
Herschel IA design review 
Herschel-HSC-MoM-475 

 
Place:  KUL, Leuven, Belgium 
 
Date:  16-17 November 2004 
 
Time:  09:00– 17:00 
 
Present: Jorgo Bakker   JBa (HSC/ESTEC) 

Odile Coeur-Joly   OCJ (CESR/HIFI) 
Nicola de Candussio  NdC (HSC/ESTEC) 

  Albrecht de Jonge  AdJ (SRON/HIFI) 
  Wim de Meester  WdM (HSC/ESTEC) 

Lutfi Dwedari   LD (D-TEC/ESTEC) 
Steve Guest   SG (RAL/SPIRE) 
Rik Huygen   RH (KUL/PACS) 
Juliet Kemp   JK (IC/SPIRE) 
Do Kester   DK (SRON/HIFI) 
Andrea Lorenzani  AL (OAA/HIFI) 
Jean-Jacques Mathieu  JJM (HSC/ESTEC) 
Stephan Ott   SO (HSC/ESTEC) 
Jose Pizarro   JP (D-TEC/ESTEC) 
Johannes Riedinger  JRR (HSC/ESTEC, part time) 
Peter Roelfsema  PRR (HIFI/SRON) 
Hassan Siddiqui  HS (HSC/ESTEC) 
Bart Vandenbussche  BV (KUL/PACS, part time) 
Michael Wetzstein  MW (PACS/MPE) 
Peer Zaal   PZ (SRON/HIFI 

 
 
1) Welcome 

 
SO welcomed everybody, and thanked RH for organising the meeting. 
 
 
2) Kick-off 

 
SO introduced the rationale and objectives of the IA review (see appendix B). While during 
the HCSS review last year (CSDT #18) the majority of IA packages were considered not 
sufficiently mature to be reviewed1, the IA WG felt that it is now worthwhile to perform a full 
review of the IA system and its packages. The conclusions of this meeting will become input 
to the Herschel Science Ground Segment Review 
 
 

                                                 
1 JConsole, dataset, numeric and IO were reviewed during CSDT#18 

jal73
  SPIRE-PAC-MOM-002324



3) First day of panel discussions 
 
The individual review panels (task/dataflow, plot, classloader/sandbox, system/infrastructure, 
JConsole and numeric) commenced according to schedule (see appendix C) 
 
 
4) Reflections of first day of panel discussions 
 
SO welcomed everybody to the second day of the review meeting (see appendix D). The 
system panel asked for a second session, and the schedule was updated accordingly. 
 
 
5) Second day of panel discussions 
 
The individual review panels (image/dataset, UI/help and system/infrastructure) commenced 
according to the updated schedule (see appendix D) 
 
 
6) Conclusions 
 
SO welcomed everyone to the concluding session, outlined the organisation of the final 
session (see appendix E) and invited the panel chairs to present their conclusions. 
 
6 (a) Presentation of panel chairs 
 
6 b (i) Plot package 
 
MW summarised the conclusions of the panel reviewing the plot package. The full report can 
be found in appendix F. 
• the classes are very big (> 5000 lines) 
• the packages needs to be redesigned in order to keep it maintainable and to separate the 

public API 
• user documentation needs to be written 
• the package is graded green 
 
6 b (ii) Dataset package 
 
RH summarised the conclusions of the panel reviewing the dataset package. The full report 
can be found in appendix G. 
• the best way how to handle quantities remains an open issue 
• metadata should be expanded to permit sets of array type data 
• the package should be re-organised after system wide guidelines have been agreed 
• the package is graded green 
 
6 b (iii) Image package 
 
RH summarised the conclusions of the panel reviewing the image package. The full report can 
be found in appendix H. 
• the package is still under construction 



• the package should be re-organised after system wide guidelines have been agreed 
• the package is developed by PACS, and also mainly used by PACS. This might lead to a 

tunnel vision 
• the package is graded green 
 
6 b (iv) Numeric package 
 
DK summarised the conclusions of the panel reviewing the numeric package. The full report 
can be found in appendix I. 
• the effort to implement all types for up to five dimensions was necessary 
• the generic toolbox framework is OK, but some of the individual toolboxes need to be 

refactored to make them work on all types and dimensions. At the same time they need to 
be redesigned to make them more OO (less a copy of IDL's versions). 

• the package is graded green 
 
6 b (v) Classloader package 
 
JJM summarised the conclusions of the panel reviewing the classloader package. The full 
report can be found in appendix J. 
• Classloader is nice to use and useful little tool 
• link the documentation to JIDE so people using java can use it in their development 
• integrate the classloader in JIDE so it does not need be to be initialized 
• the package is graded green 
 
6 b (vi) Sandbox package 
 
JJM summarised the conclusions of the panel reviewing the sandbox package. The full report 
can be found in appendix K. 
• the mechanism between properties and sandbox has to be sorted out 
• the package is graded green 
 
6 b (vii) Task package 
 
PZ summarised the conclusions of the panel reviewing the task package. The full report can 
be found in appendix L. 
• with the exception of history and a progress/completion indicator, all currently needed 

facilities are implemented 
• a design/architecture document has to be written 
• package is mainly used by HIFI 
• the package is graded green 
 
6 b (viii) Dataflow package 
 
PZ summarised the conclusions of the panel reviewing the dataflow package. The full report 
can be found in appendix M. 
• the package is in maintenance mode, but some documentation has to be updated 
• package is mainly used by all ICCs 
• the package is graded green 
 



6 b (ix) UI package 
 
NdC summarised the conclusions of the panel reviewing the UI package. The full report can 
be found in appendix N. 
• package is a collection of utility classes 
• package could be promoted to HCSS/SHARE 
• the package is graded green 
 
6 b (x) Help package 
 
NdC summarised the conclusions of the panel reviewing the help package. The full report can 
be found in appendix O. 
• the package is still under construction, but fulfills the currently formalised use-cases 
• some restructuring is needed 
• as the impact of not yet specified QLA related use-cases is unknown, the package is 

graded amber2 
 
6 b (xi) JConsole package 
 
SG summarised the conclusions of the panel reviewing the help package. The full report can 
be found in appendix P. 
• the package receives many SCRs. They are mainly non-IA related or request for plug-ins 
• the package should be restructured to improve cohesion, maintainability and 

documentation 
• the package is graded green 
 
6 b (xii) System and infrastructure 
 
AdJ summarised the conclusions of the panel reviewing the system and general infrastructure. 
The full report can be found in appendix Q. 
• a coherent or compete set of use cases for IA is missing 
• several areas have to be investigated as a matter of urgency: 

• the potential problems of the shopping basket concept, and of large downloads 
• evaluation of database implementation 
• implementation of history 
• stopping of tasks 

• a ‘system architect’ should be appointed to coordinate the development efforts on a 
technical level 

• the package is graded amber. While nothing came up that would prevent the IA system 
from being used by end users to do Interactive Analysis, but there are major issues 
identified that require a significant amount of work to address 

 

                                                 
2 The missing use-cases were received and analysed and found to be not critical. Consequently the status was re-
set to green. 



6 (b) Round table discussions 
 
6 b (i) Reflections on review 
 
The participants considered the time for preparing and executing the review well spent, and 
encouraged to have a big IA review (with objectives adapted to the development progress) 
each year. 
 
In addition, the following comments were made: 
 
• more detailed review guidelines/objectives per panel would have been welcome 
• more time for preparation would have been welcome 
• the panel recommendations should be followed up 
• the work of some panels was hampered by the number of observers who influenced the 

discussion 
• it is not clear that the panel deputy should act as review chair, as there might be a conflict 

of interests (neutrality vs. development wishes) 
 
6 b (ii) Priorities for IA#7 
 
The participants considered the following items a priority for IA#7. It is expected that 
additions will come from the documentation review to be held in London in the near future 
 
• improvements in formal documentation, notably for the user requirements and the design 
• improvements in user documentation 

• navigation to find documentation 
• online help aspect 
• recommendations for writers 

• interruption of tasks in an IA session 
• completion indicator for tasks  
• help aspect of documentation 
• database aspects 
• follow-up of review recommendations 
 
6 b (iii) Message to CSDT 
 
• we have to talk about the packages that cross the border (product, database issues, 

properties) 
• installation of HCSS should be improved 
 
6 b (iv) Message to the Herschel Science Ground Segment Review 
 
• overall, our indicators are green 
• no major technical issues are hindering the development 
• additional manpower is needed to bring the Herschel Common IA development to a 

successful conclusion 
 
 



7) Closure 
 
SO thanked all contributors to this review (in person or remote), and closed the meeting. 



Appendix A  
 
Actions from panels: 
 
04-plot-01  3D plotting is not available now. Research on available 3D packages 
 
04-plot-02 User groups should discuss if they want graphical annotations, and, if 

yes, if they want an example implementation first or if they don't need 
such a prototype 

 
04-plot-03 Investigate the possibility to implement graphical annotations. To see 

how professional it can be done, one should implement a simple 
example and afterwards make a time estimate. 

 
04-plot-04  Extend accepted datatypes to numeric Array1dData, solve the problem 

with quantities on the level of the numeric package, then remove 
Dataset plotting from PlotXY 

 
04-plot-05    Refactor the package with the main goal of better package structure, 

smaller classes and a clear separation of the public API 
 
04-plot-06   Update architecture and design documents after the refactoring of the 

package 
 
04-plot-07 New methods should be documented. It’s a good working style to write 

at least one line of description before implementing a method to clarify 
its purpose. 

 
04-plot-08    Document the ideas to increase performance and usability 
 
04-plot-09  Put the use of class private fields in the constructor into the HowTo 

(and user documentation). 
 
 
04-dataset-01  use and documentation of Product needs updating 
 
04-dataset-02  take care that the existing SxRs are solved e.g. 

• remove .data part 
• addressing columns 
• listeners for datasets 

 
04-dataset-03  solve the dependencies for dataset.gui 
 
04-dataset-04 IA System Architecture Group to clarify how and where does a dataset 

live in the system 
 
04-dataset-05 IA System Architecture Group to clarify what package is responsible 

on quantities, and where and how are quantities handled in the IA 
 
04-dataset-06  prioritise implementation of history 



 
04-dataset-07 IA System Architecture Group to clarify the location of 

SpectrumDataset and its View 
 
04-dataset-08 IA System Architecture Group to clarify the location of ImageDataset 

and its View 
 
 
04-image-01 go over improvements section from input by Jorgo and make the 

necessary changes 
   
04-image-02 IA System Architecture Group to see whether one can get statistics on 

the use of individual packages 
 
04-image-03 IA System Architecture Group to ensure that Axis, Layer, Annotations, 

Histogram interfaces should at least be shared and decide whether there 
can be common implementations and, if so, where should they reside? 

 
04-image-04 IA System Architecture Group to see whether GUIs used by image 

(like printing) can be shared 
 
 
04-numeric-01  Investigate and implement selection for all dimensions 
 
04-numeric-02 Refactor individual toolboxes to bring them in line with the latest 

version of numerics, make them run for all dimensions and types, and 
make them more OO 

 
04-numeric-03  Propose mechanism how to contribute to numerics package  
 
04-numeric-04  Investigate special mathematical functions contained in JSci.math 

library http://jsci.sourceforge.net/api/JSci/maths/AbstractMath.html to 
see whether we can use them 

 
04-numeric-05  implement workaround for long integers in Jython 
 
 
04-classloader-01 Ask to ICC if classloader is used and, depending on what feedback 

people provide, if there are any plans for the future that would change 
the way it works now. 

 
04-classloader-02 Investigate whether there are new packages for java class loader that 

could reduce our maintenance efforts 
 
04-classloader-03 Write a design document 
 
04-classloader-04 IA System Architecture Group to consider whether subpackages for 

classloader should be split 
 
04-classloader-05 Check the error handling within classloader 

http://jsci.sourceforge.net/api/JSci/maths/AbstractMath.html


 
04-classloader-06 Link documentation to jide so people using java can use it in their 

development 
 

04-classloader-07 Integrate the classloader in Jide so it does not need be to be initialized 
explicitly by the user 

 
 
04-sandbox-01 IA System Architecture Group to ensure better integration of Sandbox 

+ jide + properties + classloader (only one approach rather than the 
current two (sandbox and properties)) 

 

04-task-01  add new HowTo for the user  

04-task-02 top-level documentation should be included under the JavaDoc-
package description  

04-task-03  current HowTo should become a developer’s guide  

04-task-04 add design documentation (dealing with task-design especially: JTask - 
Task)  

04-task-05  add new HowTo for the user  

04-task-06 IA System Architecture Group to sort out up to what basic hcss.ia level 
Task should be used as base component. Should the Task list be part of 
the ia.numeric.toolbox?  

04-task-07 IA WG to promote the use of task components for all IA processing 
steps / functions. 

04-task-08 IA DOC WG to ensure that system level documentation includes 
explanation / guide on intended use of IA components including Task 

04-task-09  define clearly the concept of task and signature 

04-task-10  prioritise implementation of completion notification 

04-dataflow-01 update documentation 

04-dataflow-02 architecture & design documentation should be moved from the User 
Guide into a special dedicated arch./design document  

04-dataflow-03 Wim de Meester to give detailed feedback on current available 
documentation 

04-dataflow-04 improve code for DataFlowManager and change implementation such 
that this Manager can be (1) used  as a JComponent inside another 
application and (2) be added to the testharness 



04-dataflow-05 IA WG to give input whether - and if, so on which time scale - within  
ia.dataflow end-user functionality should be included. This is needed as 
suggested by SG. An example might be stream type processing of a 
large set of data (database pointers) belonging to one observation. This 
would request the implementation of components which assure jython 
friendly usage within jython as well as an additional HowTo for the 
end-user.  

04-dataflow-06 IA WG to promote that tasks should be the IA base component which 
can be re-used in processes (possibly via the TaskWrapper the use of 
task components for all IA processing steps / functions. 

04-dataflow-07 IA DOC WG to ensure that system level documentation includes 
explanation / guide on intended use of IA components including 
dataflow components  

 
04-UI-01 JK to add the Mouse use case use case to the package documentation 

[dd 15th December] 
 
04-UI-02  NdC to open an SPR to refactor SystemPopup [dd 30th November] 
 
04-UI-03 NdC and HS to document Window Manager class with Tim Lock [NdC 

30th November] 
 
04-UI-04 JK to deprecate help class as it is superseded by the help class in the 

help package. [dd 30th November] 
 
04-UI-05  SG to open an SPR to address concerns on ScreenshotGenerator 

 [dd 30th November] 
 
04-UI-06  SG to open an SPR to address concerns on GuiUtils 

 [dd 30th November] 
 
04-help-01  SG and MW to provide all the relevant QLA use cases [due date 

November 26th] 
 
04-help-02 Documentation WG / review to discuss the implementation of a 

strategy for retrieval the most appropriate documentation [dd 30th 
November] 

 
04-help-03 JK to move herschel.ia.sessioninspector in herschel.inspector.session 

[30th November] 
 
04-help-04  JK to investigate the XSL-FO technology [dd end on January 2005] 
 
04-help-05 NdC to update documentation on HelpTask in order put more emphasis 

on the limitations [dd 30th November]) 
 
04-help-06  NdC to remove the use of System.out.println [NdC 30th November] 



 
04-help-07 NdC to check if declaration within for loop is cause of bad 

performances [30th November] 
 
04-help-08  NdC, HS, SG Fix the misuse of configuration in HelpLocator.defaults 
 
04-help-09 DOC WG to check standards and exceptions in the formats of 

displayed documents 
 
04-help-10 NdC to open spr for checking compliance with javadoc [dd 30th 

November] 
 
04-help-11  JK to the documentation explaining limits on tests architecture [30th 

November] 
 
 
04-jconsole-01 Restructure the package to make it easier to understand. The goal of 

moving things is to improve cohesion, maintainability and 
documentation 

 
04-jconsole-02 Ensure that only classes and methods intended as public API appear in 

the JavaDoc 
 
04-jconsole-03 IA system architecture group to specify package structure guidelines 
 
04-jconsole-04 Look whether general utility classes can be moved outside the package.  
 
04-jconsole-05 CSDT/IA system architecture group to define a general place to put 

utility classes 
 
04-jconsole-06 Move any Herschel-specific code into a separate Herschel subpackage. 

Ensure that JIDE still runs when this package is not there 
 
04-jconsole-07 Define a protocol such that plug-ins can be added to jide. Use this 

protocol to add the dataset inspector, session browser, and help 
functionality.  

 
 
04-system-01 Review if the risks identified in the tiger-team report for large 

downloads and the shopping basket concept are still risks 
 
04-system-02 The scope of History and its relation to IaProcess and Task need to be 

(re-) identified, and the priority to implement it has to be reestablished 
 
04-system-03 Persistence implementation by versant database needs evaluation 
 
04-system-04 It should be investigated how to prevent mistakes caused by Jython 

exposing Java implementation details 
 
04-system-05  Performance requirements for IA should be drafted 



 
04-system-06 Allocate resources to give design directions for extending the GUI-

based capabilities of the system. 
 
04-system-07 CSDT should investigate how to decouple the java package structure 

from the CVS module structure 
 
04-system-08 The IA developers need an IA system architect (or architecture group), 

that can coordinate the technical design issues between the separate IA 
developers 

 
 
 



Appendix B 
 
 



Procedure for IA review 16/17th November 2004 

Version 1.0, 27/10/04 

1 Objectives 

The purpose of the review is  

• to verify that the architecture and design of IA provides a sound basis for further 
development 

• to identify major potential development risks 

• to check that the packages are maintainable even in the absence of owner and deputy 

• to identify any other points we would like bring toe the attention of the Herschel 
Science Ground Segment Review 

 

The output should be a list of items describing 

• where we complied with the objectives 

• identify the major shortcomings/problems, and propose solutions 

• which objectives were not reviewed 

• proposed HCSS use-case document updates 

• proposed IA ADD updates 

• identify minor shortcoming/problem requiring the attention of the package owner 

The minutes (including the review reports of each panel) will become input to the 
Herschel Science Ground Segment Review. 

2 Inputs 

The following items are inputs of the review: 

• IA#6/1 release candidate, including the metrics and test-coverage reports1 

 

Applicable documents: 

• HCSS User Requirements Document (FIRST/FSC/DOC/0115, Issue 2.0, Date 31 
August 2001) 

• HCSS Preparatory Calibration Database Requirements (Herschel-HSC-DOC-0350, 
Issue Draft, 0.4 Date 12 December 2003) 

                                                 
1 In case this is not possible due to the changed delivery schedule, the metrics and test-coverage reports of 
IA#5/4 will be used instead 



• Herschel Common Science System: Use Case Definitions (FIRST/FSC/DOC/0157, 
Issue 2.1, Date 11 April 2003)2 

• End user requirements for HIFI Interactive Analysis (HIFI-ICC/2001-004, DRAFT 
0.41, date 19/12/01) 

• HIFI calibration uses cases (HIFI-ICC-2001-005, DRAFT 1.0, date 20/10/2003) 

• PACS IA Software User Requirement Document (PACS-ME-RD-002, Issue: 0.6, 
Date: 25.04.03) 

• PACS User Requirements for plotting and image displaying in IA (PICC-ME-RD-
003, Issue: Draft, Date: 03-02-03) 

• PACS - Standard Process Generation (SPG) PICC-ME-TN-001, Date: April 21, 2000, 
Issue: 1.0) 

• SPIRE Instrument Control Center: Use-Case Definitions (Version 1.0, March 15, 
2002) 

• SPIRE IA Concept 

• Java Coding Standard and Guidelines for the Herschel Common Science System 
Development, HSCDT/TN009, Issue 2.0, Date 30.10.02 

• Herschel Common Science System Jython Coding Standards, HSCDT-TN040, Issue: 
1.0, 7 April 2004 

Reference documents: 

• HCSS IA ADD (in preparation) 

• IA vision documents 

• HCSS Jython Developer’s Recommendations, HSCDT-TN039, Issue: 1.0, 7 April 
2004 

• HERSCHEL IA COMMON FRAMEWORK ARCHITECTURE TECHNICAL 
REPORT, HERSCHEL-HSC-DOC-0241, issue 1, 12/04/02 

                                                 
2 This document is currently being updated with additional IA use-cases. A later version might be made 
available shortly before the IA review 



3 Review outline 

3.1 Suggested points of attention 
The items in appendix A (for the system review) and B (for each package) are a list of 
suggested points to be considered by the reviewers. They don't form a checklist that has 
to be completed during the review, as this wouldn't be possible in the available time. 
Instead, they are aimed to identify a list of points that might require attention. Each 
review panel will decide which are the most critical points to address, and list those 
points that were not addressed due to a lack of time. In case of need, each review panel is 
invited to augment this list. 

Care has to be taken not to be bogged down in details, and thereby neglect the major 
design aspects. 

 

We should  

• concentrate on the IA system itself  

and on subsystems that are 

• recent 

• were not reviewed one year ago 

• old, but not frequently used, and understand the reasons why 

 

3.2 Review panels and procedure 

• each panel should have between 4 and 7 active members, e.g. IA contributors that did 
subscribe to this panel and did provide written input. Other persons who want to learn 
more about a package are welcome as observers (listening in only). 

• at least the package owner or deputy has to be in the review panel 

• each panel chairman (preferably the package deputy) is responsible  

o to select the main review points per package3 
o to organise his session and ensure that all points expected to be discussed will 

be discussed 
o to minute the conclusions4. For each point of the checklist it shall be stated 

whether it was reviewed, what was the outcome of the review, and what 
corrective are actions are proposed 

• each panel member will provide written input to the panel covering the main review 
points by Friday, 12th of November, e.g. before the meeting 

                                                 
3 A general checklist is not possible, as each package is in a different stage, and has different points needing 
attention 
4 The chairman might appoint a secretary to take minutes, if (s)he considers this necessary 



• review starts with general session (1hour), followed by splinters. It ends with a 
general session (2 hours) 

• IA coordinator is responsible for overall organisation and final minutes 

 



A Suggestion list for System Review 

A.1 Use cases/requirements 
A.1.1 Can the system fulfill all foreseen operational and community needs? 

A.1.2 Can the system meet the needs of both HIFI/PACS "IA as command line with 
GUIs" and SPIRE "IA as GUI with command line" view? 

A.1.3 What are the use-cases/requirements that are expected to hold major 
development difficulties for the IA system? Are they clearly specified? 

A.2 Architecture 
A.2.1 Will the currently developed subsystems (calibration sources database, 

calibration data access), future subsystems (SPG, QCP, archive browser, 
pointing refinement system) and instrument specific parts (H/P/S..SS) fit into 
the overall architecture of astronomers IA (delivered to community) and 
operations5 IA (used by ICCs/HSC)? 

A.2.2 Do we have additional requirements on HCSS infrastructure?  
 (Note: Currently I noted: maintenance of packages having contributors for 

distinct sub-packages (dataset)) 

A.2.3 Is the package structure within IA OK? Do we have unnecessary dependencies? 

A.2.4 Are the interfaces to other parts of the ground segment clear?  

A.2.5 What are the areas of overlap with the HCSS? Are there "grey areas" where 
things might fall between the cracks? 

A.3 Documentation6 
A.3.1 Is there an IA user manual?  

• Does it have a document number? If no, should it have one?7 
• Does it describe the major functionality? 
• To which IA version does it apply? 

 

                                                 
5 Also sometimes called "expert" IA. However, this phrasing is deprecated in order to avoid the impression 
that the "astronomer's IA" is only a second-class IA 
6 Note that IA documentation will be subject to a detailed review early December 
7 According to QA, all documentation that is not automatically generated from version controlled modules, 
should have a document and version number 



A.3.2 Do we have an IA architecture and design document, showing: 

• Package decomposition  
• Design notes, explaining design decisions  
• UML diagrams, where appropriate, to illustrate design features  
• Does it have a document number? If no, should it have one? 

A.3.3 Is the place for the package documentation consistent? 
Note: As input for this the review reports of the packages are needed 



B Suggestion List for Package Review 
B.1 Use cases/requirements 
B.1.1 Does the subsystem satisfy the relevant use-cases and user requirements?  

(Note: Use-cases are mainly applicable to applications, rather than utility 
libraries.) 

B.1.2 What are the use-cases/requirements that are expected to hold major 
development difficulties for this package? Are they clearly specified? 
(Note: Currently I noted: stopping of tasks, adding of debugging features, 
handling of big datasets, reported performance problems, IDLizing, saving of 
intermediate data) 

B.1.3 Does the package have a high number of SCRs? Are the modification of use-
cases and additional use-cases?  

B.2 Architecture 
B.2.1 What is the "raison d' être" for this package? To which currently existing use-

cases is it linked? Do we need additional usecases to specify the most important 
functionality? 

B.2.2 Does the package fit coherently into the overall architecture of IA? 

B.2.3 Is there an architecture and design document, including:  
• Subsystem decomposition  
• Design notes, explaining design decisions  
• UML diagrams, where appropriate, to illustrate design features 

B.2.4 Is it a component architecture, with cleanly decoupled components?  

B.2.5 Does it have understandable interfaces?  

B.2.6 Does the API hide the underlying implementation (i.e. provide suitable 
abstraction)? 

B.2.7 Are there public classes/methods which should not form part of the public API?  
• Conversely, are there classes/methods that should be made public?  
• Is it clear which packages form part of public API? 



B.2.8 Does it have direct interfaces with other subsystems or other libraries? Is it 
incorrectly/overly coupled to other packages? Are there circular dependencies? 

B.2.9 Is the subsystem decomposed into packages? Is this decomposition sensible, or 
a cause of user irritation and/or increase in complexity? 

B.2.10 Do you have suggestions on the improvement of the architecture or design (E.g. 
would this package benefit from features introduced by JDK 1.5)? 

B.2.11 Are there new external packages that are better suited to provide the underlying 
services? 

B.2.12 Would it be worthwhile to make the package open source? 

B.3 Documentation 
B.3.1 Is there a user manual for the package? Does it have a document number? 

Should it have one? 

B.3.2 Is there adequate developer's documentation? Does it have a document number? 
Should it have one? 

B.3.3 Is there adequate design documentation? Does it have a document number? 
Should it have one? 

B.3.4 JavaDoc 
• Does the JavaDoc follow the Sun guidelines? 

• Does each method have an understandable JavaDoc description? 
• Is the general level of JavaDoc comments adequate (especially for 

public API)?  
• Does the JavaDoc include code examples, where appropriate?  

• Does each subsystem have a top-level "package.html" file, including:  
• An initial summary sentence documentation, etc  
• A description of the contents and purpose of the package  
• A "Package Specification" section (may be blank)  
• A "Related Documentation" section with hyperlinks to design  

B.3.5 Where is the documentation located? 

B.3.6 Does the subsystem have a readable CHANGELOG file?  

 



B.4 Design 

B.4.1 Are there any indicators of design problems (code metrics, test coverage, high 
number of SPRs)? 

B.4.2 Is the package easy to use? If not, why? 

B.4.3 Are appropriate Design Patterns employed?  
• Should further design patterns be introduced to improve abstraction, 

flexibility, modularity, etc?  
• Conversely, are inappropriate design patterns employed?  

B.4.4 Is there a proper separation of concerns between classes and between packages?  

B.4.5 Is the design properly Object Oriented?  

B.4.6 Is the principle of operation sound?  

B.4.7 Might the design lead to performance problems?  

B.4.8 Is reflection used unnecessarily?  

B.4.9 Is inheritance used in an appropriate way?  These checkpoints should be true 
wherever inheritance is used: 
• It is a "kind of", not a "role played by", relationship. 
• The object never needs to transmute into another class. 
• It extends rather than overrides or nullifies the superclass. 
• It does not subclass what is merely a utility class.  

B.4.10 Would composition be better than inheritance? 

B.4.11 Should any classes be immutable?  

B.4.12 Is error handling adequate?  
• Are there any 'exit' statements (except in "main" method)?  
• Are the error and log messages understandable and appropriate? 
• Is exception handling employed for all exception / error conditions?  
• Are the exceptions thrown misleading or not the right ones?  
• Should the exception be thrown at all?  
• Should the exception be checked or non-checked?  
• Can a situation be envisaged where the code will obviously fail? 



B.4.13 Does the design allow the subsystem to be properly tested?  
• Is a pluggable architecture needed to support test stubs?  
• Is the GUI decoupled, so that the underlying logic can be tested on its own?  
• Are there specific testing problems (e.g. Jython code, access to database 

server, GUIs)? 

 



C Review panels 
C.1 IA packages including lines of code 

Currently each IA package has the following lines of code (simple wc). An R indicates 
that the package was reviewed one year ago. Bold face indicates that this package will be 
reviewed. 

 

herschel.ia.cal    794 

herschel.ia.classloader  1185 
herschel.ia.dataflow   12737 
herschel.ia.dataset   10438             R 
herschel.ia.demo   588 

herschel.ia.doc   6 

herschel.ia.help   2434 
herschel.ia.image   10747 
herschel.ia.io    6705                R 

herschel.ia.jconsole  9301          R 
herschel.ia.numeric   70240           R 
herschel.ia.plot   13091 
herschel.ia.task   3830 
herschel.ia.testbed   387 

herschel.ia.ui    2038 
 

C.2 review panels 

C.2.1 major panels (2 sessions) 

• plot 

• image and dataset 

• task and dataflow 

• ui and help 

 

C.2.2 normal panels (1 session) 

• classloader and sandbox 



• numeric 

• JConsole 

• system and infrastructure 

 

C.2.3 Organisation of the review 

 

As the composition and schedule of the panels might need several updates, it will be 
subject to a separate note. 



IA Design Review, 16-17/11/04

IA ReviewScience

Kick-off    SO 1

Kick-off

Stephan Ott



IA Design Review, 16-17/11/04

IA ReviewScience

Kick-off    SO 2

Some words at the start …
Welcome & thanks to Rik for hosting and organising!
Our chance to review the complete IA design to see whether we are on 
the right track for a launch 2007
Concentrate on major issues

Does the system do what the user community needs (will need in the future)?
What requirements drive the system? Can we reasonably hope to implement 
them?
Is the package maintainable?
What other items do we want to bring to the attention of the Herschel Ground 
Segment Review

Don’t invent additional requirements
Don’t get bogged down in details
Be honest and list problem areas and proposed corrective actions



IA Design Review, 16-17/11/04

IA ReviewScience

Kick-off    SO 3

Don’t redesign on the fly



IA Design Review, 16-17/11/04

IA ReviewScience

Kick-off    SO 4

Individual panel sessions
Panel chairs are responsible to produce review reports

Which objectives were reviewed?
Did we comply with the objective?
Where do we see major shortcomings/problems, and which corrective actions are 
proposed?

Which objectives were not reviewed? Why? (no time, not critical, not 
applicable)
Which additional objectives were reviewed? 
Was the preparation of the participants adequate?
Draft reports: Friday, 19th of November
Final reports: Friday, 26th of November

Observers should not impede the review process



Appendix C 
 
 



Review panels and schedule for IA review 16/17th 
November 2004 

Version 1.5, 11/11/04 
 

A.1 Review panels --- list of owners and deputies 

A.1.1 major panels (2 sessions) 
 

package deputy package owner  

• plot  Wetzstein  Lorenzani 

• image  Huygen  de Meester 
• dataset  Brumfitt  Bakker 

• task  de Candussio  Mathieu 
• dataflow  Corrales  Zaal 

• ui   Guest   Kemp 
• help  de Candussio  Kemp 

 

A.1.2 normal panels (1 session) 
 

package deputy package owner  

• classloader  de Candussio  Mathieu 
• sandbox  Mathieu  Porret 

• numeric  Brumfitt  Bakker 

• JConsole  Guest   de Candussio 

• system  n/a 
• infrastructure n/a 



 

A.2 Review panels --- proposed chairs and defenders 

Principle: A person can chair only one session. Preferably, the session chair is the 
package deputy, and the defender the package owner. 
 
The loading should be balanced between all participants.  

A.2.1 major panels (2 sessions) 

package chair defender  reviewer1 

• plot Wetzstein Lorenzani  Coeur-Joly, Dwedari, Kemp 

• image Huygen de Meester  Dwedari, Kester, 
dataset Bakker  Mathieu, [Rector], Zaal 

• task Zaal Mathieu  Pizarro, de Meester 
dataflow  

• ui de Candussio  Kemp  [Borkowsky], Coeur-Joly,  
help  Kemp  Guest, Pizarro, Siddiqui, 
      Wetzstein 

 

A.2.2 normal panels (1 session) 

package chair defender  reviewer1 

• classloader Mathieu de Candussio Kemp, Lorenzani, 
sandbox  de Candussio de Meester 

• numeric Kester Bakker  Dwedari, Guest, Wetzstein 

• JConsole Guest de Candussio Huygen, de Jonge, 
     [Borkowsky] 

• system de Jonge Guest  Bakker, Huygen, Siddiqui 
infrastructure 

                                                 
1 a reviewer in brackets [ ] denotes that he will not participate in person, but will review the package 
remotely and send his inputs to the review chair and his instrument representative before the meeting 



A.3 Sequence of review panels (3 parallel sessions) 

First day (16/11/2004) 
 

JConsole 
Guest 
de Candussio 
Huygen, 
de Jonge 

numeric 
Kester 
Bakker 
Dwedari, Guest, 
Wetzstein 

kick-off 
(plenary 
session) 

 
St.-Barbara 

09:00-10:00 

task/dataflow I
Zaal 
Mathieu 
Pizarro, 
de Meester 
 

10:00 – 12:00 

plot I 
Wetzstein 
Lorenzani 
Coeur-Joly, 
Dwedari, Kemp 
 

task/dataflow II
Zaal 
Mathieu 
Pizarro, 
de Meester 

13:00 – 15:00 

plot II 
Wetzstein 
Lorenzani 
Coeur-Joly, 
Dwedari, Kemp 

15:30 – 17:30 

Classloader / 
Sandbox 

Mathieu 
De Candussio 
Kemp, 
de Meester, 
Lorenzani 

system / 
infrastructure

de Jonge  
Guest 
Bakker, Huygen, 
Siddiqui 



Second day (17/11/2004) 
 
 

 
 

14:00-16:30 

reflections 
of first day 

(plenary 
session) 

 
St.-Barbara 

 

09:00-09:30 
09:30 – 11:30 
image/dataset I
Huygen 
de Meester, 
Bakker 
Dwedari, Kester,
Mathieu, Zaal 

de
Ke
Co
Gu
Si
W

11:45 – 13:00 
image/dataset II
Huygen 
de Meester, 
Bakker 
Dwedari, Kester,
Mathieu, Zaal 

de
K
C
G
Si
W

conclusions 
(plenary 
session) 

 
St.-Barbara 

 

UI / help I 
 Candussio 
mp 
eur-Joly, 
est, Pizarro, 

ddiqui, 
etzstein 
UI / help II 
 Candussio 

emp 
oeur-Joly, 
uest, Pizarro, 
ddiqui, 
etzstein 



Appendix D 
 
 



IA Design Review, 16-17/11/04

IA ReviewScience

Reflections  Viewgraph 1

Reflections of the first day

Stephan Ott



IA Design Review, 16-17/11/04

IA ReviewScience

Reflections  Viewgraph 2

Good morning!
Thanks to Rik for the wonderful dinner!
System panel asked for a second session. Can we accommodate the 
following (morning panels and conclusions reduced by 20/30 minutes, 
meeting lasts until 17:00)?
During conclusions, panel chairs are expected to present highlights of 
their panels (3+2 minutes for normal panels, 6+4 minutes for major 
panels)

Did to manage to cover what you intended?
Major positive conclusions
Major shortcomings/problems
Major corrective actions
Any other information of general importance



IA Design Review, 16-17/11/04

IA ReviewScience

Reflections  Viewgraph 3

Previous schedule

image/dataset I

Huygen
de Meester, Bakker
Dwedari, Kester,
Mathieu, Zaal

09:30 – 11:30

UI / help I

de Candussio
Kemp
Coeur-Joly, Guest, 
Pizarro, Siddiqui, 
Wetzstein

image/dataset II

Huygen
de Meester, Bakker
Dwedari, Kester,
Mathieu, Zaal

11:45 – 13:00

UI / help II

de Candussio
Kemp
Coeur-Joly, Guest, 
Pizarro, Siddiqui, 
Wetzstein

conclusions

(plenary session)

St.-Barbara

14:00-16:30

reflections of 
first day

(plenary 
session)

St.-Barbara

09:00-09:30



IA Design Review, 16-17/11/04

IA ReviewScience

Reflections  Viewgraph 4

Suggested schedule

image/dataset I

Huygen
de Meester, Bakker
Dwedari, Kester,
Mathieu, Zaal

09:20 – 11:00

UI / help I

de Candussio
Kemp
Coeur-Joly, Guest, 
Pizarro, Siddiqui, 
Wetzstein

image/dataset II

Huygen
de Meester, Bakker
Dwedari, Kester,
Mathieu, Zaal

11:15 – 12:30

UI / help II

de Candussio
Kemp
Coeur-Joly, Guest, 
Pizarro, Siddiqui, 
Wetzstein

conclusions

(plenary session)

St.-Barbara

15:00-17:00

reflections of 
first day

(plenary 
session)

St.-Barbara

09:00-09:20

System / infrastructure 
II

de Jonge 
Guest
Bakker, Huygen, Siddiqui 
+ panel chairs

St.-Barbara

13:30-14:45

TBC

Florin



Appendix E 
 



IA Design Review, 16-17/11/04

IA ReviewScience

Concluding session   Viewgraph 1

Concluding session

Stephan Ott



IA Design Review, 16-17/11/04

IA ReviewScience

Concluding session   Viewgraph 2

Organisation of the final session
Presentation of panel chairs

Major positive conclusions
Major shortcomings/problems
Major corrective actions
Did to manage to cover what you intended?
Any other information of general importance

General discussion
What do we suggest as priorities for IA#7?
What needs additional discussion in the IA WG?
What do we want to bring to the attention of the IA documentation review?
What do we want to bring to the attention of the CSDT?
What do we want to bring to the attention of the Herschel Science Ground Segment 
review?

Round table
Was the review worth the efforts spent? 
What can be improved for the next review?



IA Design Review, 16-17/11/04

IA ReviewScience

Concluding session   Viewgraph 3

Let’s go!
Presentation of panel chairs

M. Wetzstein (plot)
R. Huygen (image/dataset)
D. Kester (numeric)
J.-J. Mathieu (classloader/sandbox)
P. Zaal (task/dataflow)
N. de Candussio (UI/help)
S. Guest (JConsole)
A. de Jonge (System)



Appendix F 
 
 



B Conclusions of Package Review

Name  of  package  reviewed:  herschel.ia.plot

Panel  composition:
chair:  Wetzstein  
defender:  Lorenzani
reviewers:  Coeur- Joly, Dwedary,  Kemp
observer:  Kester  

B.1 Use  cases /requirements

B.1.1 Does the subsystem satisfy the relevant use- cases and user

requirements? 

B.1.2 (Note:  Use- cases  are  mainly  applicable  to  applications,
rather  than  utility  libraries.)

Reviewed:
yes
conclusions  and  proposed  actions:
Most  user  requirements  are  fulfilled  by the  PlotXY class.  Exceptions  and
how  they  are  treated  are  listed  below:

● 3D plotting  is  not  available  now
Reasearch  is  being  done  on  available  3D packages.  

● Histogram  plotting
jfreechart  provides  the  required  functionality.  Time  is  allocated  for  the
developement.  

● Adding  graphical  annotations  to  a  plot  like  arrows  and  user  defined
graphical  decorations  for  certain  points
A way  to  add  graphical  annotations  has  been  found.  They  could  be
defined  within  a  graphical  toolbox  and  be  added  as  datasets.  Already
implemented  Plot  functionality  could  be  used  to  draw  the  items.  This
has  the  advantage  that  the  graphical  annota tions  will  automatically  be
scaled  together  with  the  plot.
The  Review  board  expressed  doubts  that  the  level  of  professionality  of
this  solution  can  compete  with  the  functionality  of  a  pro  graphical
package  like  Photoshop  that  could  be  used  to  decorate  a  plot  after  it



has  been  saved  as  an  image.  Agreement  has  been  achieved  that
developement  of  graphical  annotations  should  not  be  done  in  this  case.

More  missing  functionality  at  the  level  of  SCRs:
● User  interaction  with  the  plot

User  want  to  define  regions  of  data  in  the  plot,  export  the  data  into  ia,
modifiy  and  re- import  them  into  the  plot.
The  export  functionality  has  been  done  in  a first  draft.  A group  of
datapoints  can  be  selected  with  a  mouse  and  exported  to  ia. Re- import
and  more  comfortable  selection  methods  have  to  be  implemented.

● A Layer  object  still  has  two  identifiers:  The  layername  and  an  internal
integer  id.  This  leads  to  confusion,  especially  if the  layername  is
changed  in  a  session.  
The  solution  that  has  been  found  by the  board  is  that  only  an  internal
string  or  integer  id  should  be  used.  Several  methods  to  display  the
internal  id  have  been  discussed  
• click  on  the  legend  toggles  between  the  internal  ids  and  layernames
• define  in  the  preferences  if the  id  is always  shown  together  with  the

layername  in the  legend  but  never  printed
• show  a list  of  available  ids  by applying  an  easy  method  like

„p.layers“
• show  a list  of  available  ids  by typing  the  appropriate  methods  like

getLayer(  +  TAB
● Have  more  than  one  symbol  to  plot  on  a layer,  ideally  a  special  symbol

for  every  point  of  the  layer
● The  Legend  should  contain  the  symbol  that  is  used  on  the  layer

As can  be  seen  from  this  list,  the  open  requirements  are  very  special  and
detailed.  So most  of  the  required  functionality  is  implemented.

B.1.3 What are the use- cases/requirements that are expected to

hold major development difficulties for this package? Are

they clearly specified?

B.1.4 (Note:  Currently  I noted:  stopping  of  tasks,  adding  of
debugging  features,  handling  of  big  datasets,  reported
performance  problems,  IDLizing,  saving  of  intermediate
data)

Reviewed : 
yes
conclusions:



No problematic  requirements  have  been  identified.  The  most  complicated
developement  would  be  graphical  annotations  that  can  compete  with
professional  graphic  packages.
proposed  actions:
A solution  how  to  implement  graphical  annota tions  has  to  be  found.  To
see  how  professional  we can  do  it,  we should  implement  a  simple  example
and  make  a time  estimate.  Users  input  is  also  required  here.  

B.1.5 Does the package have a high number of SCRs? Are the

modification of use- cases and additional use- cases? 

Reviewed:
yes
conclusions:
The  package  has  had  20  SCRs overall  where  7 have  been  open  at  the  day  of
the  review.  They  all  contain  fine  tuning  of  the  package  and  don’t  need
significant  developing  time.
proposed  actions:
none

B.2 Architecture

B.2.1 What  is  the  "raison  d'  être"  for  this  package?  To which  currently
existing  use- cases  is  it  linked?  Do we need  additional  usecases  to
specify  the  most  important  functionality?

reviewed:
yes
conclusions:
Raison  d'  être  is  obvious.
Usecases  for  graphical  annotations  are  required  if they  should  be
implemented.
proposed  actions:
User  groups  should  discuss  if they  want  graphical  annotations,  if they
want  an  example  implementation  first  or  if they  don't  need  it.  Then  budget
should  speak.  

B.2.2 Does the package fit  coherently into the overall architecture

of IA?

reviewed:
yes
conclusions:



Plot  fits  well  into  the  architecture  of  ia. Its  interfaces  to  ia are  the  jython
console  and  ia datatypes.
Plot  supports  jython  keyword  service  for  the  constructor  and  it  accepts
Double1d  and  TableDatasets  as  ia datatypes.
Further  extension  of  the  accepted  datatypes  can  and  will be  done  by using
services  of  the  numeric  library.  Acceptance  of  TableDatasets  on  the  other
hand  will be  moved  to  an  outside  plotting  service  for  datasets.
Further  discussion  with  the  maintainer  of  the  numeric  package  is
necessary  because  Datasets  are  the  carriers  of  quantities.  Removal  of  plot
service  for  TableDatasets  would  thus  also  mean  removal  of  quantities  if
not  another  interface  can  be  found.   This  is  an  open  issue  since  the
beginning  of  plot  developement.
proposed  actions:
Extend  accepted  datatypes  to  numeric  Array1dData,  solve  the  problem
with  quantities  on  the  level  of  the  numeric  package,  then  remove  Dataset
plotting  from  PlotXY.

B.2.3 Is there an architecture and design document, including: 

• Subsystem  decomposition  
• Design  notes,  explaining  design  decisions  
• UML diagrams,  where  appropriate,  to  illustrate  design  features

reviewed:
yes  
conclusions  and  proposed  actions:
Architecure  and  design  documents  are  available  and  have  to  be  updated
after  the  refactoring  of  the  package.

B.2.4 Is it a component architecture, with cleanly decoupled

components? 

Reviewed:
yes
conclusions:
It is  a  component  architecture,  with  cleanly  decoupled  components .
However,  the  decoupled  design  has  become  less  clear  after  user
requirements  to  access  Axis  properties  through  the  Layer  object  have  been
implemented.  
proposed  actions:
This  has  been  tackled  by the  package  redesign  discussions  (see  design
section).  An abstract  class  has  been  proposed  that  contains  the  axis
accessor  methods  an  that  can  be  extended  by multiple  other  classes.  



B.2.5 Does it have understandable interfaces? 

reviewed:
yes
conclusions:
It has  understandable  interfaces.
proposed  actions:
none

B.2.6 Does the API hide the underlying implementation (i.e.

provide suitable abstraction)?

reviewed:
yes
conclusions:
Besides  public  methods  there  are  also  a  lot  of  protected  methods
especially  in  the  PlotXY interface.  This  has  puzzled  users  who  consulted
the  javadoc  as  a  reference  documenta tion  for  the  public  api  of  plot
because  also  protected  methods  are  shown  in  the  javadocs.
One  of  the  refactoring  goals  is  thus  to  develop  a structure  where  user
accessible  classes  will only  have  public  or  private  methods  to  keep  the  api
documenta tion  clean.
But,  in  terms  of  hiding  the  underlying  implementation  protected  methods
are  a suitable  way  to  go.  Thus  the  answer  to  the  question  is  yes.
proposed  actions:
package  redesign  (see  design  section)

B.2.7 Are there public classes/methods which should not form

part of the public API? 

• Conversely,  are  there  classes / methods  that  should  be  made
public?  

• Is it  clear  which  packages  form  part  of  public  API?
reviewed:
yes
conclusions:
The  answer  is  given  in  B.2.6. The  public  api  should  be  better  localized  after
refactoring.
proposed  actions:
none



B.2.8 Does it have direct interfaces with other subsystems or

other libraries? Is it incorrectly/overly  coupled to other

packages? Are there circular dependencies?

reviewed:
yes
conclusions:
no  problems  here.
proposed  actions:
none

B.2.9 Is the subsystem decomposed into packages? Is this

decomposition sensible, or a cause of user irritation and/or

increase in complexity?

reviewed:
yes
conclusions:
The  package  has  a  very  flat  design  now.   With  increasing  complexity  of  the
software  this  has  to  be  changed.
proposed  actions:
package  redesign  (see  design  section)

B.2.10Do you have suggestions on the improvement  of the

architecture or design (E.g. would this package benefit  from

features introduced by JDK 1.5)?

reviewed:
yes
conclusions  and  proposed  actions:
No benefits  by introducing  jdk  1.5  could  be  found.  Design  improvements
see  design  section



B.2.11Are there new external packages that are better  suited to

provide the underlying services?

reviewed:
yes
conclusions:
JFreechart  is  still  decided  as  the  best  known  choice.  
proposed  actions:
none

B.2.12Would it be worthwhile to make the package open source?

reviewed:
yes
conclusions:
Other  groups  might  benefit  from  Plotxy.  But  PlotXY can  only  be  made  open
source  if numeric  and  jide  are  made  open  source  because  of  the  close
integration  of   plot  into  the  ia environment.
proposed  actions:
none

B.3 Documentation

B.3.1 Is there a user manual for the package? Does it have a

document number? Should it have one?

reviewed:
yes
conclusions:
Plot  has  a  HowTo  but  no  complete  user  documenta tion.  During  the
CodeReview  a complete  user  documenta tion  was  requested.  
proposed  actions:
The  results  of  the  documenta tion  review  will show  which  way  the  whole
system  should  go.

B.3.2 Is there adequate developer's documentation? Does it have

a document number? Should it have one?

reviewed:
yes



conclusions:
There  is a  design  documenta tion  in  the  package.html  which  serves
together  with  the  javadoc  as  a developer  documenta tion
proposed  actions:
none

B.3.3 Is there adequate design documentation? Does it have a

document number? Should it have one?

reviewed:
yes
conclusions:
As mentioned  before  there  is a  design  documenta tion  in  the  package.html
which  serves  together  with  the  javadoc  as  a developer  documenta tion
proposed  actions:
The  design  documentation  will be  updated  after  the  redesign  of  the
package.

B.3.4 JavaDoc

• Does  the  JavaDoc  follow  the  Sun  guidelines?
• Does  each  method  have  an  understandable  JavaDoc

description?
• Is the  general  level  of  JavaDoc  comments  adequate

(especially  for  public  API)? 
• Does  the  JavaDoc  include  code  examples,  where

appropriate?  

• Does  each  subsystem  have  a  top- level  "package.html"  file,
including:  
• An initial  summary  sentence  documenta tion,  etc  
• A description  of  the  contents  and  purpose  of  the  package  
• A "Package  Specification"  section  (may  be  blank)  
• A "Related  Documentation"  section  with  hyperlinks  to  design

reviewed:
yes
conclusions:
The  javadoc  is  complete  and  follows  the  Sun  guidelines.  Some  new
methods  are  still  undocumented.
proposed  actions:
Ongoing  developement  should  document  also  new  methods.  Its  a  good
working  style  to  write  at  least  one  line  of  description  before  implementing
a  method  to  clarify  its  purpose.



B.3.5 Where is the documentation located?

reviewed:
yes
conclusions:
In the  HowTo  section,  javadoc  and  package.html.
proposed  actions:
none  before  the  documentation  review.

B.3.6 Does the subsystem have a readable CHANGELOG file? 

reviewed:
yes
conclusions:
no  problems  here
proposed  actions:
none

B.4 Design

B.4.1 Are there any indicators of design problems (code metrics,

test coverage, high number of SPRs)?

reviewed:
yes
conclusions  and  proposed  actions:
The  most  obvious  design  problem  of  the  PlotXY class  is the  number  of
lines  (around  5000).  Thus  the  main  goal  of  the  code  review  was  to  reduce
the  size  of  the  PlotXY class.
This  has  been  done  by discussing  a  couple  of  designs  and  package
structures.  The  goal  is  still  to  be  able  to  use  multiple  plot  packages
together  with  the  plot  framework  (like  jfreechart,  maybe  a new  3d  package
or  jsky  for  image).
Andrea  Lorenzani  has  taken  the  action  to  discuss  the  pros  and  cons  of  the
discussed  designs  and  make  a proposal  for  the  best  redesign  of  the
package.
The  redesign  will also  solve  problems  associated  with  the  protected
classes  in  the  javadoc.  That  has  been  puzzling  for  users  who  use  the
javadoc  as  a  reference  documentation.  



A couple  of  longer  methods  need  a few  lines  of  comments.  Refactoring  of
these  methods  was  not  decided  to  be  useful.  
Refactoring  of  methods  has  been  recommended  on  very  few  methods  like
public  Layer  addLayer(PyObject[] args,  String[] kws)  or  draw(...) in  the
PlotXYCompositeRenderer.  These  two  methods  have  been  considered  too
long  to  maintain  even  with  additional  comments.  

B.4.2 Is the package easy to use? If not, why?

reviewed:
yes
conclusions:
no  problems  have  been  mentioned
proposed  actions:
none

B.4.3 Are appropriate Design Patterns employed? 

• Should  further  design  patterns  be  introduced  to  improve
abstraction,  flexibility,  modularity,  etc?  

• Conversely,  are  inappropriate  design  patterns  employed?  
reviewed:
yes
conclusions:
no  problems  here
proposed  actions:
none

B.4.4 Is there a proper separation of concerns between classes

and between packages? 

reviewed:
yes
conclusions:
with  the  exception  of  the  coupling  of  Layer  and  Axis  no  problems  have
been  found.
proposed  actions:
see  B.2.4



B.4.5 Is the design properly Object Oriented? 

reviewed:
yes
conclusions  and  proposed  actions:
The  plot  package  has  well  defined  classes  with  well  defined
responsibilities.
However,  the  object  oriented  design  has  become  less  clear  after  user
requirements  to  access  Axis  properties  through  the  Layer  object  have  been
implemented.  It is  questionable  (and  maybe  confusing  for  the  users)  if
axes  should  belong  to  layers.   
The  package  redesign  should  also  correct  this  problem  and  make  axes
belong  to  the  overall  plot  without  any  ambiguity  how  to  adress  an  axis.
This  has  also  been  tackled  by the  package  redesign.  (as  mentioned  in  B.2.4)

B.4.6 Is the principle of operation sound? 

reviewed:
yes
conclusions:
no  problems  here
proposed  actions:
none

B.4.7 Might  the design lead to performance problems? 

reviewed:
yes
conclusions:
Plot  has  no  real  performance  problems  if hardware  acceleration  for  2d
graphics  is  supported  by the  system.  This  can  be  a  problem  of  linux
systems  due  to  the  lack  of  appropriate  drivers,  especially  for  notebooks.
On Windows  and  Macintosh  systems  drivers  are  usually  available.  
Nevertheless  it  has  been  discussed  that  plot  could  perform  faster  if the
shutdown  of  the  plot  engine  would  not  be  coupled  to  the  closing  of  the
plot  window.  Instead  the  engine  could  remain  in  memory  and  support
rendering  of  new  windows  on  request.

proposed  actions:
The  ideas  to  increase  performance  and  usabiliy  should  be  documented.
The  driver  problem  is  related  to  the  system  in  general  (every  qla  will have
this  problem).  So a  central  point  for  documenting  this  should  be  found.  



B.4.8 Is reflection used unnecessarily? 

reviewed:
yes
conclusions:
refection  isn't  used  at  all.
proposed  actions:
none

B.4.9 Is inheritance used in an appropriate way?  These

checkpoints should be true wherever inheritance is used:

• It is  a  "kind  of", not  a  "role  played  by", relationship.
• The  object  never  needs  to  transmute  into  another  class.
• It extends  rather  than  overrides  or  nullifies  the  superclass.
• It does  not  subclass  what  is merely  a  utility  class.  

reviewed:
yes
conclusions:
no  problems  here
proposed  actions:
none

B.4.10Would composition be better  than inheritance?

reviewed:
yes
conclusions:
jfreechart  is accessed  with  composition.  This  has  been  decided  as  correct.  
proposed  actions:
none

B.4.11Should any classes be immutable? 

reviewed:
yes
conclusions:
no  problems  have  been  found  here
proposed  actions:
none



B.4.12Is error handling adequate? 

• Are  there  any  'exit'  statements  (except  in  "main"  method)?  
• Are  the  error  and  log  messages  understandable  and

appropriate?
• Is exception  handling  employed  for  all  exception  /  error

conditions?  
• Are  the  exceptions  thrown  misleading  or  not  the  right  ones?  
• Should  the  exception  be  thrown  at  all?  
• Should  the  exception  be  checked  or  non- checked?  
• Can  a situation  be  envisaged  where  the  code  will obviously  fail?

reviewed:
yes
conclusions:
It has  been  mentioned  that  the  javadoc  shows  that  PlotXY throws  no
exceptions.  This  could  be  useful  for  error  propagation  if other  packages
use  PlotXY.
More  user  friendly  error  messages  have  been  required.  This  is a  problem  of
ia/hcss  in  general.  Discussions  on  how  to  handle  errors  and  make  them
usable  for  users  and  developers  are  right  now  going  on  in  the  user  groups.  
proposed  actions:
Throwing  of  exceptions  should  be  implemented.  User  friendliness  of
exceptions  requires  at  least  two  levels  of  error  detail  (for  users  and
developer).  This  is achieved  by the  logging  system  now.  Anyway,  users  are
discussing  this  problem  and  will come  up  with  a  proposal  for  the  whole  ia
system.
 

B.4.13Does the design allow the subsystem to be properly tested?

• Is a  pluggable  architecture  needed  to  support  test  stubs?  
• Is the  GUI decoupled,  so  that  the  underlying  logic  can  be  tested

on  its  own?  
• Are  there  specific  testing  problems  (e.g. Jython  code,  access  to

database  server,  GUIs)?
reviewed:
yes
conclusions:
no  problems  here.  But  the  graphical  output  cannot  be  tested  so  far.
proposed  actions:
none



B.5 Summary /other  comments

B.5.1 What are the main conclusions of the review panel? How do
you rate the state (green/amber/red)

After  the  necessary  redesign  there  are  no  problems  for  the  plot  package.
Since  it  was  the  first  plot  review,  its  a  good  sign  that  so  few  problems
could  be  found.
So very  green  light  is  the  overall  result.

B.5.2 What are the main recommendations of the review panel?

Redesign  of  the  package  with  the  main  goal  of  better  package  structure,
smaller  classes  and  a clear  separation  of  the  public  api.

B.5.3 Were additional points reviewed?  If so, please list them,

including conclusions and proposed actions

The  use  of  class  private  fields  in  the  constructors  is  not  well  documented
conclusions:
There  is a  clear  rule:  All fields  that  are  used  in  the  complete  constructor
can  be  used  from  the  jython  commandline  in  the  user  required  way
(PlotXY(y=myYData)  ) . 
proposed  actions:
Put  this  rule  into  the  HowTo  (and  user  documenta tion).



Appendix G 
 
IA Code Review 16-17-Nov-2004 @ K.U.Leuven 
------------------------------------------ 
Session: ia.dataset 
Chair: Rik Huygen 
Package Owner: Jorgo Bakker 
Reviewers: Lutfi Dwedari, Do Kester, Jean-Jacques Mathieu, John Rector, 
           Peer Zaal 
 
General comments by reviewers at the start of the meeting 
 
JJM - What exactly is the link between dataset and the rest of the system? How 
      and where does a dataset live in the system? E.g. SpectrumDataset, where 
      will this reside? ia.spectrum? like ImageDataset is in ia.image?. Other  
      dataset instances, where will they reside? 
     
DK  - use of quantities in TableDataset? Columns have quantities and we have to 
      do something with it. Maybe we need a framework? 
       
    - metadata? We should be able to have small sets of array type data. For 
      example SpectrumDataset with some calibration data which can go into 
      something like an ArrayParameter, on the other hand you could make a 
      CompositeDataset where the calibration data goes into a ArrayDataset. 
     
PZ  - Dataset is providing the basic building block for Product but has no 
      documentation on how to make this Product persistent in your database or 
      on its relation with other objects in the CCM environment. 
 
Some answers to the suggested list of questions for package review 
 
Use cases and user requirements 
 
1.1 Does the subsystem satisfy the relevant use-cases and user requirements? 
 
    We do not have use cases specific for dataset. Also the user requirements 
    are not written out as such. How is ia.dataset then designed? Against which 
    use cases or user requirements? The package was prototyped against the need 
    for these data containers. There might be a need to retrofit to write the 
    use cases. 
     
1.2 What are the use-cases/requirements that are expected to hold major 
    development difficulties for this package? Are they clearly specified? 
 
    There are a number of additional user requirements: 
      - access to a column 
      - same syntax as in ia.numeric i.e. remove the .data 
      - merging/sorting TableDataset 
      - insertion of rows 
      - ArrayParameters as metadata 
 
    Performance issues? JBa: in principle there are no performance problems with 
    dataset. Some specific methods might cause problems like appendRow() in 
    TableDataset because these methods need reflection. 
 
    Clarification by JBa: some methods (like appending) were required for 
    convenience only. The design does not stop you to do it in a more optimized 
    fashion. 
 
1.3 Does the package have a high number of SCRs? 
 
    Here we discussed the contents of a number of SxRs rather then answering the 
    question. 
     
    - the calling syntax for TableDataset and arrays in numeric is different 
      which might confuse the user. 
       



      tds[1][3] versus array[1,3] where the former is a TableDataset and the 
      latter is ArrayData. The tds call returns the third row in the first 
      column while the array returns the third element in the first row. 
     
      It was also mentioned that a TableDataset **is not an** array and 
      therefore it was questioned if we should even try to mimic the calling 
      syntax of an array. 
       
      Drop the column number option and only address columns by name? This is 
      against a user requirements where it should be possible for two columns to 
      have the same name. It might also give a slight performance overhead when 
      all columns need to be addressed. 
     
      Do we need an iterator over the columns then? Could this replace the index 
      for columns? 
     
    - User friendlyness, getting rid of the .data part when addressing Arraydata 
      in Columns. This might be solved by implementing the __getitem__ method on 
      Column. 
     
Architecture 
 
2.1 What is the "raison d' être" for this package? 
 
    Obvious. 
     
2.2 Does the package fit coherently into the overall architecture of IA? 
 
    What about History? 
    From the Javadoc: An empty slot for History. In the end we should 
    remove this one, and use whatever becomes available in the herschel.ia 
    tree. 
     
    Where is History now? Is this still a requirement? Where will it be  
    picked up? According to JBa History is not a dataset specific thing. The system 
    group should decide who is reponsible for history and in what package it 
    will reside, do we need a specific history package etc. 
     
2.3 Is there an architecture and design document? 
 
    There is currently no ADD as such. There is design documentation though in 
    the overall package documentation but no specific document that contains the 
    architectural design. Some reviewer had therefore problem finding this 
    documentation...for clarification the URL to the design document is: 
     
    
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/dataset/doc/design.html 
     
2.4 Is it a component architecture, with cleanly decoupled components? 
2.5 Does it have understandable interfaces? 
2.6 Does the API hide the underlying implementation? 
 
    There is a dependencies of ia.dataset.gui to intepreter and circular to 
    plot/image! 
     
    There is also a dependency of ia.io to ia.dataset wrt inheritance, might be 
    just a documentation issue. 
     
    Bart brings up the open SPR on Listeners on datasets. This is in the 
    pipeline to be implemented, planned for iteration #7. 
 
2.7 no 
     
2.8 Does it have direct interfaces with other subsystems or other libraries? 
 
    ia.dataset.gui.DatasetInspector has a number of dependencies to PlotXY, 
    Display. 
 



2.9 Is the subsystem decomposed into packages? 
 
    no, except for the gui package 
 
    After Meeting remark by JBa: I rendered this question useless unless you put 
    it into the context: "Is the package decomposition suitable". 
    Currently we have (no documentation is considered): 
        dataset/demo 
        dataset/gui 
    Whether gui should be part of dataset or somewhere else, was moved to system 
    panel.  
     
    All tests are currently within the package itself. This should have 
    been split into testing package private stuff and a separate test 
    sub-package. 
 
2.10 Do you have suggestions on the improvement of the architecture or design? 
 
    Unit tests are in the package itself. Why isn't there a separate test 
    sub-package? The current location of the tests is to be able to test package 
    private issues. Does this mean it doesn't test the public interface? 
 
2.11 Are there new external packages that are better suited to provide the 
    underlying services? 
 
    no  
 
2.12 Would it be worthwhile to make the package open source? 
 
    In principle yes, but we think the package will have limited audience. 
 
Other questions on the architecture 
     
- is the column design a performance problem for row access? 
 
  no performance issue really if you index in the Column Data 
   
- responsibility on quantities - where and how are quantities handled in the IA? 
   
  see above, this is passed on to the system architecture group. 
 
- How to handle Datasets that are larger than available memory? 
   
  Do we need to handle that at the level of Dataset, provide slicing etc.? 
 
Documentation 
 
Overall documentation is fine and very elaborate. The structure however could 
fit better into the overall IA documentation. This can only be done after the IA 
documentation review and when clear guidelines are available on IA 
documentation. Users and devlopers should send their comments on documentation 
to Jorgo. 
 
There is a need for a consistent view on where the architectural design document 
etc are located, restructuring is needed. 
 
 
Conclusions 
 
  * rate: GREEN, provided that the recommendations of this panel are implemented 
          and/or discussed and documented. 
   
  * Investigations needed 
    - location of derived Datasets 
    - use of Quantites 
    - extentions to metadata 
   
  * Actions 



    - use and documentation of Product needs updating 
    - take care that the existing SxRs are solved e.g. 
      --> remove .data part 
      --> addressing columns 
      --> listeners for datasets 
    - dataset.gui: solve dependencies 
 
System items identified which should be picked up by a IA System Architecture 
Group:  
 
  - How and where does a dataset live in the system? 
  - responsibility on quantities, where and how are quantities handled in the IA? 
  - History 
  - SpectrumDataset and its View 
    ImageDataset and its View (Display) 
 
--- appendices --- 
 
Appendix A:  
 
Review of IA dataset 
JJ Mathieu 
11 November 2004 
 
Following list for package review (appendix B) 
============================================== 
1. Use cases/requirements 
------------------------- 
1.1 Not relevant. Library subordinated to numeric and needs to store  
    data. 
1.2 Requirements not considered (yet) which may have an impact: 
    - 'Easy' retrieval of specific data off a database 
    - Integration of products in the system.  
      - Should they be outside of dataset or within?  
      - Who then assures maitenance, garantee cohesion, uniformity... 
      - If products are meant for DB and IA should they be here? 
      - Other? 
    - Large dataset handling? Is this really a dataset problem or a  
      data design problem (or a DB schema problem)? 
    - Performance of access (adding layers to 'true' data). Is this 
      really a requirement that is problematic? 
1.3 - Statistics say that we 17 S?R and 11 are still open. The system 
      is fairly stable since about three months. What is remarkable 
      is that the S?R are mostly very recent. Either the users are  
      beginning to use the dataset or start to use it without having 
      had a needed understanding of what the package is about. 
 
Overall assessment GREEN 
 
2. Architecture 
--------------- 
2.1 Clearly package is subordinated to numeric in its design. What 
    is less obvious are: 
    - The needs it fulfills for science products as such (versus 
      defining these with standard java classes) since the package does 
      not seem to offer much functionality. 
    - The apparent contradiction or hazy aspects linked with 'quantity'. 
      It is stated that the package provides quantifying of data. But in 
      SCR 999, for example, it is stated that numerics will not handle  
      quantities. This issue has a long history because of this ambiguity. 
2.2 Not quite sure. It could be under numerics, on the other hand it is 
    functionally at the same level. It would be good to know also how and 
    where to integrate specialised data sets (like spectrum or image). In 
    the absence of a written and approved IA overall architecture we have 
    to trust that the current architetcure is adequate. 
2.3 There is no architectural document but design documents which are 
    not explaining much in terms of how the design came to existence. 
    This results in the remarks made in 2.1 and 2.2, also this would 



    mean that to transfer knowledge to another maintainer would need 
    human coaching and not just pointing at documentation. 
2.4  
2.5 The interface definitions are mixed in with the implementation which 
    makes it difficult to spot 'easily' who is what. Even though there is 
    a documentation for developer explaining how to extend the dataset 
    package it is actually more a recipe for building classes by  
    composition. It does not seem that the design is made for inheritance 
    and therefore the issue of interface might not be relevant. 
2.6 The interfaces indeed hide implementation which is delegated to  
    Abstract... classes. 
2.7 Probably OK, java language here plays a more important role than one's 
    architectural or design wishes. 
2.8 Using dataset are demo, image, io and plot. This means we do have 
    circular dependancy with respect to image, io and plot packages. 
2.9 Package could have followed the subpackage standard split with api 
    implementation and test for instance. This may only cause a bit 
    of confusion to developers. 
2.10 Split properly into subpackages (api and test at least). Probably  
     some of the classes (who are helper classes like the Abstract...)  
     would then be hidden (in an implementation package). 
2.11 No 
2.12 No 
 
Overall assessment ORANGE 
justification: seems architecture is generally missing or has been thought 
of as you develop rather than beforehand. 
 
3. Documentation 
---------------- 
3.1 A user guide also looking like a how to guide. Mainly geared towards 
    jython usage, which is ideal since the java usage would appear (does so) 
    in a developer's guide. 
3.2 Developer documentation is missing a big point: where do you put your 
    derived dataset. For instance image is a derived dataset (I think) and 
    ends up in its own package while (may be) spectrum would end up in 
    dataset. Which one is the law? Do we follow a casuistic approach? 
3.3 Design documentation is inadequate to ensure an 'easy' takeover by  
    another maintainer. Who does have the time to improve this? 
3.4 No comments. 
3.5 Within package in doc. 
3.6 No comments. 
 
Overall assessment GREEN 
 
4. Design 
--------- 
4.1 Nope. I guess the unit test is not completed yet (for instance missing 
    serialisation test). 
4.2 Yes. 
4.3 Probably. Apart from visitor none is really explicit though. 
4.4 Yes 
4.5 Yes 
4.6 Yes 
4.7 Possibly on queries in the database. 
4.8 No 
4.9 Yes 
4.10  
4.11 
4.12 Yes 
4.13 Yes 
 
Overall assessment GREEN 
 
Overall assessment against IA review procedure appendix B GREEN 
 
Points noted by Rik 
=================== 



 
Architecture 
------------ 
- I think it can be used as a generic dataset package. But may be 
  the problems of dependancies (circular) have to be resolved or 
  at least documented well enough for all to be aware of a potential 
  problem. 
- May be the issue is 'When I make my own specialised dataset, should  
  I put it in its own package (image for example) or inside dataset? 
  The ia.io issue is addressed by the point above. 
- I am not sure this is an 'interesting' question. If the choice of 
  implementation had been on 'row' mode, I am sure someone would have 
  asked about adding a column. 
- See above 
- See remarks above. I am very uneasy with the quantity question. Also 
  I think if any the processing of quantity (I'd rather say units)  
  ought to be in numeric not in dataset. Dataset should only provide 
  methods to alter the current unit, numeric should be the user. I  
  believe this is what we have now, and in this sense this is OK. 
 
Overall assessment ORANGE 
Justification: Seems tha the package has been (at least partially) 
developed on practical track and not on fully organised and structured 
development. It may have suffered also from the lack of architecture at  
the top level of IA (ia.io, ia.image, ia.dataset dependancies) 
 
Documentation 
------------- 
- I think most of the needed documentation is adequate even for  
  java development. May be looking into demo code would help 
  developers; this could go into a How to for developers (there is  
  an how to for users which elaborates on dataset building in  
  jython). 
 
Assessment GREEN 
 
Usability 
--------- 
- What we are after is a generic mechanism. Like any generic mechanism 
  the visitor pattern may be heavy in use, but it offers a great way 
  to crawl over structures (by definition their composition is unknown 
  or rather varying). I think good examples of specialised dataset with 
  their visitors leading to lightweight use in jython would be useful. 
- I think the design covers the different types: homogenous arrays, 
  heterogeneous tables and scalars. Only ragged arrays ans sparse 
  matrices are missing. 
- The request came often, may be a serious candidate for updates. 
 
Assessment GREEN  
 
Extensions 
---------- 
Extensions of dataset should be very clearly defined. For instance 
sorting could be left to numeric (or not). How to decide. 
 
Dataset inspector introduces a dependancy wrt plot (image?) which 
may not be justified (The question being of the nature of inspection 
may not be the nature of displaying). 
 
Miscellaneous 
------------- 
Together with numeric this package could be subject to many kinds of 
conflicting requirements which all boil down to the following request: 
'Make your system look like my favourite XXX but also make sure it 
is more generic and adds YYY and ZZZ facility'. Clearly we have to 
avoid this (within reason). What triggers this is the periodic 
resurgence of: the unit questions and why dataset does solve it on its 
own, the access to the inner side of data structure (and its 



corollary the non-casting issue). Finally a point that also comes  
often is that the developed system is too complicated; that is 
probably the case, on the other hand if people expect only to do 
arithmetic at the toddler level, then yes it is too complicated, 
if they expect to do science, then I think the system is probably 
as complicated as science but no more. 
 
May be these last comments also reflect what we could say at system 
level.  
 
 
Appendix B: 
 
Rik Huygen 
 
Hi All, 
 
Apart from the general review guidelines below some review objectives you  
might want to concentrate on while you dig into the ia.dataset package. As  
the package has been reviewed before for design and architecture please focus  
more on usability and extendability. 
 
* Architecture 
 
  - are all components there to make this a generic dataset package? 
 
  - can the package easily be extended for specific (package external) 
    dataset types? and (how) does this possibly break export with ia.io? 
 
  - does the column oriented design put major performance restrictions  
    on the row accessibility required for some applications? 
 
  - isn't there too strong coupling of this package with ia.numeric 
    and ia.io? 
 
  - does the package have any responsibility in the use and processing  
    of Quantities? 
 
* Documentation 
 
  - documentation is very Jython tuned. Developers using Datasets from  
    Java are left a bit in the dark. How to improve this? 
 
* Usability 
 
  - again Jython versus Java usage. Especially the calling mechanism for    
    generic element access is cumbersome in Java through the use of the 
    visitor pattern. 
 
  - metadata and parameters: are they sufficient for the intended purpose? 
    Do we need other parameter types e.g. ArrayTypes? 
 
  - Can we get rid of the .data? 
 
* Extensions 
 
  - there are plenty of thing users want to do with Dataset, should such  
    new functionality be implemented inside the package or as external 
    utilities (Tasks?) 
    - sorting tables by a particular column 
    - joining/merging tables 
    - ... 
 
* miscellaneous 
 
  - anything on the DatasetInspector? 
  - anything else you find important to address... 
 



* noticable SxRs 
 
  - SCR-0786: Individual element access for Datasets 
  - SCR-1013: User friendliness of Dataset 
  - SPR-1143: A TableDataset is a collection of columns ALL OF  
              THE SAME LENGTH.  
  - SCR-1145: a 'type' field for clearly identifying Products 
 

 



Appendix H 
 
IA Code Review 16-17-Nov-2004 @ K.U.Leuven 
------------------------------------------ 
Session: ia.image 
Chair: Rik Huygen 
Package Owner: Wim De Meester 
Reviewers: Jorgo Bakker, Lutfi Dwedari, Do Kester, Jean-Jacques Mathieu, 
           John Rector, Peer Zaal 
 
General comment 
 
Extensive input was received by Jorgo for this package review. This input is in 
HTML format and is attached as a tar-file. The notes presented here are largely 
based on the input from Jorgo. 
 
Use-cases / requirements 
 
1.1 Does the subsystem satisfy the relevant use-cases and user requirements? 
 
    No use-cases. The developer has collated the user-requirements into a 
    document which is available through the API doc (package level). 
 
    There is no implementation or documentation of the following functionality. 
      - Contour plots 
      - Cursor feedback, how does the User gets access to it? 
      - Animation, is this supported (and how)? 
      - Addition of 2d-plots (PlotXY) 
 
    Note on Animation: Showing different images after each other is already 
    implemented. It is possible to show one image after another by clicking in 
    the gui or using a java method. 
 
1.2 What are the use-cases/requirements that are expected to hold major 
    development difficulties for this package? 
 
    no. 
     
1.3 Does the package have a high number of SCRs? Is there a need for 
    modification of use-cases and additional use-cases? 
 
    The functionality provided in the User Requirements seems to fulfil the 
    user's needs. Package is under construction. We could only identify two 
    additional/complementary requirements: 
      - coordinate axes 
      - True color display 
 
Architecture 
 
2.1 What is the "raison d' être" for this package? To which currently existing 
    usecases is it linked? Do we need additional usecases to specify the most  
    important functionality? 
 
    There is no user-friendly alternative around. It would be best if an effort 
    is made to convert current functionality into a use-case document, as that 
    will make it visible whether certain functionality is completely 
    implemented. 
 
2.2 Does the package fit coherently into the overall architecture of IA? 
 
    The package seems to be a mix of display rendering, display manipulation and 
    dataset definition. One could argue for a separation of these concerns. 
 
2.3 Is there an architecture and design document? 
 
    An Architectural Document is found via the package API documentation. 
 



2.4 Is it a component architecture, with cleanly decoupled components? 
 
    OK! 
     
    The location of some of the components is maybe not optimal, i.e. Tasks, 
    Datasets and Display are all located in the same package. The ImageDataset 
    definition and the specific Tasks might better go into specific packages. 
     
2.5 Does it have understandable interfaces? 
 
    Yes. Some methods are cluttering the interfaces, but they can be phased out 
    (see improvements section from input by Jorgo) 
 
2.6 Does the API hide the underlying implementation? 
 
    ImageDataset is encapsulating properly. The WCS class more resembles 
    structure. 
 
2.7 Are there public classes/methods which should not form part of the public API? 
 
    The improvements section in the input document from Jorgo contains a 
    detailed analysis of public versus private classes/method. 
     
2.8 Does it have direct interfaces with other subsystems or other libraries? 
    Is it incorrectly/overly coupled to other packages? Are there circular 
    dependencies? 
     
    The package is coupled to various sub-systems of IA: 
 
      dataset : definition of image dataset 
      numeric : contents of image dataset 
      task    : for display manipulation 
      plot    : for internal purposes 
      ui      : for gui components 
      jconsole: some gui utilities 
 
      Note on jconsole coupling: The only thing that is used from jconsole is 
      JIDEUtilities. Other components are not used. 
 
    Many couplings are unavoidable, though the jconsole coupling might be 
    something that can be phased out. That is, jconsole apparently has 
    components that are useful beyond jconsole package itself. Hopefully these 
    components become part of a utility package like 'ui'. 
     
2.9 Is the subsystem decomposed into packages? Is this decomposition sensible, 
    or a cause of user irritation and/or increase in complexity? 
 
    For the implementation, a single sub-package exists. This package 
    (image.gui), contains gui components required by the Display class. 
 
2.10 Do you have suggestions on the improvement of the architecture or design? 
 
    See section on improvements in Jorgo's input. 
     
2.11 Are there new external packages that are better suited to provide the 
underlying services? 
 
    No knowledge of new packages that would do a better job. 
     
2.12 Would it be worthwhile to make the package open source? 
 
    We see currently no reason to make this package open source. 
 
Documentation 
 
We did not have time to go over the documentation review and left this work for 
the IA Documentation review itself. There are however some comments in the input 
by Jorgo to keep in mind during this review. 



 
From the architectural design documnet it is not always clear what the acronyms 
mean e.g. Wcs. 
 
 
Other comments made during the session 
 
- Can we expect unnecessary performance problems when handling huge datasets in 
  the image package? 
   
  We see no direct problem with this apart from the fact that huge datasets 
  indeed need more processing time. There are no special optimisation strategies 
  forseen to handle huge datasets. 
   
- How much of the package is actually used? Are all instruments using this 
  package? 
 
  The package is used extensively by PACS, the use by HIFI and SPIRE is rather 
  isolated. 
   
- On the question if the package fits coherently into IA, we think that the 
  data, model and the view should be better seperated, e.g. Display (view) - 
  ImageDataset (data) - Tasks (operations on data).  
   
- The definition of what exactly the ImageDataset is is maybe not really clear. 
  Is it a generic image or more specific as a SkyImage? Should it be redesigned 
  as such? SkyImageDataset inherit from ImageDataset? 
   
- Is ia.image fully bound to JSky? Can another external library be plugged in? 
 
- Wcs attributes seem to be a direct copy of FITS keywords. This might need a 
  different approach as the keywords limit you to a linear transform. 
 
- Interfaces of Axis, Layer, Annotations need to be shared with the plot 
  package. --> system architectural item 
   
- JBa found ImageDataset exactly reflecting the intension of sub-classing 
  datasets. It might be worthwhile to put it as an example. 
 
Conclusions 
 
  * rate: GREEN, provided the recommendations of the panel are implemented 
          and discussed/documented. 
   
  * Investigations needed 
    - how to make the WCS class less FITS/structure dependent 
   
  * Actions 
    - go over improvements section from input by Jorgo and make the necessary 
      changes. 
   
System items identified which should be picked up by a IA System Architecture 
Group: 
 
  - How much of the system individual package is actually used by the users? 
    Is there any means to measure that? Do the (number of) SCRs reflect this 
    properly? 
     
  - Axis, Layer, Annotations, Histogram interfaces should at least be shared, 
    can there be common implementations and where should they reside? 
     
  - GUIs used by Image? Like printing... 
 
 
Appendices: 
 
 
Appendix A: 



 
Jose A.Pizarro De La Iglesia 
 
General comment methods in this package are way too long and it is due a 
major refactoring exercise. 
 
General Comment No effort is made to distinguish which exceptions are to be 
caught instead all exceptions are caught  and  then blocked or ignored . 
Some are logged but none are thrown up the chain. 
 
 
 
Image .AxisGraphicsHandler.setWcs  catches all exceptions (not just axis 
specific exceptions) 
with out passing JVM etc exceptions up the chain. 
 
++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
image.AxisGraphicsHandler.drawImageGraphics  line 398 to line 1595 
 
Please refactor this method as it is over 1000 lines long and contains a 
LOT of repetitive code. 
It is unmaintainable as is. 
 
++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
line 781  image.AxisGraphicsHandler.drawImageGraphics 
//  Temporarily solution 
          g.drawString(this._axesLabel[Axis.LEFT_AXIS], 
                       x + 10 - this._spaceForAxes[Axis.LEFT_AXIS] 
                       - this._extraSpace[Axis.LEFT_AXIS] + 
                       this._labelFont[Axis.LEFT_AXIS].getSize() / 2, 
ycoor); 
Please provide none temporary solution 
++++++++++++++++++++++++++++++++++++++++++++++++ 
 
 
image.Display.setImage  please correct the Fixme comment 
// FIXME : We cannot calculate the minimum and the maximum on the 
      // imageDataset because the pixels that are masked out are taken into 
      // account then. But we also cannot calculate the minimum and 
maximum on 
      // the image where the masked out pixels are NaN. This gives NaN as 
      // minimum and maximum. 
 
   Please clarify how the pixels are masked out and what are you trying to 
fine the min max of ? 
 
   ++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
 
image.Crop.execute()  catches ALL exceptions that are thrown and does not 
restrict it self to just crop exceptions 
 
+++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
 
image.Translate.execute()  catches ALL exceptions that are thrown 
 
+++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
 
image.Rotate.execute()  catches ALL exceptions that are thrown 
+++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
 
 
 
 



image.Clamp.execute()  catches ALL exceptions that are thrown 
+++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
 
 
image.Scale.execute()  catches ALL exceptions that are thrown 
+++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
 
 
 
image.Transpose.execute()  catches ALL exceptions that are thrown 
 
+++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
 
 
 
 
image.Histogram.execute()  catches ALL exceptions that are thrown 
+++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
image.gui.ImageDisplayStatusPanel.update()  catches ALL exceptions that 
are thrown 
 
+++++++++++++++++++++++++++++++++++++++++++++++++++++ 
image.gui.AnnotationToolbox(Display)  catches ALL exceptions that are 
thrown and then ignores them 
+++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
image.gui.AnnotationToolbox.getJythonCode() 
 
line 548  what does this method do if the thing that is to be annotated is 
not a line ? 
+++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
image.gui.AnnotationToolbox.Texthandler.mouseClicked() 
 
line 772 inner class Texthandler  creates multiple objects in the for loop 
 
 
Appendix B: 
 
Hi All, 
 
Apart from the general review guidelines below some review objectives you  
might want to concentrate on while you dig into the ia.image package. This is  
a new package and should therefore be reviewed in detail. 
 
* use cases/user requirements 
 
  - these are accessible from the javadoc of the package in the section 
    related documentation. What is the current status of the requirements 
    coverage? Are there any major requirements still to be covered? 
 
* Architecture and design 
 
  - please check the general guidelines given in the IA Review document. 
 
  - how generic is this package with respect to 'images'. The ImageDataset  
    e.g. provides methods like getSkyCoordinates() and getWavelenght() which  
    indicates a specific use/type for this Dataset.  
    Is this the intention or do we need more generalization? 
  - Are there classes functionality that could be shared with the ia.plot  
    package? I'm thinking about things like Axis, Layer etc. or are these 
    image specific. 
  - can there be any performance/memory problem expected for huge Images? 
  - how is the coupling of this package wrt packages like ia.numeric,  



    ia.dataset, ia.plot? 
  - Is the class Wcs specific for this package or has this a more general use? 
  - this is mainly a GUI driven package, are all errors and exceptions  
    properly thrown and clear and understandable by 'normal' users? Where do 
    the messages appear? 
 
* Documentation 
 
  - Is the documentation clear and up-to-date? 
  - does the documentation address all points in the user requirements/use  
    cases? 
 
* Useability 
 
  - do you forsee problems with higher resolution screens (too  
    small images ;-) 
  - is all functionality from the commandline reflected in GUI actions? 
 
* Extensions 
 
  - nothing pops into my mind currently but I'm sure you have something 
    here... 
 
* noticeable SxRs 
 
  - SCR-0902: ImageDataset should support non-celestial coordinate systems 
  - SCR-1170: There should be a way to change the default color lookup  
              table used by Display 
 
Have fun!? 
Rik 
 
 
Appendix C: 
 
Jorgo Bakker 
 
 Display / import export (FITS) Separation of concerns? 
- separate gui package, why? 
- Display should go into image.gui 
- tasks should go into image.manip ? 
- Cursor feedback, what feedback? 
- WCS is FITS 
 
- public vs private/protected 
  updateImage(...) 
 
 
 
- Code: 
  ImageDataset: void setErrors(Double2d errors, String description) 
  **BAD 
     if ( ( ( (Double2d) ( ( (ArrayDataset) 
(this.get("image"))).getData())).getDimensions()[0] 
          != errors.getDimensions()[0]) || 
        ( ( (Double2d) ( ( (ArrayDataset) (this.get("image"))).getData())). 
         getDimensions()[1] 
         != errors.getDimensions()[1])) { 
  **BETTER 
     if (!Arrays.equals(getImage().getDimensions(),errors().getDimensions())) 
     { 
 
  **BEST 
     if (!isSameShape(getImage(),errors()) 
      ... 
      
     private void isSameShape(ArrayData lhs,ArrayData rhs) { 
       return Arrays.equals(lhs,rhs); 



     } 
 
   
      
  Rotate (Task) 
  **BAD: large execute block 
 
 
Use-cases / requirements 
Use case compliance 
Does the subsystem satisfy the relevant use-cases and user requirements? (Note:  
Use-cases are mainly applicable to applications, rather than utility libraries.)  
 
No use-cases. The developer has collated the user-requirements into a document  
which is available through the API doc (package level).  
I failed to find the implementation or documentation of the following. The  
developer may correct these findings: 
  Contour plots  
  Cursor feedback, how does the User gets access to it?  
  Animation, is this supported (and how)?  
  Addition of 2d-plots (PlotXY)  
Killer use-cases 
What are the use-cases/requirements that are expected to hold major development  
difficulties for this package? Are they clearly specified? (Note: Currently I  
noted: stopping of tasks, adding of debugging features, handling of big  
datasets, reported performance problems, IDL-izing, saving of intermediate data)  
 
Change requests 
Does the package have a high number of SCRs? Is there a need for modification of  
use-cases and additional use-cases?  
Functionality provided in the User Requirements (see above) seems to fulfil the  
user's needs.  
Architecture 
Raison d' être 
What is the "raison d' être" for this package? To which currently existing  
use-cases is it linked? Do we need additional use-cases to specify the most  
important functionality?  
There is no user-friendly alternative around. It would be best if an effort is  
made to convert current functionality into a use-case document, as that will  
make it visible whether certain functionality is completely implemented. 
Relation to architecture 
Does the package fit coherently into the overall architecture of IA?  
The package seems to be a mix of display rendering, display manipulation and  
dataset definition. One could argue that a separation of these concerns.  
Design & Architecture documentation 
Is there an architecture and design document, including: " Subsystem  
decomposition " Design notes, explaining design decisions " UML diagrams, where  
appropriate, to illustrate design features"  
An Architectural Document is found in via the package documentation  
Internal Coupling 
Is it a component architecture, with cleanly decoupled components?  
yes 
Comprehensibility 
Does it have understandable interfaces?  
Yes. Some methods are cluttering the interfaces, but they can be phased out (see  
improvements section) 
Encapsulation 
Does the API hide the underlying implementation (i.e. provide suitable  
abstraction)?  
ImageDataset is encapsulating properly. The WCS class more resembles structure. 
Are there public classes/methods which should not form part of the public API? "  
Conversely, are there classes/methods that should be made public? " Is it clear  
which packages form part of public API?  
Yes. (see improvements section) 
External Coupling 
Does it have direct interfaces with other subsystems or other libraries? Is it  
incorrectly/overly coupled to other packages? Are there circular dependencies?  
It is coupled to various sub-systems of IA: 



  dataset: definition of image dataset  
  numeric: contents of image dataset  
  task - for display manipulation  
  plot - for internal purposes  
  ui - for gui components  
  jconsole - some gui utilities  
Many couplings are unavoidable, though the jconsole coupling might be something  
that can be phased out. 
Package Decomposition 
Is the subsystem decomposed into packages? Is this decomposition sensible, or a  
cause of user irritation and/or increase in complexity?  
For the implementation, a single sub-package exists. This package (image.gui),  
contains gui components required by the Display class.  
Improvements 
Do you have suggestions on the improvement of the architecture or design (E.g.  
would this package benefit from features introduced by JDK 1.5)?  
Package Private 1 
The image.gui package seems to contain gui components that are useful to the  
Display class only. One should consider whether these components should be  
package private and co-exist in the same package as the Display class is  
residing.  
Package Private 2 
Is the AxisGraphicsHandler required to be part of the public API? 
Class Private methods 
The Display class is revealing more than it should. The essence is to create a  
display of (layered) images; annotate and decorate (fonts, labels,...), and  
manipulation. 
Example: updateImage(...).  
Hiding implementation details 
Display is implementing the ArrayDataVisitor. It seems that this should be part  
of the private implementation rather than becoming part of the public API. One  
could consider to hide this implementation detail with: 
class Display { 
   ArrayDataVisitor _visitor=new AbstractArrayDataVisitor() { 
      void (Bool2d) {...} 
      : 
      void (Double2d) {...} 
   } 
} 
Readability of Code 
If a particular cast happens frequently, one might consider to do so in a  
(private) method. An example is the way the ImageDataset is checking errors:  
class ImageDataset 
   void setErrors(Double2d errors, String description) { 
     // current 
     if ( ( ( (Double2d) ( ( (ArrayDataset) 
(this.get("image"))).getData())).getDimensions()[0] 
          != errors.getDimensions()[0]) || 
        ( ( (Double2d) ( ( (ArrayDataset) (this.get("image"))).getData())). 
         getDimensions()[1] 
         != errors.getDimensions()[1]))  
     { ... } 
 
     alternative 1 
     if (!Arrays.equals(getImage().getDimensions(),errors.getDimensions())) 
     { ... } 
 
     alternative 2 
     if (!isSameShape(getImage(),errors) 
     { ... } 
      
     private void isSameShape(ArrayData lhs,ArrayData rhs) { 
       return Arrays.equals(lhs.getDimensions(),rhs.getDimensions()); 
     } 
   } 
} 
Considering that this kind of checking is happing all over the place, the latter  
is probably improving readability and testability. 



Component vs stand-alone 
Display is dealing with the JComponent concept by virtue of a special  
constructor. Not quite sure whether this constructor is appropriate. Perhaps a  
separation of the DisplayComponent and the Display as a stand-alone window  
utility may be an option. This could be done either via composition or  
sub-classing.  
Avoiding unnecessary creation of objects 
In the implementation there are a few areas where objects are created  
unnecessary. One could consider to use the mutability of an object, rather than  
to replace it by a new instance.  
Duplication of Class Names 
Both ia.plot and ia.image have the notion of Layer and Axis. This may raise  
confusion.  
Heavy methods 
Some methods are very lengthy (20-150 lines). For maintenance reasons, it may  
help to break up these methods into private implementation methods. General rule  
of thumb: stick to 10-15 lines at most.  
Documentation directory 
Should be renamed to doc.  
Split of functionality 
Tasks like Crop, Transpose etc... manipulate image datasets,  
Display,Axis,Layer,... and the image.gui package deal with rendering. It seems  
that if one has a gui sub-package, the manipulation tasks may be part of a  
sub-package as well 
WCS and FITS? 
WCS is highly coupled to a particular implementation of WCS systems (Is it an  
exact copy of the FITS WCS annotation?). As such the methods naming convention  
is rather cryptic. It seems to stem from the dates that variable and function  
names were limited to a length of six characters. 
External Updates 
Are there new external packages that are better suited to provide the underlying  
services?  
No knowledge of new packages that would do a better job. 
Open Source 
Would it be worthwhile to make the package open source?  
Hardly, too many couplings to other packages within IA 
Documentation 
User 
Is there a user manual for the package? Does it have a document number? Should  
it have one?  
A HowTo for ia.image exists within ia.doc package. The HowTo is too big to be a  
HowTo and should be converted into a User document. 
Developer 
Is there adequate developer's documentation? Does it have a document number?  
Should it have one?  
The Java API partially documented. For example sometimes it is unclear whether  
the returned value of a method is shared or it is a copy. Due to inherent  
performance issues, documentation becomes rather important.  
Design 
Is there adequate design documentation? Does it have a document number? Should  
it have one?  
yes 
Standards 
JavaDoc " Does the JavaDoc follow the Sun guidelines? " 
Does each method have an understandable JavaDoc description? Is the general  
level of JavaDoc comments adequate (especially for public API)? 
Does the JavaDoc include code examples, where appropriate? 
 
The JavaDoc could have more meat. No examples are within the JavaDoc (they are  
within the HowTo though!) See Developers section mentioned above. 
Does each subsystem have a top-level 'package.html' file, including: 
"An initial summary sentence documentation, etc " 
A description of the contents and purpose of the package 
A "Package Specification" section (may be blank) 
A "Related Documentation" section with hyperlinks to design 
 
Yes. 
Location 



Where is the documentation located?  
Apart from the HowTo, all documentation is within the package, and accessible  
through the JavaDoc API. 
Change Log 
Does the subsystem have a readable CHANGELOG file?  
Yes. 
Design 
General 
Are there any indicators of design problems (code metrics, test coverage, high  
number of SPRs)?  
For details, see improvements section above. 
The package is testing some of the functionality of WCS and ImageDataset  
classes. It is rather difficult to test issues dealing with GUI components, as  
they may rely on a display to be available. 
Usage 
Is the package easy to use? If not, why?  
The HowTo is quite helpful to start using this package 
Are appropriate Design Patterns employed? 
"Should further design patterns be introduced to improve abstraction,  
flexibility, modularity, etc?" 
"Conversely, are inappropriate design patterns employed?"  
Separation of Concerns 
Is there a proper separation of concerns between classes and between packages?  
See comments in the improvements section 
OO Design 
Is the design properly Object Oriented?  
See comments in the improvements section. Additional note: Display is acting  
like a wrapper class. Due to the nature of it, it has quite a few methods. 
Sound Principle of Operation 
Is the principle of operation sound?  
Yes 
Performance Issues 
Might the design lead to performance problems?  
See comments in the improvements section. Unnecessary copying of data may become  
an issue 
Reflection 
Is reflection used unnecessarily?  
No. Casting should be localized, preferably within a private method. 
Inheritance 
Is inheritance used in an appropriate way? These checkpoints should be true  
wherever inheritance is used: 
It is a "kind of", not a "role played by", relationship. 
The object never needs to transmute into another class. 
It extends rather than overrides or nullifies the superclass. 
It does not subclass what is merely a utility class. 
 
Display should not implement the array visitor. 
Is a JComponent a different view of Display?  
De-composition 
Would composition be better than inheritance?  
See previous answer 
Mutability 
Should any classes be immutable?  
Most are already mutable. Mutability of these objects as well as the objects  
within the implementation could be used more in a mutable fashion.  
Error Handling 
Is error handling adequate? 
Are there any 'exit' statements (except in "main" method)? 
Are the error and log messages understandable and appropriate? 
Is exception handling employed for all exception / error conditions? 
Are the exceptions thrown misleading or not the right ones? 
Should the exception be thrown at all? 
Should the exception be checked or non-checked? 
Can a situation be envisaged where the code will obviously fail?  
All tasks catch a general exception (a catch all), converting it into a warning  
message. This seems to be intentional (for the Display), though the display  
should catch an specific TaskException generated by the tasks, rather than the  
tasks silently eating up exceptions. 



Testability 
Does the design allow the subsystem to be properly tested? 
Is a pluggable architecture needed to support test stubs? 
Is the GUI decoupled, so that the underlying logic can be tested on its own? 
Are there specific testing problems (e.g. Jython code, access to database  
server, GUIs)? 
 
Provided that the method implementations are split up, the system can be tested  
properly (for those parts that do not require a window manager).  
This goes hand in hand with the decoupling of GUI and logic.  
 
 



Appendix I 
 
 
 
        Minutes of the Numeric session 16/11/2004 
                30/11/2004 Do Kester. 
 
 
Present: Bakker, Wetzstein, Dwedari, Guest, Kester 
         Huygen, Vandenbussche, Siddiqui 
 
These minutes consist of 3 sections. A number of issues brought up 
during an open discussion, answers to part of the questionaire and a 
closing  remark. 
 
A. Open discussion. 
=================== 
 
On efficiency: 
Can we build benchmarks into automatic testing? 
 
On types and dimensions: 
All types seem to be needed, at least most of them were requested some 
way or another. 
 
More Dimensions could be generated at the price of less performance. 
Higher than 3 could fall into nD-classes like this. It should be 
investigated.  Where the boundary should be is a subject of the 
investigation and of the usage made of the higher dimensions. In due 
course the boundary could shift to higher dimensions. 
 
On selection: 
Selection is needed in all dimensions. Investigate.  
  
On toolboxes: 
1. The toolbox framework is OK. It does not need refactoring.  
 
2. Some of the individual toolboxes need to be refactored to bring them  
in line with the latest version of numerics. At the same time they need  
to be redesigned to make them more OO (less a copy of IDL's versions). 
The convolution class (toolbox.filter), the interpolation class 
(toolbox.interp) and the fitter class ( toolbox.fit) have some kind of 
base classes. Transforms (toolbox.xform) has no base class. I am not 
sure if it can have a base class. But both Hamming and Hanning inherit 
from AbstractRealXdProcedure while FFT does not. 
 
3. The toolboxes need to work on all possible types and dimensions. From 
the documentation it seems that filter, interp and xform work for 
Double1d (sometimes Float1d) only. Nothing forbids these things in more 
dimensions. And some thoughts should be spend on addressing the integral 
types (Int, Long etc.). It could quite well be that we decide that "we 
won’t do it; it is not worth the effort", but at least it should be 
thought about and documented so. 
 
4. How can we easily (without too much formality) contibute to the 
numerics package. There are still quite some areas where we could add 
things. Eg. Special math functions (Bessel, Gamma, Errf etc), inner and 
outer products for matrices (only done for Double2d), wavelets, 
integrals etc. A quick search brought me to the JSci.math lib  
http://jsci.sourceforge.net/api/JSci/maths/AbstractMath.html 
There is quite a lot to be found there. For a complete overview go to  



http://jsci.sourceforge.net. This library has not been investigated when 
we started IA as it is quite new. We should have an official look at it. 
 
Recommendation: implement workaround for long integers in Jython. 
 
B. Replies on the questionaire. 
=============================== 
 
B.1.1 
There are hardly any use cases on numeric. And the one that is there is 
not specific enough. 
There was a list of requirements (contents of IDL) which should be 
prioritized. See also item 4 of toolboxes. 
 
B.1.2 
There are no show stoppers. We only need manpower to implement things. 
 
B.1.3 
No. In total 21 of which 7 are open. 
 
B.2.1 
Obvious.  
Use cases are not the proper steering mechanism. Most of the 
requirements came in as implicit remarks at meetings, coffee 
talk etc. 
 
B.2.2 
Yes.  
 
B.2.3 
By now yes, not yet complete. 
 
B.2.4 
Yes, there is a strong coupling on the Jython command line, because all 
things need to know about each other, but no problem 
 
B.2.5 
For the casual user it is quite OK. The developer (of new functionality) 
needs proper explanations, a workshop and examples. 
 
B.2.6 
Yes and no, deliberately 
 
B.2.7 
There are some "internal" methods. They could be phased out.  
 
B.2.8 
There are interfaces to share.log, which should be removed. 
As far as we know there are no circular dependencies. 
 
B.2.9 
Yes (2x) and no problems. 
 
B.2.10 
JDK 1.5 will help the developer, not the user. The template mechanism 
however, cannot be used to solve the type proliferation problem. 
There were no suggestions for improvement on the numerics package proper. 
The suggestions were about the individual toolboxes as described above. 
 
B.2.11 
Not that we know. 



 
B.2.12 
Yes, making it public would entail the same for other packages like 
Jide, Plot, Dataset (and maybe others). Otherwise it is not very usefull. 
Benefits: bugfinding, most importantly. 
 
B.3.1 
Yes. No, but should 
 
B.3.2 
Limited, should be expanded. No docnr, yet 
 
B.2.3 
Yes. No, but should. 
 
The remaining questions were not tackled, mainly due to time pressure. 
 
B.5 Summary/other comments 
 
B.5.1 What are the main conclusions of the review panel? How do you 
rate the state (green/amber /red) 
 
Green, in general for the design. Still quite some work to do in the 
specific toolboxes. 
 
 
B.5.2 What are the main recommendations of the review panel? 
 
There are some recomendations in the part A of the minutes. 
 
 
B.5.3 Were additional points reviewed? If so, please list 
them,including conclusions and proposed actions 
 
Again see part A of the minutes.  
 
 
C. Closing remark. 
================== 
 
Happiness is no complaints. 
 
 



Appendix J 
 
 



B Conclusions of Package Review 
 
Name of package reviewed: Class loader 
 
Panel composition:  
JJ Mathieu (JJM) 
J. Kemp (JK) 
W de Meester (WdM) 
A Lorenzani (AL) 
N de Candussio (NdC) 
J Pizarro (JP) 
 

B.1 Use cases/requirements 
B.1.1 Does the subsystem satisfy the relevant use-cases and user requirements?  

(Note: Use-cases are mainly applicable to applications, rather than utility 
libraries.) 

reviewed:1 
conclusions: Satisfy the needs and is simple to use. 
proposed actions: 
 
 

B.1.2 What are the use-cases/requirements that are expected to hold major 
development difficulties for this package? Are they clearly specified? 
(Note: Currently I noted: stopping of tasks, adding of debugging features, 
handling of big datasets, reported performance problems, IDLizing, saving of 
intermediate data) 

reviewed: 
conclusions: hifi) using sandbox/classloader to look at different data 
(comparing two data sets) 
proposed actions: 
 

B.1.3 Does the package have a high number of SCRs? Are the modification of use-
cases and additional use-cases?  

reviewed: 
conclusions: few SCR 
proposed actions: 
ACTION JJM: 
 - Ask to ICC if classloader is used and what feedback people provide. 
  - Any plans for future that would change the way it works now. 

                                                 
1 If it was not reviewed, please specify why (not applicable, not critical, lack of time) 



B.2 Architecture 
B.2.1 What is the "raison d' être" for this package? To which currently existing use-

cases is it linked? Do we need additional usecases to specify the most important 
functionality? 

reviewed: 
conclusions: Place of classloader in IA is justified by its use in 
interactivity. 
proposed actions: 
 

B.2.2 Does the package fit coherently into the overall architecture of IA? 

reviewed: 
conclusions: Provide some documentation of the design /implementation 
proposed actions: 
 

B.2.3 Is there an architecture and design document, including:  
• Subsystem decomposition  
• Design notes, explaining design decisions  
• UML diagrams, where appropriate, to illustrate design features 

 
reviewed: 
conclusions: API okay for the purpose and simple enough. 
proposed actions: 
 

 

B.2.4 Is it a component architecture, with cleanly decoupled components?  

reviewed: 
conclusions: Not relevant 
proposed actions: 
 
 

B.2.5 Does it have understandable interfaces?  

reviewed: 
conclusions: Not relevant 
proposed actions: 
 
 

B.2.6 Does the API hide the underlying implementation (i.e. provide suitable 
abstraction)? 

reviewed: 
conclusions: Not relevant 
proposed actions: 



 
 

B.2.7 Are there public classes/methods which should not form part of the public API?  
• Conversely, are there classes/methods that should be made public?  
• Is it clear which packages form part of public API? 

reviewed: 
conclusions: Not relevant 
proposed actions: 
 

 

B.2.8 Does it have direct interfaces with other subsystems or other libraries? Is it 
incorrectly/overly coupled to other packages? Are there circular dependencies? 

reviewed: 
conclusions: Not relevant 
proposed actions: 
 
 

B.2.9 Is the subsystem decomposed into packages? Is this decomposition sensible, or 
a cause of user irritation and/or increase in complexity? 

reviewed: 
conclusions: Not relevant 
proposed actions: 
 
 

B.2.10 Do you have suggestions on the improvement of the architecture or design (E.g. 
would this package benefit from features introduced by JDK 1.5)? 

reviewed: 
conclusions: Any changes from switching to 1.5? 
proposed actions: 
 
 

B.2.11 Are there new external packages that are better suited to provide the underlying 
services? 

reviewed: 
conclusions: May be new packages for java class loader (cheaper 
maintenance) Look at it  
proposed actions: Look at them 
 
 

B.2.12 Would it be worthwhile to make the package open source? 

reviewed: 



conclusions: Not relevant 
proposed actions: 
 
 

B.3 Documentation 
B.3.1 Is there a user manual for the package? Does it have a document number? 

Should it have one? 

reviewed: 
conclusions: No user manual 
proposed actions: 
 
 

B.3.2 Is there adequate developer's documentation? Does it have a document number? 
Should it have one? 

reviewed: 
conclusions: How to document is enough to get started and understanding 
the classloader 
proposed actions: 
 
 

B.3.3 Is there adequate design documentation? Does it have a document number? 
Should it have one? 

reviewed: 
conclusions: Design document should be written (see B2.2) 
proposed actions: 
 
 

B.3.4 JavaDoc 
• Does the JavaDoc follow the Sun guidelines? 

• Does each method have an understandable JavaDoc description? 
• Is the general level of JavaDoc comments adequate (especially for 

public API)?  
• Does the JavaDoc include code examples, where appropriate?  

• Does each subsystem have a top-level "package.html" file, including:  
• An initial summary sentence documentation, etc  
• A description of the contents and purpose of the package  
• A "Package Specification" section (may be blank)  
• A "Related Documentation" section with hyperlinks to design  

reviewed: 
conclusions: Javadoc adequate  
proposed actions: 



 
 

B.3.5 Where is the documentation located? 

reviewed: 
conclusions: OK, in package 
proposed actions: 
 
 

B.3.6 Does the subsystem have a readable CHANGELOG file?  

reviewed: 
conclusions: Yes 
proposed actions: 
 
 

 

B.4 Design 

B.4.1 Are there any indicators of design problems (code metrics, test coverage, high 
number of SPRs)? 

reviewed: 
conclusions: No 
proposed actions: 
 
 

B.4.2 Is the package easy to use? If not, why? 
reviewed: 
conclusions: Yes 
proposed actions: 
 
 

B.4.3 Are appropriate Design Patterns employed?  
• Should further design patterns be introduced to improve abstraction, 

flexibility, modularity, etc?  
• Conversely, are inappropriate design patterns employed?  

reviewed: 
conclusions: Irrelevant 
proposed actions: 
 
 



B.4.4 Is there a proper separation of concerns between classes and between packages?  
reviewed: 
conclusions: Reconsider split of subpackage.  
proposed actions: Raise the point with system group. 
 
 

B.4.5 Is the design properly Object Oriented?  
reviewed: 
conclusions: Irrelevant 
proposed actions: 
 
 

B.4.6 Is the principle of operation sound?  
reviewed: 
conclusions: Irrelevant 
proposed actions: 
 
 

B.4.7 Might the design lead to performance problems?  
reviewed: 
conclusions: Irrelevant 
proposed actions: 
 
 

B.4.8 Is reflection used unnecessarily?  
reviewed: 
conclusions: Irrelevant 
proposed actions: 
 
 

B.4.9 Is inheritance used in an appropriate way?  These checkpoints should be true 
wherever inheritance is used: 
• It is a "kind of", not a "role played by", relationship. 
• The object never needs to transmute into another class. 
• It extends rather than overrides or nullifies the superclass. 
• It does not subclass what is merely a utility class.  

reviewed: 
conclusions: Irrelevant 
proposed actions: 
 



 

B.4.10 Would composition be better than inheritance? 
reviewed: 
conclusions: Irrelevant 
proposed actions: 
 
 

B.4.11 Should any classes be immutable?  
reviewed: 
conclusions: Irrelevant 
proposed actions: 
 
 

B.4.12 Is error handling adequate?  
• Are there any 'exit' statements (except in "main" method)?  
• Are the error and log messages understandable and appropriate? 
• Is exception handling employed for all exception / error conditions?  
• Are the exceptions thrown misleading or not the right ones?  
• Should the exception be thrown at all?  
• Should the exception be checked or non-checked?  
• Can a situation be envisaged where the code will obviously fail? 

reviewed: 
conclusions: Error handling to be checked 
proposed actions: 

 

B.4.13 Does the design allow the subsystem to be properly tested?  
• Is a pluggable architecture needed to support test stubs?  
• Is the GUI decoupled, so that the underlying logic can be tested on its own?  
• Are there specific testing problems (e.g. Jython code, access to database 

server, GUIs)? 
reviewed: 
conclusions: Irrelevant 
proposed actions: 
 

 
 



B.5 Summary/other comments 

B.5.1 What are the main conclusions of the review panel? How do you rate the state 
(green/amber/red)2 

green 

B.5.2 What are the main recommendations of the review panel? 
- ClassLoader is nice to use and useful little tool. 
- Link documentation to jide so people using java can use it in their 
development 
- Integrate the classloader in Jide so it does not need be to be 
initialized  
  explicitly by the user --use of properties-- (NdC look at it) 
ACTION JJM: 
  - Send request to Nicola for Jide to initialise the classloader. 
 

B.5.3 Were additional points reviewed?  If so, please list them, including conclusions 
and proposed actions 

 
 

                                                 
2 If the state is amber or red, please state the reason 



Appendix K 
 
 



B Conclusions of Package Review 
 
Name of package reviewed: Sandbox 
 
Panel composition: 
JJ Mathieu (JJM) 
J Kemp (JK) 
W de Meester (WdM) 
A Lorenzani (AL) 
N de Candussio (NdC) 
J Pizarro (JP) 

 

B.1 Use cases/requirements 
B.1.1 Does the subsystem satisfy the relevant use-cases and user requirements?  

(Note: Use-cases are mainly applicable to applications, rather than utility 
libraries.) 

reviewed:1 
conclusions: How would the datapath (defined or described in TT) be 
implemented? 
proposed actions: 
 
 

B.1.2 What are the use-cases/requirements that are expected to hold major 
development difficulties for this package? Are they clearly specified? 
(Note: Currently I noted: stopping of tasks, adding of debugging features, 
handling of big datasets, reported performance problems, IDLizing, saving of 
intermediate data) 

reviewed: 
conclusions:  

Datapath and how to use it? 
Some aspects are not clear yet. 

proposed actions: Sandbox + jide + properties + classloader need to be 
better integrated (promote to the system group). 
 

B.1.3 Does the package have a high number of SCRs? Are the modification of use-
cases and additional use-cases?  

reviewed: 
conclusions: Integration within a coherent approach is important 

                                                 
1 If it was not reviewed, please specify why (not applicable, not critical, lack of time) 



proposed actions: Ask the system group which way the system is going to 
develop and stress the need of users to use only one approach rather 
than 2 (sandbox and properties). 

 

B.2 Architecture 
B.2.1 What is the "raison d' être" for this package? To which currently existing use-

cases is it linked? Do we need additional usecases to specify the most important 
functionality? 

reviewed: 
conclusions: provide safe environment for development. See TT 
proposed actions: 
 

B.2.2 Does the package fit coherently into the overall architecture of IA? 

reviewed: 
conclusions:OK 
proposed actions: 
 

B.2.3 Is there an architecture and design document, including:  
• Subsystem decomposition  
• Design notes, explaining design decisions  
• UML diagrams, where appropriate, to illustrate design features 

 
reviewed: 
conclusions: No 
proposed actions: 
 

 

B.2.4 Is it a component architecture, with cleanly decoupled components?  

reviewed: 
conclusions: No 
proposed actions: 
 
 

B.2.5 Does it have understandable interfaces?  

reviewed: 
conclusions: Irrelevant. Note that a small API is available and used by the class loader 
package. A similar interface would be necessary in any refactored properties/sandbox 
system. 
proposed actions: 
 



 

B.2.6 Does the API hide the underlying implementation (i.e. provide suitable 
abstraction)? 

reviewed: 
conclusions: Irrelevant 
proposed actions: 
 
 

B.2.7 Are there public classes/methods which should not form part of the public API?  
• Conversely, are there classes/methods that should be made public?  
• Is it clear which packages form part of public API? 

reviewed: 
conclusions: Irrelevant 
proposed actions: 
 

 

B.2.8 Does it have direct interfaces with other subsystems or other libraries? Is it 
incorrectly/overly coupled to other packages? Are there circular dependencies? 

reviewed: 
conclusions: Irrelevant 
proposed actions: 
 
 

B.2.9 Is the subsystem decomposed into packages? Is this decomposition sensible, or 
a cause of user irritation and/or increase in complexity? 

reviewed: 
conclusions: Irrelevant 
proposed actions: 
 
 

B.2.10 Do you have suggestions on the improvement of the architecture or design (E.g. 
would this package benefit from features introduced by JDK 1.5)? 

reviewed: 
conclusions: Irrelevant 
proposed actions: 
 
 

B.2.11 Are there new external packages that are better suited to provide the underlying 
services? 

reviewed: 
conclusions: Irrelevant 



proposed actions: 
 
 

B.2.12 Would it be worthwhile to make the package open source? 

reviewed: 
conclusions: Irrelevant 
proposed actions: 
 
 

B.3 Documentation 
B.3.1 Is there a user manual for the package? Does it have a document number? 

Should it have one? 

reviewed: 
conclusions:OK 
proposed actions: 
 
 

B.3.2 Is there adequate developer's documentation? Does it have a document number? 
Should it have one? 

reviewed: 
conclusions:OK 
proposed actions: 
 
 

B.3.3 Is there adequate design documentation? Does it have a document number? 
Should it have one? 

reviewed: 
conclusions:OK 
proposed actions: 
 
 



B.3.4 JavaDoc 
• Does the JavaDoc follow the Sun guidelines? 

• Does each method have an understandable JavaDoc description? 
• Is the general level of JavaDoc comments adequate (especially for 

public API)?  
• Does the JavaDoc include code examples, where appropriate?  

• Does each subsystem have a top-level "package.html" file, including:  
• An initial summary sentence documentation, etc  
• A description of the contents and purpose of the package  
• A "Package Specification" section (may be blank)  
• A "Related Documentation" section with hyperlinks to design  

reviewed: 
conclusions:OK 
proposed actions: 
 
 

B.3.5 Where is the documentation located? 

reviewed: 
conclusions:OK 
proposed actions: 
 
 

B.3.6 Does the subsystem have a readable CHANGELOG file?  

reviewed: 
conclusions:OK 
proposed actions: 
 
 

 

B.4 Design 

B.4.1 Are there any indicators of design problems (code metrics, test coverage, high 
number of SPRs)? 

reviewed: 
conclusions:OK 
proposed actions: 
 
 

B.4.2 Is the package easy to use? If not, why? 
reviewed: 
conclusions:OK 



proposed actions: 
 
 

B.4.3 Are appropriate Design Patterns employed?  
• Should further design patterns be introduced to improve abstraction, 

flexibility, modularity, etc?  
• Conversely, are inappropriate design patterns employed?  

reviewed: 
conclusions:OK 
proposed actions: 
 
 

B.4.4 Is there a proper separation of concerns between classes and between packages?  
reviewed: 
conclusions:OK 
proposed actions: 
 
 

B.4.5 Is the design properly Object Oriented?  
reviewed: 
conclusions:OK 
proposed actions: 
 
 

B.4.6 Is the principle of operation sound?  
reviewed: 
conclusions:OK 
proposed actions: 
 
 

B.4.7 Might the design lead to performance problems?  
reviewed: 
conclusions:OK 
proposed actions: 
 
 

B.4.8 Is reflection used unnecessarily?  
reviewed: 
conclusions:OK 
proposed actions: 



 
 

B.4.9 Is inheritance used in an appropriate way?  These checkpoints should be true 
wherever inheritance is used: 
• It is a "kind of", not a "role played by", relationship. 
• The object never needs to transmute into another class. 
• It extends rather than overrides or nullifies the superclass. 
• It does not subclass what is merely a utility class.  

reviewed: 
conclusions:OK 
proposed actions: 
 

 

B.4.10 Would composition be better than inheritance? 
reviewed: 
conclusions:OK 
proposed actions: 
 
 

B.4.11 Should any classes be immutable?  
reviewed: 
conclusions:OK 
proposed actions: 
 
 

B.4.12 Is error handling adequate?  
• Are there any 'exit' statements (except in "main" method)?  
• Are the error and log messages understandable and appropriate? 
• Is exception handling employed for all exception / error conditions?  
• Are the exceptions thrown misleading or not the right ones?  
• Should the exception be thrown at all?  
• Should the exception be checked or non-checked?  
• Can a situation be envisaged where the code will obviously fail? 

reviewed: 
conclusions:OK 
proposed actions: 

 

B.4.13 Does the design allow the subsystem to be properly tested?  
• Is a pluggable architecture needed to support test stubs?  



• Is the GUI decoupled, so that the underlying logic can be tested on its own?  
• Are there specific testing problems (e.g. Jython code, access to database 

server, GUIs)? 
reviewed: 
conclusions:OK 
proposed actions: 
 

 
 

B.5 Summary/other comments 

B.5.1 What are the main conclusions of the review panel? How do you rate the state 
(green/amber/red)2 

green 

B.5.2 What are the main recommendations of the review panel? 
Ask system panel to sort out mechanisms between properties and sandbox. 
There is a new work package to look into and implement a sub system which will be 
tackling that particular issue and has the title “Unification of configuration/Property 
generator/Sandbox/Installer”. 
 

B.5.3 Were additional points reviewed?  If so, please list them, including conclusions 
and proposed actions 

 
 

                                                 
2 If the state is amber or red, please state the reason 



Appendix L 
 

Output Task review 
 

Overal Summary  

• package got status color green; functionality and design good; documentation needs to 
be extented 

• no USE CASE document available 

• action items: 
o package owner: add new HowTo for the user and 
o package owner: top level documentation should be included under the 

javadoc-package description 
o package owner: current howto should become a developers guide 
o package owner: add design documentation (dealing with task-design 

especially: JTask - Task) 
o package owner / Jorgo / System / IA WG: should sort out up to what basic 

hcss.ia level Task should be used as base component. Should the Task list be 
part of the ia.numeric.toolbox ? 

o System / IA WG: System level doc. should: 
�  include explaination / guide on intended use of IA components 

including Task. 
� promote the use of task components for all IA processing steps / 

functions. 
o package owner / Hassan: to sort out open issue Hassan raised as input for this 

review. 
o System / IA WG: to decide whether - and if, so on which time scale - "history" 

and/or "completion notification" should be implemented  

•  B1: no USE CASE document available, however there is a requirement documents 
available under livelink 

•  B2:  
o support for (standard way of) data processing within IA, especially for 

processing datasets 
o no architure document available, is part of AI following from this review 
o has clear interfaces 
o api hides underlying implementation 

•  B3: see AI above and for more detailed info below (section documentation) 
•  B4: design is not discussed as owner had no design document available 

 
Architecture and design as a sound basis? 

• task's requirement document is the base for current  implementation 
• JJ will add design documentation (dealing with design of JTask - Task) 
• positive feedback from users on curent functionality and behaviour  

Development risks: 



• history is not implemented: 
            => is needed for SPG (estimate first time needed: next year) 
            => JJ: effort is 3 to 6 man-month without replay 
            => up to management to determine whether this is really feasible 

• status of a task. Completion/progress event mechanism. 
              => not yet impl. 
              => up to management and prioritasation when this should be done 

 
 
Maintainability: 

• design and api is well structured 
• code follows Java Standards closely 
• logging mechanism and exception handling in task is good 
• check test coverage and metrics report: no real problems show up: OK! 

 
Other points of interest:   

• documentation: 

Lack of documentation on the IA level which should introduce users on the different IA 
components, including Task. Current user guide is not including yet an overview of IA 
components and a guideline how the task component is intended to be used.  

• current status on Task-usage is that is not known /used as one should expect. 
• usage of ia.task is not privileged yet at this time of the IA life cycle, but will be 

needed in the near future 
• users have no idea to combine / develop tasks 
• system's guideline should promote the use of task components for all IA 

processing steps / functions. 
• top level documentation should be included under the javadoc-package 

description 
• current howto should become a developers guide 
• JJ should provide a howto for the user (including comments made by Russ) 
• System level doc. should: 

o  include explaination / guide on intended use of IA components 
including Task. 

o promote the use of task components for all IA processing steps / 
functions. 

 
 

• User Guide 

Numeric toolbox should support a catalog of tasks, besides the more primitive functions 
like sin() and cos() types. 



   

• Developer jython/java use: 

 Can the task easily be used by the developer? 
   
=> yes. 

 

• the task-help is implemented though not useable for the end-user  

        => help should be defined on one place, in order to make it maintainable 
        => integrated with the common IA help, no use to have a task specific help 
        => help should support help/feedback for a specific task, for example: help(fft), Also on 
the command line 
 
                    => check above with ia.help 
 

• interactive task: 

is implemented: within an IA session one can first set parameters ; execute ; check 
results; adjust task; check results....... 

         Stephans UC: the functionality is already available under dataflow. 

• where task is on the lower algorithm level calculating the outcome with a fixed 
set of parameters 

• the dataflow can adjust the parameters for the next task call. 
• only the dataflow is not aware of the last entry and therefor is not stopped 

=> ? should this UC be implemented our was this a theoretical question? 
   
  

• SCR: 

 SCR1123: is jconsole problem 
 

SCR0796: 
  
         * possibility to give feedback end-status for a task (as can for example be passed to 
logging object). Useful 
         for SPG/IA: i.e. should be able to interrupt a task and ask its status and eventually kill it 
         => input for jconsole 
         * investigate whether dataflow-indicator like functionality can be impl. for a task 
           
  

• Hassan's input: 



   
What is meant by a 'Task'? And the related concept I am aware of :'Signature'. Both 
need to be clearly defined somewhere. 

  
          => Hassan and JJ need to check what Hassan is missing in the documentation (if that's 
is the case) 

• open issues / requested SCR: 

Task should provide interface in order to allow to check whether Task contains gui ( 
instanceof(GuiTask) ) and  such a Gui Task should provide method to  
hand over its GUI (input by Odile) 

 
 
 



Appendix M 
 
 

 Output Dataflow Review  
   

Overal Summary  

• package is in maintaince mode; status color:  green 
• there is no dedicated USE CASE document present; the tiger team document serves as 

a base for the dataflow package 
• Resulting Action Items:  

• package owner: documentation should be updated 
• package owner: architecture & design should be moved from the User Guide into a 

special dedicated arch./design document 
• wim de meester: give detailed feedback on current available documentation 
• package owner: improve code for DataFlowManager and change impl such that this 

Manager can be (1) used  as a JComponent inside another application and (2) be added 
to the testharness 

• IA WG / System: give input whether - and if, so on which time scale - within  
ia.dataflow end-user functionality should be included. This is needed as suggested by 
Steve. An example might be stream type processing of a large set of data (database 
pointers) belonging to one observation. This would requests the implementation of 
components which asure jython friendly usage within jython as well as an additional 
HowTo for the end-user. 

• IA WG / System: like stated for task, the top level IA documentation should give 
overview of IA components including:                 

o dataflow components  
o guideline that tasks should be the IA base component which can be re-used in 

processes (possibly via the TaskWrapper) 

• B1: The packages fullfill the use-cases / requirements as pictured in the Tiger Team 
Report 

• B2: 

o povides functionality / components for stream type processing within IA 
o Architure design document currently is part of the User guide for the dataflow 

package 
o after restructuring a year ago package has clear api 
o api hides undelying implementation 

• B3: see AI above and for more detailed info: "documentation" section below 
• B4: design is not discussed (was not regarded to be part of this review) as this was 

already enlighted & restructured in the 2003 

 
 
 Architecture and design as a sound basis? 

• is described in current Dataflow User Guide 



• after redesign of dataflow package last year all three ICCs use the dataflow package 
for there QLA  

                        = success for common IA development 

• Design / requirements ; what is  implemented 
o dataflow is in maintaince mode 
o no longer responsibility for history = moved to task 
o has a pure java api which confirms the  dataflow package is for 

developers/specialists 
o an process can be a: 

� pure java 
� wrapper for a task; java or jython based 
� where the task allows pluggable algorithms; java or jython based 

                      = including most of the requirements setup by the Tiger Team , i.e.  support 
dynamic behaviour 
 
                   
   
Development risks: 

• dataflow currently support QLA and test / trend analysis.  
• It does not offer a good user api / jython facade for the use within jide. 

       Questions for the IA WG / system:  

• should dataflow also be an end-user tool? 
• should dataflow be used within SPG? (handling huge sets of data in a stream 

avoiding out of memory errors) 

   => dataflow should also provide a good jython user-api 
 
Maintainability: 

• apart from DataFlowManager/Viewer classes - here proposed to be cleaned up - 
maintainability is ok. 

 
Others: 

• Documentation: 
o like stated for task, the top level IA documentation should give overview of IA 

components including:                 
� dataflow components  
� guideline that tasks should be the IA base component which can be re-

used in processes (possibly via the TaskWrapper) 
• developers howto's: 

o WdeM: wording / english could be improved. WdeM will give feedback here 
• user guides: 



o WdeM: howto is a subset of userguide. Owner should be aware to keep them in 
line. 

o JJ: user guide is a mix between design & Architecture and user guide. should 
be split up. 

o dataflow user guide is out of date. It deals with obsolete information (contains 
howto-move-over issues from refactoring in the past...) 

• ia.help 
o how can the common ia.help (component based -) be used to extend current 

more OO type of help facilities under the DataFlowManager 

  

• Code review:  

o code review Jose all dealing with DataFlowViewer: 

                          => creating objects within a loop 
                          => too many if statements, should be if... else 
                          => some methods should be cleaned up. 
                          => some comments should be removed.  

o DataFlowManager should be a JPanel instead of a JFrame 

                        => allow it to be used as JComponent 
                       => allow it to be tested in batch mode 
  

• check metrics report: 

        * DataFlowViewer needs to be cleaned up. 
  

• check test coverage report: 

             * DataFlowManager extends JFrame is excluded from the test as it cannot be tested in 
the background without 
             an (X) window in batch mode. Testharness however exists 
  
  
SCRs: 
  
SCR-1200: check contents 
SPR-1160: to be answered by Javier 
SPR-0938: dealing with DataFlowManager's testharness lacking X window  
 

Appendix on code review issue (Jose's more detailed feedback): 
 
 



Minor issues 
============= 
datafolw.DataFlowViewer.createConnectorBoxes , create 
processboxes,createFeedthroughBoxes, 
 
  Objects declared within a for loop 
+++++++++++++++++++++++++++++++++++++++++++++++ 
class datafolw.DataFlowViewer.GuiMouseListener extends MouseAdapter{ 
            public void mousePressed declares a new integer within a while 
loop 
++++++++++++++++++++++++++++++++++++++++++++++++ 
 
Major Issues 
============== 
 class dataflow.DataFlowViewer.MenuActionListener implements 
ActionListener{ 
 
        public void actionPerformed(ActionEvent e) 
 
 Use else if (cmd.equals("sometext"))  instead of a lot of if (cmd.equals 
("sometext"))statements 
 
It seems that you want to use a case/switch statement here but cannot due 
to 
comparison of strings 
 
 
refactor      the following    DataFlowViewer.this.validate(); 
                               DataFlowViewer.this.repaint(); 
 
so that you are not entering the same repetitive commands. or do it outside 
the if block as it is done in nearly all if conditions. 
 
refactor the if  (cmd.equals("sometext")) and   if (cmd.startsWith("get") 
&& cmd.endsWith("-proc") ) 
blocks  to call methods contacting these blocks to make it clear what each 
if 
block is doing and to improve maintainability 
 
Does this class really need to be an inner class? 
 
++++++++++++++++++++++++++++++++++++++++++++ 
 
class datafolw.DataFlow.createProcess     please clarify comment 
      //In case there are security problems, make 
            //constructor explicitly accessible 
            // XXX why is this needed, AdJ 
 
 
 

 
 



Appendix N 
 
 
 
 
 



B Conclusions of Package Review 
 
Name of package reviewed: UI 
 
Panel composition: 
 
Chair Candussio 
Defender  Kemp 
Reviewers Guest 
 Pizarro 
 Wetzstein 
 Coeur-Joly 
Remote 
Reviewer 

[Borkowsky] 

 

Introduction 

 
The package is more a collection of utility classes then a tool or a comprehensive 
framework for user interface development. Therefore not every point of the list was 
considered relevant for this review. This is mentioned in the pertinent points. 
 

B.1 Use cases/requirements 

Much of the package is not easily covered by Use Cases (see Introduction), with the only 
exception of the use case describing the behavior of the mouse (Annex A) 
 

B.1.1 Does the subsystem satisfy the relevant use-cases and user requirements?  
(Note: Use-cases are mainly applicable to applications, rather than utility 
libraries.) 

reviewed:1 Yes 

 
conclusions: 

The subsystem satisfies the only applicable use case (Mouse use case).  
Problems: the use case is not available in the documentation 

 
proposed actions: 

                                                 
1 If it was not reviewed, please specify why (not applicable, not critical, lack of time) 



Action to JK to add the use case to the package documentation [dd 15th 
December] 

B.1.2 What are the use-cases/requirements that are expected to hold major 
development difficulties for this package? Are they clearly specified? 
(Note: Currently I noted: stopping of tasks, adding of debugging features, 
handling of big datasets, reported performance problems, IDLizing, saving of 
intermediate data) 

reviewed: [Not Reviewed as not Applicable (see Introduction)] 
 
conclusions: 
 
proposed actions: 
 

B.1.3 Does the package have a high number of SCRs? Are the modification of use-
cases and additional use-cases?  

reviewed: [Not Reviewed as not Applicable (see Introduction)] 
 
 
conclusions: 
 
proposed actions: 

 

B.2 Architecture 
B.2.1 What is the "raison d' être" for this package? To which currently existing use-

cases is it linked? Do we need additional usecases to specify the most important 
functionality? 

reviewed: Yes 
 
conclusions: 

No additional use cases required. 
 
proposed actions: 
 

B.2.2 Does the package fit coherently into the overall architecture of IA? 

reviewed: Yes 
 
conclusions: 
 The package fits coherently into the IA architecture. 

However the point of promoting it as as hcss package was raised 
 
proposed actions: 



SG and HS to check if herschel.ia.ui can be promoted to herschel [dd 15th 
December] 
 
 

B.2.3 Is there an architecture and design document, including:  
• Subsystem decomposition  
• Design notes, explaining design decisions  
• UML diagrams, where appropriate, to illustrate design features 

 
reviewed: Yes 
 
conclusions: 

The package does not require at this moment the mentioned documentation (see 
Introduction) 
 
proposed actions: 
 

 

B.2.4 Is it component architecture, with cleanly decoupled components?  

reviewed: Yes 
 
conclusions: 

The package is compliant to this point 
 
proposed actions: 
 
 

B.2.5 Does it have understandable interfaces?  

reviewed: Yes 
 
conclusions: 

The package is compliant to this point  
proposed actions: 
 
 

B.2.6 Does the API hide the underlying implementation (i.e. provide suitable 
abstraction)? 

reviewed: Yes 
 
conclusions: 
 The package is compliant to this point 
proposed actions: 
 



 

B.2.7 Are there public classes/methods which should not form part of the public API?  
• Conversely, are there classes/methods that should be made public?  
• Is it clear which packages form part of public API? 

reviewed: Yes 
 
conclusions: 
 The package is compliant to this point 
proposed actions: 
 

 

B.2.8 Does it have direct interfaces with other subsystems or other libraries? Is it 
incorrectly/overly coupled to other packages? Are there circular dependencies? 

reviewed: Yes 
 
conclusions: 
 The package is compliant to this point 
 
proposed actions: 
 
 

B.2.9 Is the subsystem decomposed into packages? Is this decomposition sensible, or 
a cause of user irritation and/or increase in complexity? 

reviewed: Yes 
 
conclusions: 

This point doesn’t apply to this package (see introduction) 
 
proposed actions: 
 
 

B.2.10 Do you have suggestions on the improvement of the architecture or design (E.g. 
would this package benefit from features introduced by JDK 1.5)? 

reviewed: Yes 
 
conclusions: 

No suggestions or improvements 
 
proposed actions: 
 
 



B.2.11 Are there new external packages that are better suited to provide the underlying 
services? 

reviewed:Yes 
 
conclusions: 

No external package can provide at the moment a better service 
proposed actions: 
 
 

B.2.12 Would it be worthwhile to make the package open source? 

reviewed: 
 
conclusions: 
 
proposed actions: 
 
 

B.3 Documentation 
B.3.1 Is there a user manual for the package? Does it have a document number? 

Should it have one? 

reviewed: Yes 
 
conclusions: 

The package does not contain a user manual but it is not needed. 
  
proposed actions: 
 
 

B.3.2 Is there adequate developer's documentation? Does it have a document number? 
Should it have one? 

reviewed: Yes 
 
conclusions: 
 The package is compliant to this point 
 
proposed actions: 
 
 

B.3.3 Is there adequate design documentation? Does it have a document number? 
Should it have one? 

reviewed: Yes 
 



conclusions: 
A design document is not need at this point (see introduction) 

 
proposed actions: 
 
 

B.3.4 JavaDoc 
• Does the JavaDoc follow the Sun guidelines? 

• Does each method have an understandable JavaDoc description? 
• Is the general level of JavaDoc comments adequate (especially for 

public API)?  
• Does the JavaDoc include code examples, where appropriate?  

• Does each subsystem have a top-level "package.html" file, including:  
• An initial summary sentence documentation, etc  
• A description of the contents and purpose of the package  
• A "Package Specification" section (may be blank)  
• A "Related Documentation" section with hyperlinks to design  

reviewed: Yes 
 
conclusions: 

The package is compliant to this point 
 

proposed actions: 
 
 

B.3.5 Where is the documentation located? 

reviewed: Yes 
 
conclusions: 

Documentation is located in the package javadoc document 
 
proposed actions: 
 
 

B.3.6 Does the subsystem have a readable CHANGELOG file?  

reviewed: Yes 
 
conclusions: 

The subsystem has a readable CHANGELOG file. 
 
proposed actions: 
 
 



 

B.4 Design 

B.4.1 Are there any indicators of design problems (code metrics, test coverage, high 
number of SPRs)? 

reviewed: Yes 
 
conclusions: 
 
A fine grain metric inspection has highlighted that two classes have values not 
comparable with the rest of the package: SystemPopup WindowManager. 
 
SystemPopup:  
The different metric values were indeed pointing to some design problems. 
The review pointed out the following ones: 
a) The class violates inheritance principles 
b) The implementation is partially exposed in the Javadoc description 
c) There are a number of constructors that appear to be wholly unnecessary 
The panel agreed to ask for a refactoring of the class  
1] Action on NdC to open an SPR to refactor SystemPopup [dd 30th November] 
 
WindowManager: 
The metrics did not reflect a design problem. 
2] Action on NdC and HS to document this class with Tim Lock [NdC 30th] 
 
Some classes have evaluated in fine detail and the following has emerged as deserving 
attentions: 
 
Help  
This class should be removed as it is superseded by the help class in the help package. 
3] Action on Juliet to deprecate the class [dd 30th November] 
 
ScreenshotGenerator  
This class has the following points of concerns: 
1. Creation of an instance of this class is maybe not required. Could it go in GuiUtils as a 
single method? 
2. Why is createImage factored out as a separate method? Should at least be declared 
static. 
3. jpegFile and pngFile are declared as class instance variables yet only used locally. 
4. The JFileChooser should be declared static (so current directory is remembered). 
5. The main if/else block should be refactored, mostly duplicate code in both bits. 
6. A general exception is both caught and thrown, should be specific, and documented in 
the Javadoc.  
4] Action on SG to open an SPR to address this points [dd 30th November] 
 



GuiUtils: 
The method names are inconsistent. One has "all" the end, the other doesn't, even though 
they're both recursive. 
5] Action on SG to open an SPR to address this points [dd 30th November] 
 
proposed actions: 
 Actions 1] 2] 3] 4] 5] as mentioned along the conclusions. 

B.4.2 Is the package easy to use? If not, why? 
reviewed: [Not Reviewed as not Applicable (see Introduction)] 
 
 
conclusions: 
 
proposed actions: 
 
 

B.4.3 Are appropriate Design Patterns employed?  
• Should further design patterns be introduced to improve abstraction, 

flexibility, modularity, etc?  
• Conversely, are inappropriate design patterns employed?  

reviewed: [Not Reviewed as not Applicable (see Introduction)] 
 
 
conclusions: 
 
proposed actions: 
 
 

B.4.4 Is there a proper separation of concerns between classes and between packages?  
reviewed: [Not Reviewed as not Applicable (see Introduction)] 
 
 
conclusions: 
 
proposed actions: 
 
 

B.4.5 Is the design properly Object Oriented?  
reviewed: [Not Reviewed as not Applicable (see Introduction)] 
 
 
conclusions: 



 
proposed actions: 
 
 

B.4.6 Is the principle of operation sound?  
reviewed: [Not Reviewed as not Applicable (see Introduction)] 
 
 
conclusions: 
 
proposed actions: 
 
 

B.4.7 Might the design lead to performance problems?  
reviewed: [Not Reviewed as not Applicable (see Introduction)] 
 
 
conclusions: 
 
proposed actions: 
 
 

B.4.8 Is reflection used unnecessarily?  
reviewed: [Not Reviewed as not Applicable (see Introduction)] 
 
 
conclusions: 
 
proposed actions: 
 
 

B.4.9 Is inheritance used in an appropriate way?  These checkpoints should be true 
wherever inheritance is used: 
• It is a "kind of", not a "role played by", relationship. 
• The object never needs to transmute into another class. 
• It extends rather than overrides or nullifies the superclass. 
• It does not subclass what is merely a utility class.  

reviewed: [Not Reviewed as not Applicable (see Introduction)] 
 
 
conclusions: 
 



proposed actions: 
 

 

B.4.10 Would composition be better than inheritance? 
reviewed: [Not Reviewed as not Applicable (see Introduction)] 
 
 
conclusions: 
 
proposed actions: 
 
 

B.4.11 Should any classes be immutable?  
reviewed: [Not Reviewed as not Applicable (see Introduction)] 
 
 
conclusions: 
 
proposed actions: 
 
 

B.4.12 Is error handling adequate?  
• Are there any 'exit' statements (except in "main" method)?  
• Are the error and log messages understandable and appropriate? 
• Is exception handling employed for all exception / error conditions?  
• Are the exceptions thrown misleading or not the right ones?  
• Should the exception be thrown at all?  
• Should the exception be checked or non-checked?  
• Can a situation be envisaged where the code will obviously fail? 

reviewed: [Not Reviewed as not Applicable (see Introduction)] 
 
 
conclusions: 
 
proposed actions: 

 

B.4.13 Does the design allow the subsystem to be properly tested?  
• Is a pluggable architecture needed to support test stubs?  
• Is the GUI decoupled, so that the underlying logic can be tested on its own?  
• Are there specific testing problems (e.g. Jython code, access to database 

server, GUIs)? 



reviewed: [Not Reviewed as not Applicable (see Introduction)] 
 
 
conclusions: 
 
proposed actions: 
 

 
 

B.5 Summary/other comments 

B.5.1 What are the main conclusions of the review panel? How do you rate the state 
(green/amber/red)2 
The package is in a green state. Some classes have been carefully scrutinized and 
specific actions have been taken to address the few minor highlighted points. 

B.5.2 What are the main recommendations of the review panel? 
There are no main recommendations. 

B.5.3 Were additional points reviewed?  If so, please list them, including conclusions 
and proposed actions 

 
 

                                                 
2 If the state is amber or red, please state the reason 



Appendix O 
 
 
 
 
 



B Conclusions of Package Review 
 
Name of package reviewed: Help 
 
Panel composition: 
 
Chair Candussio 
Defender  Kemp 
Reviewers Guest 
 Pizarro 
 Wetzstein 
 Coeur-Joly 
 

Introduction 

 
The package has completed its first complete iteration just in #6/1 by releasing 
the tools to generate the documentation files from the extended set of Tags. 
As a result it has been possible to complete the entire help generation cycle: 
Code->Generation->Display. 
 

B.1 Use cases/requirements 
B.1.1 Does the subsystem satisfy the relevant use-cases and user requirements?  

(Note: Use-cases are mainly applicable to applications, rather than utility 
libraries.) 

reviewed:1 Yes 

 
conclusions: 

There are no deviations from the use cases documented in the package. 
However 
1) SG objected the set of Qla use cases were not migrated into the Help package. 
As this set of use cases is not formalized within the help package, the panel 
agreed to consolidate the current use cases by asking SG and MW (who have new 
relevant ones) to produce them in time to be further discussed by the user group. 
1] Action on SG and MW to provide all the relevant use cases [due date 
November 26th]. 

                                                 
1 If it was not reviewed, please specify why (not applicable, not critical, lack of time) 



2) The use case defining the strategy for retrieval the most appropriate 
documentation is missing but, as it belongs to the realm of documentation, the 
following action was approved. 
2] Action: Documentation review to discuss the implementation of a strategy for 
retrieval the most appropriate documentation [dd 30th November] 

 
proposed actions: 

1] SG and MW to provide all the relevant use cases [due date November 6th]  
2] Documentation review to discuss the implementation of a strategy for retrieval 
the most appropriate documentation [dd 30th November] 
 

B.1.2 What are the use-cases/requirements that are expected to hold major 
development difficulties for this package? Are they clearly specified? 
(Note: Currently I noted: stopping of tasks, adding of debugging features, 
handling of big datasets, reported performance problems, IDLizing, saving of 
intermediate data) 

Reviewed: Yes 
 
conclusions: 
 1) The Support for Jython script as already specified is clear. 

2) Implementation of a strategy for retrieval the most appropriate documentation 
is under definition. 
 
proposed actions: 
  

B.1.3 Does the package have a high number of SCRs? Are the modification of use-
cases and additional use-cases?  

reviewed: [Not Reviewed as not Applicable, the package has just been published ] 
 
 
conclusions: 
 
proposed actions: 

 

B.2 Architecture 
B.2.1 What is the "raison d' être" for this package? To which currently existing use-

cases is it linked? Do we need additional usecases to specify the most important 
functionality? 

reviewed: Yes 
  
conclusions: 
 The point has been addresses in B.1.1 



proposed actions: 
 

B.2.2 Does the package fit coherently into the overall architecture of IA? 

reviewed: Yes 
 
conclusions: 

The package fits coherently into the overall architecture of IA, with the exception 
of the sessioninspector which will have to be moved to its own package. 
 
proposed actions: 
 Addressed in B.2.9 
 

B.2.3 Is there an architecture and design document, including:  
• Subsystem decomposition  
• Design notes, explaining design decisions  
• UML diagrams, where appropriate, to illustrate design features 

 
reviewed: Yes 
 
conclusions: 

The current document is sufficient for the time being. 
 
proposed actions: 
 

 

B.2.4 Is it a component architecture, with cleanly decoupled components?  

reviewed: Yes 
 
conclusions: 

The package is compliant to this point. 
 
proposed actions: 
 
 

B.2.5 Does it have understandable interfaces?  

reviewed: Yes 
 
conclusions: 

The current structure has inherited the hcss standards for sub packages and the 
readability is partially compromised. As it is a general question it was redirected to the 
system panel. 
 
proposed actions: 



System panel to provide standards for package structure. 
 

B.2.6 Does the API hide the underlying implementation (i.e. provide suitable 
abstraction)? 

reviewed: No, see B.2.5 
 
conclusions: 
 
proposed actions: 
 
 

B.2.7 Are there public classes/methods which should not form part of the public API?  
• Conversely, are there classes/methods that should be made public?  
• Is it clear which packages form part of public API? 

reviewed: No, see B.2.5 
 
conclusions: 
 
proposed actions: 
 

 

B.2.8 Does it have direct interfaces with other subsystems or other libraries? Is it 
incorrectly/overly coupled to other packages? Are there circular dependencies? 

reviewed: Yes 
 
conclusions: 
 
proposed actions: 
 
 

B.2.9 Is the subsystem decomposed into packages? Is this decomposition sensible, or 
a cause of user irritation and/or increase in complexity? 

reviewed: Yes 
 
conclusions: 
The panel decided that herschel.ia.sessioninspector is not the right place for this package. 
The reason is that even though the session inspector and the help view are in the same 
logical domain they do not belong in the same package, as the sessioninspector is a 
graphical tool it should be located under its own package or under a generic tool package. 
 
proposed actions: 

JK to move herschel.ia.sessioninspector in herschel.inspector.session [30th 

November] 



NdC to check if DatasetInsepctor could be moved in the same package [20th  

November] 
 
 

B.2.10 Do you have suggestions on the improvement of the architecture or design (E.g. 
would this package benefit from features introduced by JDK 1.5)? 

reviewed: Yes 
 
conclusions: 

The XSL-FO technology was suggested as a possible candidate 
 
proposed actions: 

JK to investigate the XSL-FO [dd end on January 2005] 
 
 

B.2.11 Are there new external packages that are better suited to provide the underlying 
services? 

reviewed: Yes 
 
conclusions: 

Aspect oriented technology was suggested as a possible candidate and it could 
explored in the next future. 
 
proposed actions: 
 
 

B.2.12 Would it be worthwhile to make the package open source? 

reviewed: Yes 
 
conclusions: 

Not at the moment but the potentiality of the package suggests a later 
investigation. 
 
proposed actions: 
 
 

B.3 Documentation 
The package still lacks a complete developers documentation. 
 

B.3.1 Is there a user manual for the package? Does it have a document number? 
Should it have one? 

reviewed: Yes 



 
conclusions: 

The users’ documentation on help is fine however SG requested to put more 
emphasis on the limitations part of the help task 
 
proposed actions: 

NdC to update documentation on HelpTask in order put more emphasis on the 
limitations [dd 30th November]) 
 
 

B.3.2 Is there adequate developer's documentation? Does it have a document number? 
Should it have one? 

reviewed: [Not Reviewed (see introduction)] 
 
 
conclusions: 
 
proposed actions: 
 
 

B.3.3 Is there adequate design documentation? Does it have a document number? 
Should it have one? 

reviewed: Yes 
 
conclusions: 

A design document is available and it is sufficient for the time being 
 
 
proposed actions: 
 
 

B.3.4 JavaDoc 
• Does the JavaDoc follow the Sun guidelines? 

• Does each method have an understandable JavaDoc description? 
• Is the general level of JavaDoc comments adequate (especially for 

public API)?  
• Does the JavaDoc include code examples, where appropriate?  

• Does each subsystem have a top-level "package.html" file, including:  
• An initial summary sentence documentation, etc  
• A description of the contents and purpose of the package  
• A "Package Specification" section (may be blank)  
• A "Related Documentation" section with hyperlinks to design  

reviewed: [Not Reviewed (see introduction)] 



 
 
conclusions: 
 
proposed actions: 
 
 

B.3.5 Where is the documentation located? 

reviewed: [Not Reviewed (see introduction)] 
 
 
conclusions: 
 
proposed actions: 
 
 

B.3.6 Does the subsystem have a readable CHANGELOG file?  

reviewed: Yes 
 
conclusions: 

The package has a readable CHANGELOG 
 
proposed actions: 
 
 

 

B.4 Design 

Limitations: 
The session inspector package which is still under active development (it needs to be 
integrated with the Dataset Inspector) is not object of this review. 
 

B.4.1 Are there any indicators of design problems (code metrics, test coverage, high 
number of SPRs)? 

reviewed: Yes 
 
conclusions: 
No problems were highlighted by the metrics or by reviewers. 
However the following suggestions were formulated: 
1)Remove the use of System.out.println 
2)Fixe the misuse of configuration 
 



 
proposed actions: 
1] NdC to remove the use of System.out.println [NdC 30th November] 
2] NdC Check if declaration within for loop is cause of bad performances [30th] 
3] NdC, HS, SG Misuse of configuration in HelpLocator.defaults [TDB] 
 
 

B.4.2 Is the package easy to use? If not, why? 
reviewed:Yes 
 
conclusions: 

The use of javascript in the displayed document should be avoided. 
proposed actions: 

Documentation group to check standards and exceptions in the formats 
 
 

B.4.3 Are appropriate Design Patterns employed?  
• Should further design patterns be introduced to improve abstraction, 

flexibility, modularity, etc?  
• Conversely, are inappropriate design patterns employed?  

reviewed:Yes 
 
conclusions: 

The package is compliant to these points. 
 
proposed actions: 
 
 

B.4.4 Is there a proper separation of concerns between classes and between packages?  
reviewed: [Not Relevant] 
 
 
conclusions: 
 
proposed actions: 
 
 

B.4.5 Is the design properly Object Oriented?  
reviewed: [Not Relevant] 
 
 
conclusions: 



 
proposed actions: 
 
 

B.4.6 Is the principle of operation sound?  
reviewed: [Not Relevant] 
 
 
conclusions: 
 
proposed actions: 
 
 

B.4.7 Might the design lead to performance problems?  
reviewed: [Not Relevant] 
 
 
conclusions: 
 
proposed actions: 
 
 

B.4.8 Is reflection used unnecessarily?  
reviewed: [Not Relevant] 
 
 
conclusions: 
 
proposed actions: 
 
 

B.4.9 Is inheritance used in an appropriate way?  These checkpoints should be true 
wherever inheritance is used: 
• It is a "kind of", not a "role played by", relationship. 
• The object never needs to transmute into another class. 
• It extends rather than overrides or nullifies the superclass. 
• It does not subclass what is merely a utility class.  

reviewed: [Not Relevant] 
 
 
conclusions: 
 



proposed actions: 
 

 

B.4.10 Would composition be better than inheritance? 
reviewed: [Not Relevant] 
 
 
conclusions: 
 
proposed actions: 
 
 

B.4.11 Should any classes be immutable?  
reviewed: [Not Relevant] 
 
 
conclusions: 
 
proposed actions: 
 
 

B.4.12 Is error handling adequate?  
• Are there any 'exit' statements (except in "main" method)?  
• Are the error and log messages understandable and appropriate? 
• Is exception handling employed for all exception / error conditions?  
• Are the exceptions thrown misleading or not the right ones?  
• Should the exception be thrown at all?  
• Should the exception be checked or non-checked?  
• Can a situation be envisaged where the code will obviously fail? 

reviewed: Yes 
 
conclusions: 

Odile asked to check if the warnings when compiling documentation are 
compliant to the javadoc standards 
 
proposed actions: 

NdC to open spr for checking compliance with javadoc [dd 30th November] 

 

B.4.13 Does the design allow the subsystem to be properly tested?  
• Is a pluggable architecture needed to support test stubs?  
• Is the GUI decoupled, so that the underlying logic can be tested on its own?  



• Are there specific testing problems (e.g. Jython code, access to database 
server, GUIs)? 

reviewed:Yes 
 
conclusions: 

The subsystem can be properly tested. 
However there are limitations due the javadoc architecture that limits the test to 
the only black box testing. 

 
proposed actions: 

JK to update the documentation explaining limits on tests architecture [30th 

November] 
 

 
 

B.5 Summary/other comments 

B.5.1 What are the main conclusions of the review panel? How do you rate the state 
(green/amber/red)2 
The package needs to be checked against the set of user requirements. As they are 
not completely available the package is formally in amber state. 

B.5.2 What are the main recommendations of the review panel? 

B.5.3 Were additional points reviewed?  If so, please list them, including conclusions 
and proposed actions 

 
 

                                                 
2 If the state is amber or red, please state the reason 



Appendix P 
 
 
JConsole Review 16/11/04 Final Minutes SG 20/01/05 
-------------------------------------------------- 
-------------------------------------------------- 
 
N de Candussio (HSC/ESTEC, "defender") 
S Guest (SPIRE/RAL, chair) 
R Huygen (PACS/KUL, reviewer) 
A de Jonge (HIFI/SRON, reviewer) 
P Roelfsema (HIFI/SRON, observer) 
B Vandenbussche (PACS/KUL, observer, p/t) 
 
 
Summary 
------- 
 
"What are the main conclusions of the review panel? How do you rate the state? 
(green/amber/red)" 
 
The panel concluded that while there no major problems with the package, some work was 
required to address future maintainability. 
 
The state rating was not discussed in the review panel. However, it was agreed during the 
final plenary session to rate it as "green". 
 
"What are the main recommendations of the review panel?" 
 
1. Restructure the package to make it easier to understand. The goal of moving things is to 
improve cohesion, maintainability and documentation. 
 
2. Ensure that only classes and methods intended as public API appear in the Javadoc. 
 
3. Define a protocol to support "plug-ins" to provide extensibility. Reimplement the 
dependencies on other packages (e.g. dataset inspector, help) as plug-ins. 
 
4. Look into whether general utility classes can be moved outside the package. 
 
5. Investigate the best way to handle properties within the package. Remove the double 
definitions of properties. 
 
 
Purpose 
------- 
 
SG introduced the purpose of the review as to concentrate on future maintainability, as it was 
felt that the large number of SCRs on the package appears to be putting a strain on some 
aspects of the design. The package was not reviewed against the checklist for the review as 
it had previously been reviewed in that context in 2003. 
 
The panel agreed to stress: 
 
1. Maintainability 
2. Robustness 
3. Extensibility 
 
Reusability, while desirable, is not an end in itself. It must be clear what is gained by it, 
and it is possible to go too far. However, it is expected to be a by-product of a 
design-for-maintenance approach with high cohesion and loose coupling. Only classes that are 
intended to be reusable outside a standalone JIDE environment should appear in the Javadoc. 
 
A reusable and extensible JConsole is a good candidate for open source. 
 
 
General 
------- 
 
There was some dicussion on whether we actually need to maintain this package at all. 
NdC asked if there are now other options that could be used as an alternative. It was agreed 
that we should keep our eyes open. SG asked if maintenance and further development of the 
package could be given to an external body ie outsourced, as there would likely be some 
interested parties. RH argued that we should be careful of giving it to someone else as it 
is too critical to the system as a whole. The panel agreed that control of this package 
should be kept in-house, though there is a possibility that some parts, if sufficiently 



modular, could be worked on by other groups. [SG: there is a contradiction between this 
and looking for alternatives] 
 
NdC was uncomfortable that restructuring work recommended by the panel would not be covered 
by written requirements and that such work is uncosted. He would like to work against Use 
Cases. It was agreed though that there is an implicit requirement to make the system 
maintainable. RH remarked that an SCR-driven system precludes future planning. The panel 
suggested that the analysis of an SCR should reference an existing Use Case (or other written 
requirement) if there is one, and include a new Use Case if there is not. 
 
NdC agreed to answer every point brought up by the package reviewers. He mentioned that the 
debugging and Control-C issues might have implications on the overall package architecture. 
 
 
Package Name 
------------ 
 
It is not clear what the difference is between jconsole and jide, and this is confusing. 
The panel felt that: 
1. JIDE could refer to the standalone application. The package contains all the elements 
of the environment and could be called jide. 
2. JConsole could refer to the (reusable) command line interface. 
 
This was intended purely as a suggestion for further discussion - no action is appropriate. 
 
 
Package Structure 
----------------- 
 
All the reviewers were confused by the package structure. It is unclear which classes are a 
part of a public API, and what the reasons for the decomposition are. In particular the main  
API appears to be in the "gui" subpackage and not the "api" subpackage. Moreover, the api/impl 
split implies the use of a pluggable implementation pattern which is not actually followed, 
and which was also felt to be confusing. NdC stated that "api" is intended to be a "user API" 
and "gui" the "developer API". As API = application *programmer* interface, and GUI = 
graphical *user* interface, this is particularly confusing. 
The package structure was based on one found in some other HCSS packages. It was generally 
felt that a "util" subpackage was expected to be part of the public API. 
 
NdC indicated that to consider the package as having an API was a new view of it, as it was 
originally conceived as purely an application. 
 
The panel recommended to: 
1. Restructure the package to make it easier to understand. The goal of moving things is to 
improve cohesion, maintainability and documentation. 
2. Ensure that only classes and methods intended as public API appear in the Javadoc. 
3. Ask the system review to make package structure guidelines clear. 
4. Look into whether general utility classes can be moved outside the package. There should 
be a general place to put utility classes. 
 
 
Dependencies and Pluggability 
----------------------------- 
 
The inclusion of the dataset inspector and help buttons (both from SCRs) has resulted in 
the core jconsole (gui) package depending on not only the entire IA system, but also external 
packages such as JSky. Some of the dependencies are circular. 
 
The panel recommended to restructure the package to support "plug-ins" that can be used to 
add extra items and change the configuration. Dependencies on other packages should be placed 
outside the core JConsole package and loaded with the plug-in mechanism. NdC pointed out that 
the dependencies still exist even with a plug-in. However, they are separated out and 
localised. The plug-ins should probably be loaded from a start-up script. This mechanism 
will make jconsole fully extensible and easier to maintain. 
 
There is some debate about which package dependencies are acceptable and which aren't. AdJ 
raised the question of whether the help feature should be a plug-in. It was agreed that it 
should. Dependencies on utility libraries such as share and ia.ui might be ok. It was felt 
that the locations of utility classes in the HCSS/IA system should be rationalised and that 
there should be a general place or places to put them. This was referred to the system panel. 
Many of the classes in jconsole.util are utilities and could be moved. 
 
It was asked whether it was possible to make the editing environment pluggable, so users 
could for example use an integrated JEdit. AdJ pointed out that people are very attached to 
their own editing environment. Input from the user group might be useful here. NdC agreed 
to investigate the possibility. It was agreed that this feature is less important than 



generic plug-ins. 
 
RH specifically brought up the point of being able to add keyboard shortcuts, and to be able 
to "hook in" user-defined functions. For example, it should be possible to write a plug-in 
function that shows all methods of a class if the user presses a TAB after a dot is typed 
on the commandline. This would be supported by the plug-in mechanism. 
 
 
Properties 
---------- 
 
Most properties are defined twice with the same defaults ie in xml and defaults file. It was 
agreed to rationalise this. 
 
There was some discussion on the best way for JConsole to handle its properties. SG had 
provided a list of five alternative ways as input. The panel felt that JConsole components 
using properties directly (option 1) was acceptable, but hiding it behind a pluggable API 
would be better (option 4). 
 
NdC felt that guidelines were lacking in how to use properties properly. BV remarked that a 
distinction should be made between properties and configuration. AdJ suggested that there 
should be lightweight property implementation with just system properties for use outside 
an HCSS environment. 
 
 
Appendix A: Review kickoff (SG e-mail 04/11/04) 
----------------------------------------------- 
----------------------------------------------- 
 
Hi, 
 
I have already mentioned to a few people that I would like a JConsole review to focus on a 
design for maintainability. I was also the one who asked for it to be reviewed, which I 
suppose is how I ended up the chair. At the moment we seem to have Nicola and Rik signed up. 
 
JConsole was carefully designed and was successfully reviewed in 2003, but the large number of 
SCRs on the package appears to be putting a strain on some aspects of the design, and 
introducing some dependencies in possibly unexpected places. My opinion is that the design 
needs some rework with particular emphasis on future maintainability. 
 
These are some general aims: 
 
1. A standalone "core" package with no or minimal dependencies on other packages. Purely 
utility packages (eg ia.ui) should be ok, Herschel-specific ones not so.  
2. Avoid direct coupling to Herschel-specifics anyway. This will allow the package to be 
reused, and possibly offered to the Jython community, hopefully in return for additional 
external effort. There should be a way to include things like session and dataset inspector 
without direct coupling. 
3. Improved modularity which could enable more people to work on it 
independently. 
4. We can't anticipate all future change requests, so keep it as flexible as 
possible. 
5. Identify and avoid any arbitrary restrictions. 
6. Identify what the public API is, document it properly, and make sure nothing else appears 
in the Javadoc. 
 
I know that not everyone agrees with me that we should be producing reusable software. Still, 
it's an aim of mine. 
 
A few more specific points: 
 
1. I would like to look at the way properties are used, with the aims of cohesion and loose 
coupling between components. How can this be best achieved? (I also note that most properties 
are defined twice with the same value). 
2. Which, if any, components are useful in their own right? Are they reusable elsewhere? 
3. Does the package structure make sense? Could it be better organised? (I note that an 
"api" package exists, yet is not the main api, "gui" is). 
 
Steve. 
 
 
Appendix B: SG review input (e-mail 12/11/04) 
--------------------------------------------- 
--------------------------------------------- 
 
Introduction 



------------ 
 
JConsole was carefully designed and was successfully reviewed in 2003, but the large number 
of SCRs on the package appears to be putting a strain on some aspects of the design, and 
introducing some dependencies in possibly unexpected places. My opinion is that the design 
needs some rework with particular emphasis on future maintainability. 
 
These are some general aims: 
 
1. A standalone "core" package with no or minimal dependencies on other packages. 
   Purely utility packages (eg ia.ui) should be ok, Herschel-specific ones not so. 
2. Avoid direct coupling to Herschel-specifics anyway. This will allow the package to be 
   reused, and possibly offered to the Jython community, hopefully in return for additional 
   external effort. 
3. Improved modularity which could enable more people to work on it independently. 
4. We can't anticipate all future change requests, so keep it as flexible as possible. 
5. Identify and avoid any arbitrary restrictions. 
6. Identify what the public API is, document it properly, and make sure nothing else 
   appears in the Javadoc. 
 
Package Structure 
----------------- 
 
The purpose of each package and the reasons for it being split are not always clear. 
The api package is *not* the main api, gui is - very confusing. Consider locating the main API 
within a single package, though this might be at odds with modularity - the jython and util 
packages also appear to contain classes that are a part of the API. 
 
impl: It seems like overkill to have a package for a single class. Why is it not a 
package-private class in api? 
 
Can util and tools be combined? Why not? (properties?). 
 
Is the package breakdown sufficiently modular that a developer at a different site can 
take over a subpackage? If not, can it be made so? 
 
 
Dependency tree (incomplete) 
--------------- 
 
jconsole    - jython 
            - share.util 
            - share.property 
            - share.log 
            - ia.ui 
            - ia.dataset.gui (JIDEComponent) 
            - ia.numeric (JythonUtil) 
            - ia.task (JythonUtil, ClearTask) 
            - ia.help (JIDEComponent) 
 
help        - jconsole (many classes in sessioninspector use JythonUtil, **mutual 
dependency**) 
            - share.util 
            - share.log 
            - ia.ui 
            - ia.task 
            - ia.numeric 
            - ia.image          -  jsky    -   jai 
            - com.sun.javadoc 
            - jython 
 
dataset.gui - jconsole (DatasetInspector uses JIDEUtilities, **mutual dependency**) 
            - ia.dataset 
            - ia.numeric 
            - ia.io.ascii 
            - ia.image 
            - ia.plot 
            - ia.ui 
            - jython 
 
JConsole actually depends on JSky + JAI!!! SessionInspector won't start without them. 
In fact the main JIDEComponent depends on virtually the entire IA system. 
Also note that JythonUtil claims to be in a "private" package, yet is used extensively 
in sessioninspector! 
 
The mutual JConsole dependencies can be solved by removing (or moving) the dependencies on 



ia.dataset.gui and ia.help. The problem class here is JIDEComponent. 
The dependency of JythonUtil on ia.numeric and ia.task is less serious but should still 
be tackled. The references to these packages are localised in the static method isFunction, 
which can be moved elsewhere. 
ClearTask is fully dependent on ia.task - this dependency can only be tackled by moving 
it (see recommendations). 
JythonLogger also has a "herschel" string dependency. It is not clear whether this is 
necessary or can be avoided. 
 
Recommendations: 
1. Move any herschel-specific code into a separate herschel subpackage. Ensure that jide 
   still runs when this package is not there. 
2. Define a protocol such that plug-ins can be added to jide. Use this protocol to add 
   the dataset inspector, session browser, and help functionality. The plug-ins should 
   probably be added by a start-up script located by a property. 
 
 
Documentation 
------------- 
 
Only the intended API should appear in the Javadoc. 
 
There are many missing Javadoc comments. It's not always clear though whether the class is 
intended to be part of the API. 
 
Are hooks/predefined variables (eg _interpreter) documented? 
 
There are many classes with no CVS/copyright header. 
 
What does this mean? (from JConsole Javadoc) 
"JConsole offers the basic copy and paste features, 
however they are not accessible by keywords." 
 
 
Properties 
---------- 
 
Most properties are defined twice with the same defaults ie in xml and defaults file. 
Should only be in defaults file if overriding package default. 
 
Property handling *can* be delegated outside of the core classes but should not be 
done at application level as this results in massive coupling. 
 
What is the best way to handle this? There appear to be a number of options, eg: 
 
1. Add the property handling code to each class that needs a property value, and just gets 
its own properties. This is simple and good for cohesion, but creates a dependency on 
property handling code in places where they should perhaps be none. Is this a problem? 
 
2. Create subclasses of said classes to handle the properties and put them in a "herschel" 
directory. It might then need (TBC) some creational pattern (eg factory) to ensure you get 
the right one, which is a bit messy. 
 
3. Variant of (2), where we accept we need the factory, but it handles all the property 
code itself, no subclasses needed. Note that this factory should be more elaborate than 
currently exists, as methods for each component that uses a property would be needed (for 
consistency everything should be created through it). Again, this seems a messy way of 
creating components. 
 
4. Define an API over the top of the properties. JConsoleDefaults already does this in a  
sort of heavy-handed way (and it seems a little peverse to have that *and* the 
component creation factory). This would use an interface so that the implementation was 
pluggable. Any JConsole class could call something like 
JConsoleProperties.getProperties().getFont(), which (IMHO) should return a Font object. 
 
5. Stick with what we have and don't worry about it. 
JConsoleDefaults now does little useful other than to initialize the properties. 
 
Note that in each case it has to be possible to get the property names in order to make them 
available to the property editing popups. This seems a little messy, but doesn't pose a 
genuine problem (it is after all, just a name). 
 
 
The gui package 
--------------- 
 



I assume that all the public classes in here, other than test harnesses, are part of the 
jconsole API. 
 
Are classes such as JIDE & JIDEFrame needed at all? 
 
Why don't the test harnesses show up in the Javadoc? It's good that they don't, but how? 
 
JIDEComponent: 
  - is directly coupled to dataset.gui ("Info" action) 
  - is directly coupled to help, which relies on Herschel configuration ie the non-reliance 
    on properties is an illusion. Is this ok? (Problem goes away if dependency recommendations 
    are followed). 
 
  - This code isn't right, *confusion* due to poor choice (by SG!!) of variable names. 
      if (windows) GuiUtils.addMouseListenerToAll (cont, ml);  // = paste one 
      GuiUtils.addPasteListener (cont, pl); 
 
ScriptPane 
  - Creates a mouse listener. What does this do? Does it still work with JIDEComponent? 
    Does it matter if it doesn't? 
 
 
The tools package 
----------------- 
 
The purpose of this package appears to be to run JIDE/JConsole within a Herschel-configured 
environment. As such, can it be combined with the proposed jconsole.herschel package? 
 
JyLauncher: 
Why does it use a non-documented property "filename" rather than a command-line argument? 
 
 
The util package 
---------------- 
 
This package is private according to the Javadoc (even though it's used by the help package). 
It contains a number of utility classes which might be generally useful and could logically 
go elsewhere. If these classes are not moved they should either be clearly labelled as being a 
valid part of the API, or not appear in the Javadoc. Here is a list of each, with a suggestion 
of where they might be able to go. Wherever I indicate ia.ui, share.swing could also be 
appropiate. Uncertainty is indicated by question marks. 
 
ClearTask.java                  jconsole.herschel 
CopyStream.java                 share.util 
ExtensionFileFilter.java        ia.ui 
JFilesSaveDialog.java           ia.ui (?) 
JRefreshFileChooser.java        ia.ui (?) 
JythonDocument.java             jconsole, but api or private? 
JythonUndoManager.java          jconsole, but api or private? 
JythonUtil.java                 jconsole api (except isFunction -> jconsole.herschel) 
LimitedLinesDocument.java       ia.ui 
OptionParser.java               share.util (?) 
TextAreaOutputStream.java       ia.ui 
TextEditor.java                 ia.ui (?) 
UndoableTextEditor.java         ia.ui (?) 
XSplitPane.java                 ia.ui 
 
JConsoleLogger.java             share.log (renamed) 
JLogWindow.java                 Unnecessary, should be a method in JConsoleLogger (cohesion) 
JythonFilter.java               share.log (renamed) 
JythonLogger.java               jconsole.herschel or share.log (rename) (?) 
TextAreaHandler.java            share.log 
 
 
Miscellaneous 
------------- 
 
The actions "Log", "Dataset" and "Info" should have better names as it's not clear what 
they do (they appear on the popup menu). 
 
Can the script editor be made pluggable such that the user can plug-in a favourite? 
 
Remark from Mahohai Huang: 
"Do you think if it is an interesting idea to make the editor/console of a JIDE/jconsole 
detachable from the Jython interpreter (i.e. runnable from different JVMs)? This will allow 
existing IDEs (e.g. Eclipse) to be used as a platform for all the nice features to be borrowed 



or implemented with ease. The current JIDE/Jconsole can still remain as a "component'able" 
light weight Jython development environment." 
 
 
Comments on specific classes 
---------------------------- 
 
JIDEUtilities contains a catch of a generic exception, no rethrow and no comment. 
 
 
Appendix C: RH Review input (e-mail 15/11/04) 
--------------------------------------------- 
--------------------------------------------- 
 
Comment by Rik Huygen for IA Code Review 16 Nov 2004 @ K.U.Leuven 
----------------------------------------------------------------- 
 
General Comments 
 
 - where is the architectural design document? 
  
Package Structure 
 
 - general comments 
  
   each (sub-)package should contain a package.html file explaining it's 
   existence/purpose and the functionality it provides in its classes. 
    
   The package structure itself is not really clear from its contents. 
    
   Please make clear what the difference is between Jide and JConsole and use 
   them consistently throughout the package and its documentation. 
 
 - api  
 
   should contain the public API i.e. JIDE (Jide), JConsole component, 
   Launcher...factories if needed (see below) 
  
 - gui  
 
   currently contains the main components of the public interface. Should this 
   package exist at all? The whole jconsole package is centered around GUIs so 
   what is so special about classes in the gui sub-package? This is different 
   from packages like ia.dataset which is not GUI based, but contains a 
   sub-package gui which contains the GUI for inspecting components of the main 
   ia.dataset package. 
 
 - impl 
  
   Only one class here. I wonder what the benifit is of this whole Factory 
   construct in this particular case. If the purpose is flexibility and allowing 
   experts to plugin different editor components or commandline components, I 
   don't think the JConsoleFactory will be able to provide such flexibility. 
 
 - jython  
 
   PACKAGE PRIVATE 
    
   Nevertheless this package contains classes of general interest e.g. 
   Interpreter, Log (?). 
    
 - tools 
  
   aren't these classes kind of public API also? 
  
 - util 
  
   PACKAGE PRIVATE ? Is this a good idea to have util sub-packages that are 
   private? If at all there should be a gui sub-package to contain the 
   non-public GUI components, most of the classes that are in this util 
   sub-package belong there (e.g. JFilesSaveDialog, JythonDocument). 
 
Documentation 
 
 - For a lot of classes the javadoc is either missing or incomplete. Even for 
   essential interfaces no or incomplete javadoc is available e.g. Console. 



    
 - As mentioned above the package documentation is missing. 
    
 - javadoc is sometimes misleading e.g. a ConsoleEditor has the following in its 
   javadoc: 
    
     A ConsoleEditor provides the support for loading (executing) and saving 
     jython script file. 
    
   Nevertheless the only methods it provides start with execXXX(). 
    
 - It might be usefull to explain in the documentation (ADD?) which class is 
   responisble for each Swing component e.g. ScriptPane contains several tabbed 
   ScriptDebuggers, JConsolePane contains JConsoleEditor and a History component 
   (where is this component?...gui/HistoryList which is for some reason package 
   private?) 
 
Individual class comments 
 
 - JConsoleDefaults 
 
   is it possible to add/define your own properties here that you would like to 
   use by default in an environment containing customised pluggins? Can pluggins 
   add/register their default set of properties here? e.g. DatasetInspector. 
    
   it is a little bit strange that this class defines properties that one would 
   expect for the individual components. What does getFontSize() and 
   getFontType() provide? Shouldn't e.g. ScriptDebugger (or one of its 
   superclasses) define its own default Font which then can be overwritten by 
   the setFont() method? What else is meant by reusable components? 
    
 - JConsoleFactoryManager 
    
   see previous comments about factory use (impl) 
    
   if the only methods defined in this class are static, why do you need a 
   getInstance() method? 
    
 - JIDEUtilities 
  
   incorrect name --> JideUtilities 
    
 - PropertyHandler 
  
   not sure what this does and why it returns a SystemPopup while its called 
   addPropertyHandler. 
  
 - Console 
  
   what is the difference between JConsole, JConsoleEditor, and JConsolePane. It 
   is not clear to me why all three of them should implement the Console 
   interface. 
 
 - JIDEFrame versus JIDE: why is the JIDEFrame class needed? 
  
 - Editor (I) 
 
   this is a very confusing inerface. It states in the documnetation that it 
   defines a TextEditor and it only provide I/O kind of methods for loading and 
   saving text. 
    
 - Output 
  
   ? 
    
 - Log 
  
   ? 
    
 - History 
  
   why doesn't this contain simple commands like add() and remove()/pop(). 
    
    
Pluggability 
 



 - is the design such that it supports pluggability? And if yes, plugging in 
   what? Are we talking about plugging in our personalised version of the command 
   prompt or editor window? are we talking about plugging in our own version of a 
   customised FileChooser? Can we replace the Interpreter by another version? 
   Or is it more like adding icons to the toolbar to call isolated GUI tools like 
   DatasetInspector? 
    
 - Keyboard hook? 
 
 
RH, 15-Nov-2004 
 
 
Appendix D: Jerzy Borkowski input (e-mail 13/11/04) 
--------------------------------------------------- 
--------------------------------------------------- 
 
Dear Steve, Stephan, 
 
Here are my comments for the JConsole review. 
I'm sending this email only to you two, so if 
there are other members of  jconsole review 
panel who should read it, may I ask 
you to please forward this email to them. 
 
 
1. General 
 
1a. 
The are two terms: JIDE and JConsole used to describe 
similar functionality. There are even 
2 identical hcss executables : jide and jconsole. 
This is confusing. Only one name should be used, and 
the second name should be dropped. 
 
1b. 
Ditto in the docs. 
I think the problem here comes from the fact that (as 
written in the doc design.html/par#3(Architecture)) : 
 
  The jconsole package is split into sub-packages: 
    * The gui package contains the gui components 
    * The jython ..... 
    [...] 
 
which is contrary to the par#5(Gui) which stipulates : 
 
  "The basic component of the gui package is JConsole" 
 
Thus, throughtout the docs and in the source code 
jconsole means either the whole jconsole package 
(consisting of gui, util, jython, etc...) 
or the jconsole class (part of gui). I'd suggest 
renaming one of the two (but I'm not sure how big 
impact this will have on other parts of the hcss). 
 
 
2. API vs. GUI 
 
2a. 
Since GUI files depend on API files (import herschel.ia.jconsole.api....), API source files 
should not depend on GUI. This is mostly followed, with the exception of JConsoleFactory.java 
and PropertyHandler.java files, which import  herschel.ia.jconsole.gui.JIDE..... stuff. IMHO 
the PropertyHandler.java and JIDEComponent.java are best placed in the same directory/class. 
 
2b. 
The api/gui directory (and package) names are misleading. 
The real API interface (or at least its critical part) is in the gui directory, and even in 
the doc it is written that "Clients of the jconsole should only include the gui package". 
Therefore api directory/package could be renamed to, say, jconsole-core, and gui 
directory/package (or part of it) renamed to api. 
 
 
kind regards, 
 
Jurek 



Appendix Q 
 
 
 
 
 



A Conclusions of System/infrastructure Review 
 
Panel composition: 
 
Chair: Albrecht de Jonge 
Defender:  Steve Guest 
Members: Jorgo Bakker, Rik Huygen, Hassan Siddiqui.   
 

A.1 Use cases/requirements 
A.1.1 Can the system fulfill all foreseen operational and community needs? 

Reviewed:  
Yes 

Conclusions: 
• The shopping basket concept and large downloads were identified as risk areas in 

Tiger Team report. No feasibility demonstration has been given so far. In view of 
progressing technology we may doubt if network/database independency is still 
needed in four years.  

• It is unclear what happened to the (product)history as defined in the Tiger Team 
definition. No clear support is available in the task/process classes. Lacking this 
support Spire software developers are currently making workarounds. The 
requirements for history are still ambiguous, several ideas about history are 
around 

• Sandbox seems currently not used by end users - leave to sandbox panel 
• The relation between CCM product and IA product is well-defined. Not 

completely clear from the CCM is how the following issues are to be dealt with: 
o SPG will have to put IA products in the database(s) 
o How are these are retrieved or navigated to. 
o Products for calibration have to be stored in a way compatible with their 

use by uplink/downlink  
We understand the current requirements to imply that calibration data have the 
form of IA products 

• Persistence implementation by versant database needs discussion, these questions 
were raised: 

o Is what we have this sufficient? 
o Is navigation used where needed? 
o Is the support by HCSDT development sufficient? 
o There seems a lack of documentation/instruction? 
o Are the browsing facilities sufficient? 

The overall feeling was ‘’current IA use of database may not be as 
intended/designed’’. Additional work/support is needed, and experience feedback 
from IA end users is needed 



• There are no obviously missing areas with respect to Tiger Team report 
• It was briefly questioned if Jython is still the scripting language of choice. The 

panel agreed that it surely is, but that there are some questions and potential 
pitfalls: 

o Documentation is problematic. Any public class should be documented at 
end user level 

o Tailoring Jython and numeric to each other was a large effort. A dedicated 
scripting language instead might have been more efficient in 
implementing the numerical part but that does not outweigh the benefits of 
using Jython.   

o Jython allows people to uncover private methods/classes and expose 
implementation detail. The risk is that end user scripts might 
(inadvertently) become dependent on these.  

• Performance was discussed. It is unclear what is expected in terms of display 
speed, computation speed, data access speed.   

Proposed actions: 
• Review if the risks identified in the tiger-team report for large downloads and the 

shopping basket concept are still risks. 
• The scope of History and its relation to IaProcess and Task need to be (re-) 

identified, and the priority to implement it has to be reestablished. 
• Persistence implementation by versant database needs evaluation  
• It should be investigated how to prevent mistakes caused by Jython exposing Java 

implementation details. 
• Performance requirements for IA should be drafted. 

 

A.1.2 Can the system meet the needs of both HIFI/PACS "IA as command line 
with GUIs" and SPIRE "IA as GUI with command line" view? 

Reviewed: 
Yes 

Conclusions: 
• The SPIRE view of IA does not involve a completely GUI-driven architecture. 

The SPIRE view involves the extension of existing command-line functionality in 
jconsole to enable the ability to select a task from a menu or to drag a product into 
a viewer. It is not required that a fit algorithm will be designed using a GUI. 
Given that restricted interpretation of “GUI with command line” the panel 
concluded that current IA system meets the needs of all three instrument groups 

• GUI-based functionality like the above may be required in later developments. 
Care is required to guarantee that current system development does not block this 
type of extensions. Some basic design work is needed in this area: 

o No problems are currently foreseen to extend the system in this direction 
o Framework development for this needs use cases/requirements 



o Designs will be need for, for example, how GUIs interact with Task, in 
particular, how a GUI can control a task. 

o This needs manpower 

Proposed actions: 
• Allocate resources to give design directions for extending the GUI-based 

capabilities of the system. 

A.1.3 What are the use-cases/requirements that are expected to hold major 
development difficulties for the IA system? Are they clearly specified? 

Reviewed: 
Yes 

Conclusions: 
• The lack of a unified use-case and requirement overview makes it difficult to 

answer this question. Two areas certain potential  
• The “Control C” problem in Jython was considered a development risk. It exposes 

a fundamental problem, the safety of (scripting) languages with regard to data 
integrity. 

1. A cheap solution is to forbid aborts/suspensions, leading to a safe 
environment with uncorrupted objects 

2. Another cheap solution is to fully allow aborts/suspensions, leading to 
‘half-processed’, i.e., corrupted objects, with no simple way to detect 
which objects are corrupt, and the only ‘safe’ way out at this point is to 
discard all objects. The current solution, with a forced ‘discard all objects’ 
resembles this – you just have to kill your whole session. 

3. The correct (expensive) solution is to code all processing in an 
‘interruptible way’. This allows the process to detect ‘half-processed 
objects’ so that they can be flagged/deleted/recovered 

4. It might be possible to identify a number of ‘risk’ tasks/processes that 
should be coded in an interruptible way so that the problem of solution 2) 
is avoided without having the expense of 3).    

• Jython class definitions that extend Java classes are not ‘backward compatible’. 
For example, if an end user defines a Jython class MyTable that extends the Java 
class herschel.ia.dataset.TableDataset, Java code will not recognize objects of 
class MyTable as being TableDataset objects. It is not clear if the ability to define 
and extend classes is an explicit requirement on the ‘IA scripting language’.  

Proposed actions: 
None proposed by the panel. 

A.2 Architecture 
A.2.1 Will the currently developed subsystems (calibration sources database, 

calibration data access), future subsystems (SPG, QCP, archive browser, 
pointing refinement system) and instrument specific parts (H/P/S..SS) fit into 



the overall architecture of astronomers IA (delivered to community) and 
operations IA (used by ICCs/HSC)? 

Reviewed: 
Yes. 

Conclusions: 
• Support of future subsystems depends on their global design. This prevents a 

general answer to this question. 
• Currently SPIRE are experimenting with SPG-like processing. Lack of navigation 

to calibration objects applicable to particular observation data is known to be a 
problem area.  

Proposed actions: 
None proposed by the panel 

A.2.2 Do we have additional requirements on HCSS infrastructure?  (Note: 
Currently I noted: maintenance of packages having contributors for distinct 
sub-packages (dataset)) 

Reviewed: 
Yes 

Conclusions: 
• Currently, there is an almost one-to-one mapping of a Java package (group) to a 

single CVS module with one responsible developer. This makes collaboration on 
the package awkward. 

•     
 

Proposed actions: 
• HCSS should investigate how to decouple the java package structure from the 

CVS module structure  

A.2.3 Is the package structure within IA OK? Do we have unnecessary 
dependencies? 

Reviewed: 
Yes  

Conclusions: 
• It was felt that the (informal) HCSS convention of dividing a package into 

xxx.api, xxx.impl, xxx.test etc, is not appropriate for IA. Suggested alternatives 
were:  

o Package xxx could contain the API directly 
o A subpackage xxx.impl need only be present if the package is intended to 

actually use multiple independently developed implementations in parallel 



o Test would be in a separate xxx.test package if they are ‘black-box’ tests. 
Internal functional tests would be in the xxx package, and then only one 
top level ‘test’ method or class should be publicly visible as entry point for 
test runs. 

• Without going into detail (left to the package panels) the system panel concluded 
that more attention should be paid to integrating the different packages. A lot of 
developers are apparently unaware of the technical details of development going 
on in other groups, and tend to re-invent things. A coordinator (or coordinating 
group), who is aware of ongoing development at a fair level of detail, could 
prevent duplication of work and/or design mismatches.  

• It might be worth while to find tools that can identify dead code. Dead code at 
private or package level can be found be software metric tools, but how do we 
find out what end users and user/instrument contributed software uses?  

Proposed actions: 
• The IA developers need an IA system architect (or architecture group), that can 

coordinate the technical design issues between the separate IA developers. 
 

 

A.2.4 Are the interfaces to other parts of the ground segment clear?  

Reviewed: 
Yes 

Conclusions: 
• (could be a A.2.3 review item) An area of concerns is that we need to fit user 

contributions, demos etc in a clear way into the system. We also have to make 
sure that as the IA system develops, demos and user contributions can be checked 
against new IA releases, to make sure that they are not outdated.  

Proposed actions: 
No actions proposed by the panel. 

A.2.5 What are the areas of overlap with the HCSS? Are there "grey areas" where 
things might fall between the cracks? 

Reviewed:  
Yes. 

Conclusions: 
• The end user facilities to access the database are a grey area. Even the current 

ILT/IST functionality to save and retrieve persistent products has not been fully 
exercised by the ICCs.  

• The boundary between HCSS and IA is at the moment not clearly defined. In the 
first place, there is no clear management decision about separation/unity of 
IA/HCSS. Secondly, there is no person/group identified to coordinate technical 



issues between HCSS and IA – a role that might be fulfilled by the system 
architect (group) proposed under A.2.3. Proposing to move functionality across 
the HCSS/IA boundary would be his responsibility. 

• Areas where overlap between HCSS and IA components is identified are  
o Herschel.access and herschel.ia.io  
o Herschel.binstruct and herschel.mib (although they are by their naming 

both HCSS, many components, especially of binstruct. are of an IA 
nature)  

 

Proposed actions: 
None proposed by the panel 

A.3 Documentation 
Reviewed:  
 No. Due to limited time and the fact that a separate documentation review will be 
held it was decided not to review the documentation here but only to record any remarks 
or questions that arose in the context of the other discussion 
 
Conclusions: 

• The package documentation location is not consistent across packages 
• The Javadoc API should only document the real developers interface and 

hide any internal methods. When the package decomposition forces internal 
methods to be public, they should be very clearly marked, preferably even 
be excluded from the published java API documentation 

• The documentation group should investigate how to separate end-user 
documentation and developer documentation 

Proposed actions: 
 None 
 

A.4 Summary/other comments 
A.4.1 What are the main conclusions of the review panel? How do you rate the 

state? (green/amber/red) 

The state was rated amber: Nothing came up that would prevent the IA system from 
being used by end users to do Interactive Analysis, but there are major issues identified 
that require a significant amount of work to address. 

A.4.2 What are the main recommendations of the review panel? 

• A coherent set of use case/requirements is needed to review IA again 
• The potential problems of the shopping basket concept, and of large downloads 

have to be investigated. 
• The database implementation has to be evaluated. This should answer the 

questions raised and shrink the grey area between IA and HCSS. 
• History should be implemented  



• The JConsole “CTRL C’ problem should be investigated 
• A ‘system architect’ should be appointed to coordinate the development efforts on 

a technical level. 

A.4.3 Were additional points reviewed?  If so, please list them, including 
conclusions and proposed actions 

None  


	mins_app_draft.pdf
	report_system_intermediate.pdf
	Conclusions of System/infrastructure Review
	Use cases/requirements
	Reviewed:
	Conclusions:
	Proposed actions:
	Reviewed:
	Conclusions:
	Proposed actions:
	Reviewed:
	Conclusions:
	Proposed actions:


	Architecture
	Reviewed:
	Conclusions:
	Proposed actions:
	Reviewed:
	Conclusions:
	Proposed actions:
	Reviewed:
	Conclusions:
	Proposed actions:
	Reviewed:
	Conclusions:
	Proposed actions:
	Reviewed:
	Conclusions:
	Proposed actions:


	Documentation
	The package documentation location is not consistent across 
	The Javadoc API should only document the real developers int
	Documentation should investigate how to separate end-user do

	Summary/other comments



	report_system_final.pdf
	Conclusions of System/infrastructure Review
	Use cases/requirements
	Reviewed:
	Conclusions:
	Proposed actions:
	Reviewed:
	Conclusions:
	Proposed actions:
	Reviewed:
	Conclusions:
	Proposed actions:


	Architecture
	Reviewed:
	Conclusions:
	Proposed actions:
	Reviewed:
	Conclusions:
	Proposed actions:
	Reviewed:
	Conclusions:
	Proposed actions:
	Reviewed:
	Conclusions:
	Proposed actions:
	Reviewed:
	Conclusions:
	Proposed actions:


	Documentation
	The package documentation location is not consistent across 
	The Javadoc API should only document the real developers int
	The documentation group should investigate how to separate e

	Summary/other comments





