

DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 1 of 135

Jacques Brazile Chiefe Intuits

SPIRE-ALE-REP-002362

REPORT

HERSCHEL

PLANCK

TITLE: SVM TCS THERMAL ANALYSIS REPORT

F. TESSARIN / N. FORTUNATO

R. PASSINI

E.SACCHI

DRL Item or D.R.D. No: E-4

SIGNATURE AND APPROVALS ON ORIGINAL

PREPARED:

CHECKED:

APPROVED:

AUTHORIZED: G.BRAMBATI

APPROVALS:

THERMAL CONTROL SUBSYSTEM ENGINEER:	R. PASSINI
SYSTEM ENGINEER	M. SIAS Mario Sias
PRODUCT ASSURANCE	M. PUGLIESE
CONFIGURATION CONTROL	R. DROETTO
PROGRAM MANAGER	P. MUSI

DATA MANAGEMENT:

18/1202

All information contained in this document is property of **ALENIA SPAZIO S.p.A.** All rights reserved. **ALENIA SPAZIO S.p.A.** - A Finmeccanica Company - Turin Plant - Strada Antica di Collegno, 253 - 10146 Turin, Italy

DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 2 of 135

DOCUMENT CHANGE RECORD

ISSUE	DATE	REASON FOR CHANGE
01	13/11/2002	New Issue

AFFECTED PARAGRAPHS

All

DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 3 of 135

TABLE OF CONTENTS

2.1	APPLICABLE DOCUMENT	7
2.2	REFERENCE DOCUMENT	
2.3	LIST OF ACRONYMS	
3.1	HERSCHEL - PRESENTATION OF THE MODEL	9
3.1.	1 Geometric Mathematical Model (GMM)	9
3.1.	2 Radiator Panels OSR / MLI Area	
3.1.	3 Thermal Mathematical Model (TMM)	
3	.1.3.1 Thermal Mathematical Nodes	
3	.1.3.2 Conductive Couplings	
3.2	SVM INTERFACE REQUIREMENTS	
3.3	HERSCHEL - THERMAL ANALYSIS	
3.3.	1 Thermal Analysis Sizing Cases	
3.3.	2 Power Dissipation	
3.3.	3 Heater Sizing and Breakdown	
3.3.	4 Thermal stability	
3	.3.4.1 Active Control Law	
3.3.	5 Thermal Analysis Cases with Attitude Change	
3.3.	6 Emergency Mode Cases and Results	
3.4	HERSCHEL – THERMAL ANALYSIS RESULTS	
3.4.	1 Results of Sizing Cases	
3.4.	2 Trade-off Analyses	
3.4.	3 Results of Transient Cases	
3.4.	4 Heater Power Summary	
3.4	5 Active Control law heater power impacts	
3.5	HERSCHEL CONCLUSION	
4.1	PLANCK - PRESENTATION OF THE MODEL	
4.1.	1 Geometric Mathematical Model (GMM)	
4.1.	2 Radiator Panels Black Paint / MLI Area	
41	3 Thermal Mathematical Model (TMM)	96
4	1.3.1 Conductive Couplings	
4	1.3.2 SVM INTERFACES REQUIREMENTS	
4.2	PLANCK - THERMAL ANALYSIS	
4.2.	1 Thermal Analysis Cases	
4	.2.1.1 Steady State	
4	.2.1.2 Transient Cases	
4	.2.1.3 Survival case	
4	.2.1.4 Propellant Tank	
4.2.	2 Power Dissipation	
4.2.	3 Heater Sizing and Breakdown	
4.2.	4 Emergency Mode Cases and Results	
4.2.	5 Analysis Results	
4	2.5.1 Steady state results	
4	2.5.2 Transient Temperature results	
4	2.5.3 SUBPLATFORM UNITS	
4	.2.5.4 Survival Transient results	
4	6 Heaten Dower Summany	
4.2.	0 neuler rower summury	
4.2.	/ PLANCA - CONCLUSION	

DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 4 of 135

LIST OF TABLES

Table 3.1.1 HERSCHEL – Service Module Thermal Properties Materials	10
Table 3.1.1-1a HERSCHEL – Service Module Internal Geometrical Nodes List	10
Table 3.1.1-1b HERSCHEL – Service Module External Geometrical Nodes List	16
Table 3.1.1-2 HERSCHEL – Payload Module Geometrical Nodes List	18
Table 3.1.2-1 HERSCHEL – Radiative and MLI Areas	32
Table 3.1.3.1-1 HERSCHEL – Units Thermal Nodes List	33
Table 3.1.3.1-2 HERSCHEL – PLM I/F Thermal Nodes List	
Table 3 1 3 2-1 HERSCHEL – MLI Thermal Conductivity for different number of layers	35
Table 3.1.3.2 HERSCHEL – Unit-Panel Contact Conductances	33
Table 3.1.3.2.3 HERSCHEL – SVM Honeycomb panels thermal properties	38
Table 2.2.1.1 HEDSCHEL – Storedy State Analysis Cases	40
Table 3.3.1-1 HERSCHEL – Steady State Analysis Cases	40
Table 5.5.2-1 HERSCHEL - Units Power Dissipations	41
The Heater circuit breakdown with the heater power impressed on the TMM nodes is shown in Table 3.3.3-1	42
Table 3.3.3-1 HERSCHEL – Heater Circuits Breakdown and Temperature Thresholds	43
Table 3.4.1-1 HERSCHEL - Units Temperature results: Sizing Case BOL Nominal.	49
Table 3.4.1-2 HERSCHEL - Units Temperature results: Sizing Case BOL Survival.	50
Table 3.4.1-3 HERSCHEL - Units Temperature results: Sizing Case EOL Nominal	51
Table 3.4.1-4 HERSCHEL - Units Temperature results: Sizing Case EOL Nominal	52
Table 3.4.2-1 HERSCHEL – Trade Offs results in Hot Case EOL7B MODE 1	55
Figure 3.4.3-1 HERSCHEL – HIFI units Transient Case 1: DeltaT on 100s	58
Figure 3.4.3-2 HERSCHEL – HIFI units Transient Case 2: DeltaT on 100s	59
Table 3.4.4-1 HERSCHEL – Heater Power Consumption in Nominal Hot Case (without uncertainty)	61
Table 3.4.4-2 HERSCHEL – Heater Power Consumption in Nominal Cold Case (without uncertainty)	
Table 3.4.4.3 HERSCHEL – Heater Power Consumption in Survival mode (without uncertainty)	63
Table 3.4.5-1 HERSCHEL – Heater Power Consumption in Survival mode (without uncertainty)	05
Table 4.1.1.1 DI ANCK Service Medule External Thermo ontical properties	0J
Table 4.1.1-1 I LANCK - Service Module External Thermo-optical properties	00 69
Table 4.1.1-2 PLANCK – Service Module Internal Thermo-optical properties	08
Table 4.1.1-5 PLANCK – Service Module Geometrical Nodes List	70
Table 4.1.2-1 PLANCK – External Kadiative Areas	95
Table 4.1.3.1-1 PLANCK – SVM Honeycomb panels thermal properties	97
Table 4.1.3.1-2 PLANCK – Unit-Panel Contact Conductances	98
Table 4.2.1.1-1 PLANCK - Orbit Cases description	100
Table 4.2.1.2-1 PLANCK - Simplified BOL SCC model	102
Table 4.2.1.2-2 PLANCK - Simplified EOL SCC model	103
Table 4.2.1.2-2 PLANCK - Gas gap conductance	104
Table 4.2.2-1 PLANCK - Unit Power Dissipation	107
Table 4.2.3-1 PLANCK – Heater Circuits Breakdown and Temperature Thresholds	109
Table 4.2.5.1-1 PLANCK - Unit Temperatures Results	113
Table 4.2.5.2-1 PLANCK - Cold Transient Analysis Results	115
Table 4 2 5 2-2 PLANCK - Hot Transient Analysis Results	117
Table 4.2.5.2.2.1.2.4 NCK - SCC requirement	117
Table 4.2.5.2-51 DANCK - SCC ASD regults	121
Table 4.2.5.2.5 DI ANCK - SEC ASD ISsuits	121
Table 4.2.5.2-5 PLANCK - I/F 5 V M/PLIVI ASD Tesuits	121
Table 4.2.3.3-1 FLANCK - IFANSIENI ANALYSIS KESUIIS	124
Table 4.2.5.5-2 PLANCK - Flux requirement	125
Table 4.2.5.4-1 PLANCK - Survival Temperature results	128
Table 4.2.6-1 PLANCK – Nominal Heater Power need	132
Table 4.2.6-2 PLANCK – Survival Heater Power need	133

DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 5 of 135

LIST OF FIGURES

Figure 3.1.1-1 HERSCHEL – Overall view	
Figure 3.1.1-2 HERSCHEL – Overall View	
Figure 3.1.1-3 HERSCHEL - SVM Upper Closure and Payload Subplatform +X View	23
Figure 3.1.1-4 HERSCHEL - SVM Bottom Closure and Bottom Closure Platform -X View	24
Figure 3.1.1-5 HERSCHEL – Shear PanelsView	25
Figure 3.1.1-6 HERSCHEL – Cone: Viwe	
Figure 3.1.1-7 HERSCHEL – Location of STR and truss.	
Figure 3.1.1-8 HERSCHEL –STR and truss nodal breakdown.	
Figure 3.1.1-9 HERSCHEL – Detailed Adapter Ring nodal breakdown.	
Figure 3.1.1-10 HERSCHEL – Lateral Panel Internal View	
Figure 3.1.1-11 HERSCHEL – Lateral Panel & Units Internal View	
Figure 3.1.3.1-1 HERSCHEL – PLM I/F Thermal Nodes Location	
Figure 4.1.1 -1 PLANCK – Solar Array Thermo-optical roperties	69
Figure 4.1.1-1 PLANCK – Overall View	83
Figure 4.1.1-2 PLANCK – Overall View	
Figure 4.1.1-3 PLANCK – Upper Closure Panel	85
Figure 4.1.1-4 PLANCK –Subplatform Panel	86
Figure 4.1.1-4 PLANCK – Lower Closure / RCS Panel Internal view	87
Figure 4.1.1-5 PLANCK – Internal view	88
Figure 4.1.1-6 PLANCK – Lateral Panel Internal view with MLI distribution	89
Figure 4.1.1-7 PLANCK – Shear Panel	
Figure 4.1.1-8 PLANCK – Adapter Ring Nodal division	91
Figure 4.1.1-9 PLANCK – Solar Array External view	
Figure 4.1.1-10 PLANCK – Helium and Propellant Tanks	
Figure 4.1.1-11 PLANCK – Internal Cone	
Figure 4.2.5.2-1 PLANCK – SCC Outer Shell's Temperature	118
Figure 4.2.5.2-2 PLANCK – SCC I/F POINT Temperature	118
Figure 4.2.5.2-3 PLANCK – SCC Outer Shell-H.P. I/F Temperature	119
Figure 4.2.5.2-4 PLANCK – SCC I/F POINT Temperature	119
Figure 4.2.5.2-5 PLANCK – SCC Outer Shell's Temperature	
Figure 4.2.5.2-6 PLANCK – SCC Outer Shell's Temperature	
Figure 4.25.3-1 PLANCK – BEU, PAU & DAE design concept	
Figure 4.2.5.4-1 PLANCK - SCE	129
Figure 4.2.5.4-2 PLANCK - SCE	
Figure 4.2.5.4-3 PLANCK - SCC Outer Shell's Temperatures	
Figure 4.2.5.4-4 PLANCK - SCC I/F POINT Temperatures	130
Figure 4.2.5.4-5 PLANCK - SCC Outer Shell's Temperatures	131
Figure 4.2.5.4-6 PLANCK - SCC I/F POINT Temperatures	131

DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 6 of 135

1. INTRODUCTION

The purpose of this document is the description of the geometric and thermal mathematical model built for HERSCHEL and PLANCK Service Modules as well as the presentation of the temperature results derived from the thermal analysis performed for both satellites.

In the present document each satellite has been described in a dedicate chapter, so that all aspects concerning HERSCHEL are presented and discuss in chapter 3, while the description and analysis of PLANCK is presented and discuss in chapter 4.

DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 7 of 135

2. APPLICABLE AND REFERENCE DOCUMENT

2.1 APPLICABLE DOCUMENT

System Support Documents

AD-2.1	Herschel/Planck Environment and Tests Requirements	H-P-1-ASPI-SP-0030
AD-2.2	General Design & Interface Requirements	H-P-1-ASPI-SP-0027
AD-2.3	SVM Mechanical Interface control document	H-P-IC-AI-0001
AD-2.4	Reduced Geom. RGMM and Thermal RTMM Math. Models Requirements	H-P-RQ-AI-0002
AD-2.5	SVM Requirement Specification	H-P-4-ASPI-SP-0019
AD-2.6	SVM Interface Specification	H-P-4-ASPI-IS-0042
AD-2.7	TCS Design Description	H-P-RP-AI-0039
AD-2.8	PLANCK HEAT-PIPES Network Definition and Interfaces	H-P-TN-AI-0020
AD-2.9	Not used	
AD-2.10	Thermal Interface control document	H-P-IC-AI-0002
AD-2.11	Instrument Interface Document, Part B (IID-B): High Frequency Instrument	SCI-PT-IIDB/HFI-04141
AD-2.12	Instrument Interface Document, Part B (IID-B): Low Frequency Instrument	SCI-PT-IIDB/LFI-04142
AD-2.13	Instrument Interface Document, Part B (IID-B): Photo-conductor Instrument	SCI-PT-IIDB/PACS-2126
AD-2.14	Instrument Interface Document, Part B (IID-B): Instrument "HIFI"	SCI-PT-IIDB/HIFI-2125

DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 8 of 135

2.2 REFERENCE DOCUMENT

- RD-2.1 Thermal Conductivity of Metallic Honeycomb Sandwich Panels NLR, Amsterdam, NL
- **RD-2.2** Analytical/Experimental Semiempirical Evaluation of Spacelab MLI Thermal Conductance RP-AI-0237, dated 13/09/78
- **RD-2.3** Survey and Evaluation of Multilayer Insylation Heat Transfer Measurements J.Doenecke (DASA), 23rd ICES, July 1993 paper n.SAE 932117
- **RD-2.4** A Systematic Approach to Thermal Balance Test Evaluation and Thermal Mathematical Model Correlation for Spacecraft Thermal Design, L.Costamagna, V.Perotto, E.Sacchi (Alenia Spazio), 4th European Symposium on Space Environmental and Control Systems, October 1991.

2.3 LIST OF ACRONYMS

AAD	: Attitude Anomaly Detector
AIT	: Assembly Integration and Testing
BOL	: Beginning of Life
CoG	: Centre of Gravity
CSS	: Coarse Sun sensor
EOL	: End of Life
GMM	: Geometrical Mathematical Model
GYRO	: Gyroscope
HPLM	: Herschel Payload Module
H/W	: Hardware
L/GA	: Low Gain antenna
M/GA	: Medium Gain antenna
MGSE	: Mechanical Ground Support Equipment
MLI	: Multi Layer Insulation
OSR	: Optical Solar Reflector
PPLM	: Planck Payload Module
P/ST	: Primary Structure (occasionally used)
P.Tanks	: Propellant Tanks
PTSS	: Propellant Tank Support Structure
rpm	: revolution per minute
S/C	: Spacecraft or Satellite
SAS	: Sun Acquisition sensor
SCC	: Sorption Cooler Compressors
STM	: Star Mapper
STR	: Star Trackers
TBC	: To Be Confirmed
TBD	: To Be Defined
TMM	: Thermal Mathematical Model
VDA	: Vacuum Deposited Aluminum

DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 9 of 135

3. HERSCHEL – MODEL DESCRIPTION AND THERMAL ANALYSIS

3.1 HERSCHEL - PRESENTATION OF THE MODEL

Herschel and Planck are two satellites dedicated to the observation of the universe.

- Herschel key science targets are focused on the formation of stars and galaxies. It will complement the successful progress of ISO ('95-'98) and SIRTF (to be launched this year).

HERSCHEL

PLANCK

The spacecraft is planned to operate from Lissajous orbits around the Langragian point L2 of the Sun / Earth system. This point is aligned with the Earth and the Sun and located at $1.5 \ 10^6$ Km from the Earth.

Both satellites are planned to be launched by ARIANE 5 dual launch.

The main modules are:

- The Service Module (SVM)
- The Payload Module (PLM), carrying the scientific instruments and telescopes and relevant electronic units
- The Sunshields, protecting the Payload or the S/C and used also as Solar Arrays.

3.1.1 Geometric Mathematical Model (GMM)

The Geometric models detail all the satellite surfaces and their thermo-optical properties, in order to evaluate the radiative exchange factors among nodes and, only for the external nodes, the fluxes (solar, albedo and Earth shine) on spacecraft surfaces during the orbit. Due to the huge distance of the HERSCHEL orbit from the Earth, only solar fluxes have been considerate in the thermal analysis.

The Geometric Mathematical Model (GMM) of HERSCHEL satellite has been built using Esarad (version 4.3) software and it is composed by two models, which describe respectively the internal enclosures of the spacecraft and the external environment of the spacecraft. Some components of the Payload Module have been also considered in the external GMM in order to evaluate the radiative impact on the HERSCHEL Service Module.

The termo-optical properties of the material used in theGMM/TMM are listed in Table 3.1.1.

The geometrical nodes of HERSCHEL Service Module are shown on Table 3.1.1-1a (GMM Internal) and Table 3.1.1-1b (GMM External), while HERSCHEL Payload Module (HPLM) nodes are listed in Table 3.1.1-2.

Material and thermal properties of each node at BOL / EOL are provided in the same tables; data applicable to HPLM are in accordance to data provided from Alcatel to Alenia during the SVM Thermal System proposal.

The only thermal property assumed to change during the satellite life is the solar absorptivity of the OSR (Alenia experience) and of the MLI closure between the SVM and PLM (input data from AD-2.6). In addition to the previous list, the nodal breakdown of the Geometric Model, both internal and external nodes, is shown on Fig 3.1.1-1 to Fig. 3.1.1-11

HERSCHEL PLANCK

DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 10 of 135

SURFACES	MATERIALS	Alpha	Alpha	Epsilon	Ref.
		BOL	EOL	Ponon	
GMM INTERNAL					
High Emissivity Aluminum	Black Paint	0.9	=	0.9	Alenia test data (worst
Internal surfaces (panels & units)					case)
CFRP Internal surfaces (panels &	CFRP	0.9	=	0.9	Assumption (TBC)
cone)					
Internal Launcher Adaptor Ring	Aluminium Tape	0.15	=	0.05	Supplier data sheet
Internal MLI (-Y Panel, -Y-Z	VDA Kapton (Aluminized	0.15	=	0.05	Supplier data sheet
Panel, Internal STR baffle, Tanks)	side)				
Bottom closure internal side	1/3 CFRP – 2/3 VDA	0.4	=	0.33	Effective α / ϵ values
	Kapton (Aluminized side)				
GMM EXTERNAL					
Solar Array	Solar Array Cells	0.72	=	0.82	Data from Thermal
					System proposal
HPLM Tilted Shield	Aluminium	0.15	=	0.05	AD-2.6
External Launcher Adaptor Ring	Cromic Acid Anodization	0.5	=	0.5	Test data derived from
					Integral program
Radiator Panels +Y+Z and -Y+Z	OSR	0.1	0.18	0.8	Alenia test data
Others Radiator Panels	Electrodag 501	0.95	=	0.8	Alenia test data
MLI facing to HPLM	VDA Kapton (Aluminized	0.15	=	0.05	Supplier data sheet
	side)				
External STR Baffle	Black Anodization	0.86	=	0.86	Assumption based on
					Alenia test data
External MLI	Carbon Filled Kapton	0.92	=	0.86	Supplier data sheet
	Kapton				
MLI Closure to HPLM	White Paint	0.17	0.55	0.87	AD-2.6

Table 3.1.1 HERSCHEL - Service Module Thermal Properties Materials

Table 3.1.1-1a HERSCHEL - Service Module Internal Geometrical Nodes List

NODE	LABEL	MATERIALS	Al	pha	Epsilon
			BOL	EOL	
101	RFDN	Black Paint	0.9	=	0.9
102	EPC1	Black Paint	0.9	=	0.9
103	EPC2	Black Paint	0.9	=	0.9
104	TRANSX1	Black Paint	0.9	=	0.9
105	TRANSX2	Black Paint	0.9	=	0.9
106	TWTA1	Black Paint	0.9	=	0.9
107	TWTA2	Black Paint	0.9	=	0.9
201	PCDU	Black Paint	0.9	=	0.9
202	CMDU	Black Paint	0.9	=	0.9
203	ACC	Black Paint	0.9	=	0.9
204	BATT	Black Paint	0.9	=	0.9
301	FPSPU1_2	Black Paint	0.9	=	0.9
303	FPDPU	Black Paint	0.9	=	0.9
304	FPBOLC	Black Paint	0.9	=	0.9
305	FPMECDEC	Black Paint	0.9	=	0.9
401	CRYOE	Black Paint	0.9	=	0.9

HERSCHEL PLANCK

DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 11 of 135

NODE	LABEL	MATERIALS	Alı	oha	Epsilon
			BOL	EOL	F ======
404	HSDCU	Black Paint	0.9	=	0.9
405	HSDPU	Black Paint	0.9	=	0.9
406	HSFCU	Black Paint	0.9	=	0.9
701	RWL1 C	Black Paint	0.9	=	0.9
702	RWL2 C	Black Paint	0.9	=	0.9
703	RWL3 C	Black Paint	0.9	=	0.9
704	RWL4 C	Black Paint	0.9	=	0.9
705	RWDE	Black Paint	0.9	=	0.9
706	ORS1	Black Paint	0.9	=	0.9
707	ORS2	Black Paint	0.9	=	0.9
801	GYRO	Black Paint	0.9	=	0.9
802	PDU	Black Paint	0.9	=	0.9
811	STRMY	Black Paint	0.9	_	0.9
812	STRMY CONF UPPER INT	Kapton Aluminized	0.15	_	0.05
813	STRMY CONF UPPER INT	Kapton Aluminized	0.15	_	0.05
814	STRMT CONE UPPER INT	Kapton Aluminized	0.15	_	0.05
815	STRMT CONE UPPER INT	Kapton Aluminized	0.15	_	0.05
816	STRMT CONE UPPER INT	Kapton Aluminized	0.15	_	0.05
831	STRAT COLL OFFERING	Rapton Atuminized	0.15	_	0.05
832	STREY CONE LIPPER INT	Kenton Aluminizad	0.5	_	0.05
832	STRPY CONE UPPER INT	Kapton Aluminized	0.15	_	0.05
833	STREET CONE UDDED INT	Kapton Aluminized	0.15	_	0.05
034 925	STRFT CONE UPPER INT	Kapton Aluminized	0.15	_	0.05
835	STRFT CONE UPPER INT	Kapton Aluminized	0.15	_	0.05
000	TANKI MU	Kapton Aluminized	0.15		0.03
900		Kapton Aluminized	0.15	_	0.05
910	TANK2 MLI	Kapton Aluminized	0.15	=	0.05
1600	SVM Bot +Z	CFRP	0.9	=	0.9
1602	SVM Bot +Y	CFRP	0.9	_	0.9
1603	SVM Bot +Y-Z	CFRP	0.9	=	0.9
1604	SVM Bot –Z	CFRP	0.9	=	0.9
1605	SVM Bot -Z-Y	CFRP	0.9	=	0.9
1606	SVM Bot -Y	CFRP	0.9	=	0.9
1607	SVM Bot -Y+Z	CFRP	0.9	=	0.9
2100	Launch Adapter Cone Int +Z	Aluminium Tape	0.15	=	0.05
2101	Launch Adapter Cone Int +Z+Y	Aluminium Tape	0.15	=	0.05
2102	Launch Adapter Cone Int +Y	Aluminium Tape	0.15	=	0.05
2103	Launch Adapter Cone Int +Y-Z	Aluminium Tape	0.15	=	0.05
2104	Launch Adapter Cone Int-Z	Aluminium Tape	0.15	=	0.05
2105	Launch Adapter Cone Int-Z-Y	Aluminium Tape	0.15	=	0.05
2106	Launch Adapter Cone Int-Y	Aluminium Tape	0.15	=	0.05
2107	Launch Adapter Cone Int-Y+Z	Aluminium Tape	0.15	=	0.05
2110	Launch Adapter Edge Int +Z	Aluminium Tape	0.15	=	0.05
2111	Launch Adapter Edge Int +Z+Y	Aluminium Tape	0.15	=	0.05
2112	Launch Adapter Edge Int +Y	Aluminium Tape	0.15	=	0.05
2113	Launch Adapter Edge Int +Y-Z	Aluminium Tape	0.15	=	0.05
2114	Launch Adapter Edge Int-Z	Aluminium Tape	0.15	=	0.05
2115	Launch Adapter Edge Int-Z-Y	Aluminium Tape	0.15	=	0.05
2116	Launch Adapter Edge Int-Y	Aluminium Tape	0.15	=	0.05
2117	Launch Adapter Edge Int-Y+Z	Aluminium Tape	0.15	=	0.05

HERSCHEL PLANCK DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 12 of 135

NODE	LABEL	MATERIALS	Alpha		Epsilon
			BOL	EOL	
			_	_	
2120	Launch Adapter Cyl Int +Z	Aluminium Tape	0.15	=	0.05
2121	Launch Adapter Cyl Int $+Z+Y$	Aluminium Tape	0.15	=	0.05
2122	Launch Adapter Cyl Int +Y	Aluminium Tape	0.15	=	0.05
2122	Launch Adapter Cyl Int $+Y$ -7	Aluminium Tape	0.15	_	0.05
2123	Launch Adapter Cyl Int-7		0.15	_	0.05
2124	Launch Adapter Cyl Int Z V		0.15	_	0.05
2125	Launch Adapter Cyl Int-Z-T		0.15	-	0.05
2120	Launch Adapter Cyl Int- I		0.15	_	0.05
2127	Launch Adapter Cyr Int- 1+2	Aluminium Tape	0.15	=	0.03
2150	Adapter Cone Covered Int +Z	Aluminium Tape	0.15	=	0.05
2151	Adapter Cone Covered Int +Z+Y	Aluminium Tape	0.15	=	0.05
2152	Adapter Cone Covered Int +Y	Aluminium Tape	0.15	=	0.05
2153	Adapter Cone Covered Int +Y-Z	Aluminium Tape	0.15	=	0.05
2154	Adapter Cone Covered Int -Z	Aluminium Tape	0.15	=	0.05
2155	Adapter Cone Covered Int –Z-Y	Aluminium Tape	0.15	=	0.05
2156	Adapter Cone Covered Int -Y	Aluminium Tape	0.15	=	0.05
2157	Adapter Cone Covered Int -Y+Z	Aluminium Tape	0.15	=	0.05
2400	RCS Panel Int +Z	1/3 BP- 2/3 VDA Kapton	0.4	=	0.33
2401	RCS Panel Int +Z+Y	1/3 BP- 2/3 VDA Kapton	0.4	=	0.33
2402	RCS Panel Int +Y	1/3 BP- 2/3 VDA Kapton	0.4	=	0.33
2403	RCS Panel Int +Y-Z	1/3 BP- 2/3 VDA Kapton	0.4	=	0.33
2404	RCS Panel Int –Z	1/3 BP- 2/3 VDA Kapton	0.4	=	0.33
2405	RCS Panel Int –Z-Y	1/3 BP- 2/3 VDA Kapton	0.4	=	0.33
2406	RCS Panel Int –Y	1/3 BP- 2/3 VDA Kapton	0.1	=	0.33
2407	RCS Panel Int –Y+Z	1/3 BP- 2/3 VDA Kapton	0.1	=	0.33
2408	RCS Panel Central Int	1/3 BP- 2/3 VDA Kapton	0.4	=	0.33
2500	SVM Cone Ext +7	CERP	0.4	_	0.55
2500	SVM Cone Ext +Z+Y	CFRP	0.9	=	0.9
2502	SVM Cone Ext +Y	CFRP	0.9	=	0.9
2503	SVM Cone Ext +Y-Z	CFRP	0.9	=	0.9
2504	SVM Cone Ext -Z	CFRP	0.9	=	0.9
2505	SVM Cone Ext -Z-Y	CFRP	0.9	=	0.9
2506	SVM Cone Ext -Y	CFRP	0.9	=	0.9
2507	SVM Cone Ext -Z+Y	CFRP	0.9	=	0.9
2510	SVM Cone Ext +Z	CFRP	0.9	=	0.9
2511	SVM Cone Ext +Z+Y	CFRP	0.9	=	0.9
2512	SVM Cone Ext +Y	CFRP	0.9	=	0.9
2513	SVM Cone Ext +Y-Z	CFRP	0.9	=	0.9
2514	SVM Cone Ext -Z	CFRP	0.9	=	0.9
2515	SVM Cone Ext -Z-Y	CERP	0.9	=	0.9
2510	SVM Cone Ext -1	CEDD	0.9		0.9
2520	SVM Cone Ext $-Z+1$	CERP	0.9	_	0.9
2520	SVM Cone Ext +Z+ SVM Cone Ext +Z+Y	CERP	0.9	_	0.9
2522	SVM Cone Ext +Y	CFRP	0.9	=	0.9
2523	SVM Cone Ext +Y-Z	CFRP	0.9	=	0.9
2524	SVM Cone Ext -Z	CFRP	0.9	=	0.9
2525	SVM Cone Ext -Z-Y	CFRP	0.9	=	0.9
2526	SVM Cone Ext -Y	CFRP	0.9	=	0.9
2527	SVM Cone Ext -Z+Y	CFRP	0.9	=	0.9
2530	SVM Cone Ext +Z	CFRP	0.9	=	0.9
2531	SVM Cone Ext +Z+Y	CFRP	0.9	=	0.9
2532	SVM Cone Ext +Y	CFRP	0.9	=	0.9

HERSCHEL PLANCK DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 13 of 135

NODE	LABEL	MATERIALS	Alpha		Ensilon
TODL			BOI	FOI	
			DOL	LOL	
2522	SVM C E + V Z	CEDD	0.0		0.0
2533	SVMConeExt + Y-Z	CFRP	0.9	=	0.9
2534	SVM Cone Ext -Z	CFRP	0.9	=	0.9
2535	SVM Cone Ext -Z-Y	CFRP	0.9	=	0.9
2536	SVM Cone Ext - Y	CFRP	0.9	=	0.9
2537	SVM Cone Ext -Z+Y	CFRP	0.9	=	0.9
2540	SVM Cone Ext +Z	CFRP	0.9	=	0.9
2541	SVM Cone Ext +Z+Y	CFRP	0.9	=	0.9
2542	SVM Cone Ext +Y	CFRP	0.9	=	0.9
2543	SVM Cone Ext +Y-Z	CFRP	0.9	=	0.9
2544	SVM Cone Ext –Z	CFRP	0.9	=	0.9
2545	SVM Cone Ext –Z-Y	CFRP	0.9	=	0.9
2546	SVM Cone Ext –Y	CFRP	0.9	=	0.9
2547	SVM Cone Ext –Z+Y	CFRP	0.9	=	0.9
2600	SVM Cone Int +Z	CFRP	0.9	=	0.9
2601	SVM Cone Int +Z+Y	CFRP	0.9	=	0.9
2602	SVM Cone Int +Y	CFRP	0.9	=	0.9
2603	SVM Cone Int +Y-Z	CFRP	0.9	=	0.9
2604	SVM Cone Int -Z	CFRP	0.9	=	0.9
2605	SVM Cone Int -Z-Y	CFRP	0.9	=	0.9
2606	SVM Cone Int -Y	CFRP	0.9	=	0.9
2607	SVM Cone Int -Z+Y	CFRP	0.9	=	0.9
2610	SVM Cone Int +Z	CFRP	0.9	=	0.9
2611	SVM Cone Int +Z+Y	CFRP	0.9	=	0.9
2612	SVM Cone Int +Y	CFRP	0.9	=	0.9
2613	SVM Cone Int +Y-Z	CFRP	0.9	=	0.9
2614	SVM Cone Int -Z	CFRP	0.9	=	0.9
2615	SVM Cone Int -Z-Y	CFRP	0.9	=	0.9
2616	SVM Cone Int -Y	CFRP	0.9	=	0.9
2617	SVM Cone Int -Z+Y	CFRP	0.9	=	0.9
2620	SVM Cone Int +Z	CFRP	0.9	=	0.9
2621	SVM Cone Int +Z+Y	CFRP	0.9	=	0.9
2622	SVM Cone Int +Y	CFRP	0.9	=	0.9
2623	SVM Cone Int +Y-Z	CFRP	0.9	=	0.9
2624	SVM Cone Int -Z	CFRP	0.9	=	0.9
2625	SVM Cone Int -Z-Y	CFRP	0.9	=	0.9
2626	SVM Cone Int -Y	CFRP	0.9	=	0.9
2627	SVM Cone Int -Z+Y	CFRP	0.9	=	0.9
2630	SVM Cone Int +Z	CFRP	0.9	=	0.9
2631	SVM Cone Int +Z+Y	CFRP	0.9	=	0.9
2632	SVM Cone Int +Y	CFRP	0.9	=	0.9
2633	SVM Cone Int +Y-Z	CFRP	0.9	=	0.9
2634	SVM Cone Int -Z	CFRP	0.9	=	0.9
2635	SVM Cone Int -Z-Y	CFRP	0.9	=	0.9
2636	SVM Cone Int -Y	CFRP	0.9	=	0.9
2637	SVM Cone Int -Z+Y	CFRP	0.9	=	0.9
2640	SVM Cone Int +Z	CFRP	0.9	=	0.9
2641	SVM Cone Int +Z+Y	CFRP	0.9	=	0.9
2642	SVM Cone Int +Y	CFRP	0.9	=	0.9
2643	SVM Cone Int +Y-Z	CFRP	0.9	=	0.9
2644	SVM Cone Int -Z	CFRP	0.9	=	0.9
2645	SVM Cone Int -Z-Y	CFRP	0.9	=	0.9
2646	SVM Cone Int -Y	CFRP	0.9	=	0.9
2647	SVM Cone Int -Z+Y	CFRP	0.9	=	0.9
5051	Shear Web1 +Z	CFRP	0.9	=	0.9
5052	Shear Web1 +Z	CFRP	0.9	=	0.9

S P A Z I O A FINMECCANICA COMPANY

HERSCHEL PLANCK DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 14 of 135

NODE	LABEL	MATERIALS	Alpha		Epsilon	
			BOL	FOL		
			DOL	LOL		
5052	Shoor Wahl 17	CEDD	0.0		0.0	
5054	Shear Web1 +Z	CERP	0.9		0.9	
5055	Shear Web1+Z	CERP	0.9	=	0.9	
5055	Shear Web1 +Z	CERP	0.9	=	0.9	
5061	Shear web1 +Z	CFRP	0.9	=	0.9	
5062	Shear Web1 +Z	CFRP	0.9	=	0.9	
5063	Shear Web1 +Z	CFRP	0.9	=	0.9	
5064	Shear Web1 +Z	CFRP	0.9	=	0.9	
5065	Shear Web1 +Z	CFRP	0.9	=	0.9	
5071	Shear Web2 +Z	CFRP	0.9	=	0.9	
5072	Shear Web2 +Z	CFRP	0.9	=	0.9	
5073	Shear Web2 +Z	CFRP	0.9	=	0.9	
5074	Shear Web2 +Z	CFRP	0.9	=	0.9	
5075	Shear Web2 +Z	CFRP	0.9	=	0.9	
5081	Shear Web2 +Z	CFRP	0.9	=	0.9	
5082	Shear Web2 +Z	CFRP	0.9	=	0.9	
5083	Shear Web2 +Z	CFRP	0.9	=	0.9	
5084	Shear Web2 +Z	CFRP	0.9	=	0.9	
5085	Shear Web2 +Z	CFRP	0.9	=	0.9	
5251	Shear Web3 +Y	CFRP	0.9	=	0.9	
5252	Shear Web3 +Y	CFRP	0.9	=	0.9	
5253	Shear Web3 +Y	CFRP	0.9	=	0.9	
5254	Shear Web3 +Y	CFRP	0.9	=	0.9	
5255	Shear Web3 +Y	CFRP	0.9	=	0.9	
5261	Shear Web3 +Y	CFRP	0.9	=	0.9	
52.62	Shear Web3 +Y	CFRP	0.9	=	0.9	
5263	Shear Web3 +Y	CFRP	0.9	=	0.9	
5264	Shear Web3 +Y	CFRP	0.9	=	0.9	
5265	Shear Web3 +Y	CFRP	0.9	=	0.9	
5271	Shear Web4 +Y	CFRP	0.9	=	0.9	
5272	Shear Web4 +Y	CFRP	0.9	=	0.9	
5273	Shear Web4 +Y	CFRP	0.9	_	0.9	
5274	Shear Web4 +Y	CFRP	0.9	_	0.9	
5275	Shear Web4 +Y	CFRP	0.9	_	0.9	
5281	Shear Web4 +Y	CFRP	0.9		0.9	
5282	Shear Web4 \pm V	CFRP	0.9		0.9	
5282	Shear Web4 + V	CFRD	0.9	_	0.9	
5283	Shear Web4 $+$ V	CFRF	0.9	_	0.9	
5204	Shear Web4 + 1	CERP	0.9	_	0.9	
5451	Shear Web5 7	CERP	0.9		0.9	
5451	Shear Web5 -Z	CERP	0.9		0.9	
5452	Shear Wab5 7		0.9	=	0.9	
5453	Shear Web5 –Z	CFRP	0.9	=	0.9	
5454	Shear Web5 –Z	CFRP	0.9	=	0.9	
5455	Shear Web5 –Z	CFRP	0.9	=	0.9	
5461	Shear Web5 –Z	CFRP	0.9	=	0.9	
5462	Shear Web5 –Z	CFRP	0.9	=	0.9	
5463	Shear Web5 –Z	CFRP	0.9	=	0.9	
5464	Shear Web5 –Z	CFRP	0.9	=	0.9	
5465	Shear Web5 –Z	CFRP	0.9	=	0.9	
5471	Shear Web6 –Z	CFRP	0.9	=	0.9	
5472	Shear Web6 –Z	CFRP	0.9	=	0.9	
5473	Shear Web6 –Z	CFRP	0.9	=	0.9	
5474	Shear Web6 –Z	CFRP	0.9	=	0.9	
5475	Shear Web6 –Z	CFRP	0.9	=	0.9	
5481	Shear Web6 –Z	CFRP	0.9	=	0.9	
5482	Shear Web6 –Z	CFRP	0.9	=	0.9	

HERSCHEL PLANCK DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 15 of 135

NODE	LABEL	MATERIALS Alpha		Epsilon	
			BOL	EOL	
			202	202	
5483	Shear Web6 –7	CFRP	0.9	_	0.9
5484	Shear Web6 –Z	CFRP	0.9	_	0.9
5485	Shear Web6 –Z	CFRP	0.9	=	0.9
5651	Shear Web7 –Y	CFRP	0.9	=	0.9
5652	Shear Web7 –Y	CFRP	0.9	=	0.9
5653	Shear Web7 –Y	CFRP	0.9	=	0.9
5654	Shear Web7 –Y	CFRP	0.9	=	0.9
5655	Shear Web7 –Y	CFRP	0.9	=	0.9
5661	Shear Web7 –Y	CFRP	0.9	=	0.9
5662	Shear Web7 –Y	CFRP	0.9	=	0.9
5663	Shear Web7 –Y	CFRP	0.9	=	0.9
5664	Shear Web7 –Y	CFRP	0.9	=	0.9
5665	Shear Web7 –Y	CFRP	0.9	=	0.9
5671	Shear Web8 – Y	CFRP	0.9	=	0.9
5672	Shear Web8 – Y	CFRP	0.9	=	0.9
5673	Shear Web8 – Y	CFRP	0.9	=	0.9
5674	Shear Web8 – Y	CFRP	0.9	=	0.9
5675	Shear Web8 – Y	CFRP	0.9	=	0.9
5681	Shear Web8 –Y	CFRP	0.9	=	0.9
5682	Shear Web8 –Y	CFRP	0.9	=	0.9
5683	Shear Web8 –Y	CFRP	0.9	=	0.9
5684	Shear Web8 –Y	CFRP	0.9	=	0.9
5685	Shear Web8 –Y	CFRP	0.9	=	0.9
6001-72	Internal Panel +Z	Black Paint	0.9	=	0.9
6101-48	Internal Panel +Y+Z	Black Paint	0.9	=	0.9
6201-72	Internal Panel +Y	Black Paint	0.9	=	0.9
6301-48	Internal Panel +Y-Z	Black Paint	0.9	=	0.9
6401-72	Internal Panel –Z	Black Paint	0.9	=	0.9
6501-48	Internal Panel -Y-Z	Black Paint	0.9	=	0.9
6601-72	Internal Panel –Y	Black Paint	0.9	_	0.9
6701 48	Internal Panel V/7	Dlack I ann	0.9	_	0.9
7400	SVM Top Disc Int ± 7		0.9		0.9
7400	SVM Top Disc Int +Z	CERP	0.9	=	0.9
7401	SVM Top Disc Int +Z+1	CFRF	0.9	_	0.9
7402	SVM Top Disc Int +1	CFRF	0.9	_	0.9
7403	SVM Top Disc Int +1-Z	CFRF	0.9	_	0.9
7404	SVM Top Disc Int -Z	CFRP	0.9	_	0.9
7406	SVM Top Disc Int -2-1 SVM Top Disc Int -Y	CFRP	0.9	_	0.9
7400	SVM Top Disc Int – Y+Z	CFRP	0.9	_	0.9
7600	SVM Top Disc $\operatorname{Int} = 1 + 2$ SVM Top Int $+ 7$	CFRP	0.9	_	0.9
7601	SVM Top Int +Y+Z	CFRP	0.9	_	0.9
7602	SVM Top Int +Y	CFRP	0.9	=	0.9
7603	SVM Top Int +Y-Z	CFRP	0.9	=	0.9
7604	SVM Top Int –Z	CFRP	0.9	=	0.9
7605	SVM Top Int -Z-Y	CFRP	0.9	=	0.9
7606	SVM Top Int –Y	CFRP	0.9	=	0.9
7607	SVM Top Int -Y+Z	CFRP	0.9	=	0.9
8800-9	SUPPORT STR +X	CFRP	0.9	=	0.9
8820-9	SUPPORT STR +X	CFRP	0.9	=	0.9
8860-9	SUPPORT STR +X	CFRP	0.9	=	0.9
8880-9	SUPPORT STR +X	CFRP	0.9	=	0.9
9501-48	MLI on Internal Panel –Y-Z	Kapton Aluminized	0.15	=	0.05
9591	MLI on Unit FHWOV	Kapton Aluminized	0.15	=	0.05

HERSCHEL PLANCK

DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 16 of 135

NODE	LABEL	MATERIALS	Al	pha	Epsilon
			BOL	EOL	
9592	MLI on Unit FHHRV	Kapton Aluminized	0.15	=	0.05
9593	MLI on Unit FHICU	Kapton Aluminized	0.15	=	0.05
9594	MLI on Unit FHFCU	Kapton Aluminized	0.15	=	0.05
9596	MLI on Unit FHWEH	Kapton Aluminized	0.15	=	0.05
9597	MLI on Unit FH3DV	Kapton Aluminized	0.15	=	0.05
9601-72	MLI on Internal Panel –Y	Kapton Aluminized	0.15	=	0.05
9691	MLI on Unit FHWOH	Kapton Aluminized	0.15	=	0.05
9692	MLI on Unit FHWEH	Kapton Aluminized	0.15	=	0.05
9693	MLI on Unit FHHRH	Kapton Aluminized	0.15	=	0.05
9694	MLI on Unit FHLCU	Kapton Aluminized	0.15	=	0.05
9695	MLI on Unit FHLSU	Kapton Aluminized	0.15	=	0.05
9696	MLI on Unit FH3DH	Kapton Aluminized	0.15	=	0.05

Table 3.1.1-1b HERSCHEL - Service Module External Geometrical Nodes List

NODE	LABEL	MATERILAS	Alpha		Epsilon
			BOL	EOL	
811	STRMY	Black Paint	0.9	=	0.9
812	STRMY CONE UPPER EXT	Black Anodization	0.86	=	0.86
813	STRMY CONE UPPER EXT	Black Anodization	0.86	=	0.86
814	STRMY CONE UPPER EXT	Black Anodization	0.86	=	0.86
815	STRMY CONE UPPER EXT	Black Anodization	0.86	=	0.86
816	STRMY CONE UPPER EXT	Black Anodization	0.86	=	0.86
817	STRMY CONE LOWER EXT	Black Anodization	0.86	=	0.86
820	STRMY CONE LOWER MLI	Carbon Filled Kapton	0.92	=	0.86
831	STRPY BOX	Black Paint	0.9	=	0.9
832	STRMY CONE UPPER EXT	Black Anodization	0.86	=	0.86
833	STRMY CONE UPPER EXT	Black Anodization	0.86	=	0.86
834	STRMY CONE UPPER EXT	Black Anodization	0.86	=	0.86
835	STRMY CONE UPPER EXT	Black Anodization	0.86	=	0.86
836	STRMY CONE UPPER EXT	Black Anodization	0.86	=	0.86
837	STRMY CONE LOWER EXT	Black Anodization	0.86	=	0.86
840	STRMY CONE LOWER MLI	Carbon Filled Kapton	0.92	=	0.86
1000	SVM Bot +Z MLI	Carbon Filled Kapton	0.92	=	0.86
1001	SVM Bot +Y+Z MLI	Carbon Filled Kapton	0.92	=	0.86
1002	SVM Bot +Y MLI	Carbon Filled Kapton	0.92	=	0.86
1003	SVM Bot +Y-Z MLI	Carbon Filled Kapton	0.92	=	0.86
1004	SVM Bot -Z MLI	Carbon Filled Kapton	0.92	=	0.86
1005	SVM Bot -Z-Y MLI	Carbon Filled Kapton	0.92	=	0.86
1006	SVM Bot -Y MLI	Carbon Filled Kapton	0.92	=	0.86
1007	SVM Bot -Y+Z MLI	Carbon Filled Kapton	0.92	=	0.86
2000	Launch Adapter Cone Ext +Z	Cromic Acid Anodization	0.5	=	0.5
2001	Launch Adapter Cone Ext +Z+Y	Cromic Acid Anodization	0.5	=	0.5
2002	Launch Adapter Cone Ext +Y	Cromic Acid Anodization	0.5	=	0.5
2003	Launch Adapter Cone Ext +Y-Z	Cromic Acid Anodization	0.5	=	0.5
2004	Launch Adapter Cone Ext –Z	Cromic Acid Anodization	0.5	=	0.5
2005	Launch Adapter Cone Ext –Z-Y	Cromic Acid Anodization	0.5	=	0.5

HERSCHEL PLANCK DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 17 of 135

NODE	LABEL	MATERILAS	Alj	oha	Epsilon
			BOL	EOL	
2006	Launch Adapter Cone Ext –Y	Cromic Acid Anodization	0.5	=	0.5
2007	Launch Adapter Cone Ext -Y+Z	Cromic Acid Anodization	0.5	=	0.5
2010	Launch Adapter Edge Ext +Z	Cromic Acid Anodization	0.5	=	0.5
2011	Launch Adapter Edge Ext +Z+Y	Cromic Acid Anodization	0.5	=	0.5
2012	Launch Adapter Edge Ext +Y	Cromic Acid Anodization	0.5	=	0.5
2013	Launch Adapter Edge Ext +Y-Z	Cromic Acid Anodization	0.5	=	0.5
2014	Launch Adapter Edge Ext –Z	Cromic Acid Anodization	0.5	=	0.5
2015	Launch Adapter Edge Ext –Z-Y	Cromic Acid Anodization	0.5	=	0.5
2016	Launch Adapter Edge Ext –Y	Cromic Acid Anodization	0.5	=	0.5
2017	Launch Adapter Edge Ext –Y+Z	Cromic Acid Anodization	0.5	=	0.5
2021	Launch Adapter Cyl Ext +Z+Y	Cromic Acid Anodization	0.5	=	0.5
2022	Launch Adapter Cyl Ext +Y	Cromic Acid Anodization	0.5	=	0.5
2023	Launch Adapter Cyl Ext +Y-Z	Cromic Acid Anodization	0.5	=	0.5
2024	Launch Adapter Cyl Ext –Z	Cromic Acid Anodization	0.5	=	0.5
2025	Launch Adapter Cyl Ext –Z-Y	Cromic Acid Anodization	0.5	=	0.5
2026	Launch Adapter Cyl Ext – Y	Cromic Acid Anodization	0.5	=	0.5
2027	Launch Adapter Cyl Ext -Y+Z	Cromic Acid Anodization	0.5	=	0.5
2050	Adapter Cone Covered Ext +Z	Cromic Acid Anodization	0.5	=	0.5
2051	Adapter Cone Covered Ext +Z+Y	Cromic Acid Anodization	0.5	=	0.5
2052	Adapter Cone Covered Ext +Y	Cromic Acid Anodization	0.5	=	0.5
2053	Adapter Cone Covered Ext +Y-Z	Cromic Acid Anodization	0.5	=	0.5
2054	Adapter Cone Covered Ext –Z	Cromic Acid Anodization	0.5	=	0.5
2055	Adapter Cone Covered Ext –Z-Y	Cromic Acid Anodization	0.5	=	0.5
2056	Adapter Cone Covered Ext –Y	Cromic Acid Anodization	0.5	=	0.5
2057	Adapter Cone Covered Ext -Y+Z	Cromic Acid Anodization	0.5	=	0.5
2200	RCS Panel MLI +Z	Carbon Filled Kapton	0.92	=	0.86
2201	RCS Panel MLI +Z+Y	Carbon Filled Kapton	0.92	=	0.86
2202	RCS Panel MLI +Y	Carbon Filled Kapton	0.92	=	0.86
2203	RCS Panel MLI +Y-Z	Carbon Filled Kapton	0.92	=	0.86
2204	RCS Panel MLI –Z	Carbon Filled Kapton	0.92	=	0.86
2205	RCS Panel MLI –Z-Y	Carbon Filled Kapton	0.92	=	0.86
2206	RCS Panel MLI –Y	Carbon Filled Kapton	0.92	=	0.86
2207	RCS Panel MLI-Y+Z	Carbon Filled Kapton	0.92	=	0.86
2208	RCS Panel Central MLI	Carbon Filled Kapton	0.92	=	0.86
2250	Adapter Cone MLI +Z	Carbon Filled Kapton	0.92	=	0.86
2251	Adapter Cone MLI +Z+Y	Carbon Filled Kapton	0.92	=	0.86
2252	Adapter Cone MLI +Y	Carbon Filled Kapton	0.92	=	0.86
2253	Adapter Cone MLI +Y-Z	Carbon Filled Kapton	0.92	=	0.86
2254	Adapter Cone MLI –Z	Carbon Filled Kapton	0.92	=	0.86
2255	Adapter Cone MLI –Z-Y	Carbon Filled Kapton	0.92	=	0.86
2256	Adapter Cone MLI –Y	Carbon Filled Kapton	0.92	=	0.86
2257	Adapter Cone MLI –Y+Z	Carbon Filled Kapton	0.92	=	0.86
3001-72	OSR Rad +Z	OSR	0.1	0.18	0.78
3101-48	OSR Rad +Y+Z	OSR	0.1	0.18	0.78
3201-72	OSR Rad +Y	Electrodag 501	0.95	=	0.78
3301-48	OSR Rad +Y-Z	Electrodag 501	0.95	=	0.78
3401-72	OSR Rad –Z	Electrodag 501	0.95	=	0.78
3501-48	OSR Rad -Y-Z	Electrodag 501	0.95	=	0.78
3601-72	OSR Rad –Y	Electrodag 501	0.95	=	0.78

HERSCHEL PLANCK DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 18 of 135

NODE	LABEL	MATERILAS	Alpha		Epsilon
			BOL	EOL	
3701-48	OSR Rad -Y+Z	OSR	0.1	0.18	0.78
4001-72	MLI Rad +Z	Carbon Filled Kapton	0.92	=	0.86
4101-48	MLI Rad +Y+Z	Carbon Filled Kapton	0.92	=	0.86
4201-72	MLI Rad +Y	Carbon Filled Kapton	0.92	=	0.86
4301-48	MLI Rad +Y-Z	Carbon Filled Kapton	0.92	=	0.86
4401-72	MLI Rad –Z	Carbon Filled Kapton	0.92	=	0.86
4501-48	MLI Rad -Y-Z	Carbon Filled Kapton	0.92	=	0.86
4601-72	MLI Rad –Y	Carbon Filled Kapton	0.92	=	0.86
4701-48	MLI Rad -Y+Z	Carbon Filled Kapton	0.92	=	0.86
4902	AAD MLI	Carbon Filled Kapton	0.92	=	0.86
4904	VMC MLI	Carbon Filled Kapton	0.92	=	0.86
4905	SAS BRK +Z MLI	Carbon Filled Kapton	0.92	=	0.86
4906	SAS +Z MLI	Carbon Filled Kapton	0.92	=	0.86
4946	SAS –Z MLI	Carbon Filled Kapton	0.92	=	0.86
4947	SAS BRK –Z MLI	Carbon Filled Kapton	0.92	=	0.86
4948	SREM MLI	Carbon Filled Kapton	0.92	=	0.86
7000	SVM Top MLI +Z	Kapton Aluminized	0.15	=	0.05
7001	SVM Top MLI +Y+Z	Kapton Aluminized	0.15	=	0.05
7002	SVM Top MLI +Y	Kapton Aluminized	0.15	=	0.05
7003	SVM Top MLI +Y-Z	Kapton Aluminized	0.15	=	0.05
7004	SVM Top MLI -Z	Kapton Aluminized	0.15	=	0.05
7005	SVM Top MLI -Z-Y	Kapton Aluminized	0.15	=	0.05
7006	SVM Top MLI -Y	Kapton Aluminized	0.15	=	0.05
7007	SVM Top MLI -Y+Z	Kapton Aluminized	0.15	=	0.05
7200	SVM Top Disc MLI +Z	Kapton Aluminized	0.15	=	0.05
7201	SVM Top Disc MLI +Z+Y	Kapton Aluminized	0.15	=	0.05
7202	SVM Top Disc MLI +Y	Kapton Aluminized	0.15	=	0.05
7203	SVM Top Disc MLI +Y-Z	Kapton Aluminized	0.15	=	0.05
7204	SVM Top Disc MLI –Z	Kapton Aluminized	0.15	=	0.05
7205	SVM Top Disc MLI –Z-Y	Kapton Aluminized	0.15	=	0.05
7206	SVM Top Disc MLI –Y	Kapton Aluminized	0.15	=	0.05
7207	SVM Top Disc MLI-Y+Z	Kapton Aluminized	0.15	=	0.05

Table 3.1.1-2 HERSCHEL - Payload Module Geometrical Nodes List

NODE	LABEL	Alpha		Epsilon
		BOL	EOL	
10000	Cryocooler middle	0.15	=	0.05
10010	Cryocooler lower	0.15	=	0.05
10011	Cryocooler lower	0.15	=	0.05
10012	Cryocooler lower	0.15	=	0.05
10013	Cryocooler lower	0.15	=	0.05
18001	Top Shield +Z	0.15	=	0.05
18002	Top Shield +Y	0.15	=	0.05
18003	Top Shield –Z	0.15	=	0.05
18004	Top Shield –Y	0.15	=	0.05
18101	Top Shield +Z	0.15	=	0.05

HERSCHEL PLANCK DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02

PAGE : 19 of 135

NODE	LABEL	Al	Alpha	
		BOL	EOL	
18102	Top Shield +Y	0.15	=	0.05
18103	Top Shield –Z	0.15	=	0.05
18104	Top Shield –Y	0.15	=	0.05
18501	Frontal Shield -Y+Z	0.72	=	0.82
18502	Frontal Shield -Y+Z	0.72	=	0.82
18503	Frontal Shield +Z	0.72	=	0.82
18504	Frontal Shield +Z	0.72	=	0.82
18505	Frontal Shield +Y+Z	0.72	=	0.82
18506	Frontal Shield +Y+Z	0.72	=	0.82
18510	MLI Closure SVM -Y	0.17	0.55	0.87
18512	MLI Closure SVM -Y+Z	0.17	0.55	0.87
18514	MLI Closure SVM +Z	0.17	0.55	0.87
18516	MLI Closure SVM +Y+Z	0.17	0.55	0.87
18518	MLI Closure SVM +Y	0.17	0.55	0.87
18601	Frontal Shield -Y+Z	0.9	=	0.9
18602	Frontal Shield -Y+Z	0.9	=	0.9
18603	Frontal Shield +Z	0.9	=	0.9
18604	Frontal Shield +Z	0.9	=	0.9
18605	Frontal Shield +Y+Z	0.9	=	0.9
18606	Frontal Shield +Y+Z	0.9	=	0.9
18610	MLI Closure SVM -Y	0.17	0.55	0.87
18612	MLI Closure SVM -Y+Z	0.17	0.55	0.87
18614	MLI Closure SVM +Z	0.17	0.55	0.87
18616	MLI Closure SVM +Y+Z	0.17	0.55	0.87
18618	MLI Closure SVM +Y	0.17	0.55	0.87
19000	MLI Struct Braces	0.15	=	0.05
19005	MLI Struct Braces	0.15	=	0.05
19010	MLI Struct Braces	0.15	=	0.05
19015	MLI Struct Braces	0.15	=	0.05
19020	MLI Struct Braces	0.15	=	0.05
19025	MLI Struct Braces	0.15	=	0.05
19030	MLI Struct Braces	0.15	=	0.05
19035	MLI Struct Braces	0.15	=	0.05
19040	MLI Struct Braces	0.15	=	0.05
19045	MLI Struct Braces	0.15	=	0.05
19050	MLI Struct Braces	0.15	=	0.05
19055	MLI Struct Braces	0.15	=	0.05
19060	MLI Struct Braces	0.15	=	0.05
19065	MLI Struct Braces	0.15	=	0.05
19070	MLI Struct Braces	0.15	=	0.05
19075	MLI Struct Braces	0.15	=	0.05
19080	MLI Struct Braces Front	0.15	=	0.05
19081	MLI Struct Braces Front	0.15	=	0.05
19082	MLI Struct Braces Front	0.15	=	0.05
19083	MLI Struct Braces Front	0.15	=	0.05
19084	MLI Struct Braces Front	0.15	=	0.05

	•		DOC	: H-P-RP-	AI-0040
S P A Z I O A FINMECCANICA C	HERSC	HEL CK	ISSUE DATE PAGE	: 01 : 13/NOV/ : 20 of	02 135
NODE	LABEL	Al	pha	Epsilon	
		BOL	EOL		
19085 19086 19087	MLI Struct Braces Front MLI Struct Braces Front MLI Struct Braces Front	0.15 0.15 0.15	= =	0.05 0.05 0.05	
19088 19089	MLI Struct Braces Front MLI Struct Braces Front	0.15	=	0.05	
19090 19091	MLI Struct Braces Front MLI Struct Braces Front	0.15 0.15	=	0.05 0.05	
19092 19093 19094	MLI Struct Braces Front MLI Struct Braces Front MLI Struct Braces Front	0.15 0.15 0.15	= =	0.05 0.05 0.05	
19095	MLI Struct Braces Front	0.15	=	0.05	

DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 21 of 135

Figure 3.1.1-1 HERSCHEL - Overall view

DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 22 of 135

Figure 3.1.1-2 HERSCHEL – Overall View

DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 23 of 135

HERSCHEL

PLANCK

Figure 3.1.1-3 HERSCHEL - SVM Upper Closure and Payload Subplatform +X View

7000÷7: SVM Upper Closure MLI nodes 7600÷7: SVM Upper Closure Structural nodes 7200÷7: Payload Subplatform MLI nodes 7400÷7: Payload Subplatform Structural nodes

DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 24 of 135

HERSCHEL

PLANCK

Figure 3.1.1-4 HERSCHEL – SVM Bottom Closure and Bottom Closure Platform -X View 1000+7: SVM Bottom Closure MLI nodes 1600+7: SVM Bottom Closure Structural nodes 2200+8: Bottom Closure Platform MLI nodes 2400+8 Bottom Closure Platform Structural nodes

Figure 3.1.1-5 HERSCHEL – Shear PanelsView 50X1÷5: Shear +Z nodes 52X1÷5: Shear +Y nodes 54X1÷5: Shear -Z nodes 56X1÷5: Shear -Y nodes

Figure 3.1.1-6 HERSCHEL – Cone: Viwe 25X0-7: Internal Cone nodes. 26X0-7: External Cone nodes.

DOC : H-P-RP-AI-0040

ISSUE : **01** DATE : **13/NOV/02** PAGE : **27 of 135**

Figure 3.1.1-7 HERSCHEL – Location of STR and truss.

Figure 3.1.1-8 HERSCHEL –STR and truss nodal breakdown.

DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 29 of 135

Figure 3.1.1-9 HERSCHEL – Detailed Adapter Ring nodal breakdown.

DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 30 of 135

HERSCHEL

PLANCK

Figure 3.1.1-10 HERSCHEL – Lateral Panel Internal View Internal Lateral Panels nodes: 6XXX External Lateral Panels OSR nodes: 3XXX External Lateral Panels MLI nodes: 4XXX

DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 31 of 135

Figure 3.1.1-11 HERSCHEL – Lateral Panel & Units Internal View

DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 32 of 135

3.1.2 Radiator Panels OSR / MLI Area

The radiative areas obtained from the thermal analysis are shown in Fig. 3.1.1-10 and the amounts of MLI and OSR areas are reported in the Table 3.1.2-1.

Panel	Total Panel Area	MLI Area	OSR Area	OSR Area / Total panel
	[m²]	[m²]	[m²]	%
+Z	1.462	1.462	0.0	0 %
+Y +Z	0.974	0.162	0.812	83%
+Y	1.462	0.427	1.035	70%
+Y -Z	0.974	0.588	0.386	40%
-Z	1.462	0.975	0.487	33%
-Y -Z	0.974	0.406	0.568	58%
-Y -Y+Z Total	1.462 0.974 9.744	0.691 0.649 5.359	0.771 0.325 4.385	53% 33%

$T_{abla} 2 1 2 1$	UEDSCHEI	Dedictive	and MI I	1
1 able 3.1.2-1	HERSCHEL	– Radiative	and MLI	Areas

DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 33 of 135

3.1.3 Thermal Mathematical Model (TMM)

The Thermal Mathematical Model (TMM) has been prepared with Esatan software and contains the thermal node description, the thermal conductivity network and the unit and heater dissipation. It is composed by 2126 nodes describing the Service Module and 113 nodes for the Payload Module, for a total of 2239 nodes.

3.1.3.1 Thermal Mathematical Nodes

• ADDITIONAL NODES (Tanks, Units)

The following thermal mathematical nodes have been included in the TMM in addition to the GMM nodes. They represent:

- external units
- tanks
- HIFI units

that are completely covered by MLI. In the GMM only the MLI node has been modelled to account for the correct radiative coupling. In the TMM an equivalent conductive coupling (non linear) to the external surface of the MLI is provided, accounting for the effective MLI thermal conductance.

UNIT/TANK ADDITIONAL THERMAL NODE	MLI EXTERNAL SURFACE NODE (CMM & TMM)	LABEL
2	4902	AAD
4	4904	VMC
5	4905	SASZ BRK
6	4906	SASZ
46	4946	SAS
47	4947	SAS_BRK
48	4948	SREM
950	900	TANK1
960	910	TANK2
501	9591	FHWOV
502	9592	FHHRV
503	9593	FHICU
504	9594	FHFCU
506	9596	FHWEV
507	9597	FH3DV
601	9691	FHWOH
602	9692	FHWEH
603	9693	FHHRH
604	9694	FHLCU
605	9695	FHLSU
606	9696	FH3DH

Table 3.1.3.1-1 HERSCHEL – Units Thermal Nodes List

• <u>ADDITIONAL NODES (Interface to HPLM)</u>

12 nodes representing the I/F HPLM points are connected to the Upper Payload Subplatform, the Upper Closure Panel and the Upper Cone (Internal and External) with a linear conductor. They are listed and shown hereafter:

DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 34 of 135

Table 3.1.3.1-2 HERSCHEL – PLM I/F Thermal Nodes List

Figure 3.1.3.1-1 HERSCHEL - PLM I/F Thermal Nodes Location

• NODES (SPACE)

Node 99999 defines the space with a temperature of -269 °C.

DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 35 of 135

3.1.3.2 Conductive Couplings

• MLI conductivity

A temperature variable Conductive Coupling (non linear) array simulates the MLI blanket behaviour. The different arrays used in the TMM, applicable to different MLI compositions are given in the following Table. They are part of Alenia Spazio heritage. They are calculated with a semi-empirical curve derived from test data on Spacelab program (RD-2.2) and extensively used on several programs (Italsat, Artemis, Integral, MPLM, Atlantic Bird-1, Columbus, Nodes).

The used semi-empirical correlation was substantially confirmed through the Thermal Balance Tests performed on the above programs and by a dedicated test on a MPLM MLI sample.

By the way, Alenia used formula is in good agreement with the empirical correlation proposed in the RD-2.3.

MLI thermal conductivity is depending on the different number of layers. Application is:

- 20 layers MLI composition is used on the Top of the Satellite facing to HPLM
- 10 layers MLI composition is used on all the other external surfaces:
- 7 layers MLI composition is used on HIFI units, internal –Y –Z Panel, Internal –Y Panel, STR baffle and on the Tanks

Table 3.1.3.2-1 HERSCHEL – MLI Thermal Conductivity	y for	different	number	of layers
---	-------	-----------	--------	-----------

Temperature [°C]	20 Layers	10 Layers	7 Layers
	[W/m2°C]	[W/m2°C]	[W/m2°C]
-100	0.0175	0.0233	0.0314
-90	0.0212	0.0275	0.0362
-80	0.0251	0.0320	0.0413
-70	0.0292	0.0366	0.0468
-60	0.0334	0.0416	0.0527
-50	0.0378	0.0469	0.0590
-40	0.0424	0.0524	0.0659
-30	0.0473	0.0584	0.0733
-20	0.0523	0.0647	0.0812
-10	0.0577	0.0714	0.0898
0	0.0633	0.0785	0.0990
10	0.0692	0.0861	0.1088
25	0.0786	0.0984	0.1250
30	0.0819	0.1027	0.1308
40	0.0888	0.1118	0.1430
50	0.0960	0.1214	0.1560
60	0.1036	0.1317	0.1699
70	0.1116	0.1425	0.1848
80	0.1200	0.1540	0.2006
90	0.1288	0.1661	0.2174
100	0.1381	0.1789	0.2352

DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 36 of 135

• Unit-Panel Conductivity

Conductive coupling between unit and panel with graphite interfiller (like Sigraflex) is calculated as follows:

$$GL[W/^{\circ}C] = Gc * Ac$$

where:

 $\begin{array}{l} Gc = 50000 * Cc^{-0.9} & (Cc \; contact \; area \; in \; cm^2) \\ Ac = contact \; area \; in \; m^2. & Applicability \; range \; of \; the \; formula: \; 30 \; cm^2 < Cc < 1000 \; cm^2 \end{array}$

where:

 $\begin{array}{l} Gc = 100 \\ Ac = contact \ area \ in \ m^2. \end{array} \ \ \ Applicability \ range \ of \ the \ formula: \ 1000 \ cm^2 < Cc \end{array}$

No contact areas smaller than 30 cm^2 are present.

The above formula is based on data from dedicated test performed on Olympus program (1988) and successfully used in the Alenia programs since then.

Thermal Balance Test correlations of Italsat-1/2, SAX, TSS-1/2, Artemis, Integral, Atlantic Bird-1, confirmed the applicability of the used formula.

Further discussion was provided in RD-2.4.

- Spreading effect:

If the unit is mounted on several panel nodes and the ratio between the unit contact area and the mounting nodes area is ≤ 0.45 (Ac/An ≤ 0.45) the spreading effect is taken into account and calculated as follows:

according to Alenia Spazio Thermal Balance Test correlation findings (RD-2.4).

Details of Unit - Panel Contact Conductances (including spreading effect if applicable) are given in Table 3.1.3-2

HERSCHEL PLANCK DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 37 of 135

UNIT	NODE	PANEL	CONTACT AREA [CM2]	MOUNTING NODES TOTAL AREA [CM2]	AC/AN	FILLER YES=1 NO=0	GL Ac <1000CM2 [W/°C]	GL Ac >1000CM2 [W/°C]	GL (WITH SPREADING EFFECT) [W/°C1
RFDN	101	+ Y + Z	2634.24	3654	0.72	1		26.34	26.34
EPC1	102	+ Y + Z	224.00	1218	0.18	1	8.59		3.51
EPC2	103	+ Y + Z	224.00	609	0.37	1	8.59		7.02
TRANSX1	104	+ Y + Z	373.00	812	0.46	1	9.04		9.04
TRANSX2	105	+ Y + Z	373.00	812	0.46	1	9.04		9.04
TWTA1	106	+ Y + Z	306.00	1624	0.19	1	8.86		3.71
TWTA2	107	+ Y + Z	306.00	812	0.38	1	8.86		7.42
PCDU	201	+ Y	1779.57	2436	0.73	1		17.80	17.80
CDMU	202	+ Y	1171.60	2436	0.48	1		11.72	11.72
ACC	203	+ Y	937.28	1827	0.51	1	9.91		9.91
BATT	204	+ Y	725.00	1827	0.40	1	9.66		8.52
FPSPU1-2	301	+ Y - Z	492.00	812	0.61	1	9.29		9.29
FPDPU	303	+ Y - Z	664.00	1218	0.55	1	9.58		9.58
FPBOLC	304	+ Y - Z	1105.00	1827	0.60	1		11.05	11.05
FPMECDE C	305	+ Y - Z	1792.00	3045	0.59	1		17.92	17.92
CRYOE	401	- Z	925.00	1827	0.51	1	9.90		9.90
HSDCU	404	- Z	1130.00	1624	0.70	1		11.30	11.30
HSDPU	405	- Z	644.00	1218	0.53	1	9.55		9.55
HSFCU	406	- Z	965.00	1218	0.79	1	9.94		9.94
FHWOV	501	- Y - Z	520.00	1624	0.32	1	9.34		6.65
FHHRV	502	- Y - Z	1102.50	1827	0.60	1		11.03	11.03
FHICU	503	- Y - Z	644.00	1827	0.35	1	9.55		7.48
FHFCU	504	- Y - Z	778.00	1827	0.43	1	9.73		9.21
FHWEV	506	- Y - Z	696.00	812	0.86	1	9.62		9.62
FH3DV	507	- Y - Z	49.00	406	0.12	1	7.38		1.98
FHWOH	601	- Y	520.00	1218	0.43	1	9.34		8.87
FHWEH	602	- Y	696.00	1218	0.57	1	9.62		9.62
FHHRH	603	- Y	1102.50	1827	0.60	1		11.03	11.03
FHLCU	604	- Y	750.00	1218	0.62	1	9.69		9.69
FHLSU	605	- Y	970.00	1827	0.53	1	9.95		9.95
FH3DH	606.0	- Y	49.00	406	0.12	1	7.38		1.98
RWS1	701	- Y + Z	961.63	0					GL of RW
RWS2	702	- Y + Z	961.63	0					assumed from Integral
RWS3	703	- Y + Z	961.63	0					data (TBC)
RWS4	704	- Y + Z	961.63	0					
RWDE	705	- Y + Z	761.52	1624	0.47	1	9.71		9.71
QRS1	706	- Y + Z	297.00	1200	0.25	1	8.84		4.86
QRS2	707	- Y + Z	297.00	2400	0.12	1	8.84		2.43
GYRO	801	+ Z	532.00	3600	0.15	1	9.37		3.08
PDU	802	+ Z	225.00	2400	0.09	1	8.59		1.79

DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 38 of 135

• Honeycomb Panel Conductivity

- Conductive couplings across honeycomb panel (identified as "Z" direction) are calculated by multiplying the effective thermal conductivity Kz and the cross section between two thermal nodes (panel internal / external sides):

GL(int,ext) = KZ * A(node) / d

where

KZ = thermal conductivity across the honeycomb [W/m°C] A(node) = node area [m2] d = overall thickness of the honeycomb panel [m]

- Lateral thermal conductance of honeycomb panel (identified as "XY" direction) is calculated by multiplying the effective thermal conductivity Kxy by the cross section and dividing it by the distance between the two thermal nodes.

$$GL(xxx,yyy) = KXY * A(cross section) / d$$

where

KXY = in plane conductivity of the honeycombA(cross section) = cross section between the two nodes d = distance of the center of mass of the two adjacent nodes

Structural characteristics and thermal conductivity (Kz, Kxy) of the panels are hereafter reported (Remark: the conductivity evaluation has been made as per RD.2-1).

LOCATION	Н/С ТҮРЕ	SKIN TYPE	SKIN CONDUCTIVITY [W/MK]	THICK. SKIN [MM]	THICK. CORE[MM]	KXY [W/MK]	KZ [W/MK]
Upper and	3/16-50560007	M18/G801	20	0.4	20	1.21	1.19
Lower							
Closure							
Lateral	3/16-50560007	AA7075T6	130	0.3	35	2.64	1.17
Equipment	3/16-50560007	M18/G801	20	0.3	20	1.03	1.18
Platform							
Shear Web	3/16-5056001	M18/G969	20	0.76	15	2.43	1.78
Cone	3/16-5056001	M40/914	20	0.54	15	1.95	1.74
Reinforced	1/8-5056002	M40/914	20	1.08	13.92	4.39	5.32
Cone							

Table 3.1.3.2-3 HERSCHEL - SVM Honeycomb panels thermal properties

• Interfaces between different panels and platforms

The interface conductances between different panels are calculated taking into account the serial of the panel conductance from the center of the node to the interface device (cleats, brackets, ...) and the conductance of the interface device itself.

DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 39 of 135

• Interfaces between external items / thrusters and spacecraft

The external items (AAD, VMC, SAS and SREM) and the thrusters are considered thermally decoupled from the spacecraft.

An overall conductance of 0.2 W/Km is currently assumed.

Remark:

The thrusters GMM and the TMM are currently derived from the INTEGRAL program.

3.2 SVM INTERFACE REQUIREMENTS

The HERSCHEL SVM interface requirements are listed below:

REQUIR.	DESCRIPTION	RESULT	STATUS
ITP-020-H	CVV MLI Ext. layer temp. < 140 K	Boundary in theTMM	С
ITS-020-H	MLI Closure Ext. layer temp. on H-PLM side = 250 K (TBC)	Boundary in theTMM	С
ITP-030-H	CVV total negative conductive loads of 1 W	Boundary in theTMM	С
ITS-021-H	Sunshield total positive loads onto SVM of 15 W (TBC)	Boundary in theTMM	С
ITP-040-H	SVM shield total neg. loads onto SVM of 1 W	Boundary in theTMM	С
ITP-050-H	Total negative loads onto FHLSU via wave-guides of 1 W	Boundary in theTMM	С
ITP-060-H	Wawe Guide negative heat loads onto SVM < 1 W	Boundary in theTMM	С
ITP-090-H	MLI on top SVM max decoupling	Low Emissivity used	С
ITP-100-H	MLI on top SVM Exter. layer temp. < 220 K	Average 214°C	С
ITP-120-H	CVV truss attachement points temp < 293 K	303 K	NC
ITP-130-H	SVM shield attach. point temp. < 293 K	303 K	NC
ITI-020-H	Temp. design range and stability req.	See Analysis Results and discussion	С
ITL-010-H	ARIANE 5 interfaces	NA	NA

DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 40 of 135

3.3 HERSCHEL - THERMAL ANALYSIS

3.3.1 Thermal Analysis Sizing Cases

Two fins on the +Y and -Y Panel have been designed to eliminate the Solar Flux on the two Panels as described in the Design Report AD-2.7.

Due to the use of these fins, the difference on the Temperature results between the case with a rotation of +1deg. and -1deg.^o around X-axis, is lower then 1 °C.

For this reason, the Cold Cases were performed using only one position (Rot $X = -1^{\circ}$).

According to AD-2.10, the following sizing cases have been performed:

Case 7= Hot Case in worst Attitude (-30° around the Yaxis and +/- 1° on the Xaxis) and in various operating Modes

- Mode 1 (sizing for HIFI units)
- Mode 2 (sizing for PACS units)

Case 2 = Cold Case in worst Attitude, $(+30^{\circ} \text{ around the Yaxis})$ and in various operating Modes

- Mode 1 (sizing for HIFI)
- Mode 3 (sizing for SPIRE)
- Survival = all warm units are Switched-Off

Solar constant values are defined in AD-2.10.

Table 3.3.1-1	HERSCHEL -	Steady	State	Analysis	Cases
		~~~~		)	

CASE	BOL/EOL	SUN ON PANEL	SOLAR ASPECT ANGLE [DEG]	ATTITUDE	SOLAR CONSTANT [W/M ² ]	DISSIPATION MODE
7A	EOL	+X+Y	30	Rot $X = +1$ Rot $Y = -30$	1405	Telecom / MODE1
7A	EOL	+X+Y	30	Rot $X = +1$ Rot $Y = -30$	1405	Telecom / MODE2 Photometry
7A	EOL	+X+Y	30	Rot $X = +1$ Rot $Y = -30$	1405	Telecom / MODE2 Spectroscopy
7B	EOL	+X-Y	30	Rot $X = -1$ Rot $Y = -30$	1405	Telecom / MODE1
7B	EOL	+X-Y	30	Rot $X = -1$ Rot $Y = -30$	1405	Telecom / MODE2 Photometry
7B	EOL	+X-Y	30	Rot $X = -1$ Rot $Y = -30$	1405	Telecom / MODE2 Spectroscopy
2B	BOL	+X-Y	30	Rot $X = -1$ Rot $Y = +30$	1285	Scientific / MODE3
2B	BOL	+X-Y	30	Rot $X = -1$ Rot $Y = +30$	1285	Scientific / MODE1
2B	BOL	+X-Y	30	Rot $X = -1$ Rot $Y = +30$	1285	Survival
2B	EOL	+X-Y	30	Rot $X = -1$ Rot $Y = +30$	1285	Survival



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 41 of 135

### 3.3.2 Power Dissipation

Herschel Payload Operating Modes are the following (as per AD-2.10):

MODE	HIFI	PACS	SPIRE	COMMENTS
1	Prime	Standby	Standby	
2	Standby	Prime	Standby	Photometry / Spectrometry in PACS Prime
3	Standby	Standby	Prime	

Power dissipations used in the analysis cases are shown in Table 3.3.2-1.

Cold Case analyses have been performed considering the Equipment units in Scientific Observations mode, the Warm Units in MODE1 and MODE3.

Hot Case analyses (EOL7A, EOL7B) have been performed considering the Equipment units in Telecom phase mode, the Warm Units in MODE1 or MODE2 and within the MODE2, Photometry and Spectroscopy.

		Scientific	Scientific	Telecom	Telecom	Telecom	Survival
		Observation	Observation	Phase	Phase	Phase	
		MODE3	MODE1	MODE1	MODE2 /	MODE2 /	
		SPIRE Prime	HIFI Prime	HIFI Prime	Photometry	Spectroscopy	
					PACS Prime	PACS Prime	
NODE	LABEL	BOL Case	BOL Case	EOL Case	EOL Case	EOL Case	
		[W]	[W]	[W]	[W]	[W]	[W]
PAN	NEL +Z+Y						
101	RFDN	0	0	8	8	8	8
102	EPC1	9	9	9	9	9	9
103	EPC2	0	0	0	0	0	0
104	TRANSX1	7	7	13	13	13	13
105	TRANSX2	7	7	7	7	7	7
106	TWTA1	0	0	38	38	38	38
107	TWTA2	0	0	0	0	0	0
PA	NEL +Y						
201	PCDU	153	153	127	127	127	97
202	CMDU	36	36	36	36	36	36
203	ACC	24	24	24	24	24	24
204	BATT	2.1	2.1	2.1	2.1	2.1	7.9
PAN	NEL +Y-Z						
	PACS						
301	FPSPU1_2	30.3	30.3	30.3	30.3	30.3	0
303	FPDPU	24	24	24	24	24	0
304	FPBOLC	6.6	6.6	6.6	48.6	6.6	0
305	FPMECDEC	20.9	20.9	20.9	21.6	65	0
PA	NEL –Z						
401	CRYOE	15	15	15	15	15	0
i	SPIRE						
404	HSDCU	37	37	37	37	37	0
405	HSDPU	15.3	15.3	15.3	15.3	15.3	0
406	HSFCU	42.9	42.9	42.9	42.9	42.9	0
PA	NEL –Y-Z						

Table 3.3.2-1 HERSCHEL - Units Power Dissipations



HERSCHEL PLANCK DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 42 of 135

HIFI	I					
501 FHWOV	2.2	2.2	2.2	2.2	2.2	0
502 FHHRV	63.3	63.3	63.3	63.3	63.3	0
503 FHICU	29.6	29.6	29.6	29.6	29.6	0
504 FHFCU	13	13	13	13	13	0
506 FHWEV	26.9	26.9	26.9	26.9	26.9	0
PANEL -Y						
HIFI						
601 FHWOH	2.2	2.2	2.2	2.2	2.2	0
602 FHWEH	26.9	26.9	26.9	26.9	26.9	0
603 FHHRH	63.3	63.3	63.3	63.3	63.3	0
604 FHLCU	26	35.4	35.4	26	26	0
605 FHLSU	5	45.8	45.8	5	5	0
PANEL -Y+Z						
701 RWL1_C	7.3	7.3	7.3	7.3	7.3	0
702 RWL2_C	7.3	7.3	7.3	7.3	7.3	0
703 RWL3_C	7.3	7.3	7.3	7.3	7.3	0
704 RWL4_C	0	0	0	0	0	0
705 RWDE	23.1	23.1	23.1	23.1	23.1	0
SHEAR +Y						
706 QRS1	8	8	8	8	8	0
707 QRS2	8	8	8	8	8	0
SHEAR +Z						
801 GYRO	21	21	21	21	21	0
802 PDU	10	10	10	10	10	0
CENTRAL TRUSS						
42 STRMY	13	13	13	13	13	0

### 3.3.3 Heater Sizing and Breakdown

An optimized heater definition approach was followed in order to define the minimum heater power needed by the TCS. It included the following major steps:

- a) selection of the minimum applicable temperature limits
- b) addition of  $+3^{\circ}$ C to the minimum limits (i.e. to achieve the minimum heater control threshold)
- c) addition of the defined uncertainty  $(+9^{\circ}C/+11^{\circ}C \text{ as applicable})$  to obtain a new set of temperatures
- d) computation of the needed heater power to maintain units at the those temperature levels in steady state conditions
- e) definition of the upper threshold at  $+5^{\circ}$ C above the minimum threshold
- f) transient analysis with automatic heater control routines within the defined thresholds
- g) verification of the results and local adjustement of heater power as necessary to achieve a proper variation of the equipment temperatures between thersholds (with a heater duty cycle < 100%)

The Heater circuit breakdown with the heater power impressed on the TMM nodes is shown in Table 3.3.3-1



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 43 of 135

Table 3.3.3-1 HERSCHEL - Heater Circuits Breakdown and Temperature Thresholds

HEATER LINE		PURPOSE	Heater	Heater node	Threshold [°C]	PURPOSE	Heater	Heater node	Threshold [°C]	
IDEN	ITIFICA	TION		Node	power [W]	(com. on unit)		Node	power [W]	(com. on unit)
	Main	Red.								
HTR-	MA1	RA1	Nominal	6107	5.0	-7/-2 (TWTA1)	Survival	6107	5.0	-7/-2 (TWTA1)
				6115	5.0			6115	5.0	
				6104	7.0			6104	7.0	
				6105	7.0			6105	7.0	
				6112	7.0			6112	7.0	
-				6100	7.0			6100	7.0	
				6110	2.0			61109	2.0	
				6117	2.5			6117	2.5	
				6110	2.0			6110	2.3	
	1440	DAG	Nie and a si	0110	2.5	7/0/714/740	Quantizat	0110	2.5	7/0/714/740
HIR-	MA2	RA2	Nominai	6147	5.0	-7/-2 (TVVTA2)	Survivai	6147	5.0	-7/-2 (TWTA2)
-				6148	5.0			6148	5.0	
-				6144	14.0			6144	14.0	
				6125	14.0			6145	14.0	
				6120	2.0			6120	2.0	
				6120	2.5			6120	2.3	
				6133	2.3			6133	2.5	
	1454	554		0134	2.5		0 · · ·	0134	2.5	
HIR-	MB1	RB1	Nominal	6208	5.0	5/10 (BATT.)	Survival	6208	5.0	5/10 (BATT.)
				6209	5.0			6209	5.0	
				6210	5.0			6210	5.0	
				6220	15.0			6220	15.0	
				6222	15.0			6222	15.0	
				6232	5.0			6232	5.0	
			ļ	6233	5.0			6233	5.0	
HTR-	MB2	RB2					Survival	6227	7.5	-7/-2 (CDMU)
								6228	7.5	
								6229	7.5	
								6230	7.5	
HTR-	MC1	RC1	Nominal	6324	6.0	-12/-7 (FPBOLC)				
				6332	6.0					
				6340	6.0					
				6342	3.3					
				6343	3.3					
				6344	3.3					
HTR-	MC2	RC2					Survival	6324	6.0	-27/-22 (FPBOLC)
								6332	6.0	
								6340	6.0	
								6342	3.3	
								6343	3.3	
								6344	3.3	
HTR-	MC3	RC3					Survival	6302	8.0	-22/-17 (FPDPU)
								6304	8.0	
								6318	8.0	
								6339	8.0	
								6333	8.0	
								6334	8.0	
								6345	8.0	
HTR-	MD1	RD1	Nominal	6403	2.0	-12/-7 (CRYOE)				
				6404	2.0					
				6428	2.0					
				6457	2.0					
				6470	2.0					
HTR-	MD2	RD2					Survival	6414	10.0	-22/-17 (CRYOE)
								6402	10.0	
								6416	10.0	



# HERSCHEL PLANCK

DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 44 of 135

HEATER LINE		PURPOSE	Heater	Heater node	Threshold [°C]	PURPOSE	Heater	Heater node	Threshold [°C]	
IDEN	ITIFICA	TION		Node	power [W]	(com. on unit)		Node	power [W]	(com. on unit)
	Main	Red.								
HTR-	MD3	RD3					Survival	6409	7.5	-32/-27 (HSDPU)
								6411	7.5	
								6452	7.5	
								6464	7.5	
-								6409 6471	7.5	
HTR-	ME1	RF1	Nominal	6531	5.0	ATC (FHWOV)		0471	7.0	
			Nomina	6532	5.0	AIO (I 11000)				
				6539	5.0					
				6540	5.0					
HTR-	ME2	RE2					Survival	6505	15.0	-22/-17 (FHICU)
								6506	15.0	(*********
								6524	5.0	
HTR-	ME3	RE3					Survival	6501	15.0	-22/-17 (FHHRV)
								6517	15.0	
-								6519	10.0	
								6533	5.0	
								6535	10.0	
								6538	9.0	
								6531	1.5	
								6532	1.5	
								6539	1.5	
								6540	1.5	
HTR-	MF1	RF1	Nominal	6608	10.0	ATC (FHWOH)				
		DEO	Naminal	6619	10.0					
	IVIFZ	KF2	Nominal	6615	9.0					
HTR-	MF3	RF3	Nominal	6639	5.0 6.0	ATC (FHHRH)				
	NH O	1410	Normital	6640	6.0	7(10(1111(1))				
				6641	6.0					
				6653	6.0					
				6663	6.0					
				6664	6.0					
HTR-	MF4	RF4	Nominal	6645	3.5	ATC (FHLCU)				
				6646	3.5					
				6658	3.5					
HTR-	MF5	RF5	Nominal	6654	10.0	ATC (FHI SU)				
			. to minut	6655	10.0	/				
HTR-	MF6	RF6					Survival	6618	10.0	-22/-17 (FHWOH)
								6619	10.0	. ,
HTR-	MF7	RF7					Survival	6605	10.0	-22/-17 (FHWEH)
								6603	10.0	
	MEO	DEO					Quantizat	6617	10.0	00/ 47
HIR-	MF8	RF8					Survival	6658	10.0	-22/-17 (FHHRH)
								6650	10.0	
								6655	10.0	
								6663	10.0	
								6664	10.0	
								6665	10.0	
HTR-	MF9	RF9					Survival	6632	10.0	-22/-17 (FHLSU)
								6634	10.0	, ,
								6641	10.0	
								6644	10.0	

Alenia
SPAZIO

# HERSCHEL PLANCK

DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 45 of 135

HE.	ATER L ITIFICA	ine Tion	PURPOSE	Heater Node	Heater node power [W]	Threshold [°C] (com. on unit)	PURPOSE	Heater Node	Heater node power [W]	Threshold [°C] (com. on unit)
	Main	Red.								
HTR-	MG1	RG1	Nominal	6715	10.0	3/8 (RW1)	Survival	6715	10.0	3/8 (RW1)
				6710	10.0			6710	10.0	
HTR-	MG2	RG2	Nominal	6734	10.0	3/8 (RW3)	Survival	6734	10.0	3/8 (RW3)
				6739	10.0			6739	10.0	
HTR-	MG3	RG3					Survival	6715	17.0	-7/-2 (RWDE)
								6710	17.0	
								6734	17.0	
								6739	17.0	
HTR-	MH1	RH1	Nominal	950	5.0	13/18 (TANK1)	Survival	950	5.0	13/18 (TANK1)
HTR-	MH2	RH2	Nominal	960	5.0	13/18 (TANK2)	Survival	960	5.0	13/18 (TANK2)
HTR-	MH3	RH3	Nominal	8133	2.0	13/18 (RCT1 m)	Survival	8133	2.0	13/18 (T8133)
				8134	2.0			8134	2.0	
HTR-	MH4	RH4	Nominal	8233	2.0	13/18 (RCT2 m)	Survival	8233	2.0	13/18 (T8233)
				8234	2.0			8234	2.0	
HTR-	MH5	RH5	Nominal	8333	2.0	13/18 (RCT3 m)	Survival	8333	2.0	13/18 (T8333)
				8334	2.0			8334	2.0	
HTR-	MH6	RH6	Nominal	8433	2.0	13/18 (RCT4 m)	Survival	8433	2.0	13/18 (T8433)
				8434	2.0			8434	2.0	
HTR-	MH7	RH7	Nominal	8533	2.0	13/18 (RCT5 m)	Survival	8533	2.0	13/18 (T8533)
				8534	2.0			8534	2.0	
HTR-	MH8	RH8	Nominal	8633	2.0	13/18 (RCT6 m)	Survival	8633	2.0	13/18 (T8633)
				8634	2.0			8634	2.0	
HTR-	MH9	RH9	Nominal	TBD		13/18 (T TBD)	Survival	TBD		13/18 (T TBD)
HTR-	MH10	RH10	Nominal	TBD		13/18 (T TBD)	Survival	TBD		13/18 (T TBD)
HTR-	MH11	RH11	Nominal	TBD		13/18 (T TBD)	Survival	TBD		13/18 (T TBD)
HTR-	MI1	RI1	Nominal	811	5.0	-17/-12	Survival	811	5.0	-17/-12
						(STRMY)				(STRMY)
HTR-	MI2	RI2	Nominal	831	5.0	-17/-12 (STRPY)	Survival	831	5.0	-17/-12
										(STRPY)
HTR-	MI3	RI3	Nominal		5.0	TBD	Survival		5.0	TBD
HTR-	MI4	RI4	Nominal		5.0	TBD	Survival		5.0	TBD

### 3.3.4 Thermal stability

As reported in AD-2.7, in order to meet the stabilty requirement on HIFI and SPIRE Warm Units (+/- 3k/hour), no active thermal control is requested; but on units having an heater control (501 FHWOV, 601 FHWOH, 605 FHLSU) this requirement is met using an adequate heater power sizing.

A dedicated set of thermal analyses has been performed in order to verify the stability goal on the HIFI Units. The only possibility to satisfy it, is to improve an active thermal control using an adequate control law as described hereafter.

The critical Units must to be mantained not only at the minimum operative limit, but also at the maximum temperature level achieved on the hot cases.

The comparison in term of extra heater power is reported in the results 3.4.5 paragraphs

### 3.3.4.1 Active Control Law

The use of an active thermal control was deemed necessary in order to satisfy the very stringent requirements of thermal stability applied to the HIFI units of the Payload carried on the Service Module of the HERSCHEL satellite. The development of the active thermal control algorithm dedicated to the HIFI units started after the finalization of the global TMM used to define the thermal design in his main aspects.



Due to the high level of definition of the global TMM, approximately 150 thermal nodes for each HIFI panel (2000 thermal nodes globally), the first task was to reduce the model in order to have a more suitable thermal network good for the development of the algorithm.

The reduced model has been tested with ESATAN in order to keep a good correlation ( $|T_{detailed} - T_{reduced}| \le 3$  °C) between the detailed model and the reduced one.

The thermal network has been written in his characteristic differential equation.

The non-linear terms (e.g. radiative conductors) have been linearized around his equilibrium point using Taylor expansion.

The obtained linear system has been transformed into the state-space form, well suited for control analysis.

$$\frac{dx}{dt} = Ax + Bu + Md$$
$$y = Cx + Du$$

with

x = [...] state vector (all the temperatures considered in the system)

u = [...] command vector (heater power applied on the panel)

d = [...] disturb vector (unit power, boundary condition)

y = [...] output vector (unit temperature to be controlled)

At the beginning of the analysis, the system has been considered as a MIMO (=Multi Input Multi Output) but doing a RGA analysis (=Relative Gain Array) it was clear that for the control purpose the 5 outputs (=y) could be considered as 5 SISO (=Single Input Single Output) respectively.

After that for each SISO has been found the appropriate PI regulator and then discretized with the TUSTIN method with a sampling time of 10 seconds (the sampling characteristic of the data acquisition system). The specifications applied to this system are :

 $e_{\infty} = 0$ cutting frequency = 0.001 Hz

The algorithm is:  $P_k = P_{k-1} + alpha (T_{ref} - T_k) + beta (T_{ref} - T_{k-1})$ 

With:

 $\begin{aligned} &k = regulation \ cycle \ (cycle \ period = 10 \ seconds) \\ P_k = heating \ power \ at \ discrete \ time \ k \\ T_k = measured \ temperature \ at \ discrete \ time \ k \\ T_{ref} = set \ point \ temperature \\ alpha = \ first \ term \ of \ PI \ corrector \ coefficient \\ beta = \ second \ term \ of \ PI \ corrector \ coefficient \end{aligned}$ 

The algorithm has been applied to the following units with the following parameters (coefficient of the regulator and temperature set points):

- FHWOV (T501) alpha = 7.003 beta = -6.997 Temp. set point =  $12 \degree C$
- FHWOH (T601) alpha = 15.01 beta = -14.99 Temp. set point =  $12 \degree C$
- FHWEH (T602) alpha = 15.01 beta = -14.99 Temp. set point = 21 °C
- FHHRH (T603) alpha = 25.01 beta = -24.99 Temp. set point =  $37 \degree C$
- FHLCU (T604) alpha = 25.01 beta = -24.99 Temp. set point =  $37 \degree C$
- FHLSU (T605) alpha = 30.01 beta = -29.99 Temp. set point = 32 °C



ISSUE : **01** DATE : **13/NOV/02** PAGE : **47 of 135** 

### 3.3.5 Thermal Analysis Cases with Attitude Change

Two Cases with an Attitude Change have been performed with the HIFI Units in Prime Mode. Here only the analysis results devoted to meet the stability goal are presented, as far as this is a conservative situation.

**HERSCHEL** 

**PLANCK** 

The stability goal is reached with the active control law implemented on the -Y Panel Units (FHWOH, FHWEH, FHHRH, FHLCU, FHLSU) and on the -Y-Z Unit (FHWOV).

Justification is:

- all units belonging to -Y panel require an active control during the attitude change (otherwise stability requirement is exceeded for about 7 hrs following the attitude change due to some solar heating and reflection effects from HPLM interface MLI)
- FHWOV belonging to -Y-Z panel requires a dedicated heater power, consequently the active control law is needed.

The analysed cases are:

Cold Transient (Case 1): Starting from S/S case BOL2B: Sun on +X -Y axis, SAA=+30°/-1° Ending to case S/S case BOL7B: Sun on -X +Y axis, SAA=-30°/-1° Power units dissipation: constant (see value corresponding to BOL Cases in Table 3.2.2-2, Scientific Observation and Warm Units in MODE1 with HIFI in Prime Mode) Heater dissipation: Active Control Law on HIFI Units (nodes 501, 601, 602, 603, 604, 605). Duration of change of attitude: 1200s (20 min) at the 139600s Overall duration of transient case: 432000s (96 hours)

Hot Transient (Case 2): Starting from S/S case EOL7A: Sun on -X +Y axis, SAA=-30°/+1° Ending to S/S case EOL2A: Sun on +X -Y axis, SAA=+30°/+1° Power units dissipation: constant (see value corresponding to EOL Cases in Table 3.2.2-2, Telecom Phase and Warm Units in MODE1 with HIFI in Prime Mode) Heater dissipation: Active Control Law on HIFI Units (noded 501, 601, 602, 603, 604, 605). Duration of change of attitude: 1200s (20 min) at the 139600s Overall duration of transient case: 432000s (96 hours)



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 48 of 135

3.3.6 Emergency Mode Cases and Results

Intentionally Left Blank





ISSUE : 01 DATE : 13/NOV/02 PAGE : 49 of 135

### 3.4 HERSCHEL – THERMAL ANALYSIS RESULTS

### 3.4.1 Results of Sizing Cases

The temperature results hereafter presented (Tables 3.4.1-1 to 4) refer to the Sizing Cases reported in paragraph 3.3.1. The values are inclusive of  $11^{\circ}$ C of uncertainty for the HIFI Units and  $9^{\circ}$ C of uncertainty for all the other Units according to the uncertainty analysis.

Table 3.4.1-1 HERSCHEL	- Units Temp	erature results:	Sizing (	Case BOL No	ominal.
------------------------	--------------	------------------	----------	-------------	---------

		Ope	rative	Not Oj	perative	BOL2B	BOL2B
		Temp	eratures	Tempe	eratures	Scientific	Scientific
		Li	mits	Liı	nits	MODE1	MODE3
		MIN	MAX	MIN	MAX	T-UFP	T-UFP
NODE	LABEL	[°C]	[°C]	[°C]	[°C]	[°C]	[°C]
6	SASZ	-70	80	-70	80	-1.9	-1.9
46	SAS-Z	-70	80	-70	80	-24.4	-24.6
101	RFDN	-40	70	-50	80	-22.5	-22.5
102	EPC1	-15	45	-25	55	(*) -6.6	(*) -6.6
103	EPC2	-15	45	-25	55	(*) -12.1	(*) -12.1
104	TRANSX1	-10	50	-20	60	(*) -2.7	(*) -2.7
105	TRANSX2	-10	50	-20	60	(*) -5.5	(*) -5.5
106	TWTA1	-15	50	-25	60	(*) –10	(*) –10
107	TWTA2	-15	50	-25	60	(*) –10	(*) –10
201	PCDU	-10	45	-20	55	12.7	12.7
202	CMDU	-10	45	-20	55	-10.7	-10.7
203	ACC	-20	55	-30	65	-14.4	-14.4
204	BATT	0	35			(*) 2	(*) 2
301	FPSPU1_2	-15	45	-30	60	1.4	1.4
303	FPDPU	-15	45	-30	60	-4	-4
304	FPBOLC	-15	45	-30	60	(*) –15	(*) –15
305	FPMECDEC	-15	45	-30	60	(*) -12.1	(*) -12.1
401	CRYOE	-15	45	-25	55	(*) –15	(*) –15
404	HSDCU	-15	45	-35	80	-13.9	-14.1
405	HSDPU	-15	45	-35	80	(*) -10.8	(*) -10.9
406	HSFCU	-15	45	-35	80	-5.4	-5.4
501	FHWOV	0	15	-25	55	(*) 0	(*) 0
502	FHHRV	-10	40	-25	55	10.1	10
503	FHICU	-25	45	-30	60	-6.8	-6.9
504	FHFCU	-10	40	-25	55	-10.5	-10.7
506	FHWEV	0	25	-25	55	-2.8	-2.8
507	FH3DV	-10	40	-25	55	-22.9	-23.1
601	FHWOH	0	15	-25	55	(*) 0	(*) 0
602	FHWEH	0	25	-25	55	(*) 0	(*) 0
603	FHHRH	-10	40	-25	55	1.2	0.7
604	FHLCU	-10	40	-25	55	7.8	1.6
605	FHLSU	-10	40	-25	55	0.9	(*) –10
606	FH3DH	-10	40	-25	55	-3.1	-6.1
701	RWL1_C	0	50	-10	60	(*) 0	(*) 0
702	RWL2_C	0	50	-10	60	(*) 0.5	(*) 0.5
703	RWL3_C	0	50	-10	60	(*) 0	(*) 0
704	RWL4_C	0	70	-10	60	(*) -3.7	(*) –3.7
705	RWDE	-10	50	-20	60	-5.1	-5.1
706	QRS1	-15	45	-35	65	-6	-6
707	QRS2	-15	45	-35	65	-5.7	-5.7



HERSCHEL PLANCK DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 50 of 135

		Operative Temperatures Limits		Not Operative Temperatures Limits		BOL2B Scientific MODE1	BOL2B Scientific MODE3
		MIN	MAX	MIN MAX		T-UFP	T-UFP
NODE	LABEL	[°C]	[°C]	[°C] [°C]		[°C]	[°C]
801	GYRO	-15	45	-25	55	-2.6	-2.7
802	PDU	-15	45	-25	55	-3.7	-3.7
811	STRMY	-20	30	-30	50	-15.2	-15.3
831	STRPY	-20	30	-30	50	(not op)-25.6	(not op) -25.7
950	TANK1	10	40	10	40	(*) 10	(*) 10
960	TANK2	10	40	10	40	(*) 10	(*) 10

(*) Units with dedicated heater control properly sized; relevant applied uncertainty is 3°C, corresponding to the automatic control chain uncertainty.

		Ope	rative	Not Or	oerative	BOL2B	EOL2B
		Temp	eratures	Tempe	ratures	Survival	Survival
		Ĺi	mits	Ĺir	nits		
		MIN	MAX	MIN	MAX	T+UFP	T+UFP
NODE	LABEL	[°C]	[°C]	[°C]	[°C]	[°C]	[°C]
6	SASZ	-70	80	-70	80	-7.5	-7
46	SAS-Z	-70	80	-70	80	-32.6	-32.6
101	RFDN	-40	70	-50	80	-21.8	-17.5
102	EPC1	-15	45	-25	55	(*) –10	(*) –10
103	EPC2	-15	45	-25	55	(*) -10	(*) –10
104	TRANSX1	-10	50	-20	60	(*) -3	(*) –2
105	TRANSX2	-10	50	-20	60	(*) -5.5	(*) -7.2
106	TWTA1	-15	50	-25	60	(*) 5.8	(*) 11.3
107	TWTA2	-15	50	-25	60	(*) 0.1	(*) -12.7
201	PCDU	-10	45	-20	55	-5.4	-5.2
202	CMDU	-10	45	-20	55	(*) –10	(*) -10
203	ACC	-20	55	-30	65	-23	-22.8
204	BATT	0	35			(*) 2	(*) 2
301	FPSPU1_2	-15	45	-30	60	(*) -24.7	(*) -24.5
303	FPDPU	-15	45	-30	60	(*) –30	(*) –30
304	FPBOLC	-15	45	-30	60	(*) –30	(*) –30
305	FPMECDEC	-15	45	-30	60	(*) -28.4	(*) -28.3
401	CRYOE	-15	45	-25	55	(*) -25	(*) –25
404	HSDCU	-15	45	-35	80	(*) -28.6	(*) -28.5
405	HSDPU	-15	45	-35	80	(*) –35	(*) –35
406	HSFCU	-15	45	-35	80	(*) -27.9	(*) -27.8
501	FHWOV	0	15	-25	55	(*) -19.4	(*) -19.4
502	FHHRV	-10	40	-25	55	(*) –25	(*) –25
503	FHICU	-25	45	-30	60	(*) -25	(*) –25
504	FHFCU	-10	40	-25	55	(*) -21.5	(*) -21.5
506	FHWEV	0	25	-25	55	(*) -24.3	(*) -24.3
507	FH3DV	-10	40	-25	55	(*) -33.9	(*) -33.9
601	FHWOH	0	15	-25	55	(*) -25	(*) –25
602	FHWEH	0	25	-25	55	(*) -25	(*) –25
603	FHHRH	-10	40	-25	55	(*) -25	(*) -25
604	FHLCU	-10	40	-25	55	(*) -21.7	(*) -21.8

Table 3.4.1-2 HERSCHEL - Units Temperature results: Sizing Case BOL Survival.

						DOC : H-I	P-RP-AI-0040
	leni A Z I O MECCANICA COM		HE F	RSC	HEL ICK	ISSUE : <b>01</b> DATE : <b>13</b> PAGE : <b>51</b>	/NOV/02 of 135
		Ope	rative	Not Oj	perative	BOL2B	EOL2B
		Temp	eratures	Tempe	ratures	Survival	Survival
		Li	mits	Liı	nits		
		MIN	MAX	MIN	MAX	T+UFP	T+UFP
NODE	LABEL	[°C]	[°C]	[°C]	[°C]	[°C]	[°C]
605	FHLSU	-10	40	-25	55	(*) -25	(*) –25
606	FH3DH	-10	40	-25	55	(*) -23.5	(*) -23.3
701	RWL1_C	0	50	-10	60	(*) 0	(*) 0
702	RWL2_C	0	50	-10	60	(*) 0.4	(*) 1.2
703	RWL3_C	0	50	-10	60	(*) 0	(*) 0
704	RWL4_C	0	70	-10	60	(*) 1	(*) 1.2
705	RWDE	-10	50	-20	60	(*) –10	(*) –10
706	QRS1	-15	45	-35	65	-17.1	-16.5
707	QRS2	-15	45	-35	65	-17.4	-17
801	GYRO	-15	45	-25	55	-19.2	-17.9

45

30

30

40

40

-15

-20

-20

10

10

PDU

STRMY

STRPY

TANK1 TANK2

802

811

831

950

960

(*) Units with dedicated heater control properly sized; relevant applied uncertainty is  $3^{\circ}$ C, corresponding to the automatic control chain uncertainty.

-25

-30

-30

10

10

55

50

50

40

40

-17

(*) -20

(*) -20 (*) 10 (*) 10 -16.3

(*) -20 (*) -20 (*) 10 (*) 10

Table 2 4 1 2 HEDCOHEL	I In the Transmission and the second		1
Table 3.4 I-3 HERNCHEL -	Linus Lemperature result	S' NIZING CASE EUT. NOM	mai
	emperature result		minui

		Ope	erative	Not O	perative	EOL7A	EOL7A	EOL7A
		Temp	eratures	Tempe	eratures	Telecom	Telecom	Telecom
		Limits		Limits		MODE1	MODE2	MODE2
							Photometry	Spectrometry
		MIN	MAX	MIN	MAX	T+UFP	T+UFP	T+UFP
NODE	LABEL	[°C]	[°C]	[°C]	[°C]	[°C]	[°C]	[°C]
6	SASZ	-70	80	-70	80	49.7	50.3	50.3
46	SAS-Z	-70	80	-70	80	19.8	20.7	20.9
101	RFDN	-40	70	-50	80	29.3	30.2	30.1
102	EPC1	-15	45	-25	55	32.7	33.4	33.4
103	EPC2	-15	45	-25	55	29	29.8	29.7
104	TRANSX1	-10	50	-20	60	36.8	37.7	37.6
105	TRANSX2	-10	50	-20	60	35.5	36.5	36.4
106	TWTA1	-15	50	-25	60	46.6	47.2	47.2
107	TWTA2	-15	50	-25	60	30.2	31	30.9
201	PCDU	-10	45	-20	55	41	42.7	42.4
202	CMDU	-10	45	-20	55	25.8	28.6	28
203	ACC	-20	55	-30	65	22.1	25.1	24.4
204	BATT	0	35			18	19.8	19.6
301	FPSPU1_2	-15	45	-30	60	39.1	44.1	45.8
303	FPDPU	-15	45	-30	60	33.7	39.1	40.3
304	FPBOLC	-15	45	-30	60	17.9	34.4	24.6
305	FPMECDEC	-15	45	-30	60	20.5	27	35.1
401	CRYOE	-15	45	-25	55	27.3	28.3	28.5
404	HSDCU	-15	45	-35	80	29.8	30.8	31
405	HSDPU	-15	45	-35	80	22.3	27.1	28.5
406	HSFCU	-15	45	-35	80	34.6	39	39.8
501	FHWOV	0	15	-25	55	(*) 11	(*) 11	(*) 11



# HERSCHEL PLANCK

DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 52 of 135

		Ope	rative	Not Op	perative	EOL7A	EOL7A	EOL7A
		Temp	eratures	Tempe	ratures	Telecom	Telecom	Telecom
			Limits		Limits		MODE2	MODE2
							Photometry	Spectrometry
		MIN	MAX	MIN	MAX	T+UFP	T+UFP	T+UFP
NODE	LABEL	[°C]	[°C]	[°C]	[°C]	[°C]	[°C]	[°C]
502	FHHRV	-10	40	-25	55	39	38.7	38.8
503	FHICU	-25	45	-30	60	22.4	22.5	22.5
504	FHFCU	-10	40	-25	55	21.2	20.6	20.7
506	FHWEV	0	25	-25	55	23.6	23.6	23.7
507	FH3DV	-10	40	-25	55	5	5	5
601	FHWOH	0	15	-25	55	(*) 11	(*) 11	(*) 11
602	FHWEH	0	25	-25	55	21	19.7	19.7
603	FHHRH	-10	40	-25	55	36.6	30.6	30.6
604	FHLCU	-10	40	-25	55	40.9	22.5	22.6
605	FHLSU	-10	40	-25	55	32.3	(*) 1	(*) 1
606	FH3DH	-10	40	-25	55	28.6	18.2	18.2
701	RWL1_C	0	50	-10	60	42.1	42.4	42.5
702	RWL2_C	0	50	-10	60	43.2	43.7	43.7
703	RWL3_C	0	50	-10	60	42	42.3	42.4
704	RWL4_C	0	70	-10	60	39.5	39.9	40
705	RWDE	-10	50	-20	60	42.8	43.2	43.2
706	QRS1	-15	45	-35	65	36.2	37.6	37.4
707	QRS2	-15	45	-35	65	36.5	38	37.8
801	GYRO	-15	45	-25	55	48.3	49.2	49.2
802	PDU	-15	45	-25	55	47.7	48.4	48.4
811	STRMY	-20	30	-30	50	44.3	45.5	45.5
831	STRPY	-20	30	-30	50	(not op )	(not op)	(not op)
						35.5	37.3	37.4
950	TANK1	10	40	10	40	37.3	38.3	38.4
960	TANK2	10	40	10	40	35.3	37.2	37.2

(*) Units with dedicated heater control properly sized; relevant applied uncertainty is 3°C, corresponding to the automatic control chain uncertainty.

Table 3 / 1 /	HEBSCHEI	Unite Tom	paratura raculter	Sizing (	Case FOL M	ominal
1 auto 5.4.1-4	- HERSCHEL -	Units Temp	crature results.	SIZING V	Case LOL IN	Jiiiiai

		Operative Temperatures Limits		Not Operative Temperatures Limits		EOL7B Telecom MODE1	EOL7B Telecom MODE2 Photometry	EOL7B Telecom MODE2 Spectrometry
		MIN	MAX	MIN	MAX	T+UFP	T+UFP	T+UFP
NODE	LABEL	[°C]	[°C]	[°C]	[°C]	[°C]	[°C]	[°C]
6	SASZ	-70	80	-70	80	49.6	50.2	50.3
46	SAS-Z	-70	80	-70	80	19.8	20.7	20.9
101	RFDN	-40	70	-50	80	28.5	29.4	29.3
102	EPC1	-15	45	-25	55	31.9	32.6	32.6
103	EPC2	-15	45	-25	55	28.1	28.9	28.9
104	TRANSX1	-10	50	-20	60	36.1	37	36.9
105	TRANSX2	-10	50	-20	60	34.7	35.6	35.5
106	TWTA1	-15	50	-25	60	45.8	46.5	46.4
107	TWTA2	-15	50	-25	60	29.3	30	30
201	PCDU	-10	45	-20	55	40.4	42.1	41.8
202	CMDU	-10	45	-20	55	25.4	28.2	27.6



# HERSCHEL PLANCK

DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 53 of 135

		Oner	ative	Not Or	nerative	EOL7B	EOL7B	EOL7B
		Tempe	ratures	Tempe	eratures	Telecom	Telecom	Telecom
		Lin	nits	Li	mits	MODE1	MODE2	MODE2
		2				modeli	Photometry	Spectrometry
		MIN	MAX	MIN	MAX	T+UFP	T+UFP	T+UFP
NODE	LABEL	[°C]	[°C]	[°C]	[°C]	[°C]	[°C]	[°C]
203	ACC	-20	55	-30	65	21.6	24.6	23.9
204	BATT	0	35			17.5	19.4	19.1
301	FPSPU1_2	-15	45	-30	60	38.9	43.9	45.6
303	FPDPU	-15	45	-30	60	33.5	38.9	40.1
304	FPBOLC	-15	45	-30	60	17.7	34.2	24.4
305	FPMECDEC	-15	45	-30	60	20.3	26.8	34.9
401	CRYOE	-15	45	-25	55	27.3	28.3	28.5
404	HSDCU	-15	45	-35	80	29.8	30.7	30.9
405	HSDPU	-15	45	-35	80	22.1	27	28.4
406	HSFCU	-15	45	-35	80	34.4	38.8	39.6
501	FHWOV	0	15	-25	55	(*) 11	(*) 11	(*) 11
502	FHHRV	-10	40	-25	55	39	38.7	38.8
503	FHICU	-25	45	-30	60	22.4	22.5	22.5
504	FHFCU	-10	40	-25	55	21.2	20.6	20.7
506	FHWEV	0	25	-25	55	23.6	23.6	23.7
507	FH3DV	-10	40	-25	55	5	5	5
601	FHWOH	0	15	-25	55	(*) 11	(*) 11	(*) 11
602	FHWEH	0	25	-25	55	21.3	19.9	19.9
603	FHHRH	-10	40	-25	55	37.4	31.3	31.3
604	FHLCU	-10	40	-25	55	41.2	22.6	22.6
605	FHLSU	-10	40	-25	55	32.8	(*) 1	(*) 1
606	FH3DH	-10	40	-25	55	28.7	18.2	18.2
701	RWL1_C	0	50	-10	60	42.4	42.7	42.7
702	RWL2_C	0	50	-10	60	43.5	43.9	43.9
703	RWL3_C	0	50	-10	60	42.3	42.6	42.6
704	RWL4_C	0	70	-10	60	39.7	40.2	40.2
705	RWDE	-10	50	-20	60	43.3	43.6	43.6
706	QRS1	-15	45	-35	65	35.7	37.1	36.9
707	QRS2	-15	45	-35	65	36	37.4	37.2
801	GYRO	-15	45	-25	55	48	48.9	48.8
802	PDU	-15	45	-25	55	47.7	48.4	48.4
811	STRMY	-20	30	-30	50	44.3	45.4	45.5
831	STRPY	-20	30	-30	50	(not op) 35.2	(not op) 37	(not op) 37.1
950	TANK1	10	40	10	40	37.3	38.2	38.3
960	TANK2	10	40	10	40	35	37	37

(*) Units with dedicated heater control properly sized; relevant applied uncertainty is  $3^{\circ}$ C, corresponding to the automatic control chain uncertainty.



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 54 of 135

### 3.4.2 Trade-off Analyses

Trade-off analysis was made with the scope to identify possible design improvements in the Hot case in terms of maximum temperature decrease and heater power budget optimization; the EOL7B- MODE1 case (without any heater operation) was chosen as reference analysis case for the trade off. Major attention is focused on critical items such as Star Trackers and Gyro (data details in Table 3.4.2-1)

Cold case analysis was run to verify that minimum or no impacts are expected in cold cases; a temperature decrease of less than  $1.5^{\circ}$ C was detected even in the worst case (see case (d)).

Summary of impacts of different design solutions on temperature levels and mass budget is:

a)	Use of the Aluminium Tape properties (EPS=0.05) on all Internal Bottom surfaces: Units Temperatures decreasing 1÷2 °C. Mass rising: 0.35 kg
b)	Use of Beta-cloth properties (ALPHA=0.375, EPS=0.87) on the MLI external layer on the -X face: Units Temperatures decrease of 2÷6 °C. Mass rising: 3.3 kg
c)	Use of the two previous options together: Units Temperatures decrease of 2÷6 °C. Mass rising: 3.65 kg
d)	Use of the ITO properties (ALPHA=0.6, EPS=0.77) on the MLI external layers exposed to the Sun: Units Temperatures decrease of 1÷4 °C. Mass rising: negligeable
e)	Use of the Beta-cloth properties on the MLI external layers exposed to the Sun: Units Temperatures decrease of 2÷8 °C. Mass rising: 4.3 kg
f)	Use of the Beta-cloth properties on the MLI external layers on the +Z Panel: Units Temperatures decrease of 0.5÷2.5°C. Mass rising: 0.5 kg

A possible decrease in term of heaters power consumption will be investigated only for the potential in case that one of these options will be selected.



DOC : H-P-RP-AI-0040

ISSUE : **01** DATE : **13/NOV/02** PAGE : **55 of 135** 

SPAZIO A FINMECCANICA COMPANY

Table 3.4.2-1 HERSCHEL – Trade Offs results in Hot Case EOL7B MODE 1

NODE	LABEL	NOM.	BETACLOTH		Aluminum		BETACLOTH -X		ITO on		<b>BETA-CLOTH</b>		BETACLOTH	
			-X		Tape on BOT		Aluminum Tape		SUN		on SUN		on +Z	
			(b)		(a)		on BOT		PANELS		PANELS		(f)	
			.,				(c)		(d)		(e)		.,	
				DELTA		DELTA		DELTA	,	DELTA	. ,	DELTA		DELTA
				WITH		WITH		WITH		WITH		WITH		WITH
				NOM		NOM		NOM		NOM		NOM		NOM
			[°C]	[°C]	[°C]	[°C]	[°C]	[°C]	[°C]	[°C]	[°C]	[°C]	[°C]	[°C]
6	SAS +Z	40.44	35.95	-4.49	39.77	-0.67	35.44	-5	33.46	-6.98	23.42	-17.02	36.82	-3.62
46	SAS -Z	10.46	6	-4.46	9.76	-0.7	5.95	-4.51	7.99	-2.47	4.84	-5.62	9.69	-0.77
101	RFDN	19.43	16.3	-3.13	18.77	-0.66	16.18	-3.25	17.22	-2.21	14.39	-5.04	18.1	-1.33
102	EPC1	22.81	19.79	-3.02	22.78	-0.03	19.99	-2.82	20.73	-2.08	18.06	-4.75	21.59	-1.22
103	EPC2	19.04	16.14	-2.9	18.32	-0.72	15.95	-3.09	17	-2.04	14.35	-4.69	17.7	-1.34
104	TRANSX1	26.94	23.69	-3.25	26.27	-0.67	23.42	-3.52	24.64	-2.3	21.66	-5.28	25.89	-1.05
105	TRANSX2	25.58	22.58	-3	24.87	-0.71	22.4	-3.18	23.37	-2.21	20.57	-5.01	24.53	-1.05
106	TWTA1	36.69	33.97	-2.72	36.59	-0.1	34.08	-2.61	34.87	-1.82	32.54	-4.15	35.73	-0.96
107	TWTA2	20.16	17.47	-2.69	19.48	-0.68	17.29	-2.87	18.31	-1.85	15.83	-4.33	19.09	-1.07
201	PCDU	31.31	28.45	-2.86	30.81	-0.5	28.43	-2.88	29.59	-1.72	27.46	-3.85	30.57	-0.74
202	CMDU	16.27	12.52	-3.75	15.63	-0.64	12.39	-3.88	14.15	-2.12	11.45	-4.82	15.53	-0.74
203	ACC	12.48	9.08	-3.4	11.84	-0.64	9.01	-3.47	10.52	-1.96	8.06	-4.42	11.74	-0.74
204	BATT	8.41	4.87	-3.54	7.99	-0.42	4.88	-3.53	6.33	-2.08	3.73	-4.68	7.6	-0.81
301	FPSPU1_2	29.75	25.89	-3.86	30.41	0.66	27.06	-2.69	27.64	-2.11	25	-4.75	29.15	-0.6
303	FPDPU	24.35	20.49	-3.86	24.67	0.32	21.32	-3.03	22.23	-2.12	19.58	-4.77	23.74	-0.61
304	FPBOLC	8.54	4.39	-4.15	7.48	-1.06	4.02	-4.52	6.24	-2.3	3.33	-5.21	7.83	-0.71
305	FPMECDEC	11.16	7.17	-3.99	10.65	-0.51	7.33	-3.83	8.96	-2.2	6.18	-4.98	10.49	-0.67
401	CRYOE	17.87	13.03	-4.84	17.13	-0.74	13.09	-4.78	15.21	-2.66	11.8	-6.07	17.04	-0.83
404	HSDCU	20.38	15.89	-4.49	19.78	-0.6	16.14	-4.24	17.86	-2.52	14.68	-5.7	19.57	-0.81
405	HSDPU	12.96	9.02	-3.94	12.49	-0.47	9.23	-3.73	10.77	-2.19	8.02	-4.94	12.29	-0.67
406	HSFCU	25.28	21.17	-4.11	25.69	0.41	22.21	-3.07	23.03	-2.25	20.19	-5.09	24.63	-0.65
501	FHWOV	1.39	-1.08	-2.47	1.03	-0.36	-1.13	-2.52	-0.02	-1.41	-1.81	-3.2	0.96	-0.43
502	FHHRV	27.76	26.45	-1.31	27.54	-0.22	26.13	-1.63	27.05	-0.71	26.12	-1.64	27.56	-0.2
503	FHICU	10.82	9.19	-1.63	10.51	-0.31	8.74	-2.08	9.93	-0.89	8.8	-2.02	10.57	-0.25
504	FHFCU	9.86	8.08	-1.78	9.59	-0.27	8.03	-1.83	8.87	-0.99	7.57	-2.29	9.56	-0.3
506	FHWEV	11.46	10.02	-1.44	11.25	-0.21	9.95	-1.51	10.66	-0.8	9.6	-1.86	11.23	-0.23
507	FH3DV	-4.75	-6.73	-1.98	-5.03	-0.28	-6.71	-1.96	-5.87	-1.12	-7.35	-2.6	-5.06	-0.31
601	FHWOH	-2.18	-4.55	-2.37	-3.03	-0.85	-5.78	-3.6	-3.59	-1.41	-5.35	-3.17	-2.67	-0.49
602	FHWEH	9.02	7.07	-1.95	8.44	-0.58	6.19	-2.83	7.78	-1.24	6.25	-2.77	8.53	-0.49
603	FHHRH	25.88	24.57	-1.31	25.6	-0.28	24.43	-1.45	24.92	-0.96	23.8	-2.08	25.55	-0.33
604	FHLCU	29.17	27.3	-1.87	28.78	-0.39	27.06	-2.11	28.04	-1.13	26.63	-2.54	28.79	-0.38
605	FHLSU	20.5	19.09	-1.41	20.19	-0.31	18.88	-1.62	19.63	-0.87	18.54	-1.96	20.2	-0.3



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 56 of 135

NODE	LABEL	NOM.	BETACLOTH		Aluminum		BETACLOTH –X		ITO on		BETA-CLOTH		BETACLOTH	
			-X		Tape on BOT		Aluminum Tape		SUN		on SUN		on +Z	
			(b)		(a)		on BOT		PANELS		PANELS		(f)	
							(C)		(d)		(e)			
				DELTA		DELTA		DELTA		DELTA		DELTA		DELTA
				WITH		WITH		WITH		WITH		WITH		WITH
			10.01	NOM		NOM	1001	NOM	10.01	NOM		NOM		NOM
			[°C]	[°C]	[°C]	[°C]	[°C]	႞ႚႄ႞	႞ႍႚႍႄ႞	[°C]	[°C]	[°C]	[°C]	႞ႚႄ႞
606	FH3DH	18.78	16.39	-2.39	18.3	-0.48	16	-2.78	17.37	-1.41	15.61	-3.17	18.33	-0.45
701	RWL1_C	33.13	28.32	-4.81	31.87	-1.26	27.85	-5.28	29.54	-3.59	24.94	-8.19	31.52	-1.61
702	RWL2_C	34.24	29.38	-4.86	33.2	-1.04	29.16	-5.08	30.46	-3.78	25.59	-8.65	32.23	-2.01
703	RWL3_C	33.03	28.4	-4.63	31.6	-1.43	27.85	-5.18	29.51	-3.52	25.02	-8.01	31.36	-1.67
704	RWL4_C	30.48	25.74	-4.74	29.23	-1.25	25.36	-5.12	26.7	-3.78	21.83	-8.65	28.38	-2.1
705	RWDE	34.04	29.96	-4.08	33.03	-1.01	29.64	-4.4	30.75	-3.29	26.66	-7.38	32.48	-1.56
706	QRS1	26.53	22.86	-3.67	25.61	-0.92	22.6	-3.93	24.18	-2.35	21.17	-5.36	25.4	-1.13
707	QRS2	26.83	23.26	-3.57	26	-0.83	23.08	-3.75	24.51	-2.32	21.55	-5.28	25.66	-1.17
801	GYRO	38.83	34.38	-4.45	37.69	-1.14	33.97	-4.86	35.4	-3.43	30.96	-7.87	36.29	-2.54
802	PDU	38.5	33.66	-4.84	37.14	-1.36	33.19	-5.31	34.67	-3.83	29.7	-8.8	35.85	-2.65
811	STRMY	35.13	30.01	-5.12	33.48	-1.65	29.29	-5.84	31.97	-3.16	28.17	-6.96	33.75	-1.38
831	STRPY	26.02	20.87	-5.15	24.55	-1.47	20.35	-5.67	23.03	-2.99	19.1	-6.92	24.82	-1.2
950	TANK1	28.08	22.27	-5.81	26.81	-1.27	22.11	-5.97	24.62	-3.46	20.2	-7.88	26.74	-1.34
960	TANK2	25.92	20.56	-5.36	24.9	-1.02	20.5	-5.42	22.78	-3.14	18.75	-7.17	24.68	-1.24

S P A Z I O A FINMECCANICA COMPANY





ISSUE : 01 DATE : 13/NOV/02 PAGE : 57 of 135

### 3.4.3 Results of Transient Cases

Transient analysis cases were run to assess the thermal behaviour of the SVM when subjected to attitude change (sun from +30 deg to -30 deg on -X side and vice-versa). Main purpose was to verify the capability of the design to meet the stability requirements and in particular the stability goal.

The list of stability goal is:

NODE	UNIT	Stability Requirement Delta T
501	FHWOV	+/- 0.03/100s
502	FHHRV	+/- 0.03/100s
503	FHICU	+/-0.14/100s
504	FHFCU	+/- 0.14/100s
506	FHWEV	+/- 0.03/100s
601	FHWOH	+/- 0.03/100s
602	FHWEH	+/- 0.03/100s
603	FHHRH	+/- 0.03/100s
604	FHLCU	+/- 0.03/100s
605	FHLSU	+/- 0.03/100s

Plots of Temperature variations over 100 sec for the HIFI units are shown hereunder for:

- transient case 1 (+30 / -30) (Figure 3.4.3-1)
- transient case 2 (-30 / + 30 ) (Figure 3.4.3-2)



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 58 of 135





Figure 3.4.3-1 HERSCHEL - HIFI units Transient Case 1: DeltaT on 100s.



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 59 of 135





Figure 3.4.3-2 HERSCHEL - HIFI units Transient Case 2: DeltaT on 100s.





ISSUE : 01 DATE : 13/NOV/02 PAGE : 60 of 135

3.4.4 Heater Power Summary

The following tables provide the heater power consumption in the various analysed cases.

Data of EOL sizing cases are shown in Table 3.4.4-1

Data of BOL sizing cases are shown in Table 3.4.4-2

Data of BOL Survival cases are shown in Table 3.4.4-3



# HERSCHEL & PLANCK

DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 61 of 135

Table 3.4.4-1 HERSCHEL – Heater Power Consumption in Nominal Hot Case (without uncertainty)

			EOL7B	EOL7B	EOL7B	EOL7A	EOL7A	EOL7A
			Telecom	Telecom	Telecom	Telecom	Telecom	Telecom
			MODE1	MODE2 /	MODE2 /	MODE1	MODE2 /	MODE2 /
			HIFI Prime	Photometry	Spectroscopy	HIFI Prime	Photometry	Spectroscopy
NODE	LABEI	HTR	[ W ]	PACS Prime	PACS Prime	ſW1	PACS Prime	PACS Prime
NODE	LADEL	IIIK	["]	[ ** ]	[ ** ]	[ ** ]	[ ** ]	[ ** ]
			0	0	0	0	0	0
HIRI06		HIR-MAI	0	0	0	0	0	0
HIRIO/	TWTA2	HIR-MA2	0	0	0	0	0.75	0
HTR204	BATT	HTR-MBI	1.24	0.87	0.89	1.1	0.75	0.87
HTR304	FPBOLC	HTR-MCI	0	0	0	0	0	0
H1R401	CRYOE	HTR-MDI	0	0	0	0	0	0
HTR501	FHWOV	HTR-ME1	1.77	1.53	1.53	1.77	1.55	1.46
HTR601	FHWOH	HTR-MF1	5.28	11.59	11.57	5.45	11.63	11.62
HTR602	FHWEH	HTR-MF2	0	0	0	0	0	0
HTR603	FHHRH	HTR-MF3	0	0	0	0	0	0
HTR604	FHLCU	HTR-MF4	0	0	0	0	0	0
HTR605	FHLSU	HTR-MF5	0	9.08	9.05	0	10.03	9.96
HTR701	RWL1	HTR-MG1	0	0	0	0	0	0
HTR703	RWL3	HTR-MG2	0	0	0	0	0	0
HTR950	TANK1	HTR-MH1	0.21	0.19	0.19	0.21	0.19	0.19
HTR960	TANK2	HTR-MH2	0.21	0	0	0.21	0	0
HTR811	STRMY	HTR-MI1	0	0	0	0	0	0
HTR831	STRPY	HTR-MI2	0	0	0	0	0	0
HTR8133	THR1-MAIN	HTR-MH3	0	0	0	0	0	0
HTR8134	THR1-RED	HTR-MH3	0	0	0	0	0	0
HTR8233	THR2-MAIN	HTR-MH4	0.01	0	0.01	0.01	0	0
HTR8234	THR2-RED	HTR-MH4	0.01	0	0.01	0.01	0	0
HTR8333	THR3-MAIN	HTR-MH5	0.01	0	0	0.01	0	0
HTR8334	THR3-RED	HTR-MH5	0.01	0	0	0.01	0	0
HTR8433	THR4-MAIN	HTR-MH6	0.01	0.01	0.01	0.01	0.01	0.01
HTR8434	THR4-RED	HTR-MH6	0.01	0.01	0.01	0.01	0.01	0.01
HTR8533	THR5-MAIN	HTR-MH7	0	0	0	0	0	0
HTR8534	THR5-RED	HTR-MH7	0	0	0	0	0	0
HTR8633	THR6-MAIN	HTR-MH8	0	0	0	0	0	0
HTR8634	THR6-RED	HTR-MH8	0	0	0	0	0	0
	PIPE LINES	HTR-MH9	5.5	5.5	5.5	5.5	5.5	5.5
	PIPE LINES	HTR-MH10	5.5	5.5	5.5	5.5	5.5	5.5
	PIPE LINES	HTR-MH11	5.5	5.5	5.5	5.5	5.5	5.5
	SAS +Z	HTR-MI3	2.5	2.5	2.5	2.5	2.5	2.5
	SAS-Z	HTR-MI4	2.5	2.5	2.5	2.5	2.5	2.5
	Tot. Heater		30.27	44.78	44.77	30.3	45.67	45.62
	consumption							
	(nominal):							





ISSUE : 01 DATE : 13/NOV/02 PAGE : 62 of 135

Table 3.4.4-2 HERSCHEL – Heater Power Consumption in Nominal Cold Case (without uncertainty)

			BOL2B	BOL2B
			Scientific	Scientific
			MODE3	MODE1
			SPIRE Prime	HIFI Prime
NODE	LABEL	HTR	[W]	[W]
HTR106	TWTA1	HTR-MA1	39.11	38.99
HTR107	TWTA2	HTR-MA2	29.5	29.43
HTR204	BATT	HTR-MB1	40.95	40.79
HTR304	FPBOLC	HTR-MC1	15.09	14.76
HTR401	CRYOE	HTR-MD1	0	0
HTR501	FHWOV	HTR-ME1	8.57	8.45
HTR601	FHWOH	HTR-MF1	18.48	16.28
HTR602	FHWEH	HTR-MF2	5.3	5.17
HTR603	FHHRH	HTR-MF3	0	0
HTR604	FHLCU	HTR-MF4	0	0
HTR605	FHLSU	HTR-MF5	38.41	0
HTR701	RWL1	HTR-MG1	10.79	10.4
HTR703	RWL3	HTR-MG2	11.7	11.15
HTR950	TANK1	HTR-MH1	3.11	3.09
HTR960	TANK2	HTR-MH2	2.96	2.9
HTR811	STRMY	HTR-MI1	0	0
HTR831	STRPY	HTR-MI2	0	0
HTR8133	THR1-MAIN	HTR-MH3	0	0
HTR8134	THR1-RED	HTR-MH3	0	0
HTR8233	THR2-MAIN	HTR-MH4	0	0
HTR8234	THR2-RED	HTR-MH4	0	0
HTR8333	THR3-MAIN	HTR-MH5	0	0
HTR8334	THR3-RED	HTR-MH5	0	0
HTR8433	THR4-MAIN	HTR-MH6	0	0
HTR8434	THR4-RED	HTR-MH6	0	0
HTR8533	THR5-MAIN	HTR-MH7	0	0
HTR8534	THR5-RED	HTR-MH7	0	0
HTR8633	THR6-MAIN	HTR-MH8	0	0
HTR8634	THR6-RED	HTR-MH8	0	0
	PIPE LINES	HTR-MH9	5.5	5.5
	PIPE LINES	HTR-MH10	5.5	5.5
	PIPE LINES	HTR-MH11	5.5	5.5
	SAS +Z	HTR-MI3	2.5	2.5
	SAS-Z	HTR-MI4	2.5	2.5
	Tot. Heater		245.47	202.91
	consumption			
	(nominal):			





ISSUE : 01 DATE : 13/NOV/02 PAGE : 63 of 135

Table 3.4.4-3 HERSCHEL – Heater Power Consumption in Survival mode (without uncertainty)

			BOL2B	EOL2B
			SURVIVAL	SURVIVAL
NODE	LABEL	HTR	[W]	[W]
HTR106	TWTA1	HTR-MA1	18.76	0.34
HTR107	TWTA2	HTR-MA2	48	33.96
HTR202	CDMU	HTR-MB2	18.12	17.06
HTR204	BATT	HTR-MB1	54.9	54.9
HTR303	FPDPU	HTR-MC3	54.65	54.64
HTR304	FPBOLC	HTR-MC2	0.95	0.93
HTR401	CRYOE	HTR-MD2	26.49	25.96
HTR405	HSDPU	HTR-MD3	43.93	43.92
HTR502	FHICU	HTR-ME2	72.39	72.37
HTR503	FHHRV	HTR-ME3	26.95	26.94
HTR601	FHWOH	HTR-MF6	9.89	9.88
HTR602	FHWEH	HTR-MF7	24.34	24.3
HTR603	FHHRH	HTR-MF8	69.27	69.27
HTR605	FHLSU	HTR-MF9	20.8	20.59
HTR701	RWL1	HTR-MG1-MG3	42.81	35.46
HTR703	RWL3	HTR-MG2-MG3	46.09	39.04
HTR950	TANK1	HTR-MH1	3.77	3.74
HTR960	TANK2	HTR-MH2	3.27	3.18
HTR811	STRMY	HTR-MI1	5	5
HTR831	STRPY	HTR-MI2	5	5
HTR8133	THR1-MAIN	HTR-MH3	0.68	0.64
HTR8134	THR1-RED	HTR-MH3	0.68	0.64
HTR8233	THR2-MAIN	HTR-MH4	1.14	1.11
HTR8234	THR2-RED	HTR-MH4	1.14	1.11
HTR8333	THR3-MAIN	HTR-MH5	1.51	1.5
HTR8334	THR3-RED	HTR-MH5	1.51	1.5
HTR8433	THR4-MAIN	HTR-MH6	2	2
HTR8434	THR4-RED	HTR-MH6	2	2
HTR8533	THR5-MAIN	HTR-MH7	1.47	1.46
HTR8534	THR5-RED	HTR-MH7	1.47	1.46
HTR8633	THR6-MAIN	HTR-MH8	1.06	1.05
HTR8634	THR6-RED	HTR-MH8	1.06	1.05
	PIPE LINES	HTR-MH9	11	11
	PIPE LINES	HTR-MH10	11	11
	PIPE LINES	HTR-MH11	11	11
	SAS +Z	HTR-MI3	5	5
	SAS-Z	HTR-MI4	5	5
	Tot. Heater consumption (nominal):		654.1	605.00





ISSUE : 01 DATE : 13/NOV/02 PAGE : 64 of 135

3.4.5 Active Control law heater power impacts

To respect the stability goal in the cases with the HIFI in Prime Mode (MODE1), it is necessary to keep the temperatures of critical units at the maximum value reached in the hot cases or very close to it. The critical units and the set point are:

 $\begin{array}{rll} FHWOV \ 501 = & 12^{\circ}C \\ FHWOH \ 601 = & 12^{\circ}C \\ FHWEH \ 602 = & 21^{\circ}C \\ FHHRH \ 603 = & 37^{\circ}C \\ FHLCU \ 604 = & 37^{\circ}C \\ FHLSU \ 605 = & 32^{\circ}C \end{array}$ 

The impacts on heater power (additional heater power demand) in the Hot Case EOL7B MODE1, EOL7A MODE1 and Cold case BOL2B MODE1 are listed in the following Table 3.4.5-1. The considered cases are those relevant to HIFI in Prime Mode where stability goal is applicable.





ISSUE : 01 DATE : 13/NOV/02 PAGE : 65 of 135

Table 3.4.5-1 HERSCHEL – Heater Power Consumption in Survival mode (without uncertainty)

			EOL7B	EOL7A	BOL2B
			Telecom	Telecom	Scientific
			MODE1	MODE1	MODE1
			HIFI Prime	HIFI Prime	HIFI Prime
NODE	LABEL	HTR	[ W ]	[ W ]	[ W ]
HTR106	TWTA1	HTR-MA1	0	0	38.61
HTR107	TWTA2	HTR-MA2	0	0	29.17
HTR204	BATT	HTR-MB1	2.26	2.21	40.3
HTR304	FPBOLC	HTR-MC1	0	0	12.27
HTR401	CRYOE	HTR-MD1	0	0	0
HTR501	FHWOV	HTR-ME1	5.45	5.44	11.34
HTR601	FHWOH	HTR-MF1	6.54	6.56	12.43
HTR602	FHWEH	HTR-MF2	7.34	7.42	14.5
HTR603	FHHRH	HTR-MF3	11.92	13.11	29.44
HTR604	FHLCU	HTR-MF4	2.52	2.62	10.14
HTR605	FHLSU	HTR-MF5	9.62	10.01	15.9
HTR701	RWL1	HTR-MG1	0	0	7.09
HTR703	RWL3	HTR-MG2	0	0	7.02
HTR950	TANK1	HTR-MH1	0.42	0.42	2.99
HTR960	TANK2	HTR-MH2	0.42	0.42	2.92
HTR811	STRMY	HTR-MI1	0	0	0
HTR831	STRPY	HTR-MI2	0	0	0
HTR8133	THR1-MAIN	HTR-MH3	0	0	0
HTR8134	THR1-RED	HTR-MH3	0	0	0
HTR8233	THR2-MAIN	HTR-MH4	0.02	0.02	0
HTR8234	THR2-RED	HTR-MH4	0.02	0.02	0
HTR8333	THR3-MAIN	HTR-MH5	0.02	0.02	0
HTR8334	THR3-RED	HTR-MH5	0.02	0.02	0
HTR8433	THR4-MAIN	HTR-MH6	0.02	0.02	0
HTR8434	THR4-RED	HTR-MH6	0.02	0.02	0
HTR8533	THR5-MAIN	HTR-MH7	0	0	0
HTR8534	THR5-RED	HTR-MH7	0	0	0
HTR8633	THR6-MAIN	HTR-MH8	0	0	0
HTR8634	THR6-RED	HTR-MH8	0	0	0
	PIPE LINES	HTR-MH9	5.5	5.5	5.5
	PIPE LINES	HTR-MH10	5.5	5.5	5.5
	PIPE LINES	HTR-MH11	5.5	5.5	5.5
	SAS +Z	HTR-MI3	2.5	2.5	2.5
	SAS-Z	HTR-MI4	2.5	2.5	2.5
	Tot. Heater		68.11	69.83	255.62
	need:				



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 66 of 135

### 3.5 HERSCHEL CONCLUSION

Sizing cases Analyses

All the units are maintained within their temperature limits with the exclusion of the following:

<u>CO</u>	LD CASES		
	CDMU:	case BOL2B	-10.7°C vs -10.0°C
	FHFCU:	case BOL2B	-10.7°C vs -10.0°C
	FHWEV:	case BOL2B	-2.8 °C vs -0.0°C
	ACC:	case BOL2B	-23.0 °C vs -20.0°C
HC	T CASES		45.8°C
	<u>FPSPU1/2:</u>	case EOL7A	45.8°C vs 45.0°C
	FHLCU:	case EOL7A	41.2°C vs 40.0°C
	<u>GYRO:</u>	case EOL7A	49.2°C vs 45.0°C
	PDU:	case EOL7A	48.4°C vs 45.0°C
	STR:	case EOL7A	45.5°C vs 30.0°C

Remark: In addition, the temperature of the switch unit FH3DV (-23.1°C in cold case BOL2B), is out of specification versus the operative limits (-10°C) but are within respect to the not-operative temperature (-25°C); clarification on the requirement is necessary.

Design will be trimmed based on the above.

### COLD CASES RECOVERY ACTIONS:

All the out of specification in the Cold Cases are recoverable with a fine re-design of the MLI/OSR and a redistribution of the heater already foreseen that will be done as part of normal work, so that they are not considered on issue.

### HOT COLD CASES RECOVERY ACTIONS:

FPSPU1/2 & FHLCU: Action on the MLI/OSR trimming is possible to recover this out of spec.

<u>GYRO</u>: Change of position moving from +Z shear panel to one of lateral radiator (excluded +Z lateral panel) or used of different MLI external layer (see para 3.4.2)

<u>PDU:</u> The unit has been recently removed from the SVM with an implementation of an electronic card (and consequently increasing of the power dissipation) inside the ACC; this also leads a benefit for the ACC out of spec. during cold case.

STR: See AD(2.7 para.4.11)

#### Transient Analyses

The temperature stability requirement ( $\pm$  3°C) on the warm units (HI-FI and SPIRE) is always met.

Concerning the stability GOAL on HI-FI unit, it is always met only through a use of an active thermal control based on dedicated control laws. The used of this PI algorithm is based on the concept to maintain always the HI-FI units at the maximum temperature level also in cold cases with a consequent increase of power budget as shown in para 3.4.5 of this documents



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 67 of 135

### 4. PLANCK – MODEL DESCRIPTION AND THERMAL ANALYSIS

### 4.1 PLANCK - PRESENTATION OF THE MODEL

Herschel and Planck are two satellites dedicated to the observation of the universe.

- Planck mission objective is to provide major source of information relevant to several cosmological and astrophysical issues such as the testing theories of the early universe and the origin of cosmic structure.

The spacecraft is planned to operate from Lissajous orbits around the Langragian point L2 of the Sun / Earth system. This point is aligned with the Earth and the Sun and located at  $1.5 \ 10^6$  Km from the Earth.

Both satellites are planned to be launched by ARIANE 5 dual launch.

The main modules are:

- The Service Module (SVM)
- The Payload Module (PLM), carrying the scientific instruments and telescopes and relevant electronic units
- The Sunshields, protecting the Payload or the S/C and used also as Solar Arrays.

### 4.1.1 Geometric Mathematical Model (GMM)

The Geometric models detail all the satellite surfaces and their thermo-optical properties, in order to evaluate the radiative exchange factors among nodes and, only for the external nodes, the fluxes (solar, albedo and Earth shine) on spacecraft surfaces during the orbit. Due to the huge distance of the PLANCK orbit from the Earth, only solar fluxes have been considerate in the thermal analysis.

The Geometric Mathematical Model (GMM) of PLANCK satellite has been built using Esarad (ver. 4.3) software and it is composed by two models, the first describe the external environment comprensive of some components of the Payload Module in order to evaluate the radiative impact on the PLANCK Service Module. The second one describe the internal enclosures of the spacecraft.

The thermo-optical properties of the material used in theGMM/TMM are listed in Table 4.1.1-1. and Table 4.1.1-2 The geometrical nodes of PLANCK Service Module and Groove Shield and the thermal properties of each node are reported in Table 4.1.1-3.

The only thermal property assumed to change during the satellite life is the solar absorptivity of the OSR (Alenia experience) and of the MLI closure between the SVM and PLM (input data from AD-2.6). In addition to the previous list, the nodal breakdown of the Geometric Model, both internal and external nodes, is shown on Fig 4.1.1-1 to Fig. 4.1.1-10.



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 68 of 135

SURFACES	MATERIALS	Alpha	Alpha	Epsilon	Ref.
		BOL	EOL		
External model					
Radiators	Black Paint (Electrodag)	0.95	=	0.80	Alenia test data
Top/Bottom MLI	VDA Kapton	0.15	=	0.05	Supplier data sheet
External lateral panels MLI	Carbon Filled Kapton	0.92	=	0.86	Supplier data sheet
Solar Array External		-	-	-	See Figure 4.1.1-1
Solar Array Central		-	-	-	See Figure 4.1.1-1
External STR Baffle	Black Anodization	0.86	=	0.86	Assumption based
					on Alenia test data
External Launcher Adaptor	Chromic Acid	0.5	=	0.5	Test data derived
Ring	Anodization				from Integral
					program

Table 4.1.1-1 PLANCK - Service Module External Thermo-optical properties

SURFACES	MATERIALS	Alpha	Alpha	Epsilon	Ref.
		BOL	EOL		
Internal model					
CFRP internal surfaces (cone)	CFRP	0.9	=	0.9	Assumption
					(TBC)
High emissivity Aluminum int. surf.	Black Paint	0.9	=	0.9	Alenia test
(panels & units)					data (worst
					case)
Internal MLI (tanks, SCC and SCE	VDA Kapton	0.15	=	0.05	Supplier data
panels, central SA (back side),	(Aluminized side)				sheet
Internal Launcher Adaptor Ring	Alumnium tape	0.15	=	0.05	Supplier data
					sheet

Table 4.1.1-2 PLANCK - Service Module Internal Thermo-optical properties



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 69 of 135



Figure 4.1.1 -1 PLANCK - Solar Array Thermo-optical roperties



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 70 of 135

Table 4.1.1-3 PLANCK – Service Module Geometrical Nodes List

NODE	DESCRIPTION	MATERIALS	Alpha		Epsilon
			BOL	EOL	
11	STR1	Black Paint	0.9	=	0.9
12	STR2	Black Paint	0.9	=	0.9
13	DPU1	Black Paint	0.9	=	0.9
14	DPU2	Black Paint	0.9	=	0.9
15	REU	Black Paint	0.9	=	0.9
101	DCCU	Black Paint	0.9	=	0.9
102	REBA1	Black Paint	0.9	=	0.9
103	REBA2	Black Paint	0.9	=	0.9
201	4 CCU	Black Paint	0.9	=	0.9
202	4 CAU	Black Paint	0.9	=	0.9
203	4 PRE-REG	Black Paint	0.9	=	0.9
204	CEU	Black Paint	0.9	=	0.9
401	SCE1	Black Paint	0.9	=	0.9
402	SCE2	Black Paint	0.9	=	0.9
521	BEU	Black Paint	0.9	=	0.9
522	PAU	Black Paint	0.9	=	0.9
525	DAE POWER BOX	Black Paint	0.9	=	0.9
551	QRS3	Black Paint	0.9	=	0.9
601	XPND_1	Black Paint	0.9	=	0.9
602	XPND_2	Black Paint	0.9	=	0.9
603	TWTA_1	Black Paint	0.9	=	0.9
604	TWTA_2	Black Paint	0.9	=	0.9
605	RFDN	Black Paint	0.9	=	0.9
606	EPC1	Black Paint	0.9	=	0.9
607	EPC2	Black Paint	0.9	=	0.9
701	CDMU	Black Paint	0.9	=	0.9
702	ACC	Black Paint	0.9	=	0.9
703	BATT	Black Paint	0.9	=	0.9
704	PCDU	Black Paint	0.9	=	0.9
705	QRS1	Black Paint	0.9	=	0.9
706	QRS2	Black Paint	0.9	=	0.9
707	PDU	Black Paint	0.9	=	0.9
1001	MLI SVM Bot +Z	Kapton Aluminized	0.15	=	0.5
1002	MLI SVM Bot +Z+Y	Kapton Aluminized	0.15	=	0.5
1003	MLI SVM Bot +Y	Kapton Aluminized	0.15	=	0.5
1004	MLI SVM Bot -Z-Y	Kapton Aluminized	0.15	=	0.5
1005	MLI SVM Bot -Z	Kapton Aluminized	0.15	=	0.5
1006	MLI SVM Bot -Z-Y	Kapton Aluminized	0.15	=	0.5
1007	MLI SVM Bot -Y	Kapton Aluminized	0.15	=	0.5
1008	MLI SVM Bot +Z-Y	Kapton Aluminized	0.15	=	0.5
1601	SVM Bot +Z	Black Paint	0.9	=	0.9
1602	SVM Bot +Z+Y	Black Paint	0.9	=	0.9
1603	SVM Bot +Y	Black Paint	0.9	=	0.9
1604	SVM Bot -Z-Y	Black Paint	0.9	=	0.9
1605	SVM Bot -Z	Black Paint	0.9	=	0.9



HERSCHEL & PLANCK DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 71 of 135

1606	SVM Bot -Z-Y	Black Paint	0.9	=	0.9
1607	SVM Bot -Y	Black Paint	0.9	=	0.9
1608	SVM Bot +Z-Y	Black Paint	0.9	=	0.9
1611	SVM Bot +Z	Black Paint	0.9	=	0.9
2001	Launcher Adapter Ring	Cromic Acid Anodization	0.5	=	0.5
2002	Launcher Adapter Ring	Cromic Acid Anodization	0.5	=	0.5
2003	Launcher Adapter Ring	Cromic Acid Anodization	0.5	=	0.5
2004	Launcher Adapter Ring	Cromic Acid Anodization	0.5	=	0.5
2005	Launcher Adapter Ring	Cromic Acid Anodization	0.5	=	0.5
2006	Launcher Adapter Ring	Cromic Acid Anodization	0.5	=	0.5
2007	Launcher Adapter Ring	Cromic Acid Anodization	0.5	=	0.5
2008	Launcher Adapter Ring	Cromic Acid Anodization	0.5	=	0.5
2011	Launcher Adapter Edge	Cromic Acid Anodization	0.5	=	0.5
2012	Launcher Adapter Edge	Cromic Acid Anodization	0.5	=	0.5
2013	Launcher Adapter Edge	Cromic Acid Anodization	0.5	=	0.5
2014	Launcher Adapter Edge	Cromic Acid Anodization	0.5	=	0.5
2015	Launcher Adapter Edge	Cromic Acid Anodization	0.5	=	0.5
2016	Launcher Adapter Edge	Cromic Acid Anodization	0.5	=	0.5
2017	Launcher Adapter Edge	Cromic Acid Anodization	0.5	=	0.5
2018	Launcher Adapter Edge	Cromic Acid Anodization	0.5	=	0.5
2021	Launcher Adapter Ring	Cromic Acid Anodization	0.5	=	0.5
2022	Launcher Adapter Ring	Cromic Acid Anodization	0.5	=	0.5
2023	Launcher Adapter Ring	Cromic Acid Anodization	0.5	=	0.5
2024	Launcher Adapter Ring	Cromic Acid Anodization	0.5	=	0.5
2025	Launcher Adapter Ring	Cromic Acid Anodization	0.5	_	0.5
2026	Launcher Adapter Ring	Cromic Acid Anodization	0.5	_	0.5
2027	Launcher Adapter Ring	Cromic Acid Anodization	0.5	_	0.5
2028	Launcher Adapter Ring	Cromic Acid Anodization	0.5	_	0.5
2101	Launcher Adapter Ring	Alumnium Tape	0.15	=	0.05
2102	Launcher Adapter Ring	Alumnium Tape	0.15	=	0.05
2103	Launcher Adapter Ring	Alumnium Tape	0.15	=	0.05
2104	Launcher Adapter Ring	Alumnium Tape	0.15	=	0.05
2105	Launcher Adapter Ring	Alumnium Tape	0.15	=	0.05
2106	Launcher Adapter Ring	Alumnium Tape	0.15	=	0.05
2107	Launcher Adapter Ring	Alumnium Tape	0.15	=	0.05
2108	Launcher Adapter Ring	Alumnium Tape	0.15	=	0.05
2111	Launcher Adapter Edge	Alumnium Tape	0.15	=	0.05
2112	Launcher Adapter Edge	Alumnium Tape	0.15	=	0.05
2113	Launcher Adapter Edge	Alumnium Tape	0.15	=	0.05
2114	Launcher Adapter Edge	Alumnium Tape	0.15	=	0.05
2115	Launcher Adapter Edge	Alumnium Tape	0.15	=	0.05
2116	Launcher Adapter Edge	Alumnium Tape	0.15	=	0.05
2117	Launcher Adapter Edge	Alumnium Tape	0.15	=	0.05
2118	Launcher Adapter Edge	Alumnium Tape	0.15	=	0.05
2121	Launcher Adapter Ring	Alumnium Tape	0.15	=	0.05
2122	Launcher Adapter Ring	Alumnium Tape	0.15	=	0.05
2123	Launcher Adapter Ring	Alumnium Tape	0.15	=	0.05
2124	Launcher Adapter Ring	Alumnium Tape	0.15	=	0.05
2125	Launcher Adapter Ring	Alumnium Tape	0.15	=	0.05
					0.00



HERSCHEL & PLANCK DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 72 of 135

2126	Launcher Adapter Ring	Alumnium Tape	0.15	=	0.05
2127	Launcher Adapter Ring	Alumnium Tape	0.15	=	0.05
2128	Launcher Adapter Ring	Alumnium Tape	0.15	=	0.05
2251	MLI Launcher Adapter Ring	Kapton Aluminized	0.15	=	0.05
2252	MLI Launcher Adapter Ring	Kapton Aluminized	0.15	=	0.05
2253	MLI Launcher Adapter Ring	Kapton Aluminized	0.15	=	0.05
2254	MLI Launcher Adapter Ring	Kapton Aluminized	0.15	=	0.05
2255	MLI Launcher Adapter Ring	Kapton Aluminized	0.15	=	0.05
2256	MLI Launcher Adapter Ring	Kapton Aluminized	0.15	=	0.05
2257	MLI Launcher Adapter Ring	Kapton Aluminized	0.15	=	0.05
2258	MLI Launcher Adapter Ring	Kapton Aluminized	0.15	=	0.05
2501	SVM Cone +Z+Y	CFRP	0.9	=	0.9
2502	SVM Cone +Y	CFRP	0.9	=	0.9
2503	SVM Cone +Y-Z	CFRP	0.9	=	0.9
2504	SVM Cone -Z	CFRP	0.9	=	0.9
2505	SVM Cone -Z-Y	CFRP	0.9	=	0.9
2506	SVM Cone -Y	CFRP	0.9	=	0.9
2507	SVM Cone -Z+Y	CFRP	0.9	=	0.9
2508	SVM Cone +Z	CFRP	0.9	=	0.9
2511	SVM Cone +Z+Y	CFRP	0.9	=	0.9
2512	SVM Cone +Y	CFRP	0.9	=	0.9
2513	SVM Cone +Y-Z	CFRP	0.9	=	0.9
2514	SVM Cone -Z	CFRP	0.9	=	0.9
2515	SVM Cone -Z-Y	CFRP	0.9	=	0.9
2516	SVM Cone -Y	CFRP	0.9	=	0.9
2517	SVM Cone -Z+Y	CFRP	0.9	=	0.9
2518	SVM Cone +Z	CFRP	0.9	=	0.9
2521	SVM Cone +Z+Y	CFRP	0.9	=	0.9
2522	SVM Cone +Y	CFRP	0.9	=	0.9
2523	SVM Cone +Y-Z	CFRP	0.9	=	0.9
2524	SVM Cone -Z	CFRP	0.9	=	0.9
2525	SVM Cone -Z-Y	CFRP	0.9	=	0.9
2526	SVM Cone -Y	CFRP	0.9	=	0.9
2527	SVM Cone -Z+Y	CFRP	0.9	=	0.9
2528	SVM Cone +Z	CFRP	0.9	=	0.9
2531	SVM Cone +Z+Y	CFRP	0.9	=	0.9
2532	SVM Cone +Y	CFRP	0.9	=	0.9
2533	SVM Cone +Y-Z	CFRP	0.9	=	0.9
2534	SVM Cone -Z	CFRP	0.9	=	0.9
2535	SVM Cone -Z-Y	CFRP	0.9	=	0.9
2536	SVM Cone -Y	CFRP	0.9	=	0.9
2537	SVM Cone -Z+Y	CFRP	0.9	=	0.9
2538	SVM Cone +Z	CFRP	0.9	=	0,9
2541	SVM Cone +Z+Y	CFRP	0.9	=	0,9
2542	SVM Cone +Y	CFRP	0.9	=	0.9
2543	SVM Cone +Y-Z	CFRP	0.9	=	0.9
2544	SVM Cone -Z	CFRP	0.9	=	0,9
2545	SVM Cone -Z-Y	CFRP	0.9	=	0.9
2546	SVM Cone -Y	CFRP	0.9	=	0.9
	1 - · · · · · · · ·		1 0.0	1	5.5


HERSCHEL & PLANCK DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 73 of 135

2547	SVM Cone -Z+Y	CFRP	0.9	=	0.9
2548	SVM Cone +Z	CFRP	0.9	=	0.9
2601	SVM Cone +Z+Y	CFRP	0.9	=	0.9
2602	SVM Cone +Y	CFRP	0.9	=	0.9
2603	SVM Cone +Y-Z	CFRP	0.9	Π	0.9
2604	SVM Cone -Z	CFRP	0.9	=	0.9
2605	SVM Cone -Z-Y	CFRP	0.9	Π	0.9
2606	SVM Cone -Y	CFRP	0.9	Π	0.9
2607	SVM Cone -Z+Y	CFRP	0.9	=	0.9
2608	SVM Cone +Z	CFRP	0.9	=	0.9
2611	SVM Cone +Z+Y	CFRP	0.9	=	0.9
2612	SVM Cone +Y	CFRP	0.9	=	0.9
2613	SVM Cone +Y-Z	CFRP	0.9	=	0.9
2614	SVM Cone -Z	CFRP	0.9	=	0.9
2615	SVM Cone -Z-Y	CFRP	0.9	=	0.9
2616	SVM Cone -Y	CFRP	0.9	=	0.9
2617	SVM Cone -Z+Y	CFRP	0.9	=	0.9
2618	SVM Cone +Z	CFRP	0.9	=	0.9
2621	SVM Cone +Z+Y	CFRP	0.9	=	0.9
2622	SVM Cone +Y	CFRP	0.9	=	0.9
2623	SVM Cone +Y-Z	CFRP	0.9	=	0.9
2624	SVM Cone -Z	CFRP	0.9	=	0.9
2625	SVM Cone -Z-Y	CFRP	0.9	=	0.9
2626	SVM Cone -Y	CFRP	0.9	=	0.9
2627	SVM Cone -Z+Y	CFRP	0.9	=	0.9
2628	SVM Cone +Z	CFRP	0.9	=	0.9
2631	SVM Cone +Z+Y	CFRP	0.9	=	0.9
2632	SVM Cone +Y	CFRP	0.9	=	0.9
2633	SVM Cone +Y-Z	CFRP	0.9	=	0.9
2634	SVM Cone -Z	CFRP	0.9	=	0.9
2635	SVM Cone -Z-Y	CFRP	0.9	=	0.9
2636	SVM Cone -Y	CFRP	0.9	=	0.9
2637	SVM Cone -Z+Y	CFRP	0.9	=	0.9
2638	SVM Cone +Z	CFRP	0.9	=	0.9
2641	SVM Cone +Z+Y	CFRP	0.9	=	0.9
2642	SVM Cone +Y	CFRP	0.9	=	0.9
2643	SVM Cone +Y-Z	CFRP	0.9	=	0.9
2644	SVM Cone -Z	CFRP	0.9	=	0.9
2645	SVM Cone -Z-Y	CFRP	0.9	=	0.9
2646	SVM Cone -Y	CFRP	0.9	=	0.9
2647	SVM Cone -Z+Y	CFRP	0.9	=	0.9
2648	SVM Cone +Z	CFRP	0.9	=	0.9
3001-48	Rad +Z	Black Paint (Electrodag)	0.95	=	0.8
3101-72	Rad +Y+Z	Black Paint (Electrodag)	0.95	=	0.8
3201-48	Rad +Y	Black Paint (Electrodag)	0.95	=	0.8
3301-48	Rad +Y-Z	Black Paint (Electrodag)	0.95	=	0.8
3401-54	Rad -Z	Black Paint (Electrodag)	0.95	=	0.8
3501-48	Rad -Y-Z	Black Paint (Electrodag)	0.95	=	0.8
3601-48	Rad -Y	Black Paint (Electrodag)	0.95	=	0.8



HERSCHEL & PLANCK DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 74 of 135

	3701-72	Rad -V+7	Black Paint (Electrodad)	0.95	_	0.8
3000      INT: BAFFLE STR2      Black Anodization      0.86      0.86        4001      MLI Rad +Z      Carbon Filled      0.92      =      0.86        4002      MLI Rad +Z      Carbon Filled      0.92      =      0.86        4003      MLI Rad +Z      Carbon Filled      0.92      =      0.86        4004      MLI Rad +Z      Carbon Filled      0.92      =      0.86        4005      MLI Rad +Z      Carbon Filled      0.92      =      0.86        4006      MLI Rad +Z      Carbon Filled      0.92      =      0.86        4007      MLI Rad +Z      Carbon Filled      0.92      =      0.86        4011      MLI Rad +Z      Carbon Filled      0.92      =      0.86        4012      MLI Rad +Z      Carbon Filled      0.92      =      0.86        4027      MLI Rad +YZ      Carbon Filled      0.92      =      0.86        4028      MLI Rad +YZ      Carbon Filled      0.92      =      0.86        4102      MLI Rad +YZ      Carbon Filled	3901	INT BAFFLE STR1	Black Anodization	0.86	_	0.0
Construct    Control     00000000000000000000000	3902	INT BAFFLE STR2	Black Anodization	0.86	_	0.86
4002    MLI Rad +Z    Carbon Filled $0.32$ = $0.86$ 4003    MLI Rad +Z    Carbon Filled $0.92$ = $0.86$ 4004    MLI Rad +Z    Carbon Filled $0.92$ = $0.86$ 4005    MLI Rad +Z    Carbon Filled $0.92$ = $0.86$ 4006    MLI Rad +Z    Carbon Filled $0.92$ = $0.86$ 4007    MLI Rad +Z    Carbon Filled $0.92$ = $0.86$ 4011    MLI Rad +Z    Carbon Filled $0.92$ = $0.86$ 4012    MLI Rad +Z    Carbon Filled $0.92$ = $0.86$ 4020    MLI Rad +Z    Carbon Filled $0.92$ = $0.86$ 4027    MLI Rad +Z    Carbon Filled $0.92$ = $0.86$ 4101    MLI Rad +Y-Z    Carbon Filled $0.92$ = $0.86$ 4103    MLI Rad +Y+Z    Carbon Filled $0.92$ = $0.86$ 4103    MLI Rad +Y+Z    Carbon Filled $0.92$ = $0.86$	4001	MILBad +7	Carbon Filled	0.00	_	0.00
1002MiL Rad +ZCarbon Filled $0.32$ = $0.36$ 4003MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4005MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4006MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4007MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4008MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4011MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4012MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4027MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4028MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4020MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4020MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4020MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4101MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4102MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4104MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4105MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4105MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4105MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4106MLI Rad +Y+ZCarbon Filled	4002	MLI Rad +7	Carbon Filled	0.92	_	0.00
4003    MLI Rad +Z    Carbon Filled $0.32$ = $0.36$ 4004    MLI Rad +Z    Carbon Filled $0.92$ = $0.86$ 4005    MLI Rad +Z    Carbon Filled $0.92$ = $0.86$ 4007    MLI Rad +Z    Carbon Filled $0.92$ = $0.86$ 4001    MLI Rad +Z    Carbon Filled $0.92$ = $0.86$ 4011    MLI Rad +Z    Carbon Filled $0.92$ = $0.86$ 4012    MLI Rad +Z    Carbon Filled $0.92$ = $0.86$ 4020    MLI Rad +Z    Carbon Filled $0.92$ = $0.86$ 4027    MLI Rad +Z    Carbon Filled $0.92$ = $0.86$ 4102    MLI Rad +Y-Z    Carbon Filled $0.92$ = $0.86$ 4103    MLI Rad +Y-Z    Carbon Filled $0.92$ = $0.86$ 4102    MLI Rad +Y-Z    Carbon Filled $0.92$ = $0.86$ 4108    MLI Rad +Y-Z    Carbon Filled $0.92$ = $0.86$	4002	MLI Rad +Z	Carbon Filled	0.92	_	0.00
4004    MLI Rad +Z    Carbon Filled $0.92$ = $0.86$ 4005    MLI Rad +Z    Carbon Filled $0.92$ = $0.86$ 4007    MLI Rad +Z    Carbon Filled $0.92$ = $0.86$ 4008    MLI Rad +Z    Carbon Filled $0.92$ = $0.86$ 4011    MLI Rad +Z    Carbon Filled $0.92$ = $0.86$ 4012    MLI Rad +Z    Carbon Filled $0.92$ = $0.86$ 4020    MLI Rad +Z    Carbon Filled $0.92$ = $0.86$ 4027    MLI Rad +Z    Carbon Filled $0.92$ = $0.86$ 4028    MLI Rad +Y-Z    Carbon Filled $0.92$ = $0.86$ 4102    MLI Rad +Y+Z    Carbon Filled $0.92$ = $0.86$ 4103    MLI Rad +Y+Z    Carbon Filled $0.92$ = $0.86$ 4104    MLI Rad +Y+Z    Carbon Filled $0.92$ = $0.86$ 4104    MLI Rad +Y+Z    Carbon Filled $0.92$ = $0.86$	4003		Carbon Filled	0.92	_	0.00
4003MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4007MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4008MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4011MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4012MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4012MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4020MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4020MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4020MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4021MLI Rad +YZCarbon Filled $0.92$ = $0.86$ 4102MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4103MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4104MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4105MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4106MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4106MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4107MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4110MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4110MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4110MLI Rad +Y+ZCarbon Filled<	4004		Carbon Filled	0.92	_	0.00
4006MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4007MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4011MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4012MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4012MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4020MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4020MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4020MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4021MLI Rad +YZCarbon Filled $0.92$ = $0.86$ 4102MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4103MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4104MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4105MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4106MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4108MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4109MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4110MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4110MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4110MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4111MLI Rad +Y+ZCarbon Filled <td>4005</td> <td></td> <td></td> <td>0.92</td> <td>=</td> <td>0.00</td>	4005			0.92	=	0.00
4007MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4008MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4011MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4019MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4020MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4027MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4027MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4028MLI Rad +YCarbon Filled $0.92$ = $0.86$ 4101MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4102MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4103MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4106MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4106MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4106MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4108MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4110MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4110MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4110MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4111MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4111MLI Rad +Y+ZCarbon Filled <td>4006</td> <td>MLI Rau +2</td> <td></td> <td>0.92</td> <td>=</td> <td>0.00</td>	4006	MLI Rau +2		0.92	=	0.00
4006MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4011MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4019MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4020MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4020MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4027MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4028MLI Rad +YZCarbon Filled $0.92$ = $0.86$ 4102MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4103MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4104MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4105MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4106MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4107MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4108MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4110MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4111MLI Rad +Y+ZCarbon Filled	4007	MLI Rad +Z		0.92	=	0.00
4011MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4012MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4020MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4027MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4028MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4101MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4102MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4103MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4104MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4105MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4106MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4106MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4107MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4108MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4110MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4111MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4112MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4113MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4114MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4114MLI Rad +Y+ZCarbon Fil	4008		Carbon Filled	0.92	=	0.00
4012MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4019MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4020MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4027MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4028MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4101MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4102MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4103MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4104MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4105MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4106MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4106MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4108MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4110MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4110MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4111MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4111MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4111MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4112MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4113MLI Rad +Y+ZCarbon Fil	4011		Carbon Filled	0.92	=	0.86
4019MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4020MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4027MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4028MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4101MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4102MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4103MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4104MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4105MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4106MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4107MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4108MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4110MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4111MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4111MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4111MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4113MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4111MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4113MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4114MLI Rad +Y+ZCarbon	4012		Carbon Filled	0.92	=	0.86
4020MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4027MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4028MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4101MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4102MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4103MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4104MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4105MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4106MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4107MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4108MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4110MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4111MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4112MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4113MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4114MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4115MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4116MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4113MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4114MLI Rad +Y+ZCarbon	4019		Carbon Filled	0.92	=	0.86
4027MLI Rad +2Carbon Filled $0.92$ = $0.86$ 4008MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4101MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4103MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4104MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4105MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4106MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4106MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4107MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4109MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4110MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4111MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4112MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4113MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4116MLI Rad +Y+ZCa	4020	MLI Rad +Z	Carbon Filled	0.92	=	0.86
4028MLI Rad +ZCarbon Filled $0.92$ = $0.86$ 4101MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4102MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4103MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4104MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4105MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4106MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4107MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4109MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4110MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4110MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4111MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4111MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4113MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4114MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4115MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4116MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4117MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4118MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4120MLI Rad +Y+ZCa	4027	MLI Rad +Z	Carbon Filled	0.92	=	0.86
4101MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4102MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4103MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4104MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4105MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4106MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4107MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4108MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4109MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4110MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4111MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4112MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4113MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4114MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4115MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4116MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4113MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4114MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4114MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4119MLI Rad +Y+Z	4028	MLI Rad +Z	Carbon Filled	0.92	=	0.86
4102MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4103MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4104MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4105MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4106MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4107MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4108MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4109MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4110MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4111MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4111MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4113MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4114MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4115MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4116MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4117MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4118MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4119MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4120MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4121MLI Rad +Y+Z	4101	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4103MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4104MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4105MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4106MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4107MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4108MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4109MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4110MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4111MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4112MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4113MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4114MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4115MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4117MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4117MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4118MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4119MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4120MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4121MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4122MLI Rad +Y+Z	4102	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4104MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4105MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4106MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4107MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4108MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4109MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4110MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4111MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4112MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4113MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4114MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4115MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4116MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4117MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4118MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4119MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4120MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4121MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4122MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4123MLI Rad +Y+Z	4103	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4105MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4106MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4107MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4108MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4109MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4110MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4111MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4112MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4113MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4114MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4115MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4116MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4117MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4118MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4119MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4120MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4121MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4120MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4123MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4124MLI Rad +Y+Z	4104	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4106MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4107MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4108MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4109MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4110MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4111MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4112MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4113MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4114MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4115MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4116MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4117MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4118MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4119MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4120MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4121MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4122MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4123MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4124MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4125MLI Rad +Y+Z	4105	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4107MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4108MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4109MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4110MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4111MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4112MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4113MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4114MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4115MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4116MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4117MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4118MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4119MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4120MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4121MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4123MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4124MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4124MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4124MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4125MLI Rad +Y+Z	4106	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4108MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4109MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4110MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4111MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4112MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4113MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4114MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4115MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4116MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4117MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4118MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4119MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4120MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4121MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4122MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4123MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4124MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4125MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4124MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4125MLI Rad +Y+Z	4107	MLI Rad +Y+Z	Carbon Filled	0.92	П	0.86
4109MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4110MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4111MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4112MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4113MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4114MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4115MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4116MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4117MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4118MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4119MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4120MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4121MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4122MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4123MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4124MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4125MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4124MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4125MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4126MLI Rad +Y+Z	4108	MLI Rad +Y+Z	Carbon Filled	0.92	П	0.86
4110MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4111MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4112MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4113MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4114MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4115MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4116MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4117MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4118MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4119MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4120MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4121MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4122MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4123MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4124MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4125MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4126MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4127MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4128MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4129MLI Rad +Y+Z	4109	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4111MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4112MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4113MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4114MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4115MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4116MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4117MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4118MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4119MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4120MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4121MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4121MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4123MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4124MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4125MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4126MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4127MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4128MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4130MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4135MLI Rad +Y+Z	4110	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4112MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4113MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4114MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4115MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4116MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4117MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4118MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4119MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4120MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4121MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4121MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4122MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4123MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4124MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4125MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4126MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4127MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4126MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4129MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4130MLI Rad +Y+Z	4111	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4113MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4114MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4115MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4116MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4117MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4118MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4119MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4120MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4121MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4122MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4123MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4124MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4125MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4126MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4127MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4128MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4129MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4130MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4130MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4130MLI Rad +Y+Z	4112	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4114MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4115MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4116MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4117MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4118MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4119MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4120MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4121MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4122MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4123MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4124MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4125MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4126MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4127MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4128MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4129MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4130MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4130MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4130MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4136MLI Rad +Y+Z	4113	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4115MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4116MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4117MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4118MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4119MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4120MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4121MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4122MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4123MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4124MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4125MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4126MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4127MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4128MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4129MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4130MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4130MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4130MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4136MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$	4114	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4116MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4117MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4118MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4119MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4120MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4121MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4121MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4122MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4123MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4124MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4125MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4126MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4127MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4128MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4129MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4130MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4130MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4136MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$	4115	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4117MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4118MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4119MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4120MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4121MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4121MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4122MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4123MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4124MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4125MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4126MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4127MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4128MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4129MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4130MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4130MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4135MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4136MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$	4116	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4118MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4119MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4120MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4121MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4122MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4123MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4124MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4125MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4126MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4127MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4128MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4129MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4130MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4130MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4130MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4135MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4136MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$	4117	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4119MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4120MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4121MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4122MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4123MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4124MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4125MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4126MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4127MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4128MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4129MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4130MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4135MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4136MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$	4118	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4120MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4121MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4122MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4123MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4124MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4125MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4126MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4127MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4128MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4129MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4130MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4130MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4130MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4135MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4136MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$	4119	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4121MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4122MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4123MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4124MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4125MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4126MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4126MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4127MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4128MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4129MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4130MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4130MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4135MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4136MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$	4120	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4122MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4123MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4124MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4125MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4126MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4127MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4128MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4129MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4130MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4130MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4130MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4136MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$	4121	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4123MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4124MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4125MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4126MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4127MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4127MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4128MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4129MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4130MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4135MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4136MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$	4122	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4124MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4125MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4126MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4127MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4128MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4129MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4130MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4130MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4135MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4136MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$	4123	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4125    MLI Rad +Y+Z    Carbon Filled    0.92    =    0.86      4126    MLI Rad +Y+Z    Carbon Filled    0.92    =    0.86      4126    MLI Rad +Y+Z    Carbon Filled    0.92    =    0.86      4127    MLI Rad +Y+Z    Carbon Filled    0.92    =    0.86      4128    MLI Rad +Y+Z    Carbon Filled    0.92    =    0.86      4129    MLI Rad +Y+Z    Carbon Filled    0.92    =    0.86      4130    MLI Rad +Y+Z    Carbon Filled    0.92    =    0.86      4130    MLI Rad +Y+Z    Carbon Filled    0.92    =    0.86      4135    MLI Rad +Y+Z    Carbon Filled    0.92    =    0.86      4135    MLI Rad +Y+Z    Carbon Filled    0.92    =    0.86      4136    MLI Rad +Y+Z    Carbon Filled    0.92    =    0.86	4124	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4126    MLI Rad +Y+Z    Carbon Filled    0.92    =    0.86      4127    MLI Rad +Y+Z    Carbon Filled    0.92    =    0.86      4128    MLI Rad +Y+Z    Carbon Filled    0.92    =    0.86      4129    MLI Rad +Y+Z    Carbon Filled    0.92    =    0.86      4130    MLI Rad +Y+Z    Carbon Filled    0.92    =    0.86      4130    MLI Rad +Y+Z    Carbon Filled    0.92    =    0.86      4135    MLI Rad +Y+Z    Carbon Filled    0.92    =    0.86      4136    MLI Rad +Y+Z    Carbon Filled    0.92    =    0.86	4125	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4127MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4128MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4129MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4130MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4135MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$ 4136MLI Rad +Y+ZCarbon Filled $0.92$ = $0.86$	4126	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4128    MLI Rad +Y+Z    Carbon Filled    0.92    =    0.86      4129    MLI Rad +Y+Z    Carbon Filled    0.92    =    0.86      4130    MLI Rad +Y+Z    Carbon Filled    0.92    =    0.86      4130    MLI Rad +Y+Z    Carbon Filled    0.92    =    0.86      4135    MLI Rad +Y+Z    Carbon Filled    0.92    =    0.86      4136    MLI Rad +Y+Z    Carbon Filled    0.92    =    0.86	4127	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4129    MLI Rad +Y+Z    Carbon Filled    0.92    =    0.86      4130    MLI Rad +Y+Z    Carbon Filled    0.92    =    0.86      4135    MLI Rad +Y+Z    Carbon Filled    0.92    =    0.86      4135    MLI Rad +Y+Z    Carbon Filled    0.92    =    0.86      4136    MLI Rad +Y+Z    Carbon Filled    0.92    =    0.86	4128	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4130    MLI Rad +Y+Z    Carbon Filled    0.92    =    0.86      4135    MLI Rad +Y+Z    Carbon Filled    0.92    =    0.86      4136    MLI Rad +Y+Z    Carbon Filled    0.92    =    0.86	4129	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4135      MLI Rad +Y+Z      Carbon Filled      0.92      =      0.86        4136      MLI Rad +Y+Z      Carbon Filled      0.92      =      0.86	4130	MLI Rad +Y+7	Carbon Filled	0.92	=	0.86
4136 MLI Rad +Y+Z Carbon Filled $0.92 = 0.86$	4135	MURad +Y+Z	Carbon Filled	0.92	=	0.86
	4136	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86



HERSCHEL & PLANCK DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 75 of 135

4137	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4138	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4139	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4140	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4141	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4142	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4147	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4148	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4149	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4150	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4151	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4152	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4153	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4154	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4155	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4156	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4159	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4160	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4161	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4162	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4163	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4164	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4165	MURad +Y+Z	Carbon Filled	0.92	=	0.86
4166	MURAd +Y+Z	Carbon Filled	0.92	=	0.86
4167	MURAd +Y+Z	Carbon Filled	0.92	=	0.86
4168	MURAd +Y+Z	Carbon Filled	0.92	=	0.86
4169	MURAd +Y+Z	Carbon Filled	0.92	=	0.86
4170	MURAd +Y+Z	Carbon Filled	0.92	=	0.86
4171	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4172	MURad +Y+Z	Carbon Filled	0.92	=	0.86
4239	MLI Rad +Y	Carbon Filled	0.92	=	0.86
4240	MURad +Y	Carbon Filled	0.92	=	0.86
4241	MURad +Y	Carbon Filled	0.92	=	0.86
4242	MURad +Y	Carbon Filled	0.92	=	0.86
4243	MURad +Y	Carbon Filled	0.92	=	0.86
4244	MURad +Y	Carbon Filled	0.92	=	0.86
4245	MURad +Y	Carbon Filled	0.92	=	0.86
4246	MLI Rad +Y	Carbon Filled	0.92	=	0.86
4247	MURad +Y	Carbon Filled	0.92	=	0.86
4248	MURad +Y	Carbon Filled	0.92	=	0.86
4601	MII Rad -Y	Carbon Filled	0.92	=	0.86
4602	MII Rad -Y	Carbon Filled	0.92	_	0.86
4609	MII Rad -Y	Carbon Filled	0.92	_	0.86
4610	MLI Rad -Y	Carbon Filled	0.92	_	0.86
4611	MII Rad -Y	Carbon Filled	0.92		0.86
<u>4612</u>	MII Rad -Y	Carbon Filled	0.02		0.86
4617	MILRad -Y	Carbon Filled	0.92		0.86
4618	MII Rad -Y	Carbon Filled	0.92	=	0.86
4619	MLI Rad -Y	Carbon Filled	0.92	=	0.86
			0.02	I –	0.00



HERSCHEL & PLANCK DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 76 of 135

4620	MLI Rad -Y	Carbon Filled	0.92	=	0.86
4621	MLI Rad -Y	Carbon Filled	0.92	=	0.86
4622	MLI Rad -Y	Carbon Filled	0.92	=	0.86
4623	MLI Rad -Y	Carbon Filled	0.92	=	0.86
4624	MLI Rad -Y	Carbon Filled	0.92	=	0.86
4625	MLI Rad -Y	Carbon Filled	0.92	=	0.86
4626	MLI Rad -Y	Carbon Filled	0.92	=	0.86
4627	MLI Rad -Y	Carbon Filled	0.92	=	0.86
4628	MLI Rad -Y	Carbon Filled	0.92	=	0.86
4629	MLI Rad -Y	Carbon Filled	0.92	=	0.86
4630	MLI Rad -Y	Carbon Filled	0.92	=	0.86
4631	MLI Rad -Y	Carbon Filled	0.92	=	0.86
4632	MLI Rad -Y	Carbon Filled	0.92	=	0.86
4633	MLI Rad -Y	Carbon Filled	0.92	=	0.86
4634	MLI Rad -Y	Carbon Filled	0.92	=	0.86
4635	MLI Rad -Y	Carbon Filled	0.92	=	0.86
4636	MLI Rad -Y	Carbon Filled	0.92	=	0.86
4641	MLI Rad -Y	Carbon Filled	0.92	=	0.86
4642	MLI Rad -Y	Carbon Filled	0.92	=	0.86
4709	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4710	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4711	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4712	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4721	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4722	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4723	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4724	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4733	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4734	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4735	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4736	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4747	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4748	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4762	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4771	MLI Rad +Y+Z	Carbon Filled	0.92	=	0.86
4901	MLI BAFFLE STR1	Carbon Filled	0.92	=	0.86
4902	MLI BAFFLE STR2	Carbon Filled	0.92	=	0.86
4921	MLI SAS1	Carbon Filled	0.92	=	0.86
4922	MLI LGA2	Carbon Filled	0.92	=	0.86
4961	MLI SREM	Carbon Filled	0.92	=	0.86
4962	MLI LGA3	Carbon Filled	0.92	=	0.86
4963	MLI VMC	Carbon Filled	0.92	=	0.86
4970	MLI SAS2	Carbon Filled	0.92	=	0.86
4971	MLI AAD	Carbon Filled	0.92	=	0.86
5051	Shear Web1 +Z-Y	CFRP	0.9	=	0.9
5052	Shear Web1 +Z-Y	CFRP	0.9	=	0.9
5053	Shear Web1 +Z-Y	CFRP	0.9	=	0.9
5054	Shear Web1 +Z-Y	CFRP	0.9	=	0.9
5055	Shear Web1 +Z-Y	CFRP	0.9	=	0.9



HERSCHEL & PLANCK DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 77 of 135

5061	Shear Web1 +7-V	CERP	09	_	09
5062	Shear Web1 +Z-1	CERP	0.9	_	0.9
5063	Shear Web1 +7-V	CERP	0.0	_	0.0
5064	Shear Web1 +Z-1	CERP	0.9	_	0.3
5065	Shear Web1 +Z-V		0.3	_	0.3
5005	Shear Web1 +Z-1		0.9		0.9
5071	Shear Web2 +Z-1		0.9	=	0.9
5072	Shear Web2 +Z-1		0.9	=	0.9
5073	Shear Web2 +Z-Y		0.9	=	0.9
5074	Shear Web2 +Z-Y		0.9	=	0.9
5075			0.9	=	0.9
5081			0.9	=	0.9
5082			0.9	=	0.9
5083	Shear Web2 +Z-Y	CFRP	0.9	=	0.9
5084	Shear Web2 +Z-Y	CFRP	0.9	=	0.9
5085	Shear Web2 +Z-Y	CFRP	0.9	=	0.9
5151	Shear Web3 +Z+Y	CFRP	0.9	=	0.9
5152	Shear Web3 +Z+Y	CFRP	0.9	=	0.9
5153	Shear Web3 +Z+Y	CFRP	0.9	=	0.9
5154	Shear Web3 +Z+Y	CFRP	0.9	=	0.9
5155	Shear Web3 +Z+Y	CFRP	0.9	=	0.9
5161	Shear Web3 +Z+Y	CFRP	0.9	=	0.9
5162	Shear Web3 +Z+Y	CFRP	0.9	=	0.9
5163	Shear Web3 +Z+Y	CFRP	0.9	=	0.9
5164	Shear Web3 +Z+Y	CFRP	0.9	=	0.9
5165	Shear Web3 +Z+Y	CFRP	0.9	Π	0.9
5171	Shear Web4 +Z+Y	CFRP	0.9	П	0.9
5172	Shear Web4 +Z+Y	CFRP	0.9	П	0.9
5173	Shear Web4 +Z+Y	CFRP	0.9	=	0.9
5174	Shear Web4 +Z+Y	CFRP	0.9	=	0.9
5175	Shear Web4 +Z+Y	CFRP	0.9	=	0.9
5181	Shear Web4 +Z+Y	CFRP	0.9	=	0.9
5182	Shear Web4 +Z+Y	CFRP	0.9	=	0.9
5183	Shear Web4 +Z+Y	CFRP	0.9	=	0.9
5184	Shear Web4 +Z+Y	CFRP	0.9	=	0.9
5185	Shear Web4 +Z+Y	CFRP	0.9	=	0.9
5251	Shear Web5 -Z+Y	CFRP	0.9	=	0.9
5252	Shear Web5 -Z+Y	CFRP	0.9	=	0.9
5253	Shear Web5 -Z+Y	CFRP	0.9	=	0.9
5254	Shear Web5 -Z+Y	CFRP	0.9	=	0.9
5255	Shear Web5 -Z+Y	CFRP	0.9	=	0.9
5261	Shear Web5 -Z+Y	CFRP	0.9	=	0.9
5262	Shear Web5 -Z+Y	CFRP	0.9	=	0.9
5263	Shear Web5 -Z+Y	CFRP	0.9	=	0.9
5264	Shear Web5 -7+Y	CFRP	0.9	=	0.9
5265	Shear Web5 -7+Y	CFRP	0.9	_	0.0
5271	Shear Web6 -7+V	CFRP	0.0	_	0.0
5272	Shear Web6 -7+V	CFRP	0.3	_	0.9
5273	Shear Web6 -7+V	CFRP	0.9	_	0.0
5274	Shear Web6 -7+V	CERP	0.9		0.0
5214			0.9		0.9



HERSCHEL & PLANCK DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 78 of 135

5275	Shear Web6 -Z+Y	CFRP	0.9	=	0.9
5281	Shear Web6 -Z+Y	CFRP	0.9	=	0.9
5282	Shear Web6 -Z+Y	CFRP	0.9	=	0.9
5283	Shear Web6 -Z+Y	CFRP	0.9	=	0.9
5284	Shear Web6 -Z+Y	CFRP	0.9	=	0.9
5285	Shear Web6 -Z+Y	CFRP	0.9	=	0.9
5351	Shear Web7 -Z-Y	CFRP	0.9	=	0.9
5352	Shear Web7 -Z-Y	CFRP	0.9	=	0.9
5353	Shear Web7 -Z-Y	CFRP	0.9	=	0.9
5354	Shear Web7 -Z-Y	CFRP	0.9	=	0.9
5355	Shear Web7 -Z-Y	CFRP	0.9	=	0.9
5361	Shear Web7 -Z-Y	CFRP	0.9	=	0.9
5362	Shear Web7 -Z-Y	CFRP	0.9	=	0.9
5363	Shear Web7 -Z-Y	CFRP	0.9	=	0.9
5364	Shear Web7 -Z-Y	CFRP	0.9	=	0.9
5365	Shear Web7 -Z-Y	CFRP	0.9	=	0.9
5371	Shear Web8 -Z-Y	CFRP	0.9	=	0.9
5372	Shear Web8 -Z-Y	CFRP	0.9	=	0.9
5373	Shear Web8 -Z-Y	CFRP	0.9	=	0.9
5374	Shear Web8 -Z-Y	CFRP	0.9	=	0.9
5375	Shear Web8 -Z-Y	CFRP	0.9	=	0.9
5381	Shear Web8 -Z-Y	CFRP	0.9	=	0.9
5382	Shear Web8 -7-Y	CFRP	0.9	_	0.0
5383	Shear Web8 -7-Y	CFRP	0.0	_	0.0
5384	Shear Web8 -7-Y	CFRP	0.0	_	0.0
5385	Shear Web8 -7-Y	CERP	0.0	_	0.0
6001-48	Int Rad +7	Black Paint	0.0	_	0.0
6101-72	Int Rad +V+7	Black Paint	0.0	_	0.0
6201-48	Int Rad +Y	Black Paint	0.9	_	0.0
6301-48	Int Rad +Y-7	Black Paint	0.0	_	0.0
6401-54	Int Rad -7	Black Paint	0.0	_	0.0
6501-48	Int Rad -Y-7	Black Paint	0.0	_	0.0
6601-48	Int Rad -Y	Black Paint	0.0	_	0.0
6701-72	Int Rad -V+7	Black Paint	0.0	_	0.0
7001	MLLSVM Top ±7	Kanton Aluminized	0.5	_	0.5
7001	MLISVM Top +Z+V	Kapton Aluminized	0.15	_	0.05
7002		Kapton Aluminized	0.15	_	0.05
7003		Kapton Aluminized	0.15	-	0.05
7004		Kapton Aluminized	0.15	_	0.05
7005	MLI SVM Top -Z-V	Kapton Aluminized	0.15	_	0.05
7000		Kapton Aluminized	0.15	_	0.05
7007		Kapton Aluminized	0.15	=	0.05
7000		Kapton Aluminized	0.15	=	0.05
7201		Kapton Aluminized	0.15	=	0.05
7202		Kapton Aluminized	0.15	=	0.05
7203			0.15	=	0.05
7204	$\frac{ V    S V  V   O   O   O   V   S  +  Y  + 2}{M   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S   V   S$	Kapton Aluminized	0.15	=	0.05
7200	$\frac{1}{1} \frac{1}{1} \frac{1}$		0.15	=	0.05
7206	$\frac{ V L  S V V   O  D SC + Y + Z}{M L  S V M Top Size + Y + Z}$	Kapton Aluminized	0.15	=	0.05
/20/	INILI SVINI I OP DISC +Y+∠	Kapton Aluminized	0.15	=	0.05



DOC : H-P-RP-AI-0040

HERSCHEL & PLANCK

ISSUE : 01 DATE : 13/NOV/02 PAGE : 79 of 135

				1	
7208	MLI SVM Top Disc +Y+Z	Kapton Aluminized	0.15	=	0.05
7209	MLI SVM Top Disc +Y+Z	Kapton Aluminized	0.15	=	0.05
7210	MLI SVM Top Disc +Y+Z	Kapton Aluminized	0.15	=	0.05
7211	MLI SVM Top Disc +Y+Z	Kapton Aluminized	0.15	=	0.05
7212	MLI SVM Top Disc +Y+Z	Kapton Aluminized	0.15	=	0.05
7213	MLI SVM Top Disc +Y+Z	Kapton Aluminized	0.15	=	0.05
7214	MLI SVM Top Disc +Y+Z	Kapton Aluminized	0.15	=	0.05
7215	MLI SVM Top Disc +Y+Z	Kapton Aluminized	0.15	=	0.05
7216	MLI SVM Top Disc +Y+Z	Kapton Aluminized	0.15	=	0.05
7217	MLI SVM Top Disc +Y+Z	Kapton Aluminized	0.15	=	0.05
7218	MLI SVM Top Disc +Y+Z	Kapton Aluminized	0.15	=	0.05
7219	MLI SVM Top Disc +Y+Z	Kapton Aluminized	0.15	=	0.05
7220	MLI SVM Top Disc +Y+Z	Kapton Aluminized	0.15	=	0.05
7221	MLI SVM Top Disc +Y+Z	Kapton Aluminized	0.15	=	0.05
7222	MLI SVM Top Disc +Y+Z	Kapton Aluminized	0.15	=	0.05
7223	MLI SVM Top Disc +Y+Z	Kapton Aluminized	0.15	П	0.05
7224	MLI SVM Top Disc +Y+Z	Kapton Aluminized	0.15	=	0.05
7225	MLI SVM Top Disc +Y+Z	Kapton Aluminized	0.15	=	0.05
7226	MLI SVM Top Disc +Y+Z	Kapton Aluminized	0.15	=	0.05
7227	MLI SVM Top Disc +Y+Z	Kapton Aluminized	0.15	=	0.05
7228	MLI SVM Top Disc +Y+Z	Kapton Aluminized	0.15	=	0.05
7229	MLI SVM Top Disc +Y+Z	Kapton Aluminized	0.15	=	0.05
7230	MLI SVM Top Disc +Y+Z	Kapton Aluminized	0.15	=	0.05
7231	MLI SVM Top Disc +Y+Z	Kapton Aluminized	0.15	=	0.05
7232	MLI SVM Top Disc +Y+Z	Kapton Aluminized	0.15	=	0.05
7233	MLI SVM Top Disc +Y+Z	Kapton Aluminized	0.15	=	0.05
7234	MLI SVM Top Disc +Y+Z	Kapton Aluminized	0.15	=	0.05
7235	MLLSVM Top Disc +Y+Z	Kapton Aluminized	0.15	=	0.05
7236	MLI SVM Top Disc +Y+Z	Kapton Aluminized	0.15	=	0.05
7237	MLI SVM Top Disc +Y+Z	Kapton Aluminized	0.15	=	0.05
7238	MLI SVM Top Disc +Y+Z	Kapton Aluminized	0.15	=	0.05
7239	MLI SVM Top Disc +Y+Z	Kapton Aluminized	0.15	=	0.05
7245	SVM Top Disc MLI	Kapton Aluminized	0.15	=	0.05
7301	SVM Top Disc +Y+Z	Aluminium	-	=	0.05
7302	SVM Top Disc +Y+Z	Aluminium	-	=	0.05
7303	SVM Top Disc +Y+Z	Aluminium	-	=	0.05
7304	SVM Top Disc +Y+Z	Aluminium		_	0.05
7305	SVM Top Disc +Y+Z	Aluminium	-	_	0.05
7306	SVM Top Disc +Y+Z	Aluminium	-	_	0.05
7307	SVM Top Disc +Y+Z	Aluminium	-	_	0.00
7308	SVM Top Disc +Y+7	Aluminium	-		0.05
7300	SVM Top Disc +V+7	Aluminium	-	_	0.05
7310	SVM Top Disc +V+7	Διυπίσιμη	-	_	0.05
7211	SVM Top Disc +V+7	Διυπίσιυπ	-	_	0.05
7210			-		0.00
7012			-	=	0.05
7313		Aluminium	-	=	0.05
7314		Aluminium	-	=	0.05
7315		Aluminium	-	=	0.05
7316	SVIM TOP DISC +Y+Z	Aluminium	-	=	0.05



HERSCHEL & PLANCK DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 80 of 135

7317	SVM Top Disc +Y+Z	Aluminium	-	=	0.05
7318	SVM Top Disc +Y+Z	Aluminium	-	=	0.05
7319	SVM Top Disc +Y+Z	Aluminium	-	=	0.05
7320	SVM Top Disc +Y+Z	Aluminium	-	=	0.05
7321	SVM Top Disc +Y+Z	Aluminium	-	=	0.05
7322	SVM Top Disc +Y+Z	Aluminium	-	=	0.05
7323	SVM Top Disc +Y+Z	Aluminium	-	=	0.05
7324	SVM Top Disc +Y+Z	Aluminium	-	=	0.05
7325	SVM Top Disc +Y+Z	Aluminium	-	=	0.05
7326	SVM Top Disc +Y+Z	Aluminium	-	=	0.05
7327	SVM Top Disc +Y+Z	Aluminium	-	=	0.05
7328	SVM Top Disc +Y+Z	Aluminium	-	=	0.05
7329	SVM Top Disc +Y+Z	Aluminium	-	=	0.05
7330	SVM Top Disc +Y+Z	Aluminium	-	=	0.05
7331	SVM Top Disc +Y+Z	Aluminium	-	=	0.05
7332	SVM Top Disc +Y+Z	Aluminium	-	=	0.05
7333	SVM Top Disc +Y+Z	Aluminium	-	=	0.05
7334	SVM Top Disc +Y+Z	Aluminium	-	=	0.05
7335	SVM Top Disc +Y+Z	Aluminium	-	=	0.05
7336	SVM Top Disc +Y+Z	Aluminium	-	=	0.05
7337	SVM Top Disc +Y+Z	Aluminium	-	=	0.05
7338	SVM Top Disc +Y+Z	Aluminium	-	=	0.05
7339	SVM Top Disc +Y+Z	Aluminium	-	=	0.05
7401	SVM Top Disc +Y+Z	Black Paint	0.9	=	0.9
7402	SVM Top Disc +Y+Z	Black Paint	0.9	=	0.9
7403	SVM Top Disc +Y+Z	Black Paint	0.9	=	0.9
7404	SVM Top Disc +Y+Z	Black Paint	0.9	=	0.9
7405	SVM Top Disc +Y+Z	Black Paint	0.9	=	0.9
7406	SVM Top Disc +Y+Z	Black Paint	0.9	=	0.9
7407	SVM Top Disc +Y+Z	Black Paint	0.9	=	0.9
7408	SVM Top Disc +Y+Z	Black Paint	0.9	=	0.9
7409	SVM Top Disc +Y+Z	Black Paint	0.9	=	0.9
7410	SVM Top Disc +Y+Z	Black Paint	0.9	=	0.9
7411	SVM Top Disc +Y+Z	Black Paint	0.9	=	0.9
7412	SVM Top Disc +Y+Z	Black Paint	0.9	=	0.9
7413	SVM Top Disc +Y+Z	Black Paint	0.9	=	0.9
7414	SVM Top Disc +Y+Z	Black Paint	0.9	=	0.9
7415	SVM Top Disc +Y+Z	Black Paint	0.9	=	0.9
7416	SVM Top Disc +Y+Z	Black Paint	0.9	=	0.9
7417	SVM Top Disc +Y+Z	Black Paint	0.9	=	0.9
7418	SVM Top Disc +Y+Z	Black Paint	0.9	=	0.9
7419	SVM Top Disc +Y+Z	Black Paint	0.9	=	0.9
7420	SVM Top Disc +Y+Z	Black Paint	0.9	=	0.9
7421	SVM Top Disc +Y+Z	Black Paint	0.9	=	0.9
7422	SVM Top Disc +Y+Z	Black Paint	0.9	=	0.9
7423	SVM Top Disc +Y+Z	Black Paint	0.9	=	0.9
7424	SVM Top Disc +Y+Z	Black Paint	0.9	=	0.9
7425	SVM Top Disc +Y+Z	Black Paint	0.9	=	0.9
7426	SVM Top Disc +Y+Z	Black Paint	0.9	=	0.9



HERSCHEL & PLANCK DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 81 of 135

7427SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7428SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7429SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7430SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7431SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7432SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7433SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7434SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7435SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7436SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7437SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7438SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7439SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7445SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7445SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7445SVM Top DiscBlack Paint $0.9$ = $0.9$ 7521MI Lon BEUCarbon Filled $0.92$ = $0.86$
7426SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7429SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7430SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7431SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7432SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7433SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7434SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7435SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7436SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7437SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7438SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7439SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7445SVM Top DiscBlack Paint $0.9$ = $0.9$ 7445SVM Top DiscBlack Paint $0.9$ = $0.9$ 7427MI Lon BEUCarbon Filled $0.92$ = $0.86$
7429SVM Top Disc + Y+ZBlack Paint $0.9$ $=$ $0.9$ 7430SVM Top Disc + Y+ZBlack Paint $0.9$ $=$ $0.9$ 7431SVM Top Disc + Y+ZBlack Paint $0.9$ $=$ $0.9$ 7432SVM Top Disc + Y+ZBlack Paint $0.9$ $=$ $0.9$ 7433SVM Top Disc + Y+ZBlack Paint $0.9$ $=$ $0.9$ 7434SVM Top Disc + Y+ZBlack Paint $0.9$ $=$ $0.9$ 7435SVM Top Disc + Y+ZBlack Paint $0.9$ $=$ $0.9$ 7436SVM Top Disc + Y+ZBlack Paint $0.9$ $=$ $0.9$ 7437SVM Top Disc + Y+ZBlack Paint $0.9$ $=$ $0.9$ 7438SVM Top Disc + Y+ZBlack Paint $0.9$ $=$ $0.9$ 7439SVM Top Disc + Y+ZBlack Paint $0.9$ $=$ $0.9$ 7445SVM Top DiscBlack Paint $0.9$ $=$ $0.9$ 7521MI Lon BEUCarbon Filled $0.92$ $=$ $0.86$
7430SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7431SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7432SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7433SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7434SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7435SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7436SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7437SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7438SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7439SVM Top Disc + Y+ZBlack Paint $0.9$ = $0.9$ 7445SVM Top DiscBlack Paint $0.9$ = $0.9$ 7521MI Lon BEUCarbon Filled $0.92$ = $0.86$
7431SVM Top Disc +Y+ZBlack Paint $0.9$ = $0.9$ 7432SVM Top Disc +Y+ZBlack Paint $0.9$ = $0.9$ 7433SVM Top Disc +Y+ZBlack Paint $0.9$ = $0.9$ 7434SVM Top Disc +Y+ZBlack Paint $0.9$ = $0.9$ 7435SVM Top Disc +Y+ZBlack Paint $0.9$ = $0.9$ 7436SVM Top Disc +Y+ZBlack Paint $0.9$ = $0.9$ 7437SVM Top Disc +Y+ZBlack Paint $0.9$ = $0.9$ 7438SVM Top Disc +Y+ZBlack Paint $0.9$ = $0.9$ 7439SVM Top Disc +Y+ZBlack Paint $0.9$ = $0.9$ 7445SVM Top DiscBlack Paint $0.9$ = $0.9$ 7521MI Lon BEUCarbon Filled $0.92$ = $0.86$
7432SVM Top Disc +Y+ZBlack Paint $0.9$ = $0.9$ 7433SVM Top Disc +Y+ZBlack Paint $0.9$ = $0.9$ 7434SVM Top Disc +Y+ZBlack Paint $0.9$ = $0.9$ 7435SVM Top Disc +Y+ZBlack Paint $0.9$ = $0.9$ 7436SVM Top Disc +Y+ZBlack Paint $0.9$ = $0.9$ 7437SVM Top Disc +Y+ZBlack Paint $0.9$ = $0.9$ 7438SVM Top Disc +Y+ZBlack Paint $0.9$ = $0.9$ 7439SVM Top Disc +Y+ZBlack Paint $0.9$ = $0.9$ 7445SVM Top DiscBlack Paint $0.9$ = $0.9$ 7521MI Lon BEUCarbon Filled $0.92$ = $0.86$
7433SVM Top Disc +Y+ZBlack Paint $0.9$ = $0.9$ 7434SVM Top Disc +Y+ZBlack Paint $0.9$ = $0.9$ 7435SVM Top Disc +Y+ZBlack Paint $0.9$ = $0.9$ 7436SVM Top Disc +Y+ZBlack Paint $0.9$ = $0.9$ 7437SVM Top Disc +Y+ZBlack Paint $0.9$ = $0.9$ 7438SVM Top Disc +Y+ZBlack Paint $0.9$ = $0.9$ 7439SVM Top Disc +Y+ZBlack Paint $0.9$ = $0.9$ 7445SVM Top DiscBlack Paint $0.9$ = $0.9$ 7521MI Lon BEUCarbon Filled $0.92$ = $0.86$
7434SVM Top Disc +Y+ZBlack Paint $0.9$ = $0.9$ 7435SVM Top Disc +Y+ZBlack Paint $0.9$ = $0.9$ 7436SVM Top Disc +Y+ZBlack Paint $0.9$ = $0.9$ 7437SVM Top Disc +Y+ZBlack Paint $0.9$ = $0.9$ 7438SVM Top Disc +Y+ZBlack Paint $0.9$ = $0.9$ 7439SVM Top Disc +Y+ZBlack Paint $0.9$ = $0.9$ 7445SVM Top DiscBlack Paint $0.9$ = $0.9$ 7521ML on BEUCarbon Filled $0.92$ = $0.86$
7435    SVM Top Disc + Y+Z    Black Paint    0.9    =    0.9      7436    SVM Top Disc + Y+Z    Black Paint    0.9    =    0.9      7437    SVM Top Disc + Y+Z    Black Paint    0.9    =    0.9      7438    SVM Top Disc + Y+Z    Black Paint    0.9    =    0.9      7438    SVM Top Disc + Y+Z    Black Paint    0.9    =    0.9      7439    SVM Top Disc + Y+Z    Black Paint    0.9    =    0.9      7445    SVM Top Disc    Black Paint    0.9    =    0.9      7521    MI Lon BEU    Carbon Filled    0.92    =    0.86
7436    SVM Top Disc + Y + Z    Black Paint    0.9    =    0.9      7437    SVM Top Disc + Y + Z    Black Paint    0.9    =    0.9      7438    SVM Top Disc + Y + Z    Black Paint    0.9    =    0.9      7439    SVM Top Disc + Y + Z    Black Paint    0.9    =    0.9      7445    SVM Top Disc    Black Paint    0.9    =    0.9      7445    SVM Top Disc    Black Paint    0.9    =    0.9      7521    MI Lon BEU    Carbon Filled    0.92    =    0.86
7437    SVM Top Disc +Y+Z    Black Paint    0.9    =    0.9      7438    SVM Top Disc +Y+Z    Black Paint    0.9    =    0.9      7439    SVM Top Disc +Y+Z    Black Paint    0.9    =    0.9      7445    SVM Top Disc    Black Paint    0.9    =    0.9      7521    ML on BEU    Carbon Filled    0.92    =    0.86
7438      SVM Top Disc +Y+Z      Black Paint      0.9      =      0.9        7439      SVM Top Disc +Y+Z      Black Paint      0.9      =      0.9        7445      SVM Top Disc      Black Paint      0.9      =      0.9        7521      ML on BEU      Carbon Filled      0.92      =      0.86
7439      SVM Top Disc +Y+Z      Black Paint      0.9      =      0.9        7445      SVM Top Disc      Black Paint      0.9      =      0.9        7521      ML on BEU      Carbon Filled      0.92      =      0.86
7445      SVM Top Disc      Black Paint      0.9      =      0.9        7521      MI Lon BEU      Carbon Filled      0.92      -      0.86
7521 MILON BEU Carbon Filled 0.92 – 0.86
7522      MLI on PAU      Carbon Filled      0.92      =      0.86
7601      SVM Top +Z      Aluminium      0.9      =      0.9
7602      SVM Top +Z+Y      Aluminium      0.9      =      0.9
7603      SVM Top +Y      Aluminium      0.9      =      0.9
7604      SVM Top -Z+Y      Aluminium      0.9      =      0.9
7605      SVM Top -Z      Aluminium      0.9      =      0.9
7606 SVM Top -Z-Y Aluminium 0.9 = 0.9
7607 SVM Top - Y Aluminium 0.9 = 0.9
7608 SVM Top +Z-Y Aluminium 0.9 = 0.9
8101 MLI Solar Array vs. sate Kapton Aluminized 0.15 = 0.05
8102 MLI Solar Array vs. sate Kapton Aluminized 0.15 = 0.05
8103 MLI Solar Array vs. sate Kapton Aluminized 0.15 = 0.05
8104 MLI Solar Array vs. sate Kapton Aluminized 0.15 = 0.05
8401 MLI Central Solar Array Kapton Aluminized 0.15 = 0.05
8402 MLI Central Solar Array Kapton Aluminized 0.15 = 0.05
8403 MLI Central Solar Array Kapton Aluminized 0.15 = 0.05
8404 MLI Central Solar Array Kapton Aluminized 0.15 = 0.05
9300 MLI on SCC1 Rad +Y-Z Kapton Aluminized 0.15 = 0.05
9301 MLI Int Rad +Y-Z Kapton Aluminized 0.15 = 0.05
9306 MLI Int Rad +Y-Z Kapton Aluminized 0.15 = 0.05
9307 MLI Int Rad +Y-Z Kapton Aluminized 0.15 = 0.05
9312 MLI Int Rad +Y-Z Kapton Aluminized 0.15 = 0.05
9313 MLI Int Rad +Y-Z Kapton Aluminized 0.15 = 0.05
9318 MLI Int Rad +Y-Z Kapton Aluminized 0.15 = 0.05
9319 MLI Int Rad +Y-Z Kapton Aluminized 0.15 = 0.05
9324 MLI Int Rad +Y-Z Kapton Aluminized 0.15 = 0.05
9325 MLI Int Rad +Y-Z Kapton Aluminized 0.15 = 0.05
9330 MLI Int Rad +Y-Z Kapton Aluminized 0.15 = 0.05
9331 MLI Int Rad +Y-Z Kapton Aluminized 0.15 = 0.05
9336 MLI Int Rad +Y-Z Kapton Aluminized 0.15 = 0.05
9337 MLI Int Rad +Y-Z Kapton Aluminized 0.15 = 0.05
9342 MLI Int Rad +Y-Z Kapton Aluminized 0.15 = 0.05
9343 MLI Int Rad +Y-Z Kapton Aluminized 0.15 = 0.05
9348 MLI Int Rad +Y-Z Kapton Aluminized 0.15 = 0.05



HERSCHEL & PLANCK DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 82 of 135

Π			1		
9400	MLI Rad -Z	Kapton Aluminized	0.15	=	0.05
9500	MLI on SCC2 Rad -Y-Z	Kapton Aluminized	0.15	=	0.05
9501	MLI Int Rad -Y-Z	Kapton Aluminized	0.15	=	0.05
9506	MLI Int Rad -Y-Z	Kapton Aluminized	0.15	=	0.05
9507	MLI Int Rad -Y-Z	Kapton Aluminized	0.15	=	0.05
9512	MLI Int Rad -Y-Z	Kapton Aluminized	0.15	=	0.05
9513	MLI Int Rad -Y-Z	Kapton Aluminized	0.15	Π	0.05
9518	MLI Int Rad -Y-Z	Kapton Aluminized	0.15	Π	0.05
9519	MLI Int Rad -Y-Z	Kapton Aluminized	0.15	П	0.05
9524	MLI Int Rad -Y-Z	Kapton Aluminized	0.15	=	0.05
9525	MLI Int Rad -Y-Z	Kapton Aluminized	0.15	=	0.05
9530	MLI Int Rad -Y-Z	Kapton Aluminized	0.15	=	0.05
9531	MLI Int Rad -Y-Z	Kapton Aluminized	0.15	=	0.05
9536	MLI Int Rad -Y-Z	Kapton Aluminized	0.15	=	0.05
9537	MLI Int Rad -Y-Z	Kapton Aluminized	0.15	=	0.05
9542	MLI Int Rad -Y-Z	Kapton Aluminized	0.15	=	0.05
9543	MLI Int Rad -Y-Z	Kapton Aluminized	0.15	=	0.05
9548	MLI Int Rad -Y-Z	Kapton Aluminized	0.15	=	0.05
9900	MLI Helium Tank +Z	Kapton Aluminized	0.15	=	0.05
9905	MLI Helium Tank +Y	Kapton Aluminized	0.15	=	0.05
9910	MLI Helium Tank -Z	Kapton Aluminized	0.15	=	0.05
9915	MLI Helium Tank -Y	Kapton Aluminized	0.15	=	0.05
9920	MLI P Tank +Y+Z Lower	Kapton Aluminized	0.15	=	0.05
9925	MLI P Tank -Z Lower	Kapton Aluminized	0.15	=	0.05
9930	MLI P Tank -Y+Z Lower	Kapton Aluminized	0.15	=	0.05
10001	Groove Shield	Aluminium	0.15	=	0.05
10002	Groove Shield	Aluminium	0.15	=	0.05



ISSUE : 01 DATE : 13/NOV/02 PAGE : 83 of 135



& PLANCK

Figure 4.1.1-1 PLANCK – Overall View



ISSUE : 01 DATE : 13/NOV/02 PAGE : 84 of 135



HERSCHEL

& PLANCK

Figure 4.1.1-2 PLANCK – Overall View



ISSUE	:	01		
DATE	:	13/	NOV	/02
PAGE	:	85	of	135



HERSCHEL

& PLANCK

Figure 4.1.1-3 PLANCK – Upper Closure Panel



ISSUE : 01 DATE : 13/NOV/02 PAGE : 86 of 135



HERSCHEL

& PLANCK

for	MLI external nodes	72XX	(add the number declared in figure)
for	H/C external nodes	73XX	(add the number declared in figure)
for	H/C internal nodes	74XX	(add the number declared in figure)

Figure 4.1.1-4 PLANCK – Subplatform Panel



Figure 4.1.1-4 PLANCK - Lower Closure / RCS Panel Internal view



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 88 of 135



Figure 4.1.1-5 PLANCK - Internal view



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 89 of 135



Figure 4.1.1-6 PLANCK – Lateral Panel Internal view with MLI distribution



To obtain all Shear panel nodes is sufficient to change the increasing number X, from 1 to 5 for all ones.

Figure 4.1.1-7 PLANCK – Shear Panel



ISSUE : **01** DATE : **13/NOV/02** PAGE : **91 of 135** 



Figure 4.1.1-8 PLANCK - Adapter Ring Nodal division

**HERSCHEL** 

& PLANCK



Figure 4.1.1-9 PLANCK - Solar Array External view



ISSUE : 01 DATE : 13/NOV/02 PAGE : 93 of 135



**HERSCHEL** 

& PLANCK

Figure 4.1.1-10 PLANCK – Helium and Propellant Tanks



To obtain all CONE nodes is sufficient to change the increasing number X, from 0 to 4 for all ones. (nodes 26X1 are relative to external face, instead 25X1 to internal one)

Figure 4.1.1-11 PLANCK – Internal Cone



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 95 of 135

4.1.2 Radiator Panels Black Paint / MLI Area

The radiative areas obtained from the thermal analysis are shown in Fig. 4.1.1-6 and the amounts of the MLI and OSR areas are reported in Table 4.1.2-1.

Panel	Total Panel Area [m²]	MLI Area [m²]	Paint Area [m²]	Paint Area / Total panel %
+Z	0.974	0.308	0.666	68
+Y+Z	1.462	1.259	0.203	14
+Y	0.974	0.229	0.745	76
+Y -Z	1.462	0	1.462	100
-Z	0.974	0	0.974	100
-Y –Z	1.462	0	1.462	100
-Y	0.974	0.582	0.392	40
-Y +Z	1.462	0.325	1.137	78
Total	9.744	2.703	7.041	

Table 4.1.2-1 PLANCK - External Radiative Areas



ISSUE : 01 DATE : 13/NOV/02 PAGE : 96 of 135

#### 4.1.3 Thermal Mathematical Model (TMM)

The Thermal Mathematical Model (TMM) has been prepared with Esatan software and contains the thermal node description, the thermal conductivity network and the unit and heater dissipation.

**HERSCHEL** 

**& PLANCK** 

It is composed by 1846 nodes:

- 847 relative to external model including node 99999 that define the space with a temperature of -269 °C

1019 for internal model describing the Service Module.

The thermal conductivity network has been built with 4529 linear conductors and 19292 radiative conductors derived from Esarad computation.

There are 6 nodes that represent the I/F PLM points. They are connected to the Upper Payload Subplatform, the 6 nodes are listed hereafter:





DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 97 of 135

#### 4.1.3.1 Conductive Couplings

See para 3.1.3.2.

Details of Unit - Panel Contact Conductances (including spreading effect if applicable) are given in Table 4.1.3.1-2

MLI thermal conductivity is depending on the different number of layers (see Table 3.1.2-1). Application is:

- 20 layers MLI composition is used on the Top of the Satellite facing to PPLM and on the rear of Solar Array
- 10 layers MLI composition is used on all the other external surfaces:
- 7 layers MLI composition is used on the Tanks and on the SCC panels

Structural characteristics and thermal conductivity (Kz, Kxy) of the panels are reported in Table 4.1.3.1-1 (Remark: the conductivity evaluation has been made as per RD.2-1).

LOCATION	Н/С ТҮРЕ	SKIN TYPE	SKIN CONDUCTIVITY	THICK. SKIN [MM]	THICK. CORE[MM]	KXY [W/MK]	KZ [W/MK]
			[W/MK]				
Upper and	3/16-50560007	M18/G801	20	0.4	20	1.21	1.19
Lower Closure							
Subplatform	3/16-50560007	AA7075T6	130	0.3	19.4	4.34	1.18
Lateral	3/16-50560007	AA7075T6	130	0.3	35	2.64	1.17
Equipment	3/16-50560007	M18/G801	20	0.3	20	1.03	1.18
Platform							
Shear Web	3/16-5056001	M18/G969	20	0.76	15	2.43	1.78
Cone	3/16-5056001	M40/914	20	0.54	15	1.95	1.74
Reinforced	1/8-5056002	M40/914	20	1.08	13.92	4.39	5.32
Cone							

#### Table 4.1.3.1-1 PLANCK - SVM Honeycomb panels thermal properties



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 98 of 135

A FINMECCANICA COMPANY

Table 4.1.3.1-2 PLANCK – Unit-Panel Contact Conductances

UNIT	PANEL	Contact	Node/HP	Mounting	Mounting	Ac/An	^filler	GL	GL	GL (with
		area	area	Nodes/	nodes		(1=yes)	Ac<1000cm ²	Ac>1000cm ²	spreading
		[cm2]	[cm2]	nr. HP	Total Area		(0=no)	[W/°C]	[W/°C]	effect)
STR	L/P+ Z (lw floor)	289.00	3315.00	1	3315	0.09	1		1.71	
REU	L/P+ Z	1710.00	203.00	16	3248	0.53	1			17.10
DPU	L/P+ Z	780.00	203.00	9	1827	0.43	1		9.23	
DCCU+FV	L/P+Z+Y	3960.00	203.00	36	7308	0.54	1			39.60
REBA1	L/P+Z+Y	492.20	203.00	6	1218	0.40	1		8.35	
REBA2	L/P+Z+Y	492.20	203.00	6	1218	0.40	1		8.35	
4 CCU	L/P+ Y	56.25	203.00	8	1624	0.03	1		0.58	
4 CEU	L/P+ Y	430.00	203.00	4	812	0.53	1	9.17		
4 CAU	L/P+ Y	1230.00	203.00	9	1827	0.67	1			12.30
4 K PRE-REG	L/P+ Y	225.00	203.00	4	812	0.28	1		5.29	
RFDN	L/P -Y	2634.24	203.00	18	3654	0.72	1			26.34
EPC1	L/P -Y	224.10	203.00	6	1218	0.18	1		3.51	
EPC2	L/P -Y	224.10	203.00	3	609	0.37	1		7.02	
TRANSX/B1	L/P -Y	373.38	203.00	4	812	0.46	1	9.04		
TRANSX/B2	L/P -Y	373.38	203.00	4	812	0.46	1	9.04		
TWT1	L/P -Y	306.00	203.00	8	1624	0.19	1		3.71	
TWT2	L/P -Y	306.00	203.00	4	812	0.38	1		7.42	
PCDU	L/P -Y+Z	1235.00	203.00	12	2436	0.51	1			12.35
CDMU	L/P -Y+Z	1012.50	203.00	8	1624	0.62	1			10.13
ACC	L/P -Y+Z	787.50	203.00	6	1218	0.65	1	9.74		
BATT	L/P -Y+Z	704.00	203.00	9	1827	0.39	1		8.25	
PDU	SH -Y+Z R	225.00	2510.00	1	2510	0.09	1		1.71	
QRS1	SH -Y+Z L	297.00	1120.00	1	1120	0.27	1		5.21	
QRS2	SH -Y+Z L	297.00	2510.00	1	2510	0.12	1		2.32	
QRS3	SH -Y-Z L	297.00	2510.00	1	2510	0.12	1		2.32	
DAE	Subplatf	414.00	4320.00	1	4320	0.10	1		1.95	
BEU	Subplatf	2462.40	4320.00	1	4320	0.57	1			24.62
PAU	Subplatf	1060.00	2660.00	1	2660	0.40	1			10.60



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 99 of 135

### 4.1.3.2 SVM INTERFACES REQUIREMENTS

The PLACK SVM interface requirements are listed below:

REQUIREMENT	DESCRIPTION	RESULT	STATUS
ITP-080-P	Cryo structure total negative loads onto SVM of 1 W	Boundary in theTMM	С
ITI-010-P	Total neg. loads on the BEU of max 15 W	Boundary in theTMM	С
ITP-140-P	MLI on top SVM max decoupling	Low Emissivity used	С
ITP-150-P	MLI on top SVM Exter. layer temp. < 200 K	215 K	NC
ITP-170-P	Radiative loads between PAU & BEU < 2.3 W	(1)	С
ITP-180-P	MLI on SVM sub-platform Exter. layer temp. < 200 K	222 K	NC
ITP-190-P	MLI onto back side of the Solar Array	Low Emissivity used	С
ITP-200-P	MLI on Solar Array back-side Exter. layer temp. < 300 K	296 K	С
ITP-210-P	PLM truss attach. point temp. < 293 K	313 K	NC
ITP-220-P	I/F truss stability at 1/60 Hz < TBD	(2)	С
ITP-230-P	Radiative panels temp. stability at 1/60 Hz = 0.01 K/Hz^0.5	(3)	С
ITI-030-P	Internal Temp. design range and stability req.	See Analysis Results and discussion	С
ITI-040-P	SCC thermal design	See Analysis Results and discussion	С
ITL-020-P	ARIANE 5 interfaces	N A	NA

(1) = see Table 4.1.5.3-2

(2) = see Table 4.1.5.2-5

(3) = see Table 4.1.5.2-4



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 100 of 135

#### 4.2 PLANCK - THERMAL ANALYSIS

#### 4.2.1 Thermal Analysis Cases

#### 4.2.1.1 Steady State

In according to AD2.10, the list of the orbital Steady State cases analysed is presented in the following table:

CASE	α	Sun on Panel	Solar Aspect	Attitude	Solar Constant	Remarks
	Degradation		Angle		[W/m ² ]	
3	BOL	+Z	10	Rot $X = 0$	1285	
				Rot $Y = +10$		
8	EOL	+Z	0	Rot $X = 0$	1405	
				Rot $Y = 0$		
Survival	BOL	+Z	10	Rot $X = 0$	1285	
				Rot $Y = +10$		

#### Table 4.2.1.1-1 PLANCK - Orbit Cases description

The spin of the satellite around its X-axis (1round per minute) has a negligible effect on the amount of solar fluxes on the sun-exposed surfaces, so it is not considered in the current analysis.

The Solar Constant has been defined by ALCATEL with the following value:

Cold Cases (BOL3,Survival) :	1285 W/m ² , which correspond a temperature of the Sun of 5772 K
Hot Cases (EOL8) :	1405 W/m ² , which correspond a temperature of the Sun of 5792 K

The following part of the satellite have been set to a boundary temperature (see A.D. 2.10):

•	PLM Groove Shield	BOL case :	-193.15 °C
		EOL case :	-113.15 °C

• Space node : -269 °C



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 101 of 135

#### 4.2.1.2 Transient Cases

To verify the thermal stability requirement for the SCC Radiative Panels and the SVM/PLM I/F points a transient analysis has been performed taking into account the variation of SCC Power dissipation on each bed. The analysed cases are the followings :

- Cold Transient (Case 1): Starting from S/S case BOL1 (Sun on -X, SAA= 0°). Ending to S/S case BOL3 (Sun on -X, SAA=+10°). Duration of change of attitude: 1200s Overall duration of transient case: 345600s (96 hours)
- Hot Transient (Case 2): Starting from S/S case EOL3 (Sun on -X, SAA=+10°). Ending to S/S case EOL8 (Sun on -X, SAA= 0°). Duration of change of attitude: 1200s Overall duration of transient case: 345600s (96 hours)

The working SCC has a dissipation profile of 667s, while the single bed has a whole cycle in 4002 s ( 6 time 667s). Each SCC is composed of six thermal nodes for the Inner bed and six for the Outer shell, for each thermal node is considered the thermal capacity, the linear conductor and the power dissipation for each phase and has been utilised a simplified BOL and EOL thermal mathematical model reported in Table 4.2.1.2-1/2

In Table 4.2.1.2-3 are reported the value relative to Gas gap conductance for a period time of 1334 sec up to 2000 one .



SPAZIO

HERSCHEL & PLANCK DOC : H-P-RP-AI-0040

ISSUE : **01** DATE : **13/NOV/02** PAGE : **102 of 135** 

## Highly Simplified BOL Thermal Model of 20 K Sorption Cooler Compressor Assembly

(To be used by Alcatel to simulate compressor

### interface with radiator)

(Pradeep Bhar	idari, Mauro Prii	na, 11-15-2001)	) (Phone: 818	3-354-7597)	Modified Mo	<u>del</u>			
			Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6	
Parameter	Location	Units	Heatup	Desorb	Cool	Absorb	Absorb	Absorb	Phase
			0-667 s	667-1334 s	1334-2000 s	2001-2667 s	2668-3333 s	3335-4000 s	Cycle Time
Therm. Mass	Inner Bed	MC _p (J/K)	800	3600	900	670	690	710	
	Outer Shell	MC _p (J/K)	720	720	720	720	) 720	720	
Conductance	(Inner Bed to Outer Shell)	W/K	0.02	0.03	***	6.53	6.53	6.53	
Heat Input	Inner Bed	W	201	150	0	36	36	36	
-	Outer shell	W	C	) 0	7	7	<b>'</b> 7	7	
** see attache	d table					<u>_</u>		_	
(Gas-Gap Cor	nductance Wor	ksheet)				BOL Model			

#### Notes:

1) The above values are for beginning of life (excluding margin)

2) The total cycle time is 667*6 = 4000 seconds.

3) There are 6 identical beds which are of phase, by one phase width of 667 sec., with respect to each other.

Table 4.2.1.2-1 PLANCK - Simplified BOL SCC model



SPAZIO

**HERSCHEL** & PLANCK DOC : H-P-TN-AI-0040

**ISSUE : 01** DATE : 13/NOV/02 PAGE : 103 of 135



Table 4.2.1.2-2 PLANCK - Simplified EOL SCC model



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 104 of 135

Time	Gas gap Conductance						
[s]	[W/K]	[s]	[W/K]	[s]	[W/K]	[s]	[W/K]
0	0.0313	341	2.3479	394	6.2940	447	6.5519
286	0.0314	342	2.6215	395	6.3069	448	6.5525
289	0.0316	343	2.8875	396	6.3187	449	6.5530
291	0.0318	344	3.1393	397	6.3307	450	6.5534
292	0.0319	345	3.3734	398	6.3420	451	6.5536
293	0.0321	346	3.5880	399	6.3526	452	6.5537
294	0.0325	347	3.7832	400	6.3634	453	6.5539
295	0.0329	348	3.9600	401	6.3728	454	6.5541
296	0.0331	349	4.2804	402	6.3824	455	6.5542
297	0.0337	350	4.4133	403	6.3914	667	6.5543
298	0.0344	351	4,5360	404	6.4003		
299	0.0352	352	4.6454	405	6.4086		
300	0.0359	353	4.7481	406	6.4171		
301	0.0368	354	4.8422	407	6.4247		
302	0.0383	355	4,9295	408	6.4321		
303	0.0397	356	5.0096	409	6.4391		
304	0.0414	357	5 0853	410	6 4456		
305	0.0414	358	5 1568	410	6 4516		
306	0.0459	359	5 2245	412	6 4578		
307	0.0487	360	5 2856	413	6 4636		
308	0.0407	361	5 3454	414	6 4689		
300	0.0513	362	5 4002	/15	6 4738		
310	0.0000	363	5 4532	415	6 4793		
310	0.0002	364	5 5034	410	6 4837		
312	0.0000	365	5 5503	/18	6 4887		
312	0.0703	366	5 5056	/10	6 4032		
313	0.0773	367	5.3930	419	6 4071		
314	0.0043	368	5 6789	420	6 5009		
315	0.0934	360	5 7179	421	6 5049		
310	0.1029	309	5 75/1	422	6 5083		
210	0.1157	271	5 7902	423	6 5110		
210	0.1200	272	5,7093	424	6.5119		
220	0.1393	372	5.0233	420	6 5192		
320	0.1540	373	5.0000	420	0.0100		
321	0.1710	374	5.0002	427	0.5214		
322	0.1900	373	5.9103	420	0.3242		
323	0.2123	370	5.9430	429	6.5204		
324	0.2366	3//	5.9708	430	6.5291		
323	0.2041	370	5.9967	431	0.0010		
320	0.2950	3/9	0.0219	432	0.000		
327	0.3317	380	6.0453	433	0.0300		
328	0.3735	381	6.0680	434	0.5373		
329	0.4224	382	6.0902	435	6.5393		
330	0.4799	383	6.1119	436	6.5409		
331	0.5482	384	6.1314	437	6.5423		
332	0.6297	385	6.1514	438	6.5436		
333	0.7276	386	6.1705	439	6.5450		
334	0.8556	387	6.1886	440	6.5463		
335	0.9855	388	6.2058	441	6.54/3		
336	1.1518	389	6.2216	442	6.5480		
337	1.3457	390	6.2375	443	6.5488		
338	1.5667	391	6.2526	444	6.5497		
339	1.8118	392	6.2673	445	6.5505		
340	2.0749	393	6.2808	446	6.5512		

Table 4.2.1.2-2 PLANCK - Gas gap conductance



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 105 of 135

4.2.1.3 Survival case

In case of failure on board of the satellite (i.e. computers board ) is necessary to switch off all the units in mode "Not Operative" and operate only wih the subsystem ACMS and PCS in mode "Operative". From this instant the TCS must guarantee the survival mode of the satellite with the utilization of substitution heaters.

Two cases have been performed :

- BOL3 (Sun on -X , SAA=+10°).
  Overall duration of transient case: 259200s (72 hours)
- EOL8 (Sun on -X , SAA= 0°).
  Overall duration of transient case: 259200s (72 hours)

#### 4.2.1.4 Propellant Tank

A trade-off analysis has been performed in order to investigate the thermal decoupling and stability requirement in transient mode for propellant Tanks and the results were presented in the TCS PM#1.



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 106 of 135

#### 4.2.2 Power Dissipation

The power dissipations are shown in Table 4.2.2-1.

The values presented in the table have been considered the state of Scientific Observation as a cold case (BOL3 and Survival ).

The Telecom Phase instead has been considered as a hot case (EOL8).

		Scientific Observ.	Telecom Phase	Survival
NODE	LABEL	BOL	EOL	
		[W]	[W]	[W]
11	STR1	0	0	0
12	STR2	13	13	0
13	DPU1	32	32	0
14	DPU2 (on shear)	0	0	0
15	REU	92	92	0
101	DCCU + FV	19	19	0
102	REBA1	0	0	0
103	REBA2	41.5	41.5	0
201	4 CCU	60	60	0
202	4 CAU	15	15	0
203	4 PRE-REG	20	20	0
204	4 CEU	41	41	0
311	SCC1 - Outer Shell1	71	86.67	0
312	SCC1 - Outer Shell2	71	86.67	0
313	SCC1 - Outer Shell3	71	86.67	0
314	SCC1 - Outer Shell4	71	86.67	0
315	SCC1 - Outer Shell5	71	86.67	0
316	SCC1 - Outer Shell6	71	86.67	0
401	SCE1	110	110	0
402	SCE2	0	0	0
511	SCC2 - Outer Shell1	0	0	0
512	SCC2 - Outer Shell2	0	0	0
513	SCC2 - Outer Shell3	0	0	0
514	SCC2 - Outer Shell4	0	0	0
515	SCC2 - Outer Shell5	0	0	0
516	SCC2 - Outer Shell6	0	0	0
521	BEU	43.7	58.7	-15
522	PAU	15	15	0
525	DAE Power unit	20	20	0
551	QRS3 (on shear)	0	0	0
601	TRANSX/B1	7	13	13
602	TRANSX/B2	7	7	7
603	TWTA1	0	38	38
604	TWTA2	0	0	0
605	RFDN	0	8	8
606	EPC1	9	9	9
607	EPC2	0	0	0
701	CDMU	36	36	36
702	ACC	24	24	24
703	BATT	0	0	6



HERSCHEL & PLANCK DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 107 of 135

		Scientific Observ.	Telecom Phase	Survival
NODE	LABEL	BOL	EOL	
		[ W ]	[W]	[W]
704	PCDU	153	127	126
705	QRS1 (on shear)	8	8	8
706	QRS2 (on shear)	0	8	8
707	PDU (on shear)	10	10	10
900	He TANK +Z			
905	He TANK +Y			
910	He TANK -Z			
915	He TANK -Y			
920	P TANK +Y+Z			
925	P TANK -Z			
930	P TANK -Y+Z			

Table 4.2.2-1 PLANCK - Unit Power Dissipation



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 108 of 135

4.2.3 Heater Sizing and Breakdown

An optimized heater definition approach was followed in order to define the minimum heater power needed by the TCS. It included the following major steps:

- h) selection of the minimum applicable temperature limits
- i) addition of  $+3^{\circ}$ C to the minimum limits (i.e. to achieve the minimum heater control threshold)
- j) addition of the defined uncertainty (+9°C/ +11°C as applicable) to obtain a new set of temperatures
- k) computation of the needed heater power to maintain units at the those temperature levels in steady state conditions
- 1) definition of the upper threshold at  $+5^{\circ}$ C above the minimum threshold
- m) transient analysis with automatic heater control routines within the defined thresholds
- n) verification of the results and local adjustement of heater power as necessary to achieve a proper variation of the equipment temperatures between thersholds (with a heater duty cycle < 100%)

The Heater circuit breakdown with the heater power impressed on the TMM nodes is shown in Table 4.2.3-1




DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 109 of 135

Table 4.2.3-1 PLANCK - Heater Circuits Breakdown and Temperature Thresholds

HE IDE	EATER L NTIFICA	ine Tion	PURPOSE	Heater Node	Heater node power [W]	Threshold [°C] (com. on unit)	PURPOSE	Heater Node	Heater node power [W]	Threshold [°C] (com. on unit)
	Main	Red.								
HTR	MA1	RA1	Nominal	6604	9.5	comp. array				
-				6605	9.5					
				6612	9.5					
				6613	9.5					
				6607	3.0					
				6615	3.0					
				6609	2.0					
				6617	2.0					
HTR -	MA2	RA2					Survival	6609	2.0	-12/-7 (TWT1)
								6617	2.0	
								6604	9.5	
								6605	9.5	
								6612	9.5	
								6613	9.5	
								6607	3.0	
								6615	3.0	
HTR -	MA3	RA3	Nominal	6647	3.0	comp. array				
				6648	3.0					
				6644	19.0					
				6645	19.0					
				6633	2.0					
				6641	2.0					
HTR -	MA4	RA4					Survival	6647	3.0	-12/-7 (EPC2)
								6648	3.0	
								6644	19.0	
								6645	19.0	
								6633	2.0	
								6641	2.0	
HTR	MB1	RB1					Survival	6720	5.0	5/10 (Batt.)
_								6722	5.0	
								6703	5.0	
								6729	5.0	
								6740	5.0	
								6764	5.0	
HTR	MC1	RC1	Nominal	801	30.0	-7/-2 (HP801)				
-				802	30.0					
HTR	MC2	RC2	Nominal	803	30.0	-7/-2 (HP803)				
-				804	30.0					
HTR	MC3	RC3	Nominal	805	30.0	-7/-2 (HP806)				
-				806	30.0					
HTR	MC4	RC4	Nominal	807	30.0	-7/-2 (HP808)				
-				808	30.0					
HTR	MC5	RC5					Survival	801	75.0	-17/-12 (SCE1)



HERSCHEL & PLANCK DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 110 of 135

-										
HTR	MC6	RC6					Survival	802	75.0	-17/-12 (SCE1)
HTR	MC7	RC7					Survival	803	75.0	-17/-12 (SCE1)
- HTR	MC8	RC8					Survival	804	75.0	-17/-12 (SCE1)
- HTR	MC9	RC9					Survival	805	75.0	-17/-12 (SCE2)
- HTR	MC10	RC10					Survival	806	75.0	-17/-12 (SCE2)
- HTR	MC11	RC11					Survival	807	75.0	-17/-12 (SCE2)
- HTR	MC12	RC12					Survival	808	75.0	-17/-12 (SCE2)
- HTR	MD1	RD1					Survival	6026	15.0	-17/-12 (DPU)
-								6027	15.0	
								6028	15.0	
								6029	5.0	
								6032	5.0	
								6037	5.0	
								6040	5.0	
HTR	MK1	RK1					Survival	522	10.0	-17/-12 (PAU)
HTR	ME1	RE1					Survival	6108	10.0	-27/-22 (REBA2)
								6132	5.0	
								6156	5.0	
HTR	MF1	RF1					Survival	6203	10.0	-17/-12 (CCU)
								6218	10.0	
								6227	10.0	
								6233	15.0	
								6243	15.0	
HTR -	MF2	RF2					Survival	6214	10.0	-17/-12 (Pre-reg)
								6215	10.0	
								6230	15.0	
								6237	15.0	
HTR -	MH1	RH1	Nominal	900	2.0	13/18 (Tank-1)	Survival	900	2.0	13/18 (Tank-1)
HTR -	MH2	RH2	Nominal	905	2.0	13/18 (Tank-2)	Survival	905	2.0	13/18 (Tank-2)
HTR -	MH3	RH3	Nominal	910	2.0	13/18 (Tank-3)	Survival	910	2.0	13/18 (Tank-3)
HTR -	MH4	RH4	Nominal	915	2.0	13/18 (Tank-4)	Survival	915	2.0	13/18 (Tank-4)
HTR	MH5	RH5					Survival	920	2.0	13/18 (Prop-1)
HTR	MH6	RH6					Survival	925	2.0	13/18 (Prop-2)
HTR	MH7	RH7					Survival	930	2.0	13/18 (Prop-3)
HTR -	MH8	RH8	Nominal	8508	2.0	13/18 (RCT1 m)	Survival	8508	2.0	13/18 (RCT1 m)
				8608	2.0			8608	2.0	
HTR -	MH9	RH9	Nominal	8708	2.0	13/18 (RCT2 m)	Survival	8708	2.0	13/18 (RCT2 m)
				8808	2.0			8808	2.0	
HTR -	MH10	RH10	Nominal	1133	2.0	13/18 (RCT1 m)	Survival	1133	2.0	13/18 (RCT1 m)
				1134	2.0			1134	2.0	
HTR -	MH11	RH11	Nominal	1233	2.0	13/18 (RCT2 m)	Survival	1233	2.0	13/18 (RCT2 m)
				1234	2.0			1234	2.0	



# HERSCHEL & PLANCK

DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 111 of 135

	-									
HTR -	MH12	RH12	Nominal	1333	2.0	13/18 (RCT3 m)	Survival	1333	2.0	13/18 (RCT3 m)
				1334	2.0			1334	2.0	
HTR	MH13	RH13	Nominal	1433	2.0	13/18 (RCT4m)	Survival	1433	2.0	13/18 (RCT4m)
				1434	2.0			1434	2.0	
HTR -	MH14	RH14	Nominal	1533	2.0	13/18 (RCT5m)	Survival	1533	2.0	13/18 (RCT5m)
				1534	2.0			1534	2.0	
HTR -	MH15	RH15	Nominal	1733	2.0	13/18 (RCT6 m)	Survival	1733	2.0	13/18 (RCT6 m)
				1734	2.0			1734	2.0	
HTR	MH16	RH16	Nominal	TBD		13/18 (TBD)	Survival	TBD		13/18 (TBD)
HTR -	MH17	RH17	Nominal	TBD		13/18 (TBD)	Survival	TBD		13/18 (TBD)
HTR -	MH18	RH18	Nominal	TBD		13/18 (TBD)	Survival	TBD		13/18 (TBD)
HTR -	MI1	RI1	Nominal	11	10.0	-17/-12 (STR1)	Survival	11	10.0	-17/-12 (STR1)
HTR -	MI2	RI2	Nominal	12	10.0	-17/-12 (STR2)	Survival	12	10.0	-17/-12 (STR2)
HTR -	MI3	RI3	Nominal	3921	5.0	-67/-62 (SAS+Y)	Survival	3921	5.0	-67/-62 (SAS+Y)
HTR -	MI4	RI4	Nominal	3970	5.0	-67/-62 (SAS-X)	Survival	3970	5.0	-67/-62 (SAS-X)





DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 112 of 135

4.2.4 Emergency Mode Cases and Results

Intentionally Left Blank



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 113 of 135

### 4.2.5 Analysis Results

## 4.2.5.1 Steady state results

The temperature results hereafter presented, refer to the Steady State analysed cases reported in paragraph 4.2.1.1 In Table 4.2.5.1-1 a overall summary result of the thermal unit is represented. The values are inclusive of uncertainty as reported in RD (xx).

NODE	LABEL	Temp.		Temp.	Non	BOL3 [°C]	EOL8 [°C]	SURV [°C]
		Oper. [°C]		Oper. [	°C]	T - UFP	T + UFP	T - UFP
11	STR1	-10	30	-20	40	3.22	23.49	-18.40
12	STR2	-10	30	-20	40	7.23	29.12	-13.04
13	DPU1	-10	40	-20	50	-0.44	19.71	-13.35
14	DPU2 (on shear)	-10	30	-20	50	5.57	26.72	-18.43
15	REU	-20	30	-30	40	4.62	25.80	-23.21
101	DCCU + FV	-10	40	-20	50	9.82	31.36	-11.01
102	REBA1	-20	50	-30	70	3.09	24.36	-17.65
103	REBA2	-20	50	-30	70	20.44	41.09	-23.00
201	4 CCU	-10	40	-20	50	18.25	39.86	-13.17
202	4 CAU	-10	40	-20	50	-5.07	15.85	-13.28
203	4 PRE-REG	-10	40	-20	50	5.95	26.68	-13.14
204	4 CEU	-10	40	-20	50	13.00	33.61	-13.19
401	SCE1	-10	40	-20	50	-3.30	9.33	-17
402	SCE2	-10	40	-20	50	-16.59	4.27	-17
521	BEU	-20	40	-30	50	11.27	38.16	-27.73
522	PAU	-20	40	-20	50	12.24	36.65	-19.05
525	DAE Power Unit	-20	45	-20	55	20.98	42.87	-4.44
551	QRS3 (on shear)	-15	45	-25	65	4.72	28.84	-6.67
601	TRANSX/B1	-10	50	-20	60	10.49	36.71	13.07
602	TRANSX/B2	-10	50	-20	60	4.35	28.42	-1.52
603	TWTA1	-15	50	-25	60	4.91	27.35	9.77
604	TWTA2	-15	50	-25	60	-16.09	7.54	-22.30
605	RFDN	-40	70	-50	80	-6.18	21.75	-8.47
606	EPC1	-15	45	-25	55	-7.88	16.86	-0.98
607	EPC2	-15	45	-25	55	-11.71	7.37	-22.97
701	CDMU	-10	45	-20	55	1.27	21.48	-2.47
702	ACC	-10	45	-20	55	-1.67	17.69	-3.13
703	BATT1	0	35	-10	45	4.63	24.57	6.89
704	PCDU	-10	45	-20	55	25.63	40.11	13.14
705	QRS1	-15	45	-25	55	14.61	35.82	5.86
706	QRS2	-15	45	-25	55	10.02	34.42	4.27
707	PDU	-15	45	-25	55	11.84	31.91	-4.18
900	He TANK +Z	10	40	10	40	17.00	29.00	13.00
905	He TANK +Y	10	40	10	40	17.00	29.00	13.00
910	He TANK -Z	10	40	10	40	17.00	32.22	13.00
915	He TANK -Y	10	40	10	40	17.00	29.00	13.00
920	P TANK +Y+Z	10	40	10	40	14.34	36.68	13.00
925	P TANK -Z	10	40	10	40	13.88	37.24	13.00
930	P TANK -Y+Z	10	40	10	40	13.80	36.16	13.00

Table 4.2.5.1-1 PLANCK - Unit Temperatures Results



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 114 of 135

## 4.2.5.2 Transient Temperature results

A summary results of the transient analysis is reported in the following pages.

In Table 4.2.5.2-1 are reported minimum temperature results in cold case (BOL3) and in Table 4.2.5.2-2 the maximum one for the hot case (EOL8) :

NODE	LABEL	TIME	TMIN	MIN LIMIT
		[^C]	[^C]	[^C]
11	STR1	265800	12.3	-20
12	STR2	265800	17	-10
13	DPU1	266400	8.9	-10
14	DPU2	264600	15	-20
15	REU	267000	14.5	-20
101	DCCU	264600	19.3	-10
102	REBA1	278400	12.5	-30
103	REBA2	265800	29.8	-20
201	4 CCU	277200	28.3	-10
202	4 CAU	276600	4.5	-10
203	4 PRE-RE	277800	15.4	-10
204	CEU	264000	22.4	-10
401	SCE1	332400	-0.7	-10
402	SCE2	332400	-4.4	-20
521	BEU	177600	21	-20
522	PAU	261600	22	-20
525	DAE POWER BOX	178200	30.7	-20
551	QRS3	259800	15.1	-15
601	XPND_1	264600	21.7	-10
602	XPND_2	259800	15.1	-20
603	TWTA_1	259200	10.8	-15
604	TWTA_2	259800	-6.3	-25
605	RFDN	259200	5.9	-40
606	EPC1	259200	3.4	-15
607	EPC2	259200	-6.6	-25
701	CDMU	264000	10.9	-10
702	ACC	264000	7.9	-10
703	BATT	264000	14.5	0
704	PCDU	264000	35.2	-10
705	QRS1	261000	24.7	-15
706	QRS2	260400	20	-15
707	PDU	277800	21.4	-15
900	Helium Tank	345600	13.9	10
905	Helium Tank	345600	14.9	10
910	Helium Tank	277800	19.2	10
915	Helium Tank	345600	14.6	10
920	Prop. Tank	177000	24	10
925	Prop. Tank	177000	23.8	10
930	Prop. Tank	177000	23.7	10
8001	External S.A.	262800	108.1	-160



HERSCHEL & PLANCK DOC : **H-P-RP-AI-0040** 

ISSUE : 01 DATE : 13/NOV/02 PAGE : 115 of 135

NODE	LABEL	TIME	TMIN	MIN LIMIT
		[^C]	[^C]	[^C]
8002	External S.A.	202200	107.1	-160
8003	External S.A.	259200	106.4	-160
8004	External S.A.	263400	107.8	-160
8051	Back External S.A.	262800	107.8	-160
8052	Back External S.A.	202200	106.7	-160
8053	Back External S.A.	259200	106.1	-160
8054	Back External S.A.	263400	107.5	-160
8301	Central S.A.	261600	114.2	-160
8302	Central S.A.	261000	113.8	-160
8303	Central S.A.	260400	113.8	-160
8304	Central S.A.	260400	113.9	-160
8351	Back Central S.A.	261600	113.9	-160
8352	Back Central S.A.	261000	113.5	-160
8353	Back Central S.A.	260400	113.5	-160
8354	Back Central S.A.	260400	113.6	-160

Table 4.2.5.2-1 PLANCK - Cold Transient Analysis Results



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 116 of 135

NODE	LABEL	TIME	TMAX+UFP	MAX LIMIT
		[^C]	[^C]	[^C]
11	STR1	335400	23.9	40
12	STR2	335400	28.5	30
13	DPU1	335400	19.6	40
14	DPU2	335400	26.6	50
15	REU	335400	25.7	30
101	DCCU	335400	31.3	40
102	REBA1	335400	24.3	70
103	REBA2	335400	41	50
201	4 CCU	335400	39.9	40
202	4 CAU	335400	15.8	40
203	4 PRE-RE	335400	26.6	40
204	CEU	335400	33.6	40
401	SCE1	288000	7.9	40
402	SCE2	288000	2.8	50
521	BEU	334800	38	40
522	PAU	334800	36.5	40
525	DAE POWER BOX	334800	42.7	45
551	QRS3	332400	28.4	45
601	XPND_1	344400	29.5	50
602	XPND_2	334800	27.6	60
603	TWTA_1	340800	25.4	50
604	TWTA_2	334800	6.9	60
605	RFDN	334200	21	70
606	EPC1	334200	13.4	45
607	EPC2	334800	6.8	55
701	CDMU	334800	21.2	45
702	ACC	334800	17.5	45
703	BATT	334800	24.2	35
704	PCDU	334800	39.8	45
705	QRS1	334800	35.3	45
706	QRS2	334800	33.9	45
707	PDU	335400	31.7	45
900	Helium Tank	172800	25.4	45
905	Helium Tank	172800	26.8	45
910	Helium Tank	336600	32.1	45
915	Helium Tank	172800	27.1	45
920	Prop. Tank	336600	36.5	45
925	Prop. Tank	336000	37.1	45
930	Prop. Tank	335400	35.9	45
8001	External S.A.	329400	126.9	120
8002	External S.A.	328200	126.8	120
8003	External S.A.	328200	126.6	120
8004	External S.A.	340200	126.5	120
8051	Back External S.A.	334800	126.5	120
8052	Back External S.A.	328200	126.5	120
8053	Back External S.A.	328200	126.2	120



HERSCHEL & PLANCK

ISSUE : 01 DATE : 13/NOV/02 PAGE : 117 of 135

DOC : H-P-RP-AI-0040

NODE	LABEL	TIME	TMAX+UFP	MAX LIMIT
		[^C]	[^C]	[^C]
		[ -]	[ -]	[ -]
8054	Back External S.A.	253800	126.1	120
8301	Central S.A.	326400	130.1	120
8302	Central S.A.	331800	129.9	120
8303	Central S.A.	329400	129.7	120
8304	Central S.A.	331800	129.7	120
8351	Back Central S.A.	333000	129.8	120
8352	Back Central S.A.	331800	129.6	120
8353	Back Central S.A.	329400	129.3	120
8354	Back Central S.A.	329400	129.3	120

Table 4.2.5.2-2 PL	ANCK - Hot	Transient	Analysis	Results
		1101010110	1 11111 3 010	10000100

For SCC zone are reported the following graphics presented in Figure 4.2.5.2-1&3 for the temperature variation of the working SCC in Cold/Hot configuration.

In Figure 4.2.5.2-2&4 are depicted the I/F point temperature , instead in Figure 4.2.5.2-5&6 is represent a zoom of the temperature variation of the working SCC where the limit to reach are declared below in Table 4.2.5.2-3:

SCC	Sorption Cooler Compressor	+/-3 K	(3K,1K,0.5K)**
Note (**):	+/- 3K for First adjacent element		
	+/- 1K for the Next adjacent element		

+/- 0.5 for Next most element

Table 4.2.5.2-3 PLANCK - SCC requirement



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 118 of 135



HERSCHEL

**& PLANCK** 

Figure 4.2.5.2-1 PLANCK - SCC Outer Shell's Temperature



Figure 4.2.5.2-2 PLANCK – SCC I/F POINT Temperature



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 119 of 135



Figure 4.2.5.2-3 PLANCK - SCC Outer Shell-H.P. I/F Temperature



Figure 4.2.5.2-4 PLANCK – SCC I/F POINT Temperature



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 120 of 135



Figure 4.2.5.2-5 PLANCK - SCC Outer Shell's Temperature



Figure 4.2.5.2-6 PLANCK – SCC Outer Shell's Temperature





DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 121 of 135

For SCC panels and SVM/PLM interface points, the average value of all panel nodes temperature has been considered in the evaluation of the temperature variation with their respective limit requirements reported in Table 4.2.5.2-4, Table 4.2.5.2-5 for both cases :

The spectral density has been calculated with one measurement every 20 sec, 7200 sec before the end of transient duration .

node	description	Requirement 1/60 Hz	COLD CASE Results K/Hz ^{1/2}	HOT CASE Results K/Hz ^{1/2}
3001-16	L/P +Z	0.01 (TBC)	4.85e-4	7.8 e-4
3101-24	L/P +Z,+Y	0.01 (TBC)	8.97e-4	1.2 e-3
3201-16	L/P +Y	0.01 (TBC)	2.21 e-3	1.11 e-3
3301-24	L/P -Z,+Y	0.01 (TBC)	0.277	0.26
3401-16	L/P -Z	0.01 (TBC)	0.247	0.23
3501-24	L/P -Z,-Y	0.01 (TBC)	0.158	0.06
3601-16	L/P -Y	0.01 (TBC)	0.048	0.04
3701-24	L/P +Z,-Y	0.01 (TBC)	3.09 e-3	2.6 e-3

Table 4.2.5.2-4 PLANCK - SCC ASD results

			COLD CASE	HOT CASE
nodes	description	Requirement	Results	Results
		1/60 Hz	K/Hz ^{1/2}	K/Hz ^{1/2}
7304	I/F SVM	T.B.D.	2.66 e-3	3.14 e-3
7310	I/F SVM	T.B.D.	8.37 e-3	5.54 e-3
7315	I/F SVM	T.B.D.	.0101	5.44 e-3
7325	I/F SVM	T.B.D.	5.087e-3	6.81 e-3
7330	I/F SVM	T.B.D.	0.0125	0.02 e-3
7337	I/F SVM	T.B.D.	3.167 e-3	3.9 e-3

Table 4.2.5.2-5 PLANCK - I/F SVM/PLM ASD results



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 122 of 135

# **Typical spectral density calculation:**







DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 123 of 135

The software used is MathCad and the Fourier transform is computed as follow:

$$S_{j} = \frac{1}{\sqrt{N+1}} \sum_{k=0}^{N} s_{k} e^{\frac{2\pi i j k}{(N+1)}}$$

(Note: the normalization

$$\frac{1}{\sqrt{N+1}}$$

is that utilized by MathCad for the computation of the discrete Fourier trasform.)

The  $PSD_{sj}$  is computed as follow:

$$PSD_{sj} = 2 \frac{|S_j|^2}{N+1} t_{max} = 2N\Delta t \frac{|S_j|^2}{N+1}$$

and consequently the  $\mbox{ASD}_{\mbox{sj}}$  is:

$$ASD_{sj} = \sqrt{PSD_{s,j}} = \sqrt{2N\Delta t} \frac{\left|S_{j}\right|}{\sqrt{N+1}}$$



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 124 of 135

# 4.2.5.3 SUBPLATFORM UNITS

This paragraph is dedicated at the subplatform zone where are located the followings units :

BEU and PAU: on + X side SUBPLATFORM DAE mounted on - X side (internal zone).

Thermal filler is interposed between unit baseplate and floor, the obtained linear conductor result to be :

PAU 10.60 [W/K] DAE 1.95 [W/K] BEU 12.29 [W/K]

Only for BEU unit has been considered a thermal doubler of 9mm interposed between, baseplate unit - doubler up face and doubler lower face - subplatform floor.

DAE : external thermal properties ,black paint , epsilon = .9

BEU/PAU: These units are externally covered with a MLI 10 layer and one side of each unit Vs space is black paint painted in order to reject the his power dissipation see Figure 4.2.5.3-1 PLANCK - BEU, PAU, DAE

BEU - PAU  $Mli = .728 m^2 - .492 m^2$ 

Black paint =  $.112 \text{ m}^2$  -  $.030 \text{ m}^2$ 

Mli composition : 10 LAYER

Boundary condition : Groove Shield  $\ 80\ K\,/\,160\ K$  (COLD/HOT case).

A summary of the temperature requirement has been reported in Table 4.2.5.3-1 PLANCK - Transient Analysis Results:

		Requirement	Goal	Results
NODE		Delta Temp.	Delta Temp.	Temp. Variation / 3600 s
		/ 3600 s	/ 3600 s	Dtmax
		[ K ]	[ K ]	[ K ]
	COLD CASE			
521	BEU	+/-3 K/hour	+/-0.2 K/hour	0.40 K/hour
522	PAU	+/-3 K/hour	+/-1.1 K/hour	0.82 K/hour
	HOT CASE			
521	BEU	+/-3 K/hour	+/-0.2 K/hour	0.32 K/hour
522	PAU	+/-3 K/hour	+/-1.1 K/hour	0.84 K/hour

Table 4.2.5.3-1 PLANCK - Transient Analysis Results



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 125 of 135

In Table 4.2.5.3-2 has been calculated the flux incident on V-groove shield due to radiative flux :

NODE	UNIT	Requirement Flux	Calculated Flux	
521	BEU	2.3 W	1.49 W	COLD CASE
522	PAU	2.3 W	0.36 W	COLD CASE
521	BEU	2.3 W	1.54 W	HOT CASE
522	PAU	2.3 W	0.36W	HOT CASE

Table 4.2.5.3-2 PLANCK - Flux requirement



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 126 of 135



Figure 4.25.3-1 PLANCK - BEU, PAU & DAE design concept



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 127 of 135

## 4.2.5.4 Survival Transient results

A summary of the temperature results are reported in table 4.2.5.4-1:

NODE	LABEL	TIME	TMIN	MIN
		[^C]	[^C]	LIMIT [^C]
11	STR1	186600	-15.1	-20
12	STR2	183000	-16.3	-20
13	DPU1	169800	-17	-20
14	DPU2	190800	-13.7	-20
15	REU	181800	-26.8	-30
101	DCCU	130200	-11.8	-20
102	REBA1	129600	-18.7	-30
103	REBA2	129600	-24.4	-30
201	4 CCU	154200	-17	-20
202	4 CAU	153600	-7.5	-20
203	4 PRE-RE	152400	-17	-20
204	CEU	152400	-18.5	-20
401	SCE1	252600	-17	-20
402	SCE2	210000	-17	-20
521	BEU	155400	-30	-30
522	PAU	137400	-17.4	-20
525	DAE POWER BOX	129600	-5.6	-20
551	QRS3	143400	-10.7	-25
601	XPND_1	142800	2.7	-10
602	XPND_2	192600	-1.7	-20
603	TWTA_1	229200	-12	-15
604	TWTA_2	130800	-23	-25
605	RFDN	229200	-20.4	-40
606	EPC1	229200	-15.3	-15
607	EPC2	130800	-23.8	-25
701	CDMU	178200	-4	-10
702	ACC	178200	-8.5	-10
703	BATT	178200	2.1	0
704	PCDU	181200	10.8	-10
705	QRS1	180000	2.8	-15
706	QRS2	180000	1.7	-15
707	PDU	187200	-4.6	-15
900	Helium Tank	227400	13	10
905	Helium Tank	150000	13	10
910	Helium Tank	216600	13	10
915	Helium Tank	214200	13	10
920	Prop. Tank	137400	13	10
925	Prop. Tank	137400	13	10
930	Prop. Tank	129600	13	10
8001	External S.A.	159000	98.9	-160
8002	External S.A.	226800	97.9	-160
8003	External S.A.	149400	97.3	-160



HERSCHEL & PLANCK DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 128 of 135

<b>b</b>				
NODE	LABEL	TIME	TMIN	MIN
		[^C]	[^C]	LIMIT [^C]
8004	External S.A.	179400	98.7	-160
8051	Back External S.A.	159000	98.5	-160
8052	Back External S.A.	226800	97.5	-160
8053	Back External S.A.	244200	96.9	-160
8054	Back External S.A.	179400	98.3	-160
8301	Central S.A.	135600	105	-160
8302	Central S.A.	135600	104.6	-160
8303	Central S.A.	136800	104.6	-160
8304	Central S.A.	186600	104.7	-160
8351	Back Central S.A.	135600	104.6	-160
8352	Back Central S.A.	135600	104.2	-160
8353	Back Central S.A.	136800	104.2	-160
8354	Back Central S.A.	186600	104.4	-160

Table 4.2.5.4-1 PLANCK - Survival Temperature results

In the next page are reported in Figure 4.2.5.4-1/2 the temperature limits reached by SCE units, controlled with a thermostat set at T ON -17/ T OFF -12 deg , in both conditions (BOL3 and EOL8 )



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 129 of 135



Figure 4.2.5.4-1 PLANCK - SCE



Figure 4.2.5.4-2 PLANCK - SCE



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 130 of 135



Figure 4.2.5.4-3 PLANCK - SCC Outer Shell's Temperatures



Figure 4.2.5.4-4 PLANCK - SCC I/F POINT Temperatures



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 131 of 135



Figure 4.2.5.4-5 PLANCK - SCC Outer Shell's Temperatures



Figure 4.2.5.4-6 PLANCK - SCC I/F POINT Temperatures



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 132 of 135

4.2.5.5 Tank Temperature results

A trade-off concerning the temperature stability of the propellant tanks has been made and provided during the TCS PM#1.

## 4.2.6 Heater Power Summary

The Table 4.2.6-1 shows the Average heater power need during BOL/EOL condition and in Table 4.2.6-2 during a Survival mode in BOL and EOL phase.

ID. HEAT.	HEATER LOCATION	BOL3	EOL8
HTR-MA1	HTR TWTA1-EPC1-TRANSX1	46.75	42
HTR-MB1	HTR BATTERY/CDMU/ACC	0	0
HTR-MC1	HTR HP801/HP802	20.85	0
HTR-MC2	HTR HP803/HP804	0.9	0
HTR-MC3	HTR HP805/HP806	60	0
HTR-MC4	HTR HP807/HP808	60	0
HTR-MH1	Helium Tank1	0	0
HTR-MH2	Helium Tank2	0	0
HTR-MH3	Helium Tank3	0	0
HTR-MH4	Helium Tank4	0	0
HTR-MH10	Thrusters 20 N	0	0
HTR-MH11	Thrusters 20 N	0	0
HTR-MH12	Thrusters 20 N	0	0
HTR-MH13	Thrusters 20 N	0	0
HTR-MH14	Thrusters 20 N	1.2	0.94
HTR-MH15	Thrusters 20 N	1.35	1
HTR-MH8	Thrusters 1 N	0	0
HTR-MH9	Thrusters 1 N	0	0
HTR-MI1	HTR STR1	0	0
HTR-MI2	HTR STR2	0	0
HTR-MH16/17/18	LINEE	16.5	16.5
HTR-MI3/4	SAS	0	0
	Total Heater need [W] :	207.55	60.44

Table 4.2.6-1 PLANCK - Nominal Heater Power need



HERSCHEL & PLANCK DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 133 of 135

ID. HEAT.	HEATER LOCATION	SURV_BOL3	SURV_EOL8	
		4.2	2.94	
		4.3	2.84	
		0	0	
HTR-MD1		51.7	49.2	
HIR-ME1	HTR REBA1/REBA2/DCCU	0	0	
HIR-MF1		60	58.5	
HTR-MF2		29.3	26.8	
HTR-MB1	HTR BATTERY/CDMU/ACC	28	17.1	
HTR-MC5	HTR HP801	67	65.6	
HTR-MC6	HTR HP802	67	65.6	
HTR-MC7	HTR HP803	67	65.6	
HTR-MC8	HTR HP804	67	65.6	
HTR-MC9	HTR HP805	75	75	
HTR-MC10	HTR HP806	75	75	
HTR-MC11	HTR HP807	75	75	
HTR-MC12	HTR HP808	75	75	
HTR-MH1	Helium Tank1	1.3	1.2	
HTR-MH2	Helium Tank2	1.1	1.02	
HTR-MH3	Helium Tank3	0.65	0.6	
HTR-MH4	Helium Tank4	0.73	0.7	
HTR-MH5	Prop. Tank1	2	2	
HTR-MH6	Prop. Tank2	2	2	
HTR-MH7	Prop. Tank3	2	2	
HTR-MH10	Thrusters 20N	0	0	
HTR-MH11	Thrusters 20N	0	0	
HTR-MH12	Thrusters 20N	0	0	
HTR-MH13	Thrusters 20N	0	0	
HTR-MH14	Thrusters 20N	2.98	2.83	
HTR-MH15	Thrusters 20N	2.69	2.57	
HTR-MH8	Thrusters 1N	4	4	
HTR-MH9	Thrusters 1N	2.46	2.34	
HTR-MI1	HTR STR1	0	0	
HTR-MI2	HTR STR2	0	0	
HTR-MH16/17/18		33	33	
HTR-MI3/4	SAS	00	00	
HTR-MK1	PALL		0	
		0	0	
	Total Heater need [W] :	796.21	771.1	

Table 4.2.6-2 PLANCK - Survival Heater Power need



DOC : H-P-RP-AI-0040

ISSUE : 01 DATE : 13/NOV/02 PAGE : 134 of 135

4.2.7 PLANCK - CONCLUSION

Sizing cases Analyses

All	units are within the required temperature range.	The goal requir	ement is not met for:
	BEU/DAE:	T= 38.0 °C	vs 28 °C as goal
	PAU:	T= 36.5 °C	vs 30 °C as goal
	DAE POWER UNIT:	T= 42.7 °C	vs 28 °C as goal

The analysis results show that **Solar Array** temperature is 130 °C. S.A. temperature requirement to be verified when the supplier will be selected.

Transient analyses

All units are within specification.

### Remark:

For the SCC, the temperature requirement in Hot cases is  $+7^{\circ}$ C. As shown in figure Figure 4.2.5.4-3+6 (PLANCK – SCC Outer Shell-H.P. I/F Temperature), the temperature profile is going from  $-1^{\circ}$ C to  $+3.5^{\circ}$ C (without 7 °C of uncertainty).

The results of Radiative Panels Amplitude Spectral Density are given in table 4.2.5.2-4. The requirement (TBC) of  $0.01 \text{ K/Hz}^{1/2}$  is met for all the panels except fot the SCC/SCE ones. Concerning the ASD at the interface truss no requirement is specified but in any case the results of the calculation are given in Table 4.2.5.2-5.

## TANK

Trade-off analyses, showing the different impact due to the connection between Tank and Structure, have been presented during a TCS PM1.

The baseline solution foresees the use of rear support bracket made in Titanium and the Upper/Lower support brackets made in CFRP + Aluminium.

The stability of the gradient between each tank is equal to 0.4 K (stability requirement is 0.1K). Additional tradeoffs are on going; possible relaxation of the requirement is under investigation at System level.

SCC Temperature stability absorbing compressor/adjacent element

This requirement is not completely understood, further clarifications are needed.

Specific open point

A consistent decrease in term of heaters power, during the survival mode, will be possible changing the Notoperative temperature limit for the SCE (-20°C).

Actually this unit is mouting on the same Heat Pipes bench used for the SCC that have a not operative limit equal to  $-50^{\circ}$ C.

> Thermal dissipation of the 4CCU has increased; this unit is mounted on the +Y panel with a very low linear conductor due to a very reduced contact area (112.5 cm²) as shown in the sketch.



Its power dissipation value is now 60 Watt.



To reject the heat flux in hot case, an over-sizing of the external radiator has been realized. During the cold case is necessary a large amount of heater power to maintain the item mounted on this panel within the temperature requirement.

As written in MoM- Planck configuration (H-P-MI-AI-0096), Alenia request to improve the baseplate contact area between the 4CCU and the panel (a possible proposal solution as shown hereafter) in order to optimize the thermal design and consequently reduce the heater power dissipation

