Procedure

Herschel

SPIRE-AST-DOC-002336

Title:Documentation Identification Procedureand Documentation Management

CI-No:

N. A.

Prepared by:	HP-Team	Date:
Checked by:	$\neg \land$	
Product Assurance:	R. Stritter L. Litta	18.00.02
Configuration Control:	A.K. von Ivády	18.06.02.
Project Management:	Dr. K. Moritz	18. June 2002

Distribution:

See Distribution List (last page)

Copying of this document, and giving it to others and the use or communication of the contents thereof, are forbidden without express authority. Offenders are liable to the payment of damages. All rights are reserved in the event of the grant of a patent or the registration of a utility model or design.

 Doc. No:
 HP-2-ASED-PR-0001

 Issue:
 3

 Date:
 20.05.2002

Page: 1 of: 39

Herschel

Issue	Date	Sheet	Description of Change	Release
1	05.06. 01	All	Initial Issue	
2	10.09. 01	All	Update of Company Codes	
2 3		All	Update of Company Codes Inclusion of updates: Company codes and Model identifiers Correspondence, changes and specification codes E-mail identification Deletion of page issue record	

Table of Content

1	Introduction	5
1.1	Applicable Documents	5
2	Data management	6
2.1	Data Information System	6
2.2	Release System	7
2.3 2.3.1 2.3.2 2.3.3 2.3.4	Documentation Identification Configuration/Administration controlled Documentation Correspondence E-mail Identifier Drawings & Associated Lists	7 9 10 10 11
2.4 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5	Format and Standards Correspondence Change Documentation Drawings Documents Long Term Storage Media	12 12 12 13 14 15
2.5	Revision and Maintenance of Documents	15
2.6	Revision and Maintenance of Drawings	16
2.7	Documentation Status	17
2.8	Deliverable Documentation	17
2.9	Data Packages	18
2.10 2.10.1	Minutes and Action Items Action Item Numbering	18 19
2.11	Documentation and Data Transfer	21
3	APPENDIX	22
3.1	Company Codes (TTTT)	22
3.2	Document Types (VV)	27
3.3	Model Identifier	29
3.4	Project Abbreviations	30

Table of Figures

Figure 2.3-1 Baseline Documentation System	8
Figure 2.3-2 Document Identification Definition	9
Figure 2.10-1 Action Item Initiation Sheet	20

1 Introduction

The following rules shall be applied by all companies participating in the Herschel Project with respect to the identification, numbering and maintaining of all project related documentation, to ensure uniformity throughout the Herschel Industrial Group.

The application of these rules and codes is mandatory in all relevant project aspects.

1.1 Applicable Documents

AD 01	HP-2-ASED-RS-0001
AD 02	HP-2-ASED-PL-0019
AD 03	HP-2-ASED-AM-0001

Management Requirements Specification for Subco's Configuration and Data Management Requirements Utilisation of the Astrium FTP Server

2 Data management

2.1 Data Information System

The Contractor shall establish and operate a project-centralised documentation system to fulfil the information requirements of the Project. This system shall be capable of providing up-to-date information on all aspects of the documentation, permitting quick and easy access to users at all times. It shall, in particular, serve as a reference for technical interfaces and for introducing and executing all modifications.

All documentation to be made available to the Customer shall be in English and be included in the centralised documentation system.

The documentation centre must have effective, reliable and rapid means for reproduction and delivery at its disposal.

The documentation system shall adhere to the stipulations of the project Information Management Requirements.

The Contractor shall preserve the latest applicable issue of all documents prepared in the course of the project by the Sub-Contractor and its Sub-Contractor's up to delivery of contract and for 5 years thereafter and shall be readily accessible to the Customer. The disposal at the end of this period shall be reviewed by the Customer.

The system shall as a minimum include the following:

- a) Identification and marking of Contractor originated documentation.
- b) Maintenance of files of technical and project management data.
- c) Maintenance of files of engineering documentation i.e. drawings, specifications, plans, procedures etc.
- d) Systematic follow-up of data items which require action and/or response.
- e) Maintenance of a release recording system for engineering documentation including control of distribution.
- f) The recording and despatch of all technical and project data.
- g) Maintenance of history file/records such that previous issues/revisions of documentation can be retrieved.

2.2 Release System

The release of engineering drawings and associated lists, specifications, test procedures, and other manufacturing documentation shall be in accordance with the Contractor's internal release system which shall include procedures for:

- a) Obtaining approval and authorising release of documentation
- b) Controlling distribution
- c) Storage and protection of original masters against damage and unauthorised withdrawal.
- d) Ensuring that any photographic copy is maintained current with the master document.
- e) Maintaining release records

The data to be recorded at initial issue shall include the identification number, title and issue status of the document, the identity of the higher level assemblies to which the document is called (Product Tree Identifier) and the date of release.

At each subsequent release, due to the embodiment of approved changes, the records shall be amended to include the identification number of the change, the revised issue status and date of reissue of the document.

2.3 Documentation Identification

A common documentation numbering system shall be used by all companies participating in the project. The Contractor and lower tier contractors shall comply with the following documentation identification requirements and shall control their own numbering routines. Traceability either in the form of bookkeeping or computer printout is required.

The document identification system covers the following major subjects:

- Configuration/Administration controlled Documents
- Correspondence
- Drawings (only for ICD's and Top Assembly)
- Meetings/Action Items

The breakdown of the project documentation is illustrated in fig. 2.3-1

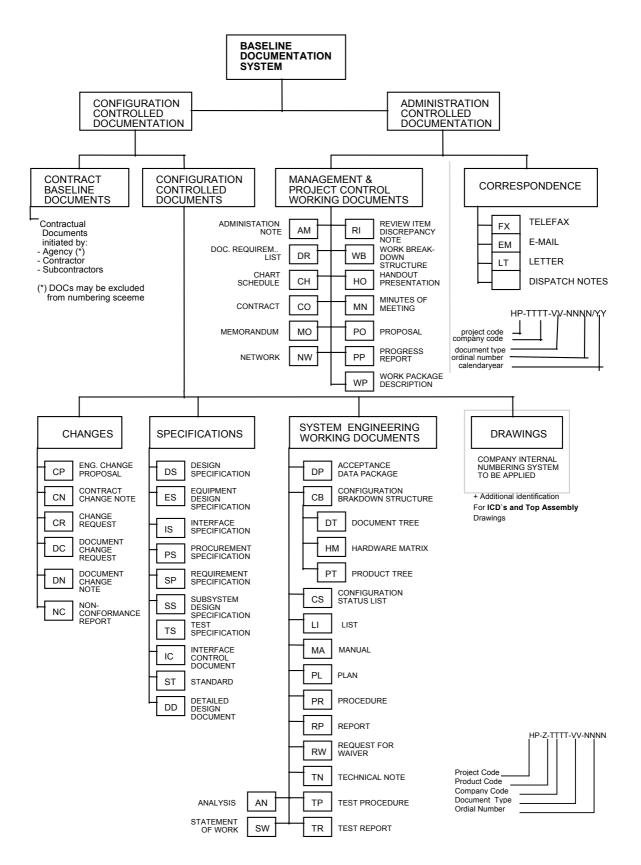


Figure 2.3-1 Baseline Documentation System

Procedure

2.3.1 Configuration/Administration controlled Documentation

The numbering system for this type of deliverable documentation shall be:

	<u> HP – Z – TTTT – VV – NNNN</u>
Project Identifier	
Product Code	
Company Code	
Document Type	
Sequential Number	

Exception: The numbering system for correspondence (see para 2.3.2)

The company code and the document type shall be as defined in annex A.

It shall be ensured that two documents of the same company and document type shall have different sequential numbers.

The numbering of ECPs and CCNs shall be aligned such that the sequential number is not changed but only the document type is altered. Numbers once allocated shall not be re-used.

The sequential numbering shall be governed per company by the document type.

Identifier	Code	Description
Project Identifier	HP	Herschel Planck
Product Code	1	For SYSTEM Documentation
	2	For specific HERSCSHEL Documentation
	3	For specific PLANCK Documentation
	4	For SVM Documentation
Company code	TTTT	According to the List in the Appendix
Document Type	VV	According to the List in the Appendix
Sequential Number	NNNN	Sequential number governed by the document type

Figure 2.3-2 Document Identification Definition

2.3.2 Correspondence

The numbering system for correspondence (i. e. letters, telexes, telefaxes) shall be:

	<u>HP</u> - <u>TTT</u>	<u>T - V</u>	<u>/</u> - <u>N N</u>	<u>N N</u> /	<u> </u>
Project Identifier	 _				
Company Code					
Document Type			L		
Sequential Number					
Calendar Year					

The company code for correspondence shall be as defined in annex A.

The document Type shall be: LT for Letter FX for Fax

The sequential ordinal number for all correspondence shall restart with 0001 for every new calendar year.

The correspondence shall be in accordance with the standards defined in para 2.4.1 .

2.3.3 E-mail Identifier

All important E-mails shall be identified according to the following identification system:

	<u> HP</u> - <u>T</u>	<u>TT – V\</u>	<u>/ -N N I</u>	<u>N N / Y </u>	¥
Project Identifier					
Company Code		<u> </u>			
Document Type					
Sequential Number					
Calendar Year					

The E-mail Identifier shall be included as first part of the subject in the E-mail.

Procedure

Example:

То:	Mr. Example
From:	Mr. Sender
Subject:	HP-ASED-EM-NNNN/YY – Title of Example Subject

All E-mails identified according to the above shall also, in addition to the addressees, be copied to the Herschel Project E-mail account (e. g. Herschel. Project. ED@astrium-space.com)

2.3.4 Drawings & Associated Lists

Drawings and associated lists prepared by the Contractor shall be identified in accordance with the Contractor's internal procedures and shall be defined in the Contractor's CADM plan. In addition all deliverable ICDs and TOP-ASSY-drawings shall be identified by a unique identification number using the documentation numbering system as specified here below.

2.3.4.1 Numbering of Interface Control and Top Assembly Drawings

For **Interface** and **Top Assembly Drawings** the following documentation Identification scheme shall be applied:

	<u> HP – Z – TTTT – VV – NNNN</u>
Project Identifier	
Product Code	
Company Code	
Document Type	
Sequential Number	

The sequential number is governed by the Document Type per Company (e.g. per ID or DW). The company code and document types shall be as defined in the Appendix of this document.

For Interface Control and Top Assembly Drawings the "Standard Drawing Header" shall additionally include the following items:

- 1. Herschel Document Identification as specified above
- 2. Configuration Item Number "CI-No: "
- 3. Basic Requirements as defined in section 2.4.3

Changes between different versions shall be clearly documented in the change record.

2.4 Format and Standards

2.4.1 Correspondence

2.4.1.1 Letters and Telefaxes

All letters, telexes and telefaxes shall clearly identify the following:

to:	addressee (company name, department and name(s) of persons(s) addressed)
from:	originator (company name and name of writer)
date:	date of typing
our ref:	originator's correspondence identification no.
subject:	subject of the correspondence
your ref:	identification of correspondence or document referred to

2.4.1.2 Electronic Correspondence (E-Mail)

All E-mails shall clearly identify the following

TOaddresseeFROMoriginatordate(automatic)

Subject: (E-mail identifier) – Subject Title

The E-mail identifier needs only to be included if important data is transferred or if reference to this correspondence will be required (e. g. action item closure, requiring follow on action, etc.).

2.4.2 Change Documentation

The format and standards of change documentation is defined in the Configuration and Data Management Requirement document.

2.4.3 Drawings

All Engineering drawings and associated lists, etc. may be prepared in accordance with the internal procedures of the Contractor providing that they include the following basic requirements.

a) Projection

The projection used shall be identified on each drawing.

b) Drawing Sizes

Maximum drawing size shall not exceed 'Continental AO'. Continental 'A' series sizes are preferred.

c) Symbols

Graphical symbols and coding for electronic circuits and components shall be in accordance with the International Electro-technical Committee recommendations.

d) Drawing Practice

Engineering drawings and associated lists shall be prepared in accordance with the Contractor's National Standard.

- e) *Dimensions* Standard International units shall be used for all dimensions, unit values, etc.
- f) Checking and Approval

All drawings shall be checked and signed to this effect. All drawings shall be approved at initial release and subsequent reissues by the engineers responsible and other specialists as appropriate.

g) Change Embodiment

Each raise in status of a drawing and/or associated list shall clearly identify the approved changes incorporated in the new status.

h) Drawings like Interface Control Drawings (ICD) and Assembly Drawings and their associated lists, which needs to be provided to Astrium GmbH-FN or other contractors for interface harmonization shall be numbered in addition with a project number according to para 2.3.1 and 2.3.4.

2.4.4 Documents

All documents may be prepared in accordance with the Contractor's own internal procedures providing they comply with the following basic requirements. In case of conflict the hardcopy shall have precedence.

The authors of documents are the responsible for:

- * preparing the document in accordance with required standards and coherent with the appropriate technical baseline documentation
- * identifying, or have identified, the document in accordance with the documentation identification procedure
- * presenting the document to Configuration Management Office for subjecting it to the internal review and approval cycle, thereafter incorporating initial comments and create the first formal issue of the document.

Any document delivered to the Customer:

- a) shall be written in the English Language
- b) shall be DIN A4 size (or folded to) and shall be suitable for accommodation in loose leaf binders (e.g. ring binders).
- c) shall have an identified space for the Customer's approval signature where appropriate.
- d) shall be of adequate quality to withstand the expected wear and tear (but not be heavier than absolutely necessary) and shall permit further Photostat reproduction.
- e) shall carry a heading with the name of the Herschel project.
- f) shall, unless agreed otherwise, be individually identified by a document number, page number, issue and revision status, and date of issue. This information shall be typed systematically on every page of the document (upper right hand corner or bottom left corner). Page numbering shall be consecutive throughout the document- with the exception of the pages Distribution List, Change Record, Register of Changes and Table of contents and Table of Figures which shall be numbered as A-X-, starting with the front page as number 1 followed by the text proper as page 2 and following.
- g) for Requirement Specification a clear requirement identification for formal Verification Control shall be established, including
 - requirement identification number with consecutive number
 - keyword
 - verification method
 - verification level

- h) shall identify the DRL number and supporting PT number on the front cover page.
- i) shall identify on the front page cover the applicable models using the model codes specified in appendix A.
- j) shall provide in the contents:
 - Front cover
 - Distribution list (may be the last page)
 - Change Record
 - Table of Contents
 - Table of Figures
 - Text of document
- k) shall contain a separate short summary (5 to 10 lines) describing the document contents which can be used for document retrieval by search on this summary.
- Documents submitted through electronic means (for standard documents Word for Windows 6.0) shall be in PDF-format. All drawings, pictures, graphic tables or diagrams shall be placed in the document as part of the document file. Electronic documents must be formatted in such a way that, if printed, they provide a true copy of the hardcopy document.

In parallel to the electronic document a hardcopy shall be supplied to Customer.

2.4.5 Long Term Storage Media

Magnetic Media carriers shall have an identification conforming to the document identification system.

In addition information shall be provided w.r.t. host system, software utilisation, file names, printer and style details and any other required instruction for further processing of the data. Hard media can be DOS formatted diskettes or ISO-formatted CD-ROM. CD-ROM shall be "state of the art" default media. After storage of the data all storage media must be certified as "Virus free".

Data distributed on magnetic media shall conform to the hardcopy formats and identification when printed.

In case of conflict the hardcopy shall have precedence.

2.5 Revision and Maintenance of Documents

The originator/document author shall be responsible for maintaining the contents of the document upto-date.

Procedure

The initial issue of a document shall be identified as Issue 1 Revision "-" being a controlled issue. All subsequent controlled issues being in chronological numerical sequence whereas revisions are identified with a capital letter code.

Documents, once approved by the corresponding highest level of management, are considered as frozen and any changes shall only be made as a result of the raising and approval of a Document Change Request (DCR).

Documentation updates shall be distributed to the recipients of the original document as specified on the distribution list. There shall be no difference to this procedure between revisions and re-issues.

Document revision as opposed to reissue shall apply for changes which affected less than 30 percent of the pages of the document or in case of minor changes (editorial, typo etc.). In such a case the updated affected pages together with the cover page, change record, and the distribution list shall form the minimum package for distribution. The recipients are subsequently responsible to incorporate these exchange pages in their document. The revision status shall be denoted by A, B, etc. The electronic submission shall in any case be the complete updated document.

Documents shall be re-issued when major changes to the document have occured, with over 30 percent of the pages have been changed, or the number of revisions (latest after revision letter k) is so large as to be confusing. Each reissue shall incorporate all outstanding DCR's against the previous issue/ revision. In such a case the complete updated document shall form the package for distribution. The recipients are subsequently responsible to exchange their document with this new submission. The electronic submission shall in any case be the complete updated document.

Draft documents i.e. before formal approval shall be clearly marked 'DRAFT' on all pages.

After initial approval and release of a configuration controlled document only approved DCR's may be incorporated in updating to a higher issue/revision status.

An update by issue or revision may incorporate one or more DCR's/DCN's which shall be documented in the document change record. All changes between two consecutive versions of a document shall be unambiguously identified on the pages. Previous marking shall be obliterated at this time. This regulation is not required for draft versions of a document. The individual pages of the document subject to updating shall have their status recorded on the Document Change Record.

Changes shall always be performed on the Original of a document and shall consequently be performed by the document custodian.

The approvals for an update of a document shall be identical or of the same managerial level as the original document.

2.6 Revision and Maintenance of Drawings

Drawings and associated lists prepared by the Contractor which have been updated by revision or reissue shall include a brief description of the nature of the change(s) made. Such descriptions may be provided on a separate change note accompanying the drawing/list.

2.7 Documentation Status

The Contractor shall maintain lists of all documentation generated or received indicating their current status. The Contractor shall supply the Customer with a complete and updated list of all formal and working documents as defined by the Documentation Requirements List (DRL). The Contractor shall on request supply the Customer with any document prepared in the course of the project.

2.8 Deliverable Documentation

The Statement of Work submitted to the Contractor shall include a Documentation Requirements List (DRL), which lists in separate categories, the documentation specifying the customers requirements and the documentation prepared and delivered by the contractor in response to these requirements. Approval and control of the contractor's documents shall be dependent upon the category.

The categories are as follows:

CAT A.: Documentation for Approval

Documents in this category shall either be part of:

- a) the Contractor Baseline Documentation, i. e. the documentation detailing the response to the customer's requirements by the contractor
- or
- b) the Non-Baseline Documentation, i. e. the documentation not forming part of the Baseline but must be submitted to the customer for approval.

Each document shall:

- a) be prepared and issued by the contractor
- b) be approved by the customer prior to issue
- c) be subject to the change control procedure either by DCN, if there is no cost impact or by CCN, if there is a cost or schedule impact
- d) have requests by the contractor to change any requirements expressed within the document, subjected to the provisions of the relevant contract. The contractor shall not proceed without approval being given by the customer within 15 working days.

CAT R.: Documentation for Review

A document in this category is issued by the Contractor and requires review by the Customer prior to implementation. Thereafter the document shall be controlled by the Contractor. Any changes being subject to review by the Customer without use of the formal change control procedure.

Where the Contractor requests a change to the requirements expressed in a document of category R, the Customer shall be informed prior to implementation. However if the Customer does not reply within 15 working days or does not agree to the proposed change the Contractor may proceed at his own risk.

CAT I.: Documentation for Information

A document in this category is issued and maintained current by the Contractor and is provided to the Customer for information. Formal approval or review procedures by the Customer do not apply.

2.9 Data Packages

To enable clear visibility on the contents and permit easy search and tracing of information, the Contractor shall ensure that any data package provided to the Customer:

- a) Is identified in accordance with the project documentation numbering system.
- b) Has a list of contents which clearly references all documents contained within the data package, (e.g. document number, issue/revision, date, project and/or originator etc) and their location within the data package (e.g. section, part, volume, etc.).

Delivery of the data package shall be in line with the DRL as defined in the Statement of Work. In principle deliveries shall be in hardcopy format and CD-ROM's.

2.10 Minutes and Action Items

Project actions shall normally originate from meetings held between the Agency / Customer and the contractor, or from meetings held within the Contractor's / Sub-Contractors project team. Each meeting shall formally review the action status from a previous meeting and shall decide on closure or continuation of actions.

Action items shall be identified on the standard form sheet (see Fig. 2: Action Item Initiation Sheet) and the duly completed form shall be attached to the minutes of meeting. The action item number must be identified within the text of the minutes of meeting <u>and</u> on the Action Item Initiation sheet, as it shall serve, together with the meeting identifier, as the reference for pertinent correspondence and action item close-out (example: "<u>MOM-No</u>" / "<u>AI-No</u>").

2.10.1 Action Item Numbering

The numbering of action items shall be performed according the following system:

	<u>HP</u> –	<u>Z</u> - <u>1</u>	TT	<u>T</u> - <u>N</u>	<u>IN</u> -	<u>N N</u>	<u>N N</u>	/ <u>XX</u>
Project Identifier								
Product Code								
Company Code								
Document Type								
Sequential Number								
Action Item Number								

Meeting: Title Date: Action Item List

Herschel

No.: Description:	Due Date	Originator Comp./Pers.	Actionee Comp./Pers.	Source	Completion

Figure 2.10-1 Action Item Initiation Sheet

2.11 Documentation and Data Transfer

Electronic transfer of data and files shall be performed via FTP servers in line with HP-2-ASED-AM-0001.

The Astrium Herschel Project FTP Server address is:

ftp-fdh.dss.dornier.dasa.de (Passwords can be obtained from ASED Documentation Office)

In principle all outgoing data will be placed on this FTP Server and the addressee informed via telefax that he can pick up the data. After successful download into his documentation system the recipient is requested to delete the data on the Astrium FTP server.

The Astrium FTP server is not a documentation system

but

only a platform for data exchange.

3 APPENDIX

3.1 Company Codes (TTTT)

Company Code	Company Name	Coun- try
AAES	Austrian Aerospace GmbH (SCHRACK + ORS) A	А
ABT	Alcatel Bell, Belgium	В
AEO	Alcatel Espacio, Spain	E
AI	Alenia Spazio – Torino, Italy	1
AIR	Air Liquide	F
AKA	Alcatel Space Denmark (Alcatel Kirk Aerospace Syst.)	Dk
ALS	Alenia Spazio – Roma, Italy	1
APCO	APCO Technologies S.A.,	СН
ARE	Ariane Espace	F
ASED	Astrium GmbH – (FN and OTN Project Group)	D
ASEF	Astirum GmbH – SAS – Toulouse (Herschel-Telescope)	F
ASIP	Astrium GmbH – Space Infrastructure (OTN à LHe Valve)	D
ASN	Alcatel Space - Norway	N
ASPB	Aerospatiale Espace & Defence – Bordeaux, France	F
ASPI	Alcatel Space Industries – Cannes + Toulouse + Valence	F
ASPM	Aerospatiale, Les Mureaux, F	F
ASS	Alcatel Space Switzerland	СН
ASTP	Astrium GmbH – Telecom & Navigation - OTN	D
ASTR	Astrium	D
BAE	BAE System	GB
BER	BERTIN Technologies	
BOCE	BOC Edwards	D+Gb
BRA	BRADFORD - NL	NL
CAPT	Captec, Ireland	IRL
CASA	EADS CASE – DIV ESPACIO (Contruct. Aeronaut. SA)	E
CGS	CARLO- Gavazzi	
CMD	COMDEV	
CNES	CNES	F
CNRS	TESRE-CNR (LFI Instrument)	
CRIS	Crisa - Madrid	E
CSAG	Contraves	СН
CSL	Centre Spatial de Liege	F
DLR	Deutsches Zentrum für Luft- und Raumfahrt	D
DNV	Det Norske Veritas	N

Company Code	Company Name	Coun- try
DSRI	Danish Space Research Institute	Dk
EADS	EADS Deutschland GmbH	D
ECDE	Eurocopter	D
EHP	EHP / SABCA	В
ESA	European Space Agency / ESTEC	NL
ESOC	European Space Operations Centre	D
ETCA	Alcatel ETCA	В
FIAR	FIAR, Italy	I
FINN	Finnyard	SF
FSS	Fokker Space and Systems, Holland	NL
GAL	Alenia Difesa Avionic Systems & Equipment Division, Officine Galileo	
GMV	GMV	Е
IAS	IAS - Univerisite de Paris (HFI Instrument)	F
ISOH	ISO Heritage (old ISO Documentation)	D
KATE	Kayser Threde	D
KOG	Kongsberg SPACTEC – Norway	N
LAB	Laben S.P.A.	
LIND	Linde	D
LIT	Litton	US
LOG	Logica Space and Communication	
MAN	MAN Technologies	D
MPE	Max Planck Institut für Extraterrestrische Physik	D
NASA	National Aerospace Agency	US
NRL	NRL	NL
ОНВ	OHB System	D
PAFI	Patria Finavitec of System, Finland	SF
PAT	Patria Finavicomp Oy, Finland	SF
QMWC	Depart.of Physics and Astronomy -University of Wales, Cardiff (SPIRE Instrument)	
RAL	Rutherford Appleton Laboratories (SPIRE Instrument)	GB
RYM	RYMSA	E
SAAB	SAAB Ericsson Space	S
SAFT	SAFT, France	F
SBI	Spacebel Informatique S.A.	В
SEA	SEA	
SENE	SENER Ingenieria, Spain	E
SIRA	SIRA	
SKYS	SKYSOFT - (Portugal + B31)	Р
SNEC	SNECMA	
SRON	SRON (HIFI), Utrecht, NL	NL
SSYS	Space Systems - Finnland	SF
TICR	TICRA	

Company Code	Company Name	Coun- try
TNO	TNO-TPD	NL
TRAS	TRASYS SPACE	
TRR	TOP-REL, Roma, I	1
ZZZZ	Various Companies	
	AEA Technology, UK	GB
	AEROSTUDI	
	ALICE SWRI, Boulder, USA	US
	AMOS	В
	ANALYTICON	
	ARC - UK	GB
	ASE	
	Aubert & Duval (Forgings)	F
	BERENICE/MODULUS, OU, UK	GB
	BOCH SATCOM	D
	BODYCOTE	
	BOSCH Telecom, D	D
	CAP GEMINI ITALIA	
	Chess Engineering B.V	
	CISE	
	Clemessy	СН
	Codechamp S.A., Champagnat, F	F
	COMPUQUALI	Р
	Conax, Florida USA	US
	CONSERT CEPHAG, Grenoble, F	F
	COSIMA MPK, Heidelberg, D	D
	Critical Software	
	CSEM	СН
	DASA, Bremen, Germany	D
	DASA, Germany	D
	DATASAT	GB
	DERA	
	DEVTEC -Irland	IRL
	EADS LV	F
	EADS Sodern	F
	EAGLE PICHER DIELH	D
	ETEL SA, CH	СН
	FIATAVIO	
	GIADA LAS, Napoli, I	
	Grafton	
	Honeywell Space Systems, USA	US
	HTM	D

Company Code	Company Name	Coun- try
	HTS AG, Switzerland	СН
	IXSAE	F
	JENA Optronik	D
	LEYBOLD	D
	MAC-GINLEY System International	IRL
	MIDAS IWF, Graz, A	A
	MIRO JPL, Pasadena, USA	US
	NEXANS	В
	OIP	В
	OSIRIS MPAe, Katlenburg Lindau, D	D
	Polyflex Aerospace Ltd., UK	GB
	Prototech, Norvay	N
	Raufoss, Norway	N
	ROSINA Universität Bern, CH	СН
	Rovsing	Dk
	RPC IRF, Uppsala, S	S
	RSI Universität Köln, D	D
	Satellite Services BV, NL	NL
	Science Systems (Space)	
	SEP, France	F
	SERCO	
	Siemens AG, A	A
	Soditec	F
	Space Software Italia	
	SPACE SYSTEMS	GB
	SSP-PTOLEMY	
	SSP-ROMAP	
	SSP-SESAME	
	Starsys Research, USA	US
	STORK	NL
	TECHNICATOME	F
	Tecnologica, Spain	E
	Teldix	D
	TERMA Electronic SA	F
	TESAT	D
	TGI A/S	DK
	Thomson Tubes Electroniques, F	F
	Timetech, D	D
	Urenco	NL
	VACCO, USA	US
	Vector Computing International Limited Ireland	IRL

Company Code	Company Name	Coun- try
	Verhaert	В
	VIRTIS IAS, Rome, I	I

Note:

The list of companies and their associated company codes will be updated after agreement with the Prime Contractor ASPI and the Agency

3.2 Document Types (VV)

AB	As-Built Configuration Status List (ABCL)
AM	Administration Note
AN	Analysis
AO	Special Conditions of Tender
BT	Budget
CA	Certificate of Acceptance
СВ	Configuration Breakdown Structure
CD	Configuration Item Data List (CIDL)
CE	Cost Estimate / Devis
СН	Schedule, Chart
CN	Contract Change Notice
CO	Contract
CP	Engineering Change Proposal
CQ	Certificate of Qualification
CR	Change Request
CS	Configuration Status List
СТ	Cost Report
DC	Document Change Request
DD	Design Definition Document
DJ	Design Justification Document
DN	Document Change Note
DP	Data Package
DR	Document Requirement List
DS	Design Specification (Conception only)
DT	Document Tree
DW	Drawing
EM	E-Mail
ES	Equipment Design Specification
EX	Experiment Document
FP	Financial Proposal
FX	Fax, Telefax
НМ	Hardware Matrix
НО	Presentation / Handout
IC	Interface Control Document
ID	Interface Drawing (ICD)
IR	Interface Specification / Requirement

IS	Interface Requirement Specification (attention IR vs SP)
LI	List
LB	Logbook
LT	Letter
MA	Manual / Handbook
MN	Minutes of Meeting
MO	Memorandum
MX	Matrix of Compliance
NC	Non Conformance Report
NW	Network
PD	Parts Approval Document
PL	Plan
PO	Proposal
PP	Technical Proposal
PR	Procedure
PS	Procurement Specification
PT	Product Tree
RA	Risk Analysis
RI	Review Item Discrepancy Note
RP	Report (except cost and test reports)
RT	Request for Test
RW	Request for Waiver
SC	Schedule
SD	Specific Practice Directive
SO	Statement on Compliance
ST	Standard
SP	Requirement Specification
SS	Subsystem Design Specification
SW	Statement of Work
TD	Technical or Functional Description
TE	Tree (WBS, Organigrammes)
TN	Technical Note
TP	Test Procedure
TR	Test Report
TS	Test Specification
VC	Verification Control Document
WB	Work Breakdown Structure
WP	Work Package Description

3.3 Model Identifier

00	All Models
AVM	Avionics Model
BB	Bread Board
CQM	Cryogenic Qualification Model
EQM	Engineering Qualification Model
FM	Flight Model
FS	Flight Spares
PFM	Proto-Flight Model
QM	Qualification Model
STM	Structure Thermal Model

3.4 **Project Abbreviations**

Abbrevia - tion	Definition
A/D	Analog to Digital Converter
ABCL	As Built Configuration List
AC	Alternating Current
ACC	Attitude Control Computer
ACM	Attitude Control and Measurement
ACMS	Attitude Control and Measurement Subsystem
ACS	Auto Correlation Spectrometer
AD	Applicable Document
ADC	Analog Digital Converter
ADD	Architectural Design Document
ADP	Acceptance Data Package
ADR	Architectural Design Review
AGN	Active Galactic Nuclei
AIT	Assembly, Integration and Test
AIV	Assembly, Integration and Verification
AM	Alignment Model
AMA	Absolute Measurement Accuracy
AO	Announcement of Opportunity
AOCS	Attitude and Orbit Control System
AOS	Acousto - Optical Spectrometer
APD	Absolute Pointing Drift
APE	Absolute Pointing Error
AR	Acceptance Review
AR 5	Ariane 5
ARE	Absolute Rate Error
ASF	Additional Safety Factor
ASIC	Application Specific Integrated Circuit
ASW	Address and Synchronization Word
ATC	Active Thermal Control
AU	Astronomical Unit
AVM	Avionics model
AXT	Helium Auxiliary Tank
BAF	Batiment d'Assemlage Final (Final Assembly Building)
BAU	Buffer Amplifier Unit
BB	Bread Board
BCR	Battery Charge Regulator

BDR	Battery Discharge Regulator
BER	Bit Error Rate
BEU	Bach end Unit
BIB	Block Impurity Band
BIT	Built in Test
BMOS	Buckling Margin of Safety
BOL	Begin of Life
BOLA	Bolometer Amplifier (PACS)
Bps	Bits per Second
BRU	Battery Regulater Unit
BSF	Basic Safety Factor
BW	Bandwidth
C/L	Centre Line
CaC	Cost at Completion
СВ	Cryostat Baffle
CC	Configuration Control
CC	Cryostat Cover
ССВ	Configuration Control Board
CCD	Charged Coupled Device
ССН	Cryo Control Harness
CCI	Cryo Control Instrumentation
CCS	Central Check-Out System
CCSDS	Consultative Committee for Space Data Systems
CDD	Configuration Data Document
CDMS	Command and Data Management Subsystem
CDMU	Central Data Management Unit
CDR	Critical Design Review
CEI	Cryo External Instrumentation
CEU	Cryo - Electronis Unit
CFC	Carbon Fibre Compound
CFRP	Carbon Fibre Reinforced Plastics
CHS	Cover Heat Shield
CIH	Cryostat Instrumentation Harness
CII	Cryo Internal Instrumentation
CMD	Command
CoC	Certificate of Compliance
CoG	Center of Gravity
СоМ	Center of Mass
COP-1	Command operation Procedure number 1
CQM	Cryogenic Qualification Model
CQM	Cryogenic Qualification Model
CREMA	Consolidated Report on Mission Analysis
CSG	Centre Spatial Guyanais

CSS	Cryo Subsystem (Cryostat)			
СТА	Cryo Test Adapter			
CTCP	Cryo Test Cavity for PFM			
CTU	Central Terminal Unit			
CVCM	Collected volatile Condensable Material			
CVSE	Cryo Vacuum Support Equipment			
CVV	Cryostat Vacuum Vessel			
CVVIP	Vacuum Vessel I/F Plate			
DACS	Digital Auto Correlator Spectrometer			
DBU	Data Bus Unit			
DC	Direct Current			
DK	Denmark			
DLCM	Direct Liquid Content Measurement			
DM	Dynamic Model			
DMA	Dynamic Memory Access			
DML	Declared Material List			
DNEL	Disconnect Non Essential Loads			
DoD	Depth of Discharge			
DoF	Degree of Freedom			
DPC	Data Processing Center			
DPOP	Daily Prime Operational Phase equivalent to Observation Phase			
DRB	Delivery Review Board			
DS	Digital Serial			
DSN	Deep Space Network			
DTCP	Daily Telecommunications Phase equivalent to Telecommunication Phase			
DTMM	Detailed Thermal Mathematical Model			
EAC	Estimate at Completion			
ECP	Engineering Change Proposal			
EDAC	Error Detection and Correction			
EED	Electro Explosive Device			
EEE	Electro, Electronic, Electromechanical			
EEPROM	Electrically Erasable Programmable Read only Memory			
EGSE	Electrical Ground Support Equipment			
EI	End Items			
EIRP	Equivalent Isotropic Radiated Power			
EM	Engineering Model			
EMC	Electromagnetic Compatibility			
EMF	Electro-Motive Force			
EMI	Electromagnetic Interference			
EoL	End of Life			
EoM	End of Mission			
EOP	Early Orbit Phase			
EPLM	Extended Payload Module			

Herschel

EQM	Electrical Qualification Model			
EQM	Engineering Qualification Model			
ESA	European Space Agency			
ESD	Electro Static Discharge			
ESOC	European Space Operations Centre			
ESTEC	European Space Research and Technology Centre			
ESV	An ARIANE 5 launcher version			
FAR	Flight Acceptance Review			
FD	Flight Dynamics			
FEC	Front Error Correction			
FEM	Finite Element Model			
FINDAS	FIRST Integrated Network and Data Archive System			
FIR	Far Infrared			
FIRST	Far Infrared and Submillimeter Telescope			
FM	Flight Model			
FMECA	Failure Modes Effects and Criticality Analysis			
FMS	Failure Management System			
FOP	Flight Operations Plan			
FOR	Field of Regard			
FOS	Factor of Safety			
FOV	Field of View			
FP	Fabry Perot			
FPA	Focal Plane Assembly			
FPGA	Field Programmable Gate Array			
FPU	Focal Plane Unit			
FRR	Flight Readiness Review			
FS	Flight Spare			
FSC	First Science Centre			
FSS	Fine Sun Sensor			
FSVM	FIRST Service Module			
G/S	Ground Station			
G/T	Gain to Temperature Ratio			
GFC	Glass Fibre Compound			
GFRP	Glass Fibre Reinforced Plastics			
GMM	Geometrical Mathematical Model			
GSE	Ground Support Equipment			
GTO	Geostationary Transfer Orbit			
H/W	Hardware			
He II	Helium II (Superfluid Helium)			
HEO	Highly Eccentric Orbit			
HFI	High Frequency Instrument (Planck)			
HGA	High Gain Antennna			
HIFI	Heterodyne Instrument (Herschel)			

нк	House Keeping			
нот	Helium One Tank			
HSS	Herschel Sunshield / Sunshade			
НТТ	Helium Two Tank			
I/F	Interface			
ICC	Instrument Control Centre			
ICD	Interface Control Document			
ID	Interface Document			
IF	Intermediate Frequency			
IFAR	Instrument Flight Acceptance Review			
IFEM	Instrument Finite Element Model			
IID	Instrument Interface Document			
IOCR	In Orbit Commissioning Review			
IOP	Initial Orbit Phase			
IRU	Inertial Reference Unit			
ISO	Infrared Space Observatory			
ITT	Invitation to Tender			
JFET	Junction Field Effect Transistors			
JPB	Joint Procurement Board			
J-T	Joule Thomson			
КО	Kick-Off			
LCDA	Launcher Coupled Dynamic Analysis			
LCL	Latching Current Limiter			
LEOP	Launch and Early Orbit Phase			
LET	Linear Energy Transfer			
LGA	Low Gain Antenna			
LHV	Liquid Helium Valve			
LO	Local Oscillator			
LoS	Line of Sight			
LOU	Local Oscillator Unit			
LSB	Least Significant Bit			
LV	Launch Vehicle			
LVDE	Low Vibration Drive Electronics			
LW	Launch Window			
MAC	Modal Assurance Criterion			
MCC	Mission Control Centre			
MEOP	Maximum Expected Operating Pressure			
MGSE	Mechanical Ground Support Equipment			
MLI	Multi Layer Insulation			
MOC	Mission Operations Centre			
Mol	Moments of Inertia			
MoS	Margin of Safety			
MPPT	Maximum Power Point Tracking			

MPT	Multi-Purpose Trolley			
MSS	Mechanical Support Structure			
MTL	Mission Timeline			
N/A	Not Applicable			
NASA	National Aeronautic and Space Administration			
NASTRAN	NASA Structural Analysis Tool			
NCR	Non Conformance Report			
NED	Non Explosive Device			
NRT	Near Real Time			
OB	Optical Bench			
OBA	Optical Bench Assembly			
OBDH	On Board Data Handling			
OBHCL	Optical Bench Helium Cooling Loop			
OBP	Optical Bench Plate			
OBS	Optical Bench Shield			
OBT	On Board Time			
OBTL	Optical Bench Thermal Interface Link to Scientific Instruments			
ODS	Orbital Disconnect Support			
OFD	Operations Facility Document			
OGSE	Optical Ground Support Equipment			
OIRD	Operations Interface Requirements Document			
OSR	Optical Solar Reflector			
OTF	On Target Flag			
P/L	Payload			
PA	Product Assurance			
PACS	Photoconductor Array Camera Spectrometer (Herschel)			
РСМ	Pulse Code Modulation			
PCS	Power Control Subsystem			
PCU	Power Control Unit			
PDD	Payload Definition Document			
PDE	Pointing Drift Error			
PDR	Preliminary Design Review			
PDU	Power Distribution Unit			
PFM	Proto Flight Model			
PI	Principal Investigator			
PLL	Phase Lock Loop			
PLM	Payload Module			
PMD	Propellant Management Device			
PPLM	Planck Payload Module			
ppm	part per million			
PPS	Passive Phase Separator			
PROM	Programmable Read Only Memory			
PSF	Point Spread Function			

PSK	Phase Shift Keying			
PSVM	Planck Service Module			
PT	Product Tree			
PTI	Product Tree Identifier			
PUS	Packet Utilization Standard			
PWM	Pulse Width Modulation			
QM	Qualification Model			
QSO	Quasi Stellar Object			
RAM	Random Access Memory			
RCS	Reaction Control Subsystem			
RD	Reference Document			
RE	Radiated Emission			
RF	Radio Frequency			
RFI	Radio Frequency Interference			
RfW	Request for Waiver			
RH	Relative Humidity			
RHCP	Right Hand Circular Polarization			
RID	Review Item Discrepancy			
RML	Recoverable Mass Loss			
rms	Root Mean Square			
ROM	Rough order of Magnitude			
RPE	Relative Pointing Error			
RS	Radiates Susceptibility			
RSS	Root Square Sum			
RTA	Real Time Assessment			
RTMM	Reduced Thermal Mathematical Model			
RTU	Remote Terminal unit			
S/C	Spacecraft			
S/N	Signal to Noise Ratio			
S/S	Subsystem			
S/W	Software			
SA	Solar Array			
SAA	Solar Aspect Angle			
SAS	Sun Acquisition Sensor			
SCC	Stress Corrosion Cracking			
SCET	Spacecraft Elapsed Time			
SCL	Spacecraft Control Language			
SCOS	Space Control and Operations Centre			
SDE	Software Development Environment			
SDS	System Definition Study			
SECDED	Single Error Correction and Double Error Detection			
SEL	Spacecraft Event Logic			
SEU	Single Event Upset			

SF				
	Safety Factor			
SFW SIH	Spatial Framework Scientific Instrument Harness			
SIN				
	Straylight Induced Noise			
SIS	Spacecraft Interface Simulator			
SIS	Superconductor Insulator Superconductor			
SIV	Software Independent Validation			
SM	Structural Model			
SOC	Science Operations Centre			
SoW	Statement of Work			
SPB	Senior Procurement Board			
SPC	Science Programme Committee			
SPIRE	Spectral Photometer Imaging Receiver (Herschel)			
SPL	Split Phase Level			
SRPE	Spatial Relative Pointing Error			
SRR	System Requirements Review			
SSAC	Space Science Advisory Committee			
SSc	Supporting Strap chain			
SSM	Second Surface Mirror			
SSR	Solid State Recorder			
SST	Stainless Steel			
STM	Structural/Thermal Model			
STMM	Simplified Thermal Mathematical model			
STR	Startracker			
SVF	Software Validation Facility			
SVM	Service Module			
ТА	Telescope Assembly			
ΤΑΙ	Temps Atomique International			
ТВ	Thermal Balance			
ТВС	To Be Confirmed			
TBD	To Be Defined			
TBE	To Be Established			
тс	Telecommand			
TCS	Thermal Control Subsystem			
TF	Test Factor			
ТМ	Telemetry			
TML	Total Mass Loss			
ТММ	Thermal Mathematical Model			
ТОР	Transfer Orbit Phase			
TRP	Technological Research Programme			
TSMM	Transport Stimuli and Monitoring Unit			
TT&C	Tracking Telemetry and Command			
ттс	Transport and Test Cover			

Page 37

1				
TTD	Transport and Tilting Dolly			
TV	Thermal Vacuum			
UF	Ultimate Factor of Safety			
UMOS	Ultimate Margin of Safety			
VFT	Vacuum Feed Through			
VMC	Visual Monitoring System			
VRD	Verification Reference Document			
w/o	without			
WBS	Work Breakdown Structure			
WFE	Wave Front Error			
WP	Work Package			
WPD	Work Package Description			
YF	Yield Factor of Safety			
YMOS	Yield Margin Of Safety			

END OF DOCUMENT

Procedure

Herschel

Quantity	Name	Dep./Comp.	Quantity	Name	Dep./Comp.
Х	Alberti von Mathias Dr.	ED 544	Х	Reuß Friedhelm	ED 71
Х	Barlage Bernhard	ED 62	Х	Rühe Wolfgang	ED 3
Х	Bayer Thomas	ED 532	Х	Runge Axel	OTN/TN 94
Х	Faas Horst	ED 516	Х	Sachsse Bernt	EC 34
Х	Grasl Andreas	OTN/TN 64	Х	Sagner Udo	OTN/TN 64
Х	Grasshoff Brigitte	ED 511	Х	Schäffler Johannes	OTN/TN 64
Х	Hartmann Hans Dr.	ED 172	Х	Schink Dietmar	ED 522
Х	Hauser Armin	ED 541	Х	Schlosser Christian	OTN/TN 64
Х	Hinger Jürgen	ED 541	Х	Schwabbauer Paul Dr.	OTN/ED 171
Х	Hohn Rüdiger	ED 531	Х	Schweickert Gunn	ED 544
Х	Hölzle Edgar	ED 171	Х	Steininger Eric	ED 522
Х	Huber Johann	ED 532	Х	Stritter Rene	ED 61
Х	Hund Walter	ED 556	Х	Suttner Klaus	ED 542
Х	Idler Siegmund	ED 521	Х	Tenhaeff Dieter	ED 544
Х	Ivády von András	EC 32	Х	Thörmer Klaus-Horst Dr.	OTN/ED 37
Х	Jahn Gerd Dr.	ED 541	Х	Wagner Adalbert	OTN/IP 35
Х	Kalde Clemens	ED 513	Х	Wagner Klaus	ED 541
Х	Kameter Rudolf	OTN/TN 64	Х	Wietbrock, Walter	ED 511
Х	Knoblauch August	ED 51	Х	Wöhler Hans	ED 544
Х	Koelle Markus	ED 533	Х	Zipf Ludwig	EC 32
Х	Kreeb Helmut	ED 541			
Х	Kroeker Jürgen	ED 515			
Х	Kunz Oliver	ED 541			
Х	Lamprecht Ernst	OTN/TN 72			
Х	Lang Jürgen	ED 556	Х	Pastorino Michel	ASPI Resid.
Х	Langfermann Michael	ED 531			
Х	Mack Paul	OTN/TN 64	Х	Alcatel (on FTP-Server)	
Х	Maier Hans-Ulrich	ED 61	Х	ESTEC (on FTP-Server)	
Х	Mauch Alfred	ED 544			
Х	Moritz Konrad Dr.	ED 37			
Х	Müller Lutz	OTN/TN 64	Х	APCO	
Х	Muhl Eckhard	OTN/TN 64	Х	MPE (on FTP-Server)	
Х	Peitzker Helmut	ED 37	Х	RAL (on FTP-Server)	
Х	Peltz Heinz-Willi	ED 515	Х	SRON (on FTP-Server)	
Х	Peters, Gerhard	ED 533			
Х	Pietroboni Karin	ED 37			
Х	Puttlitz Joachim	OTN/ED 37			
Х	Raupp Helmut	ED 543			
Х	Rebholz Reinhold	ED 531			