) nV				

Figure 15 Figure 16 - Estimate of the Δ voltage induced on the detector signal due to heating.

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim
SPIRE EQM EMC Tes Doug Griffin	st Report	Page: 31 of 66

Figure 17- Estimate of the excess noise injected onto the detector due to direct coupling into the detector readout electronics.

SPIRE Technical Report				Ref: SI Issue: Date: 2	PIRE-RAL-REP-002 0.1 Interim 20 Jan 2006	2577		
SPIRE EQM E Doug Griffin	MC Test Repor	t		Page:	32 of 66			
A1*	A2	A3	A4	A5	A6	A7	A8	A9
7454.8nV/vHz	3.4 nV	3.5 nV	5.3 nV	4.8 nV	2.7 nV	3.7 nV	3.5 nV	4.1 nV
B1	B2	B3	B4	B5*	B6*	B7	B8	
4.8 nV	4.4 nV	3.2 nV	4.0 nV	58.7 nV	10.3 nV	3.5 nV	4.7 nV	
				-				
C1	C2	C3	C4	C5	C6	C7	C8	C9
259.0 nV	3.0 nV	76.7 nV	3.4 nV	26.4 nV	33.0 nV	3.2 nV	432.0 nV	2.8 nV
	DO		D4		De	D7	D0*	
	D2	D3	D4	D5"	D6		D8"	
683.4 nV	377.3 nV	272.4 nV	728.7 nV	223.9 nV	99.0 nV	542.8 nV	149.8 nV	
F1*	F2	F3*	F4	F5	F6	F7	F8	F9*
2.6 nV	2.0 nV	12.3 nV	1.5 nV	21.5 nV	50.0 nV	16.2 nV	35.9 nV	4.6 nV
DP1	DP2*	T1	T2	R1				
5.7 nV	746.9 nV	6.0 nV	1229.2 nV	45.1 nV				

Figure 18 Estimate of the excess noise injected onto the detector due to direct coupling into the detector readout electronics

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim
SPIRE EQM EMC Test Report Doug Griffin		Page: 33 of 66

9. E-Field 14kHz-30MHz Band

- 9.1 Upper Antenna Position
- 9.2 Lower Antenna Position
- 10. E-Field 30MHz-1GHz Band
- 10.1 Upper Antenna Position

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim
SPIRE EQM EMC Tes	SPIRE EQM EMC Test Report	
Doug Griffin	Doug Griffin	

10.1.1 Vertical Polarization

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim
SPIRE EQM EMC Test Report Doug Griffin		Page: 35 of 66

10.1.2 Horizontal Polarization

10.2 Lower Antenna Position

SPIRE EQM EMC Test Report	Ref: SPIRE-RAL-REP-002577	
Doug Griffin	Issue: 0.1 Interim	
SPIRE EQM EMC Tes Doug Griffin	st Report	Page: 36 of 66

10.2.1 Vertical Polarization

10.2.1.1 Sweep 1 (30MHz – 1GHz): 0xB0000038

SPIRE EQM EMC Sw	eep Test S	heet		Sheet Number	Sheet 1 of 2	
Test Location:		EADS OTTOBRUNN		Field Type	E-FIELD	
Date of Test:		29 NOVEMBER 2005		Antenna location	LOCATION # 1	
Start Frequency		30 MHz		Photograph of set-up	1847, 1846	
Stop Frequency		I GHZ		Polarization	HORIZONTAL	
Amplitude modulation		IHZ 86% DUTY CYCLE IKHZ, 30% SQUARE V	e Nave	Antenna Ref	Log-periodic / Biconic	
Test Start time (CCS)		SPIRE-IMT-START-T 15:34:23 (QLA)	EST.TCL	SPIRE Signature		
Test End Time (CCS)		SPIRE-IMT-END-TES	ST.TCL	ESA Signature		
Start quiescent referen	nce case	180 s		Astrium Signature		
duration						
End quiescent referen	ce case	180 s		F(n+1) = Fn * 1.01		
duration						
Step dwell time						
Number of steps in sw	/eep					
Estimated sweep dura	ition					
Observation ID		0xB0000038				
Channels monitored in	ו QLA	C5				
Observations (susce	ptibilities of	during test)				
Time	Estimat	ed Frequency	Notes			
15:40:15 (CCS)	NA	QUIESCEN		NT REFERENCE CASE START		
15:39:43 (QLA)						
15:43:15 (CCS)	NA		QUIESCEI	NT REFERENCE CASE END		
SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim				
---	------------------------	---				
SPIRE EQM EMC Test Report Doug Griffin		Page: 37 of 66				

15:45:50 (CCS) 15:45:18		START SWEEP AND IMMEDIATE DRAMATIC EMI OBSERVED
START +41:55	631 MHz	SLOPE CHANGES
START + 44:00	740 MHz	SLOPE CHANGES
16:34:12 (CCS)		END SWEEP
16:33:39 (QLA)		
16:36:31 (CCS)		QUIESCENT REFERENCE CASE START
16:39:30 (CCS)		END QUIESCENT REFERENCE CASE

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim
SPIRE EQM EMC Test Report Doug Griffin		Page: 38 of 66

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim
SPIRE EQM EMC Test Report Doug Griffin		Page: 39 of 66

10.2.2 Horizontal Polarization

11. E-Field 1GHz-18GHz Band

11.1 Upper Antenna Position

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim
SPIRE EQM EMC Test Report Doug Griffin		Page: 40 of 66

11.1.1 Vertical Polarization

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim
SPIRE EQM EMC Test Report Doug Griffin		Page: 41 of 66

11.1.2 Horizontal Polarization

11.2 Lower Antenna Position

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim
SPIRE EQM EMC Test Report Doug Griffin		Page: 42 of 66

11.2.1 Vertical Polarization

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim
SPIRE EQM EMC Test Report Doug Griffin		Page: 43 of 66

11.2.2 Horizontal Polarization

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim Date: 20 Jan 2006
SPIRE EQM EMC Test Report Doug Griffin		Page: 44 of 66

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim
SPIRE EQM EMC Test Report Doug Griffin		Page: 45 of 66

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim Date: 20 Jan 2006
SPIRE EQM EMC Test Report Doug Griffin		Page: 46 of 66

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim
SPIRE EQM EMC Test Report Doug Griffin		Page: 47 of 66

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim
SPIRE EQM EMC Tes Doug Griffin	st Report	Page: 48 of 66

SPIRE Technical Report		Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim
SPIRE EQM EMC Tes Doug Griffin	st Report	Page: 49 of 66

SPIRE Technical Report		Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim
SPIRE EQM EMC Tes Doug Griffin	st Report	Page: 50 of 66

SPIRE Technical Report		Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim
SPIRE EQM EMC Tes Doug Griffin	Page: 51 of 66	

SPIRE EQM EMC Test Report Doug Griffin

Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim Date: 20 Jan 2006 Page: 52 of 66

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim
SPIRE EQM EMC Tes Doug Griffin	t Report	Page: 53 of 66

12. E-Field Spots (Susceptibility threshold): 0xB000051

SPIRE EQM EMC Spot Test Sheet		Sheet Num	nber	SHEET of 2			
Test Location:		EADS OTTOBRUNN	OS OTTOBRUNN		n ID	0xB0000051	
Date of Test:		30 NOVEMBER 2005		Channels			
				monitored i	n QLA		
Start Frequency		N.A.		Field Type		E – FIELD	
Stop Frequency		N.A.		Antenna lo	cation		
Amplitude modula	tion	IHZ 86% DUTY CYCLE		Photograph	n of set-	1846, 1847	
		IkHz, 30% SQuare WA	AVE	up			
Test Start time (Co	CS)			Polarization	า	HORIZONTAL	
Test End Time (Co	CS)			Antenna Re	ef	Log-periodic / Biconic	
Start quiescent ref	ference	180 SEC		SPIRE Sigi	nature		
case duration							
End quiescent refe	erence	180 SEC		ESA Signa	ture		
case duration							
Step dwell time		180 SEC		Astrium Sig	gnature		
Estimated test dur	ration						
Observations (su	isceptib	ilities during test)					
Step	Time		Freque	ency	Notes		
	08:52:11	(CCS)			QUIESCENT REFERENCE TEST		
2	08:56:15	(CCS)			ZERO dB		
3 09:00:00 (CCS)			-10 dB returns close to quiescent				
4	4 09:07:09(CCS)				ZERO dB MIS-TEST IGNORE		
5	5 09:11:18 (CCS)			ZERO de	3		
6 (CCS)			-10 dB	300-MK TEMP RISING!			
7	(CCS)				ZERO dB STILL RISING		
8	(CCS)				-10 dB	RISING V. FAST	

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim
SPIRE EQM EMC Tes Doug Griffin	Page: 54 of 66	

9	(CCS)	ZERO dB - STILL RISING
10	(CCS)	-10 dB STILL RISING MORE SLOWLY
II	(CCS)	ZERO dB
12	(CCS)	-10 dB decrease in dT/dt
13	(CCS)	ZERO dB VERY LITTLE INJECTION INTO RI
4	(CCS)	-10 dB
15	(CCS)	ZERO dB
16	(CCS)	-10 dB
17	(CCS)	dB
18	(CCS)	ZERO dB , BIAS OFF
19	(CCS)	ZERO dB , BIAS OFF NOISE INCREASE
20	(CCS)	ZERO dB, BIAS OFF NOISE INCREASE
21	(CCS)	ZERO dB , BIAS OFF
22	(CCS)	ZERO dB , BIAS OFF
23	(CCS)	ZERO dB , BIAS OFF
24	(CCS)	ZERO dB , BIAS OFF

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim
SPIRE EQM EMC Tes Doug Griffin	t Report	Page: 55 of 66

13. E-Field Spots 0xB00005E

Section A: 15:31:00 – 16:00:00 Section B: 15:55:00 – 16:24:00 Section C: 16:20:00 – 17:02:00

SPIRE EQM EMC Spot Test Sheet		Sheet Nun	nber	Sheet of 2		
Test Location:		EADS OTTOBRUNN		Observatio	n ID	0xB000005E
Date of Test:		30 NOVEMBER 2005		Channels		
				monitored	in QLA	
Start Frequency		N.A.		Field Type		E - FIELD
Stop Frequency		N.A.		Antenna lo	cation	Loc ^N I
Amplitude modula	ation	IHZ 86% DUTY CYCLE		Photograph	n of set-	1846, 1847
		IKHZ, 30% SQUARE W	4VE	up		
Test Start time (C	CS)	SPIRE-IMT-START-TE	ST.TCL	Polarization	n	HORIZONTAL
		2005 30 5:31:21				
Test End Time (C	CS)	SPIRE-IMT-END-TEST	.TCL	Antenna R	ef	LOG-PERIODIC / BICONIC
		2005 30 6:59:53				
Start quiescent re	eference	180 SEC		SPIRE Sig	nature	
case duration						
End quiescent ref	ference	180 SEC		ESA Signa	ture	
case duration						
Step dwell time		180 SEC		Astrium Sig	gnature	
Estimated test du	ration					
Observations (susceptibilities during test)						
Step	Time		Freque	ency	Notes	
	15:32:32	2 (CCS)		NA	QUIESCE	ENT REFERENCE TEST
2	15:35:56	5 (CCS)	502	2.2 MHz	2 V/M N	NO APPARENT EFFECT

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim Date: 20 Jan 2006
SPIRE EQM EMC Tes Doug Griffin	Page: 56 of 66	

3	15:39:15 (CCS)	507.2 MHz	2 V/M
4	15:42:30 (CCS)	512.2 MHz	
5	15:45:43 (CCS)	517.4 MHz	
6	15:49:56 (CCS)	52.26 MHz	
7	15:53:09 (CCS)	52.78 MHz	
8		NA	
9	16:06:10 (CCS)	600.68 MHz	
10	16:10:08 (CCS)	704.34 MHz	
H	16.13.27 (CCS)	903.3 MHz	
12	16:16:48 (CCS)	I GHz	
13	16:23:52		MIS-TEST
4	16:30:36		A SWEEP 200MHZ TO 6700MHZ 1% INCREMENT, 10 SEC STEP 2 V/M

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim
SPIRE EQM EMC Tes Doug Griffin	at Report	Page: 57 of 66

14. E-Field Spots 0xB000062

97 SPIRE-IMT-START-TEST.tcl 17:01:59 Coordinated Universal Time	SPIRE FLIGHT 0 success	2005 11 30 17:01:43 Coordinated Universal Time b0000062	2005	11	30
98 SPIRE-IMT-END-TEST.tcl 17:32:54 Coordinated Universal Time	SPIRE FLIGHT 0 success	2005 11 30 17:32:44 Coordinated Universal Time b0000063	2005	11	30

15. E-Field Spots 0xB000066

101 SPIRE-IMT-START-TEST.tcl 17:34:04 Coordinated Universal Time	SPIRE FLIGHT 0 success	2005 11 30 17:33:48 Coordinated Universal Time b0000066	2005	11	30
102 SPIRE-IMT-END-TEST.tcl 17:45:34 Coordinated Universal Time	SPIRE FLIGHT 0 success	2005 11 30 17:45:23 Coordinated Universal Time b0000067	2005	11	30

16. E-Field Spots 0xB000073

114 SPIRE-IMT-ST 09:50:03 Coordinated	ART-TEST.tcl Universal Time	SPIRE 0	FLIGHT success	2005 12	01 09:49:46 Coord b0000073	linated Universal ⁻	Time	2005	12	01
115 SPIRE-IMT-EN 10:35:55 Coordinated	ID-TEST.tcl Universal Time	SPIRE 0	FLIGHT success	2005 12	01 10:35:44 Coord b0000074	linated Universal ⁻	Time	2005	12	01

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim		
SPIRE EQM EMC Tes Doug Griffin	t Report	Page: 58 of 66		

17. E-Field Spots 0xB000077

Section A: 12:12:23 – 13:40:57 Section B: 13:09:23 - 14:06:59 Section C: 14:00:00 – 15:00:00 Section D: 14:55:00 – 15:55:00 Section E: 15:50:00 – 16:43:00

SPIRE EQM EMC Spot Te	est Sheet	Sheet Num	ber	SHEET of 2		
Test Location:	EADS OTTOBRUNN	Observatior	ID	0xB0000077		
Date of Test:	OI DECEMBER 2005	Channels		C5, RI		
		monitored in	n QLA			
Start Frequency	N.A.	Field Type		E – FIELD		
Stop Frequency	N.A.	Antenna loc	ation	LOC ^N		
Amplitude modulation	IHZ 86% DUTY CYCLE	Photograph	of set-	1846, 1847		
	IKHZ, 30% SQUARE WAVE	up				
Test Start time (CCS)	SPIRE-IMT-START-TEST.	TCL Polarization		VERTICAL		
	2005 12 01 12:12:23					
Test End Time (CCS)	SPIRE-IMT-END-TEST.TCL	L Antenna Re	f	Log-periodic / Biconic		
	2005 12 01 16:40:					
Start quiescent reference	180 SEC	SPIRE Sign	ature			
case duration						
End quiescent reference	180 SEC	ESA Signat	ure			
case duration						
Step dwell time	180 SEC	Astrium Sig	nature			
Estimated test duration						
Observations (susceptibilities during test)						
Step Time Frequency Notes						

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim
SPIRE EQM EMC Tes Doug Griffin	Page: 59 of 66	

	12:13:25 (CCS-START)	NA	QUIESCENT REFERENCE
	12:12:51 (QLA-S)		
	12:16:29 (CCS-END)		
	12:15:53 (QLA-E)		
2	12:17:01 (CCS-START)	33,32 MHz	0.025 V/M
	12:20:02 (CCS-END)		
	12:16:27 (QLA-S)		
	12:19:27 (QLA-E)		
3	12:19:54 (QLA-S)	33.32 MHz	0.1 V/M
	12:22:54 (QLA-E)		
4	12:23:34 (QLA-S)	33.32 MHz	0.050 V/M
	12:26:49 (QLA-E)		
5	12:27:32 (QLA-S)	33.32 MHz	0.2 V/m (NOTE: FIRST 30 SECONDS ARE WITH THE AMPLIFIER OFF!!!)
	12:31:10 (QLA-E)		
6	12:32:07 (QLA-S)		
	12:34:20 (QLA-E)		
7	12:45:21 (QLA-S)		
	12:48:23 (QLA-E)		
8	12:48:45 (QLS-S)		
	12:51:47 (QLA-E)		
9	12:52:08 (QLA-S)		
	12:55:15 (QLA-E)		
10	12:55:54 (QLA-S)		
	12:58:54 (QLA-E)		
l II	12:59:31 (QLA-S)		
	13:02:34 (QLA-E)		
12	13:03:38 (QLA-S)		
	13:06:04 (QLA-E)		
13	13:06:14 (QLA-S)		
	13:09:14 (QLA-E)		
4	13:09:42 (QLA-S)		
	13:12:43 (QLA-E)		
15	W		

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim
SPIRE EQM EMC Tes Doug Griffin	Page: 60 of 66	

Figure 19 - Pixel C5 for various levels at 33.32 MHz

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim
SPIRE EQM EMC Tes Doug Griffin	Page: 61 of 66	

Step	Condition	Condition Vrms	
1	Ref	4.71E-05	0.0%
2	0.025 V/m	4.73E-05	0.4%
3	0.100 V/m	5.25E-05	11.4%
4	0.050 V/m	4.69E-05	-0.4%
5	0.200 V/m	1.05E-04	122.7%

18. E-Field Spots 0xB000095

147 SPIRE-IMT-START-TEST.tcl 06:24:55 Coordinated Universal Time	SPIRE FLIGHT 0 success	2005 12 02 06:24:39 Coordinated Universal Time b0000095	2005	12	02
148 SPIRE-IMT-END-TEST.tcl 07:31:04 Coordinated Universal Time	SPIRE FLIGHT 0 success	2005 12 02 07:30:54 Coordinated Universal Time b0000096	2005	12	02
19. E-Field Spots 0xB00009	99				
151 SPIRE-IMT-START-TEST.tcl 07:32:13 Coordinated Universal Time	SPIRE FLIGHT 0 success	2005 12 02 07:31:56 Coordinated Universal Time b0000099	2005	12	02
152 SPIRE-IMT-END-TEST.tcl 08:54:37 Coordinated Universal Time	SPIRE FLIGHT	2005 12 02 08:54:26 Coordinated Universal Time	2005	12	02

SPIRE	SPIRE Technical Report	Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim
SPIRE EQM EMC Test Report Doug Griffin		Page: 62 of 66

20. E-Field Spots 0xB00009D

155 SPIRE-IMT-START-TEST.tcl 09:15:06 Coordinated Universal Time	SPIRE 0	FLIGHT success	2005 12 02 09:14:49 Coordinated Universal Time b000009d	2005	12	02
156 SPIRE-IMT-END-TEST.tcl 10:43:45 Coordinated Universal Time	SPIRE 0	FLIGHT success	2005 12 02 10:43:35 Coordinated Universal Time b000009e	2005	12	02

- 21. E-Field Sweep 1GHz 6GHz, Vertical Polarization, Antenna locⁿ 1 (0xB0000B7)
- 22. E-Field Spots 1GHz 6GHz, V and H Polarizations, Antenna locⁿ 1 (0xB0000BA)
- 23. E-Field Sweep 1GHz 6GHz, Horizontal Polarization, Antenna locⁿ 1 (0xB0000BE)

24. E-Field Sweep 1GHz - 6GHz, Horizontal Polarization, Antenna locⁿ 1 (0xB0000C2)

- 25. E-Field Spots 1GHz 6GHz, V and H Polarizations, Antenna locⁿ 1 (0xB0000C6)
- 26. E-Field Sweep 1GHz 6GHz, Vertical Polarization, Antenna locⁿ 1 (0xB0000??)

SPIRE EQM EMC Test Report Doug Griffin

26.1 Example of the sweep continuation test-sheet

Figure 20 - Signal from low frequency antenna coupled to a high input impedance oscilloscope.

Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim Date: 20 Jan 2006 Page: 64 of 66

SPIRE EQM EMC Test Report Doug Griffin

Figure 21 - Signal from low frequency antenna coupled to a high input impedance oscilloscope.

SPIRE EQM EMC Test Report Doug Griffin Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim Date: 20 Jan 2006 Page: 65 of 66

27. Photographs of Test setup

Figure 22 - View of Loop antenna for H-Field tests. The antenna is behind the cryostat dolly and the antenna is ~ 1m from the SPIRE SVM-CB (1838.jpg)

Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim Date: 20 Jan 2006 Page: 66 of 66

SPIRE EQM EMC Test Report Doug Griffin

Figure 23 - View of location where the loop antenna was directed during H-Field Tests. Plastic rod seen on the right hand side of the picture shows the point 1m from the centre of the loop antenna. (1839.jpg)

SPIRE EQM EMC Test Report Doug Griffin Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim Date: 20 Jan 2006 Page: 67 of 66

Figure 24 - View of the EQM cryostat during the H-Field testing. The DRCU and DPU are mounted inside the SVM on the panel facing the camera (1840.jpg).

Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim Date: 20 Jan 2006 Page: 68 of 66

SPIRE EQM EMC Test Report Doug Griffin

Figure 25 - Antenna Location #1 for E-Field 30MHz-1GHz Horizontal polarization. (1841.jpg)

Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim Date: 20 Jan 2006 Page: 69 of 66

SPIRE EQM EMC Test Report Doug Griffin

Figure 26 - Antenna Location #1 for E-Field 30MHz-1GHz Horizontal polarization. (1842.jpg)

SPIRE EQM EMC Test Report Doug Griffin

Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim Date: 20 Jan 2006 Page: 70 of 66

Figure 27 - Antenna Location #1 for E-Field 30MHz-1GHz Horizontal polarization. (1845.jpg)

Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim Date: 20 Jan 2006 Page: 71 of 66

SPIRE EQM EMC Test Report Doug Griffin

Figure 28 - Antenna Location #1 for E-Field 30MHz-1GHz Vertical polarization. (1852.jpg)

Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim Date: 20 Jan 2006 Page: 72 of 66

SPIRE EQM EMC Test Report Doug Griffin

Figure 29 - Antenna Location #1 for E-Field 30MHz-1GHz Vertical polarization. (1857.jpg)

Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim Date: 20 Jan 2006 Page: 73 of 66

Figure 30 - Antenna Location #2 for E-Field 30MHz-1GHz Vertical polarization. (1861.jpg)

Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim Date: 20 Jan 2006 Page: 74 of 66

SPIRE EQM EMC Test Report Doug Griffin

Figure 31 - Antenna Location #1 for E-Field 14kHz-30MHz Horizontal polarization. (1865.jpg)

Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim Date: 20 Jan 2006 Page: 75 of 66

Figure 32 – Antenna location position 1, Vertical polarisation, 1-18GHz (1869.jpg)

Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim Date: 20 Jan 2006 Page: 76 of 66

Figure 33 Antenna location position 1, Horizontal polarisation, 1-18GHz (1870.jpg)

Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim Date: 20 Jan 2006 Page: 77 of 66

Figure 34- Antenna location position 2, Horizontal polarisation, 1-18GHz (1871.jpg)

SPIRE EQM EMC Test Report Doug Griffin

Ref: SPIRE-RAL-REP-002577 Issue: 0.1 Interim Date: 20 Jan 2006 Page: 78 of 66