JPL Hardware Requirements Certification Review (HRCR)-Proto-Flight Model (PFM) Photometer Medium Wavelength PMW) Bolometer Detector Assembly (BDA) 10209800-2 S/N 012

SPIRE Element Herschel Space Observatory Project

December 16, 2004

CONTENTS

SEC	TION
Hardware Requirements Certification Review (HRCR) Form	1
Final Inspection Report (IR)	2
Issues	3
M. Herman 15 May 2003 memo (fasteners for vibe. tests)	
Top Level Assembly Drawings	4
ECRs / NCRs	5
HR-SP-JPL-ECR-003 (Spectrometer BDA envelope height) HR-SP-JPL-ECR-005 (Kapton Cable routing design error) HR-SP-JPL-NCR-005 (PMW and PSW focal position shift)	
Waivers	6
HR-SP-JPL-RFW-005 (Sine Vibe Omission)	
HR-SP-JPL-RFW-006 (Vibration Test Levels)	
HR-SP-JPL-RFW-008 (Time Constant Test Omission)	
Open Problem / Failure Reports (PFR)	7
This Hardware: (None)	
Similar Hardware: (None)	
Handling Documents	8
General / Unpacking	
Electronic	
Environmental Requirements Verification Matrix	9
Performance Data Matrix	10
Qualification Status	11
Connector Mate and Operation Logs	12
Mechanical & Electrical ICDs	13
Other Data	14
Detector Backshort Data Alignment Measurement Summary Feedhorn Data 300mK Spectrometer Filters EIDP	

RAL EIDP Table Of Contents Vs. HRCR Contents

EIDP	FIDP	HRCR	Comments/Notebook Section
Section		Box #	
1	Shipping Documents		Shipper and Final IR
2	Transportation, Packing, Handling & Integration Procedures	20	Section 8
3	Certificate of Conformance / Delivery Review Board MoM		HRCR form is the CofC
4	As Built Configuration Status List	1	
5	List of Waivers	16	Section 6
6	Copies of Waivers	16	Section 6
7	List of Non-Conformance Reports	17, 18	Section 5
8	Copies of Non-Conformance Reports	17, 18	
9	Cleanliness Statement	10	Final IR includes inspection for conformance with cleanliness requirement (particulates)
10	Operational Manual	20	
11	Top Level Drawings (inc. Family Tree)	14	Section 4
12	Interface Drawings	26	Section 13
13	Functional, Block & Mechanical Drawings	14	Section 4
14	Electrical Circuit Drawings		See Electrical Handling Doc.
15	Serialized Components List		In the build books – not shipped
16	Mass Properties/ Power Budget		Mass found in header of HRCR
17	Qualification Status List / Test Matrix	22	Qual. Report to be supplied later, Summary in Section 11
18	Test Reports		To be supplied later, Summaries in Sections 9 and 10
19	Open Work / Deferred Work / Open Tests	5	
20	Calibration Data		Section 10
21	Historical Record		Section 12
22	Manufacturing Logbook(s)		To be retained at JPL
23	Operating Time / Cycle Record	24	Section 12
24	Connector Mating Record	24	Section 12
25	Age Sensitive Items Record		NA for BDA
26	Pressure Vessels – History/Test Record		NA
27	Temporary Installation Record		Section 12
28	Reference List of EIDPs (Lower level)	1	300mK Filter EIDP - Section 14
29	Other Useful Information		Section 14

JPL Hardware Requirements Certification Review – SPIRE Element

#D-31101

Assembly/Subsystem			PE	М				Phone	Section Date						
SPIRE			Ма	rtin l	Herm	an		(818) 354-8541		386		16 Dec	ember, 2	004	
Drawing/ Part No.	Dwg. Rev.	Nomencl	ature	9			Serial No.	Model	Туре		Final IR No.			Mass (grams) As Meas. / Req.	
10209800-2	B Bolometer Detector 01 Assembly							PFM	PMW		923807			603 g / 632 g	
Check applicable answer and give n remarks column	ecessary exp	lanation in	Y e s	N o	N / A		Remarks Data Attachments Signature Approval & Date							Approval	
1. Are all drawings and specifications released and frozen?	complete, appr	roved,	x							14. Latest Top Asse	embly Drawi	ings Sec. 5)	Cog E		
2. Do the released drawings and spec approved changes?	ifications reflec	t all	x			See	section 3 matrix f	or which drawings are relea	sed.	15. List of open ECR	Rs] None (Se	ec. 6)	PEM		
3. Is hardware identical to other hardw provide difference list.	vare delivered?	lf no,			x	First	hardware of this t	type delivered		16. Waivers] None (Se	ec. 7)	QA Engine	eer	
4 Does the hardware meet the require requirements, specifications, waivers a difference list.	ment of its fund nd/or ICDs ? If	ctional no, provide		x		All R verif	All Requirements met except as shown in attached verification matrix (section 10) and Issues / NCRs (section 4). See section 11 for detector performance matrix							ents/Reliability	
5. Have all IR discrepancies and MRB agreed to by Engineering/ QA ?	s been disposi	tioned and	x				18. Open P/FRs on this H/W ☐ Attached ⊠ None (Sec. 8)						Mission A	ssurance Mgr.	
6. Is complete as-built list information	included in the	build book?	x			Offic draw build	Official Indentured Parts List (IPL) not generated due to drawing status, but traceability information is captured in build books.					iec. 8)	Project 8)		
 Have all required environmental tes completed? 	ts & analyses I	been	x				20. Handling Do ⊠ Attached					ment PI			
8. Is all required assembly and/or substantiation to the strength of the stren	system level fu	nctional		x		Ther attac	mal time constant ched request for w	measurement was not com aiver (section 7).	pleted. See	21. Shortage List ☐ Attached ⊠ None (N/A)					
 Have all piece parts, processes and by JPL? 	I materials bee	n approved	x							22. Requirements Ve	erification Ma] None (Se	atrix ec. 10)			
10. Does this hardware meet all conta requirements?	mination contro	bl	x							23. Qualification Stat	tus] None (Se	ec. 12)			
11. Are all required shipping container and special handling procedures ready	s, shipping pro ?	cedures,	x							24. Connector Mate	/ Demate Lo] None (Se	og iec. 13)			
12. Is additional work required to bring readiness?		x		-				25. Operation Log] None (Se	ec. 13)					
13. Is this hardware acceptable for flig	Int ?		x							26. ICDs] None (Se	ec. 14)			

*** INSPECTION REPORT *** Printed Copies are for Reference Only - Please check with PDMS for official version

Action BROWSE

Status ''Pending Action for IRDIs''	IR Instructions
Number	Quantity
12	1

DEFEI	25 TO:																	
	<u>Part Number</u>				Dash	Number	Revision	Lates	t Rev	Serial Numb	er g	Quantity						
	10209800-2			(wit	h na	rt number)	A	I	2	012		1						
				(F				2									
Nomen	clature:	BC	DLO	мет	'ER	DETECTOR A	ARRAY											
Prgm/P	roject:	HSC)-PLA	NCK			Inspection D	ate:	e: 20-SEP-2004									
COGE:		WE	ILER	Г, MARI	<u>X A.</u>		ECO/ECI:		<u></u>									
QAE:		HU	GHES,	SCOT1	<u>P.</u>		Reference De	esignator:	SPIRE									
JPL/Mf	ř <u>r:</u>	JPL	,				Lot No.:]									
Type of	Inspection:	Fina	al-Ship)			Insp. Std / Sp	bec No.:]									
Type of	<u>Item:</u>	Flig	ht				AIDS No.:]									
Locatio	<u>n:</u>	JPL	4				Work Order	<u>No.:</u>]									
Manufa	cturer:						CAGE Code		23835									
Supplie	<u>r:</u>	i					Receipt No.:]									
Parts re	ceived by:	i					Property / ID	:	1									
Receive	ed date:]					PO/CT No.:]									
Qty Ac	cepted:]					Line No.:]									
Qty Rej	ected:	0					Rel / Mod N	<u>o.:</u>]									
QA Ale	art?]					CAN Require	ed?]									
IMTE C	Code:	Non	ie				IMTE Numb	er:]									
IMTE O	Code No. 2:	Nor	ne				IMTE Numb	er No. 2:]									
IMTE O	Code No. 3:	Non	ie				IMTE Numb	er No. 3:										
IMTE C	Code No. 4:	Non	ie				IMTE Numb	er No. 4:										
<u>Orig No</u>	omenclature:																	
DISCRE	EPANT ITEMS	:																
Item	Discrep Co	de 🛛	Qty	Zone	<u>S/N</u>		Desc	ription			Re-W	ork Files						
1	2D8		1	N/A	012	parts were assy. to unre	leased dwg.					No						
<u>2</u>	2D8		1	N/A	012	The following IR'S are	still open for unrel	eased dwg	g. see below		-	No						
Item					Di	isposition			Root Cause Code	Dispo Code	Disp. Appr.	<u>Stamp Date</u>						
											16-DEC-	16-DEC-						
1	top level di	rawin	g, 1020	19800 has	been	released, rev B, incorpora	ating new spacer ri	ng. -		ACC	HUGHES, SCOTT P.	HUGHES, SCOTT P.						
											16-DEC-							
<u>2</u>	IR	's are	open d	ue to unr	elease	d drawings. Drawings wil	ll be released	-		SA	2004 <u>HUGHES,</u> SCOTT P	Demote						
	L							1[<u></u>							
Inspectio	on <u>Report Notes</u> , s assembled to a	nids #	24367	3]						
102000	 (0.1 ID 00000000000000000000000000000000000			-														
102098 102098	60-1 IR 922872 20-1 IR 923616																	
102099	03-1 IR 922922																	

	Initiated by HUGHES, SCOTT P.	Signed by COGE WEILERT, MARK A.	<u>Signed by QAE</u> HUGHES, SCOTT P.	Closed by
Number of Files Attached Q	Date 02-DEC-2004	Date 16-DEC-2004	Date 16-DEC-2004	Date
Reserved by Res	served on Reason	<u>n</u>		

Issues PFM PMW BDA 10209800-2 S/N 012

Configuration / Processing:

Several ECRs related to this hardware have been incorporated into released drawings. They are included for reference:

- The maximum height of 300 mK stage exceeds ICD drawing 10209721 allowed range by 1.0 mm due to changes in 300 mK filter stack thickness which were not incorporated into the drawing. See attached ECR: HR-SP-JPL-ECR-003 in section 6. This change has been incorporated into Rev-C of the ICD.
- A focus position shift caused by an internal mechanical interference fix was incorporated into ICD drawing 10209721 Rev C per HR-SP-JPL-NCR-005 (attached in in section 6).
- A pixel map modification was incorporated into electrical schematic 10209725 Rev C per HR-SP-JPL-ECR-005 (attached in section 6). This drawing revision also incorporated JPL ECR 1026751.

Environmental Test:

- Shake tests were performed with non-flight-like 8-32 mounting screws, instead of 6-32. See attached email regarding this issue: (M. Herman, 15 May 2003) -- *This same issue applied to the previous CQM-PLW and PFM-SLW BDAs.*
- Shake tests were performed in accordance with open waivers HR-SP-JPL-RFW-005 (Sine Vibration Omission) and HR-SP-JPL-RFW-006 (Vibration Test Levels). See Waiver List (section 7).

Performance Test:

• The thermal time constant measurement was omitted. See attached waiver HR-SP-RFW-008 (in section 7) which requests that the test be performed at the instrument level.

Date: Mon, 11 Aug 2003 16:34:04 -0700 From: Martin Herman <Martin.I.Herman@jpl.nasa.gov> Subject: Waiver Request (vibration fastners) X-Sender: miherman@pop.jpl.nasa.gov To: Mark.A.Weilert@jpl.nasa.gov Cc: Henry.Abakians@jpl.nasa.gov

Date: Thu, 15 May 2003 11:41:18 -0700 To: Matt Griffin </br/>Matt.Griffin@astro.cf.ac.uk>, Eric Sawyer <e.c.sawyer@rl.ac.uk>, Chris Brockley-Blatt <cbb@mssl.ucl.ac.uk>, Berend Winter <bw@mssl.ucl.ac.uk> From: Martin Herman </br/>Martin.I.Herman@jpl.nasa.gov> Subject: Waiver Request (vibration fastners) Cc: Ben.A.Parvin@jpl.nasa.gov, Jamie Bock <jjb@astro.caltech.edu>, Gary Parks <Gary.S.Parks@jpl.nasa.gov>, kalyani@squid.jpl.nasa.gov Bcc: X-Attachments:

Dear Matt and SPIRE Team,

To refresh everyone's memory. We requested the following information:

What type of fasteners will be used in Europe to mount the BDA? In our ICD, 6-32 fasteners are called for. However, the current test hardware uses 8-32 fasteners. We are looking to be consistent with the flight implementation.

The answer (Thanks Chris) was 6-32. Our current test fixture uses 8-32 and we are getting ready for vibration testing of the CQM next week. Therefore, we had a mechanical engineer look into this issue. His (Paul MacNeal) response was:

It will acceptable to use four #8-32 fasteners for the vibration tests at JPL. The reasons are....

1) The test fixture has already been built using #8-32 tapped holes,

2) The use of #6-32 fasteners torqued to full value should be able to resist over 200 G's of lateral force before allowing slippage, and therefore is not a critical component of the vibration test, and

3) The test is primarily performed to verify integrity of the flexures, braid, and other components, and not the interface fasteners.

Based on this information, we are requesting a waiver for the CQM PLW vibration and for future QM, CQM, PFM and FS tests. The change for future test is small, but the fiscal situation is extremely challenging and no technical risk to the program is evident with the existing approach.

Thanks, Marty

H	14) ALTERNAT USED FOR APPROVAL 13. SEAL SHI LID, 30, S PLUG, TOF PLUS RUN	E OR EQUIVALENT ITEMS THIS ITEM WITH PRIOR -' PPING CONTAINER USING SCREWS, 31, O-RING, ANI RQUE ITEM 30, SCREWS INING TORQUE PER JPL S	S MAY BE ENGINEERING ITEMS 28, D ITEM 32, TO 1.9 N*M SPEC			
G	PLUS RUN SPEC ES5 12. SECURE F ITEM 26, HALF TUR 11. INSTALL I SHIPPING RUNNING	INING TORQUE PER JPL 17040. LEXURE RING OF ITEM 1 USING ITEM 29, NUTS. T N PAST FINGER TIGHT. TEMS 26, MOUNT, INTO I BASE. TORQUE TO 200 N TORQUE PER JPL SPEC E	OR 2, TO TIGHTEN NUTS ITEM 27, N*MM PLUS ES517040.			
F	10, FOR -7 C UNION NU USING ITE ADHESIVE SPEC ES5 ACCELERO TORQUE T SPEC ES5 9, FOR -6, - ITEM 10, OI ITEM 43, A 9 OR 35, M SCREW, T	ONFIGURATION, SECURE I T, TO ITEM 35, MASS SI M 40, SET SCREW, AND TORQUE TO 1.7-2.2 N 17040. SECURE ITEM 33, METER, TO ITEM 39, UNI O 1.7-2.2 N*M PER JPL 17040. AND -9 CONFIGURATIO R 36, ACCELEROMETER M ACCELEROMETER SIMULATION MASS SIMULATOR USING I ORQUE TO 200 N*MM PLU	ITEM 39, MULATOR ITEM 25 *M PER JPL ION NUT AND ION NUT AND ION TO ITEM ITEM 22, IS RUNNING			
E	TORQUE PE 8. FOR -7 CO ACCELEROM MOUNT. TO 1.7-2.2 N*N ITEM 34, CO 7. FOR -6 CO ACCELEROM MOUNT US	R JPL SPEC ES517040, INFIGURATION, SECURE I IETER, TO ITEM 36, ACCE IRQUE ITEM 33, ACCELER PER JPL SPEC ES5170, ABLE, TO ITEM 33, ACCI INFIGURATION, BOND ITER IETER, TO ITEM 10, ACCE	TEM 33, Elerometer Rometer, to 40. connect Elerometer. M 37, Elerometer			
D	G, FOR ALL C -9, INSTAL CAN. TORQU 5, FOR ALL C SECURE IT LIGHT SEAL USING ITEN	CONFIGURATIONS EXCEPT L ITEM 17, SCREW, INTE JE TO 425 N*MM PER JF CONFIGURATIONS EXCEPT EM 11, 42, OR 49, CAN A L TO FLEXURE RING OF 4 24, SCREW, AND ITEM	-6, -7, AND I ITEM 11 DR 49, PL SPEC ES517040. -6 AND -7, AND ITEM 45, ITEM 1 DR 2, 21, SPRING			
	WASHER, SPEC ES51 (4,) FOR ALL (AND -9, SE FILTER, TE SCREW, ITE WASHER, TE SPEC ES51	TORQUE TO 200 N*MM PE 7040, ECURE ITEM 12, 13, 14, 1 I ITEM 1 OR 2, USING IT EM 19, NUT, AND ITEM 21 ORQUE TO 200 N*MM PER 7040,	ER JPL -6, -7, -8, 15, DR 16, TEM 23 DR 48, 1, SPRING 2 JPL			
С	3, FOR ALL 0 -9, BEND 7, OR 8 AN CONFIGURA STRAP SIM STRAP, USE WASHER AN INSTALLAT	CONFIGURATIONS EXCEPT THERMAL STRAP ON ITEM ND FASTEN TO ITEM 1 OI TION SECURE ITEM 44, 1 ULATOR IN PLACE OF TH E ITEM 22, SCREW, AND ND TORQUE TO 100 N*MM ION ONLY.	-6, -7, AND 1 3, 4, 5, 6, R 2. FOR -9 Thermal Hermal ITEM 46, FOR TEMPORARY			
В	ZA SECURE IT ITEM 1 OR CONFIGURA OR 41 TO USING ITEN WASHER. TI ES517040. ITEM 25, E -6 AND -7	LM 3, 4, 5, 6, 7, 8, 9, 2 USING ITEM 19, NUT, TIONS EXCEPT -6 AND - BRACKET OF ITEM 3, 4 FLEXURE RING OF ITEM 4 18, SCREW, AND ITEM ORQUE TO 200 N*MM PER SPOT BOND ITEM 19, N POXY ON ALL CONFIGUR	UR 35, TO FOR ALL 7, SECURE 5, 6, 7, 8, 1 OR 2, 21, SPRING 21, SPRING 3 JPL SPEC NUT USING ATIONS EXCEPT	\wedge		
A	1. FOR CONFIN ITEM 33, A MASS SIMUN ALLOW CAN SIMULATOR, AGAINST IT 1.7-2.2 N*N ITEM 34, C NOTES: UNLESS	GURATIONS -7 AND -9, 3 ACCELEROMETER, TO ITEM LATOR, ROTATING CONNER BLE TO EXIT TOWARD TO TORQUE ITEM 38, SET TEM 33, ACCELEROMETER, A PER JPL SPEC ES5170 CABLE, TO ITEM 33, ACCI S OTHERWISE SPECIFIED	SECURE 1 35, CTOR TO JP OF MASS SCREW, , TO 40, CONNECT ELEROMETER,	<u>/16</u> , <u>15</u> ,	FOR -2 AND -3 CONFIGU BRACKETS OF ITEM 5 OF ITEM 50, SCREW. TORQU SPEC ES517040. FOR CONFIGURATIONS EX MARK AS SHOWN WITH I USE APPROPRIATE DASH AND TYPE (P/LW, S/LW,	JRATIONS, SEC ? 6, TO ITEM JE TO 180 N*1 :CEPT -6, -7, TEM 47, EPOX NO., S/N, MOI , ETC.).

Released on DEC-09-2004 by Richard G Bannister and signed by Richard S Mcnabb CHK, Paul D Macheal STRU, Michael D Knopp MATP, Dustin J Crumb DEGN, Mark A Weiler COGE, Richard G Bannister

				5		4
		LTR	ZONE			DESCRIPTION
		А				INITIAL RELEASE
		В			ADDED	ITEM 51, ADDED VIEW SH4, MOVED VIEW F
		L	1 1			
	1	1		51		10209903-1
	4	4		50		NA0070-016004
	1	1		49		10209805-2
 6				48		NA0068A016012
AR	AR	AR	AR	47		
2	2	2	2	46		ST12259-020
1	1	1	1	45		10209807-1
				44		10000047 1

						4	4		50			NA0070-016004
						1	1		49			10209805-2
				6	6				48			NA0068A016012
	AR			AR	AR	AR	AR	AR	47			
	2			2	2	2	2	2	46			ST12259-020
	1			1	1	1	1	1	45			10209807-1
1									44			10209847-1
1									43			10209744-1
1									42			10217688-1
1									41			10217680-1
		1							40		0E328	92313A829
		1							39		0E328	90977A021
1		1							38		0E328	92313A824
			1						37			
		1							36			10209746-2
1		1							35			10209745-2
1		.3							.34			6011 A10
1		3							33			3031 85
1	1	1	1	1	1	1	1	1	32		SE027	2 P50N
						ļ	I				JLUZ/	
1	1	1	1	1	1	1	1	1	31		05328	02628331
												92021001
8	8	8	8	8	8	8	8	8	30			MS5197-50
						4	4	4	29			
												114003+00+0
1	1	1	1	1	1	1	1	1	28			10209809-1
		1	1		1	1	1	1	27			10209808-1
4	4	4	4	4	4	4	4	4	26		OF 328	9217K32
	AR	AR	AR	AR	AR	AR	AR	AR	25			FC 2216 A/B
4				4	4	4	4	4	20			NA0069-016010
						6	6	6	23			NA0068A016010
6	2		4	2	2	2	2	2	20			NA0069-020010
20	20			20	20	20	20	20	21			B0187-010-S
20				20	20	20	20	20	20			
4		4		6	6	6	6	6	10			934 - 42 M1 6 X 0 35
4	4	4	4						19			934-A2 M1.0 X 0.33
				4	4	4	4	4				NA0089-018004
	2			2	2	2	2	2	17			
												NA0089-040008
				1					16			
					1							5/SW FILIER
						A						5/LW FILIER
									4			P/SW FILTER
									13			P/MW FILTER
											_	P/LW FILTER
	1			1	1			1	11		_	10209805-1
			1						10			10209746-1
			1						9			10209745-1
				1					8			10209850-1
					1				7			10209840-1
1	1	1	1	1	i i	1	1	1	1	1	1	1

-2-1ITEMQTY REQDNO PART OR IDENTIFYING NO REF DES CAGE NO MATERIAL UNLESS OTHERWISE SPECIFIED CONT DIMENSIONS ARE IN MILLIMETERS LINEAR TOLERANCES: $\begin{array}{cccccccc} 0-6 & \pm & 0.1 \\ 0 \ \mbox{VER} & 6-30 & \pm & 0.2 \\ 0 \ \mbox{VER} & 30-120 & \pm & 0.3 \\ 0 \ \mbox{VER} & 120-315 & \pm & 0.5 \\ 0 \ \mbox{VER} & 315-1000 & \pm & 0.8 \\ 0 \ \mbox{VER} & 1000 & \pm & 1.2 \\ \end{array}$ APPD DWN CHK STRU MATL THRM CONT METRIC THIRD ANGLE PROJECTION ANGULAR TOLERANCES: ± 0.5° SPIRE MACHINE FINISH 3.2 (MICROMETERS) ____ NEXT ASSEMBLY USED ON DO NOT SCALE DRAWING ENGR INTERPRET DWG PER ASME Y14.100M APPLICATION 5 4

6

5

4

1 3

1 2

| 1

1

1 1 1

1

-9 -8 -7 -6 -5 -4 -3

10209830-1

10209820-1

10209810-2

10209810-1

10209860-2

10209860-1

ECURE CONNECTOR M 49, CAN, USING *MM PER JPL

7, AND -9,]XY INK, DDEL (CQM/PFM)

6

3				2						1				-
REVISIONS		DWN	снк	STRUCT	MATL	THRM CONT			ENGR	DSGN SUPV	DATA MGT	RELE	ASE DATE	
ROM SH2 TO SH4	<u> </u>				SEE -	TITLE E	BLOCK				RGB	03.	/15/04	-
												<u> </u>		
												<u> </u>		
RING, SPACER SCREW, MACHI	NF FLUS	SH HI	-AD	N/	007)			-28	6 CR	FS			-
CAN, LIGHT									. 20					
SCREW, MACHI EPOXY INK, BI	NE PAN _ACK	HEA)		40068	3		A	-28	6 CR	ES			-
WASHER, COUN	NTERSUN	NK,		ST	1225	59		A	-28	6 CR	ES			
SEAL, LIGHT														-
SIMULATOR, TH		STRA	5											G
ACCELEROMETE	JR, IR													
CAN, LIGHT, S	TM													
SET SCREW, 1	0-32 L	JNF X	1/2	2"				M		STER	CAR	R⁄14		-
UNION NUT, 1)-32 U	NF						N		STER	CAR	R <u>/1</u> 4		
3/16"	0-32 C									SIEN	CAR			
	R, THRI	EE AX FR	(IS											
MASS SIMULAT	OR													
CABLE, ACCELE	EROMETE	ER	VIS					D		N				F
PLUG, O-RING			X13					P		ER FL				-
0-RING 114 F	imm ID	X 3	mm						ONN	LCIO STFR	RS - CAR	<u></u> R		-
WIDTH											CAN			
SCREW, #8-32	2 UNC 2	X 1.2 HFX	5"		5519 0034	7			-28	$\frac{1}{6}$	FS			-
EXTENDED WAS	SHER, 1	100	MPa		.000	т 			~ 20					
CONTAINER, SE	HPPING,	LID												-
MOUNT, NATUR	AL RUB	BER,	_					M	ICMA:	STER	CAR	R		
FPOXY	X U./									<u>/14</u>				E
SCREW, CAP, 1	SOCKET	HEAD).	NA	0069	9		A	-28	6 CR	ES			
FULL THREAD,	NF PAN	ЛРа ————————————————————————————————————	<u>ר</u>	N/	0068	3			-28	6 CR	FS			-
SCREW, CAP, 1	SOCKET	HEAD).	N/	0069	9		A	-28	6 CR	ES			
BELLEVILLE SP	RING W	ASHEF	2											
NUT SCREW, CAP, 1	SOCKET	HEAD).	DI NA	N 93	54 9		A A	-28 -28	6 CR 6 CR	ES ES			-
FULL THREAD,	1100 N	/Pa				_								
FULL THREAD,	1100 N	неац ИРа).		40068	J			-28	6 CR	ES			
S/SW FILTER														
P/SW FILTER														-
P/MW FILTER														
CAN, LIGHT														
MOUNT, ACCEL	EROMET	ER												
DETECTOR ASS	EMBLY,													Ь М
DETECTOR ASS	SHORI	WAV	Έ											
SPECTROMETER	R LONG	WAVE												
DETECTOR ASS	EMBLY, Short V	VAVE												
DETECTOR ASS	EMBLY,													Ì
DETECTOR ASS	EMBLY,													
PHOTOMETER L SIMULATOR	ONG W	AVE												
DETECTOR ASS	EMBLY,													-
SUSPENSION A	LONG W	4VE Y												B
SUSPENSION A	SSEMBL	Y												
NOMENCLATUR	E OR DESCR	RIPTION			SPEC	CIFICATI	ON			MATERI OR NO	AL TE		ZONE	
PARTS LIST			- 1	חר	וחר								11/	-
		JŁ			JYL DRNIA		IUTE (N L	_AE		Al	Uk	Ϋ́	
2D DATE					RE		D THR	OUGH	EDMG					
D. CRUMB 0 R MCNABB 0	3/11/04 3/11/04				R	$\square $	ΠМ	FΤ	-	Ś				
RUCT P MACNEAL 0	3/11/04		ŢηΓ	[LII D	$ \land \land$	ц СГ	` Т NЛ Т	$\sum $	\checkmark		RATE.
<u>м</u> Т	., 10/ 04	0	ןת דר				Ι <u>Σ</u>	<u>н</u>	JC (_ ' _				JENEF
			2	UAGE	^{№0}		1	02	200	981	00) (AD
R M WEILERT 0			l ICLA	- SSI	FIEI		SHEET	-	OF 4		NutoC			
3	I									1		RE	CV 2/00	- <

Released on DEC-09-2004 by Richard G Bannister and signed by Richard S Mcnabb CHK, Paul D Macheal STRU, Michael D Knopp MATE, Dustin J Crumb DEGN, Mark A Weile

-4 CONFIGURATION SHOWN -1 AND -5 CONFIGURATIONS ARE SIMILAR -8 CONFIGURATION SIMILAR WITHOUT FILTER

	_						
OGE, Richard G Bannister						5	4

		ENERATED
	REV	0
	В	oCAD
		ht [
REV	2/00	. 4

ΙP

SIZE	CAGE N	0			F
A 1	2383	35	10209	9800	
SCALE NO	NE	UN(CLASSIFIED	SHEET OF 4	

Released on DEC-09-2004 by Richard & Bannister and signed by Richard S Mcnabb CHK, Paul D Macheal STRU, Michael D Knopp MATE, Dustin J Crumb DEGN, Mark A Weile

	7		6	5	4
		38 1		REF	
GENERAL REFERENC SCALE: 7 CONFIG ACCELERE S SIMULA	VIEW E ONLY NONE URATION, IMETERS AND TOR SHOWN				8 36
				REF	
		-7 CONFIGUE	ATION	2	

ג								5	Λ
COGE, Richard G Ba	nnister			_				5	4

-2 CONFIGURATION SHOWN -3 CONFIGURATION IS SIMILAR

COGE, Richard G Bannister 5	

0

0

4

 \bigcirc

ECR/NCR List PFM PMW BDA 10209800-2 S/N 012

NOTE: All of these have been incorporated into released drawings.

- 1. HR-SP-JPL-ECR-003 Spectrometer BDA Envelope Height
- 2. HR-SP-JPL-ECR-005 300mK Stage Assembly BDA Kapton cable routing design error.
- 3. HR-SP-JPL-NCR-005 PMW and PSW focal position shift

DOCUMENT / ENGINEERING CHANGE REQUEST (ECR)

PRODUCT ASSURANCE Space Science and Technology Department

DCR / ECR Number:

HR-SP-JPL-ECR-003

Spacecraft / Project	HERSCHEL	Originator's Name	Martin Herman	
System / Experiment / SPIRE / Model		Signature		
Sub-System		Date	November 20,2	003
Assembly		Classification	Urgent	Routine
Sub-Assembly		Ref. Doc. / Drwg No.	JPL dwg 10209	721
Item	Bolometer Detector Assembly (BDA)	Reference		

ECR/DCR Title

Spectrometer BDA Envelope Height

ECR Description

On the ICD Drawing 10209721 sheet 2, zone H4, the current maximum height dimension is 42.5 mm from the BDA mounting plate. This dimension needs to be changed to 43.6 to encompass the two spectrometer BDA types, SLW and SSW. Photometer BDA types do not require this change. The current dimension will be replaced with a note giving the two BDA type dependent values. The allowed 300mK stage shift given in note 9 will remain.

Need / Justification For Change

The Spectrometer BDA (types SLW and SSW) 300mK filter stacks were at some point increased in thickness due to the addition of a lens. This change was not flowed down into the BDA ICD. The SLW BDA S/N008 maximum height was measured at 44.04 mm from the mounting plate, which is 1.04 mm higher than the current allowed ICD range. The nominal 42.5 mm height plus the 0.5mm allowed displacement of the 300mK stage (see ICD note 9) gives the current 43.0 mm max height.

Affected Items / Work package (Title, Number, Issue, Para)

ICD drawing 10209721 rev B

Related Factors (Highlight as applicable)					
Spacecraft	Performance	Power	Others (Specify)		
Ground Segment	Elect. Interfaces	Weight			
Launch Vehicle	Mech. Interfaces	Schedule			
Payload	Test/Verification	Cost			

Attachments	Distribution

Change Approved Project	Change Approved Customer	
Project Closure	Customer Closure	

DOCUMENT / ENGINEERING CHANGE REQUEST (ECR)

PRODUCT ASSURANCE Space Science and Technology Department

DCR / ECR Number:

HR-SP-JPL-ECR-005

Spacecraft / Project	HERSCHEL	Originator's Name	Anthony Turner	•
System / Experiment / Model	SPIRE /	Signature		
Sub-System		Date	<mark>1/19/2004</mark>	
Assembly	10209800 -2 and -3	Classification	Urgent	Routine
Sub-Assembly	10209820 and 10209830	Ref. Doc. / Drwg No.	10209775	
Item	Kapton cables assemblies, 10217706 and 10209825	Reference		

ECR/DCR Title

300mk Stage Assembly-BDA Kapton cable routing design error

ECR Description

Kapton cable right (10217705) was designed for a length of 73.93mm and Kapton cable left (10209824) was designed for a length of 68.87mm. This length designation forces the shorter cable to route into connector positions J01 and J02 on the 10209820 and 10209830 Detector Assembly-BDA builds while the longer cable will route into the J03 and J04 connector positions. This routing will cause a swap in the pixel maps for each connector denoted in wiring schematic 10209725-A under the 10209800-2 and 10209800-3 columns. Below is the correct switch in pixel maps for each column (only the first pixel of the original column is denoted for all connectors but the entire column should be switched accordingly):

10209800-2 P/MW: J01 – first pixel A7, J02 – first pixel E7, J03- first pixel A13, J04 – first pixel R1

10209800-3 P/SW: J01 – first pixel D6, J02 – first pixel F12, J03- first pixel R1, J04 – first pixel E1

Need / Justification For Change

The current flex cable assembly/routing will not correctly map to the pixel locations denoted in 10209725-A wiring schematic, SPIRE. The current schedule/budget will not allow for an acquisition of replacement cables which may have at least a 12-20 week lead from the manufacture. All sub-assembly builds (10209820 and 10209830) would have to be placed on hold until the new cables arrive. The schedule impact could be up to 6 months. The above pixel map designation change would have a minimal effect on the software side, save from rebuilding flex kapton cables and keep the project on its current schedule.

Affected Items / Work package (Title, Number, Issue, Para)

All 10209820 and 10209830 sub assemblies. Drawing 10209775-A

Related Factors (Highlight as applicable)					
Spacecraft	Performance	Power	Others (Specify)		
Ground Segment	Elect. Interfaces	Weight			
Launch Vehicle	Mech. Interfaces	Schedule			
Payload	Test/Verification	Cost			

Attachments	Distribution

Change Approved Project	Change Approved Customer	
Project Closure	Customer Closure	

NCR Title

NON-CONFORMANCE REPORT (NCR)

PRODUCT ASSURANCE Space Science and Technology Department

NCR Number:

HR-SP-JPL-NCR-005

Spacecraft / Project	Herschel		Originate	Originator's Name		Martin Herman	
Experiment / Model	SPIRE / PFM+FS		Signature				
Sub-System	Date		July 1, 2004				
Assembly					Major	Minor	
Sub-Assembly			Level (Hig	gnlight if applicable) iviajor	IVIITIOI	
ltem	PMW and PSW BD/ (10209800 -2 and -3	A 3)	NRB Ref	erence			
Serial Number	11, 12, 14,15 (TBC)						
NCR Occurred During (Highlight if applicable)	Manufacture	Inspe	pection Test		Integration	Other	
		-					

PMW and PSW focal position shift

 NCR Description

 An internal mechanical interference problem discovered during the manufacture of the PMW BDA has required a shift of the feedhorn and detector position with respect to the exterior envelope of the BDA. The exterior BDA envelope is unchanged. This NCR applies to PFM and FS models of the PMW and PSW BDAs.

 This problem causes a non-conformance with the focus position specified in the ICD drawing 10209721 (see sheet 2,

zone G3, and values tabulated on sheets 5-7). The PMW nominal focus position is changed by 1.0mm from 33.2mm to 32.2mm. The PSW focus position is changed by 1.2mm from 25mm to 23.8mm.

Front-short and back-short distances at the detectors are not affected by this change. The distance from the 300mK filter to the feedhorn entrance plane is increased by the shifts given above.

Other effects of this NCR are a small mass increase (approximately 4 grams) and a slight CG shift (estimated z-cg decrease of ~0.5mm). (Note that the PFM PMW, which is the only affected unit yet assembled, has a mass of 605g including the mass increase. This is still less than the 632g ICD limit.)

Cause of NCR

Disposition / Corrective Action

Document or Drawing Affected (Title, Number & Issue)

Estimated COST OF NCR (cost of : correction, Materials, Resource, and delay to Project etc.)

NON-CONFORMANCE REPORT (NCR)

PRODUCT ASSURANCE Space Science and Technology Department

		NCR Number:		HR-SP-JPL-N	CR-005
	PA Manager (O	r Deputy)	Projec	Manager (Or Deputy)	Date
(Signatures Required)					

Waiver List

- 1) HR-SP-JPL-RFW-005 (Sine Vibration Omission)
- 2) HR-SP-JPL-RFW-006 (Vibration Test Levels)
- 3) HR-SP-JPL-RFW-008 (Thermal Time Constant Measurement Omission)

PRODUCT ASSURANCE Space Science and Technology Department

RFW/RFD Number:

HR-SP-JPL-RFW-005

Spacecraft / Project	Herschel	Originator's Name	Kalyani Sukhatmo	e
System / Experiment / Model	SPIRE	Signature / Date		
Sub-System	detectors	Request Type (Highlight applicable request)	Waiver (RFW)	Deviation (RFD)
Assembly		Organisation	Jet Propulsion Laboratory	
Sub-Assembly		Ref. Doc. / Drwg No.	SPIRE-JPL-PRJ-000456	
Item		Deferences		
Serial No.		References		

RFW/RFD Title

BDA and JFET module sine test deletion

End Items(s) Affected (Hardware, Software)						
Name		CI-N	umber			Model(s)
Bolometric Detector Assem	Iblies				CQM, PFM, FS	
JFET Modules					CQ	M, PFM, FS
	Requ	irement / Interface Doc	uments Affect	ed		
Specification/Drawin	g Title	Number	Issue	Da	ite	App. Paragraph
BDA-SSSD (SPIRE-JPL-PI	RJ-		3.2	Jan	7,	BDA-DES-10, JFET-DES-
000456)				200	3	07
	Description	of Deviation / Discrena	ncy / Non-Con	forma	nce	
High Level Sine- Vibe Test	is not performed	on these units				
	le net perferned					
	Other Ite	ems or Requirements (F	Potentially) Aff	ected		
	Need fo	r RFW/RFD and Ration	ale for Accept	ance		
The hardware has to be o	walified under a	cold vibration test and	d is installed in	n the c	old v	vibration facility for the
purpose of the test. The h	nigh level sine v	ibration test configurat	tion will put th	e hard	lware	and the personnel at risk
since the cold vibration fa	acility is not stru	ucturally capable of wit	thstanding the	high	level	s. Obtaining additional
resources (cost and sche	dule) for develo	ping a new set-up is n	ot feasible at t	his tin	ne.	
	Approved	Rejected		Name	•	Date
JPL Engineering:						
JPL Product						
Assurance:						
CCB-Chairman:						
Principal Investigator						
Product Assurance:						
Co-Investigator						
Prime Contractor						
ESA Project Office						

RFW/RFD Number:

HR-SP-JPL-RFW-006

Spacecraft / Project	Herschel	Originator's Name		
System / Experiment /	SPIRE	Signature / Date		
Model		-		
Sub-System	Detector	Request Type	Waiver (RFW)	Deviation
-		(Highlight applicable request)		(RFD)
Assembly	BDA	Organisation	Jet Propulsion Laboratory	
Sub-Assembly		Ref. Doc. / Drwg No.		
Item		Deferences		
Serial No.		References		

RFW/RFD Title

End Items(s) Affected (Hardware, Software)							
Name		CI-Nui	nber		Model(s)		
BDA				QN	I, CQM, PFM, FS		
	Requirem	ent / Interface Docu	ments Affecte	d			
Specification/Drawing Title		Number	Issue	Date	App. Paragraph		
BDA-SSSDBDA-DES-103.2Jan 7, 03							
Desc	ription of D	eviation / Discrepand	cy / Non-Conf	ormance			
 Random Vibration Test Levels are not the same as given in the BDA-SSSD (Issue 3.2), BDA-Des-10 There are five different flavours of the BDA. The qualification vibration test is done on only one QM unit which is of the PLW type. 							
C	ther Items	or Requirements (Po	tentially) Affe	cted			
1. The random vibration tes	Need for RF	W/RFD and Rational	e for Accepta	nce SSL) in a	n email on May 2, 2003		
 The random vibration test levels are as specified by Berend Winter (MSSL) in an email on May 2, 2003, which superceded the BDA-SSSD The qualification test program in using the PLW flavor as the only Qual Model, is given in Interoffice Memorandum, Oct. 3, 2003, Henry Abakians, Subject: SPIRE BDA Random Vibration Test Program [IOM 5132-03-167] 							
Ap	proved	Rejected	I	Name	Date		
Engineering:							
Product Assurance:							
CCB-Chairman:							
Principle Investigator	Principle Investigator						
Product Assurance:							
Co-Investigator							
Prime Contractor							

PRODUCT ASSURANCE Space Science and Technology Department

RFW/RFD Number:

HR-SP-JPL-RFW-006

ESA Project Office		

PRODUCT ASSURANCE Space Science and Technology Department

RFW/RFD Number:

HR-SP-JPL-RFW-008

Spacecraft / Project	HSO / SPIRE	Originator's Name	Martin Herman	
System / Experiment /	SPIRE	Signature / Date	12/10/2004	
Model				
Sub-System	THERMAL CONTROL	Request Type	Waiver (RFW)	Deviation
		(Highlight applicable request)		(RFD)
Assembly		Organisation		
Sub-Assembly		Ref. Doc. / Drwg No.	IRD-COOL-R05	
			BDA-PER-10	
Item	10209800-2	Boforonooo		
Serial No.	S/N 012	Relefences		

RFW/RFD Title Thermal Control acceptance vibration tests - Z axis only.

End Items(s) Affected (Hardware, Software)								
Name	Name CI-Number Model(s)							
SPIRE Photometer Medium Wavelength Bolometer Detector assembly				PFM				
	Requirement / Interface Documents Affected							
Specification/Drawin	g Title	Number	Issue	Date	App. Paragraph			
BDA-HCO-2								
	Description of De	eviation / Discrepa	ncy / Non-Confo	rmance				
BDA thermal time consta	BDA thermal time constant was not measured. This was an oversight by the test team.							
	Other items of	or Requirements (P	otentially) Affec	ted				
	Nood for PE	W/PED and Pation	alo for Accontan					
	Need for RF		ale for Acceptan	ice				
This measurement can b this provides confidence flight units) that the prob	e done at the instru (combined with no pability of a problem	ment system level minal performance is low.	Detector time of for this parame	onstant h ter for 3 p	as been measured and reviously delivered			
	Approved	Rejected	Na	ame	Date			
Engineering:								
Product Assurance:								
CCB-Chairman:								
Principle Investigator								
Product Assurance:								
Co-Investigator								
Prime Contractor								
ESA Project Office								

INTEROFFICE MEMORANDUM 5132-03-167 October 3, 2003 Project: Herschel/Planck

TO: Martin Herman

FROM: Henry Abakians

SUBJECT: SPIRE BDA random vibration test program

This IOM outlines the random vibration test program for Herschel/Planck project's SPIRE element. Due to schedule and cost constrains, our proposed test program does not strictly conform to JPL's standard random vibration program; however, it maintains a medium to low risk posture.

The recommendations will concentrate on the vibration environment since that is the source of highest stresses on the unit. The SPIRE qualification program also includes thermal cycling and accelerated aging, but it will not be addressed in this IOM.

The SPIRE element of the JPL Herschel/Planck project has several Bolometer Detector Assemblies (BDA). These BDAs are identical in their outer housing, and primarily vary in a thermally isolated suspension which contains the bolometer array and the feedhorn (the suspension is held on to the housing via two rows of braided Kevlar strings). There are five flavors to these suspensions: PSW, PMW, PLW, SSW, SLW (P: photometer, S: spectrometer, LW: long wave, MW: medium wave, SW: short wave). The suspensions also vary in their mass and center of gravity (PLW the heaviest, SSW the lightest).

In a traditional JPL Qual/FA test program, a Qual unit for each BDA flavor would be tested (3-axis, 2 min. per axis), and all subsequent flight units would be FA tested (3-axis test, FA levels, 1 min. per axis). In a traditional Protoflight program, all flight units would be protoflight tested (3-axis test, Qual levels, 1 min. per axis).

The SPIRE element has evolved into a Qual/FA/Protoflight test program. We have built and successfully tested a qual unit (CQM, PLW). It was random vibrated at Qual levels and durations (2 minutes) in three axes. This unit successfully passed the random vibration test, and remained within the specifications (performance or otherwise). Our proposed test program for all subsequent BDAs is as follows:

BDA type	test program	random vibe axis	duration
PSW	PF	x	2 min
PMW	PF	x	2 min
PLW	Qual/PF	3 axis Qual	2min/axis
		PF-x axis only	1 min
SSW	PF	x	2 min
SLW	PF	Х	2 min

JPL

The test program deviates from a standard JPL program; however, we believe it maintains an acceptable risk posture for the following reasons:

1-The vibration in the z-direction is substantially more benign than x and y. Therefore, we can eliminate the random vibration test in the z-direction for all flight units (this is based on the CQM test results).

2-There is sufficient cross-talk between x and y (based on CQM test results). Therefore, we can eliminate the y direction shake and perform the test in the x-direction for an additional 1 minute (x is the more severe direction; moreover, since we are not concerned with low cycle fatigue failure – substantiated by the CQM test - we feel justified in extending the x-direction test duration to 2 minutes, thus indirectly testing for y-direction).

While it is clearly more desirable to test in y-direction directly, eliminating this test is primarily driven by cost and schedule constraints: all our test are performed at or below 100K, thus a one axis vibration will require a minimum of 3 work days; however, extending a 1 minute test to 2 minutes will not impact schedule, cost, or the safety of the hardware.

3-We have tested the heaviest assembly (PLW) for our qualification program. This ensures that our design is validated for the highest possible stresses in the Kevlar string.

4- Force transducers will be utilized in 3 directions. Their responses will be correlated with the CQM results providing additional assurance on hardware workmanship, reliability and robustness.

John Forgrave, Concurrence:

Environmental requirements Engineering, Group Supervisor

Concurrence:

Paul MacNeal, Dynamics Engineer Herschel/Planck

Concurrence:

Tim Larson, Mission Assurance Manager Herschel/Planck

Distribution: Bill McAlpine Margaret Frerking Michael O'Connell Gary Parks Kalyani Sukhatme Mark Weilert -2-

Open Problem / Failure Report (PFR) List

Open PFR's on This Hardware (PFM PMW BDA 10209800-2 S/N 012): NONE

Open PFR's on Similar Hardware:

NONE

SPIRE Bolometer Detector Assembly Handling Document

Prepared by Mark Weilert

20 August, 2003 revised 20 Nov. 03

WARNINGS

BDA is Contamination Sensitive: Open Red Shipping container only in a FED-STD-209 Class 10000 clean room (ISO 14644-1 class 7) or better. Handle BDA with gloves only.

BDA is ESD Sensitive, handle with grounding straps, ESD-safe gloves and ESD smocks at an ESD-safe workstation. Note that no connector savers or other connector protection are shipped with the BDA, per the business agreement.

BDA is Fragile: Do not drop or otherwise shock. Take care to avoid applying unnecessary force to the Kevlar suspended portion of the BDA. In particular, do not torque the thermal strap interface fasteners to greater than 320 N*mm. The BDA is preferably held/supported either by its square mounting flange, or by the light-seal can which holds the electrical connectors. Note that the red shipping container provides only minimal shock isolation, and should be treated as equally fragile while the BDA is inside. Because the Kevlar tension is higher at room temperature than cold, **DO NOT SHAKE TEST AT ANY TEMPERATURE ABOVE 100K** (except for low-level survey shakes, 0.25g typical). A full level shake at room temperature risks **catastrophic** failure. Avoid touching Kevlar braid with anything, it is sensitive to abrasion or cutting by seemingly smooth objects.

BDA is Humidity Sensitive: The Kevlar tension increases with moisture absorption. Keep in a dry environment when possible during storage or while not being handled. (While being actively handled, higher humidity is acceptable to maintain ESD safety, 35-50% RH typical.)

BDA is Temperature Sensitive: The Kevlar tension and creep increases at high temperatures, **DO NOT BAKE OUT AT ABOVE 80°C.**

Unpacking Procedure:

The BDA is shipped in a multi-layer container. A custom shipping container (red) inside a case inside case. The case should be opened only in a reasonably clean area in order to protect the red shipping container, which should only be opened in a class 10000 or better clean room at an ESD-safe workstation. The red shipping container has three shockmonitors attached to the top, labeled 10g, 20g and 50g. The monitors have steel balls and springs which are contained between plastic rails if the unit has not seen the marked shock level. If the monitors have experienced their specified shock, some of the balls will be loose in the bottom. Please note the state of the three shock monitors and report the result to JPL. These monitors may need to be removed from the top of the red shipping container before it is opened, since they probably obstruct access to the vent plug. They are attached with a double-stick tape adhesive and may be pulled off by applying force to the white base. (Avoid just pulling on the clear case, as this will likely open up the monitor and spill the contents.) **NOTE: The cases holding the red shipping container must be returned to JPL for use in future shipments.**

Opening the Red Shipping Container:

An exploded view of the container is shown below. The top is the side with the vent plug in the center. Make sure the area around the plug is clean, then remove the plug to equalize the pressure. The 8 closeout screws are next loosened alternately (with a 1/8"

hex key) to relieve pressure on the o-ring seal, and then backed off completely to disengage the screws from the base. The container lid is then lifted straight up to open the container. Two guide pins prevent significant sideways motion of the lid until it is high enough to clear the BDA The BDA is removed from the shipping container base by removing the mounting nuts and washers from the rubber shock mounts and lifting the BDA straight up.

For re-installation of the BDA into the red container, note that the light can must be up, as shown, to prevent the container lid from hitting the BDA. Also, the epoxy terminations of the Kevlar braids should be oriented towards the cutouts in the container base.

SPIRE

Subject: BDA Electronic Handling Procedure, SPIRE P/MW-PFM S/N012

Prepared by: Anthony Turner

Document No:

Issue: Draft

Date: 12/13/2004

Checked by:

Date:....

Approved by:....

Date:....

Electronic Handling Procedure P/MW-PFM S/N012 Issue: Date:

Distribution

Change Record

Issue

Date

Electronic Handling Procedure P/MW-PFM S/N012

Date:

Table of Contents

1.	Introduction	page	6
2.	Handling	page	6
3.	Signal Requirements	page	6
4.	Device Isolation	page	7
5.	Room Temperature Detector Values Check	page	7
6.	Load Resistor-Detector Continuity Check	page	12

Glossary

1. Introduction:

This document provides the Electronic Handling Procedure for the Proto-Flight Model-Photometer Medium Wavelength Bolometer Detector Array serial number 012.

2. Handling:

- 1. BDA is Contamination Sensitive: Handle BDA with Gloves only in a FED-STD-209 Class 10000 clean room (ISO 14644-1 class 7) or better.
- 2. BDA is ESD Sensitive: Electronic parts included in the P/MW-PFM S/N012 science instrument are subject to electro-static discharge failures. Please handle with appropriate ESD hardware handling procedures. Handle with grounding straps, ESD-safe gloves, ESD smocks at an ESD-safer workstation.

3. Signal Requirements:

The interface circuit for the BDA contains a series of resistive networks as depicted in figure 1. Two high resistive load resistors (~ 6-14 M Ω) are coupled to a NTD Ge thermistor (R bolo) through a lithographed metalization circuit and provide the bias circuitry for the device. The maximum DC input voltage for the bias lines V+ and V- lines is +/- 1 V, and the maximum AC input voltage is 100mV rms.

Figure 1: Interface circuit of the Bolometer Detector Array

Electronic Handling Procedure P/MW-PFM S/N012

Date:

DC Voltage-Current Limits for Room Temperature Detector Values Check:

Signal	Pin	Nominal Value	Max Value
V+	25	+50mV	+1 V
V-	50	-50mV	-1 V
I+,I-	25,50	10µA	25μΑ

DC Voltage-Current Limits for room temperature Load Resistor-Detector Continuity Check:

Signal	Pin	Nominal Value	Max Value	
V+	25	+50mV	+1 V	
V-	50	-50mV	-1 V	
I+, I-	25,50	<0.5µA	1µA	

4. Device Isolation Check:

The 300mK stage Kevlar suspended portion of the detector chassis is grounded directly to the electronic ground on pin 51 of the nanonics 51 pin connectors on each side. A resistance of less than 200 Ω can be checked from the thermal strap of the 300mK stage to electrical ground pin 51. The 2K stage is electrically isolated from the electronic ground via the Kevlar supports. Measuring from pin 51 to any metal section of the 2K stage will yield an open circuit.

5. Room Temperature Detector Values Check

The final measured DC resistance value for each of the bolometer detector at room temperature is shown in tables 1 through 4. The measurements bypass the load resistors in the circuit measuring directly through the output signal pins on the two nanonics 51 pin connectors. All measurements were performed with a Fluke 87 True RMS Multimeter set in the $4k\Omega$ range. All measurements are in $k\Omega$ unless designated otherwise. Channels that are out of range are re-measured using the $40M\Omega$ range to determine their value. The failure mode of any particular channel is also designated in tables 1 through 4. The designation for the failure modes are open- Channel open at 300mK, short-channel shorted at 300mK, and float- channel floating at 300mK.

Electronic Handling Procedure P/MW-PFM S/N012

Issue: Date:

Table 1: P/MW PFM S/N012 Room Temperature DC Detector Measurements J01 connector

Connector		Nanonics	Nanonics	Detector	Resistance	Failure
Label	Signal	Pin From	Pin To	Label	(kohms)	Mode
J01	1	1	26	A7	3.058	
	2	2	27	A6	3.07	
	3	3	28	B6	3.12	
	4	4	29	C7	3.175	
	5	5	30	A5	3.113	
	6	6	31	B5	3.183	
	7	7	32	C6	3.22	
	8	8	33	D6	3.242	
	9	9	34	B4	3.221	
	10	10	35	C5	3.257	
	11	11	36	D4	3.25	
	12	12	37	A4	3.262	
	13	13	38	C 4	3.334	
	14	14	39	B3	3318	
	15	15	40	C3	3.373	
	16	16	41	B2	3.407	
	17	17	42	D2	3.493	
	18	18	43	A3	3.45	
	19	19	44	A2	3.498	
	20	20	45	C2	3.575	
	21	21	46	B1	3.577	
	22	22	47	A1	3.55	
	23	23	48	DK1	3.635	
	24	24	49	C 1	3.679	
	V+ to V-	25	50		0.356M	
	V- to gnd	50	51		>30M	
	V+ to gnd	25	51		>30M	
	Chassis to gnd				87.0 ohms	
Electronic Handling Procedure P/MW-PFM S/N012

Date:

Table 2: P/MW PFM S/N012 Room Temperature DC Detector Measurements J02 connector

Connector	Cional	Nanonics	Nanonics	Detector	Resistance	Failure
Label	Signal	Pin From	Pin To	Label	(kohms)	Mode
J02	1	1	26	E7	3.105	
	2	2	27	D7	3.171	
	3	3	28	F7	3.128	
	4	4	29	E8	3.165	
	5	5	30	G8	3.14	
	6	6	31	F8	3.176	
	7	7	32	E9	3.231	
	8	8	33	G9	3.161	
	9	9	34	D9	3.301	
	10	10	35	F9	3.277	
	11	11	36	E10	3.31	
	12	12	37	G10	3.224	
	13	13	38	F10	3.31	
	14	14	39	E11	3.352	
	15	15	40	G11	3.305	
	16	16	41	F11	3.375	
	17	17	42	E12	3.465	
	18	18	43	G12	3.413	
	19	19	44	F12	3.564	
	20	20	45	G13	3.507	
	21	21	46	DK2	3.621	
	22	22	47	SH	2.047	
	23	23	48	SH	2.089	
	24	24	49	R2	4.32M	
	V+ to V-	25	50		.370M	
	V- to gnd	50	51		>30M	
	V+ to gnd	25	51		>30M	
	Chassis to gnd				93.7 ohms	

Electronic Handling Procedure P/MW-PFM S/N012

Date:

Table 3: P/MW PFM S/N012 Room Temperature DC Detector Measurements J03 connector

Connector	Signal	Nanonics	Nanonics	Detector	Resistance	Failure
Label	Signai	Pin From	Pin To	Label	(kohms)	Mode
J03	1	1	26	A13	3.456	
	2	2	27	T1	3.548	
	3	3	28	B12	3.466	
	4	4	29	C13	3.454	
	5	5	30	A12	3.372	
	6	6	31	D12	3.43	
	7	7	32	C12	3.374	
	8	8	33	B11	3.318	
	9	9	34	A11	3.216	
	10	10	35	E13	3.284	
	11	11	36	D11	3.247	
	12	12	37	C11	3.188	
	13	13	38	B10	3.132	
	14	14	39	A10	3.107	
	15	15	40	D10	3.182	
	16	16	41	B9	3.115	
	17	17	42	C10	3.131	
	18	18	43	C9	3.1	
	19	19	44	A9	3.035	
	20	20	45	B8	3.063	
	21	21	46	A8	3.069	
	22	22	47	D8	3.115	
	23	23	48	C8	3.078	
	24	24	49	B7	3.038	
	V+ to V-	25	50		0.356M	
	V- to gnd	50	51		>30M	
	V+ to gnd	25	51		>30M	
	Chassis to gnd				91.1 ohms	

Electronic Handling Procedure P/MW-PFM S/N012

Date:

Table 4: P/MW PFM S/N012 Room Temperature DC Detector Measurements J04 connector

Connector	Signal	Nanonics	Nanonics	Detector	Resistance	Failure
Label	Signai	Pin From	Pin To	Label	(kohms)	Mode
J04	1	1	26	R1	4.20M	
	2	2	27	G1	3.394	
	3	3	28	T2	3.493	
	4	4	29	E1	3.392	
	5	5	30	D1	3.405	
	6	6	31	F1	3.308	
	7	7	32	E2	3.342	
	8	8	33	G2	3.243	
	9	9	34	F2	3.213	
	10	10	35	G3	3.159	
	11	11	36	E3	3.201	
	12	12	37	D3	3.235	
	13	13	38	F3	3.125	
	14	14	39	G 4	3.047	
	15	15	40	E4	3.138	
	16	16	41	F4	3.071	
	17	17	42	E5	3.113	
	18	18	43	D5	3.127	
	19	19	44	F5	3.047	
	20	20	45	G5	2.988	
	21	21	46	E6	3.06	
	22	22	47	G6	3.005	
	23	23	48	F6	3.013	
	24	24	49	G7	2.995	
	V+ to V-	25	50		0.370M	
	V- to gnd	50	51		>30M	
	V+ to gnd	25	51		>30M	
	Chassis to gnd				93.1 ohms	

Electronic Handling Procedure P/MW-PFM S/N012

6. Load Resistor-Detector Continuity Check

A DC continuity check of the load resistors in series with the bolometer detectors will complete the electrical checkout at room temperature. The test can be performed with a Fluke 87 True RMS multimeter set on the 40M Ω scale. The data set measures from V+ to output signal S+ and V- to output signal S- for each channel. The nominal value read for the live bolometer channels (room temp detector DC resistance ~ 1.5k Ω) should read approximately 3-6M Ω . Channels with open bolometer channels will give values 8M Ω or higher. The Data sets for the P/MW -PFM S/N012 for the final test through the entire circuit are shown in tables 5 through 8.

Electronic Handling Procedure P/MW-PFM S/N012

Issue: Date:

Table 5: P/MW-PFM S/N012 Load Resistor- Detector DC Continuity Check J01 connector

~			Bias V+	V+ to S+	Bias V-	V- to S-
Connector	Signal	Detector	(pin 25) To	Resistance	(pin 50)	Resistance
Label	6	Label	S + pin	(Mohms)	To S- pin	(Mohms)
J01	1	A7	1	4.28	26	4.31
	2	A6	2	4.32	27	4.28
	3	B 6	3	4.28	28	4.28
	4	C7	4	4.32	29	4.33
	5	A5	5	4.33	30	4.32
	6	B 5	6	4.31	31	4.31
	7	C6	7	4.32	32	4.32
	8	D6	8	4.32	33	4.32
	9	B4	9	4.32	34	4.32
	10	C5	10	4.33	35	4.36
	11	D4	11	4.36	36	4.36
	12	A4	12	4.34	37	4.35
	13	C4	13	4.4	38	4.4
	14	B3	14	4.42	39	4.4
	15	C3	15	4.36	40	4.38
	16	B 2	16	4.43	41	4.4
	17	D2	17	4.4	42	4.4
	18	A3	18	4.36	43	4.4
	19	A2	19	4.4	44	4.44
	20	C2	20	4.42	45	4.42
	21	B1	21	4.37	46	4.4
	22	A1	22	4.44	47	4.41
	23	DK1	23	4.4	48	4.44
	24	C1	24	4.4	49	4.4

Electronic Handling Procedure P/MW-PFM S/N012

Date:

Table 6: P/MW-PFM S/N012 Load Resistor- Detector DC Continuity Check J02 connector

Connector	Signal	Detector	Bias V+ (pin 25) To	V+ to S+ Resistance	Bias V- (pin 50)	V- to S- Resistance
Label	Signai	Label	$\frac{(pm 2s)}{S+pin}$	(Mohms)	To S- pin	(Mohms)
J02	1	E7	1	4.48	26	4.48
	2	D7	2	4.47	27	4.48
	3	F7	3	4.45	28	4.44
	4	E8	4	4.46	29	4.49
	5	G8	5	4.48	30	4.48
	6	F8	6	4.45	31	4.47
	7	E9	7	4.48	32	4.52
	8	G9	8	4.52	33	4.52
	9	D9	9	4.52	34	4.52
	10	F9	10	4.52	35	4.53
	11	E10	11	4.59	36	4.56
	12	G10	12	4.53	37	4.53
	13	F10	13	4.55	38	4.56
	14	E11	14	4.6	39	4.56
	15	G11	15	4.56	40	4.56
	16	F11	16	4.56	41	4.6
	17	E12	17	4.6	42	4.6
	18	G12	18	4.56	43	4.6
	19	F12	19	4.61	44	4.6
	20	G13	20	4.6	45	4.6
	21	DK2	21	4.6	46	4.6
	22	SH	22	4.6	47	4.62
	23	SH	23	4.6	48	4.6
	24	R2	24	5.64	49	5.66

Electronic Handling Procedure P/MW-PFM S/N012

Date:

Table 7: P/MW-PFM S/N012 Load Resistor- Detector DC Continuity Check J03 connector

Connector	Signal	Detector	Bias V+ (pin 25) To	V+ to S+ Resistance	Bias V- (pin 50)	V- to S- Resistance
Label	•	Label	S+ pin	(Mohms)	To S- pin	(Mohms)
J03	1	A13	1	4.36	26	4.37
	2	T 1	2	4.36	27	4.36
	3	B12	3	4.32	28	4.38
	4	C13	4	4.38	29	4.36
	5	A12	5	4.36	30	4.36
	6	D12	6	4.36	31	4.38
	7	C12	7	4.38	32	4.38
	8	B11	8	4.36	33	4.36
	9	A11	9	4.4	34	4.36
	10	E13	10	4.39	35	4.38
	11	D11	11	4.4	36	4.4
	12	C11	12	4.39	37	4.36
	13	B10	13	4.36	38	4.37
	14	A10	14	4.36	39	4.36
	15	D10	15	4.32	40	4.32
	16	B9	16	4.36	41	4.36
	17	C10	17	4.36	42	4.33
	18	C9	18	4.32	43	4.32
	19	A9	19	4.33	44	4.32
	20	B 8	20	4.35	45	4.31
	21	A8	21	4.31	46	4.32
	22	D8	22	4.32	47	4.32
	23	C8	23	4.32	48	4.31
	24	B7	24	4.28	49	4.28

Electronic Handling Procedure P/MW-PFM S/N012

Date:

Table 8: P/MW-PFM S/N012 Load Resistor- Detector DC Continuity Check J04 connector

Connector	Signal	Detector	Bias V+	V+ to S+	Bias V-	V- to S-
Label	Signal	Label	(p1n 25) 10	Resistance	(pin 50)	Resistance
			$S + p_{1}n$	(Mohms)	To S- pin	(Mohms)
J04	1	R1	1	5.44	26	5.48
	2	G1	2	4.44	27	4.44
	3	Τ2	3	4.46	28	4.42
	4	E1	4	4.41	29	4.45
	5	D1	5	4.44	30	4.44
	6	F1	6	4.46	31	4.43
	7	E2	7	4.4	32	4.44
	8	G2	8	4.42	33	4.44
	9	F2	9	4.46	34	4.44
	10	G3	10	4.4	35	4.44
	11	E3	11	4.42	36	4.44
	12	D3	12	4.44	37	4.44
	13	F3	13	4.43	38	4.45
	14	G4	14	4.44	39	4.44
	15	E4	15	4.4	40	4.4
	16	F4	16	4.44	41	4.44
	17	E5	17	4.44	42	4.44
	18	D5	18	4.4	43	4.4
	19	F5	19	4.44	44	4.43
	20	G5	20	4.4	45	4.4
	21	E6	21	4.38	46	4.4
	22	G6	22	4.4	47	4.4
	23	F6	23	4.4	48	4.39
	24	G7	24	4.36	49	4.4

EIDP Coverpage For PMW BDA (SN012)

Unit Identfication						
Name	PM	W BDA	()	[]		
Part #	102	09800-2				
S/N	1	#012				

Environmemtal Testing							
			Duration				
	Axes		or Number of				
	Tested	Temperature	Cycles	Pass/Fail	Requirement	Source	Waiver #
			2 min per		X, Y, Z at 90 K	SSSD	HR-SP-JPL-
Random Vibration Test	Х	100 K	axis	Р	1 min per axis	Sec # 3.4	RFW-006
						SSSD	HR-SP-JPL-
High Level Sine Vibe Test	None	NA	NA	NA	X, Y, Z at 90 K	Sec # 3.4	RFW-005
					None (other than as part of the assembly		
Bakeout	NA	NA	NA	NA	procedure)	D-20549	
					1 thermal cycle		
		RoomT to			roomT to 77 K		
Thermal Cycles	NA	~ 6 K	2	Р	(max 5)	D-20549	

Other Testing	Frequ	iency [Hz]					
	Pre-full	Post-full			Minimum		
	level	level			Performance	Source	Waiver #
Lowest Resonant					> 200 Hz	SSSD	
Frequency	303 Hz	299 Hz			(Goal: >250 Hz)	Sec # 3.1.3	NA
Metrology Measurements v	I vere perfo	rmed before a	and after the V	ibration Te	t and the Therma	I Cycles	
	Motion			Meets	Performance		
	in X/Y	Motion in Z		Goal ?	Goal	Source	Waiver #
Maximum motion due to					125 µm in X/Y	SSSD	
Random Vibration Test	29 µm	27 µm		Y	and 500 µm in Z	Sec # 3.1.1	NA
Maximum motion due to					125 μm in X/Y	SSSD	
the 1st thermal cycle	9.6 μm	11 μm		Y	and 500 µm in Z	Sec # 3.1.1	NA
Maximum motion due to					125 μm in X/Y	SSSD	
the 2nd thermal cycle	5.1 μm	4.7 μm		Y	and 500 µm in Z	Sec # 3.1.1	NA
Cumulative Maximum					125 μm in X/Y	SSSD	
motion	38.7 μm	68.7 μm		Y	and 500 μ m in Z	Sec # 3.1.1	NA
Cold Continuity Measurem	ents were	made during	l each of the the	ermal cycle	<u> </u>		
				Pass/Fail	Requirement	Source	Waiver #
Cold Continuity Test							
(1st Thermal Cycle)				Р	None	NA	NA
Cold Continuity Test							
(2nd Thermal Cycle)				Р	None	NA	NA

PERFORMANCE VERIFICATION MATRIX - PFM PMW BDA - S/N 10209800-2-012

BDA Performance

Item	D. Value	Min Perf	Measured Median	Unit	Reference	Note
Number of bad optical pixels	= 9	= 22	0		BDA-PER-01	
(NEPphoton/NEPtotal)^2 (derived)	> 0.63	> 0.53	0.514		BDA-PER-02	at 18.5 mVrms bias
Optical efficiency*	> 0.85	> 0.65	0.71		BDA-PER-03	
Detector time constant	< 13	< 32	5.6	ms	BDA-PER-06	at 20 mV bias
Vmax***	< 11***		5.9	mVrms	BDA-DRCU-22	max over dark array
Calibration uniformity**	> 0.99	> 0.99	N/M		BDA-PER-08	
Cross-talk (n-n)**	< 0.01	< 0.05	N/M		BDA-PER-09	
Cross-talk (non n-n)**	< 0.001	< 0.001	N/M		BDA-PER-09	
1/f knee frequency	< 30	< 100	43.0	mHz	BDA-PER-10	at 21.2 mVrms bias
Average conducted heat load from 1.7 K	< 1.6	< 3.0	< 2.3	uW	BDA-TEC-06	

BDA Design Values (at 300 mK)

ltem	Target	Measured Median	Unit	Reference	Note
R0	180.0	83.7	Ohms	BDA-SSSD	
Delta	41.8	41.6	K	BDA-SSSD	
R300	24.0	10.8	MOhms	BDA-SSSD	
G300	53.0	56.8	pW/K	BDA-SSSD	
Beta	1.50	1.74		BDA-SSSD	
C300	1.00	0.61	pJ/K	BDA-SSSD	
RIr	10.0	8.3	MOhms	BDA-SSSD	room temp
Dark Sdc	5.9	4.1	e8 V/W	BDA-SSSD	at 21.2 mVrms bias
Dark NEP (1 Hz), incl 10 nV/rtHz amp. noise	3.5	5.4	e-17 W/rtHz	derived	at 21.2 mVrms bias
Dark NEP (0.1 Hz), incl 10 nV/rtHz amp. noise	3.5	5.8	e-17 W/rtHz	derived	at 21.2 mVrms bias
Vmax	5.8	5.1	mVrms	BDA-SSSD	median over dark array
BDA temperature rise from 1.7 K	< 10	10	mK	BDA-HCO-1	
BDA thermal time constant	~ 100	N/M	S	BDA-HCO-2	waiver issued

*assumes vlower = 1.02 vcutoff

**not tested

***Thermistor and Fixed Resistor values are not included

T1 saturates at 27.5 mV bias at 300 mK

T2 saturates at 25.2 mV bias at 300 mK

R1 saturates at 42.9 mV bias R2 saturates at 45.2 mV bias

Pixel Performance											
Item	DV	MP									
BDA connector			J01	J01	J01	J01	J01	J01	J01	J01	J01
BDA pins			1,26	2,27	3,28	4,29	5,30	6,31	7,32	8,33	9,34
BoDAC Connector			4	4	4	4	4	4	4	4	4
Channel ID			1	2	3	4	5	6	7	8	9
Detector ID			A7	A6	B6	C7	A5	B5	C6	D6	B4
BDA Pixel Operability			Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
BoDAC channel Operability	N/A	N/A	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Noisy BoDAC channel***	N/A	N/A	No	No	No	No	Yes	Yes	No	No	No
(NEPphoton/NEPtotal)^2 (derived)	> 0.63	> 0.53	0.51	0.50	0.50	0.49	0.51	0.50	0.51	0.51	0.54
Optical efficiency*	> 0.85	> 0.65	0.70	0.70	0.70	0.70	0.76	0.67	0.68	0.70	0.69
Detector time constant	< 13	< 32	6.17	6.51	6.87	5.54	6.43	5.29	5.75	5.23	5.75
Calibration uniformity**	> 0.99	> 0.99	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cross-talk (n-n)**	< 0.01	< 0.05	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cross-talk (non n-n)**	< 0.001	< 0.001	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1/f knee frequency	< 30	< 100	39	28	48	47	< 30	45	56	47	34
Item	Та	aet									
R0	18	0.0	72.7	74.5	68.4	67.5	69.9	89.7	75.7	67.7	90.7
Delta	4	1.8	42.1	41.7	42.3	41.9	42.6	40.3	42.1	42.5	42.0
G300	5	3	57.4	57.6	57.9	58.4	59.3	59.5	59.1	59.2	51.6
Beta	1	.5	1.76	1.75	1.80	1.77	1.77	1.70	1.79	1.77	1.78
C300	1.	00	0.69	0.73	0.77	0.62	0.74	0.59	0.66	0.59	0.60
Gamma	1 (fi	xed)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
R300	24	1.1	10.1	9.8	9.8	9.2	10.5	9.7	10.6	10.0	12.5
Rlr+	10	.00	8.48	8.36	8.44	8.64	8.52	8.48	8.56	8.55	8.70
RIr-	10	.00	8.44	8.20	8.50	8.44	8.40	8.56	8.48	8.62	8.52
Dark Sdc	5	.9	4.1	4.0	4.0	4.0	4.1	4.0	4.1	4.1	4.4
Dark NEP (1 Hz), incl 10 nV/rtHz amp. noise	3	.5	5.95	6.49	5.02	6.90	N/M	N/M	4.98	5.19	4.73
Dark NEP (0.1 Hz), incl 10 nV/rtHz amp. noise	3	.5	6.29	6.58	5.41	5.76	N/M	N/M	5.82	5.67	5.14
Vmax	1().3	4.97	4.90	4.89	4.76	5.11	4.98	5.13	5.00	5.20
*assumes vlower = 1.02 vcutoff											
**not tested											
***BoDAC noisy channel data are given for inform	nation in "I	Mather Da	rk" but excli	ided from "I	Pixel" so th	ev are not	counted in	the BDA m	edian		

Pixel Performance											
ltem											
BDA connector	J01	J01	J01	J01	J01	J01	J01	J01	J01	J01	J01
BDA pins	10,35	11,36	12,37	13,38	14,39	15,40	16,41	17,42	18,43	19,44	20,45
BoDAC Connector	4	4	4	4	4	4	4	4	4	4	4
Channel ID	10	11	12	13	14	15	16	17	18	19	20
Detector ID	C5	D4	A4	C4	B3	C3	B2	D2	A3	A2	C2
BDA Pixel Operability	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
BoDAC channel Operability	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Noisy BoDAC channel***	Yes	No	No	No	No	Yes	No	No	No	No	No
(NEPphoton/NEPtotal) ² (derived)	0.56	0.55	0.52	0.53	0.53	0.56	0.53	0.53	0.53	0.52	0.53
Optical efficiency*	0.68	0.71	0.79	0.69	0.70	0.72	0.71	0.67	0.66	0.75	0.65
Detector time constant	5.37	4.81	6.53	5.01	6.86	5.94	6.17	5.87	6.08	5.62	5.78
Calibration uniformity**	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cross-talk (n-n)**	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cross-talk (non n-n)**	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1/f knee frequency	51	43	37	47	36	20	29	36	20	34	24
Pixel Design Values											
RO	08.0	80.3	82.0	78.0	87.0	105 5	85.6	96.7	88.7	97.1	97.6
Delta	12 /	12.7	/1 7	12.6	/1.8	/1.8	/1.8	<i>30.1</i> <i>1</i> 1 1	41.6	40.6	<i>J</i> 1 1
G300	52.1	53.5	51.6	- <u>+</u> 2.0	5/ 1	55.4	53.8	5/1.2	52.6	52.0	53.4
Beta	1 73	1 73	1 75	1 78	1 74	1 69	1 73	1 75	1 77	1 67	1 79
C300	0.57	0.52	0.68	0.54	0.74	0.65	0.66	0.63	0.64	0.58	0.61
Gamma	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
R300	14.3	13.6	11.0	11.8	11.7	14.2	11.4	11.8	11.5	11.0	11.9
Rir+	8.56	8.76	8.60	8.64	8.68	8.64	8.56	8.84	8.68	8.68	8.84
Rir-	8.52	8.54	8.68	8.54	8.64	8.52	8.60	8.56	8.60	8.62	8.65
Dark Sdc	4.6	4.5	4.3	4.3	4.3	4.5	4.3	4.3	4.3	4.3	4.4
Dark NEP (1 Hz), incl 10 nV/rtHz amp. noise	N/M	5.06	5.10	4.77	6.97	N/M	5.76	5.44	6.12	5.30	6.11
Dark NEP (0.1 Hz), incl 10 nV/rtHz amp. noise	N/M	5.33	5.43	5.07	5.59	N/M	5.92	5.66	6.44	5.61	6.29
Vmax	5.60	5.52	4.88	5.14	5.15	5.73	5.07	5.17	5.03	4.94	5.16
*assumes vlower = 1.02 vcutoff											
**not tested											

Pixel Performance											
Item											
BDA connector	J01	J01	J01	J01	J02						
BDA pins	21,46	22,47	23,48	24,49	1,26	2,27	3,28	4,29	5,30	6,31	7,32
BoDAC Connector	4	4	4	4	1	1	1	1	1	1	1
Channel ID	21	22	23	24	1	2	3	4	5	6	7
Detector ID	B1	A1	DK1	C1	E7	D7	F7	E8	G8	F8	E9
BDA Pixel Operability	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
BoDAC channel Operability	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Noisy BoDAC channel***	No	No	No	No	No	No	Yes	No	No	No	No
(NEPphoton/NEPtotal)^2 (derived)	0.53	0.51	N/A	0.55	0.50	0.49	0.50	0.49	0.51	0.51	0.54
Optical efficiency*	0.73	0.78	N/M	0.76	0.69	0.72	0.74	0.70	0.65	0.67	0.71
Detector time constant	8.41	7.34	5.40	6.67	5.00	5.01	5.09	5.08	5.24	5.62	4.56
Calibration uniformity**	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cross-talk (n-n)**	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cross-talk (non n-n)**	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1/f knee frequency	23	24	31	29	57	60	81	56	20	28	41
											1
Pixel Design Values											
Item											
R0	90.1	95.3	81.4	90.5	77.1	62.4	77.0	68.4	83.2	76.2	79.1
Delta	41.7	40.2	42.3	42.6	41.4	42.2	41.5	41.7	41.1	42.0	43.1
G300	53.7	53.2	52.4	52.7	60.0	59.7	60.2	60.6	58.4	60.1	59.7
Beta	1.72	1.64	1.74	1.72	1.71	1.78	1.72	1.75	1.72	1.75	1.75
C300	0.89	0.76	0.56	0.71	0.57	0.57	0.59	0.59	0.59	0.65	0.53
Gamma	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
R300	11.8	10.1	11.6	13.5	9.7	8.8	9.8	9.0	10.1	10.5	12.7
Rlr+	8.77	8.68	8.88	8.72	8.20	8.28	8.28	8.24	8.32	8.30	8.26
Rlr-	8.64	8.64	8.68	8.68	8.32	8.32	8.24	8.28	8.32	8.28	8.32
Dark Sdc	4.4	4.2	4.4	4.5	3.9	3.9	4.0	3.9	4.0	4.0	4.3
Dark NEP (1 Hz), incl 10 nV/rtHz amp. noise	5.13	5.93	5.13	5.50	5.27	5.10	N/M	5.62	7.65	6.05	5.81
Dark NEP (0.1 Hz), incl 10 nV/rtHz amp. noise	5.35	6.23	5.55	5.89	5.65	5.58	N/M	6.29	7.98	6.50	6.16
Vmax	5.15	4.73	5.04	5.43	5.06	4.76	5.08	4.87	5.08	5.24	5.74
*assumes vlower = 1.02 vcutoff											
**not tested											
***BoDAC noisy channel data are given for inform	າ:										

Pixel Performance	Pixel Performance													
Item														
BDA connector	J02	J02	J02	J02	J02	J02	J02	J02	J02	J02	J02			
BDA pins	8,33	9,34	10,35	11,36	12,37	13,38	14,39	15,40	16,41	17,42	18,43			
BoDAC Connector	1	1	1	1	1	1	1	1	1	1	1			
Channel ID	8	9	10	11	12	13	14	15	16	17	18			
Detector ID	G9	D9	F9	E10	G10	F10	E11	G11	F11	E12	G12			
BDA Pixel Operability	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes			
BoDAC channel Operability	Yes	Yes	Yes	Yes	Yes	Yes	Partial	Yes	Yes	Yes	Yes			
Noisy BoDAC channel***	No	No	No	Yes	No	No	N/A	Yes	No	No	No			
(NEPphoton/NEPtotal) ² (derived)	0.51	0.53	0.50	0.51	0.48	0.51	0.51	0.50	0.49	0.54	0.51			
Optical efficiency*	0.70	0.70	0.72	0.70	0.74	0.73	N/M	0.67	0.74	0.70	0.76			
Detector time constant	5.31	5.91	4.66	5.01	6.36	5.04	N/M	4.77	5.86	5.66	5.04			
Calibration uniformity**	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Cross-talk (n-n)**	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Cross-talk (non n-n)**	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
1/f knee frequency	48	33	54	N/M	61	57	N/M	N/A	53	34	58			
Item														
R0	77.0	83.5	80.7	74.6	71.9	78.3	76.9	73.1	76.5	84.4	79.8			
Delta	41.6	42.4	41.4	42.0	40.9	41.7	42.1	41.6	41.2	42.9	41.3			
G300	60.9	61.7	60.6	61.4	60.2	61.6	61.2	61.1	61.4	61.5	59.6			
Beta	1.71	1.69	1.78	1.79	1.73	1.76	1.75	1.70	1.69	1.73	1.71			
C300	0.61	0.70	0.54	0.59	0.72	0.59	N/M	0.55	0.67	0.67	0.57			
Gamma	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0			
R300	10.1	12.1	10.2	10.3	8.5	10.3	10.7	9.5	9.3	13.2	10.0			
Rlr+	8.36	8.28	8.31	8.42	8.32	8.34	8.39	8.32	8.36	8.41	8.40			
Rir-	8.38	8.32	8.32	8.42	8.34	8.40	8.44	8.41	8.44	8.50	8.48			
Dark Sdc	4.0	4.2	4.0	4.0	3.8	4.0	4.1	3.9	3.9	4.3	4.0			
Dark NEP (1 Hz), incl 10 nV/rtHz amp. noise	5.40	6.37	6.24	N/M	5.59	5.52	N/M	N/M	5.50	6.55	5.54			
Dark NEP (0.1 Hz), incl 10 nV/rtHz amp. noise	6.16	6.79	6.01	N/M	6.18	6.07	N/M	N/M	6.20	6.98	5.93			
Vmax	5.17	5.72	5.16	5.21	4.69	5.23	5.32	5.02	4.98	5.91	5.08			
*assumes vlower = 1.02 vcutoff														
**not tested														
I***BoDAC noisy channel data are given for inform):	1				1			1					

Pixel Performance											
ltem											
BDA connector	J02	J02	J02	J02	J02	J02	J03	J03	J03	J03	J03
BDA pins	19,44	20,45	21,46	22,47	23,48	24,49	1,26	2,27	3,28	4,29	5,30
BoDAC Connector	1	1	1	1	1	1	6	6	6	6	6
Channel ID	19	20	21	22	23	24	1	2	3	4	5
Detector ID	F12	G13	DK2	SH	SH	R2	A13	T1	B12	C13	A12
BDA Pixel Operability	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
BoDAC channel Operability	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Noisy BoDAC channel***	No	Yes	No	No	No	No	No	No	Yes	No	No
(NEPphoton/NEPtotal) ² (derived)	0.51	0.50	N/A	N/M	N/M	N/M	0.52	N/M	0.53	0.52	0.53
Optical efficiency*	0.70	0.77	N/M	N/M	N/M	N/M	0.80	N/M	0.80	0.79	0.75
Detector time constant	4.24	8.04	N/M	N/M	N/M	N/M	N/A	N/M	5.17	N/A	5.83
Calibration uniformity**	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cross-talk (n-n)**	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cross-talk (non n-n)**	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1/f knee frequency	39	21	31	N/M	N/M	13	39	40	55	45	54
Pixel Design Values											
Item											
R0	90.1	86.2	71.9	705.9	470.7	5.46E+06	101.3	89.5	90.7	94.6	83.6
Delta	41.4	40.6	42.8	1.8	1.4	0.0	40.3	41.0	41.6	40.7	42.1
G300	69.3	61.7	58.6	-0.1	0.0	N/M	39.1	5849.1	49.9	50.3	50.1
Beta	1.76	1.66	1.72	0.39	1.67	N/M	1.78	6.72	1.75	1.74	1.77
C300	0.54	0.92	N/M	N/A	N/A	N/A	0.74	N/A	0.54	N/A	0.61
Gamma	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
R300	11.3	9.7	11.1	N/M	N/M	5.5	11.0	10.8	11.8	10.9	11.6
Rlr+	8.44	8.47	8.44	8.48	8.68	8.52	8.10	8.12	8.16	8.12	8.16
Rir-	8.52	8.48	8.52	8.56	8.55	8.56	8.08	8.08	8.10	8.08	8.10
Dark Sdc	4.0	4.0	4.2	N/M	N/M	N/M	4.2	N/M	4.2	4.1	4.2
Dark NEP (1 Hz), incl 10 nV/rtHz amp. noise	6.43	N/M	6.12	N/M	N/M	N/M	5.57	N/M	N/M	5.53	4.87
Dark NEP (0.1 Hz), incl 10 nV/rtHz amp. noise	7.03	N/M	6.47	N/M	N/M	N/M	6.06	N/M	N/M	5.88	5.19
Vmax	5.71	5.06	5.32	N/M	N/M	N/M	4.43	N/M	4.96	4.78	4.94
*assumes vlower = 1.02 vcutoff											
**not tested											

Pixel Performance											
ltem											
BDA connector	J03	J03	J03	J03	J03	J03	J03	J03	J03	J03	J03
BDA pins	6,31	7,32	8,33	9,34	10,35	11,36	12,37	13,38	14,39	15,40	16,41
BoDAC Connector	6	6	6	6	6	6	6	6	6	6	6
Channel ID	6	7	8	9	10	11	12	13	14	15	16
Detector ID	D12	C12	B11	A11	E13	D11	C11	B10	A10	D10	B9
BDA Pixel Operability	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
BoDAC channel Operability	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Noisy BoDAC channel***	No	No	Yes	No	No	No	No	No	No	No	No
(NEPphoton/NEPtotal)^2 (derived)	0.54	0.55	0.53	0.53	0.53	0.51	0.53	0.56	0.52	0.53	0.52
Optical efficiency*	0.76	0.74	0.71	0.74	0.81	0.73	0.76	0.72	0.78	0.73	0.70
Detector time constant	6.21	5.96	5.42	6.16	6.64	5.60	6.24	6.83	4.96	4.97	6.92
Calibration uniformity**	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cross-talk (n-n)**	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cross-talk (non n-n)**	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1/f knee frequency	56	54	131	43	48	47	51	42	47	58	46
Pixel Design Values	1										
ltem											
R0	110.4	88.2	90.5	89.8	94.3	89.8	87.8	93.7	76.0	103.2	80.1
Delta	40.8	42.6	41.5	41.8	41.1	40.9	41.7	42.9	42.3	40.7	42.1
G300	51.4	51.4	52.0	51.8	51.1	52.4	52.4	52.4	50.9	51.5	51.3
Beta	1.73	1.77	1.73	1.75	1.68	1.73	1.75	1.72	1.80	1.74	1.78
C300	0.66	0.64	0.58	0.66	0.70	0.60	0.67	0.74	0.53	0.53	0.74
Gamma	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
R300	12.7	13.1	11.6	12.1	11.4	10.5	11.5	14.7	10.9	11.8	11.1
Rlr+	8.20	8.16	8.16	8.24	8.18	8.18	8.24	8.28	8.20	8.24	8.24
Rlr-	8.13	8.16	8.12	8.14	8.14	8.16	8.12	8.16	8.10	8.16	8.18
Dark Sdc	4.3	4.3	4.2	4.2	4.2	4.1	4.2	4.5	4.1	4.2	4.2
Dark NEP (1 Hz), incl 10 nV/rtHz amp. noise	5.23	4.97	N/M	5.33	5.39	5.40	4.89	4.98	4.75	4.84	4.99
Dark NEP (0.1 Hz), incl 10 nV/rtHz amp. noise	5.64	5.25	N/M	5.85	5.66	5.77	5.33	5.50	5.24	5.47	5.39
Vmax	5.27	5.30	5.02	5.11	4.93	4.80	5.02	5.67	4.81	5.06	4.88
*assumes vlower = 1.02 vcutoff											
**not tested		1			1	1	1	1	1	1	1

Pixel Performance													
ltem													
BDA connector	J03	J03	J03	J03	J03	J03	J03	J03	J04	J04			
BDA pins	17,42	18,43	19,44	20,45	21,46	22,47	23,48	24,49	1,26	2,27			
BoDAC Connector	6	6	6	6	6	6	6	6	2	2			
Channel ID	17	18	19	20	21	22	23	24	1	2			
Detector ID	C10	C9	A9	B8	A8	C8	C8	B7	R1	G1			
BDA Pixel Operability	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes			
BoDAC channel Operability	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes			
Noisy BoDAC channel***	No	Yes	No	No	No	No	No	No	No	No			
(NEPphoton/NEPtotal) ² (derived)	0.53	0.51	0.56	0.54	0.52	0.55	0.51	0.51	N/M	0.52			
Optical efficiency*	0.69	0.71	0.74	0.74	0.73	0.75	0.71	0.72	N/M	0.73			
Detector time constant	5.09	5.50	6.18	6.07	5.96	5.72	5.50	5.36	N/M	8.69			
Calibration uniformity**	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Cross-talk (n-n)**	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Cross-talk (non n-n)**	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
1/f knee frequency	30	52	43	45	35	40	46	34	N/M	59			
Pixel Design Values													
ltem													
R0	83.8	89.0	101.7	89.0	74.9	84.9	86.2	79.4	5.36E+06	98.3			
Delta	42.2	40.7	42.5	42.3	42.2	43.2	41.2	41.6	0.0	40.7			
G300	52.0	51.1	51.2	51.2	49.5	51.0	50.3	49.8	N/M	56.0			
Beta	1.76	1.73	1.74	1.75	1.80	1.75	1.79	1.77	N/M	1.64			
C300	0.55	0.58	0.66	0.65	0.62	0.61	0.57	0.56	N/A	0.97			
Gamma	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0			
R300	11.9	10.2	15.0	12.7	10.6	13.8	10.5	10.4	5.4	11.2			
Rlr+	8.28	8.22	8.20	8.32	8.24	8.16	8.36	8.20	7.76	7.80			
Rir-	8.12	8.12	8.18	8.16	8.12	8.16	8.12	8.10	7.92	7.98			
Dark Sdc													
Durk Ouc	4.2	4.1	4.5	4.3	4.1	4.4	4.1	4.1	N/M	4.0			
Dark NEP (1 Hz), incl 10 nV/rtHz amp. noise	4.2 6.12	4.1 N/M	4.5 4.66	4.3	4.1 5.23	4.4 4.85	4.1 4.73	4.1 5.37	N/M N/M	4.0			
Dark NEP (1 Hz), incl 10 nV/rtHz amp. noise Dark NEP (0.1 Hz), incl 10 nV/rtHz amp. noise	4.2 6.12 6.58	4.1 N/M N/M	4.5 4.66 4.95	4.3 4.66 5.15	4.1 5.23 5.51	4.4 4.85 5.38	4.1 4.73 5.06	4.1 5.37 5.91	N/M N/M N/M	4.0 5.59 6.14			
Dark NEP (1 Hz), incl 10 nV/rtHz amp. noise Dark NEP (0.1 Hz), incl 10 nV/rtHz amp. noise Vmax	4.2 6.12 6.58 5.08	4.1 N/M N/M 4.67	4.5 4.66 4.95 5.65	4.3 4.66 5.15 5.20	4.1 5.23 5.51 4.68	4.4 4.85 5.38 5.40	4.1 4.73 5.06 4.70	4.1 5.37 5.91 4.66	N/M N/M N/M N/M	4.0 5.59 6.14 5.10			
Dark NEP (1 Hz), incl 10 nV/rtHz amp. noise Dark NEP (0.1 Hz), incl 10 nV/rtHz amp. noise Vmax	4.2 6.12 6.58 5.08	4.1 N/M 4.67	4.5 4.66 4.95 5.65	4.3 4.66 5.15 5.20	4.1 5.23 5.51 4.68	4.4 4.85 5.38 5.40	4.1 4.73 5.06 4.70	4.1 5.37 5.91 4.66	N/M N/M N/M N/M	4.0 5.59 6.14 5.10			
Dark NEP (1 Hz), incl 10 nV/rtHz amp. noise Dark NEP (0.1 Hz), incl 10 nV/rtHz amp. noise Vmax *assumes vlower = 1.02 vcutoff	4.2 6.12 6.58 5.08	4.1 N/M N/M 4.67	4.5 4.66 4.95 5.65	4.3 4.66 5.15 5.20	4.1 5.23 5.51 4.68	4.4 4.85 5.38 5.40	4.1 4.73 5.06 4.70	4.1 5.37 5.91 4.66	N/M N/M N/M	4.0 5.59 6.14 5.10			
Dark NEP (1 Hz), incl 10 nV/rtHz amp. noise Dark NEP (0.1 Hz), incl 10 nV/rtHz amp. noise Vmax *assumes vlower = 1.02 vcutoff **not tested	4.2 6.12 6.58 5.08	4.1 N/M N/M 4.67	4.5 4.66 4.95 5.65	4.3 4.66 5.15 5.20	4.1 5.23 5.51 4.68	4.4 4.85 5.38 5.40	4.1 4.73 5.06 4.70	4.1 5.37 5.91 4.66	N/M N/M N/M	4.0 5.59 6.14 5.10			

Pixel Performance			1			l				l	l
ltem											
BDA connector	J04	J04	J04	J04	J04	J04	J04	J04	J04	J04	J04
BDA pins	3,28	4,29	5,30	6,31	7,32	8,33	9,34	10,35	11,36	12,37	13,38
BoDAC Connector	2	2	2	2	2	2	2	2	2	2	2
Channel ID	3	4	5	6	7	8	9	10	11	12	13
Detector ID	T2	E1	D1	F1	E2	G2	F2	G3	E3	D3	F3
BDA Pixel Operability	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
BoDAC channel Operability	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Noisy BoDAC channel***	No	Yes	No	Yes	No	Yes	No	No	No	No	No
(NEPphoton/NEPtotal)^2 (derived)	N/M	0.52	0.51	0.52	0.52	0.52	0.50	0.50	0.50	0.51	0.50
Optical efficiency*	N/M	0.73	0.69	0.73	0.72	0.71	0.69	0.65	0.67	0.70	0.65
Detector time constant	N/M	5.57	4.55	4.80	4.78	6.49	5.20	9.32	5.06	4.79	5.08
Calibration uniformity**	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cross-talk (n-n)**	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cross-talk (non n-n)**	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1/f knee frequency	36	43	44	57	21	30	42	40	46	47	49
R0	98.5	89.5	79.9	88.1	98.2	85.1	72.9	76.2	77.5	90.1	78.6
Delta	41.3	41.3	41.5	41.5	40.7	41.4	42.0	41.6	41.2	41.3	41.6
G300	5371.2	55.3	56.2	55.9	55.5	55.4	64.7	63.9	63.3	63.5	64.7
Beta	5.87	1.67	1.70	1.68	1.68	1.66	1.71	1.69	1.69	1.75	1.71
C300	N/A	0.62	0.51	0.54	0.53	0.72	0.64	1.13	0.61	0.59	0.62
Gamma	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
R300	12.2	11.1	10.2	11.3	11.3	10.7	10.0	9.9	9.6	11.2	10.2
Rlr+	7.82	7.88	7.84	7.85	7.84	7.90	7.88	7.88	7.92	7.88	7.92
Rir-	7.90	7.92	8.00	7.92	7.96	8.00	7.96	7.99	8.00	8.00	8.04
Dark Sdc	N/M	4.0	3.9	4.0	4.0	4.0	3.8	3.8	3.8	4.0	3.9
Dark NEP (1 Hz), incl 10 nV/rtHz amp. noise	N/M	N/M	5.49	N/M	5.32	N/M	5.39	5.96	5.37	5.53	5.34
Dark NEP (0.1 Hz), incl 10 nV/rtHz amp. noise	N/M	N/M	5.62	N/M	5.66	N/M	5.92	6.37	5.85	6.19	5.82
Vmax	N/M	5.05	4.91	5.15	5.16	5.00	5.20	5.16	5.09	5.49	5.30
*assumes vlower = 1.02 vcutoff											
**not tested											

Pixel Performance	h	1				l			l		l
ltem											
BDA connector	J04										
BDA pins	14,39	15,40	16,41	17,42	18,43	19,44	20,45	21,46	22,47	23,48	24,49
BoDAC Connector	2	2	2	2	2	2	2	2	2	2	2
Channel ID	14	15	16	17	18	19	20	21	22	23	24
Detector ID	G4	E4	F4	E5	D5	F5	G5	E6	G6	F6	G7
BDA Pixel Operability	Yes										
BoDAC channel Operability	Yes										
Noisy BoDAC channel***	No	No	No	Yes	No						
(NEPphoton/NEPtotal)^2 (derived)	0.51	0.52	0.49	0.49	0.50	0.50	0.51	0.48	0.50	0.52	0.50
Optical efficiency*	0.67	0.65	0.68	0.72	0.67	0.67	0.66	0.75	0.70	0.67	0.73
Detector time constant	4.81	4.88	4.83	5.00	4.70	5.37	6.01	5.16	6.05	5.02	5.71
Calibration uniformity**	N/A										
Cross-talk (n-n)**	N/A										
Cross-talk (non n-n)**	N/A										
1/f knee frequency	49	28	45	37	49	46	43	43	29	49	44
Item											
R0	79.6	80.3	65.9	63.1	74.8	68.7	90.5	70.3	77.3	72.4	81.1
Delta	41.7	42.2	42.2	42.3	41.9	42.4	40.9	41.4	41.4	42.7	41.3
G300	63.8	63.9	62.6	61.2	62.2	61.8	62.7	62.5	60.6	60.1	58.9
Beta	1.67	1.70	1.74	1.78	1.75	1.77	1.69	1.76	1.73	1.75	1.73
C300	0.58	0.60	0.58	0.59	0.57	0.64	0.72	0.62	0.71	0.59	0.66
Gamma	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
R300	10.5	11.4	9.3	9.1	10.2	10.0	10.7	8.9	9.8	11.1	10.1
Rir+	8.04	7.98	8.02	8.04	7.94	8.00	8.06	7.92	7.96	8.00	8.01
Rir-	8.10	8.02	8.06	8.12	8.03	8.08	8.07	8.04	8.08	8.05	8.05
Dark Sdc	4.0	4.0	3.8	3.8	3.9	3.9	4.0	3.7	3.9	4.0	3.9
Dark NEP (1 Hz), incl 10 nV/rtHz amp. noise	5.22	7.00	5.13	N/M	5.26	5.56	5.39	5.87	5.83	4.97	5.71
Dark NEP (0.1 Hz), incl 10 nV/rtHz amp. noise	5.62	7.22	5.55	N/M	5.55	5.95	5.82	6.08	6.49	5.30	5.94
Vmax	5.35	5.57	4.97	4.85	5.19	5.11	5.37	4.86	5.03	5.31	5.03
*assumes vlower = 1.02 vcutoff											
**not tested											

pfm_pmw_eidp8-1b.xls

Pixel Performance			
Item	Unit	Reference	Note
BDA connector			
BDA pins			
BoDAC Connector			
Channel ID			
Detector ID			
BDA Pixel Operability			
BoDAC channel Operability			
Noisy BoDAC channel***			
(NEPphoton/NEPtotal)^2 (derived)		BDA-PER-02	at 30 mV bias
Optical efficiency*		BDA-PER-05	
Detector time constant	ms	BDA-PER-07	at 28 mV bias
Calibration uniformity**		BDA-PER-08	
Cross-talk (n-n)**		BDA-PER-09	
Cross-talk (non n-n)**		BDA-PER-09	
1/f knee frequency	mHz	BDA-PER-10	at 21.2 mV bias
Pixel Design Values			
Item	Unit	Reference	Note
R0	Ohms	BDA-SSSD	
Delta	K	BDA-SSSD	
G300	pW/K	BDA-SSSD	
Beta		BDA-SSSD	
C300	pJ/K	BDA-SSSD	
Gamma			
R300	MOhms	BDA-SSSD	
Rlr+	MOhms	BDA-SSSD	room temp
Rlr-	MOhms	BDA-SSSD	room temp
Dark Sdc	e8 V/W	BDA-SSSD	at 21.2 mV bias
Dark NEP (1 Hz), incl 10 nV/rtHz amp. noise	e-17 W/rtHz	derived	at 21.2 mV bias
Dark NEP (0.1 Hz), incl 10 nV/rtHz amp. noise	e-17 W/rtHz	derived	at 21.2 mV bias
Vmax	mVrms	BDA-DRCU-22	
*assumes vlower = 1.02 vcutoff			
**not tested			
***BoDAC noisy channel data are given for inform	n		

Symbol	Units	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Т0	К	0.3	Base Tempera	ture										
Vn	nV/rtHz	10	Amplifier Voltag	ge Noise										
Q	pW	0	Absorbed Power C	Onto Bolometer										
NEP _{photon}	1e-17 W/rtHz	0.00	Noise in Absorbed	Optical Power										
Vbias	mV	21.2	Bias Across Bolon	neter & Load Re	esistors									
			Detector ID											
		Target	A7	A6	B6	C7	A5	B5	C6	D6	B4	C5	D4	A4
Pthermal	pW	4.424	3.915	3.969	3.868	3.742	4.012	3.891	4.007	3.868	4.058	4.317	4.205	3.8
Pelec+Q	pW	4.424	3.915	3.969	3.868	3.742	4.012	3.891	4.007	3.868	4.058	4.317	4.205	3.8
Tbolo	К	0.37055	0.35794	0.35850	0.35671	0.35480	0.35751	0.35607	0.35741	0.35574	0.36531	0.36863	0.36562	0.362
Т/Т0		1.235	1.193	1.195	1.189	1.183	1.192	1.187	1.191	1.186	1.218	1.229	1.219	1.2
Rbolo	Ω	7.38E+06	3.71E+06	3.58E+06	3.65E+06	3.54E+06	3.85E+06	3.74E+06	3.91E+06	3.78E+06	4.11E+06	4.45E+06	4.41E+06	3.79E+
Vbolo	mV	5.71	3.81	3.77	3.76	3.64	3.93	3.81	3.96	3.82	4.08	4.39	4.31	3.
Ibolo	nA	0.77	1.03	1.05	1.03	1.03	1.02	1.02	1.01	1.01	0.99	0.98	0.98	1.
A		-5.31	-5.42	-5.39	-5.44	-5.43	-5.46	-5.32	-5.43	-5.46	-5.36	-5.36	-5.40	-5.
C	pJ/K	1.24	0.82	0.87	0.92	0.73	0.88	0.70	0.78	0.70	0.74	0.70	0.63	0.
G	pW/K	72.8	78.3	78.6	79.1	78.6	80.8	79.7	81.0	80.0	73.2	74.3	75.2	71
Z/R		0.069	0.138	0.137	0.145	0.157	0.137	0.156	0.142	0.148	0.103	0.084	0.095	0.1
									-					
τ	ms	12.111	7.062	7.465	7.834	6.287	7.342	6.027	6.564	5.947	6.695	6.303	5.607	7.5
Sdc	V/W	5.86E+08	4.07E+08	3.98E+08	4.02E+08	3.97E+08	4.10E+08	4.00E+08	4.11E+08	4.08E+08	4.40E+08	4.55E+08	4.52E+08	4.28E+
NEP _{johnson}	1e-17 W/rtHz	1.092	1.161	1.167	1.169	1.174	1.173	1.199	1.183	1.174	1.113	1.109	1.115	1.10
NEPphonon	1e-17 W/rtHz	2.006	2.038	2.044	2.043	2.036	2.069	2.057	2.070	2.056	1.983	2.007	2.014	1.9
NEPload	1e-17 W/rtHz	0.077	0.121	0.119	0.126	0.133	0.124	0.139	0.129	0.130	0.092	0.079	0.089	0.0
NEPamp	1e-17 W/rtHz	1.705	2.457	2.510	2.485	2.518	2.440	2.502	2.435	2.453	2.271	2.196	2.211	2.3
NEPdat	1e-17 W/rtHz	3,498	4.353	4,419	4.392	4,429	4.356	4,434	4.356	4.365	4.092	4.019	4.042	4.1
DQF		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Vn(det)	nV/rtHz	20.5	17.7	17.6	17.7	17.6	17.9	17.7	17.9	17.8	18.0	18.3	18.3	17
Vn(total)	nV/rtHz	20.5	17.7	17.6	17.7	17.6	17.9	17.7	17.9	17.8	18.0	18.3	18.3	17
Vn(calculated)		17.9												
Vn(measured) at 1Hz		24.38	24.2	25.9	20.2	27.4	> 40.0	28.1	20.4	21.2	20.8	72.7	22.9	21
NEP(measured) at 1 Hz		3.5	5.9	6.5	5.0	6.9	> 9.8	7.0	5.0	5.2	4.7	16.0	5.1	Ę
Vn(measured) at 0.1 Hz			25.6	26.2	21.8	22.9	90.8	30.5	23.9	23.1	22.6	74.2	24.1	23
NEP(measured) at 0.1 H	Z		6.3	6.6	5.4	5.8	22.2	7.6	5.8	5.7	5.1	16.3	5.3	Ę
Vn(measured) at 1Hz no	T/C.*		31.2	20 5	20 /	28.1	31.1	30.0	30 3	30.2	31.2	33.0	31 0	
NEP(measured) at 1Hz r	no T/C		77	7.4	7.3	7.1	7.6	7.5	7.4	7.4	7.1	7.3	7.1	
Vn(measured) at 0.1Hz r	no T/C		47.4	47.4	42.1	37.1	43.5	37.7	38.1	34.8	37.6	44.8	36.8	42
NEP(measured) at 0.1H	z no T/C		11.6	11.9	10.5	9.3	10.6	9.4	9.3	8.5	8.6	9.8	8.1	10
* Naisa undar thasa agai	ditions in general		vovor the poicie	t nivala (hiak	lighted in re-	d) offeeted b	/ BoDAC mi	aranhaniaa i	morovod					

Symbol	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
ТО														
Vn														
VDIAS														
	C4	B3	C3	B2	D2	A3	A2	C2	B1	A1	DK1	C1	E7	D7
Pthermal	4.015	3.992	4.384	3.976	4.000	3.950	3.879	3.979	3.979	3.750	3.867	4.159	4.021	3.818
Pelec+Q	4.015	3.992	4.384	3.976	4.000	3.950	3.879	3.979	3.979	3.750	3.867	4.159	4.021	3.818
Tbolo	0.36269	0.36201	0.36618	0.36217	0.36200	0.36285	0.36206	0.36230	0.36241	0.36012	0.36210	0.36581	0.35724	0.35465
Т/Т0	1.209	1.207	1.221	1.207	1.207	1.209	1.207	1.208	1.208	1.200	1.207	1.219	1.191	1.182
Rbolo	4.01E+06	4.06E+06	4.63E+06	3.94E+06	4.12E+06	3.97E+06	3.87E+06	4.14E+06	4.09E+06	3.68E+06	4.00E+06	4.40E+06	3.63E+06	3.40E+06
Vbolo	4.01	4.03	4.51	3.96	4.06	3.96	3.87	4.06	4.04	3.71	3.93	4.28	3.82	3.60
Ibolo	1.00	0.99	0.97	1.00	0.98	1.00	1.00	0.98	0.99	1.01	0.98	0.97	1.05	1.06
A	-5.42	-5.38	-5.34	-5.37	-5.33	-5.35	-5.30	-5.33	-5.36	-5.28	-5.40	-5.40	-5.38	-5.45
С	0.65	0.89	0.79	0.80	0.76	0.78	0.70	0.74	1.08	0.91	0.68	0.86	0.68	0.68
G	75.1	75.1	77.6	74.6	75.3	73.6	72.5	74.9	74.3	71.9	72.6	74.2	80.9	80.4
Z/R	0.112	0.118	0.096	0.117	0.122	0.116	0.122	0.123	0.116	0.133	0.115	0.095	0.144	0.156
τ	5.800	7.929	6.926	7.136	6.778	7.041	6.498	6.683	9.728	8.456	6.239	7.770	5.715	5.683
Sdc	4.33E+08	4.33E+08	4.53E+08	4.28E+08	4.33E+08	4.31E+08	4.27E+08	4.35E+08	4.36E+08	4.17E+08	4.39E+08	4.54E+08	3.95E+08	3.86E+08
NEP _{johnson}	1.122	1.132	1.142	1.128	1.143	1.123	1.124	1.141	1.126	1.129	1.107	1.108	1.189	1.185
NEP _{phonon}	2.003	2.005	2.049	1.998	2.007	1.985	1.974	1.999	1.996	1.964	1.972	2.001	2.074	2.059
NEPload	0.099	0.105	0.094	0.103	0.110	0.102	0.105	0.110	0.103	0.112	0.099	0.087	0.128	0.133
	2.312	2.310	2.209	2.337	2.309	2.318	2.343	2.299	2.291	2.395	2.280	2.201	2.534	2.593
NEP _{det}	4.152	4.156	4.072	4.181	4.163	4.151	4.174	4.146	4.128	4.232	4.093	4.020	4.473	4.532
DQF	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Vn(det)	18.0	18.0	18.4	17.9	18.0	17.9	17.8	18.0	18.0	17.7	18.0	18.3	17.6	17.5
Vn(total)	18.0	18.0	18.4	17.9	18.0	17.9	17.8	18.0	18.0	17.7	18.0	18.3	17.6	17.5
Vn(calculated)														
Vn(measured) at 1Hz	20.6	30.2	33.1	24.6	23.6	26.4	22.6	26.6	22.4	24.7	22.5	25.0	20.8	19.7
NEP(measured) at 1 Hz	4.8	7.0	7.3	5.8	5.4	6.1	5.3	6.1	5.1	5.9	5.1	5.5	5.3	5.1
Vn(measured) at 0.1 Hz	22.0	24.2	33.5	25.3	24.5	27.8	24.0	27.4	23.3	26.0	24.4	26.8	22.3	21.5
INEF (Ineasureu) at 0.1 H	5.1	5.0	7.4	5.9	5.7	0.4	5.0	0.3	0.0	0.2	5.0	0.9	5.0	5.0
Vn(measured) at 1Hz no	101.7	32.2	41.3	32.4	31.0	34.5	33.4	35.8	31.4	35.7	30.1	159.3	34.6	34.4
NEP(measured) at 1Hz r	23.5	7.4	9.1	7.6	7.1	8.0	7.8	8.2	7.2	8.6	6.9	35.1	8.8	8.9
Vn(measured) at 0.1Hz r	106.7	42.6	46.4	40.6	37.4	60.5	49.1	44.1	43.0	43.0	35.7	168.8	44.6	44.9
NEP(measured) at 0.1Hz	24.7	9.8	10.2	9.5	8.6	14.0	11.5	10.1	9.8	10.3	8.1	37.1	11.3	11.7
* Noice under these service														
These data are provide														
mese uata are provide														

Symbol	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
ТО														
Vn														
NEF photon														
VDIAS														
	F7	E8	G8	F8	E9	G9	D9	F9	E10	G10	F10	E11	G11	F11
Pthermal	4.046	3.907	4.027	4.132	4.437	4.039	4.407	4.094	4.062	3.771	4.100	4.131	3.951	3.913
Pelec+Q	4.046	3.907	4.027	4.132	4.437	4.039	4.407	4.094	4.062	3.771	4.100	4.131	3.951	3.913
Tbolo	0.35735	0.35519	0.35864	0.35832	0.36238	0.35673	0.36062	0.35735	0.35627	0.35390	0.35674	0.35737	0.35552	0.35489
Т/Т0	1.191	1.184	1.195	1.194	1.208	1.189	1.202	1.191	1.188	1.180	1.189	1.191	1.185	1.183
Rbolo	3.67E+06	3.48E+06	3.71E+06	3.83E+06	4.31E+06	3.79E+06	4.27E+06	3.80E+06	3.88E+06	3.36E+06	3.88E+06	3.98E+06	3.65E+06	3.64E+06
Vbolo	3.85	3.69	3.87	3.98	4.37	3.91	4.34	3.95	3.97	3.56	3.99	4.06	3.80	3.77
Ibolo	1.05	1.06	1.04	1.04	1.01	1.03	1.02	1.04	1.02	1.06	1.03	1.02	1.04	1.04
A	-5.39	-5.42	-5.35	-5.41	-5.45	-5.40	-5.42	-5.38	-5.43	-5.38	-5.41	-5.43	-5.41	-5.38
С	0.70	0.69	0.71	0.78	0.64	0.73	0.84	0.65	0.70	0.85	0.70	#VALUE!	0.65	0.80
G	81.4	81.4	79.4	82.1	83.1	81.9	84.2	82.7	83.5	80.1	83.4	83.3	81.6	81.6
Z/R	0.143	0.155	0.138	0.136	0.109	0.145	0.119	0.146	0.148	0.166	0.146	0.141	0.152	0.158
τ	5.818	5.768	6.009	6.432	5.263	6.059	6.802	5.318	5.706	7.209	5.742	#VALUE!	5.423	6.655
Sdc	3.95E+08	3.86E+08	4.01E+08	4.03E+08	4.27E+08	4.01E+08	4.21E+08	3.98E+08	4.02E+08	3.81E+08	4.01E+08	4.08E+08	3.95E+08	3.93E+08
NEP _{johnson}	1.192	1.195	1.179	1.189	1.173	1.194	1.191	1.206	1.205	1.200	1.207	1.198	1.195	1.203
NEP _{phonon}	2.079	2.074	2.056	2.088	2.109	2.086	2.124	2.093	2.100	2.057	2.102	2.101	2.080	2.079
NEP _{load}	0.129	0.135	0.124	0.125	0.107	0.132	0.118	0.134	0.137	0.141	0.136	0.132	0.135	0.140
NEP _{amp}	2.529	2.590	2.492	2.480	2.343	2.495	2.378	2.510	2.485	2.624	2.491	2.449	2.533	2.547
NEP _{det}	4.471	4.540	4.412	4.418	4.266	4.437	4.322	4.464	4.438	4.575	4.447	4.395	4.479	4.498
DQE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Vn(det)	17.7	17.5	17.7	17.8	18.2	17.8	18.2	17.8	17.9	17.4	17.9	17.9	17.7	17.7
Vn(total)	17.7	17.5	17.7	17.8	18.2	17.8	18.2	17.8	17.9	17.4	17.9	17.9	17.7	17.7
Vn(calculated)														
Vn(measured) at 1Hz	> 40.0	21.7	30.7	24.4	24.8	21.6	26.8	24.9	> 40.0	21.3	22.2	N/M	28.4	21.6
NEP(measured) at 1 Hz	> 10.1	5.b 24.3	7.6	6.0 26.2	5.8	5.4 24.7	6.4 28.6	6.2 23.0	> 9.9	5.6 23.5	5.5 24.4	IN/IVI	7.2	5.5 24.3
NEP(measured) at 0.1 H	> 40.0	24.3 6.3	32.0 8.0	20.2	20.3	62	20.0	23.9	> 40.0	23.5	24.4	N/M	7.8	24.3 6.2
	2 10.1	0.0	0.0	0.0	0.2	0.2	0.0	0.0	2 0.0	0.2	0.1		1.0	0.2
Vn(measured) at 1Hz no	38.9	36.2	39.6	41.6	40.5	40.4	87.4	39.1	39.0	38.4	40.2	36.1	41.3	35.9
NEP(measured) at 1Hz r	9.8	9.4	9.9	10.3	9.5	10.1	20.8	9.8	9.7	10.1	10.0	8.8	10.5	9.2
Vn(measured) at 0.1Hz r	59.1	52.5	66.3	68.2	56.1	60.7	459.3	53.4	50.3	54.1	66.5	52.0	64.8	54.3
NEP(measured) at 0.1Hz	14.9	13.6	16.5	16.9	13.2	15.1	109.2	13.4	12.5	14.2	16.6	12.7	16.4	13.8
* Noise under these con														
These data are provide														

Symbol	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
ТО														
Vn														
VDIAS														
	E12	G12	F12	G13	DK2	SH	SH	R2	A13	T1	B12	C13	A12	D12
Pthermal	4.458	3.968	4.365	3.959	4.080	#NUM!	0.005	#VALUE!	3.771	24.593	4.174	4.084	4.148	4.351
Pelec+Q	4.458	3.968	4.365	3.959	4.080	#NUM!	0.005	#VALUE!	3.771	6.541	4.174	4.084	4.148	4.351
Tbolo	0.36117	0.35688	0.35399	0.35530	0.35917	-0.23114	0.39410	#VALUE!	0.37742	0.30402	0.36905	0.36734	0.36819	0.36988
Т/Т0	1.204	1.190	1.180	1.184	1.197	-0.770	1.314	#VALUE!	1.258	1.013	1.230	1.224	1.227	1.233
Rbolo	4.58E+06	3.76E+06	4.45E+06	3.79E+06	3.98E+06	#NUM!	3.09E+03	#VALUE!	3.13E+06	9.96E+06	3.70E+06	3.54E+06	3.66E+06	4.00E+06
Vbolo	4.52	3.86	4.41	3.87	4.03	#NUM!	0.00	#VALUE!	3.43	8.07	3.93	3.80	3.90	4.17
Ibolo	0.99	1.03	0.99	1.02	1.01	#NUM!	1.23	#VALUE!	1.10	0.81	1.06	1.07	1.06	1.04
A	-5.45	-5.38	-5.40	-5.35	-5.46	#NUM!	-0.94	#VALUE!	-5.17	-5.81	-5.31	-5.27	-5.34	-5.25
С	0.80	0.68	0.63	1.09	#VALUE!	#VALUE!	#VALUE!	#VALUE!	0.93	#VALUE!	0.67	#VALUE!	0.75	0.81
G	84.8	80.3	92.8	81.8	79.8	#NUM!	0.1	#VALUE!	58.9	6396.5	71.6	71.5	72.1	73.7
Z/R	0.115	0.146	0.164	0.157	0.125	#NUM!	0.691	#VALUE!	0.065	0.962	0.088	0.100	0.090	0.088
τ	6.518	5.751	4.792	9.138	#VALUE!	#NUM!	#VALUE!	#VALUE!	9.928	#VALUE!	6.084	#VALUE!	6.841	7.321
Sdc	4.35E+08	4.03E+08	4.05E+08	3.98E+08	4.20E+08	#NUM!	1.25E+08	#VALUE!	4.20E+08	1.49E+07	4.21E+08	4.10E+08	4.19E+08	4.28E+08
NEP _{johnson}	1.188	1.187	1.287	1.210	1.157	#NUM!	0.175	#VALUE!	1.010	53.616	1.100	1.112	1.099	1.125
NEP _{phonon}	2.129	2.065	2.212	2.085	2.063	#NUM!	0.059	#VALUE!	1.799	17.562	1.970	1.966	1.973	2.002
NEPload	0.116	0.131	0.171	0.143	0.114	#NUM!	0.002	#VALUE!	0.049	40.940	0.076	0.085	0.078	0.082
	2.299	2.484	2.472	2.512	2.383	#NUM!	7.971	#VALUE!	2.379	67.282	2.375	2.438	2.385	2.337
NEP _{det}	4.237	4.411	4.525	4.465	4.280	#NUM!	11.276	#VALUE!	4.075	135.881	4.195	4.272	4.207	4.181
DQE	0.000	0.000	0.000	0.000	0.000	#NUM!	0.000	#VALUE!	0.000	0.000	0.000	0.000	0.000	0.000
Vn(det)	18.4	17.8	18.3	17.8	18.0	#NUM!	14.1	#VALUE!	17.1	20.2	17.7	17.5	17.6	17.9
Vn(total)	18.4	17.8	18.3	17.8	18.0	#NUM!	14.1	#VALUE!	17.1	20.2	17.7	17.5	17.6	17.9
Vn(calculated)														
Vn(measured) at 1Hz	28.5	22.3	26.0	31.5	25.7	10.5	10.2	26.0	23.4	48.5	36.1	22.7	20.4	22.4
NEP(measured) at 1 Hz	6.6	5.5	6.4	7.9	6.1	N/M	N/M	N/M	5.6	N/M	8.6	5.5	4.9	5.2
Vn(measured) at 0.1 HZ	30.4	23.9	28.5	31.6	27.2	10.6 N/M	10.0 N/M	27.4 N/M	25.5	51.0 N/M	38.0	24.1	21.8	24.1
	7.0	5.9	7.0	1.5	0.0	IN/IVI			0.1	1 1/11	9.0	5.9	J.2	5.0
Vn(measured) at 1Hz no	42.4	39.7	38.3	37.5	40.4	10.1	9.9	31.5	24.0	36.1	35.3	37.2	37.8	36.8
NEP(measured) at 1Hz r	9.8	9.9	9.5	9.4	9.6	N/M	7.9	N/M	5.7	242.6	8.4	9.1	9.0	8.6
Vn(measured) at 0.1Hz r	55.2	77.8	53.6	59.0	70.0	10.2	10.7	103.5	37.0	36.8	43.2	45.5	48.7	44.2
NEP(measured) at 0.1Hz	12.7	19.3	13.2	14.8	16.7	N/M	8.6	N/M	8.8	247.5	10.3	11.1	11.6	10.3
* Noise under these cont														
These data are provide														
									1					

Symbol	Value	Value	Value	Value	Value									
то														
Vn														
VDIAS														
	C12	B11	A11	E13	D11	C11	B10	A10	D10	B 9	C10	C9	A9	B8
Pthermal	4.372	4.198	4.236	4.140	4.040	4.177	4.544	4.056	4.205	4.067	4.198	3.961	4.572	4.265
Pelec+Q	4.372	4.198	4.236	4.140	4.040	4.177	4.544	4.056	4.205	4.067	4.198	3.961	4.572	4.265
Tbolo	0.36976	0.36707	0.36761	0.36757	0.36448	0.36623	0.37133	0.36591	0.36767	0.36569	0.36683	0.36473	0.37290	0.36875
Т/Т0	1.233	1.224	1.225	1.225	1.215	1.221	1.238	1.220	1.226	1.219	1.223	1.216	1.243	1.229
Rbolo	4.03E+06	3.75E+06	3.86E+06	3.69E+06	3.56E+06	3.76E+06	4.38E+06	3.56E+06	3.83E+06	3.64E+06	3.82E+06	3.45E+06	4.39E+06	3.97E+06
Vbolo	4.20	3.97	4.04	3.91	3.79	3.97	4.46	3.80	4.01	3.85	4.00	3.70	4.48	4.11
Ibolo	1.04	1.06	1.05	1.06	1.07	1.05	1.02	1.07	1.05	1.06	1.05	1.07	1.02	1.04
A	-5.36	-5.32	-5.33	-5.29	-5.29	-5.33	-5.38	-5.38	-5.26	-5.36	-5.36	-5.28	-5.34	-5.35
С	0.79	0.71	0.81	0.85	0.72	0.82	0.92	0.64	0.65	0.90	0.67	0.70	0.83	0.79
G	74.5	73.7	74.0	71.9	73.4	74.3	75.6	72.8	73.4	73.1	74.2	71.7	74.8	73.4
Z/R	0.080	0.096	0.093	0.094	0.112	0.100	0.069	0.099	0.099	0.101	0.094	0.111	0.067	0.085
τ	7.012	6.350	7.219	7.786	6.516	7.290	8.066	5.791	5.832	8.069	5.952	6.407	7.331	7.133
Sdc	4.33E+08	4.18E+08	4.24E+08	4.19E+08	4.07E+08	4.18E+08	4.49E+08	4.13E+08	4.20E+08	4.16E+08	4.23E+08	4.05E+08	4.49E+08	4.32E+08
NEP _{johnson}	1.110	1.118	1.117	1.107	1.128	1.122	1.109	1.105	1.126	1.110	1.114	1.117	1.109	1.105
NEP _{phonon}	2.009	1.996	2.000	1.976	1.987	2.001	2.031	1.976	1.992	1.981	2.000	1.965	2.022	1.994
NEPload	0.074	0.085	0.083	0.082	0.096	0.088	0.067	0.084	0.088	0.087	0.084	0.093	0.065	0.077
	2.311	2.394	2.359	2.389	2.457	2.394	2.229	2.422	2.379	2.404	2.367	2.467	2.228	2.313
NEP _{det}	4.146	4.238	4.200	4.217	4.311	4.242	4.065	4.254	4.224	4.238	4.207	4.306	4.060	4.139
DQE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Vn(det)	17.9	17.7	17.8	17.7	17.5	17.7	18.2	17.6	17.8	17.6	17.8	17.5	18.2	17.9
Vn(total)	17.9	17.7	17.8	17.7	17.5	17.7	18.2	17.6	17.8	17.6	17.8	17.5	18.2	17.9
Vn(calculated)														
Vn(measured) at 1Hz	21.5	28.3	22.6	22.6	22.0	20.4	22.3	19.6	20.4	20.8	25.9	> 40.0	20.9	20.2
NEP(measured) at 1 Hz	5.0	6.8	5.3	5.4	5.4	4.9	5.0	4.8	4.8	5.0	6.1	> 9.9	4.7	4.7
Vn(measured) at 0.1 Hz	22.7	42.7	24.8	23.7	23.5	22.3	24.7	21.6	23.0	22.4	27.8	> 40.0	22.2	22.3
NEP(measured) at 0.1 H	5.3	10.2	5.9	5.7	5.8	5.3	5.5	5.2	5.5	5.4	0.0	> 9.9	4.9	5.2
Vn(measured) at 1Hz no	37.3	43.9	38.2	33.7	35.4	35.4	38.6	37.2	35.4	40.7	38.4	38.2	134.4	37.7
NEP(measured) at 1Hz r	8.6	10.5	9.0	8.1	8.7	8.5	8.6	9.0	8.4	9.8	9.1	9.4	29.9	8.7
Vn(measured) at 0.1Hz r	46.3	80.0	56.7	39.4	45.0	54.5	53.7	49.4	45.2	55.4	48.3	50.4	136.1	47.5
NEP(measured) at 0.1Hz	10.7	19.1	13.4	9.4	11.0	13.0	12.0	12.0	10.7	13.3	11.4	12.4	30.3	11.0
* Materia														
Those data are provide														
THESE UALA ALE PLOVIDE														

Symbol	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
ТО														
Vn														
Q														
NEP _{photon}														
Vbias														
			00			01	-	=4	D 4				50	
Dthormol	A8 2.055	4 424	2.052	B/ 2.042		4 202	12 000	E1 4 2 4 1	4 014	F1 4 206	E2 4 204	G2	F2	4 211
	3.900	4.421	3.952	3.942	#VALUE!	4.393	13.000	4.341	4.211	4.390	4.394	4.252	4.354	4.311
Pelec+Q	3.955	4.421	3.952	3.942	#VALUE!	4.393	6.990	4.341	4.211	4.396	4.394	4.252	4.354	4.311
Tbolo	0.36605	0.37105	0.36523	0.36578	#VALUE!	0.36599	0.30251	0.36588	0.36309	0.36588	0.36630	0.36458	0.35747	0.35771
Т/Т0	1.220	1.237	1.217	1.219	#VALUE!	1.220	1.008	1.220	1.210	1.220	1.221	1.215	1.192	1.192
Rbolo	3.45E+06	4.10E+06	3.52E+06	3.41E+06	#VALUE!	3.72E+06	1.17E+07	3.66E+06	3.51E+06	3.71E+06	3.73E+06	3.60E+06	3.70E+06	3.66E+06
Vbolo	3.70	4.26	3.73	3.66	#VALUE!	4.04	9.03	3.98	3.84	4.04	4.05	3.91	4.01	3.97
Ibolo	1.07	1.04	1.06	1.08	#VALUE!	1.09	0.77	1.09	1.10	1.09	1.09	1.09	1.09	1.09
A	-5.37	-5.39	-5.31	-5.33	#VALUE!	-5.27	-5.84	-5.31	-5.34	-5.32	-5.27	-5.33	-5.42	-5.39
С	0.76	0.76	0.70	0.68	#VALUE!	1.18	#VALUE!	0.76	0.62	0.66	0.65	0.88	0.76	1.35
G	70.8	74.0	71.5	70.6	#VALUE!	77.6	5640.2	77.0	77.8	78.1	77.6	76.7	87.3	86.0
Z/R	0.099	0.071	0.109	0.103	#VALUE!	0.102	0.953	0.100	0.113	0.099	0.102	0.105	0.139	0.139
τ	6.966	6.752	6.407	6.262	#VALUE!	10.147	#VALUE!	6.500	5.273	5.597	5.589	7.551	5.944	10.651
Sdc	4.12E+08	4.40E+08	4.11E+08	4.08E+08	#VALUE!	4.03E+08	1.77E+07	4.04E+08	3.95E+08	4.04E+08	4.04E+08	4.02E+08	3.84E+08	3.84E+08
NEPiohnson	1.091	1.096	1.110	1.097	#VALUE!	1.156	45.151	1.145	1.153	1.150	1.156	1.142	1.226	1.222
NEPabanan	1.950	2.007	1.958	1.949	#VALUE!	2.052	16.609	2.042	2.045	2.055	2.050	2.036	2.155	2.140
NFP	0.082	0.065	0.091	0.085	#\/ALLIE!	0 094	37 793	0.091	0 100	0 091	0.094	0.094	0 133	0 131
	2 426	2 274	2 434	2 449	#VALUE!	2 479	56 560	2 478	2 532	2 473	2 475	2 488	2 602	2 604
	4 220	4.006	4 262	4 269	#\/ALLIE!	4 291	116 652	4 260	4 427	4 272	4 275	4 276	4 609	4 600
	4.239	4.090	4.203	4.200	#VALUE!	4.301	110.002	4.309	4.437	4.372	4.375	4.370	4.000	4.000
DQE	0.000	0.000	0.000	0.000	#VALUE!	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Vn(det)	17.5	18.0	17.5	17.4	#VALUE!	17.7	20.6	17.6	17.5	17.7	17.7	17.6	17.7	17.7
Vn(total)	17.5	18.0	17.5	17 4	#\/ALLIF!	17 7	20.6	17.6	17.5	17 7	17 7	17.6	17 7	17 7
Vn(calculated)	11.0	10.0	11.0		# V/ (EOE.		20.0	11.0	11.0					
Vn(measured) at 1Hz	21.6	21.3	19.4	21.9	22.4	22.6	47.6	35.6	21.7	> 40	21.5	30.9	20.7	22.9
NEP(measured) at 1 Hz	5.2	4.8	4.7	5.4	N/M	5.6	N/M	8.8	5.5	> 9.9	5.3	7.7	5.4	6.0
Vn(measured) at 0.1 Hz	22.7	23.7	20.8	24.1	22.2	24.8	49.1	37.2	22.2	> 40.0	22.9	32.0	22.8	24.5
NEP(measured) at 0.1 H	5.5	5.4	5.1	5.9	N/M	6.1	N/M	9.2	5.6	> 9.9	5.7	7.9	5.9	6.4
Vn(measured) at 1Hz no	38.9	34.8	31.5	30.9	29.8	0.0	35.6	34.2	31.9	44.3	86.7	34.8	32.9	32.1
NEP(measured) at 1Hz r	9.4	7.9	7.7	7.6	N/M	0.0	201.1	8.5	8.1	11.0	21.5	8.6	8.6	8.4
Vn(measured) at 0.1Hz r	51.2	39.9	39.0	42.4	49.1 N/M	0.0	36.4	38.8 0.6	35.2	49.1	85.8 21.0	39.7	46.5	51.5
iner(measured) at 0.1Hz	12.4	9.1	9.5	10.4	IN/IVI	0.0	205.7	9.6	8.9	12.1	21.2	9.9	12.1	13.4
* Noise under these conr														
These data are provide														

Symbol	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
ТО														
Vn														
Q														
NEP _{photon}														
Vbias														
	E 2	D2	E 2	64	E4	E4	55	DE	55	C E	Ec	06	FC	07
Pthormal	E3 4 238	D3 4 546	гэ 4 373	4 3/3	E4 4 524	F4 // 118	4 026	4 306	FD 4 216	4 376	4 087	4 100	F0 4 365	4 101
	4.230	4.540	4.373	4.040	4.524	4.110	4.020	4.300	4.210	4.370	4.007	4.190	4.303	4.131
	4.230	4.040	4.373	4.343	4.524	4.110	4.020	4.300	4.210	4.370	4.007	4.190	4.303	4.191
	0.35731	0.30043	0.35766	0.30019	0.30000	0.30021	0.30001	0.35007	0.35700	0.35939	0.35560	0.30072	0.30112	0.36020
1/1U Dhala	1.191	1.201	1.192	1.194	1.200	1.187	1.187	1.196	1.193	1.198	1.180	1.196	1.204	1.201
RD0I0	3.59E+06	4.00E+06	3.80E+06	3.87E+06	4.04E+06	3.52E+06	3.44E+06	3.71E+06	3.65E+06	3.91E+06	3.41E+06	3.59E+06	3.84E+06	3.61E+06
	3.90	4.20	4.08	4.10	4.28	3.81	3.72	4.00	3.92	4.14	3.73	3.88	4.10	3.89
Olodi	1.09	1.07	1.07	1.06	1.06	1.08	1.08	1.08	1.07	1.06	1.09	1.08	1.07	1.08
A	-5.37	-5.35	-5.39	-5.40	-5.41	-5.44	-5.45	-5.41	-5.44	-5.34	-5.40	-5.37	-5.44	-5.35
C	0.73	0.70	0.74	0.69	0.72	0.69	0.70	0.68	0.77	0.86	0.73	0.85	0.72	0.79
G	85.1	87.5	87.4	85.9	87.2	84.4	83.0	85.1	84.4	85.1	84.4	82.6	83.2	80.8
Z/R	0.144	0.129	0.140	0.135	0.123	0.146	0.148	0.135	0.137	0.134	0.153	0.136	0.117	0.130
τ	5.787	5.506	5.802	5.507	5.610	5.503	5.691	5.382	6.138	6.896	5.875	6.939	5.786	6.571
Sdc	3.82E+08	3.95E+08	3.88E+08	3.95E+08	4.02E+08	3.83E+08	3.82E+08	3.90E+08	3.90E+08	3.96E+08	3.75E+08	3.88E+08	4.03E+08	3.92E+08
NEP _{johnson}	1.221	1.233	1.232	1.216	1.215	1.207	1.197	1.210	1.202	1.220	1.220	1.198	1.181	1.185
NEP _{phonon}	2.128	2.161	2.157	2.141	2.159	2.114	2.094	2.127	2.116	2.133	2.113	2.097	2.108	2.077
NEP _{load}	0.133	0.129	0.135	0.130	0.122	0.132	0.130	0.127	0.126	0.130	0.138	0.124	0.111	0.118
NEP _{amp}	2.620	2.530	2.579	2.529	2.488	2.613	2.617	2.567	2.567	2.523	2.670	2.577	2.483	2.549
NEP _{det}	4.612	4.533	4.586	4.513	4.475	4.591	4.581	4.546	4.536	4.504	4.662	4.536	4.425	4.488
DQE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Vn(det)	17.6	17.9	17.8	17.8	18.0	17.6	17.5	17.7	17.7	17.9	17.5	17.6	17.8	17.6
Vn(total)	17.6	17.9	17.8	17.8	18.0	17.6	17.5	17.7	17.7	17.9	17.5	17.6	17.8	17.6
Vn(calculated)														
Vn(measured) at 1Hz	20.5	21.9	20.7	20.6	28.1	19.6	> 40.0	20.5	21.7	21.4	22.0	22.6	20.0	22.4
NEP(measured) at 1 Hz	5.4	5.5	5.3	5.2	7.0	5.1	> 10.5	5.3	5.6	5.4	5.9	5.8	5.0	5.7
Vn(measured) at 0.1 Hz	22.3	24.5	22.6	22.2	29.0	21.2	> 40.0	21.6	23.2	23.1	22.8	25.2	21.4	23.3
NEP(measured) at 0.1 H	5.9	6.2	5.8	5.6	7.2	5.6	> 10.5	5.6	5.9	5.8	6.1	6.5	5.3	5.9
Vp(manurad) at 147 pa	20.6	12.2	20.7	21.6	22.4	66.7	11.1	11 1	22.6	25.0	AF 7	42.4	101 1	126.0
NEP(measured) at 1Hz no	30.6 8 0	43.3 10 Q	32.7 8 1	31.0 8.0	32.1 8 0	00.7 17 /	44.1 11 5	44.1	32.0 8 1	0.CC 8 8	40.7	43.1	32.5	120.8
Vn(measured) at 0.1Hz r	41.4	49.4	38.7	37.7	38.5	73.5	51.0	56.1	56.7	69.6	69.4	66.1	143.7	131.7
NEP(measured) at 0.1Hz	10.8	12.5	10.0	9.5	9.6	19.2	13.4	14.4	14.5	17.6	18.5	17.0	35.7	33.6
* Noise under these cond														
These data are provide														

Symbol	Parameter	Equation (or Comments)
ТО		
Vn		
Q		
NEP _{photon}		
Vbias		
Dth a res al	Dawar as function of Temperature	$\mathbf{D} = [C200/(4+8))[T/(0,2)^{\beta}T]$ evoluted from To to Th
Pthermal	Power as function of Temperature	$P_{\text{thermal}} = [G300/(1+p)][1/0.3]^{-1} \text{ evaluated from 10 to 15}$
Pelec+Q	Electrical + Absorbed Power	$P_{e} + Q = [V_{bias}/(2R_{L} + R_{B})]^{-}R_{B} + Q$
	Bolometer Temperature	Solve for 1b using Newtonian recursion such that $P_{\text{thermal}} = P_e + Q$
Т/ТО		T/To = Tbolo/To
Rbolo	Bolometer Resistance	$Rbolo = (Ro)exp[(\Delta/Tb)^{1/2}]$
Vbolo	Voltage across Bolometer	Vbolo = [Vbias/($2R_L + R_B$)] R_B
Ibolo	Current through Bolometer	$Ibolo = Vbias/(2R_{L} + R_{B})$
A		$A = (T/R)(dR/dT) = -(1/2)[(\Delta/Tb)^{1/2}]$
С	Dynamic Heat Capacity	$C = C300[(T/0.3)^{\gamma}]$
G	Dynamic Thermal Conductance	$G = G300[(T/0.3)^{\beta}]$
Z/R		$Z/R = (I/V)(dV/dI) = [-1 - GTb/(P_eA)] / [1 - GTb/(P_eA)]$
τ	Electrical Time Constant	$\tau = [C/2G][(Z/R + 1)(1 + 2R_L/R_B)] / [Z/R + 2R_L/R_B]$
Sdc	Electrical Responsivity at 0 Hz	$Sdc = (1/2)[R_B/P_e]^{1/2}[1 - Z/R] / [1 + (Z/R)(R_B/2R_L)$
NEP _{johnson}	Johnson Noise Prior to Demodulation	$NEP_{johnson} = [(4k(Tb)^{3}G^{2})/(P_{e}A^{2})]^{1/2}$
NEP _{phonon}	Phonon Noise Prior to Demodulation	$= \{ [(4kTo^{2}G)(\beta+1)((T/To)^{2\beta+3}-1)]/[(2\beta+3)(T/To)^{\beta}((T/To)^{\beta+1}-1)] \}^{1/2}$
NEP _{load}	Johnson Noise from R _L Prior to Demod.	$NEP_{load} = [4kTo/2R_{L}]^{1/2} 2(Z/R)R_{B}lbolo/[(Z/R) - 1] $
NEP _{amp}	Amplifier Noise Prior to Demodulation	NEP _{amp} = Vn / Sdc
NEP _{det}	Detector Noise after Demodulation	$NEP_{det} = [2NEP_{john}^{2} + NEP_{phon}^{2} + 2NEP_{load}^{2} + 2NEP_{amp}^{2}]^{1/2}$
DQE	BLIP Figure-of-Merit for Detector	$DQE = NEP_{photon}^{2} / (NEP_{photon}^{2} + NEP_{det}^{2})$
Vn(det)	Voltage Noise of Detector After Demod.	$Vn(det) = NEP_{det}Sdc$
Vn(total)	Total Noise after Demodulation	$Vn(total) = [NEP_{det}^{2} + NEP_{photon}^{2}]^{"2}Sdc$
Vn(calculated)		
Vn(measured) at 1Hz		
NEP(measured) at 1 Hz		
NEP(measured) at 0.1 Hz	4	
	·	
Vn(measured) at 1Hz no)	
NEP(measured) at 1Hz	r	
Vn(measured) at 0.1Hz	r	
NEP(measured) at 0.1H	2	
 Multiple considerations 		
Those under these con	(
These data are provide	t	

Symbol	Units	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	
T0	К	0.3	Base Temperat	ure													
Vn	nV/rtHz	10	Amplifier Voltag	e Noise													
Q	pW	3.3	Absorbed Power O	nto Bolometer													
NEP _{photon}	1e-17 W/rtHz	6.30	Noise in Absorbed	Optical Power													
Vbias	mV	18.5	Bias Across Bolom	eter & Load Re	sistors												
		T	Detector ID		Do	07		25		D.	D 4	0.5	54		04		
Dth a res al		Target	A/	A6	B0	67	A5	B5	5 700	D6	B4	C5	D4	A4	C4	B3	
Pthermal	pvv	6.163	5.705	5.745	5.671	5.574	5.788	5.700	5.789	5.676	5.806	6.014	5.929	5.628	5.774	5.761	
Pelec+Q	pW	6.163	5.705	5.745	5.671	5.574	5.788	5.700	5.789	5.676	5.806	6.014	5.929	5.628	5.774	5.761	
	ĸ	0.39339	0.37963	0.37997	0.37031	0.37000	0.37 640	0.37765	0.37631	0.37710	0.30791	0.39035	0.30739	0.30000	0.30409	0.30435	
1/10 Dhala	0	F 20F - 00	0.745.00	0.005.00	0.005.00	0.505.00	0.045.00	0.755.00	0.005.00	0.705.00	1.293	2.005.00	1.291	0.705.00	1.203	0.005.00	
KD0I0	<u>12</u>	5.39E+06	2.71E+06	2.03E+00	2.00E+00	2.30E+00	2.84E+06	2.75E+06 2.57	2.89E+06	2.76E+06	2.99E+06	3.29E+06	3.24E+06	2.72E+06	2.92E+06	2.96E+06	
lbolo	nA	0.73	2.55	2.04	2.01	2.41	2.00	2.57	2.00	2.00	2.74	2.99	2.92	2.52	2.09	2.70	
000	IIA	0.73	0.94	0.90	0.94	0.94	0.94	0.94	0.93	0.93	0.92	0.91	0.90	0.92	0.92	0.91	
A	n 1/1/	-5.15	-5.26	-5.24	-5.28	-5.27	-5.31	-5.10	-5.27	-5.31	-5.20	-5.21	-5.25	-5.20	-5.26	-5.22	
G	pJ/K	79.6	0.07	0.93	0.97	0.70	0.93	88.0	0.03 80.7	0.74	0.70	82.0	0.07	0.07 80 3	0.09	0.94	
7/R	pw/k	0.359	0 445	0 442	0 453	0467	0.438	0 457	0 442	0.453	0 416	0.387	0.400	0 438	0.423	0.428	
2/10		0.000	0.110	0.112	0.100	0.107	0.100	0.107	0.112	0.100	0.110	0.001	0.100	0.100	0.120	0.120	
τ	ms	4.000	7.848	8.310	8.689	6.995	8.123	6.686	7,237	6.589	7,426	6,960	6,195	8,455	6.435	8,799	
Sdc	V/K	4 01E+08	2 75E±08	2 71E±08	2 71E±08	2.65E±08	2 80F±08	2 71E±08	2 80E±08	2 75E±08	2 97E±08	3 14E±08	3 10E±08	2 84E±08	2 92E±08	2 92E±08	
000	VIIC	1.012100	2.702.700	2.712100	2.712100	2.002100	2.002100	2.712100	2.002100	2.702.700	2.07 2 100	0.112100	0.102100	2.012100	2.022100	2.022100	
NEPiohoson	1e-17 W/rtHz	1.673	1.848	1.848	1.868	1.891	1.845	1.897	1.863	1.868	1.777	1,731	1,750	1.803	1,790	1.803	
NFP	1e-17 W/rtHz	2 150	2 191	2 195	2 198	2 192	2 219	2 207	2 221	2 209	2 140	2 157	2 164	2 122	2 158	2 159	
	10 17 W/rtHz	0.401	0.405	0.401	0.411	0.416	0.410	0.426	0.410	0.416	0.202	0.272	0.201	0.294	0.200	0.204	
	10.17 W/rtHz	2.401	2,629	2 604	2.605	2 770	2 5 7 9	2 606	2.576	2.641	0.303	2 195	2 220	2 5 2 1	0.300	2 422	
		2.495	5.030	0.094	0.095	0.000	0.407	0.000	0.070	0.041	5.302	5.105	5.220	0.021	5.422	5.422	
		4.795	0.200	0.200	0.201	0.393	0.137	0.305	0.147	0.222	5.014	5.567	5.652	0.000	5.090	5.907	
DQE		0.633	0.508	0.503	0.502	0.493	0.513	0.500	0.512	0.506	0.540	0.560	0.554	0.524	0.533	0.532	
Vn(det)	n\//rtHz	10.2	17.0	17.0	17.0	16.0	17.2	17 1	17.2	17 1	17.3	17.5	17.5	17 1	17.2	17.3	
Vir(det)	nv/nt 12	15.2	17.0	17.0	04.4	10.3	04.0	04.4	04.0	04.0	17.5	00.4	17.5	04.7	05.0	17.5	
vn(total)	nv/mHz	31.7	24.3	24.1	24.1	23.7	24.0	24.1	24.0	24.3	25.5	26.4	20.2	24.7	25.2	25.2	
Measured O incident	1 165 11																
NFP photon	9.69E-17																
	0.002 11																
Q_absorbed			N/M	N/M	8.118E-12	N/A	8.827E-12	7.79E-12	7.941E-12	8.171E-12	7.973E-12	7.934E-12	8.256E-12	9.194E-12	8.059E-12	8.161E-12	
NEP_photon			N/M	N/M	8.099E-17	N/A	8.445E-17	7.934E-17	8.01E-17	8.125E-17	8.026E-17	8.007E-17	8.168E-17	8.619E-17	8.069E-17	8.12E-17	
Vn(total, gain	= 57300)		0.0012333	0.0020814	0.0013961	N/A	0.0016456	0.0015933	0.001589	0.0014673	0.0015614	0.0017511	0.0016302	0.0019089	0.0016721	0.0018064	
Vn(total)		2.8585E-08	1.52195E-08	3.632E-08	2.436E-08	N/A	2.872E-08	2.781E-08	2.773E-08	2.561E-08	2.725E-08	3.056E-08	2.845E-08	3.331E-08	2.918E-08	3.153E-08	
Sdc			N/M	N/M	1.625±00	N/A	1 81 = ±00	1 68⊑±∩∘	1 60 - 100	1 645±00	1 75 - + 0 9	2 185+00	1 78 - 10	2 05⊑±00	1 72⊑⊥00	2 03⊑±00	
NFP(total)			1 N/ IVI	1 N/ IVI	1.501E-16	N/A	1.588E-16	1.656E-16	1 644F-16	1.559E-16	1.555E-16	1 399F-16	1.603E-16	1.625E-16	1.698E-16	1.549E-16	
DQE		#VALUE!	N/M	N/M	0.29	N/A	0.28	0.23	0.24	0.27	0.27	0.33	0.26	0.28	0.23	0.27	
Symbol	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
------------------------	-----------	-----------	-----------	-----------	----------	-----------	------------	-----------	-----------	-----------	------------	------------	-----------	-----------	-----------	-----------	-----------
ТО																	
Vn																	
Q																	
NEP _{photon}																	
Vbias																	
Dili a ma al	C3	B2	D2	A3	A2	C2	B1	A1	DK1	C1	E7	D7	F7	E8	G8	F8	E9
Pthermal	6.084	5.744	5.774	5.723	5.666	5.757	5.750	5.565	5.654	5.890	5.794	5.632	5.815	5.705	5.797	5.885	6.129
Pelec+Q	6.084	5.744	5.773	5.723	5.666	5.757	5.750	5.565	5.654	5.890	5.794	5.632	5.815	5.705	5.797	5.885	6.129
	0.38707	0.38466	0.38433	0.38500	0.38545	0.38479	0.38501	0.38403	0.38538	0.38796	0.37811	0.37603	0.37805	0.37618	0.37985	0.37865	0.38182
1/10	1.290	1.282	1.281	1.286	1.285	1.283	1.283	1.280	1.285	1.293	1.260	1.253	1.260	1.254	1.266	1.262	1.273
Rbolo	3.46E+06	2.86E+06	3.01E+06	2.88E+06	2.79E+06	3.02E+06	2.97E+06	2.63E+06	2.87E+06	3.22E+06	2.69E+06	2.48E+06	2.72E+06	2.56E+06	2.74E+06	2.85E+06	3.25E+06
VDOIO	3.10	2.65	2.73	2.64	2.57	2.72	2.70	2.44	2.60	2.89	2.59	2.41	2.62	2.48	2.62	2.72	3.03
IDOIO	0.90	0.92	0.91	0.92	0.92	0.90	0.91	0.93	0.91	0.90	0.96	0.97	0.96	0.97	0.95	0.95	0.93
A	-5.20	-5.21	-5.17	-5.19	-5.13	-5.17	-5.20	-5.11	-5.24	-5.24	-5.23	-5.30	-5.24	-5.26	-5.20	-5.26	-5.31
C	0.84	0.84	0.80	0.82	0.75	0.79	1.14	0.97	0.72	0.91	0.72	0.72	0.74	0.73	0.75	0.82	0.68
G	85.2	82.7	83.6	82.0	80.4	83.4	82.5	79.9	81.0	82.1	89.1	89.3	89.6	90.0	87.6	90.4	91.1
Z/R	0.390	0.428	0.430	0.430	0.437	0.433	0.427	0.452	0.434	0.403	0.442	0.462	0.440	0.456	0.439	0.431	0.396
-	7 007	7.044	7 500	7 007	7 074	7 202	40.007	0.504	0.050	0.500	0.040	C 202	0.450	C 444	0.070	7 4 0 7	F 770
1	7.607	7.944	7.503	1.821	1.2/1	7.383	10.807	9.504	0.958	8.599	6.349	0.323	0.453	6.411	0.072	7.107	5.//2
Sdc	3.15E+08	2.89E+08	2.92E+08	2.90E+08	2.86E+08	2.93E+08	2.94E+08	2.76E+08	2.92E+08	3.10E+08	2.70E+08	2.59E+08	2.71E+08	2.62E+08	2.74E+08	2.78E+08	3.00E+08
NEP _{johnson}	1.758	1.801	1.819	1.804	1.811	1.824	1.798	1.836	1.791	1.749	1.864	1.892	1.864	1.889	1.854	1.849	1.787
NEPphonon	2.193	2.152	2.161	2.142	2.129	2.156	2.150	2.121	2.130	2.152	2.221	2.212	2.226	2.224	2.205	2.234	2.250
NEPload	0.390	0.390	0.402	0.391	0.390	0.404	0.393	0.394	0.387	0.380	0.410	0.413	0.412	0.416	0.408	0.411	0.398
NEPamp	3.174	3.464	3.419	3.454	3.502	3.417	3.400	3.617	3.424	3.228	3.699	3.855	3.685	3.813	3.646	3.594	3.331
NEP _{det}	5.608	5.952	5.915	5.938	5.995	5.915	5.875	6.141	5.891	5.646	6.291	6.490	6.277	6.443	6.218	6.164	5.827
DQE	0.558	0.528	0.531	0.530	0.525	0.531	0.535	0.513	0.534	0.555	0.501	0.485	0.502	0.489	0.507	0.511	0.539
Vn(det)	17.7	17.2	17.3	17.2	17.1	17.3	17.3	17.0	17.2	17.5	17.0	16.8	17.0	16.9	17.1	17.2	17.5
Vn(total)	26.6	25.0	25.3	25.1	24.8	25.3	25.3	24.3	25.2	26.2	24.1	23.5	24.1	23.6	24.3	24.5	25.8
Measured																	
Q_incident																	
NEP_photon																	
-																	
Q_absorbed	8.378E-12	8.267E-12	7.828E-12	7.675E-12	N/A	7.606E-12	8.426E-12	9.022E-12	#VALUE!	N/A	8.289E-12	8.085E-12	8.17E-12	8.317E-12	8.181E-12	8.63E-12	8.514E-12
NEP_photon	8.227E-17	8.173E-17	7.953E-17	7.8/5E-1/	N/A	7.839E-17	8.251E-17	8.538E-17	#VALUE!	N/A	8.184E-17	8.082E-17	8.125E-17	8.197E-17	8.13E-17	8.35E-17	8.294E-17
Vn(total)	3 861E-08	3 218F-08	5.353E-08	2 755E-08	N/A	3.81E-08	4 246F-08	2 75E-08	2 787F-08	2 682E-08	4 246F-08	4 246F-08	4 246F-08	4 246F-08	4 246F-08	4 246F-08	4 246F-08
· · · (total)	5.5512 00	5.210L 00	3.000∟ 00		, / `	0.012 00	1.2 102 00	2.752 00	2.1012 00	2.0022 00	1.2 102 00	1.2.102.00					
Sdc	1.74E+08	2.00E+08	1.68E+08	1.74E+08	N/M	2.34E+08	1.75E+08	1.67E+08	1.61E+08	N/M	1.75E+08	1.75E+08	1.75E+08	1.75E+08	1.75E+08	1.75E+08	1.75E+08
NEP(total)	2.22E-16	1.61E-16	3.186E-16	1.581E-16	N/M	1.63E-16	2.424E-16	1.645E-16	1.735E-16	N/M	2.424E-16	2.424E-16	2.424E-16	2.424E-16	2.424E-16	2.424E-16	2.424E-16
DQE	0.14	0.26	0.06	0.25	N/M	0.23	0.12	0.27	#VALUE!	N/M	0.11	0.11	0.11	0.11	0.11	0.12	0.12

Symbol	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
TO																	
Vn																	
Q																	
NEP _{photon}																	
Vbias																	
	G 9	D9	F9	E10	G10	F10	E11	G11	F11	E12	G12	F12	G13	DK2	SH	SH	R2
Pthermal	5.814	6.111	5.862	5.838	5.600	5.868	5.892	5.743	5.716	6.158	5.756	6.115	5.758	5.837	#NUM!	50.863	#VALUE!
Pelec+Q	5.814	6.111	5.862	5.838	5.600	5.868	5.892	5.743	5.716	6.158	5.756	6.115	5.758	5.837	#NUM!	3.301	#VALUE!
Tbolo	0.37737	0.37996	0.37768	0.37651	0.37556	0.37692	0.37751	0.37641	0.37593	0.38033	0.37805	0.37203	0.37624	0.38012	#NUM!	10.04650	#VALUE!
T/T0	1.258	1.267	1.259	1.255	1.252	1.256	1.258	1.255	1.253	1.268	1.260	1.240	1.254	1.267	#NUM!	33.488	#VALUE!
Rbolo	2.81E+06	3.23E+06	2.84E+06	2.89E+06	2.46E+06	2.89E+06	2.97E+06	2.69E+06	2.68E+06	3.47E+06	2.77E+06	3.42E+06	2.80E+06	2.93E+06	#NUM!	6.83E+02	#VALUE!
Vbolo	2.66	3.01	2.70	2.71	2.38	2.73	2.77	2.57	2.54	3.15	2.61	3.10	2.62	2.73	#NUM!	0.00	#VALUE!
Ibolo	0.95	0.93	0.95	0.94	0.97	0.94	0.93	0.95	0.95	0.91	0.94	0.91	0.94	0.93	#NUM!	1.07	#VALUE!
A	-5.25	-5.28	-5.23	-5.28	-5.22	-5.26	-5.28	-5.26	-5.23	-5.31	-5.23	-5.27	-5.19	-5.31	#NUM!	-0.19	#VALUE!
С	0.77	0.88	0.68	0.74	0.90	0.74	#VALUE!	0.69	0.84	0.85	0.72	0.66	1.16	#VALUE!	#VALUE!	#VALUE!	#VALUE!
G	90.2	92.0	91.3	92.1	88.8	91.9	91.7	89.9	89.9	92.7	88.7	101.3	90.0	88.0	#NUM!	13.5	#VALUE!
Z/R	0.441	0.404	0.440	0.442	0.471	0.439	0.433	0.450	0.456	0.398	0.446	0.435	0.452	0.426	#NUM!	1.000	#VALUE!
τ	6.710	7.469	5.861	6.281	8.032	6.326	#VALUE!	6.021	7.389	7.114	6.377	5.190	10.127	#VALUE!	#NUM!	#VALUE!	#VALUE!
Sdc	2.75E+08	2.96E+08	2.74E+08	2.76E+08	2.56E+08	2.77E+08	2.82E+08	2.69E+08	2.67E+08	3.06E+08	2.74E+08	2.86E+08	2.72E+08	2.88E+08	#NUM!	1.01E+03	#VALUE!
NEPiohnson	1.865	1.808	1.879	1.879	1.918	1.875	1.858	1.878	1.894	1.799	1.869	1.931	1.895	1.812	#NUM!	61014.190	#VALUE!
NFPaharan	2 232	2 262	2 240	2 248	2 209	2 248	2 247	2 228	2 227	2 268	2 214	2 349	2 231	2 210	#NUM!	17 795	#VALUE!
NEP	0.417	0.408	0 422	0.426	0.421	0.424	0.421	0.418	0.423	0.412	0.416	0.472	0.420	0.400	#NILIMI	66.404	#\/ALLIE!
	2 626	2 276	2 6/9	2 610	2 010	2 614	2.540	2 714	2 744	2 262	2.649	2.406	2.676	2 479	#NU IMI	##########	#VALUE:
	3.030	5.570	3.040	3.019	3.910	3.014	3.549	3.714	3.744	5.205	3.048	3.490	3.070	5.470	#INUIVI:	*****	#VALUE!
NEP _{det}	6.223	5.897	6.249	6.219	6.570	6.210	6.124	0.321	0.300	5.766	0.233	6.153	6.289	5.997	#INUIVI!	##########	#VALUE!
DQE	0.506	0.533	0.504	0.506	0.479	0.507	0.514	0.498	0.495	0.544	0.505	0.512	0.501	0.525	#NUM!	0.000	#VALUE!
	17.1	47.5	47.4	47.0	10.0	47.0	17.0	47.0	47.0	477	47.4	47.0	47.4	17.0		44.0	
Vn(det)	17.1	17.5	17.1	17.2	16.8	17.2	17.3	17.0	17.0	17.7	17.1	17.6	17.1	17.2	#NUM!	14.2	#VALUE!
Vn(total)	24.4	25.6	24.3	24.5	23.3	24.5	24.8	24.0	23.9	26.2	24.3	25.2	24.2	25.0	#NUM!	14.2	#VALUE!
Measured													-				
Q_incident																	
NEP_photon																	
O abaarbad	#\/^!!!=!	7 020E 12	9 E 40E 40	9 167E 10	0 70E 10	9 167E 10	9 017E 10	#\/ALLIEI	#\/ALLIEL	#\/ALLEL							
NEP photon	#VALUE!	7 958E-12	8 311F-17	8 123E-17	0.70E-12 8 423E-17	8 123E-17	8.488E-17	#VALUE!	#VALUE!	#VALUE!						+	
Vn(total, gain	0.0024331	0.0024331	0.0024331	0.0024331	0.0024331	0.0024331	0.0024331	0.0024331	0.0024331	0.0024331							
Vn(total)	4.246E-08	4.246E-08	4.246E-08	4.246E-08	4.246E-08	4.246E-08	4.246E-08	4.246E-08	4.246E-08	4.246E-08							
,,																	
Sdc	1.75E+08	1.75E+08	1.75E+08	1.75E+08	1.75E+08	1.75E+08	1.75E+08	1.75E+08	1.75E+08	1.75E+08							
NEP(total)	2.424E-16	2.424E-16	2.424E-16	2.424E-16	2.424E-16	2.424E-16	2.424E-16	2.424E-16	2.424E-16	2.424E-16							
205																	
DQE	#VALUE!	0.11	0.12	0.11	0.12	0.11	0.12	#VALUE!	#VALUE!	#VALUE!						1	

Symbol	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Т0																	
Vn																	
Q																	
NEP _{photon}																	
VDIAS																	
	A13	T1	B12	C13	A12	D12	C12	B11	A11	E13	D11	C11	B10	A10	D10	B9	C10
Pthermal	5.514	26.233	5.879	5.810	5.858	6.034	6.046	5.906	5.938	5.855	5.784	5.892	6.190	5.787	5.917	5.799	5.907
Pelec+Q	5.514	8.275	5.879	5.810	5.858	6.034	6.046	5.906	5.938	5.855	5.784	5.892	6.190	5.787	5.917	5.799	5.907
Tbolo	0.40519	0.30427	0.39163	0.39021	0.39068	0.39160	0.39111	0.38909	0.38946	0.39022	0.38699	0.38815	0.39208	0.38843	0.38983	0.38815	0.38870
T/T0	1.351	1.014	1.305	1.301	1.302	1.305	1.304	1.297	1.298	1.301	1.290	1.294	1.307	1.295	1.299	1.294	1.296
Rbolo	2.18E+06	9.91E+06	2.71E+06	2.59E+06	2.68E+06	2.98E+06	2.99E+06	2.76E+06	2.85E+06	2.70E+06	2.60E+06	2.77E+06	3.29E+06	2.59E+06	2.83E+06	2.66E+06	2.81E+06
Vbolo	2.20	7.02	2.64	2.55	2.62	2.85	2.87	2.68	2.74	2.63	2.54	2.68	3.08	2.54	2.72	2.58	2.71
Ibolo	1.01	0.71	0.98	0.98	0.98	0.96	0.96	0.97	0.96	0.97	0.98	0.97	0.94	0.98	0.96	0.97	0.96
A	-4.99	-5.81	-5.15	-5.11	-5.19	-5.10	-5.22	-5.16	-5.18	-5.13	-5.14	-5.18	-5.23	-5.22	-5.11	-5.21	-5.21
C	1.00	#VALUE!	0.71	#VALUE!	0.80	0.86	0.84	0.75	0.86	0.91	0.77	0.87	0.97	0.68	0.68	0.95	0.71
G	66.8	6432.8	79.4	79.5	80.1	81.3	82.3	81.5	81.9	79.5	81.5	82.2	83.0	81.0	81.2	81.2	82.1
Z/R	0.420	0.971	0.401	0.415	0.404	0.391	0.384	0.404	0.400	0.406	0.424	0.408	0.366	0.416	0.406	0.416	0.403
τ	11 415	#\/Δ[[[F]	6 813	#\/ALLIE!	7 657	8 130	7 778	7 092	8 037	8 740	7 295	8 1 2 8	8 905	6 484	6 494	9.021	6 632
ç Sdo	2 725 .09	#VALUL:	2 000 10	2 70E 100	2 965 109	2 07E 109	2 00 5 109	2 975,092	2 025 109	2 965 109	2 765 109	2 965 109	2 15E 109	2 00 - 100	2 00 - 100	2 925 109	2 005 109
Suc	2.72E+00	1.29E+07	2.000+00	2.79E+00	2.00E+00	2.97 E+00	3.00E+00	2.07E+00	2.92E+00	2.00E+00	2.700+00	2.00E+00	3.15E+00	2.00E+00	2.00E+00	2.02E+00	2.90E+00
NFP	1 724	61 929	1 748	1 778	1 751	1 756	1 731	1 764	1 757	1 756	1 800	1 772	1 703	1 770	1 777	1 774	1 758
	1 974	17 596	2 123	2 121	2 128	2 151	2 158	2 147	2 151	2 127	2 141	2 152	2 174	2 133	2 144	2 137	2 151
	0 322	47 383	0.358	0.366	0.350	0.360	0.360	0.367	0.368	0.362	0.377	0.371	0.357	0.365	0.374	0.360	0.367
	3 673	77 641	3 476	3 589	3 497	3 371	3 330	3 486	3 430	3 495	3 619	3 491	3 174	3 575	3 468	3 543	3 450
	6.085	156 610	5 919	6.071	5 948	5 813	5 753	5 950	5 882	5 948	6 127	5 963	5 561	6.053	5 937	6.020	5 906
	0.000	0.002	0.531	0.510	0.520	0.540	0.545	0.520	0.534	0.520	0.127	0.505	0.562	0.000	0.530	0.523	0.532
DQL	0.517	0.002	0.001	0.513	0.523	0.540	0.040	0.523	0.004	0.525	0.514	0.527	0.302	0.520	0.550	0.525	0.552
Vn(det)	16.6	20.2	17.0	16.9	17.0	17.2	17.3	17.1	17.1	17.0	16.9	17.1	17.5	16.9	17.1	17.0	17.1
Vn(total)	23.8	20.2	24.9	24.4	24.8	25.4	25.6	24.9	25.1	24.8	24.3	24.8	26.5	24.4	25.0	24.6	25.0
(1111)			_			-			-	-						-	
Measured																	
Q_incident																	
NEP_pnoton																	
Q absorbed																	
NEP_photon																	
Vn(total, gain																	
Vn(total)																	
Sdc																	
NEP(total)																	
, ,																	
DQE																	

Symbol	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Т0																	
Vn																	
NEP _{photon}																	
VDIAS																	
	C9	A9	B8	A8	C8	C8	B7	R1	G1	T2	E1	D1	F1	E2	G2	F2	G3
Pthermal	5.715	6.212	5.959	5.701	6.081	5.708	5.692	#VALUE!	6.071	15.384	6.025	5.924	6.071	6.073	5.953	6.067	6.030
Pelec+Q	5.715	6.212	5.959	5.701	6.081	5,708	5.692	#VALUE!	6.071	8.619	6.025	5.924	6.071	6.073	5.953	6.067	6.030
Tbolo	0.38789	0.39379	0.39066	0.38934	0.39238	0.38846	0.38919	#VALUE!	0.38664	0.30279	0.38674	0.38406	0.38636	0.38695	0.38574	0.37624	0.37683
Т/Т0	1.293	1.313	1.302	1.298	1.308	1.295	1.297	#VALUE!	1.289	1.009	1.289	1.280	1.288	1.290	1.286	1.254	1.256
Rbolo	2.51E+06	3.29E+06	2.93E+06	2.49E+06	3.05E+06	2.55E+06	2.46E+06	#VALUE!	2.79E+06	1.16E+07	2.74E+06	2.61E+06	2.79E+06	2.80E+06	2.67E+06	2.81E+06	2.77E+06
Vbolo	2.46	3.10	2.79	2.45	2.91	2.48	2.43	#VALUE!	2.78	7.85	2.73	2.62	2.78	2.79	2.66	2.79	2.75
Ibolo	0.98	0.94	0.95	0.98	0.96	0.97	0.99	#VALUE!	1.00	0.68	1.00	1.00	1.00	0.99	1.00	0.99	0.99
A	-5.12	-5.19	-5.20	-5.21	-5.24	-5.15	-5.17	#VALUE!	-5.13	-5.84	-5.16	-5.20	-5.18	-5.13	-5.18	-5.28	-5.25
С	0.74	0.87	0.84	0.80	0.80	0.74	0.72	#VALUE!	1.25	#VALUE!	0.80	0.65	0.70	0.69	0.93	0.80	1.42
G	79.8	82.2	81.2	79.1	81.6	79.8	78.8	#VALUE!	84.9	5670.9	84.5	85.6	85.6	85.0	84.2	95.3	93.9
Z/R	0.429	0.364	0.393	0.423	0.374	0.429	0.426	#VALUE!	0.396	0.964	0.398	0.414	0.394	0.396	0.406	0.421	0.423
-	7 004	0.000	7.040	7 000	7 400	7 4 0 4	7.050	#) (^ []	11.011	#\/^\\\	7 057	E 000	0.004	0.004	0.440	0.550	44 770
1	7.201	0.000	7.940	7.032	7.490	7.101	7.052	#VALUE!	11.314	#VALUE!	1.237	5.092	0.234	0.221	0.449	0.000	0.715.00
Sdc	2.73E+08	3.15E+08	2.98E+08	2.76E+08	3.06E+08	2.76E+08	2.74E+08	#VALUE!	2.83E+08	1.53E+07	2.82E+08	2.74E+08	2.84E+08	2.84E+08	2.79E+08	2.72E+08	2.71E+08
	1 900	1 704	1 720	1 771	1 705	1 707	1 770	#\/ALLIEI	1 777	E2 140	1 771	1 709	1 770	1 701	1 770	1 960	1 960
	2 1 2 1	2 167	2 1 45	2 110	2 154	2 1 1 9	2 109	#VALUE:	2 102	16 640	2 195	2 100	2 107	2 102	2 170	2 201	2 279
	2.121	2.107	2.140	2.110	2.104	2.110	2.100	#VALUE!	2.193	10.040	2.100	2.190	2.197	2.192	2.179	2.291	2.270
	3 664	3 171	3 360	3 610	3 267	3 620	3 65/	#VALUE!	3 520	43.703	3.544	3 653	3 522	3 527	3 581	3 681	3 606
	6 172	5.556	5 797	6.009	5.201	6 1 20	6 1/2	#V/ALLIEI	6.026	124 205	6.026	6 1 9 4	6.014	6.026	6.092	6 204	6 207
	0.173	0.562	0.542	0.030	0.552	0.123	0.143	#VALUE:	0.020	0.002	0.000	0.104	0.522	0.020	0.002	0.234	0.307
DQE	0.510	0.505	0.042	0.510	0.555	0.514	0.515	#VALUE!	0.522	0.002	0.521	0.509	0.525	0.522	0.516	0.500	0.499
Vn(det)	16.8	17.5	17.2	16.8	17.3	16.9	16.8	#VALUE!	17.1	20.6	17.0	16.9	17.1	17.1	17.0	17.1	17.1
Vn(total)	24.1	26.5	25.5	24.2	25.9	24.2	24.1	#VALUE!	24.7	20.6	24.6	24.2	24.7	24.7	24.5	24.2	24.1
Measured																	
NFP photon																	
ne _prioton																	
Q_absorbed																	
NEP_photon																	
Vn(total, gain																	
vn(total)																	
Sdc																	
NEP(total)																	
505																	
DQE								1	1								

TO Vn Image: Constraint of the state of	
Vn Q Q NEP _{photon} Image: Constraint of the state of the	
Q NEP _{photon} Image: Constraint of the state of the	
NEP Normal Point Nerversion Nerversion </td <td></td>	
Volas Image: Constraint of the state of the	
E3 D3 F3 G4 E4 F4 E5 D5 F5 G5 E6 G6 F6 G7 Pthermal 5.972 6.227 6.086 6.059 6.205 5.873 5.796 6.024 5.950 6.087 5.851 5.927 6.063 5.927 Pelec+Q 5.972 6.227 6.086 6.059 6.205 5.873 5.796 6.024 5.950 6.087 5.851 5.927 6.063 5.575 Pelec+Q 5.972 6.227 6.086 6.059 6.205 5.873 5.796 6.024 5.950 6.087 5.851 5.927 6.063 5.575 Tbolo 0.37677 0.37881 0.37732 0.37856 0.37630 0.37795 0.37745 0.37862 0.37570 0.37878 0.38059 0.38 T/T0 1.256 1.263 1.255 1.258 1.262 1.252 1.263 1.269 1.269 1.262 1.262 1.262	
Pthermal 5.972 6.227 6.086 6.059 6.205 5.873 5.796 6.024 5.950 6.087 5.851 5.927 6.063 5 Pelec+Q 5.972 6.227 6.086 6.059 6.205 5.873 5.796 6.024 5.950 6.087 5.851 5.927 6.063 5 Tbolo 0.37677 0.37881 0.37640 0.37732 0.37856 0.37603 0.37795 0.37745 0.37862 0.37570 0.37878 0.38059 0.38 T/T0 1.256 1.263 1.255 1.258 1.262 1.253 1.254 1.260 1.258 1.262 1.263 1.269 1 Rbolo 2.71E+06 3.07E+06 2.89E+06 2.93E+06 2.63E+06 2.55E+06 2.81E+06 2.74E+06 2.97E+06 2.55E+06 2.69E+06 2.90E+06 2.70E Vbolo 2.69 3.00 2.84 3.00 2.60 2.53 2.77 2.70 2.88	G7
Pelec+Q 5.972 6.227 6.086 6.059 6.205 5.873 5.796 6.024 5.950 6.087 5.851 5.927 6.063 5.575 Tbolo 0.37677 0.37881 0.37640 0.37732 0.37856 0.37603 0.37630 0.37795 0.37745 0.37862 0.37570 0.37878 0.38059 0.38 T/T0 1.256 1.263 1.255 1.258 1.262 1.253 1.264 1.260 1.258 1.262 1.263 1.269 1. Rbolo 2.71E+06 3.07E+06 2.89E+06 2.93E+06 2.63E+06 2.55E+06 2.81E+06 2.74E+06 2.97E+06 2.69E+06 2.90E+06 2.90E+06 2.90E+06 2.90E+06 2.90E+06 2.90E+06 2.90E+06 2.80E+06 2.69E+06 2.80E+06 2.69E+06 2.80E+06 2.80E+06 <t< td=""><td>5.923</td></t<>	5.923
Tbolo 0.37677 0.37881 0.37640 0.37732 0.37856 0.37603 0.37630 0.37795 0.37745 0.37862 0.37570 0.37878 0.38059 0.38 T/T0 1.256 1.263 1.255 1.258 1.262 1.253 1.254 1.260 1.258 1.262 1.263 1.269 1. Rbolo 2.71E+06 3.07E+06 2.89E+06 2.93E+06 2.63E+06 2.55E+06 2.81E+06 2.74E+06 2.97E+06 2.55E+06 2.69E+06 2.90E+06 2.90E+06 2.70E Vbolo 2.69 3.00 2.84 3.00 2.60 2.53 2.77 2.70 2.88 2.55 2.66 2.83	5.923
T/T0 1.256 1.263 1.255 1.258 1.262 1.253 1.260 1.260 1.262 1.262 1.263 1.269 1.269 Rbolo 2.71E+06 3.07E+06 2.89E+06 2.93E+06 3.10E+06 2.65E+06 2.81E+06 2.74E+06 2.97E+06 2.55E+06 2.69E+06 2.90E+06	0.38062
Rbolo 2.71E+06 3.07E+06 2.89E+06 2.93E+06 3.10E+06 2.63E+06 2.55E+06 2.81E+06 2.74E+06 2.97E+06 2.55E+06 2.69E+06 2.90E+06 2.90E+06 <t< td=""><td>1.269</td></t<>	1.269
Vbolo 2.69 3.00 2.84 2.84 3.00 2.60 2.53 2.77 2.70 2.88 2.55 2.66 2.83	70E+06
	2.66
Ibolo 0.99 0.98 0.97 0.97 0.99 0.99 0.98 0.97 1.00 0.99 0.98	0.99
A -5.23 -5.22 -5.26 -5.26 -5.28 -5.30 -5.30 -5.27 -5.30 -5.20 -5.25 -5.23 -5.30 -4	-5.21
<u>C 0.76 0.74 0.78 0.73 0.75 0.72 0.74 0.71 0.81 0.91 0.77 0.90 0.75 (</u>	0.83
G 93.1 95.5 95.4 93.6 94.9 92.7 91.6 93.2 92.7 92.9 92.9 90.7 91.3	88.9
Z/R 0.430 0.406 0.421 0.418 0.402 0.438 0.445 0.421 0.427 0.417 0.445 0.429 0.407 0.	0.425
T 6.407 6.029 6.386 6.076 6.161 6.100 6.315 5.939 6.783 7.595 6.509 7.691 6.388 7.595	7.294
Sdc 2.67E+08 2.82E+08 2.74E+08 2.87E+08 2.65E+08 2.62E+08 2.73E+08 2.71E+08 2.80E+08 2.59E+08 2.70E+08 2.83E+08 2.72E+08	72E+08
	4 000
NEP company 1.870 1.852 1.856 1.847 1.825 1.870 1.875 1.852 1.853 1.853 1.855 1.854 1.808 1.	1.839
NEPphonon 2.267 2.297 2.294 2.277 2.293 2.258 2.242 2.267 2.259 2.270 2.258 2.240 2.249 2.	2.222
NEP _{load} 0.414 0.419 0.420 0.414 0.409 0.412 0.410 0.410 0.409 0.416 0.418 0.406 0.395 0	0.399
NEP _{amp} 3.740 3.545 3.646 3.586 3.489 3.770 3.813 3.657 3.684 3.575 3.860 3.707 3.535 3.	3.675
NEP _{det} 6.360 6.134 6.258 6.171 6.050 6.392 6.439 6.252 6.280 6.159 6.514 6.302 6.074 6.	6.247
DQE 0.495 0.513 0.503 0.510 0.520 0.493 0.499 0.504 0.502 0.511 0.483 0.500 0.518 0.	0.504
	47.0
Vn(det) 17.0 17.3 17.2 17.2 17.3 17.0 16.9 17.1 17.0 17.2 16.9 17.0 17.2	17.0
Vn(total) 23.9 24.8 24.4 24.6 25.0 23.8 23.6 24.3 24.1 24.6 23.5 24.0 24.8	24.1
	-
Measured	
NEP_photon	
Vn(total gain	
Vn(total)	
Sdc	
NEP(total)	

Vbias		
Pthermal	Power as function of Temperature	$P_{\text{transf}} = [G300/(1+\beta)][T/0,3]^{\beta}T$ evaluated from To to Tb
Polog I O	Electrical L Absorbed Bower	$P + 0 = [V / (/2P + P)]^2 P + 0$
Tholo	Bolometer Temperature	$r_e + Q = [v_{bias}/(2R_L + R_B)] R_B + Q$ Solve for Thuising Newtonian recursion such that P P. + O
T/T0		T/To - Tholo/To
Rholo	Polomotor Posistanco	$P_{\rm holo} = (P_{\rm o}) \exp[(\Lambda/T_{\rm h})^{1/2}]$
Vholo	Voltage across Bolometer	$\frac{1}{1000} = \frac{1}{1000} \frac{1}{10$
Ibolo	Current through Bolometer	$ bolo = \langle bias / (2R_1 + R_2) \rangle$
Δ		$\Delta = (T/R)(dR/dT) = -(1/2)I(\Lambda/Th)^{1/2}$
<u> </u>	Dynamic Heat Canacity	$C = C_{300}[(T/0,3)^{3}]$
G	Dynamic Thermal Conductance	$G = G300[(T/0.3)^{\beta}]$
Z/R		$Z/R = (I/V)(dV/dI) = [-1 - GTb/(P_eA)] / [1 - GTb/(P_eA)]$
τ	Electrical Time Constant	$\tau = [C/2G][(Z/R + 1)(1 + 2R/R_p)] / [Z/R + 2R/R_p]$
Sdc	Electrical Responsivity at 0 Hz	Sdc = $(1/2)[R_{\rm p}/P_{\rm s}]^{1/2}[1 - Z/R] / [1 + (Z/R)(R_{\rm p}/2R_{\rm s})]$
000		
NEP _{johnson}	Johnson Noise Prior to Demodulation	$NEP_{johnson} = [(4k(Tb)^{3}G^{2})/(P_{e}A^{2})]^{1/2}$
NEPphonon	Phonon Noise Prior to Demodulation	$= \{ [(4kTo^{2}G)(\beta+1)((T/To)^{2\beta+3}-1)]/[(2\beta+3)(T/To)^{\beta}((T/To)^{\beta+1}-1)] \}^{1/2}$
NEP _{load}	Johnson Noise from R _L Prior to Demod.	$NEP_{load} = [4kTo/2R_{L}]^{1/2} 2(Z/R)R_{B}lbolo/[(Z/R) - 1] $
NEPamp	Amplifier Noise Prior to Demodulation	NEP _{amp} = Vn / Sdc
NEP _{det}	Detector Noise after Demodulation	$NEP_{det} = [2NEP_{iohn}^{2} + NEP_{phon}^{2} + 2NEP_{load}^{2} + 2NEP_{amp}^{2}]^{1/2}$
DQE	BLIP Figure-of-Merit for Detector	$DQE = NEP_{photon}^{2} / (NEP_{photon}^{2} + NEP_{det}^{2})$
Vn(det)	Voltage Noise of Detector After Demod.	Vn(det) = NEP _{det} Sdc
Vn(total)	Total Noise after Demodulation	$Vn(total) = [NEP_{det}^{2} + NEP_{photon}^{2}]^{1/2}Sdc$
Measured		
Q_incident		
NEP_photon		
O absorbed		
NEP photon		
Vn(total, gair	<u>ן</u> ו	
Vn(total)		
0.1		
500	1	

Equation (or Comments)

Symbol

T0 Vn Q NEP_{photon}

Vbias

Vn(total) Sdc NEP(total) DQE

Parameter

EIDP Coverpage For QM PLW BDA

Unit Identfication						
Name	:	QM F	LW BDA			
Part #	:	1020	9800 -8			
S/N	:	#	<i>‡</i> 007			
						ľ

Environmemtal Testing							
			Duration				
	Axes		or Number				
	Tested	Temperature	of Cycles	Pass/Fail	Requirement	Source	Waiver #
			2 min		X, Y, Z at 90 K	SSSD	HR-SP-JPL-
Random Vibration Test	X, Y, Z	100 K	per axis	Р	1 min per axis	Sec # 3.4	RFW-006
						SSSD	HR-SP-JPL-
High Level Sine Vibe Test	None	NA	NA	NA	X, Y, Z at 90 K	Sec # 3.4	RFW-005
			5 davs as		None (other than		
			part of the		as part of the		
			assembly		assembly		
Bakeout	NA	80 C	procedures	Р	procedure)	D-20549	
		RoomT to			Min15 from RmT		
Thermal Cycles	NA	~ < 10 K	27	Р	to < 77 K	D-20549	

Other Testing								
						Minimum		
		Frequ	iency (Hz)	Note		Performance	Source	Waiver #
Lowest Resonant						> 200 Hz	SSSD	
Frequency (X-axis)		2	83 Hz	Cold		(Goal: >250 Hz)	Sec # 3.1.3	NA
Lowest Resonant						> 200 Hz	SSSD	
Frequency (Y-axis)		2	81 Hz	Cold		(Goal: >250 Hz)	Sec # 3.1.3	NA
Lowest Resonant						> 200 Hz	SSSD	
Frequency (Z-axis)		2	76 Hz	Cold		(Goal: >250 Hz)	Sec # 3.1.3	NA
Metrology Measurements we	ere	performe	d before and	after the Vib	ration Test	and the Thermal C	Cycles	
		Motion in			Meets	Performance		
		X/Y	Motion in Z		Goal ?	Goal	Source	Waiver #
Maximum motion due to								
Random Vibration Test						125 μm in X/Y	SSSD	
1st axis (X)		21 µm	40 µm		Y	and 500 μm in Z	Sec # 3.1.1	NA
Maximum motion due to								
Random Vibration Test						125 μm in X/Y	SSSD	
2nd axis (Y)		22 µm	8.6 μm		Y	and 500 μ m in Z	Sec # 3.1.1	NA
Maximum motion due to								
Random Vibration Test						125 μm in X/Y	SSSD	
3rd axis (Z)		9.5 μm	11 μm		Y	and 500 μm in Z	Sec # 3.1.1	NA
Cumulative Maximum						125 μm in X/Y	SSSD	
motion		34 µm	56 μm		Y	and 500 μ m in Z	Sec # 3.1.1	NA
Cold Continuity Measuremen	nts	: In Proce	ess		-		-	
					Pass/Fail	Requirement	Source	Waiver #
Cold Continuity Test								
(1st Thermal Cycle)					Р	None	NA	NA
Cold Continuity Test								
(2nd Thermal Cycle)					Р	None	NA	NA

QM BDA Random Vibration Test

P/N 10209800-8 S/N 007 X-axis Shake, Cold, Sine Surveys (Before and After 0 dB Random Vibe)

Y-axis Shake, Cold, Sine Surveys (Before and After 0 dB Random Vibe)

Z-axis Shake, Cold, Sine Surveys (Before and After 0 dB Random Vibe)

Hardware ID	PFM PMW B	DA, 10209800	-2 S/N 012				page 1/2
Date	Time	AIDS	Power	Mate	Demate	Transport	Notes
							Assembly Process Connector Mates
3-Jun-2004		240864		J03	J03		kapton cable sub-assy test
8-Jun-2004		240851		J01	J01		kapton cable sub-assy test
19-Jul-2004		240855		J02	J02		kapton cable sub-assytest
19-Jul-2004		240866		J04	J04		kapton cable sub-assy test
23-Aug-2004		242504		J01-J04	J01-J04		kapton cable post-installation test
25-Aug-2004		242504		J01-J04	J01-J04		Load resistor test
27-Aug-2004		242504		J01-J04	J01-J04		detector test, before feehorn installation
31-Aug-2004		242504		J01-J04	J01-J04		detector test, after feedhorn installation
							Assembly Complete
1-Sep-2004		243673		J01-J04	J01-J04		assembly complete electical test (pre-bakeout)
1-Sep-2004		243673				х	103 -> MDL -> 103, for optical metrology
1-Sep-2004		243673					Filter installation,
2-Sep-2004		243673					staking and ink-stamp epoxy cure (66C, 3hrs)
3-Sep-2004		243673				х	103 -> bld 158 for Vacuum Bakeout (80C, 24 hrs, 10^-5 torr)
7-Sep-2004		243673				х	bld 158 -> bld 170 for pre-vibe metrology, -> 103
7-Sep-2004		243673		J01-J04	J01-J04		post-bakeout, pre-vibe electrical test
8-Sep-2004		243693				х	103 -> 183 for shake prep.
8-Sep-2004		243693					installation into shake facility
9-Sep-2004		243693				х	183 -> 144 (shake lab)
9-Sep-2004		243693					pump / vent (for RmT pre-shake tests)
9-Sep-2004		243693					pump / cool to ~100K / Shake Test / warm / vent
10-Sep-2004		243693					pump / vent (for RmT post-shake tests)
10-Sep-2004		243693				х	144 -> 183, for removal from shake fixture
13-Sep-2004		243693				x	183 -> 170, for metrology
13-Sep-2004		243693				х	170 -> 103-109D
14-Sep-2004		243673		J01-J04	J01-J04		post-vibe electrical test
14-Sep-2004		243759				x	103 -> 183 for performance testing
14-Sep-2004		243759		J01-J04			Installation into BODAC test facility

Hardware ID	PFM PMW BI	DA, 10209800	-2 S/N 012				page 2/2
Date	Time	AIDS	Power	Mate	Demate	Transport	Notes
14-Sep-2004		243759					pump
15-Sep-2004		243759					cooldown (RmT -> 77K -> 4K)
interim		243759					Performance Testing
1-Nov-2004		243759					vent (after reaching RmT)
5-Nov-2004		243759					pump
5-Nov-2004		243759					cooldown (RmT -> 77K -> 4K)
interim							Performance Testing
15-Nov-2004		244211					vent (after reaching RmT)
15-Nov-2004		244211			J01-J04		Removal from BODAC
16-Nov-2004		244171				х	183 -> 170 -> 183, for metrology
16-Nov-2004		244171		J01, J02			installation in thermal cycle facility
16-Nov-2004		244171					pump out
18-Nov-2004		244171					Thermal cycle RmT -> 4K -> RmT
22-Nov-2004		244171					vent
22-Nov-2004		244171			J01, J02		remove from thermal cycle facility
23-Nov-2004		244171				х	183 -> 170 -> 183, for metrology
23-Nov-2004		244172		J03, J04			install in thermal cycle facility
23-Nov-2004		244172					pump out
23-Nov-2004		244172					Thermal cycle RmT -> 4K -> RmT
29-Nov-2004		244172					vent
29-Nov-2004		244172			J03, J04		remove from thermal cycle facility
29-Nov-2004		244172				х	183 -> 170, for metrology -> 103 dry box storage

Г	12		11		10		9	 8
H								
G								
F								
E								
D	9. ALL DIMEN POSITION. IN ANY A	ISIONS SHOW THE SUSPE XIS.	N FOR THE 300π NDED UNIT MAY	IK STAGE ARE BE SHIFTED F	FOR THE NOMIN ROM NOMINAL P	IAL SUSPENDE OSITION ±0,5π	ED 1m	
	8. ONLY PIXE OMITTED F 7. FOR PHOTE	ELS, DOWEL F FOR CLARITY OMETER AND	PIN HOLES, AND SPECTROMETER	SLOTS VISIBLI SUBSYSTEM	E. ALL OTHER FE	ATURES A AND LAYOU	JT	
С	6. DIMENSION PROVIDED ASSEMBL	IS IN {} ARE (FOR REFREN Y TEMPERAT	CALCULATED FOI NCE ONLY. ALL (TURE OF 20° C.	R OPERATING DTHED DIMENS	TEMPERATURE / IONS ARE BASE	AND ARE D ON AN		
	5 INDICATES 4 REFER TO DETECTOF	S CONNECTOR TABLES ON R ARRAYS.	POSITION. CONI	NECTORS INST	ALLED ARE NAN	IONIC STM 051 EN	M6SN.	
B	2. THIS IS TH ARRAY, - CONTAIN REQUIREM	I NUMBER T IE INTERFACE JPL PART NU THE FOLLOW IENTS OF JPL	E CONTROL DRAV IMBER 10209800. ING NOTE: THIS A	SHOWN IN THIS VING FOR THE JPL DRAWING ASSEMBLY ME NTROL DRAWI	BOLOMETER DE G NUMBER 10209 ETS THE INTERF NG 10209721.	TECTOR 1800 SHALL ACE		
A	1. THIS TECHN TRANSFERI AGREEMEN TECHNICAL NASA/PPA ANY OTHEF ANY OTHEF	NICAL DATA I RED BY JPL T WHICH ENT DATA IS TR RC SPIRE ON R PURPOSE, A R PARTY WIT	S EXPORT CONT TO PPARC PURS ERED INTO FORC ANSFERRED TO F FIRST COOPERA AND SHALL NOT HOUT THE PRIOF	ROLLED UNDER JANT TO THE E ON DECEMBE PPARC FOR US TIVE PROJECT BE RE-TRANS R WRITTEN AP	R U.S. LAW AND NASA / PPARC R 2, 1999. THIS E EXCLUSIVELY , MAY NOT BE U FERRED OR DISC PROVAL OF NAS	IS BEING LETTER OF ON THE JSED FOR LOSED TO SA.		

GENERAL VIEW REFERENCE ONLY

5

5	4	3				2						1			
REVISIONS															
	DESCRIPTION		CODE	DWN	снк	STRUCT	MATL	THRM CONT	PEM		ENGR	DSGN SUPV	DATA MGT	RELEASE DATE	
	INITIAL RELEASE		- CODE B				SEE TI	TLE E	BLOCK				RTN	12/7/01	
WPDATED: MASS & REMOV	CG'S, FILTER SHAPE,VOLUME NEED AROUND ED MODES AND MASS PARTICIPATION; ROTATE	CAPSTANS, CONN. POSITIONS. D PIXEL MAP 180°.	B	DJC	MAW				MIH		MAW		RGB	09/08/04	
INCORPORATED ECR	HR-SP-JPL-ECR-003; CHANGED FOCUS FO	B												I	
			•												

¢ F	= a c e	DRAW	ING							В
0		NOMENCLAT	URE OR DES	CRIPTION		SPECI	FICATION	MATERIAL OR NOTE	ZONE	
		PARTS LIST								
S	CONTRACT N	10 <u>1244858</u>		JET		ROPU	ILSION Institute of Pasadena, ca	LABORATOR	Ϋ́	
	APPD	DAT	E			REL	EASED THROUG	H EDMG		
	DWN DC	RUMB	11/9/01	F	30L	OME	TER I	DETECTOR		
	CHK B B	BURDICK	11/14/01							ED
	STRUCT K B		11/19/01				AKKA	۲,		AT
	THRM		11/19/01				SPIRI	-		ENER
	MSSL A.	J. COKER	11/7/01	SIZE	CAG	E NO	1.0	~~~~~	REV	0
			I				1 1 1 1		1	

23835

10209721

UNCLASSIFIED SHEET 1 OF 7

12/13/01 11/19/01

3

A 1

SCALE NONE

1020 A1

АD

REV 2/00

D

				ALL CONNECTORS		
	PIN #	PIN PURPOSE	PIN #	PIN PURPOSE	PIN #	
C	1	SIGNAL A+	18	SIGNAL T+	35	SIGNAL J-
	2	SIGNAL B+	19	SIGNAL U+	36	SIGNAL K-
	3	SIGNAL C+	20	SIGNAL V+	37	SIGNAL L-
	4	SIGNAL D+	21	SIGNAL W+	38	SIGNAL M-
	5	SIGNAL E+	22	SIGNAL X+	39	SIGNAL N-
	6	SIGNAL F+	23	SIGNAL Y+	40	SIGNAL P-
B	7	SIGNAL G+	24	SIGNAL Z+	41	SIGNAL R-
	8	SIGNAL H+	25	SIGNAL BIAS V+	42	SIGNAL S-
	9	SIGNAL I+	26	SIGNAL A-	43	SIGNAL T-
	10	SIGNAL J+	27	SIGNAL B-	44	SIGNAL U-
	11	SIGNAL K+	28	SIGNAL C-	45	SIGNAL V-
	12	SIGNAL L+	29	SIGNAL D-	46	SIGNAL W-
	13	SIGNAL M+	30	SIGNAL E-	47	SIGNAL X-
Δ	14	SIGNAL N+	31	SIGNAL F-	48	SIGNAL Y-
A	15	SIGNAL P+	32	SIGNAL G-	49	SIGNAL Z-
	16	SIGNAL R+	33	SIGNAL H-	50	SIGNAL BIAS V
	17	SIGNAL S+	34	SIGNAL I-	51	SIGNAL BIAS C
-						

Released on SEP-22 2004 by Richard G Bannister and signed by Mark A Weilert CHK, Dustin J Crumb DEGN, Martin I Herman PEM, Mark A Weilert COGE, Richard G Bannister 8

SIZE	CAGE N	0			REV
A 1	2383	35	10209	9721	С
SCALE 2:	1	UN(CLASSIFIED	SHEET2 OF7	

Г	12	11	10	9	8
Н					
	UNIT: P/LW NUMBER: 102	209800-1	SUBSYSTEM INTERF	ACE DATA	
	FOCUS: 32.8 CONNECTOR	POSITIONS USED: J05, J06			
G	MASS: 632	g	MECHANICAL CHARACT	ERISTICS	
	MOMENT OF MECHANICAL SURFACE FII TOTAL CONT R.M.S. ROUC THERMAL ST	INERTIA: INTERFACE MATERIAL: 7075 NISH DESCRIPTION: CHEM FIL ACT AREA: 1783 mm ² GHNESS OF CONTACT AREA: RAP INTERFACE MATERIAL: CU	: X 34.4 I _x 772 Kg*mm ² AL M GOLD 3.2 uM J 99.999% PURE	I _r 1,145 Kg*mm ²	 _z 1,423 Ko
F	THERMAL ST THERMAL ST THERMAL ST	RAP SURFACE FINISH DESCE RAP CONTACT AREA: 57.5 m RAP R.M.S. ROUGHNESS OF	RIPTION: GOLD PLATED m^2 CONTACT AREA: 3.2 uM		
E					
			لَنَ لَنَ لَنَ		0
			12X2 3X5 2X2 2X2 2X2 2X2		22.9
	Ø1.6 ⊕Ø0.5ABC				
D					
	10X 8.66	A1 DK1 A2 A3	A4 A5 A6	A7 A8	A9
	8X 4 33		B3 B4 B5 	B6 B7 B8	_
C					C9
	8X 4 33		D3 D4 D5		
		E1 E2 E3			E9
R					
	E - X	X			
					F
			SECTIO PHOTOMETER	$ \begin{array}{ccc} N & D - D \swarrow^8 \\ LONG & WAVE \\ \overline{} \cdot & 5 \cdot 1 \end{array} $	=9 SH2
A					

6	
Kg*mm 2	

	SUBSYSTEM	INTERFACE	DATA
UNIT: P/MW			
NUMBER: 10209800-2			
FOCUS: 32.2			
CONNECTOR POSITIONS USED: J01, J02, J	J03, J04		
	MECHANICAL	CHARACTERIS	STICS
MASS: 632 g			
C.O.G. LOCATION W.R.T. LOCATION HOLE:	X 34.4	Y	24.3
MOMENT OF INERTIA:	I _x 764 Kg*m	ım^2 l _r	1,152 Kg*mm´
MECHANICAL INTERFACE MATERIAL: 7075 A	λL		
SURFACE FINISH DESCRIPTION: CHEM FILM	GOLD		
TOTAL CONTACT AREA: 1783 mm ²			
R.M.S. ROUGHNESS OF CONTACT AREA: 3.	2 uM		
THERMAL STRAP INTERFACE MATERIAL: CU	99.999% PURE		
THERMAL STRAP SURFACE FINISH DESCRIP	PTION: GOLD PLAT	ED	
THERMAL STRAP CONTACT AREA: 57.5 mm	ົ2		
THERMAL STRAP R.M.S. ROUGHNESS OF (CONTACT AREA: 3	.2 uM	

	 _					-		
							5	Λ
			_				5	–

	12	11	10	9	8
Η			CLIDCY		
G		UNIT: P/SW NUMBER: 10209800-3 FOCUS: 23.8 CONNECTOR POSITIONS MASS: 600 g C.O.G. LOCATION W.R.T. MOMENT OF INERTIA: MECHANICAL INTERFACE	USED: J01, J02, J03, J04, MECH LOCATION HOLE: X I _x 712 MATERIAL: 7075 AL	J05, J06 IANICAL CHARACTERISTICS 34.5 Y Kg*mm^2 I _Y 1,074	24.3 4 Kg*mm^2
F		SURFACE FINISH DESCRI TOTAL CONTACT AREA: 17 R.M.S. ROUGHNESS OF THERMAL STRAP INTERFA THERMAL STRAP SURFAC THERMAL STRAP CONTAC THERMAL STRAP R.M.S.	PTION: CHEM FILM GOLD 783 mm ² CONTACT AREA: 3.2 uM ACE MATERIAL: CU 99.999% I CE FINISH DESCRIPTION: GOLD CT AREA: 57.5 mm ² ROUGHNESS OF CONTACT A	PURE) PLATED REA: 3.2 uM	
E					
D	Ø1.6− ⊕Ø0.5ABC		2 X 2 X 2 X 2 X 2 X 2 X 2 X 2 X 2 X 2 X	2 X 12 Z X 0 2 X 12 Z X 2 Z X 0 2 X 12 Z X 12 Z X 0 2 X 12 Z X 12 Z X 12 Z X 0 2 X 12 Z X	S'LL XS SL XS A14: A15
С	15X 8,66 - 16X 6,495- 16X 4,33- 16X 2,165- 16X 2,165- 16X 4,33- 16X 6,495- 15X 0,65-	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A3 A4 A3 A6 A7 A B3 B4 B5 B6 B7 B8 C3 C4 C5 C6 C7 C D3 D4 D5 D6 D7 D8 E3 E4 E5 E6 E7 E F3 F4 F5 F6 F7 F8 G3 G4 G5 G6 G7 C H3 H4 H5 H6 H7 H8 J3 J4 J5 J6 J7 J7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
B		5 X 18, 75 4 X 16, 25	(4 X13, 75 (4 X11, 25 (4 X8, 75 (4 X8, 75 (4 X3, 75 (4 X1, 25 (4 X1, 25)	4 X1, 25 4 X3, 75 4 X8, 75 4 X11, 25	4 X13, 75 4 X16, 25 5 X18, 75

SECTION E-E	8
PHOTOMETER SHORT	WAVE
SCALE: 5:1	

A|

_			
Z		6.5	
_z	1,364	Kg*mm^2	
	1,364	Kg*mm^2	

7

6

 $\mathbf{\mathbf{A}}$

5

		-	-			-	 -	 			
									5		1
				-					J		4

H G F E Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ		3		2		1	
G F E B M A A A A A A A A A A A A A							Н
F E D D D D D D D D D D D D D D D D D D							G
E D 10209721 SALE NOILS UNCLASSIFIED SHEELED OF 1 154 2007 1 155 2007 1							F
B SZE CAGE NO SZE CAGE NO UNCLASSIFIED SHEETES OFF 1 REV 2/04 1 REV 2/04							E
SIZE CAGE NO 10209721 C SCALE NOTED UNCLASSIFIED SHEPTES OF7 V V/V0							D
B SIZE CAGE NO A1 23835 10209721 C SCALE NOTED UNCLASSIFIED SHEETG OPT 1 REV 2/00							10209721
SIZE CAGE NO A1 23835 10209721 C SCALE NOTED UNCLASSIFIED SHEETES OF7 1 REV 2/00							B A1
	-	Ζ	SIZE CA A 1 23 SCALE NOTED	AGE NO 3835 UNCLAS	10209 SSIFIED [9	721 HEETG OF7 1 REV	AutoCAD GENERATED

12	11	10	9	8

SUBSYSTEM INTERFACE DATA

UNIT: S/LW NUMBER: 10209800-4 FOCUS: 36.9

CONNECTOR POSITIONS USED: J05

MECHANICAL CHARACTERISTICS MASS: 550 g C.O.G. LOCATION W.R.T. LOCATION HOLE: X 34.5 24.1 4.4 Y 665 Kg*mm^2 990 Kg*mm^2 l_z 1,239 Kg* MOMENT OF INERTIA: MECHANICAL INTERFACE MATERIAL: 7075 AL SURFACE FINISH DESCRIPTION: CHEM FILM GOLD TOTAL CONTACT AREA: 1783 mm² R.M.S. ROUGHNESS OF CONTACT AREA: 3.2 uM THERMAL STRAP INTERFACE MATERIAL: CU 99.999% PURE THERMAL STRAP SURFACE FINISH DESCRIPTION: GOLD PLATED THERMAL STRAP CONTACT AREA: 57.5 mm² THERMAL STRAP R.M.S. ROUGHNESS OF CONTACT AREA: 3.2 uM

Released on SEP-22¹2²⁰⁴ by Richard G Bannister and signed by Mark A Weilert CHK, Dustin J Crumb DEGN, Martin I Herman PEM, Mark A Weilert COGE, Richard G Bannister 8

G

D

C

B

A

ΗI

7

-	
	1
*mm^^^	
'IIIII Z	
	L
	1

5 4 3 2	1
	H
SUBSYSTEM INTERFACE DATA	
NUMBER: 10209800–5 FOCUS: 26.7 CONNECTOR POSITIONS USED: J05, J06 MECHANICAL CHARACTERISTICS	G
MASS: 510 g C.O.G. LOCATION W.R.T. LOCATION HOLE: X 34.6 Y 24.2 Z 6 MOMENT OF INERTIA: I _x 628 Kg*mm ² I _y 936 Kg*mm ² I _z 1,189 Kg*mm ² MECHANICAL INTERFACE MATERIAL: 7075 AL SURFACE FINISH DESCRIPTION: CHEM FILM GOLD TOTAL CONTACT AREA: 1783 mm ²	
R.M.S. ROUGHNESS OF CONTACT AREA: 3.2 uM THERMAL STRAP INTERFACE MATERIAL: CU 99.999% PURE THERMAL STRAP SURFACE FINISH DESCRIPTION: GOLD PLATED THERMAL STRAP CONTACT AREA: 57.5 mm ² THERMAL STRAP R.M.S. ROUGHNESS OF CONTACT AREA: 3.2 uM	- - - - - -
91.6- 	E
⊕ Ø 0.5 A BC ♀ Ø 0.5 A BC ♀ Ø 0.5 A BC ♀ Ø 0.5 A BC ♀ Ø 0.5 A BC ♥ 0.5 A BC ♥ 0.5 A BC ♥ 0.5 A BC ♥ 0.5 A BC ♥ 0.5 A BC ♥ 0.5 A BC ● 0.5 A B C ● 0.5 A B C ● 0.5 A C C C A C C A C C A C A C A C A C A	
6,75 <u>6,75</u> <u>8</u> <u>8</u> <u>8</u> <u>7</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u>	D
$3 \times 2,25$ $3 \times 2,25$ G^{2} F^{3} F^{3} F^{4} G^{3} F^{4} G^{3} F^{4} G^{3} F^{4} G^{4} F^{3} F^{4} G^{4} F^{3} F^{4} G^{4} F^{4} G^{4} F^{4} G^{4} F^{5}	,125 ,125 ,375
$\begin{array}{c c} \hline & \hline $,625 201 102 1
E SECTION E-E SECTION E-E B SECTION E-E B SECTION E-E B SECTION E-E B SECTION E-E B SECTION E-E B SECTION E-E B	RS B
SPECIROMETER SHORT WAVE SCALE: 5:1 G12 SH2	
	JERATED
SIZE CAGE NO A1 23835 1020 SCALE 5:1 UNCLASSIFIED 5 4 3)9721 SHEET 7 OF7 1 REV 2/00

							5	4	

	24	23	22	21	20	19
M						
		12MΩ JO5	J01, J02, J03, J04, 5, OR J06 CONTINUED		JCC CONTINUED	
	CHANNEL M	SIGNAL M SIGNAL M SIGNAL M 12MΩ			27 27 27 27 1 1 1 1 1 1 1 1 1 1 1 1 1	
K	CHANNEL N	SIGNAL N SIGNAL N SIGNAL N 12MΩ	+ 14 14 14 - TT - TT - 1 - 39 39 39 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	$- \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	43 43 43 43 43 43 43 43 43 43	
J	CHANNEL P	12MΩ I SIGNAL P I I I I I I I I I I I I I I I I I I I I I	+ 15 15 - TT - TT	$- \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$		1000 125kG
	CHANNEL R RBOL	SIGNAL R SIGNAL R SIGNAL R SIGNAL R	+ 16 16 16 $ T$ $+$ 16 16 $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
H	CHANNEL S	12MΩ SIGNAL S SIGNAL S SIGNAL S 12MΩ	+ 17 17 17 - 17 - 17 - 17 - 17 - 17 - 17		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
G	CHANNEL T	I 2MΩ I	+ - - - - - - - - - - - - -			
F	CHANNEL U	12MΩ SIGNAL U SIGNAL U SIGNAL U	- 44 44 ++ 19 19 19 19			1000 125kG
	CHANNEL V	12MΩ SIGNAL V SIGNAL V SIGNAL V	- 45 45 + 20 20 20		39 39 39 39 39 39 39 5 5 5	1000 125k0 1000 125k0
E	CHANNEL W	12MΩ SIGNAL W I I I I I I I I	- 46 46 + 21 21 21 + 21 21 + 1 + 1 + 1 + 1 + 1			
D	CHANNEL X	12MΩ SIGNAL X SIGNAL X 12MΩ	- 47 47 + 22 22 22			
С	CHANNEL Y	12MΩ SIGNAL Y SIGNAL Y 12MΩ	- 48 48 + 48 + 23 23 23 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +			1000 125kG
B	CHANNEL Z	12MΩ SIGNAL Z SIGNAL Z 12MΩ STM 0	- 49 49 + 24 24 24		36 36 36 36 20 20 MDM-51S MDM-51P	
		12MΩ 12MΩ 12MΩ		⊥ FPU CASE		·
A						

Released on JUL-15-2004 by Richard G Bannister and signed by James J Bock CHK, Dustin J Crumb DEGN, Martin I Herman PEM, Mark A Weilert COGE, Richard G Bannister

6			5		4		3 REVISIONS		2		1]
			TR ZONE	IN	DE: INITIAL INCORPORATE CORPORATED RAL EC	RELEASE TO ECR 102651 CR HR-SP-JPL-ECR-00	95	DWN CODE C D D D D D C C C C	CHK STRUCT MATL THRM SEE TITLE BLC	DCK MAW	N DATA MGT RELEASE DATE RGB 3/18/03 RGB 07/12/04	M
209	800-2			10209800-3 10209800-4 10209800-5								
Ρ/	/MW <u>J03</u> A13 T1 B12 C13	J04 R1 G1 T2 F1	J01 D6 B6 C5 A5	J02 F12 J11 E12 H12	P, <u>J03</u> R1 D16 T1 B16	/SW J04 E1 F1 T2 H1	J05 D11 A10 E10 C10	J06 G5 H6 J6 F6	S/LW J05 R1 T1 C1 DK1	S ₇ J05 R1 A4 A3 A2	/SW 	
	A12 D12 C12 B11 A11 E13 D11 C11	D1 F1 E2 G2 F2 G3 E3 D3	E5 B5 D5 C4 A4 D4 B4 C3	G12 F13 E13 J12 H13 G13 F14 E14	C15 A15 D15 B15 C14 D14 A14 A13	G1 J1 H2 F2 J2 G2 H3 J3	B10 D10 A9 E9 C9 B9 D9 A8	G6 H7 F7 J7 G7 H8 F8 G8	B1 D1 E1 A1 C2 D2 B2 E2	A1 DK1 B3 B2 B1 C3 C2 C1	- G3 G4 DK2 F5 F4 E6	K
	B10 A10 D10 B9 C10 C9 A9 B8	F3 G4 E4 F4 E5 D5 F5 G5	B3 A3 A2 D3 C2 B2 D2 A1	J13 H14 G14 J14 F15 H15 J15 G15	B14 C13 B13 D13 A12 C12 D12 B12	E2 F3 G3 H4 J4 E3 F4 G4	C8 E8 D8 B8 C7 E7 E7 A7 D7	J8 F9 H9 G9 J9 F10 H10 G10	A2 C3 D3 B3 E3 C4 DK2 D4	D3 D2 D1 E3 E2 E1 F3 F2	E5 E4 D7 D6 D5 D4 C6 C5	J
	A8 D8 C8 B7	E6 G6 F6 G7	DK1 D1	H16 DK2 F16 E15	E11 A11 C11 B11	H5 E4 J5 F5	B7 C6 E6 A6	F 1 1 J 1 0 H 1 1 G 1 1	C5 B4 A3 T2	F 1 G1 T1 G2	C4 B5 B4 T2	
12	HSJFP09 J18 HSJFP09 J17	HSJFP10 J20 HSJFP10 J19	HSJFP03 J06 HSJFP03 J05	HSJFP04 J08 HSJFP04 J07	HSJFP01 J02 HSJFP01 J01	HSJFP02 J04 HSJFP02 J03	HSJFP05 J10 HSJFP05 J09	HSJFP06 J12 HSJFP06 J11	HSJFS03 J06 HSJFS03 J05	HSJFS01 J02 HSJFS01 J01	HSJFS02 J04 HSJFS02 J03	H
12	HSJFP09 J37 HSJFP09 J49	HSJFP10 J38 HSJFP10 J50	HSJFP03 J31 HSJFP03 J43	HSJFP04 J32 HSJFP04 J44	HSJFP01 J29 HSJFP01 J41	HSJFP02 J30 HSJFP02 J42	HSJFP05 J33 HSJFP05 J45	HSJFP06 J34 HSJFP06 J46	HSJFS03 J13 HSJFS03 J17	HSJFS01 J11 HSJFS01 J15	HSJFS02 J12 HSJFS02 J16	
	9 5	10 5	3 8	4 8	1 9	2 9	5 7	6 7	15 1	13 2	14 2	G

7. INFORMATION IN THIS DOCUMENT IS ALSO CONTAINED IN THE HARNESS DEFINITION DOCUMENT, RAL DOCUMEN SPIRE-RAL-PRJ-000608. IN AREAS WHERE THERE ARE CONFLICTS, THE HARNESS DEFINITION DOCUMENT TAKES PRECEDENCE.

- Section Resistors are 7 times the source resistor.
- 5. GROUND WIRE TO BE TERMINATED AT INSTRUMENT INTEGRATION. WIRE WILL HAVE A MINIMUM LENGTH OF 150MM.
- 4. UNLESS OTHERWISE NOTED, \perp is jfet chassis ground.
- 3 JFET MEMBRANE HEATER IS 0.0204 TIMES THE SOURCE RESISTOR.
- 2. ALL RESISTORS HAVE A TOLERANCE OF $\pm 40\%$.

1. THIS TECHNICAL DATA IS EXPORT CONTROLLED UNDER U.S. LAW AND IS BEING TRANSFERRED BY JPL TO PPARC PURSUANT TO THE NASA / PPARC LETTER OF AGREEMENT WHICH ENTERED INTO FORCE ON DECEMBER 2, 1999. THIS TECHNICAL DATA IS TRANSFERRED TO PPARC FOR USE EXCLUSIVELY ON THE NASA/PPARC SPIRE ON FIRST COOPERATIVE PROJECT, MAY NOT BE USED FOR ANY OTHER PURPOSÉ, AND SHALL NOT BE RE-TRANSFERRED OR DISCLOSED TO ANY OTHER PARTY WITHOUT THE PRIOR WRITTEN APPROVAL OF NASA.

NOTES:	UNLESS	OTHERWISE	SPECIFIED

		QTY REQD	ITEM NO	REF DES	CAGE NO	PART OR IDENTIFYING NO		NOMENCL	ATURE OR DE	SCRIPTION	SPECIF	FICATION	MATERIAL OR NOTE	ZONE	
								PARTS LIST							
MATERIAL					UNLESS OTH DIMENSIONS	ERWISE SPECIFIED ARE IN MILLIMETERS	CONTR	ACT NO <u>1244858</u>		JET	PROPU CALIFORNIA I	LSION NSTITUTE OF T PASADENA, CA 9	LABORATO	RY	
					LINEAR TOL 0-6	ERANCES: ± 0.1	APPD _	D/	ATE		RELE	EASED THROUGH	1 EDMG		
METRIC	>				OVER 6-30 OVER 30-12 OVER 120-3	$\begin{array}{c} \pm \ 0.2 \\ 0 \ \pm \ 0.3 \\ 15 \ \pm \ 0.5 \\ 000 \ \pm \ 0.8 \end{array}$	DWN CHK	D CRUMB J BOCK	2/26/03	_	WIRING	5 SCH	EMATIC,		ED
THIRD ANGLE PRC	DJECTION	1			OVER 1000	± 1.2	MATL	D GRIFFIN	2/11/03			SPIRE	-		ERAI
				SPIRE	ANGULAR TO ± 0.5° MACHIN	DLERANCES:	RAL	B SWINYARD J DELDERFIELD	2/11/03		CAGE NO	1 ∩ ′	000705	REV) GEN
		NEXT ASSEMBLY		USED ON	(MICRO DO NOT S	METERS) V SCALE DRAWING DWG PER ANSLY14 100M	ENGR DSGN	L HUSTED	2/26/03		23835			1 C	utoCAI
		5			4			3			- 10110		1	REV 2/00	A I

З К

A1X.

SPIRE Assembly Array/Backshort Assembly Traveller Revised by A Turner March 5, 2003

Height measurements of Backshort to Detector to NTD chip

a= BS height b= to web

Device #	PMW 2.1	PMW BS 3.2
Date	8-Jun-04	
Collected by	A Turner	

Device 1	Thickness Meas	surements
Zero at	Measure at	Meas (mm)
1	1	0.0000
1	2	-1.0295
1	3	-1.0320
1	4	-1.0355
1	5	-0.0005
1	6	-1.0215
1	7	-1.0310
1	8	-1.0340
1	9	-1.0390
1	10	-1.0440
1	11	-1.0210
1	12	-1.0305
1	13	-1.0350
1	14	-1.0380
1	15	-1.0450
1	16	0.0015
1	17	-1.0250
1	18	-1.0300
1	19	-1.0370

Targets	mm	tol (mm)
Stack thick	1.0285	0.0390
NTD chip	0.0250	0.0100
BS dist	0.091	0.01

1

20 0.0005

Stack Thickness (mm)								
Average	1.0345							
max	1.0455							
min	1.0205							
р-р	0.0250							
Backshort T	hickness(mm)							
Average	0.9511							
max	0.9540							
min	0.9470							
р-р	0.0070							
Backshort [Distance (mm)							
Average	0.0833							
max	0.0925							
min	0.0700							
р-р	0.0225							
NTD Chip T	hickness(mm)							
Average	0.0305							
max	0.0355							
min	0.0245							
n n	0.0110							

c= NTD height												
Pillar Height Measurements												
Zero at	Row	Pixel	a (mm)	b(mm)	c(mm)	NTD chip (mm)	BS dist (mm)					
1	A	1	-0.9470	-1.0255	-1.0590	0.0335	0.0785					
1	A	2	-0.9470	-1.0275	-1.0570	0.0295	0.0805					
1	A	3	-0.9475	-1.0295	-1.0575	0.0280	0.0820					
1	Α	4	-0.9485	-1.0300	-1.0630	0.0330	0.0815					
1	Α	5	-0.9485	-1.0315	-1.0645	0.0330	0.0830					
1	Α	6	-0.9495	-1.0315	-1.0650	0.0335	0.0820					
1	Α	7	-0.9495	-1.0320	-1.0645	0.0325	0.0825					
1	A	8	-0.9505	-1.0330	-1.0670	0.0340	0.0825					
1	A	9	-0.9505	-1.0335	-1.0635	0.0300	0.0830					
1	A	10	-0.9505	-1.0350	-1.0705	0.0355	0.0845					
1	Α	11	-0.9510	-1.0360	-1.0670	0.0310	0.0850					
1	Α	12	-0.9510	-1.0380	-1.0690	0.0310	0.0870					
1	A	13	-0.9505	-1.0430	-1.0710	0.0280	0.0925					
1	K	1	-0.9485	-1.0260	-1.0555	0.0295	0.0775					
1	В	1	-0.9485	-1.0260	-1.0550	0.0290	0.0775					
1	В	2	-0.9485	-1.0290	-1.0610	0.0320	0.0805					
1	В	3	-0.9495	-1.0305	-1.0610	0.0305	0.0810					
1	В	4	-0.9495	-1.0315	-1.0610	0.0295	0.0820					
1	В	5	-0.9500	-1.0335	-1.0640	0.0305	0.0835					
1	В	6	-0.9500	-1.0335	-1.0655	0.0320	0.0835					
1	В	7	-0.9510	-1.0350	-1.0680	0.0330	0.0840					
1	В	8	-0.9510	-1.0360	-1.0665	0.0305	0.0850					
1	В	y	-0.9510	-1.0360	-1.0690	0.0330	0.0850					
1	В	10	-0.9510	-1.0380	-1.0690	0.0310	0.0870					
1	В	11	-0.9510	-1.0390	-1.0690	0.0300	0.0880					
1	в	12	-0.9510	-1.0405	-1.0715	0.0310	0.0895					
	1	- 1		-1.0420	-1.0750	0.0330						
1	C	1	-0.9485	-1.0255	-1.0565	0.0310	0.0770					
1	C C	2	-0.9405	-1.0235	-1.0505	0.0310	0.0770					
1	C C	2	-0.9403	1.0205	1.0600	0.0200	0.0000					
4	0	3	-0.9500	-1.0315	-1.0000	0.0285	0.0815					
1	C	4	-0.9500	-1.0330	-1.0660	0.0330	0.0830					
1	C	5	-0.9500	-1.0340	-1.0655	0.0315	0.0840					
1	C	6	-0.9510	-1.0345	-1.0645	0.0300	0.0835					
1	C C	/	-0.9515	-1.0350	-1.0695	0.0345	0.0835					
1	C C	8	-0.9515	-1.0355	-1.0660	0.0305	0.0840					
1	C	9	-0.9515	-1.0370	-1.0670	0.0300	0.0855					
1	0	10	-0.9515	-1.0380	-1.0710	0.0330	0.0803					
1	Č	12	-0.9515	-1.0395	-1.0705	0.0310	0.0880					
1	Ċ	12	-0.9515	-1.0415	-1.0735	0.0310	0.0300					
	U U	13	-0.3010	-1.0433	-1.0730	0.0300	0.0920					
1	D	1	-0 9490	-1 0265	-1.0600	0.0335	0.0775					
1	D	2	-0.9495	-1 0205	-1.0565	0.0333	0.0800					
1	D	3	-0.9495	-1 0320	-1.0565	0.0245	0.0825					
1	D	4	-0.9505	-1.0340	-1.0655	0.0315	0.0835					
1	D	5	-0.9515	-1.0360	-1.0655	0.0295	0.0845					
1	D	6	-0.9520	-1.0355	-1.0680	0.0325	0.0835					
1	D	7	-0.9520	-1.0365	-1.0690	0.0325	0.0845					
1	D	8	-0.9520	-1.0385	-1.0700	0.0315	0.0865					
1	D	9	-0.9520	-1.0395	-1.0700	0.0305	0.0875					
1	D	10	-0.9520	-1.0410	-1.0665	0.0255	0.0890					
1	D	11	-0.9520	-1.0420	-1.0725	0.0305	0.0900					
1	D	12	-0.9520	-1.0435	-1.0710	0.0275	0.0915					
1	F	1	-0.9490	-1.0235	-1.0550	0.0315	0.0745					
1	E	2	-0.9495	-1.0270	-1.0550	0.0280	0.0775					

AIDS: 243660

SPIRE Assembly Array/Backshort Assembly Traveller Revised by A Turner March 5, 2003

Device #	PMW 2.1	PMW BS 3.2
Date	8-Jun-04	
Collected by	A Turner	

Height measurements of Backshort to Detector to NTD chi	р

a= BS height
b= to web

Device Thickness Measurements								
Zero at	Measure at	Meas (mm)						

c= NTD height										
			Pillar Heig	ht Measure	ments			[
Zero at	Row	Pixel	a (mm)	b(mm)	c(mm)	NTD chip (mm)	BS dist (mm)	[
1	E	3	-0.9505	-1.0300	-1.0615	0.0315	0.0795	[
1	E	4	-0.9505	-1.0325	-1.0650	0.0325	0.0820	[
1	ш	5	-0.9515	-1.0345	-1.0685	0.0340	0.0830	[
1	E	6	-0.9515	-1.0355	-1.0665	0.0310	0.0840	[
1	E	7	-0.9530	-1.0355	-1.0670	0.0315	0.0825	[
1	E	8	-0.9530	-1.0370	-1.0705	0.0335	0.0840	[
1	E	9	-0.9530	-1.0380	-1.0685	0.0305	0.0850	[
1	E	10	-0.9530	-1.0400	-1.0685	0.0285	0.0870	[
1	E	11	-0.9530	-1.0420	-1.0705	0.0285	0.0890	[
1	E	12	-0.9520	-1.0430	-1.0730	0.0300	0.0910	[
1	E	13	-0.9520	-1.0445	-1.0790	0.0345	0.0925	[
								1		
1	Т	2		-1.0235	-1.0530	0.0295				
1	F	1	-0.9505	-1.0245	-1.0550	0.0305	0.0740			
1	F	2	-0.9505	-1.0270	-1.0570	0.0300	0.0765			
1	F	3	-0.9510	-1.0300	-1.0590	0.0290	0.0790	[
1	F	4	-0.9520	-1.0330	-1.0660	0.0330	0.0810	[
1	F	5	-0.9520	-1.0335	-1.0660	0.0325	0.0815	[
1	F	6	-0.9520	-1.0350	-1.0665	0.0315	0.0830	[
1	F	7	-0.9520	-1.0355	-1.0655	0.0300	0.0835	[
1	F	8	-0.9535	-1.0365	-1.0665	0.0300	0.0830	[
1	F	9	-0.9535	-1.0385	-1.0645	0.0260	0.0850	[
1	F	10	-0.9535	-1.0400	-1.0675	0.0275	0.0865	[
1	F	11	-0.9530	-1.0425	-1.0745	0.0320	0.0895	[
1	F	12	-0.9525	-1.0440	-1.0685	0.0245	0.0915	[
1	K	2	-0.9525	-1.0455	-1.0765			membrane broken		
1	G	1	-0.9505	-1.0205	-1.0495	0.0290	0.0700			
1	G	2	-0.9510	-1.0230	-1.0550	0.0320	0.0720			
1	G	3	-0.9515	-1.0270	-1.0560	0.0290	0.0755	ļ		
1	G	4	-0.9520	-1.0295	-1.0590	0.0295	0.0775			
1	G	5	-0.9520	-1.0305	-1.0580	0.0275	0.0785	[
1	G	6	-0.9530	-1.0320	-1.0620	0.0300	0.0790			
1	G	7	-0.9535	-1.0320	-1.0605	0.0285	0.0785	1		
1	G	8	-0.9540	-1.0335	-1.0615	0.0280	0.0795	1		
1	G	9	-0.9535	-1.0355	-1.0660	0.0305	0.0820	1		
1	G	10	-0.9535	-1.0370	-1.0680	0.0310	0.0835	1		
1	G	11	-0.9535	-1.0395	-1.0705	0.0310	0.0860	ļ		
1	G	12	-0.9525	-1.0420	-1.0705	0.0285	0.0895	ļ		
1	Ğ	13	-0.9525	-1.0445	-1.0735	0.0290	0.0920	1		

AIDS: 243660

BS Dist Criteria (mm)		Stack Thickness (mm)		BS Distance (mm)		
Low	0.0810	Average	1.0345	Average	0.0833	
High	0.1010	max	1.0455	max	0.0925	
		min	1.0205	min	0.0700	
		p-p	0.0250	p-p	0.0225	
				NTD Chip	Thick(mm)	
		BS Thickr	ness(mm)	Average	0.0305	
		Average	0.9511	max	0.0355	
		max	0.9540	min	0.0245	
		min	0.9470	р-р	0.0110	
		p-p	0.0070			

Low

High

Alignment Measurement Summary for PFM PMW BDA 10209800-2 SN012

WARM ALIGNMENT MEASUREMENTS:

Position:

Center of feed horn entrance plane with respect to the alignment pin hole, mounting face and alignment slot as defined in the ICD drawing 10209721 sht. 3 (see Figure 1 below)

(x,y,z) = (24.815, -33.866, 34.611) (all distances in mm)

Nominal x,y position:

 $(x_{nom}, y_{nom}) = (24.687, -33.979)$

x-y shift from nominal:

(dx,dy) = (0.128, 0.113)

The z position of the suspended part referenced to the 34.2 mm nominal dimension on ICD pg 2, zone G9:

Measured z dimension:

34.162 mm

Z shift from nominal

-0.038 mm

Rotation:

Feed horn rotation in xy plane (top view, as in ICD, sht. 3)

0.28° counterclockwise

Normal vector to feedhorn entrance plane:

(0.00237, 0.00842, 0.99996)

which is 0.50° from the z direction.

Mark Weilert

COLD ALIGNMENT MEASUREMENTS:

(BDA cooled from RmT to approximately 7-8 K)

Shifts on Cooling:

XY Shift of center of 300 mK stage on cooling (with respect to flange alignment pin hole):

(dx, dy) = (-0.09, 0.14)

300 mK stage rotation in xy plane on cooling (top view):

0.03 degrees CCW

The suspended portion of the BDA shifted approximately .05 mm down in the z axis on cooling, moving closer to the mounting flange. The rotation about the x-axis on cooling was measured as <0.03 degrees, but this angle did not return to the original value on warming to room temperature, so the reliability of this number is in question. We have no information about rotation in the y axis on cooling.

These shifts are not accurate to better than ± 40 microns, and the repeatability over multiple cooldowns is not well known.

Net Result:

xy cold position relative to alignment pin hole:

(x, y) = (24.72, -33.73)

(this doesn't agree exactly with the sum of the results above due to roundoff) Rotation of feedhorn relative to xy axes (top view):

0.31 degrees counter-clockwise

Figure 1 (excerpt from ICD dwg 10209721, with coordinate axes shown)

Advancing Ultra-Precision Manufacturing

Custom Microwave Inc. 940 Boston Avenue Longmont, CO 80501

CERTIFICATE OF COMPLIANCE

 JPL
 1256992

 CUSTOMER
 PURCHASE ORDER NUMBER

 4380
 10209823 REV X7

 INVOICE NUMBER
 PART NUMBER(S)

 P8991-02
 1 EA.

 LOT NUMBER(S)/SERIAL
 QUANTITY

Custom Microwave, Inc. certifies that all materials and processes used in the manufacturing of supplied parts conforms in all respects to the above mentioned purchase order, specification and/or drawing requirements and that documents are on file to substantiate this and are available for examination. Custom Microwave, Inc. further certifies that no parts supplied against this purchase order contain mercury or have come in contact with mercury or mercury compounds nor do they contain beryllium or beryllium compounds except beryllium copper.

Authorized Signature Quality Assurance Manager

CMI CAGE CODE: 5Y549

MATERIALS: COPPER C101 HOUSING: RM#997 BRASS WIRE RM# 1200 SN96 SOLDER: RM#1294

PROCESSES:

COPPER ELECTROFORM CMI COPPER # 3 GOLD PLATE PER MIL-G-45204, TYPE 3, CLASS 1, GRADE A

NCR # 13160 attached

7/21/04

Date

Advancing Ultra-Precision Manufacturing

Custom Microwave Inc. 940 Boston Avenue Longmont, CO 80501

NON CONFORMA	NCF DEDODT	1. NCR # :	2. Pg. 1 of
	NCE AEFORI		2
		13160	
3. PART #: REV. 4. PAR	T DESCRIPTION :	5. PROJ. # :	6. CUSTOMER :
10209823 X FEED	HORN - P/MW, DD	P 8991	JPL
7. SERIAL # OR BATCH # 8. VENDOR NAM	ME	9. VEND CERT# 10. VEN	D P.O # 11. VEND #
-02			
	8. DETAILS OF NON CONFO	RMANCE	
12. 13. DESCRIPTION ITEM # Dwg Zone Spec Pare Set	14. DISC	CREPANCY	15. 16. 17. TEAM OTY DEFECT
Dwg Zone, Spec. Fara, Ser	. по.		# CODE
$\frac{1}{2}$ $\frac{1}$. 6033		1 050 D 1 050
3 G-12 10.65 MAX	10.7195	•	7 1 050
4 C-12, 4.5 MIN	4.4197		7 1 050
18. ORIGINATOR:	DATE: 19. OPERATI	ION DETECTED AT:	20. WORK AREA DETECTED
TROY GEORGE	7 7 7 11 19		INSPECTION
21 22	/*#1-07 //	N	
ITEM # OPER	23. DISPOSITIO	2N	Z4. STAMP/
# 1-9 PEQUEST USE AS	/C		SIGN
Negro i no i			- NEW
			······································
25. RTV Qty: 26. SCRAP Qty : 27. REV	WORK Qty: 28. STANDARD R	EPAIR Qty: 29. USE AS I	S Qty : 30. REPAIR Qty :
		/ .	
31. CLASSIFICATION	32. CUSTOMER APPROV	AL REQUIRED 33. CO	RRECTIVE ACTION
34. Project Leader : DATE : 35	A YES A NO	DATE : 36. Quality Assu	rance : DATE
7/21/04	SEE ATTACHED	· Time	Sege 7-21-04
37 CAUSE ·			
MACHINING ELROR			
38. CAR#: 39. ACTIONI	EE :	40. ASSIGN	ED DATE:
41. CORRECTIVE ACTION :			
		•	
		•	
42. EFFECTIVITY DATE/ (Lot#/S/N)			
43. DATE COMPLETED :	44. APPROVED BY:		45. CACODE#:
FORM 0001	•		
		•	

Clency Lee-Yow

From: Sent: To: Cc: Subject:	n: Mark Weilert [Mark.A.Weilert@jpl.nasa.gov] Wednesday, July 21, 2004 11:47 AM Clency Lee-Yow Martin Herman ect: PMW / 823 feedhorn, sn2 discrepancies										
Hi Clency											
I looked through all finish off and ship.	the numbers on the 823 feedhorn, and it is ok to										
Mark											
Mark Weilert M/S 79-24 Jet Propulsion Labora 4800 Oak Grove Dr. Pasadena Ca 91109-809	atory 99										
Mark.A.Weilert@jpl.na office: (818) 354-506 fax: (818) 393-487	asa.gov 50 78										
Any opinions expresse JPL	ed are mine, and do not represent official positions or policies of										

Advancing Ultra-Precision Manufacturing

Custom Microwave Inc. 940 Boston Avenue Longmont, CO 80501

NC	ON CO	ONF	'OR	MAI	NCI	ERE	EPO	RT	1. N	CR #	:		2. Pg.	L of 3
3. PART 10 2	:#: 09823]	rev. ¥7	4. PART FEE	DESCR	$\frac{1000}{V} - P$	/mw,	BP	A	5. PR P8	:0J. # : 3 99 1	6.	CUSTOME JPC	CR:
7. SER	IAL # OR BA - 0ス	ATCH #	8. VENI	OOR NAM	E	- -			9. VEND	CERT#	10. VEN	D P.O #	11. VEN	D #
				8	. DETA	ILS OF	NON C	ONFO	ORMAN	CE				
12. ITEM #	Dv	13. D vg Zone,	ESCRIP Spec. Pa	TION ara, Ser.	no.		14	4. DIS	CREPA	NCY		15. TEAM #	16. QTY	17. DEFECT
5	C-12,	, 4.51	NIN				4.3	517				7	1	ODE OSD
6	F-10,	\$ 3.23	7/03	3.223			3.24	100 -	3.2729	ļ		7	1	oso
7	C-3, ∉	+ 0.0	04 A	B/C/			. 06	ol m	AX			7	1	OSD
18 OPIC	C-9 0	1.61/	Ø 1.6	THLU		D 1 777	1.61	29	NON REF			7	11	OSD
(PRINT &	& SIGN)					DATE.	19.0					AT:	X AREA DE	TECTED
21. ITEM #	22. OPER #					23	3. DISPC	DSITIO	ON					24. STAMP/ SIGN
						· · · · · · · · · · · · · · · · · · ·					····			
25. RTV (Qty: 26.	SCRAP Q	ty :	27. REW	ORK Qt	y: 2	28. STANE	DARD R	REPAIR Q	ry: 29.	USE AS IS	S Qty :	30. REPA	IR Qty :
31. CLASS			1 7 N		_	32. CUST	TOMER A	PPROV	VAL REQ	UIRED	33. CO	RRECTI	VE ACTION	NO 5
34. Project	t Leader :		DAT	E: 35.	Custome	r Approva	l:	110	DATE :	36. Qua	lity Assu	rance :	IES U	DATE
An	Þ		7/4/	oy						· To	nd.d	Serge	· _ 7/2	1/04
37. CAU	JSE :								•					
38. CAR	#:		39. AC	TIONEI	E :					40.	ASSIGN	ED DA	TE:	
41. COF	CRECTIV]	E ACTIO	DN:						•					
42. EFFEC	TIVITY DA	ΓE/ (Lot#/	5/N)											
43. DATE	E COMPL	ETED :		<u> </u>	44. AP	PROVE	D BY:		·····			45. C	ACODE#:	<u>,</u>
FORM 000	11								•	··,			х. 	

.

Advancing Ultra-Precision Manufacturing

Custom Microwave Inc. 940 Boston Avenue Longmont, CO 80501

NIC		INNT				DODO		CD #			D.	
	JIN C	UNI	UR	MANC	E RE	PORI	[1. IN	CR#	•		2. Pg.	1 of
		s Asia			•						5	3
3. PART	ſ#:		REV.	4. PART DESC	CRIPTION :			5. PR	O.L. # :	6	CUSTOME	ъ.
10209823 X7 FEEDHORN - P/MW, BDA P8991 5PC							SPC	A :				
7. SERIAL # OR BATCH # 8. VENDOR NAME 9. VEND CERT# 10. VEND P.O. # 111. V							11. VEN	D #				
-02												
				8. DE 7	TAILS OF	NON CONF	ORMAN	CE			!	
12.	12. 13. DESCRIPTION 14. DISCREPANCY 15.							16.	17.			
11 Elvi #	Dwg Zone, Spec. Para, Ser. no.									TEAM #	QTY	DEFECT
9	F-4	-4, 1.6 +.01/-0				1.6256				7	1	050
			·····	·		••••••••••••••••••••••••••••••••••••••						
18. ORIG	INATOR:				DATE:	19. OPERA	TION DET	ECTED A	AT: 2	20. WORK	AREA DET	TECTED
(PRINT &	& SIGN)								4	AT:		
		·····										
21. ITEM #	OPER				23.	DISPOSIT	ION					24.
	#						·.					STAMP/ SIGN
							· · · · · · · · · · · · · · · · · · ·					
						· · · · · · · · · · · · · · · · · · ·						
			· · · · · · · · · · · · · · · · · · ·									
25. RTV (Qty: 2	6. SCRAP (Dtv :	27. REWORK	Dty: 28	. STANDARD	REPAIR Of	v: 29	USE AS IS	S Otv ·	30 REPAI	
				· ·			2.					
31. CLASS	SIFICATIO	ON			32. CUST	OMER APPRO	DVAL REQU	UIRED	33. CO	RRECTIVI	EACTION	
CRITICA 34. Project	L 🛛 t Leader :	MAJOR	DATI	$\frac{\text{INOR}}{\text{E}: 35 \text{ Custor}}$	YES C	NO	DATE ·	36 0119	REQUI	IRED. YI	ES 🗆	
The Freinger					ici isppiovai		DALL.	30. Qua		Sere.		1/2, /24
27 CAI	ISE		., ,					74	ya		/	2.701
37. CAU	JOF :											
							•					
38. CAR#: 39. ACTIONEE : 40. ASSIGNED DATE:												
41. CORRECTIVE ACTION :												
	÷.,						•					
	<u></u>											
42. EFFEC	TIVITY D	ATE/ (Lot#/	/S/N)				· · · · · · · · · · · · · · · · · · ·					
43. DATE	E COMP	LETED :		44. A	PPROVEI	BY:	-			45. CA	CODE#:	
FORM 000)1						•	· · ·				

•

LARGE DIAMETER REPORT

Feedhorn Entrance Diameters Top View of Feedhorn (looking down onto feedhorn entrances) holes are marked with pixel ID and "Circle Number" index to measurements on following 8 pages. The origin is at the center of G13

Program: 10209823 UPA FEEDHORN large hole pattern.iwp Date: Mon Jul 19 2004 Time: 15:38:08 Units: mm, dec deg

*

••

Feature	Actual	Nominal	Plus (+)	Minus (-)	Dev/Nom	Out/Tol
Circle 10 Center X Center Y Diameter TP RFS	[System 9] 0.0076 -0.0053 3.2599 0.0185	0.0000 0.0000 3.2230	0.0140 0.0400	0.0000	0.0076 -0.0053 0.0369	0.0229
Circle 11 Center X Center Y Diameter TP RFS	[System 9] 3.3515 -0.0053 3.2530 0.0261	3.3396 0.0000 3.2230	0.0140 0.0400	0.0000	0.0119 -0.0053 0.0300	0.0160
Circle 19 Center X Center Y Diameter TP RFS	[System 9] 6.6998 -0.0087 3.2552 0.0446	6.6793 0.0000 3.2230	0.0140 0.0400	0.0000	0.0205 -0.0087 0.0322	0.0182 0.0046
Circle 20 Center X Center Y Diameter TP RFS	[System 9] 10.0339 -0.0077 3.2536 0.0337	10.0189 0.0000 3.2230	0.0140 0.0400	0.0000	0.0150 -0.0077 0.0306	0.0166
Circle 21 Center X Center Y Diameter TP RFS	[System 9] 13.3679 -0.0009 3.2517 0.0186	13.3586 0.0000 3.2230	0.0140 0.0400	0.0000	0.0093 -0.0009 0.0287	0.0147
Circle 22 Center X Center Y Diameter TP RFS	[System 9] 16.7089 -0.0005 3.2457 0.0213	16.6983 0.0000 3.2230	0.0140 0.0400	0.0000	0.0106 -0.0005 0.0227	0.0087
Circle 23 Center X Center Y Diameter TP RFS	[System 9] 20.0414 0.0044 3.2564 0.0113	20.0379 0.0000 3.2230	0.0140 0.0400	0.0000	0.0035 0.0044 0.0334	0.0194
Circle 24 Center X Center Y Diameter TP RFS	[System 9] 23.3823 0.0030 3.2374 0.0111	23.3776 0.0000 3.2230	0.0140 0.0400	0.0000	0.0047 0.0030 0.0144	0.0004
Circle 25 Center X Center Y Diameter TP RFS	[System 9] 26.7257 -0.0045 3.2530 0.0192	26.7172 0.0000 3.2230	0.0140 0.0400	0.0000	0.0085 -0.0045 0.0300	0.0160
Circle 26 Center X Center Y Diameter TP RFS	[System 9] 30.0671 -0.0029 3.2501 0.0212	30.0569 0.0000 3.2230	0.0140 0.0400	0.0000	0.0102 -0.0029 0.0271	0.0131
Circle 27 Center X Center Y Diameter TP RFS	[System 9] 33.4020 -0.0062 3.2611 0.0166	33.3965 0.0000 3.2230	0.0140 0.0400	0.0000	0.0055 -0.0062 0.0381	0.0241

Program: 10209823 UPA FEEDHORN large hole pattern.iwp Date: Mon Jul 19 2004 Time: 15:38:08

, *****

Units: mm, dec deg						o . (m.)
Feature	Actual	Nominal	Plus (+)	Minus (-)	Dev/Nom	Out/Tol
Circle 28 Center X Center Y Diameter TP RFS	[System 9] 36.7376 -0.0072 3.2546 0.0147	36.7362 0.0000 3.2230	0.0140 0.0400	0.0000	0.0014 -0.0072 0.0316	0.0176
Circle 29 Center X Center Y Diameter TP RFS	[System 9] 40.0769 -0.0091 3.2446 0.0182	40.0759 0.0000 3.2230	0.0140 0.0400	0.0000	0.0010 -0.0091 0.0216	0.0076
Circle 43 Center X Center Y Diameter TP RFS	[System 9] 0.0173 -5.7891 3.2445 0.0358	0.0000 -5.7845 3.2230	0.0140	0.0000	0.0173 -0.0046 0.0215	0.0075
Circle 44 Center X Center Y Diameter TP RFS	[System 9] 3.3529 -5.7884 3.2437 0.0278	3.3396 -5.7845 3.2230	0.0140 0.0400	0.0000	0.0133 -0.0039 0.0207	0.0067
Circle 45 Center X Center Y Diameter TP RFS	[System 9] 6.6901 -5.7930 3.2477 0.0275	6.6793 -5.7845 3.2230	0.0140 0.0400	0.0000	0.0108 -0.0085 0.0247	0.0107
Circle 46 Center X Center Y Diameter TP RFS	[System 9] 10.0356 -5.7833 3.2429 0.0336	10.0189 -5.7845 3.2230	0.0140 0.0400	0.0000	0.0167 0.0012 0.0199	0.0059
Circle 47 Center X Center Y Diameter TP RFS	[System 9] 13.3735 -5.7850 3.2536 0.0299	13.3586 -5.7845 3.2230	0.0140 0.0400	0.0000	0.0149 -0.0005 0.0306	0.0166
Circle 48 Center X Center Y Diameter TP RFS	[System 9] 16.7094 -5.7855 3.2546 0.0223	16.6983 -5.7845 3.2230	0.0140 0.0400	0.0000	0.0111 -0.0010 0.0316	0.0176
Circle 49 Center X Center Y Diameter TP RFS	[System 9] 20.0443 -5.7927 3.2508 0.0208	20.0379 -5.7845 3.2230	0.0140 0.0400	0.0000	0.0064 -0.0082 0.0278	0.0138
Circle 50 Center X Center Y Diameter TP RFS	[System 9] 23.3847 -5.7925 3.2627 0.0214	23.3776 -5.7845 3.2230	0.0140 0.0400	0.0000	0.0071 -0.0080 0.0397	0.0257
Circle 51 Center X Center Y Diameter TP RFS	[System 9] 26.7208 -5.7828 3.2542 0.0081	26.7172 -5.7845 3.2230	0.0140 0.0400	0.0000	0.0036 0.0017 0.0312	0.0172

Units: mm, dec deg				Minus(-)	Dev/Nom	Out/Tol
Feature	Actual	Nominal	Plus (+)	Minus ()		
Circle 52 Center X Center Y Diameter TP RFS	[System 9] 30.0709 -5.7900 3.2591 0.0301	30.0569 -5.7845 3.2230	0.0140 0.0400	0.0000	0.0140 -0.0055 0.0361	0.0221
Circle 53 Center X Center Y Diameter TP RFS	[System 9] 33.3937 -5.7841 3.2583 0.0057	33.3965 -5.7845 3.2230	0.0140 0.0400	0.0000	-0.0028 0.0004 0.0353	0.0213
Circle 54 Center X Center Y Diameter TP RFS	[System 9] 36.7285 -5.7920 3.2411 0.0215	36.7362 -5.7845 3.2230	0.0140 0.0400	0.0000	-0.0077 -0.0075 0.0181	0.0041
Circle 55 Center X Center Y Diameter TP RFS	[System 9] 40.0681 -5.7914 3.2587 0.0207	40.0759 -5.7845 3.2230	0.0140 0.0400	0.0000	-0.0078 -0.0069 0.0357	0.0217
Circle 56 Center X Center Y Diameter TP RFS	[System 9] 0.0219 -11.5706 3.2428 0.0439	0.0000 -11.5689 3.2230	0.0140 0.0400	0.0000	0.0219 -0.0017 0.0198	0.0058 0.0039
Circle 57 Center X Center Y Diameter TP RFS	[System 9] 3.3525 -11.5697 3.2556 0.0259	3.3396 -11.5689 3.2230	0.0140 0.0400	0.0000	0.0129 -0.0008 0.0326	0.0186
Circle 58 Center X Center Y Diameter TP RFS	[System 9] 6.6979 -11.5707 3.2588 0.0373	6.6793 -11.5689 3.2230	0.0140 0.0400	0.0000	0.0186 -0.0018 0.0358	0.0218
Circle 59 Center X Center Y Diameter TP RFS	[System 9] 10.0359 -11.5752 3.2458 0.0362	10.0189 -11.5689 3.2230	0.0140 0.0400	0.0000	0.0170 -0.0063 0.0228	0.0088
Circle 60 Center X Center Y Diameter TP RFS	[System 9] 13.3705 -11.5707 3.2666 0.0240	13.3586 -11.5689 3.2230	0.0140 0.0400	0.0000	0.0119 -0.0018 0.0436	0.0296
Circle 61 Center X Center Y Diameter TP RFS	[System 9] 16.7139 -11.5791 3.2564 0.0373	16.6983 -11.5689 3.2230	0.0140 0.0400	0.0000	0.0156 -0.0102 0.0334	0.0194
Circle 62 Center X Center Y Diameter TP RFS	[System 9] 20.0469 -11.5734 3.2487 0.0201	20.0379 -11.5689 3.2230	0.0140 0.0400	0.0000	0.0090 -0.0045 0.0257	0.0117

•
: Program: 10209823 UPA FEEDHORN large hole pattern.iwp Date: Mon Jul 19 2004 Time: 15:38:08

, **?**

Units: mm, dec deg				Minus (-)	Dev/Nom	Out/Tol
Feature	Actual	Nominal	Plus (+)	Millus ()		· · · · · · · · · · · · · · · · · · ·
Circle 63 Center X Center Y Diameter TP RFS	[System 9] 23.3851 -11.5792 3.2526 0.0255	23.3776 -11.5689 3.2230	0.0140 0.0400	0.0000	0.0075 -0.0103 0.0296	0.0156
Circle 64 Center X Center Y Diameter TP RFS	[System 9] 26.7243 -11.5731 3.2540 0.0165	26.7172 -11.5689 3.2230	0.0140 0.0400	0.0000	0.0071 -0.0042 0.0310	0.0170
Circle 65 Center X Center Y Diameter TP RFS	[System 9] 30.0588 -11.5756 3.2506 0.0139	30.0569 -11.5689 3.2230	0.0140 0.0400	0.0000	0.0019 -0.0067 0.0276	0.0136
Circle 66 Center X Center Y Diameter TP RFS	[System 9] 33.3966 -11.5788 3.2556 0.0197	33.3965 -11.5689 3.2230	0.0140	0.0000	0.0001 -0.0099 0.0326	0.0186
Circle 67 Center X Center Y Diameter TP RFS	[System 9] 36.7352 -11.5732 3.2645 0.0088	36.7362 -11.5689 3.2230	0.0140 0.0400	0.0000	-0.0010 -0.0043 0.0415	0.0275
Circle 68 Center X Center Y Diameter TP RFS	[System 9] 40.0666 -11.5723 3.2596 0.0199	40.0759 -11.5689 3.2230	0.0140 0.0400	0.0000	-0.0093 -0.0034 0.0366	0.0226
Circle 69 Center X Center Y Diameter TP RFS	[System 9] 0.0169 -17.3517 3.2493 0.0340	0.0000 -17.3534 3.2230	0.0140 0.0400	0.0000	0.0169 0.0017 0.0263	0.0123
Circle 70 Center X Center Y Diameter TP RFS	[System 9] 3.3569 -17.3594 3.2538 0.0367	3.3396 -17.3534 3.2230	0.0140	0.0000	0.0173 -0.0060 0.0308	0.0168
Circle 71 Center X Center Y Diameter TP RFS	[System 9] 6.6899 -17.3570 3.2544 0.0225	6.6793 -17.3534 3.2230	0.0140 0.0400	0.0000	0.0106 -0.0036 0.0314	0.0174
Circle 72 Center X Center Y Diameter TP RFS	[System 9] 10.0319 -17.3534 3.2683 0.0260	10.0189 -17.3534 3.2230	0.0140 0.0400	0.0000	0.0130 -0.0000 0.0453	0.0313
Circle 73 Center X Center Y Diameter TP RFS	[System 9] 13.3684 -17.3564 3.2720 0.0206	13.3586 -17.3534 3.2230	0.0140 0.0400	0.0000	0.0098 -0.0030 0.0490	0.0350

Sec. Sec. Sec. Program: 10209823 UPA FEEDHORN large hole pattern.iwp Date: Mon Jul 19 2004 Time: 15:38:08

Units: mm, dec deg				••• • • • •	Dev/Nom	Out/Tol
Feature	Actual	Nominal	Plus (+)	Minus (-)	Dev/Noli	
Circle 74 Center X Center Y Diameter TP RFS	[System 9] 16.7198 -17.3699 3.2652 0.0542	16.6983 -17.3534 3.2230	0.0140 0.0400	0.0000	0.0215 -0.0165 0.0422	0.0282 0.0142
Circle 75 Center X Center Y Diameter TP RFS	[System 9] 20.0398 -17.3684 3.2605 0.0302	20.0379 -17.3534 3.2230	0.0140 0.0400	0.0000	0.0019 -0.0150 0.0375	0.0235
Circle 76 Center X Center Y Diameter TP RFS	[System 9] 23.3789 -17.3591 3.2604 0.0118	23.3776 -17.3534 3.2230	0.0140 0.0400	0.0000	0.0013 -0.0057 0.0374	0.0234
Circle 77 Center X Center Y Diameter TP RFS	[System 9] 26.7180 -17.3626 3.2604 0.0184	26.7172 -17.3534 3.2230	0.0140 0.0400	0.0000	0.0008 -0.0092 0.0374	0.0234
Circle 78 Center X Center Y Diameter TP RFS	[System 9] 30.0573 -17.3620 3.2745 0.0172	30.0569 -17.3534 3.2230	0.0140 0.0400	0.0000	0.0004 -0.0086 0.0515	0.0375
Circle 79 Center X Center Y Diameter TP RFS	[System 9] 33.3971 -17.3542 3.2666 0.0020	33.3965 -17.3534 3.2230	0.0140 0.0400	0.0000	0.0006 -0.0008 0.0436	0.0296
Circle 80 Center X Center Y Diameter TP RFS	[System 9] 36.7378 -17.3588 3.2525 0.0112	36.7362 -17.3534 3.2230	0.0140 0.0400	0.0000	0.0016 -0.0054 0.0295	0.0155
Circle 81 Center X Center Y Diameter TP RFS	[System 9] 40.0725 -17.3582 3.2606 0.0118	40.0759 -17.3534 3.2230	0.0140 0.0400	0.0000	-0.0034 -0.0048 0.0376	0.0236
Circle 82 Center X Center Y Diameter TP RFS	[System 9] 1.6826 -2.8979 3.2440 0.0280	1.6698 -2.8922 3.2230	0.0140 0.0400	0.0000	0.0128 -0.0057 0.0210	0.0070
Circle 83 Center X Center Y Diameter TP RFS	[System 9] 5.0254 -2.8984 3.2566 0.0341	5.0095 -2.8922 3.2230	0.0140	0.0000	0.0159 -0.0062 0.0336	0.0196
Circle 84 Center X Center Y Diameter TP RFS	[System 9] 8.3618 -2.8988 3.2547 0.0286	8.3491 -2.8922 3.2230	0.0140 0.0400	0.0000	0.0127 -0.0066 0.0317	0.0177

Program: 10209823 UPA FEEDHORN large hole pattern.iwp Date: Mon Jul 19 2004 Time: 15:38:08 Units: mm, dec deg

."

Feature	Actual	Nominal	Plus (+)	Minus (-)	Dev/Nom	Out/Tol
Circle 85 Center X Center Y Diameter TP RFS	[System 9] 11.7066 -2.8867 3.2525 0.0372	11.6888 -2.8922 3.2230	0.0140 0.0400	0.0000	0.0178 0.0055 0.0295	0.0155
Circle 86 Center X Center Y Diameter TP RFS	[System 9] 15.0397 -2.8939 3.2424 0.0228	15.0284 -2.8922 3.2230	0.0140 0.0400	0.0000	0.0113 -0.0017 0.0194	0.0054
Circle 87 Center X Center Y Diameter TP RFS	[System 9] 18.3751 -2.8982 3.2579 0.0184	18.3681 -2.8922 3.2230	0.0140 0.0400	0.0000	0.0070 -0.0060 0.0349	0.0209
Circle 88 Center X Center Y Diameter TP RFS	[System 9] 21.7189 -2.8954 3.2545 0.0233	21.7077 -2.8922 3.2230	0.0140 0.0400	0.0000	0.0112 -0.0032 0.0315	0.0175
Circle 89 Center X Center Y Diameter TP RFS	[System 9] 25.0514 -2.8963 3.2506 0.0114	25.0474 -2.8922 3.2230	0.0140 0.0400	0.0000	0.0040 -0.0041 0.0276	0.0136
Circle 90 Center X Center Y Diameter TP RFS	[System 9] 28.3900 -2.8925 3.2452 0.0058	28.3871 -2.8922 3.2230	0.0140 0.0400	0.0000	0.0029 -0.0003 0.0222	0.0082
Circle 91 Center X Center Y Diameter TP RFS	[System 9] 31.7235 -2.9021 3.2573 0.0208	31.7267 -2.8922 3.2230	0.0140 0.0400	0.0000	-0.0032 -0.0099 0.0343	0.0203
Circle 92 Center X Center Y Diameter TP RFS	[System 9] 35.0654 -2.8989 3.2501 0.0135	35.0664 -2.8922 3.2230	0.0140 0.0400	0.0000	-0.0010 -0.0067 0.0271	0.0131
Circle 93 Center X Center Y Diameter TP RFS	[System 9] 38.4062 -2.9038 3.2578 0.0232	38.4060 -2.8922 3.2230	0.0140 0.0400	0.0000	0.0002 -0.0116 0.0348	0.0208
Circle 94 Center X Center Y Diameter TP RFS	[System 9] 1.6854 -8.6835 3.2418 0.0341	1.6698 -8.6767 3.2230	0.0140 0.0400	0.0000	0.0156 -0.0068 0.0188	0.0048
Circle 95 Center X Center Y Diameter TP RFS	[System 9] 5.0234 -8.6795 3.2463 0.0284	5.0095 -8.6767 3.2230	0.0140 0.0400	0.0000	0.0139 -0.0028 0.0233	0.0093

: · · Program: 10209823 UPA FEEDHORN large hole pattern.iwp Date: Mon Jul 19 2004 Time: 15:38:08 Units: mm, dec deg

United, and, and any				.	Der /Nom	Out/Tol
Feature	Actual	Nominal	Plus (+)	Minus (-)	Dev/Nom	
Circle 96 Center X Center Y Diameter TP RFS	[System 9] 8.3606 -8.6812 3.2538 0.0247	8.3491 -8.6767 3.2230	0.0140 0.0400	0.0000	0.0115 -0.0045 0.0308	0.0168
Circle 97 Center X Center Y Diameter TP RFS	[System 9] 11.7026 -8.6791 3.2457 0.0281	11.6888 -8.6767 3.2230	0.0140 0.0400	0.0000	0.0138 -0.0024 0.0227	0.0087
Circle 98 Center X Center Y Diameter TP RFS	[System 9] 15.0425 -8.6880 3.2498 0.0362	15.0284 -8.6767 3.2230	0.0140 0.0400	0.0000	0.0141 -0.0113 0.0268	0.0128
Circle 99 Center X Center Y Diameter TP RFS	[System 9] 18.3758 -8.6820 3.2482 0.0187	18.3681 -8.6767 3.2230	0.0140 0.0400	0.0000	0.0077 -0.0053 0.0252	0.0112
Circle 100 Center X Center Y Diameter TP RFS	[System 9] 21.7111 -8.6802 3.2400 0.0098	21.7077 -8.6767 3.2230	0.0140 0.0400	0.0000	0.0034 -0.0035 0.0170	0.0030
Circle 101 Center X Center Y Diameter TP RFS	[System 9] 25.0474 -8.6859 3.2559 0.0183	25.0474 -8.6767 3.2230	0.0140 0.0400	0.0000	-0.0000 -0.0092 0.0329	0.0189
Circle 102 Center X Center Y Diameter TP RFS	[System 9] 28.3888 -8.6754 3.2541 0.0042	28.3871 -8.6767 3.2230	0.0140 0.0400	0.0000	0.0017 0.0013 0.0311	0.0171
Circle 103 Center X Center Y Diameter TP RFS	[System 9] 31.7264 -8.6876 3.2501 0.0219	31.7267 -8.6767 3.2230	0.0140 0.0400	0.0000	-0.0003 -0.0109 0.0271	0.0131
Circle 104 Center X Center Y Diameter TP RFS	[System 9] 35.0666 -8.6828 3.2472 0.0123	35.0664 -8.6767 3.2230	0.0140 0.0400	0.0000	0.0002 -0.0061 0.0242	0.0102
Circle 105 Center X Center Y Diameter TP RFS	[System 9] 38.4066 -8.6874 3.2480 0.0215	38.4060 -8.6767 3.2230	0.0140 0.0400	0.0000	0.0006 -0.0107 0.0250	0.0110
Circle 106 Center X Center Y Diameter TP RFS	[System 9] 1.6810 -14.4584 3.2729 0.0231	1.6698 -14.4612 3.2230	0.0140 0.0400	0.0000	0.0112 0.0028 0.0499	0.0359

Program: 10209823 UPA FEEDHORN large hole pattern.iwp Date: Mon Jul 19 2004 Time: 15:38:08 Units: mm, dec deg

Facture	Actual	Nominal	Plus (+)	Minus (-)	Dev/Nom	Out/Tol
reature						
Circle 107 Center X Center Y Diameter TP RFS	5.0236 -14.4618 3.2663 0.0283	5.0095 -14.4612 3.2230	0.0140 0.0400	0.0000	0.0141 -0.0006 0.0433	0.0293
Circle 108 Center X Center Y Diameter TP RFS	[System 9] 8.3645 -14.4627 3.2633 0.0309	8.3491 -14.4612 3.2230	0.0140 0.0400	0.0000	0.0154 -0.0015 0.0403	0.0263
Circle 109 Center X Center Y Diameter TP RFS	[System 9] 11.7043 -14.4652 3.2585 0.0319	11.6888 -14.4612 3.2230	0.0140 0.0400	0.0000	0.0155 -0.0040 0.0355	0.0215
Circle 110 Center X Center Y Diameter TP RFS	[System 9] 15.0339 -14.4708 3.2564 0.0221	15.0284 -14.4612 3.2230	0.0140 0.0400	0.0000	0.0055 -0.0096 0.0334	0.0194
Circle 111 Center X Center Y Diameter TP RFS	[System 9] 18.3788 -14.4748 3.2654 0.0345	18.3681 -14.4612 3.2230	0.0140	0.0000	0.0107 -0.0136 0.0424	0.0284
Circle 112 Center X Center Y Diameter TP RFS	[System 9] 21.7078 -14.4595 3.2631 0.0033	21.7077 -14.4612 3.2230	0.0140 0.0400	0.0000	0.0001 0.0017 0.0401	0.0261
Circle 113 Center X Center Y Diameter TP RFS	[System 9] 25.0564 -14.4708 3.2631 0.0263	25.0474 -14.4612 3.2230	0.0140 0.0400	0.0000	0.0090 -0.0096 0.0401	0.0261
Circle 114 Center X Center Y Diameter TP RFS	[System 9] 28.3875 -14.4615 3.2554 0.0009	28.3871 -14.4612 3.2230	0.0140 0.0400	0.0000	0.0004 -0.0003 0.0324	0.0184
Circle 115 Center X Center Y Diameter TP RFS	[System 9] 31.7276 -14.4620 3.2726 0.0025	31.7267 -14.4612 3.2230	0.0140 0.0400	0.0000	0.0009 -0.0008 0.0496	0.0356
Circle 116 Center X Center Y Diameter TP RFS	[System 9] 35.0575 -14.4678 3.2563 0.0222	35.0664 -14.4612 3.2230	0.0140 0.0400	0.0000	-0.0089 -0.0066 0.0333	0.0193
Circle 117 Center X Center Y Diameter TP RFS	[System 9] 38.4033 -14.4634 3.2544 0.0070	38.4060 -14.4612 3.2230	0.0140 0.0400	0.0000	-0.0027 -0.0022 0.0314	0.0174

INSPECTION REPORT Ø. 253/.239 B C

Feedhorn Waveguide Exit Diameters **Bottom View of Feedhorn** (looking down onto waveguide face) Holes are marked with pixel ID and "Circle Number" index to measurements on following pages. The origin is at the center of alignment pin hole to the right of D1

Program: 10209823 UPA FEEDHORN hole pattern with datum 2.iwpDate: Mon Jul 19 2004 Time: 13:20:58 Units: mm, dec deg

Feature	Actual	Nominal	Plus (+)	Minus (-)	Dev/Nom	Out/Tol
Circle 6 Center X Center Y Diameter TP MMC	[System 4] -6.0506 13.5146 2.0649 0.0376	-6.0625 13.5000 2.0000	0.2500 0.0500	0.0000	0.0119 0.0146 0.0649 -0.0273	
Circle 7 Center X Center Y Diameter TP MMC	[System 4] -40.0544 13.4924 2.0621 0.0222	-40.0625 13.5000 2.0000	0.2500	0.0000	0.0081 -0.0076 0.0621 -0.0400	
Circle 8 Center X Center Y Diameter TP MMC	[System 4] -6.0603 -13.5201 2.0807 0.0404	-6.0625 -13.5000 2.0000	0.2500 0.0500	0.0000	0.0022 -0.0201 0.0807 -0.0403	
Circle 9 Center X Center Y Diameter TP MMC	[System 4] -40.0825 -13.5272 2.0485 0.0676	-40.0625 -13.5000 2.0000	0.2500 0.0500	0.0000	-0.0200 -0.0272 0.0485 0.0192	
Circle 10 Center X Center Y Diameter TP RFS	[System 4] -31.0686 -13.5011 3.1977 0.0124	-31.0625 -13.5000 3.1200	0.0800 0.3500	0.0000	-0.0061 -0.0011 0.0777	
Circle 11 Center X Center Y Diameter TP RFS	[System 4] -15.0666 -13.5025 3.1992 0.0097	-15.0625 -13.5000 3.1200	0.0800 0.3500	0.0000	-0.0041 -0.0025 0.0792	
Point 13 Location X Location Y	[System 4] -46.1355 0.0027	-46.1250 0.0000	0.0500 0.0250	0.0500 0.0250	-0.0105 0.0027	
Distance 14 Distance X	[System 4] 1.8498	1.8500	0.1000	0.1000	-0.0002	
Distance 24 Distance X	[System 4] 1.0367	1.0375	1.0000	0.0000	-0.0008	-0.0008
Distance 28 Distance X	[System 4] 1.0411	1.0375	1.0000	0.0000	0.0036	
Point 29 Location Y	[System 4] -10.6346	-10.6500	1.0000	0.0000	0.0154	
Point 30 Location Y	[System 4] -10.6300	-10.6500	1.0000	0.0000	0.0200	
Point 31 Location Y	[System 4] -10.6417	-10.6500	1.0000	0.0000	0.0083	
Point 32 Location Y	[System 4] -10.6385	-10.6500	1.0000	0.0000	0.0115	
Point 33 Location Y	[System 4] 10.5101	10.6500	0.0000	1.0000	-0.1399	
Point 34 Location Y	[System 4] 10.6385	10.6500	0.0000	1.0000	-0.0115	

Program: 10209823 U Units: mm, dec deg	PA FEEDHORN hole	pattern with	datum 2.iwpDa	te: Mon Jul 19	2004 Time	: 13:20:58
Feature	Actual	Nominal	Plus (+)	Minus (-)	Dev/Nom	Out/Tol
Point 35 Location Y	[System 4] 10.5386	10.6500	0.0000	1.0000	-0.1114	
Point 36 Location Y	[System 4] 10.5604	10.6500	0.000	1.0000	-0.0896	
Point 37 Location Y	[System 4] 16.9503	17.0000	0.0000	0.2000	-0.0497	
Point 38 Location Y	[System 4] 16.9430	17.0000	0.0000	0.2000	-0.0570	
Point 39 Location Y	[System 4] 16.8266	17.0000	0.0000	0.2000	-0.1734	• •
Point 40 Location Y	[System 4] -16.8994	-17.0000	0.2000	0.0000	0.1006	
Point 41 Location Y	[System 4] -16.9082	-17.0000	0.2000	0.0000	0.0918	
Point 42 Location Y	[System 4] -16.9177	-17.0000	0.2000	0.0000	0.0823	
Arc 140 Radius	[System 4] 8.9925	9.0000	0.2000	0.2000	-0.0075	
Arc 141 Radius	[System 4] 8.9774	9.0000	0.2000	0.2000	-0.0226	
Arc 142 Radius	[System 4] 9.0606	9.0000	0.2000	0.2000	0.0606	
Arc 143 Radius	[System 4] 8.9196	9.0000	0.2000	0.2000	-0.0804	
Arc 144 Center X Center Y Radius	[System 4] -23.3465 0.0247 24.3375	-23.0625 0.0000 24.7000	0.2000 0.1000 0.0000	0.2000 0.1000 0.2000	-0.2840 0.0247 -0.3625	-0.0840 -0.1625
Arc 145 Center X Center Y Radius	[System 4] -22.9657 0.0057 24.5014	-23.0625 0.0000 24.7000	0.2000 0.1000 0.0000	0.2000 0.1000 0.2000	0.0968 0.0057 -0.1986	
Arc 146 Radius	[System 4] 1.9285	2.0000	0.1000	0.1000	-0.0715	
Arc 147 Radius	[System 4] 1.9889	2.0000	0.1000	0.1000	-0.0111	
Arc 148 Radius	[System 4] 1.9802	2.0000	0.1000	0.1000	-0.0198	
Arc 149 Radius	[System 4] 2.0084	2.0000	0.1000	0.1000	0.0084	
Circle 52 Center X Center Y Diameter	[System 49] -4.7597 0.0121 0.2461	-4.7613 0.0000 0.2390	0.0140	0.0000	0.0016 0.0121 0.0071	
Circularity	0.0016 0.0244		0.0400			

Program: 10209823 UPA FEEDHORN hole pattern with datum 2.iwpDate: Mon Jul 19 2004 Time: 13:20:58 Units: mm, dec deg

••

Feature	Actual	Nominal	Plus (+)	Minus (-)	Dev/Nom	Out/Tol
Circle 53 Center X Center Y Diameter Circularity TP BES	[System 49] -8.1016 0.0094 0.2473 0.0029 0.0188	-8.1009 0.0000 0.2390	0.0140	0.0000	-0.0007 0.0094 0.0083	
Circle 54 Center X Center Y Diameter Circularity TP RFS	[System 49] -11.4385 0.0125 0.2457 0.0037 0.0253	-11.4406 0.0000 0.2390	0.0140	0.0000	0.0021 0.0125 0.0067	
Circle 55 Center X Center Y Diameter Circularity TP RFS	[System 49] -14.7876 0.0116 0.2460 0.0047 0.0275	-14.7802 0.0000 0.2390	0.0140 0.0400	0.0000	-0.0074 0.0116 0.0070	
Circle 56 Center X Center Y Diameter Circularity TP RFS	[System 49] -18.1185 0.0075 0.2456 0.0021 0.0153	-18.1199 0.0000 0.2390	0.0140 0.0400	0.0000	0.0014 0.0075 0.0066	
Circle 57 Center X Center Y Diameter Circularity TP RFS	[System 49] -21.4588 0.0131 0.2464 0.0031 0.0262	-21.4596 0.0000 0.2390	0.0140 0.0400	0.0000	0.0008 0.0131 0.0074	
Circle 58 Center X Center Y Diameter Circularity TP RFS	[System 49] -24.7901 0.0137 0.2458 0.0048 0.0329	-24.7992 0.0000 0.2390	0.0140 0.0400	0.0000	0.0091 0.0137 0.0068	
Circle 59 Center X Center Y Diameter Circularity TP RFS	[System 49] -28.1315 0.0179 0.2445 0.0026 0.0387	-28.1389 0.0000 0.2390	0.0140 0.0400	0.0000	0.0074 0.0179 0.0055	
Circle 60 Center X Center Y Diameter Circularity TP RFS	[System 49] -31.4694 0.0195 0.2445 0.0027 0.0431	-31.4785 0.0000 0.2390	0.0140 0.0400	0.0000	0.0091 0.0195 0.0055	0.0031
Circle 61 Center X Center Y Diameter	[System 49] -34.8125 0.0197 0.2453	-34.8182 0.0000 0.2390	0.0140	0.0000	0.0057 0.0197 0.0063	
Circularity TP RFS	0.0062 0.0410		0.0400			0.0010

Feature	Actual	Nominal	Plus (+)	Minus (-)	Dev/Nom	Out/Tol
Circle 62 Center X Center Y Diameter Circularity	[System 49] -38.1465 0.0248 0.2423 0.0025	-38.1578 0.0000 0.2390	0.0140	0.0000	0.0113 0.0248 0.0033	0.0145
TP RFS	0.0545		0.0400	••		0.0145
Circle 63 Center X Center Y Diameter Circularity	[System 49] -41.4812 0.0140 0.2431 0.0041	-41.4975 0.0000 0.2390	0.0140	0.0000	0.0163 0.0140 0.0041	0.0029
TP RES	0.0425					
Circle 64 Center X Center Y Diameter Circularity	[System 49] -4.7652 5.7832 0.2432 0.0046	-4.7613 5.7845 0.2390	0.0140	0.0000	-0.0039 -0.0013 0.0042	
TP RFS	0.0081		0.0400			
Circle 65 Center X Center Y Diameter Circularity	[System 49] -8.1086 5.7910 0.2459 0.0034	-8.1009 5.7845 0.2390	0.0140	0.0000	-0.0077 0.0065 0.0069	
TP RFS	0.0201		0.0400			
Circle 66 Center X Center Y Diameter Circularity TP RFS	[System 49] -11.4425 5.7879 0.2460 0.0045 0.0078	-11.4406 5.7845 0.2390	0.0140	0.0000	-0.0019 0.0034 0.0070	
Circle 67 Center X Center Y Diameter Circularity TP RFS	[System 49] -14.7762 5.7816 0.2443 0.0042 0.0098	-14.7802 5.7845 0.2390	0.0140	0.0000	0.0040 -0.0029 0.0053	
Circle 68 Center X Center Y Diameter Circularity TP RFS	[System 49] -18.1235 5.7846 0.2435 0.0117 0.0073	-18.1199 5.7845 0.2390	0.0140 0.0400	0.0000	-0.0036 0.0001 0.0045	
Circle 69 Center X Center Y Diameter Circularity	[System 49] -21.4594 5.7930 0.2437 0.0032	-21.4596 5.7845 0.2390	0.0140	0.0000	0.0002 0.0085 0.0047	
TP RFS Circle 70 Center X Center Y Diameter	[System 49] -24.7934 5.7955 0.2425	-24.7992 5.7845 0.2390	0.0140	0.0000	0.0058 0.0110 0.0035	
Circularity	0.02425 0.0026 0.0248		0.0400			

4 (1997) 1997 - Andrea Stational (1997) 1997 - Andrea Stational (1997) 1997 - Andrea Stational (1997) Units: mm, dec deg Dev/Nom Out/Tol Plus (+) Minus (-) Nominal Actual Feature [System 49] Circle 71 0.0089 -28.1389 -28.1300 Center X 5.7845 0.0107 5.7952 Center Y 0.0000 0.0055 0.0140 0.2390 0.2445 Diameter 0.0029 Circularity 0.0400 0.0279 TP RFS [System 49] Circle 72 0.0096 -31.4689 -31.4785 Center X 0.0120 5.7845 Center Y 5.7965 0.0000 0.0029 0.0140 0.2419 0.2390 Diameter 0.0060 Circularity 0.0400 0.0307 TP RFS [System 49] Circle 73 0.0063 -34.8182 -34.8119 Center X 0.0118 5.7845 5.7963 Center Y 0.0028 0.0000 0.0140 0.2418 0.2390 Diameter Circularity 0.0031 0.0400 0.0268 TP RFS [System 49] Circle 74 0.0149 -38.1578 -38.1429 Center X 0.0070 5.7845 5.7915 Center Y 0.0000 0.0017 0.2390 0.0140 0.2407 Diameter 0.0026 Circularity 0.0400 0.0328 TP RFS [System 49] Circle 75 0.0083 -41.4892 -41.4975 Center X 5.7845 0.0124 Center Y 5.7969 0.0000 0.0058 0.2390 0.0140 0.2448 Diameter 0.0045 Circularity 0.0400 0.0299 TP RFS [System 49] Circle 76 -0.0026 -4.7613 -4.7639 Center X 0.0108 -5.7737 -5.7845 Center Y 0.0073 0.0000 0.0140 0.2390 0.2463 Diameter 0.0047 Circularity 0.0400 0.0221 TP RFS [System 49] Circle 77 0.0006 -8.1003 -8.1009 Center X 0.0167 -5.7845 -5.7678 Center Y 0.0074 0.0000 0.2464 0.2390 0.0140 Diameter 0.0033 Circularity 0.0400 0.0335 TP RFS [System 49] Circle 78 -0.0015-11.4406 -11.4421 Center X 0.0189 -5.7845 -5.7656 Center Y 0.0000 0.0074 0.0140 0.2390 0.2464 Diameter 0.0023 Circularity 0.0400 0.0379 TP RFS [System 49] Circle 79 -0.0059-14.7802-14.7861 Center X 0.0177 -5.7845 -5.7668 Center Y 0.0063 0.0000 0.0140 0.2390 0.2453 Diameter 0.0034 Circularity 0.0400 0.0374 TP RFS

Program: 10209823 UPA FEEDHORN hole pattern with datum 2.iwpDate: Mon Jul 19 2004 Time: 13:20:58 Units: mm, dec deg

·

Program: 10209823 UPA FEEDHORN hole pattern with datum 2.iwpDate: Mon Jul 19 2004 Time: 13:20:58 Units: mm, dec deg

Feature	Actual	Nominal	Plus (+)	Minus (-)	Dev/Nom	Out/Tol
Circle 80 Center X Center Y Diameter Circularity TP BFS	[System 49] -18.1182 -5.7714 0.2436 0.0060 0.0263	-18.1199 -5.7845 0.2390	0.0140	0.0000	0.0017 0.0131 0.0046	
Circle 81 Center X Center Y Diameter Circularity TP RFS	[System 49] -21.4579 -5.7692 0.2427 0.0024 0.0307	-21.4596 -5.7845 0.2390	0.0140	0.0000	0.0017 0.0153 0.0037	
Circle 82 Center X Center Y Diameter Circularity TP RFS	[System 49] -24.7933 -5.7677 0.2467 0.0030 0.0355	-24.7992 -5.7845 0.2390	0.0140	0.0000	0.0059 0.0168 0.0077	
Circle 83 Center X Center Y Diameter Circularity TP RFS	[System 49] -28.1291 -5.7657 0.2409 0.0063 0.0425	-28.1389 -5.7845 0.2390	0.0140	0.0000	0.0098 0.0188 0.0019	0.0025
Circle 84 Center X Center Y Diameter Circularity TP RFS	[System 49] -31.4714 -5.7670 0.2430 0.0033 0.0377	-31.4785 -5.7845 0.2390	0.0140	0.0000	0.0071 0.0175 0.0040	
Circle 85 Center X Center Y Diameter Circularity TP RFS	[System 49] -34.8188 -5.7650 0.2470 0.0029 0.0391	-34.8182 -5.7845 0.2390	0.0140	0.0000	-0.0006 0.0195 0.0080	
Circle 86 Center X Center Y Diameter Circularity TP RFS	[System 49] -38.1533 -5.7689 0.2412 0.0033 0.0325	-38.1578 -5.7845 0.2390	0.0140	0.0000	0.0045 0.0156 0.0022	
Circle 87 Center X Center Y Diameter Circularity TP RFS	[System 49] -41.4861 -5.7694 0.2421 0.0031 0.0379	-41.4975 -5.7845 0.2390	0.0140	0.0000	0.0114 0.0151 0.0031	
Circle 88 Center X Center Y Diameter Circularity TP RFS	[System 49] -3.0963 -2.8821 0.2463 0.0042 0.0224	-3.0914 -2.8922 0.2390	0.0140	0.0000	-0.0049 0.0101 0.0073	

Program: 10209823 UPA FEEDHORN hole pattern with datum 2.iwpDate: Mon Jul 19 2004 Time: 13:20:58 Units: mm, dec deg

Feature	Actual	Nominal	Plus (+)	Minus (-)	Dev/Nom	Out/Tol
Circle 89 Center X Center Y Diameter Circularity TP RFS	[System 49] -6.4369 -2.8817 0.2471 0.0019 0.0241	-6.4311 -2.8922 0.2390	0.0140	0.0000	-0.0058 0.0105 0.0081	
Circle 90 Center X Center Y Diameter Circularity TP RFS	[System 49] -9.7735 -2.8844 0.2433 0.0020 0.0165	-9.7708 -2.8922 0.2390	0.0140 0.0400	0.0000	-0.0027 0.0078 0.0043	
Circle 91 Center X Center Y Diameter Circularity TP RFS	[System 49] -13.1098 -2.8825 0.2431 0.0029 0.0195	-13.1104 -2.8922 0.2390	0.0140	0.0000	0.0006 0.0097 0.0041	
Circle 92 Center X Center Y Diameter Circularity TP RFS	[System 49] -16.4428 -2.8810 0.2456 0.0052 0.0268	-16.4501 -2.8922 0.2390	0.0140 0.0400	0.0000	0.0073 0.0112 0.0066	
Circle 93 Center X Center Y Diameter Circularity TP RFS	[System 49] -19.7827 -2.8793 0.2455 0.0041 0.0293	-19.7897 -2.8922 0.2390	0.0140 0.0400	0.0000	0.0070 0.0129 0.0065	
Circle 94 Center X Center Y Diameter Circularity TP RFS	[System 49] -23.1235 -2.8725 0.2441 0.0023 0.0412	-23.1294 -2.8922 0.2390	0.0140	0.0000	0.0059 0.0197 0.0051	0.0012
Circle 95 Center X Center Y Diameter Circularity TP RFS	[System 49] -26.4583 -2.8723 0.2434 0.0023 0.0452	-26.4690 -2.8922 0.2390	0.0140	0.0000	0.0107 0.0199 0.0044	0.0052
Circle 96 Center X Center Y Diameter Circularity TP RFS	[System 49] -29.7937 -2.8750 0.2433 0.0025 0.0456	-29.8087 -2.8922 0.2390	0.0140 0.0400	0.0000	0.0150 0.0172 0.0043	0.0056
Circle 97 Center X Center Y Diameter Circularity TP RFS	[System 49] -33.1352 -2.8774 0.2420 0.0026 0.0396	-33.1484 -2.8922 0.2390	0.0140 0.0400	0.0000	0.0132 0.0148 0.0030	

Program: 10209823 UPA FEEDHORN hole pattern with datum 2.iwpDate: Mon Jul 19 2004 Time: 13:20:58 Units: mm, dec deg

Feature	Actual	Nominal	Plus (+)	Minus (-)	Dev/Nom	Out/Tol
Circle 98 Center X Center Y Diameter	[System 49] -36.4863 -2.8660 0.2498	-36.4880 -2.8922 0.2390	0.0140	0.0000	0.0017 0.0262 0.0108	
Circularity TP RFS	0.0018		0.0400			0.0126
Circle 99 Center X Center Y Diameter Circularity TP RFS	[System 49] -39.8236 -2.8730 0.2405 0.0028 0.0392	-39.8277 -2.8922 0.2390	0.0140	0.0000	0.0041 0.0192 0.0015	
Circle 100 Center X Center Y Diameter Circularity TP RFS	[System 49] -43.1520 -2.8775 0.2459 0.0020 0.0424	-43.1673 -2.8922 0.2390	0.0140	0.0000	0.0153 0.0147 0.0069	0.0024
Circle 101 Center X Center Y Diameter Circularity TP RFS	[System 49] -3.0968 -8.6663 0.2461 0.0034 0.0235	-3.0914 -8.6767 0.2390	0.0140	0.0000	-0.0054 0.0104 0.0071	
Circle 102 Center X Center Y Diameter Circularity TP RFS	[System 49] -6.4390 -8.6660 0.2459 0.0020 0.0267	-6.4311 -8.6767 0.2390	0.0140	0.0000	-0.0079 0.0107 0.0069	
Circle 103 Center X Center Y Diameter Circularity TP RFS	[System 49] -9.7705 -8.6592 0.2442 0.0042 0.0350	-9.7708 -8.6767 0.2390	0.0140	0.0000	0.0003 0.0175 0.0052	
Circle 104 Center X Center Y Diameter Circularity TP RFS	[System 49] -13.1142 -8.6561 0.2440 0.0071 0.0418	-13.1104 -8.6767 0.2390	0.0140	0.0000	-0.0038 0.0206 0.0050	0.0018
Circle 105 Center X Center Y Diameter Circularity TP RFS	[System 49] -16.4522 -8.6555 0.2417 0.0043 0.0427	-16.4501 -8.6767 0.2390	0.0140	0.0000	-0.0021 0.0212 0.0027	0.0027
Circle 106 Center X Center Y Diameter	[System 49] -19.7884 -8.6543 0.2432	-19.7897 -8.6767 0.2390	0.0140	0.0000	0.0013 0.0224 0.0042	
Circularity TP RFS	0.0040 0.0449		0.0400			0.0049

Feature	Actual	Nominal	Plus (+)	Minus (-)	Dev/Nom	Out/Tol
Circle 107	[Svstem 49]				· · · · · ·	
Center X	-23.1290	-23.1294			0.0004	
Center Y	-8,6538	-8.6767			0.0229	
Diameter	0.2478	0.2390	0.0140	0.0000	0.0088	
Circularity	0.0022					
TP RFS	0.0458		0.0400	-		0.0058
Circle 108	[Svstem 49]					
Center X	-26.4672	-26.4690			0.0018	
Center Y	-8.6582	-8.6767			0.0185	
Diameter	0.2456	0.2390	0.0140	0.0000	0.0066	
Circularity	0.0014					
TP RFS	0.0372		0.0400			
Circle 109	[System 49]					
Center X	-29.8056	-29.8087			0.0031	
Center Y	-8.6557	-8.6767			0.0210	
Diameter	0.2411	0.2390	0.0140	0.0000	0.0021	
Circularity	0.0027					
TP RFS	0.0424		0.0400			0.0024
Circle 110	[System 49]					
Center X	-33.1452	-33.1484			0.0032	
Center Y	-8,6468	-8.6767			0.0299	
Diameter	0.2428	0.2390	0.0140	0.0000	0.0038	
Circularity	0.0105					
TP RFS	0.0601		0.0400			0.0201
Circle 111	[System 49]					
Center X	-36.4866	-36.4880			0.0014	
Center Y	-8.6503	-8.6767			0.0264	
Diameter	0.2459	0.2390	0.0140	0.0000	0.0069	
Circularity	0.0066		\sim			
TP RFS	0.0530		0.0400			0.0130
Circle 112	[System 49]					
Center X	-39.8240	-39.8277			0.0037	
Center Y	-8.6490	-8.6767			0.0277	
Diameter	0.2455	0.2390	0.0140	0.0000	0.0065	
Circularity	0.0064					0 0150
TP RFS	0.0559		0.0400			0.0159
Circle 113	[System 49]				0.0000	
Center X	-43.1637	-43.1673			0.0036	
Center Y	-8.6509	-8.6767	0 01 40	0 0000	0.0258	
Diameter	0.2442	0.2390	0.0140	0.0000	0.0052	
Circularity TP RFS	0.0086		0.0400			0.0122
	(Question 40)					
Circle 114	[System 49]	-3 091/			-0.0047	
Center X	-3.0901	2 8922			0.0083	
Center I Diamotor	C. 3003	0 2390	0.0140	0.0000	0.0054	
Cincularitu	0.2444	0.2550	0.0140	0.0000		
TP RFS	0.0190		0.0400	x		
Circle 115	[System 49]					
Center X	-6.4370	-6.4311			-0.0059	
Center Y	2.9028	2.8922			0.0106	
Diameter	0.2443	0.2390	0.0140	0.0000	0.0053	
Circularity	0.0009					
TP RFS	0.0243		0.0400			

Program: 10209823 UPA FEEDHORN hole pattern with datum 2.iwpDate: Mon Jul 19 2004 Time: 13:20:58 Units: mm, dec deg

Feature	Actual	Nominal	Plus (+)	Minus (-)	Dev/Nom	Out/Tol
Circle 116 Center X Center Y Diameter	[System 49] -9.7704 2.9008 0.2468	-9.7708 2.8922 0.2390	0.0140	0.0000	0.0004 0.0086 0.0078	
Circularity TP RFS	0.0033 0.0172		0.0400			
Circle 117 Center X Center Y Diameter Circularity TP RFS	[System 49] -13.1093 2.8947 0.2438 0.0068 0.0056	-13.1104 2.8922 0.2390	0.0140	0.0000	0.0011 0.0025 0.0048	
Circle 118 Center X Center Y Diameter Circularity TP RFS	[System 49] -16.4491 2.8920 0.2462 0.0027 0.0021	-16.4501 2.8922 0.2390	0.0140	0.0000	0.0010 -0.0002 0.0072	
Circle 119 Center X Center Y Diameter Circularity TP RFS	[System 49] -19.7851 2.8960 0.2463 0.0008 0.0120	-19.7897 2.8922 0.2390	0.0140	0.0000	0.0046 0.0038 0.0073	
Circle 120 Center X Center Y Diameter Circularity TP RFS	[System 49] -23.1188 2.9017 0.2440 0.0036 0.0285	-23.1294 2.8922 0.2390	0.0140	0.0000	0.0106 0.0095 0.0050	
Circle 121 Center X Center Y Diameter Circularity TP RFS	[System 49] -26.4604 2.9094 0.2449 0.0021 0.0385	-26.4690 2.8922 0.2390	0.0140 0.0400	0.0000	0.0086 0.0172 0.0059	
Circle 122 Center X Center Y Diameter Circularity TP RFS	[System 49] -29.7944 2.9028 0.2439 0.0030 0.0355	-29.8087 2.8922 0.2390	0.0140	0.0000	0.0143 0.0106 0.0049	
Circle 123 Center X Center Y Diameter Circularity TP RFS	[System 49] -33.1405 2.9119 0.2441 0.0023 0.0425	-33.1484 2.8922 0.2390	0.0140	0.0000	0.0079 0.0197 0.0051	0.0025
Circle 124 Center X Center Y Diameter Circularity	[System 49] -36.4783 2.9152 0.2439 0.0032	-36.4880 2.8922 0.2390	0.0140	0.0000	0.0097 0.0230 0.0049	
TP RFS	0.0499		0.0400			0.0099

Program: 10209823 UPA FEEDHORN hole pattern with datum 2.iwpDate: Mon Jul 19 2004 Time: 13:20:58 Units: mm, dec deg

Feature	Actual	Nominal	Plus (+)	Minus (-)	Dev/Nom	Out/Tol
Circle 125 Center X Center Y Diameter Circularity TP RFS	[System 49] -39.8150 2.9134 0.2425 0.0032 0.0494	-39.8277 2.8922 0.2390	0.0140	0.0000	0.0127 0.0212 0.0035	0.0094
Circle 126 Center X Center Y Diameter Circularity TP RFS	[System 49] -43.1519 2.9074 0.2438 0.0051 0.0432	-43.1673 2.8922 0.2390	0.0140 0.0400	0.0000	0.0154 0.0152 0.0048	0.0032
Circle 127 Center X Center Y Diameter Circularity TP RFS	[System 49] -3.0866 8.6748 0.2449 0.0082 0.0103	-3.0914 8.6767 0.2390	0.0140	0.0000	0.0048 -0.0019 0.0059	
Circle 128 Center X Center Y Diameter Circularity TP RFS	[System 49] -6.4304 8.6787 0.2443 0.0026 0.0043	-6.4311 8.6767 0.2390	0.0140	0.0000	0.0007 0.0020 0.0053	
Circle 129 Center X Center Y Diameter Circularity TP RFS	[System 49] -9.7714 8.6793 0.2438 0.0027 0.0053	-9.7708 8.6767 0.2390	0.0140	0.0000	-0.0006 0.0026 0.0048	
Circle 130 Center X Center Y Diameter Circularity TP RFS	[System 49] -13.1049 8.6747 0.2490 0.0051 0.0116	-13.1104 8.6767 0.2390	0.0140	0.0000	0.0055 -0.0020 0.0100	
Circle 131 Center X Center Y Diameter Circularity TP RFS	[System 49] -16.4445 8.6764 0.2460 0.0098 0.0111	-16.4501 8.6767 0.2390	0.0140	0.0000	0.0056 -0.0003 0.0070	
Circle 132 Center X Center Y Diameter Circularity TP RFS	[System 49] -19.7909 8.6800 0.2467 0.0016 0.0070	-19.7897 8.6767 0.2390	0.0140	0.0000	-0.0012 0.0033 0.0077	
Circle 133 Center X Center Y Diameter Circularity TP RFS	[System 49] -23.1258 8.6810 0.2419 0.0062 0.0112	-23.1294 8.6767 0.2390	0.0140 0.0400	0.0000	0.0036 0.0043 0.0029	

0,2 × * 0.

Program: 10209823 UPA FEEDHORN hole pattern with datum 2.iwpDate: Mon Jul 19 2004 Time: 13:20:58 Units: mm, dec deg

Circle 134 [System 49] Center X -26.4590 -26.4690 0.0 Center Y 8.6755 8.6767 -0.0	Nom Out/Tol
Center X -26.4590 -26.4690 0.0 Center Y 8.6755 8.6767 -0.0	
Center Y 8,6755 8,6767 -0 (100
)012
Diameter 0.2444 0.2390 0.0140 0.0000 0.0	054
Circularity 0.0026	1.7.7
TP RFS 0.0201 0.0400	
Circle 135 [System 49]	
Center X -29.7977 -29.8087 0 (1110
Center Y 8,6787 8,6767	020
Diameter 0.2460 0.2390 0.0140 0.0000 0.0	1020
Circularity 0.034	1070
TP RFS 0.0223 0.0400	
Circle 136	
	0.71
Center X -33.1415 -33.1484 0.0	1071
Center I 8.6/92 8.6/6/ 0.0	025
Diameter 0.2471 0.2390 0.0140 0.0000 0.0	081
Circularity 0.0028	
TP RFS 0.0151 0.0400	
Circle 137 [System 49]	
Center X -36.4775 -36.4880 0.0	105
Center Y 8,6849 8.6767 0.0	082
Diameter 0.2439 0.2390 0.0140 0.0000 0.0	049
Circularity 0.0070	
TP RFS 0.0266 0.0400	
Circle 138 [System 49]	
Center X -39.8120 -39.8277 0.0	157
Center Y 8.6841 8.6767 0.0	074
Diameter 0.2428 0.2390 0.0140 0.0000 0.0	038
Circularity 0.0044	
TP RFS 0.0347 0.0400	
Circle 139 [System 49]	
Center X -43.1600 -43.1673 0.0	073
Center Y 8.6826 8.6767 0.0	0.5.9
Diameter 0.2416 0.2390 0.0140 0.0000 0.0	026
Circularity 0.0126	
TP RFS 0.0187 0.0400	

19090 SH	/00 P		86	18-75 ORDER DATE	7538-	3 01	F 3 FEST	RES	P ULTS	ACK	ING
			** ЛЛ	11/17	/00 0	RD					
CUSTOM MICROWAVE IN	C	3318	•++	DELIVERY DATE	100 -	SHIP	BRANCH	SELL BF	RANCH		
SIGTOM MICROWAVE IN			01	111/2/,	/00 D		3-СЦЕ	<u>5 18</u>	-STL	33	10
40 BOSTON AVENUE	C										-
LONGMONT CO 80501					T	HYSSE	IN				
· ·				COP	PER A		ASS S	SALE	S		
-					AIN	PLAST	ICS		-		
JSTOMER P.O. NUMBER	TERRITORY	ENTRY ID				TMX		5755 (GRANT A	VENUE	
11725	03	04JDI	-	-				CLEVE	LAND OH	44105	5-5635
		04JDI	י א חוד ד רויזי								
역 1 八凸	INSIDE SALES TE	LEPHONE	ATRICK	1							
(303) 651-0707	(847)	490-98-	70 239		4						
	() T () () () () () () () () () () () () ()	HIPPING ST4	, <u>, , , , , , , , , , , , , , , , , , </u>			2 ¹					
TERNAL	COMPLETE	PARTIAL	CANCEL	CUSTOMER SIG	SNATURE:					DATE:	
	X					<u> </u>					
CUSTOMER	······································	nd mit a constant a const	FOB		Y		ERED			SHIF	YED
COMMON/FRT-			ORIG			al.		- President	Sec. 1		
L OF LADING	· · · ·		FREIGHT STATUS	INVENTOR	Υ	69	9.92	LB		70	.00
	.÷.		PPD			_					
PART DI	ESCRIPTION]	85966-9	BILLING]	00	PC		1	00
fest Results Attn to	o: QA De	partmer	nt.	PACKED WITH OT	THER GOODS						
				FINISHED GOODS	LOCATION			and an			
an a				FINISHED GOODS		r					
· · · · · · · · · · · · · · · · · · ·	Pin a	97		FINISHED GOODS	SCRAP		FILLED BY	F	PACKED BY		Q/A AUDIT
	Rm 9	997		FINISHED GOODS	SCRAP		FILLED BY GIL	F	PACKED BY		Q/A AUDIT
	Rn 9	97		FINISHED GOODS	SCRAP		FILLED BY GIL	F	PACKED BY	MAXIMU	Q/A AUDIT
	Rn 9	997		FINISHED GOODS	SCR 4P		FILLED BY		PACKED BY	MAXIMU	Q/A AUDIT
	Rn 9	297		FINISHED GOODS FULL CUSTOMER RECE	SCRAP IVING HOURS		FILLED BY GIL	F	PACKED BY	MAXIMU	Q/A AUDIT M SKID WE M BUNDLE
	Ba 9	997		FINISHED GOODS FULL CUSTOMER RECE	ING HOURS		FILLED BY	F	PACKED BY	MAXIMU	Q/A AUDIT M SKID WE M BUNDLE
	En 9	Avail	2516	FINISHED GOODS FULL CUSTOMER RECE LOADING INSTRU BOXES BARS	IVING HOURS	CUSHP PKG	FILLED BY GIL	BDLS	PACKED BY	MAXIMU MAXIMU CTNS	Q/A AUDIT M SKID WE M BUNDLE
Cack Location:	Rh 9 Prod	Avail uct Coc	2516 le: 0303	FINISHED GOODS FULL CUSTOMER RECE LOADING INSTRU BOXES BARS	IVING HOURS	CUSHP PKC	FILLED BY GIL IS SKIDS	BDLS	PACKED BY	MAXIMU MAXIMU CTNS	Q/A AUDIT M SKID WE M BUNDLE
Rack Location:	En 9 Prod	Avail uct Coc	- 2516 le: 0303 ECIAL INSTRU	FINISHED GOODS FULL CUSTOMER RECE LOADING INSTRU BOXES BARS CTIONS	SCRAP IVING HOURS CTIONS	CUSHP PKC	FILLED BY GIL SS SKIDS	BDLS	PACKED BY	MAXIMU	Q/A AUDIT M SKID WE M BUNDLE
Rack Location:	En 9 Prod	Avail uct Coc	- 2516 le: 0303 ECIAL INSTRU	FINISHED GOODS FULL CUSTOMER RECE LOADING INSTRU BOXES BARS CTIONS	IVING HOURS	CUSHP PKC	FILLED BY GIL IS SKIDS	BDLS	PACKED BY	MAXIMU MAXIMU CTNS	Q/A AUDIT M SKID WE M BUNDLE
Rack Location:	Prod	Avail uct Coc	- 2516 de: 0303 recial instru	FINISHED GOODS FULL CUSTOMER RECE LOADING INSTRU BOXES BARS CTIONS	IVING HOURS	CUSHP PKC	FILLED BY GIL SS SKIDS	BDLS	PACKED BY	MAXIMU MAXIMU CTNS	Q/A AUDIT M SKID WE M BUNDLE
Rack Location:	Prod	Avail uct Cod	- 2516 le: 0303 ECIAL INSTRU	FINISHED GOODS FULL CUSTOMER RECE LOADING INSTRU BOXES BARS CTIONS	CTIONS	CUSHP PKC	FILLED BY GIL is skids 1	BDLS	PACKED BY	MAXIMU MAXIMU CTNS	Q/A AUDIT M SKID WE M BUNDLE
Rack Location:	En 9 Prod	Avail uct Coc	- 2516 le: 0303 FECIAL INSTRU	FINISHED GOODS FULL CUSTOMER RECE LOADING INSTRU BOXES BARS CTIONS	INING HOURS	CUSHP PKC	FILLED BY GIL SS SKIDS	BDLS	PACKED BY	MAXIMU MAXIMU CTNS	Q/A AUDIT M SKID WE M BUNDLE
RECORD	Prod	Avail uct Cod	- 2516 de: 0303 recial INSTRU	FINISHED GOODS FULL CUSTOMER RECE LOADING INSTRU BOXES BARS CTIONS	IVING HOURS	CUSHP PKC	FILLED BY GIL IS SKIDS	BDLS	PACKED BY	MAXIMU MAXIMU CTNS	Q/A AUDIT M SKID WE M BUNDLE
Ack Location:	Prod	Avail uct Cod sp	- 2516 le: 0303 ECIAL INSTRU	FINISHED GOODS FULL CUSTOMER RECE LOADING INSTRU BOXES BARS CTIONS	ICCATION SCRAP IVING HOURS CTIONS	CUSHP PKC	FILLED BY GIL 55 SKIDS 1	BDLS	PACKED BY	MAXIMU	Q/A AUDIT M SKID WE M BUNDLE

33565	1.00	PC	REVERECOP	0862732	00288201	
TAG NUMBER	QUANTITY	UNIT	VENDOR	VENDOR PO	HEAT/LOT	
GARY W. STAMM	-	General N	Manager: CLEVELAND	PRINTED	11/17/00 12:50 AM	CONTROL NO

COPPER AND BRASS SALES, INC. / AIN PLASTICS, INC. ARE SUBSIDIARIES OF THYSSEN INC., N.A. TMX IS A DIVISION OF THYSSEN INC., N.A.

		M . Ann Seltar		t :: \$:#xaa			ti ar le Alfre	
R	EVERE COPPER'PROI	OUCTS, INC.	a - Carlon - Andrew - Carlon - Andrew Carlon - Andrew - Carlon - Andrew - Andrew - Carlon - Andrew - Carlon - Andrew - Carlon - Andrew - Carlon - Andre	<u></u>			DPT	11
ADDRESS CATHY S	ST.THOMAS VERE PARK NY 13440-5561	•	WANTED	REVERE	PAGE	1	REVERE NO.	74450
CUSTOMER DATE 04/18/2000 862 CUSTOMER CODE 148035004 RM SOLD TO TMX/COPPER AN	CUSTOMER ORDER NUMBER	-L KS TAX TO 3 1 0	**	CERTIFIC: ************************************	***** ATE OI ***** R AND	***** - TEST ***** BRASS	*** * *** SALES	
ATTN: ACCOUNT 400 RENAISSAN DETROIT MI 48	S PAYABLE ICE CENTER - SUI 1243	TE 1700		5755 GRAN CLEVELAND	T AVEI OH 4	NUE 44105		
02772 REVERE TO ASTM	C11000 CR CU PL 1 B-152	ATE		The goods described herein and 12 of the Fair Labor St Department of Labor issued	were produced andards Act, as under section 14	in compliance wi amended, and o thereof.	ith all applicable requ if regulations and ord	urements of sections 6, 7 lers of the United States
1.500"	X 36.5" X 144.5		FOB	MILL		Р	REPAID	
NET WEI	GHT - 7727	CUST		* 185966	-9			
ITEM NO.	DESCRIPTION	CHEMICAL	OTY. ORD.	CASE S NO.	NO. OF PCS.	GROSS WT.	TARE	NET HEAT WT. NO.
HEAT#/LOT 00287001 99. 00288201 99. CU	CU 98% 99% I INCLUDES- +Ag		997				- 	
• • • • •		PHYSICAL	ANALYSI	S Date	<u>[]-91</u>	1.00 10m	MICR	TINAUB
HEAT#/LOT HA RF 00287001 79 00288201 80	RDNESS TENSILE KSI 34.5 22.5	COND %IACS 98.5		These Tes Your Orde	its Are Fo	or Material	Shipped On	L
			n An sh	From Cop	per And E	Brass ane	s, inc. 1844	
				WGT	Tem	Z	aurery	<u> </u>
WE CERTIFY TH BEEN PROCESSE YOUR PURCHASE WITH FREE MER	AT THE FOREGOIN D, INSPECTED, A ORDER AND SPEC CURY DURING THE	G RESULTS ND TESTED IFICATION MANUFACT	ARE COM IN COMF S. THIS URING PM	RECT AND LIANCE WI MATERIAL I OCESS.	THAT TH THE HAS NO	THIS M E REQU DT COM	IATERIAL VIREMENT VE IN CO	- HAS TS OF INTACT

RORY MUNIGUMERY	LABURATURY MANAGER	PART/COME FOR ATURE	ORAGKING LIST
		· · · · · · · · · · · · · · · · · · ·	
Antonio			

SOLD TO	103884 CUSTOM M 240 BOST CONGMONT	Phone: 562-803-6563 Fax: 562-803-4281 IICROWAVE ON AVE 'CO 80501	B I L L	Sales Order Number Shipper Number Ship Date Page 103884 CUSTOM MICROWAVE 940 BOSTON AVE LONGMONT CO 80501	25091 06/28/0
	DOWNTER		T O		
uston	ner's PO	Terms: NET 30		From	
#	Order/Otv			Resale No:	D AND ADD
1	Q()	ow Part/Description		Units/Pkg Ship Oty	
	±0	EA C22-023 .023 DIA. X 12 PBP	Rm IZO	0 5	Lot Number
2	10	EA C22-014			0
		.024 DIA. X 12 PBR	2m 120	10	0
5	10	EA C22-027	Run 171	19. μ. του	U
		*****CERTIFICATIONS*, WE HEREBY CONS*,	****	4	0
		MATERIAL TO BE PRECIS BRASS ROD, ALLOY 260	IS SION		
		SIGNED: TUDA PHIN	LANI		
		ORDERED BY DAN JONGSM	A A		
	UPS GRN				

	Manufacture and Annual Annu
EIS Photocrain	
TEMPE AZ OSTON	
USA Cust. Phone: 3036510705	List # 3325511
	Page: 1 / 1
Sold To: 940 BOSTON AUFANT	
LONGKONT CO 30561	
USA USA LONGNORY CO DOSAL KIN- 1294	
Detr	1 16/12/02 11-10 00
	nt: 06/19/02 11:40:35
	es Order #: 16511147
	Sid-1- Chilling and the
PACKING 3125511 LIST NO. BILL OF LEVEL 10 198	The state of the s
SHIP VIA DATE NO. SALESMAN NO.	3325511
PRI CED & CIG	· · · · · · · · · · · · · · · · · · ·
DIG ALESMAN 36.4 PICKED B	Y
CATALOG	DATE
UUT 0: TTUTU QUANTITY QUANTITY QUANTITY	
BACKORDERED OF CHEDRING UN THIS PACAING THES PACAING THES SHIPPED BACKORDERED SHIPPED	
DO NOT SUTE ALL DELTED FROM ANOTHER ETS LOCATION	
SHESSEL GOT CERTIFICATE OF SUCLYSIS	
2306B $96-37602$ 2 000 100 100 100	
$\frac{1}{2} \frac{1}{2} \frac{1}$	等于是是是在理论和这些人们
TUST BEUR CERTERTONNEL	
K*K*K/***K/***************************	
CEETERING CONTRACTOR CONTRACTOR AND A CONT	
HATER ALL TRELOODS THE TOLS SHELLAND OF COMPLETANCE	
BY TOTAL SPECIFICATIONS AND PROPERTY OF THE PROPERTY AND	
DI THE MANUFACTURER. THE RECEILES OF THE MATCHIAL ARE OFTERMINER	
	名19月1日的10月1日) 1
Provident ser signature / Titlet Scott Part Last	
hot /Batch and a final and the second share the second	
COMPETED OF MC DOTE DOTE DOTE DOTE DOTE DOTE DOTE DOTE	
SIL CIO	
Anthe	
THIS SALE IS SUBJECT TO ALL CONDITIONS AND PROVISIONS ADDRESS	
APPEAHING ON THE REVERSE HEREOF	

ORTHROP GRUMMAN

Technologies

Kester

Am-129

Northrop Grumman Corporation Kester 515 E. Touhy Avenue Des Plaines, Illinois 60018

Telephone: (847) 297-1600 Fax: (847) 390-9338

CERTIFICATE OF ANALYSIS

ORDER NUMBER:: N/A CUSTOMER PO:: N/A LOT NUMBER: 311910

PRODUCT: Sn96.3Ag3.7 Solid Wire

1

TEST Tin Lead Antimony Copper Gold Aluminum Cadmium Zinc Silver Bismuth Arsenic Iron Indium	UNITS wt% wt% wt% wt% wt% wt% wt% wt% wt% wt%	RESULT BALANCE 0.0342 0.0215 0.0044 0.0001 0.0001 0.0001 0.0004 3.66 0.0023 0.0020 0.0021	MIN SPEC Balance 3.50	MAX SPEC Balance 0.200 0.500 0.080 0.050 0.005 0.002 0.003 3.90 0.100 0.030 0.020
Indium Nickel	wt% wt%	0.0021 0.0040 0.0002		0.020 0.100 0.010

We certify that this product conforms to all product specification requirements. The inspection and test data is indicated above.

This document is c_ puter generated and does not require a signature

End Item Data Package (EIDP)

SPIRE - 300mK PMW-PFM filter stack

SPIRE Ref.: SPIRE-UCF-Cardiff Ref.: HSO-CDF-EIDP-057 Issue 1.0 8 January 2004

Prepared by: Peter Hargrave

Approved by: Carole Tucker

Distribution list

JPL	James Bock	RAL	Eric Sawyer
	Hien Nguyen		Eric Clark
	Martin Herman		Judy Long
	Mark Weilert		Bruce Swinyard
Cardiff	Carole Tucker	LAM	Kjetil Dohlen
	Peter Ade		
	Matt Griffin		
	lan Walker		

Astronomy Instrumentation Group, Department of Physics & Astronomy, University of Wales, Cardiff, 5 The Parade, Cardiff CF24 3YB +44 (0)2920 876682 W:\Cardiff_workpackages\Deliverables\Shipped\Filters\PFM-300mK-filters\PFM-300mK-PMW-EIDP\300mK_PMW_PFM_HSO-CDF-EIDP-057.doc

Change Record

Issue	Section	Date	Changes

W:\Cardiff_workpackages\Deliverables\Shipped\Filters\PFM-300mK-filters\PFM-300mK-	SPIRE - 300mK PMW-PFM filter stack	Page 2 of 32
PMW-EIDP\300mK_PMW_PFM_HSO-CDF-EIDP-057.doc	End Item Data Package (EIDP)	
		1

Table of contents

Section	Contents	Req.	Comm	ents			
1	Shipping Documents	X					
2	Transportation, Packing, Handling						
2	& Integration Procedures						
3	Certificate of Conformance /	Y					
5	Delivery Review Board MoM Ai-Lists						
4	Qualification Status List / Test Matrix	X					
5	Top Level Drawings (inc. Family Tree)	X					
6	Interface Drawings	X					
7	Functional, Block & Mechanical Drawings	X					
8	Electrical Circuit Drawings						
9	As Built Parts List	X					
10	Serialised Components List						
11	List of Waivers						
12	Copies of Waivers						
13	Operational Manual						
14	Historical Record	X					
15	Logbook / Diary of Events	X					
16	Operating Time / Cycle Record	X					
17	Connector Mating Record						
18	Age Sensitive Items Record						
19	Pressure Vessel History / Test Record						
20	Calibration Data Record	X					
21	Temporary Installation Record	X					
22	Open Work / Deferred Work / Open Tests	X					
23	List of Non-Conformance Reports	X					
24	Copies of Non-Conformance Reports	X					
25	Test Reports	X					
26	Proof Load Certificates						
27	Reference List of EIDP's						
Γ	W:\Cardiff_workpackages\Deliverables\Shipped\Filters\PFM-300mK-fi PMW-EIDP\300mK_PMW_PFM_HSO-CDF-EIDP-057.doc	ters\PFM-30	00mK-	SPIRE - 300mK PMW-PFM filter st End Item Data Package (EIDP)	ack	Page 3 of 32	

	(Lower Level / Associated)		
28	Mass Records / Power Budget	X	
29	Cleanliness Statement	X	
30	Other Useful Information	X	

W:\Cardiff_workpackages\Deliverables\Shipped\Filters\PFM-300mK-filters\PFM-300mK-	SPIRE - 300mK PMW-PFM filter stack	Page 4 of 32
PMW-EIDP\300mK_PMW_PFM_HSO-CDF-EIDP-057.doc	End Item Data Package (EIDP)	
		1

SECTION 01 - Shipping Documents

W:\Cardiff_workpackages\Deliverables\Shipped\Filters\PFM-300mK-filters\PFM-300mK-	SPIRE - 300mK PMW-PFM filter stack	Page 5 of 32
PMW-EIDP\300mK_PMW_PFM_HSO-CDF-EIDP-057.doc	End Item Data Package (EIDP)	-

SECTION 02 - Transportation, Packing, Handling & Integration Procedures

This package contains flight hardware. To be opened only by authorised SPIRE personnel in clean room conditions. Do not touch filter surface. Handle only by Aluminium frame. To be integrated to SPIRE flight model PMW BDA according to JPL procedure.

Hand over to JPL Cognisant Engineer – Mark Weilert

Mark Weilert M/S 79-24 Jet Propulsion Laboratory 4800 Oak Grove Dr. Pasadena Ca 91109-8099

Mark.A.Weilert@jpl.nasa.gov office: (818) 354-5060 fax: (818) 393-4878

SECTION 03 - Certificate of Conformance

Cardiff University Astronomy Instrumentation Group hereby certifies that the following equipment,						
Space	ecraft / Project:	Herschel				
	Instrument:	SPIRE				
	Model:	PFM				
	Subsystem:	300mK PMW	/ filter stack			
	Serial No:	FILT-PFM-24	10			
As described in this End Item Data	Package: HSO-CDI	-EIDP-057				
Complies with the requirements set	t out in: SPIRE-RAL	-PRJ-000034				
Responsible Authority			Signature			
	Prof P.A	R.Ade				
Cardiff Filter Management	Dr C.E.1	ucker				
Cardiff Product Assurance	Dr I.Wa	alker				
Cardiff SPIRE Management	Dr P.Ha	rgrave				

SECTION 04 - Qualification Status List / Compliance Matrix

Test	Status	Test Institute
	PFM-PMW - FILT-PFM-240	
Spectral behaviour -	Tested at component and assembly level.	UWC
Near-band transmission	Compliant.	
Spectral behaviour - out-of-band blocking, at λ <15µm	Open test.	UWC
	Off-cuts to be tested once facility commissioned	
Dimension and tolerances to specification	Compliant	UWC
Filter flatness	Not applicable	UWC
Inspection for surface defects	Passed	UWC
Mass	Compliant	
Thermal cycling (5 cycles 300K-77K-300K)	Passed	UWC
Cold vibration	Not tested	RAL
Environmental condition - Vacuum	Passed	UWC
3x10⁻¹mBar		
Differential pressure (a pumping-out rate of 10mB/sec)	Passed	UWC
Pre-bake out (not exceeding 80°C)	Passed	UWC
Outgassing	Test not performed.	
	All materials used within ESA / NASA specifications	
Cleanliness checks, by visual inspection.	Passed	UWC
Degradation due to high energy radiation.	Not tested	

SPIRE - 300mK PMW-PFM filter stack	Page 8 of 32
End Item Data Package (EIDP)	-
	SPIRE - 300mK PMW-PFM filter stack End Item Data Package (EIDP)

SECTION 05 - Top Level Drawings (Inc. Family Tree)

TOP LEVEL DRAWING LIST

Drawing No.	Title
FILT-CQM/PFM-200-03.001	300mK Filter Assembly

W:\Cardiff_workpackages\Deliverables\Shipped\Filters\PFM-300mK-filters\PFM-300mK-	SPIRE - 300mK PMW-PFM filter stack	Page 9 of 32
PMW-EIDP\300mK_PMW_PFM_HSO-CDF-EIDP-057.doc	End Item Data Package (EIDP)	-

	1	2	3	4 5	6	7	8	9	10	11	12
A	CLE.	AN AND BREAK SHAR	P EDGES								
В										300mK FILTER ASSEM EXPLODED VIEWS SCALE 2 : 1	BLY
С	5 3 3 2 1 I TEM	N/D FILT-CQM/PFM-200. N/D FILT-CQM/PFM-200. FILT-CQM/PFM-200. PFAWING No.	U SCREW 01.002 LOWER SCREW 01.004 F1LTE 01.003 UPPER DESCF	W M1.6 CP HD x 4.0 LG. 8 RING 1 WZ CP HD 6 R 1 RING 1 NR. RING 1 NR.	ST. STEEL ST. STEEL REMARKS						
D	No. CONTRACT NO APPROVALS DRAWN BY CHECKED BY AIG APPROVE	19.09.03 B.J.KIERNAN P.C.HARGRAV D.P.C.HARGRAV	AMENDMENT REDRAWN E	MATERIAL & SPEC: FINISH : 	ESTD WT.	SCALE 2:1 DIMENSIONS IN MM	TOLERANCES OTHERWISE LINEAR +/- ANGULAR +/-	UNLESS STATED - 0,10 - 0,15°	ASTRONOMY & INSTF CARDIFF UNIV QUEENS BUILDING 5 NEWPORT ROAD TEL 02920 87626 E-MAIL Brion.Ki	UMENTATION GROUP ERSITY THE PARADE ARDIFF CF24 3YB 9 FAX 02920 87405 ernan@astro.cf.ac.	6 uk
	JPL APPROVE ISSUE	A 2	3	CAD FILE SPXBJK_SPIRE: BDA 4 5	6	PROJECT SPIRE 7	TITLE 300mK FILT ASSEMBLY	FII 9	ивек It-cqм/PFM-200-03.001 10	SHEET 1 0	^{- 1} A2

Figure 1 300mK filter stack assembly

W:\Cardiff_workpackages\Deliverables\Shipped\Filters\PFM-300mK-filters\PFM-300mK-	SPIRE - 300mK PMW-PFM filter stack	Page 10 of 32
PMW-EIDP\300mK_PMW_PFM_HSO-CDF-EIDP-057.doc	End Item Data Package (EIDP)	-

SECTION 06 - Interface Drawings

INTERFACE DRAWING LIST

Drawing No.	Title
FILT-CQM/PFM-200	300mK Filter ICD

W:\Cardiff_workpackages\Deliverables\Shipped\Filters\PFM-300mK-filters\PFM-300mK-	SPIRE - 300mK PMW-PFM filter stack	Page 11 of 32
PMW-EIDP\300mK_PMW_PFM_HSO-CDF-EIDP-057.doc	End Item Data Package (EIDP)	
		1

Figure 2 Interface drawing for 300mK filters

W:\Cardiff_workpackages\Deliverables\Shipped\Filters\PFM-300mK-filters\PFM-300mK-	SPIRE - 300mK PMW-PFM filter stack	Page 12 of 32
PMW-EIDP\300mK_PMW_PFM_HSO-CDF-EIDP-057.doc	End Item Data Package (EIDP)	-

SECTION 07 - Functional, Block & Mechanical Drawings

Component drawings are given in this section. Also shown, for illustration purposes, are details of the mounting of the HDPE lens for each filter stack assembly.

FUNCTIONAL & BLOCK DRAWING LIST

Drawing No.	Title

MECHANICAL COMPONENT DRAWING LIST

Drawing No.	Title
FILT-CQM/PFM-200-01-004	300mK Filter
FILT-CQM/PFM-200-01-003	300mK Filter Upper Ring
FILT-CQM/PFM-200-01-002	300mK Filter Lower Ring

Figure 3 300mK Filter

W:\Cardiff_workpackages\Deliverables\Shipped\Filters\PFM-300mK-filters\PFM-300mK-	SPIRE - 300mK PMW-PFM filter stack	Page 14 of 32
PMW-EIDP\300mK_PMW_PFM_HSO-CDF-EIDP-057.doc	End Item Data Package (EIDP)	-

Figure 4 300mK Filter Upper Ring

W:\Cardiff_workpackages\Deliverables\Shipped\Filters\PFM-300mK-filters\PFM-300mK-	SPIRE - 300mK PMW-PFM filter stack	Page 15 of 32
PMW-EIDP\300mK_PMW_PFM_HSO-CDF-EIDP-057.doc	End Item Data Package (EIDP)	-

Figure 5 300mK Filter Lower Ring

W:\Cardiff_workpackages\Deliverables\Shipped\Filters\PFM-300mK-filters\PFM-300mK-	SPIRE - 300mK PMW-PFM filter stack	Page 16 of 32
PMW-EIDP\300mK_PMW_PFM_HSO-CDF-EIDP-057.doc	End Item Data Package (EIDP)	-

SECTION 09 - As Built Configuration Items Status List

Item	Reference	Location	Notes
Filter drawings and		\\Darkstar\Astroworld\Projects\SPIRE\Cardiff_workpackages\Configured_documents\Filt	
Material certificates of			
conformance		Available at Cardiff for inspection	
FILT-PFM-240 Spectroscopic test data PMW-PFM assembly		\\Darkstar\Astroworld\Projects\SPIRE\Cardiff_workpackages\Configured_documents\Iss ued\ Data\ FILT-PFM-240_PMW_assembly_January2004.xls	

Part number	Description	Details
FILT-PFM-240	PFM PMW FILTER ASSEMBLY	
FILT-PFM-241	PMW PFM lower filter ring	Aluminium-6082 – Aluchrom 1200 coated
FILT-PFM-242	PMW-PFM upper filter ring	Aluminium-6082 – Aluchrom 1200 coated
FILT-PFM-243	PFIL4M – PFM – B734 filter	43cm ⁻¹ (232.6μm) LPE blocking filter

W:\Cardiff_workpackages\Deliverables\Shipped\Filters\PFM-300mK-filters\PFM-300mK-	SPIRE - 300mK PMW-PFM filter stack	Page 17 of 32
PMW-EIDP\300mK_PMW_PFM_HSO-CDF-EIDP-057.doc	End Item Data Package (EIDP)	
		1

SECTION 11 - List of Waivers

SECTION 12 - Copies of Waivers

SECTION 13 - Operations Manual

W:\Cardiff_workpackages\Deliverables\Shipped\Filters\PFM-300mK-filters\PFM-300mK-	SPIRE - 300mK PMW-PFM filter stack	Page 18 of 32
PMW-EIDP\300mK_PMW_PFM_HSO-CDF-EIDP-057.doc	End Item Data Package (EIDP)	-
		ł

SECTION 14 - Historical Record

The following table contains *brief* historical details of the manufacture, assembly and testing of the PFM 300mK PMW filter asembly, including the levels of environmental cleanliness.

A *full* historical record of every stage of manufacture for each individual grid integral to the final mounted filter is traceable at UWC, in both hard copy log-book format and on a Microsoft Access database.

Filter PFIL4M

Date	Action	UWC Test reference
10/10/03	Filter B734 manufactured in class 1000 clean room	
13/10/03	Filter B734 spectroscopically tested in the range3-40cm-1	T0198r7
14/10/03	Filter B734 spectroscopically tested in the range 10-140cm-1	T0199r43
19/12/03	Filter B488 thermally shocked 5 times between 300K and 77K	THERM 0132
19/12/03	Filter B734 cut to PFIL4M drawing	Process HC1
6/1/04	Filter PFIL4M spectroscopically tested in the range 0-145cm-1 at three locations over area	T0247r22, T0247r16, T0247R19
7/1/04	Filter PFIL4M mounted in PFM-PMW stack	
7/1/04	PFM-PMW stack spectroscopically tested in the range 20-650cm-1	T0248r4
7/1/04	PFM-PMW stack thermally cycled 300K-77K-300K	THERM 0133
7/1/04	PFM-PMW stack spectroscopically tested in the range 10-145cm-1	T0248r13
7/1/04	PFM-PMW stack baked for 17hrs at 350K	THERM 0134
8/1/04	PFM-PMW stack spectroscopically tested in the range 0-145cm-1 at three locations over area	T0250r4, T0250r7, T0250r13,
8/1/04	PFM-SLW stack final clean, 24Hr bake-out at 350K	
12/1/04	PFM-SLW packed in class 1000 clean room & shipped to JPL	

SECTION 15 - Logbook / Diary of Events

Not provided – available from subsystem provider upon request.

SECTION 16 - Operating Time / Cycle Record

W:\Cardiff_workpackages\Deliverables\Shipped\Filters\PFM-300mK-filters\PFM-300mK-	SPIRE - 300mK PMW-PFM filter stack	Page 20 of 32
PMW-EIDP\300mK_PMW_PFM_HSO-CDF-EIDP-057.doc	End Item Data Package (EIDP)	-
		1

SECTION 20 - Calibration Data Record

The recommended total stack transmission for the PMW channel to be used for calibration purposes is indicated in this section, with traces shown for the ranges 3-650cm-1, 20-100cm-1, and 15-40cm-1.

These are the measured transmission spectra prior to final cleaning and packing.

The raw data is stored in the file \\Darkstar\Astroworld\Projects\SPIRE\Cardiff_workpackages\Configured_documents\Issued\ Data\ FILT-PFM-240_PMW_assembly_January2004.xls (Microsoft Excel workbook). This file is available from Cardiff, and is under configuration control on Livelink (managed by RAL).

Transmission spectrum of SPIRE PFM PFIL4M from 3-650cm-1

Figure 6 Spectroscopic data for PFM-PMW stack

W:\Cardiff_workpackages\Deliverables\Shipped\Filters\PFM-300mK-filters\PFM-300mK- PMW-EIDP\300mK_PMW_PFM_HSO-CDF-EIDP-057.doc	SPIRE - 300mK PMW-PFM filter stack End Item Data Package (EIDP)	Page 22 of 32

Transmission spectrum of SPIRE PFM PFIL4M

Figure 7 Spectroscopic data for PFM-PMW stack

W:\Cardiff_workpackages\Deliverables\Shipped\Filters\PFM-300mK-filters\PFM-300mK-PMW-EIDP\300mK_PMW_PFM_HSO-CDF-EIDP-057.doc	SPIRE - 300mK PMW-PFM filter stack End Item Data Package (EIDP)	Page 23 of 32

Transmission spectrum of SPIRE PFM PFIL4M

Figure 8 Spectroscopic data for PFM-PMW stack

W:\Cardiff_workpackages\Deliverables\Shipped\Filters\PFM-300mK-filters\PFM-300mK- PMW-EIDP\300mK_PMW_PFM_HSO-CDF-EIDP-057.doc	SPIRE - 300mK PMW-PFM filter stack End Item Data Package (EIDP)	Page 24 of 32

SECTION 21 - Temporary Installation Record

SECTION 22 - Open Work / Deferred Work / Open Tests

Off-cuts of the filter material will be measured below $15\mu m$ using the Bomen spectrometer, once this facility is fully commissioned.

SECTION 23 - List of Non-Conformance Reports

SECTION 24 - Copies of Non-Conformance Reports

W:\Cardiff_workpackages\Deliverables\Shipped\Filters\PFM-300mK-filters\PFM-300mK-	SPIRE - 300mK PMW-PFM filter stack	Page 25 of 32
PMW-EIDP\300mK_PMW_PFM_HSO-CDF-EIDP-057.doc	End Item Data Package (EIDP)	1
		1

SECTION 25 - Test Reports

The filter module (PMW assembly) underwent the following series of qualification tests:-

- a) Post-manufacture spectroscopic measurements 3-40cm⁻¹ and 10-140cm⁻¹
- b) Thermal shocks of the filter material. This consisted of five cycles of:-
 - Plunge filter material at room temperature into bath of liquid nitrogen and leave for 2 minutes
 - Remove filter material from LN₂ and place in oven at 320K for 10 minutes
- c) Visual inspection
- d) Cutting to size
- e) Visual inspection
- f) Spectroscopic measurements of filter material at three points over the filter area 0-145cm⁻¹ range
- g) Cleaning and mounting in clamp
- h) Spectroscopic measurements in the range 20-650cm⁻¹
- i) PFM-PMW stack thermally cycled 300K-77K-300K
- j) Spectroscopic measurements 10-145cm⁻¹ range
- k) PFM-PLW stack baked for 17Hrs at 350K
- I) Visual inspection under microscope
- m) Spectroscopic measurements of mounted assembly at three points over the filter area 0-145cm⁻¹ range
 - Uniformity checks:-
 - The filter assembly was checked for uniformity at three points along the filters long axis at the centre of the filter, and at two points along the long axis, 16mm either side of the central point.
 - The FTS geometric beam footprint was approximately 7mm diameter.

Spectroscopic tests – index

Spectroscopic tests were carried out according to standard UWC FTS procedures. Refer to historical record for index.

B734 uniformity check post mounting, pre thermal tests (300-77-300) (300-370-300)

Figure 9 B734 filter uniformity post-mounting – 3-40cm⁻¹

W:\Cardiff_workpackages\Deliverables\Shipped\Filters\PFM-300mK-filters\PFM-300mK- PMW-EIDP\300mK_PMW_PFM_HSO-CDF-EIDP-057.doc	SPIRE - 300mK PMW-PFM filter stack End Item Data Package (EIDP)	Page 27 of 32
		1

Uniformity check post mounting, pre thermal tests (300-77-300) (300-370-300)

Figure 10 B734 filter uniformity post-mounting – 10-140cm⁻¹

W:\Cardiff_workpackages\Deliverables\Shipped\Filters\PFM-300mK-filters\PFM-300mK-PMW-EIDP\300mK_PMW_PFM_HSO-CDF-EIDP-057.doc	SPIRE - 300mK PMW-PFM filter stack End Item Data Package (EIDP)	Page 28 of 32

B734 uniformity check post mounting, post thermal tests (300-77-300) (300-370-300)

Figure 11 B734 filter uniformity post-mounting and thermal shocks/cycles – 10-140cm⁻¹

ſ	W:\Cardiff_workpackages\Deliverables\Shipped\Filters\PFM-300mK-filters\PFM-300mK-PMW-EIDP\300mK_PMW_PFM_HSO-CDF-EIDP-057.doc	SPIRE - 300mK PMW-PFM filter stack End Item Data Package (EIDP)	Page 29 of 32

Transmission spectrum of SPIRE PFM PFIL4M from 3-650cm-1

Figure 12 B734 filter assembly performance – 20-650cm⁻¹

W:\Cardiff_workpackages\Deliverables\Shipped\Filters\PFM-300mK-filters\PFM-300mK-PMW-EIDP\300mK_PMW_PFM_HSO-CDF-EIDP-057.doc	SPIRE - 300mK PMW-PFM filter stack End Item Data Package (EIDP)	Page 30 of 32

SECTION 27 - Reference List of EIDP's

<u>Associated</u>

<u>Title</u>	(Serial No.)	<u>Acronym</u>	Document No.	<u>lssue</u>	Date
PLW BDA CQM EIDP					

Lower Level

<u>Title</u> (Listed in alphabetical order)	ID (Serial No.)	<u>Acronym</u>	Document No.	<u>Issue</u>	Date

W:\Cardiff_workpackages\Deliverables\Shipped\Filters\PFM-300mK-filters\PFM-300mK-	SPIRE - 300mK PMW-PFM filter stack	Page 31 of 32
PMW-EIDP\300mK_PMW_PFM_HSO-CDF-EIDP-057.doc	End Item Data Package (EIDP)	l
		1

SECTION 28 - Mass Records

Assembly	Final measured mass
FILT-PFM-240 – PFM PMW assembly	8.47 ± 0.01 g

SECTION 29 - Cleanliness Statement

SECTION 30 - Other Useful Information

SECTION 31 - DPL/DML etc

SECTION 32 – List of Appendices/Attachments

Appendix #	<u>Title</u> (Listed in alphabetical order)	Document No.	<u>lssue</u>	<u>Date</u>	Notes

W:\Cardiff_workpackages\Deliverables\Shipped\Filters\PFM-300mK-filters\PFM-300mK-	SPIRE - 300mK PMW-PFM filter stack	Page 32 of 32
PMW-EIDP\300mK_PMW_PFM_HSO-CDF-EIDP-057.doc	End Item Data Package (EIDP)	-